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Abstract

CePtPb is an antiferromagnetic, heavy-fermion, metallic compound that crystallizes in the
ZrNiAl-type structure with space group P62m, where the Ce3+-ions form a quasi-Kagome
lattice in the ab-plane. Other compounds in this family with a quasi-Kagome magnetic lat-
tice such as CePdAl and YbAgGe have shown a complex temperature-versus-magnetic field
(T -H) phase diagram with multiple magnetically-ordered phases. In this thesis, a T -H phase
diagram for single crystal CePtPb is constructed from electric resistivity and specific heat
measurements. The constructed phase diagram also shows multiple magnetically-ordered
phases as the Néel temperature TN ≈ 0.9 K is suppressed continuously to T = 0.4 K by
applied field with an extrapolated zero-temperature critical field Hc ≈ 7 kOe. In zero-field,
muon spin relaxation measurements show residual spin dynamics at 25 mK, consistent with
the magnetic structure proposed for CePdAl, where 2/3 of the Ce-4f spins order antifer-
romagnetically and the other 1/3 of the Ce-4f spins remain fluctuating. From a power-law
analysis of the electrical resistivity (ρ = ρ0 + ATn), neither Fermi-liquid (n = 2) nor non-
Fermi-liquid (n < 2) behaviour have been observed down to T = 0.4 K for H ≥ Hc. Instead,
there is an anomalous evolution of n that increases from n = 2.5 at H = Hc to n = 4.1 at
H = 90 kOe, with a tendency towards saturation near the value n ≈ 4 for H > 30 kOe.
The phase diagram and the measurements are compared to CePdAl and YbAgGe.

Keywords: heavy-fermion, geometric frustration, quantum critical point, µSR
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Chapter 1

Introduction

Heavy-fermion compounds are a class of materials with rare-earth or actinide elements that
have partially filled 4f - or 5f -electron shells. The term "heavy-fermion" refers to the effective
mass m∗ of the conduction electrons in these compounds, which is orders of magnitude
greater than the free-electron mass. The large effective mass affects the coefficients of the
electronic contribution to the electrical resistivity (ρ ∼ AT 2) and the specific heat (Cp ∼
γT ), which are also orders of magnitude greater than that of normal metals. For copper, the
electronic specific heat (Sommerfeld) coefficient is γ ≈ 0.7 mJ/mol K2 [1] and the resistivity
coefficient is A = 2×10−8 µΩ cm/K2 [2], whereas for a well known heavy-fermion compound,
CeAl3, the coefficients are γ = 1620 mJ/mol K2 [3] and A = 35 µΩ cm/K2 [4].

The large effective mass originates from screening of the localized f -electron magnetic
moments by the conduction electrons through the so-called "Kondo effect". The Kondo
effect tends to drive the system toward a paramagnetic ground state by fully screening the
f -electron moments. On the other hand, another important interaction in heavy-fermion
compounds, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, tends to favour a
magnetic ground state. The RKKY interaction is an indirect coupling between the localized
f -electron spins mediated by the conduction electrons. Depending on the relative strength
of the Kondo effect compared to the RKKY interaction, heavy-fermion compounds exhibit
various phenomena, including long-range magnetic order [5], valence fluctuations [6], and
unconventional superconductivity [7, 8, 9].

Doniach proposed that heavy-fermion compounds evolve from a dense lattice version
of the Kondo effect [10]. A sub-class of heavy-fermion metals develop an antiferromagnetic
(AFM) state at low temperatures due to a dominant RKKY interaction. In Doniach’s model,
the AFM transition temperature (or Néel temperature) TN is continuously suppressed to
zero by increasing the exchange coupling J between the f -electron and conduction electron
spins. At some critical coupling value Jc, TN is fully suppressed to zero at an AFM quantum
critical point (QCP). The transition at the QCP is believed to be driven by quantum critical
fluctuations of the f -electron spins. A driving force for these fluctuations is Heisenberg’s
uncertainty principle, which allows for zero-point (zero-temperature) fluctuations of the
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spins. With a further increase in J beyond Jc, the localized f -electron moments become
fully screened and the compound develops a Fermi-liquid ground state. Experimentally,
the exchange coupling J can be modified by a non-thermal tuning parameter (g), such
as chemical doping (x), applied pressure (p), or applied magnetic field (H). The quantum
critical fluctuations give rise to a sub-quadratic resistivity and a magnetic contribution
to the specific heat that exhibits a − log T temperature dependence. Such behaviours are
signatures of a non-Fermi liquid (NFL).

Several compounds, including CeCu6−xAux [11], YbRh2Si2 [12], CeIn3 [7, 8, 9], and
CePd2Si2 [7] exhibit NFL behaviour near a QCP when AFM order is suppressed by a
tuning parameter, which is in agreement with Doniach’s model. However, recent studies of
another compound in the heavy-fermion class, YbAgGe [13, 14, 15, 16, 17, 18], have found
multiple AFM phases before arriving at a QCP. Moreover, an anomalous phase with NFL
behaviour has been observed near the QCP [13, 16]. These findings suggest that Doniach’s
model may be incomplete.

An extension of the Doniach model is the inclusion of magnetic frustration, which arises
naturally in some heavy-fermion compounds. Typically, the magnetic frustration has a geo-
metric origin, where the interactions between nearest-neighbour or next-nearest neighbour
spins are competing with one another. Magnetically frustrated compounds have been shown
to have novel ground states, such as spiral AFM order in CeRhIn5 [19, 20] and spin ice be-
haviour in Dy2Ti2O7 [21].

In YbAgGe and CePdAl, the rare-earth ions form a quasi-Kagome lattice in the ab-
plane [Fig. 1.7(a)] resulting in geometrical magnetic frustration. While YbAgGe exhibits
NFL behaviour when the AFM order is suppressed by an applied magnetic field, CePdAl
[22] does not exhibit NFL behaviour when the AFM order is suppressed with field. In this
context, it is interesting to explore the quantum critical behaviour of CePtPb by tuning
with applied magnetic fields, because it is a related compound with Ce-4f spins arranged
in a quasi-Kagome lattice. Henceforth the focus of this thesis will be on the family of
heavy-fermion compounds that are AFM metals.

1.1 Kondo Effect

The Kondo effect refers to the screening of the localized electronic magnetic moments by
the spins of the conduction electrons. In 1964, Kondo derived the effect on the electrical
resistivity via a third-order perturbative calculation within the framework of a s-d model
for a single spin-1/2 magnetic impurity [23]. A schematic for the derived temperature de-
pendence of the Kondo contribution to the electrical resistivity ρ(T ) is shown in Fig. 1.1(a).
ρ(T ) exhibits a − log T temperature dependence above a characteristic (Kondo) temper-
ature TK and saturates at temperatures below TK. The temperature dependence of the
Kondo contribution to the magnetic susceptibility and specific heat were later derived [24].
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Schematics of these behaviours are also shown in Fig. 1.1(a). The derived Kondo contri-
bution to the magnetic susceptibility follows a Curie-Weiss law χ(T ) = C/(T − θCW) for
T � TK, where C is the Curie constant that depends on the concentration of localized
magnetic impurity moments and θCW is the Curie-Weiss temperature. In the T � TK limit,
the magnetic impurity moment is fully screened by the conduction electrons and χ is due
to the finite and temperature-independent Pauli paramagnetic susceptibility. On the other
hand, the derived Kondo contribution to the specific heat Cp develops a T -linear temper-
ature dependence in the T << TK limit. A broad peak is observed as the temperature is
increased towards TK with the area under the peak corresponding to a spin entropy change
of R ln 2, where R is the ideal gas constant. It is important to emphasize that TK is not a
phase transition temperature, but rather is the crossover energy scale below which the local
moment is asymptotically screened.

Figure 1.1: (a) Schematic of Kondo contribution to the electrical resistivity ρ, magnetic
susceptibility χ, and specific heat Cp in the single-ion Kondo model with a spin-1/2 impurity.
(b) The typical temperature dependence of the electrical resistivity for a Kondo lattice
system.

The reason Kondo derived this impurity contribution to the electrical conductivity was
to explain the resistivity minimum and the − log T temperature dependence at lower tem-
peratures observed in compounds with dilute d- or f -electron impurity spins [25, 26, 27].
The resistivity minimum was explained as the consequence of the decreasing phonon contri-
bution (∝ T ) and the growing Kondo contribution (∝ − log T ) as temperature is decreased.
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In dense magnetic (Kondo lattice) systems [Fig. 1.1(b)], ρ(T ) exhibits a local maximum
at a temperature below TK and ρ(T ) follows a T 2 dependence at lower temperature. This
cannot be explained by the single-ion Kondo model, but rather a periodic Anderson model
[28] needs to be considered. This model introduces another crossover temperature, Tcoh.
Below Tcoh the system is a Kondo lattice with fully screened f -electron spins that exhibit
Fermi-liquid behaviour (∝ T 2) [29]. Above Tcoh, the interaction between the f -electron spins
is weak, so that they can be treated as a collection of incoherent magnetic impurities. In this
case, a minimum and a − log T temperature dependence of the electrical resistivity occur
above Tcoh, similar to the single-ion picture.

1.2 RKKY Interactions

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is an indirect magnetic exchange
interaction between the localized f -electron spins mediated by the conduction electrons. The
localized magnetic moment 〈S (x′)〉 of an f -electron at position x′ creates a wave of Friedel
oscillations [Fig. 1.2] in the conduction electron spin density 〈σ(x)〉, such that

〈σ(x)〉 = Jχ(x− x′)〈S(x′)〉 (1.1)

where χ(x − x′) is the non-local magnetic susceptibility and J is the AFM coupling [29].
The spin density oscillation arises from the sharp discontinuity in the occupancies f(εk) at
the Fermi surface and decays radially as follows

〈σ(x)〉 ∼ −JD cos 2kFx

|kFx|3
(1.2)

where D is the conduction electron density of states and x is the distance from the magnetic
moment. When a second local moment 〈S(x)〉 is placed at x, it couples to the Friedel oscil-
lation with energy J〈S(x)·σ(x)〉. Using Eq. (1.1), this gives the famous RKKY Hamiltonian

HRKKY = J〈S(x) · σ(x)〉

= −J2χ(x− x′)S(x) · S(x′)

≡ JRKKY(x− x′)S(x) · S(x′)

(1.3)

where JRKKY(x − x′) = JRKKY(r) ∼ −J2D cos (2kFr)/kFr [30, 31, 32]. Note that r is the
distance between a local moment sitting at x and another local moment sitting at x′. In
alloys that contain a dilute concentration of magnetic rare-earth or transition metal ions, the
RKKY interaction between magnetic ions with random positions can give rise to a random
distribution of AFM and ferromagnetic (FM) interactions. The magnetic state that arises
from the disorder and frustration is a "spin glass". In a spin-glass state, the localized spins
are frozen into random orientations. On the other hand, a dense system of magnetic ions
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often results in an AFM (or FM) state with a Néel temperature TN (or Curie temperature
TC) on the order of J2D.

Figure 1.2: Schematic of an RKKY interaction. A localized f -electron magnetic moment (red
arrow) at the origin induces Friedel oscillations in the surrounding conduction electron spin
density. Another localized f -moment some distance away couples to the Friedel oscillation
with strength JRKKY.

1.3 Quantum Criticality

As mentioned earlier, the consequences of the relative strength of the Kondo effect and
RKKY interaction in AFM heavy-fermion metals are qualitatively described by the so-called
"Doniach phase diagram" [10] in terms of the AFM coupling J between the f -electron and
conduction electron spins. A schematic of this phase diagram is presented in Fig. 1.3, which
is adopted from [33]. In the Doniach phase diagram, the characteristic temperatures of the
single-ion Kondo effect and the RKKY interaction are given by

TK ∝ e−1/JD(EF) (1.4)

TRKKY ∝ J2D(EF) (1.5)

where D(EF) is the conduction electron density of states at the Fermi energy EF.
In the TK � TRKKY regime, the local f -electron spins are fully screened by the con-

duction electrons and the system forms a heavy Fermi liquid. In the opposite limit, where
TK � TRKKY, an AFM state occurs with a Néel temperature TN that tracks TRKKY with a
J2 dependence. Since TK increases more rapidly than TRKKY with increasing J , there is an
intermediate value of J where TN reaches a maximum. At higher J values, TN is suppressed
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Figure 1.3: Doniach phase diagram for heavy-fermion metals. The dashed curves represent
the dependence of the Kondo and RKKY characteristic temperatures, TK and TRKKY, on the
effective AFM coupling J between the localized f -electron and conduction electron spins.
The parameter D(EF) is the conduction electron density of states at the Fermi energy.

continuously to zero at a critical coupling value Jc, where the Kondo and RKKY interactions
are comparable. The zero-temperature transition between the AFM and the paramagnetic
heavy Fermi-liquid states is a quantum critical point (QCP). This phase transition is driven
by quantum critical fluctuations, which result in the system exhibiting non-Fermi liquid
behaviour (NFL) near the QCP [34, 35].

Figure 1.4 shows a generic T versus g phase diagram for an AFM heavy-fermion system.
The Néel temperature TN of the AFM state is suppressed continuously to a QCP at a
critical tuning value g = gc. For g > gc, Fermi liquid behaviour is observed. Near g = gc,
NFL behaviour is observed as a sub-quadratic electrical resistivity and a − log T or −

√
T

temperature dependence of the magnetic contribution to the specific heat [34, 35]. The
specific temperature dependence of these measurements depends on the dimensionality and
the type of magnetic ordering of the system, as well as the particular spin-fluctuation theory
considered [36, 37, 38]. These temperature dependences have been observed in numerous
Ce- and Yb-based 4f -electron systems. Some examples are doping-tuned CeCu6−xAux [11],
pressure-tuned CePd2Si2 [7] and CeIn3 [7, 8, 9], and magnetic-field-tuned YbRh2Si2 [12]
and YbAgGe [13]. In CeIn3 [7, 8, 9] and CePd2Si2 [7], unconventional superconductivity is
observed near the QCP. In YbAgGe [13], CeAuSb2 [39], and CePdAl [22], the coefficient A
of the electronic contribution to the electrical resistivity, which exhibits T 2 behaviour, has
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Fermi Liquid

Non-Fermi
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Figure 1.4: Generic phase diagram that is typically presented for AFM heavy-fermion com-
pounds, showing the continuous suppression of the Néel temperature TN by a tuning pa-
rameter g.

been observed to diverge when the QCP is approached from the Fermi-liquid side of the
T -g phase diagram.

1.4 Magnetic Frustration

Magnetic frustration arises naturally in various compounds and can result in quantum zero-
point fluctuation of spins. Magnetic frustration refers to the presence of competing magnetic
interactions that can’t be simultaneously satisfied. In an antiferromagnet, this frustration
typically has a geometric origin [40]. To illustrate this, consider a two-dimensional edge-
sharing triangular lattice with Ising spins that are AFM coupled in the plane, as shown
in Fig. 1.5(a). For each triangle, there is at least one spin that can’t perfectly satisfy all
of the AFM interactions with its neighbours. This simple lattice was shown by Wannier
[41] to have a large ground-state degeneracy, with a non-zero entropy S(0) = 0.3383R
at zero temperature, where R is the ideal-gas constant. This has also been shown to be
the case for a two-dimensional Kagome lattice, which is a corner-sharing triangular lattice
characteristic of YbAgGe and CePtPb [42]. In this case, there is a larger residual entropy
of S(0) = 0.5018R.

Magnetic frustration profoundly influences the ground state. In tetragonal CeRhIn5, a
spiral AFM ground state occurs due to frustration that arises from competing RKKY in-
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Figure 1.5: (a) Triangular lattice with in-plane Ising spins that couple antiferromagnetically,
showing the geometric magnetic frustration that occurs across each triangle. (b) Corner-
sharing tetrahedral lattice of a spin-ice compound, showing the "two-in-two-out" ice rule
for the spins across each tetrahedron. This figure is taken from [43], which is modified from
[44].

teractions between nearest-neighbour and next-nearest neighbour Ce-4f magnetic moments
[19, 20]. In the pyrochlore spin-ice compound Dy2Ti2O7, although the exchange interaction
between the nearest-neighbour Dy ions are AFM, there are still net FM interactions be-
tween them due to the magnetic dipolar field they experience from their neighbours and
the geometry of the corner-sharing tetrahedral lattice they sit on. The combination of FM
interactions between spins on a pyrochlore lattice with strong 〈111〉 anisotropy give rise to
frustration that results in a "two-in-two-out" spin configuration across each tetrahedron, as
shown in Fig. 1.5(b) [21]. In the extreme case, strong frustration can lead to exotic spin
liquid-like behaviour at zero temperature (i.e., a "quantum-spin" liquid state). In contrast
to a paramagnetic state, the randomly fluctuating spins of the quantum spin liquid are
strongly correlated and potentially phase coherent [40].

The degree of magnetic frustration in insulating systems is typically inferred from the
value of the so-called "frustration ratio" f = θCW/TN, where the Curie-Weiss temperature
θCW is the theoretical ordering temperature from nearest-neighbour interactions and TN is
the actual AFM transition temperature. For simple systems like MnF2, f has a value close to
1 [1]. For the case of the frustrated insulating compound α-RuCl3, the value is f ≈ 10 [45]. In
the heavy-fermion metal YbAgGe, f has been calculated to be approximately 30 [15, 13],
suggesting a high degree of magnetic frustration. However, it is important to emphasize
that in heavy-fermion compounds the value of the frustration ratio may be significantly
influenced by the Kondo effect and crystal electric field (CEF) effect.

Figure 1.6 shows the so called "QK" phase diagram [46] that qualitatively describes
the behaviour of a frustrated AFM heavy-fermion system. The Q-axis is a measure of the
quantum zero-point motion (e.g. geometric frustration) of the f -spins, while the K-axis
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Figure 1.6: Generic phase diagram for magnetically-frustrated AFM heavy-fermion systems.

is a measure of the effect of Kondo screening. This effect is given by the ratio between
the characteristic Kondo temperature TK and the characteristic strength of the short-range
AFM Heisenberg interactions JH between the f -spins. In non-frustrated metals (Q = 0),
increasing K continuously suppresses the Néel temperature to zero at a critical tuning value
Kc and gives rise to heavy Fermi-liquid behaviour with delocalized f -spins for K > Kc. On
the other hand, by increasing the strength of the quantum zero-point motion of the f -
spins in insulating systems (K � 1), the system develops spin-liquid behaviour when the
AFM ordering is suppressed at a critical tuning value Qc. The f -spins in this case are well-
localized and there must be a crossover when the Kondo effect gradually delocalizes the
f -spins. There is a continuous critical line that connects Kc and Qc which separates the
AFM phase from the other phases. In general, this phase diagram allows for the classification
of various magnetically-frustrated compounds.

1.5 Previous Studies of Frustrated AFMHeavy-Fermion com-
pounds

1.5.1 YbAgGe

As mentioned earlier, the compound YbAgGe is an AFM heavy-fermion metal with the
same crystal structure as CePtPb. Each crystallizes in the hexagonal ZrNiAl-type structure
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Figure 1.7: (a) Quasi-Kagome lattice of magnetic Yb ions (red) in YbAgGe. (b)
Temperature-magnetic field phase diagram of YbAgGe [16].

with a P62m space group. As shown in Fig. 1.7(a), the magnetic Yb ions reside at the 3g
site, forming a quasi-Kagome lattice in the ab-plane. In the absence of an applied magnetic
field, YbAgGe is characterized by a Sommerfeld coefficient γ = 150 mJ/mol K2, a Kondo
temperature TK = 25 K, a first-order AFM transitions at TN,1 ≈ 0.65 K and a second-
order AFM transition at TN,2 ≈ 1 K [13, 14, 16]. The reported Curie-Weiss temperature
θCW = −30 K [15] implies a large frustration ratio f = θCW/TN,2 = 30.

A magnetic field applied in the magnetic easy ab-plane induces multiple AFM phases
[phase I, II, III in Fig. 1.7(b)]. The second-order AFM transition temperature is suppressed
to zero at a critical field Hc ∼ 45 kOe [16, 17]. Phase I is a commensurate AFM phase
with a magnetic propagation vector k1 = (1/3, 0, 1/3) [47]. Phase II is an incommensurate
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AFM phase with k2 = (0, 0, 0.324), and phase III is a commensurate AFM phase similar to
phase 1, but with small staggered moments. Near Hc, an additional unknown phase (IV) is
observed in thermodynamic and transport measurements [13, 16]. Phase IV exhibits NFL
behaviour, characterized by a T -linear electrical resistivity [i.e., ρ(T ) = ρ0 + ATn, where
n = 1]. Above H = 70 kOe, n varies smoothly from 1 to 2. Fermi liquid behaviour (n = 2)
is not observed until H ≈ 105 kOe.

1.5.2 CePdAl

CePdAl is another AFM heavy-fermion metal in which the Ce 4f magnetic moments form
a Kagome lattice. In zero-field, CePdAl is characterized by a Sommerfeld coefficient (γ =
250 mJ/mol K2) [48], Kondo temperature (TK ≈ 6 K), Neel temperature (TN = 2.7 K)
and the Curie-Weiss temperature (θCW = −34 K) [49, 50]. The corresponding frustration
ratio is f = θCW/TN = 12.6. Previous zero-field inelastic neutron scattering [49] and 27Al
NMR [51] studies suggest three magnetically inequivalent Ce sites, where two of them couple
antiferromagnetically along the magnetic easy c-axis, while the third one remains fluctuating
down to zero temperature [as shown in Fig. 1.8(a)]. Based on a symmetry analysis [49], the
frustrated Ce spins are prohibited to point along the c-axis. An applied magnetic field along
the c-axis has been shown to continuously lift the frustration of the Ce spins up to 3.6 T
[52].

Increasing the strength of magnetic field applied parallel to the c-axis further induces
multiple AFM phases [phase A, B, and C in Fig. 1.8(b)] and a critical field aroundBc = 4.3 T
is observed that fully suppresses TN [22] (Note that the parameter B used in [22] is intended
to be the applied magnetic field H). Phase A has been shown to be an incommensurate
partial AFM phase by neutron scattering studies, while phases B and C are canted AFM
phases. The term partial AFM stresses the neutron and NMR results, that indicate one-
third of the Ce moments do not order. Phases B and C show hysteresis in the electrical
resistivity. Near the putative QCP at Bc = 4.3 T, an unkonwn phase D is inferred from
shoulders observed in the temperature dependence of dρ/dB and ac susceptibility χac(B).
Phase E is a paramagnetic phase with a large negative magnetoresistance. The temperature
dependence of the electrical resistivity below 0.3 K at all fields below 14 T exhibits a Tn

behaviour with an anomalous exponent of n > 2. This has been attributed to AFM magnon
excitations [22]. Above B = 5 T, a broad peak is observed in specific heat that shifts to
higher temperature with increasing field. The behaviour of this peak can be understood by
considering the electronic Schottky contribution, and in particular the Zeeman splitting of
the ground state CEF doublet [53].
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Figure 1.8: (a) Magnetic structure of CePdAl in zero-field proposed in [49]. The illustration
is taken from [48]. The white spheres represent fluctuating Ce3+ spins. (b) The temperature-
magnetic field phase diagram of CePdAl, taken from [22].
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1.5.3 CePtPb

An earlier study of a single crystal of CePtPb by Movshovich et al. [54] demonstrated it
to be a heavy-fermion compound with an AFM ground state. A fit of the temperature
dependence of the inverse susceptibility [Fig. 1.9(a)] to the Curie-Weiss law above 150 K
yields a Curie-Weiss temperature θCW = −40 K and a Curie constant C = 0.85 emu/mol K.
The corresponding effective moment µeff = 2.59 µB/Ce is close to the free Ce3+ value,
suggesting the ground state is magnetic. Below 150 K, a large magnetic anisotropy develops
and increases to χab/χc = 11 at 2 K. From ac magnetic susceptibility measurements [Fig.
1.9(b)], the ground state was confirmed to be AFM with a Néel temperature TN = 0.9 K
in ambient pressure. Under an applied pressure P < 17 kbar, the value of TN increases
approximately at a rate of 20 mK/kbar. The magnetic field dependence of the magnetization
at 2.3 K [Fig. 1.9(c) and (d)] indicates that the ab-plane is the magnetic easy plane, with
Mab approaching saturation above 5 T and reaching a value of 1.05 µB/Ce at B = 18 T. On
the other hand,Mc continues to grow markedly at 18 T, where it has a value of 0.35 µB/Ce.
Note again the use of B rather than H for the applied magnetic field.

The overall behaviour of the electrical resistivity between 50 mK and 300 K suggests
that the system is metallic in nature. A broad feature in the temperature dependence of
ρ(T ) is observed around 5 K [Fig. 1.10(a)], which may be a signature of the Kondo effect
or some short-range AFM correlations. A kink in ρ(T ) was also observed around 0.9 K
[Fig. 1.10(b)] signifying the AFM transition. Between 50 mK and 0.7 K, ρ(T ) follows a T 2

dependence Fig. [1.10(b)], which is indicative of Fermi liquid behaviour.
The magnetic contribution to the specific heat of CePtPb, Cm(T ), is approximated by

subtracting the specific heat of LaPtPb [Fig. 1.11(a)], which is a non-magnetic analogue
that doesn’t have magnetic 4f -moments. A large Sommerfeld coefficient γ = 300 mJ/mol K2

estimated [Fig. 1.11 inset] between 0.2 and 0.7 K from a linear fit of the C/T versus T 2 data,
indicates heavy-fermion behaviour. The magnetic entropy, Sm ≡

∫ T
0 Cm/TdT , below 20 K

[Fig. 1.11(b)] shows saturating behaviour near Sm = R ln 2, suggesting a doublet ground
state. At TN, only 0.4R ln 2 of the magnetic entropy is recovered, possibly due to magnetic
frustration or the Kondo effect.

13



Figure 1.9: Previous magnetic susceptibility and magnetization study of CePtPb by [54].
(a) Temperature dependence of the inverse magnetic susceptibility for a magnetic field of
1 kOe applied parallel and perpendicular to the c-axis. (b) Temperature dependence of the
ac magnetic susceptibility for different values of applied pressure. The peak indicative of
the AFM transition shifts to higher temperature with increasing applied pressure between
0 and 17 kbar. (c) and (d) show the magnetic field dependence of the magnetization for
fields perpendicular and parallel the c-axis at 2.3 K (solid circles), 4 K (open circles), 20 K
(solid squares) and 100 K (open squares).

14



Figure 1.10: Previous zero-field measurements of the temperature dependence of the electri-
cal resistivity of CePtPb [54]. (a) Temperature dependence of the resistivity between 50 mK
and 300 K. Inset shows a blow up of the broad feature around 5 K. (b)Low temperature
behavior of ρ(T ). The kink near 0.9 K is associated with an AFM transition. Inset shows
the T 2 dependence of ρ(T ) below 0.7 K.

Figure 1.11: Previous zero-field specific heat study of CePtPb [54]. (a) Temperature de-
pendence of the specific heat of CePtPb (open circles) and LaPtPb (closed squares). Inset
shows a linear fit of C/T versus T 2 between 0.2 and 0.7 K. The slope of the fit provides
an estimate of the Sommerfeld coefficient γ. (b) Temperature dependence of the magnetic
entropy, showing a saturating behaviour near the value Sm = R ln 2 (dotted line) below
20 K.
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Chapter 2

Experimental Methods

2.1 Sample Preparation

Single crystals of LaPtPb and CePtPb were grown out of Pb-rich solutions. The constituent
elements with molar ratios of 4:4:92 (La:Pt:Pb) and 8:8:84 (Ce:Pt:Pb) for LaPtPb and
CePtPb, respectively, were placed in an Al2O3 crucible sealed in a quartz ampoule. The
crucibles were cushioned by quartz wool on either side to absorb spillage and to prevent
cracking of the crucibles during the centrifuge process. The tubes were pumped and back-
filled with argon gas at one fifth of atmospheric pressure.

The growth temperature profiles for the two compounds in a conventional radiation oven
are shown in Fig. 2.1. For both compounds, the ovens were heated up quickly to 1180◦C
and left for 3 hours to thoroughly melt the elements in the crucibles before cooling slowly to
maximize the growth process. The initial molar ratio of the elements, the number of heating
and cooling steps, and their associated rates are set by the binary phase diagrams between
the molar ratio of two elements and the temperature limit of the oven. For this experiment,
the binary phase diagrams considered between all pairs of elements were obtained from [55].

The compounds were slowly cooled down to 600◦C before being taken out of the oven
and placed in a centrifuge to remove excess Pb flux in the crucibles. They were placed in
hydrogen peroxide solutions for ten minutes to remove excess lead on the surface and then
characterized by Laue and X-ray diffraction.

2.2 Sample Characterization

2.2.1 X-ray and Laue diffraction

Powder X-ray diffraction for CePtPb and LaPtPb were performed in a Rigaku MiniFlex
diffractometer at room temperature with Cu Kα radiation to confirm the crystal structures
and to determine the lattice parameters and the existence of any impurity phases. The
facets of the as-grown single crystals are clearly visible in Fig. 2.1. The crystallographic
c-axis is determined by Laue diffraction to be the needle axis.
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Figure 2.1: Flux growth timeline for (a) LaPtPb and (b) CePtPb with images of the single
crystals shown on milimeter grid paper. The image for CePtPb also includes the silver epoxy
and Pt leads that were used in the resistivity measurements.

2.2.2 Electrical resistivity measurement

The electrical resistivity of CePtPb was measured in a Quantum Design Physical Property
Measurement System (PPMS) with a 3He option in the temperature range of 0.4 to 300 K
and applied magnetic field up to 90 kOe. A standard four probe method was used in which
four Pt leads with a radius of ~ 50 µm were attached to the needle-shape sample with
Epotek H20E silver epoxy. The epoxy was then cured at 120◦C for 30 minutes on a hot
plate. The sample was mounted onto a sample stage with Apiezon N grease, which provided
a good thermal contact. The transverse magnetoresistance was measured with an ac current
(f = 16 Hz) with the configuration I ⊥ H, I || c, and H || ab. The measured resistance
R was converted to resistivity ρ ≡ RA/l, where A and l are the cross-sectional area and
length between the two voltage leads of the sample, respectively.
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2.2.3 Specific heat measurement

The specific heat of CePtPb and LaPtPb were also measured in the PPMS that was used
for measuring the electrical resistivity, over similar temperature and field ranges (0.4 to
300 K with H ≤ 90 kOe). The measurement was done using the relaxation method [56, 57]
with the applied field in the ab-plane.

2.2.4 Magnetization measurement

The dc magnetization M of CePtPb and LaPtPb were measured in a Quantum Design
Magnetic Property Measurement System (MPMS), which allows for measurements in the
temperature range 1.8 to 300 K and an applied magnetic field H ≤ 70 kOe. The samples
were mounted between drinking straws by inserting one straw into another and sandwiching
the samples in between them.

2.3 Muon Spin Relaxation (µSR)

The acronym µSR stands for Muon Spin Relaxation, Rotation, or Resonance, depending on
the experimental configuration. The µSR methods utilized here for experiments on CePtPb
probe the magnetism in the bulk via implantation of an ensemble of nearly 100% spin-
polarized positive muons (µ+). Unlike X-ray and neutron diffraction, there is no scattering
of the µ+ by the sample. The µSR method measures the time evolution of the muon-spin
polarization P(t), which is governed by the local magnetic field Bloc at the µ+ site. In
general, Bloc is the vector sum of dipolar and hyperfine fields, and any external magnetic
fields that may be applied.

The µSR experiments were performed using the M15 and M20D surface µ+ beams at
TRIUMF (Vancouver, Canada). The µ+ in these beams have a kinetic energy of 4.12 MeV
that results in a mean stopping range in the sample of ~140 mg/cm2. In other words, to stop
the µ+ in a 140 mg sample, the cross-sectional area must be less than 1 cm2. The implanted
µ+ quickly thermalizes and loses its kinetic energy within∼ 10 ps, which preserves the nearly
100% spin-polarization. In CePtPb, the implanted µ+ comes to a rest at an interstitial site
corresponding to a minimum in the electrostatic potential of the crystal lattice. The stability
of the µ+ site depends on the depth of the local electrostatic potential well and the thermal
energy of the µ+.

2.3.1 Muon decay

The µ+ is an unstable particle with a mean lifetime of τµ ∼ 2.2 µs. It decays via the weak
interaction into a positron (e+) according to

µ+ → e+ + νe + ν̄µ, (2.1)
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where νe and ν̄µ are the electron neutrino and muon antineutrino, respectively. Due to parity
violation of the µ+ decay, the decay e+ has an angular probability distributionW (E, θ) given
by

W (E, θ) = 1 + a0(E) cos θ, (2.2)

where θ is the angle between the e+ trajectory and the µ+ spin direction, and a0 is the
initial asymmetry. The value of a0 depends strongly on the kinetic energy E of the decay

Figure 2.2: Angular probability distribution of e+ emission for a0 = 1/3 and 1. The green
arrow indicates the µ+ spin direction at the time of the decay and θ is the angle between
the e+ trajectory and the µ+ spin direction.

e+, which ranges from Emin = 0 MeV to Emax = 52.3 MeV. For a particular value of E, the
value of a0 is given by

a0(ε) = (2ε− 1)/(3− 2ε), (2.3)

where ε = E/Emax. The initial asymmetry a0 varies monotonically from -1/3 for ε = 0
to 1 for ε = 1. However, the energy average of a0 is 1/3, when all positron energies are
considered with equal probability. Figure 2.2 shows W (E, θ) for a0 = 1/3 and a0 = 1. The
z-axis in this figure is along the muon spin direction. The angular distribution function
W (E, θ) is highly asymmetric for a0 = 1, in which case no positrons of energy Emax are
emitted antiparallel to the muon spin. For a0 = 1/3, there is a non-zero probability of the
e+ being emitted in the antiparallel direction, however, the e+ is still preferentially emitted
in the same direction as the muon spin.

In the µSR experiment, the emitted e+ is determined by the positron scintillator detec-
tors that are placed around the sample environment. Given that the scintillator detectors
do not differentiate the kinetic energy of the decay e+, the maximum experimental value
of a0 is 1/3. However, the experimental value of a0 is typically smaller due to a number
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of experimental conditions, including the solid angle coverage of the detectors and their
efficiency.

2.3.2 Experimental configuration

The µSR experiments were performed with zero-field (ZF) and longitudinal-field (LF) se-
tups. The experimental arrangement of the LF setup for CePtPb is schematically shown in
Fig. 2.3. The ZF setup is identical to the LF setup, except there is no applied field Bext.
The initial muon-spin polarization P(0) was antiparallel to the µ+ beam momentum. The
beam axis is labeled as the z-axis in Fig. 2.3. The external magnetic field Bext in the LF
experiments was applied parallel to P(0). A thin muon scintillator detector was placed up-
stream of the sample to detect the arrival time of the µ+ that is implanted in the sample.
A "backward" positron scintillator detector was placed between the muon detector and the
sample. The backward positron detector has a circular hole that allows the µ+ to pass
through to the sample. A "forward" positron detector was placed on the opposite side of the
sample along the z-axis.

Figure 2.3: Schematic of the configuration used for the µSR experiments on CePtPb. The
external magnetic field Bext was applied in the LF-µSR experiments.

In both setups, a time-differential µSR method and a continuous muon beam were
utilized. At time t = 0, the µ+ passes through the muon detector, which triggers the start
of an electronic clock. This instant is also considered to be the time the µ+ comes to rest
in the sample, because the time it takes for the µ+ to travel from the muon detector to
the sample is negligible. As time progresses, other µ+ that pass through the muon detector
are electronically excluded until the first decay e+ is detected by either the forward or the
backward positron detector. The electronic clock is stopped at time t when the first decay e+

is detected. After accumulating several million µ+ decay events, a time-differential histogram
is constructed for each positron detector, which are related to the time evolution of the µ+
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spin polarization Pz(t) as follows

NF(t) = N0,Fe
−t/τµ [1 + a0Pz(t)] +BF, (2.4)

NB(t) = N0,Be
−t/τµ [1− a0Pz(t)] +BB, (2.5)

where N0,F and N0,B are the normalization constants for the positron counts at t = 0, and
BF and BB are time-independent backgrounds that arise from uncorrelated decay events
(i.e., the time correlation between the µ+ and its decay e+ is lost). The time-independent
background contribution is determined from the raw counts before t = 0 and subtracted
from NF(t) and NB(t). The asymmetry spectrum A(t) is then defined as

A(t) ≡ [NF(t)−BF]− [NB(t)−BB]
[NF(t)−BF] + [NB(t)−BB] . (2.6)

In the ideal scenario where the forward and backward detectors are identical, have the same
efficiency, and are placed exactly opposite to each other with the same solid angle coverage
of the sample, A(t) reduces to

A(t) = a0Pz(t). (2.7)

Hence the asymmetry spectrum A(t) directly reflects the time evolution of Pz(t), which in
turn contains information on the local magnetic fields at the muon site.

2.3.3 Muon polarization function

The time evolution of the muon-spin polarization in the z-direction of the µ+ ensemble
subject to a static, uniform local magnetic field (Bloc) oriented at an angle θ with respect
to the initial muon-spin polarization P(0) = Pz(0)ẑ is given by

Pz(t) = cos2 θ + sin2 θ cos (2πνµt), (2.8)

where νµ = γµ/(2π)|Bloc| is the µ+ spin precession frequency and γµ/(2π) = 135.5 MHz/T
is the gyromagnetic ratio of the µ+.

In general, the time evolution of the muon-spin polarization is calculated by averaging
Pz(t) over the local magnetic field distribution n(Bloc) = n(Bloc,x)n(Bloc,y)n(Bloc,z) sensed
by the µ+ ensemble, where Bloc,i (i = x, y, z) are the Cartesian components of Bloc. The
expression for Pz(t) is then given by the volume integral over the local-field space

Pz(t) =
∫∫∫

n(Bloc)
[

cos2 θ + sin2 θ cos (2πνµt)
]
dBloc,xdBloc,ydBloc,z. (2.9)
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Randomly-oriented static magnetic fields

In a single crystal of CePtPb, the nuclei of the atoms can be treated as a dense system
of randomly-oriented magnetic dipole moments that are static on the µSR time scale. In
this case, the field distribution for each component of the local magnetic fields is well
approximated by a Gaussian distribution

nG(Bloc,i) = γµ√
2π∆2

G

exp
(
−
γ2
µB

2
loc,i

2∆2
G

)
, (i = x, y, z), (2.10)

where ∆G/γµ is the field-distribution width. Substituting Eq. (2.10) into Eq. (2.9) and
solving for the integral, one obtains what is known as the static Gaussian Kubo-Toyabe
function [58]

PGKT(t) = 1
3 + 2

3(1−∆2
Gt

2)exp
(
− ∆2

Gt
2

2

)
. (2.11)

Figure 2.4(a) shows PGKT(t) for different values of ∆G. The polarization PGKT(t) is char-
acterized by a Gaussian damping at early times and a recovery to PGKT(t) = 1/3 at late
times. This muon-spin polarization function also applies to a dense system of electronic
dipole moments that are randomly-oriented and static on the µSR time scale.
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Figure 2.4: (a) Plots of the static Gaussian Kubo-Toyabe function PGKT(t) given in Eq.
(2.11) for different values of ∆G. (b) Plots of the static Lorentzian Kubo-Toyabe function
PLKT(t) given in Eq. (2.13) for different values of ∆L.

In contrast to a dense system of randomly-oriented magnetic dipole moments, a system
with a dilute concentration of static magnetic moments has an approximately Lorentzian
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distribution of field

nL(Bloc,i) = γµ
π

∆L
∆2

L + γ2
µB

2
loc,i

, (i = x, y, z), (2.12)

where ∆L/γµ is the half-width at half-maximum (HWHM) of the field distribution. Calcu-
lating the integral in Eq. (2.9) with this Lorentzian field distribution yields the static ZF
Lorentzian Kubo-Toyabe function [59]

PLKT(t) = 1
3 + 2

3(1−∆Lt)exp(−∆Lt). (2.13)

Figure 2.4(b) shows PLKT(t) for different values of ∆L. PLKT(t) is characterized by an
exponential damping at early times and a shallower minimum than PGKT(t). Similar to
PGKT(t), the function exhibits a recovery to the value PLKT(t) = 1/3 at late times. It is
important to note that in a single crystal Eq. (2.11) and Eq. (2.13) are really approximations,
as the isotropy assumed in the field distributions nG(Bloc,i) and nL(Bloc,i) are not valid. The
long time recovery is not at 1/3, but depends on the orientation of the crystal with respect
to P(0). Nevertheless, the overall shape of the polarization function is similar.

Fluctuating magnetic fields

Fluctuations of the local magnetic field modify the muon-spin polarization function because
the µ+ senses time-varying fields over its lifetime. In the paramagnetic state of CePtPb,
the effect of fluctuating electronic magnetic moments on the ZF-µSR signal is described by
a dynamical muon-spin polarization function. For the purpose of this thesis, the discussion
is restricted to the case of a fluctuating Gaussian distribution of local magnetic fields. In
general, the dynamical muon-spin polarization function must be calculated numerically [60].
However, if the field fluctuation rate ν is sufficiently large compared to ∆G ( ν/∆G > 1),
the muon-spin polarization function is well approximated [61] by

Pz(t) = exp[−2(∆2
G/ν

2)(e−νt − 1 + νt)]. (2.14)

In the fast fluctuation limit, i.e. ν/∆G � 1, Pz(t) approaches the exponential function [62]

Pz(t) = e−λt, (2.15)

where λ = 2∆2
G/ν.

A common method for measuring ν is to study the magnetic field response of the sample
subjected to a longitudinal applied field BLF = BLFẑ. By replacing Bloc,z with Bloc,z +BLF

and following the derivation presented in [61], the fast fluctuation limit for Pz(t) subjected
to a longitudinal applied field is determined to also be an exponential decay function of the
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form exp(-λt). However, the relaxation rate has a dependence on BLF given by

λ(BLF) = 2∆2
Gν

(γµBLF)2 + ν2

= λ(0) ν2

(γµBLF)2 + ν2 .

(2.16)

This expression is sometimes referred to as the "Redfield" formula. When BLF = 0, one
recovers the relaxation rate λ(0) = 2∆2

G/ν that is contained in Eq. (2.15). When a suf-
ficiently large magnetic field is applied such that γµBLF/ν � 1, the muon spin partially
decouples from the internal magnetic field distribution. As shown in Fig. 2.5, this reduces
the relaxation rate of Pz(t). In the γµBLF/ν = ∞ limit, the muon spin fully decouples,
sensing only the longitudinal field BLF that is parallel to P(0). In this limit, Pz(t) does not
evolve with time.
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Figure 2.5: Plots of exp(-λt) with the relaxation rate λ(H) given in Eq. (2.16), where ν is the
fluctuation rate of the internal field distribution. The spectra are for different longitudinal
applied magnetic fields BLF and λ(0) = 1. When γµBLF/ν � 1, the muon spin begins to
decouple from the internal field distribution.

2.3.4 Experimental details

The experimental sample consisted of 21 single crystals of CePtPb that were glued onto
a 12 mm × 16 mm high purity silver plate (99.999%) using GE varnish [Fig. 2.6]. The
crystals were oriented along the c-axis and the normal direction of the silver plate was
along the z-axis. This means that the initial muon-spin polarization P(0) was directed in
the ab-plane of CePtPb. Given the magnetic field was applied in the direction of P(0) in the
LF experiments, the applied field was also in the ab-plane. The temperature dependence of
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the asymmetry spectrum A(t) was measured from 25 mK to 3 K for ZF and longitudinal
magnetic fields up to 9 kOe.

Figure 2.6: The oriented mosaic of CePtPb single crystals on a silver plate used in the µSR
experiment.
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Chapter 3

Data Analysis and Results

3.1 Laue and X-ray Diffraction

The crystallographic c-axis of CePtPb was confirmed using Laue diffraction with monochro-
matic X-rays projected along the needle axis [Fig. 3.1]. The diffraction spectrum agrees with
the simulated spectrum for CePtPb along the (001) direction with a six-fold rotational sym-
metry. Powdered X-ray diffraction measurements [Fig. 3.2] on CePtPb and LaPtPb have

Table 3.1: The structural parameters of CePtPb and LaPtPb.
Compound Space Group a (Å) c (Å) Volume (Å3)
CePtPb P62m 7.730(2) 4.127(2) 213.6(1)
LaPtPb P62m 7.774(3) 4.168(2) 218.2(2)

confirmed their space group to be P62m with the lattice constants and unit cell volumes
listed in Table 3.1. The diffraction spectra shown in Fig. 3.2 reveals that these crystals
have a single phase. The values of the structural parameters are consistent with the earlier
reported values [54]. The uncertainties for the fitted lattice constants are estimated from
allowing an angular offset to the fits to account for a possible false zero degree reading in
2θ due to limited machine accuracy.

3.2 Magnetization

The magnetic field dependence of the magnetization M(H) for LaPtPb at T = 2 K is
plotted in Fig. 3.3. The data are shown for a magnetic field H applied along the c-axis.
When H is increased, the minor decrease inM(H) is consistent with a diamagnetic response
of the system.

The temperature dependence of the magnetic susceptibility χ(T ) ≡ M/H for LaPtPb
between 2 and 300 K is plotted in the inset of Fig. 3.3. The data are shown for a magnetic
field H = 70 kOe applied along the c-axis. The susceptibility χ(T ) decreases approximately
linearly as the temperature decreases from 300 to 100 K, indicating a diamagnetic response
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Figure 3.1: (a) Laue diffraction spectrum of CePtPb along the (001) direction. (b) Spectrum
simulated from QLaue (red) overlaid on top of the diffraction spectrum.

in the system. When the temperature is lowered below 100 K, χ(T ) exhibits an upturn,
likely due to a dilute amount of paramagnetic impurities.

The magnetic field dependence of the magnetization for CePtPb at different tempera-
tures is plotted in Fig. 3.4. The data are shown for a magnetic field H applied along the
c-axis [Mc(H)] and in the ab-plane [Mab(H)]. At T = 2 K, Mab(H) saturates as the applied
field H increases from 30 kOe to 70 kOe, whereas Mc(H) continues to increase markedly
with increasing field. At T = 2 K and H = 70 kOe, Mab(H) and Mc(H) reach values of
∼ 1.1 µB/Ce and ∼ 0.2 µB/Ce, respectively. Overall, the measured magnetic susceptibility
and magnetization are consistent with an earlier study [54].

The temperature dependence of the inverse magnetic susceptibility 1/χ(T ) for CePtPb
between 1.8 and 300 K is shown in Fig. 3.5. The data are shown for a magnetic field H =
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Figure 3.2: The observed powdered X-ray diffraction spectra of (a) CePtPb and (b) LaPtPb
are shown by the black open circles. The red spectra are the calculated spectra using EdPCR
[63]. The blue spectra are the difference between the measured and calculated diffraction
spectra.

1 kOe applied along the c-axis [1/χc(T )] and in the ab-plane [1/χab(T )]. The polycrystalline
average defined as 1/χavg(T ) ≡ 3/(2χab + χc) is also plotted in Fig. 3.5. Below 150 K, a
strong anisotropy develops between 1/χab(T ) and 1/χc(T ). Furthermore, the ratio χab/χc

increases continuously as the temperature decreases, where χab/χc has a value of ∼ 17
at T = 2 K. The inverse c-axis magnetic susceptibility 1/χc(T ) shows a broad minimum
around 70 K, a broad maximum around 30 K, and a rapid decrease below 30 K. Above
150 K, 1/χab(T ), 1/χc(T ), and 1/χavg(T ) exhibit Curie-Weiss behaviour and are fit to the
equation

χ = C

T − θCW
+ χ0, (3.1)

where C is the Curie constant, θCW is the Curie-Weiss temperature, and χ0 is a background
contribution. The fitted values for each orientation of the applied field are summarized in
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Figure 3.3: The c-axis magnetization of LaPtPb at 2 K. Inset: the c-axis magnetic suscep-
tibility of LaPtPb at an applied magnetic field of H = 70 kOe. The upturn below 100 K is
attributed to magnetic impurities.

Table 3.2. The effective moments calculated from C in all three cases are close to the free
Ce3+ value of 2.54 µB, suggesting the Ce ions in the bulk of the sample have a J = 5/2
ground state. The fitted values of χ0 are all in agreement with the magnetic susceptibility
of isostructural single crystal LaPtPb, which doesn’t have 4f electrons. The negative sign
of θCW suggests an AFM ground state for the Ce ions, and the values of θCW are in good
agreement with the earlier study [54]. The calculated frustration ratio from the polycrys-
talline averaged value of θCW is f ≈ −38/0.9 ≈ −42, suggesting that the system may be
highly frustrated. However, this ratio may be influenced by the Kondo and CEF effects that
are present in CePtPb.

Table 3.2: The fitted Curie constants (C), Curie-Weiss temperatures (θCW), background
contribution to the magnetic susceptibility (χ0), and the calculated effective moments (µeff)
for CePtPb for a magnetic field H = 1 kOe applied in each crystallographic direction.

Field Orientation C (emu/mol K) θCW (K) χ0 (emu/mol Oe) µeff (µB/Ce)
H || ab 0.83 −33 −1.0× 10−5 2.58
H || c 0.94 −51 −1.0× 10−5 2.75

Polycrystalline 0.86 −38 −1.0× 10−5 2.63
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field applied (a) along the c-axis and (b) in the ab-plane. The magnetization data are plotted
at T = 2 K (circles), 30 K (diamonds), and 300 K (squares).

3.3 Electrical Resistivity

The temperature dependence of the electrical resistivity ρ(T ) for CePtPb measured in zero
field is plotted in Fig. 3.6. The data are measured between 0.4 and 300 K. The overall
behaviour of ρ(T ) is that of a metal. As the temperature is lowered from 300 to 150 K
[Fig. 3.6(a)], ρ(T ) decreases linearly with decreasing temperature. From 150 to 20 K, ρ(T )
deviates from the linear temperature dependence and becomes slightly concaved down with
decreasing temperature. From 10 to 5 K, ρ(T ) shows saturating behaviour [Fig. 3.6(a) inset].
Below approximately 5 K, ρ(T ) decreases rapidly. The origin of the behaviour near 5 K may
be due to the Kondo effect or short range AFM correlations. The AFM order in CePtPb is
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observed as a change of slope at TN ≈ 0.9 K [Fig. 3.6(b)]. The shape of ρ(T ) around TN is
slightly different from the earlier study [54].

Between 0.4 and 0.9 K, a power-law analysis [Fig. 3.6(b) inset] of the form ρ(T ) =
ρ0 +ATn yields ρ0 = 5.56 µΩ cm, A = 0.28 µΩ/K2.95, and n = 2.95. The fitted value of ρ0

is four times smaller than that in the earlier study (ρ0 = 24.2 µΩ cm), suggesting there are
fewer impurities and crystal defects in the single crystal studied in this thesis. To further
compare the quality of the single crystals, one can define a residual resistivity ratio (RRR)
as RRR = ρ(300K)/ρ(0.4K). A value of RRR = 34.46/5.56 ≈ 6.2 is calculated, which is
larger than RRR = 60/24.25 ≈ 2.5 visually estimated from the temperature dependence of
the electrical resistivity in Fig. 1.10(a) of [54]. Based on the lower ρ0 and higher RRR, it is
inferred that the quality of the single crystal CePtPb studied in this thesis is higher than
that in the earlier study. The fitted value of n ≈ 3 is also different from the earlier reported
value of n = 2. A detailed analysis of this exponent as a function of applied magnetic field
is given in Section 4.3.

Under an external magnetic field applied in the ab-plane [Fig. 3.7(a)], the change of slope
associated with the AFM order in ρ(T ) is suppressed continuously to lower temperatures.
Between 2 and 4 kOe, two changes of slope are observed, which are indicative of phase
transitions. These phase transition points are further examined in Section 4.1. Hysteresis
is observed between 1 and 3.5 kOe below TN. As H increases from 10 kOe to 90 kOe [Fig.
3.7(b)], the reduced slope of ρ(T ) above 5 K shifts to higher temperatures, while ρ(T ) at
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Figure 3.6: (a) The temperature dependence of the c-axis electrical resistivity ρ(T ) for
CePtPb in zero field. The data are plotted for temperatures between 0.4 and 300 K. The
inset shows a blow up of ρ(T ) below 20 K with the broad feature around 5 K. (b) A blow
up of ρ(T ) below 1.8 K showing the signature of the AFM order at TN = 0.9 K. The inset
shows a linear fit to ρ versus T 2.95 below TN.

low temperatures saturates; with the temperature-independent region extending to higher
temperature as the field increases.
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Figure 3.7: (a) The c-axis electrical resistivity for CePtPb measured as a function of increas-
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the ab-plane. The arrows indicate the Néel temperatures. (b) The temperature dependence
of the c-axis resistivity for CePtPb for different applied magnetic fields between 10 and
90 kOe. The H = 90 kOe data were taken while warming and the other data was taken
while cooling.

Figure 3.8(a) shows the magnetic field dependence of the electrical resistivity ρ(H) for
CePtPb for magnetic fields H ≤ 10 kOe applied in the ab-plane. Above TN, ρ(H) decreases
gradually as H increases. When CePtPb is cooled below TN, ρ(H) exhibits multiple be-
haviours as a function of H. At T = 0.4 K, ρ(H) appears to be constant with field between
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Figure 3.8: (a) The c-axis electrical resistivity measured as a function of increasing (open
circles) and decreasing (closed circles) magnetic fields applied in the ab-plane at differ-
ent temperatures. (b) The magnetic field dependence of the c-axis electrical resistivity for
CePtPb for applied fields up to 90 kOe at different temperatures. The T = 0.4, 0.75, 1.25,
1.8, 2, and 4 K data are taken while warming and the other data are taken while cooling.

0 and 0.8 kOe. Around 0.8 kOe, there is a slight increase in ρ(H) as the field increases, fol-
lowed by a rapid decrease around 2.2 kOe. A minimum is observed around 3 kOe, followed
by a maximum near 3.6 kOe. Hysteresis is observed in the applied field range between 0.8
and 3.6 kOe. Around 6 kOe, a slope change is observed. As the temperature increases, the
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feature around 0.8 K appears to be temperature independent while the observed minimum,
maximum, and the slope change around 6 kOe in ρ(H) gradually shift to lower values of H.

Figure 3.8(b) shows ρ(H) forH ≤ 90 kOe for different temperatures. AtH = 40 kOe and
T = 5 K, an inflection is observed in ρ(H). As the temperature decreases, this inflection
point shifts to lower values of H and persists below TN. At T = 0.4 K, ρ(H) exhibits a
linear field dependence for applied fields approximately above 20 kOe and overlaps with the
ρ(H) data at other temperatures for sufficiently high applied fields. This may be related to
the field-induced saturated paramagnetic state of the Ce-4f spins. Futhermore, at a given
applied field H, the temperatures where the different ρ(H) measurements overlap with
each other coincide with the temperatures where ρ(T ) saturates at that field [Fig. 3.7(b)].
Therefore, the low temperature saturation behaviour in ρ(T ) for the different applied fields
is also attributed to this field-induced saturation effect.

3.4 Specific Heat

The temperature dependence of the specific heat Cp(T ) for CePtPb and LaPtPb measured
in zero field are plotted in Fig. 3.9(a). The measurements are made between 0.4 and 300 K.
The overall behaviour of the specific heat for LaPtPb [denoted CLaPtPb(T )] is similar to that
of simple metals such as copper [64, 65] and silver [64]. Between 1.8 and 25 K, CLaPtPb(T )
is well described by

Cp(T ) = γT + βT 3, (3.2)

which yields the Sommerfeld coefficient γ = 3.9 mJ/mol K2 and β = 1.0 mJ/mol K4. A
Debye temperature ΘD ≈ 180 K for LaPtPb is estimated from the fitted value of β.

The behaviour of the specific heat for CePtPb [denoted CCePtPb(T )] above 10 K is similar
to CLaPtPb(T ). At TN ≈ 0.9 K, the signature of the AFM order for CePtPb is observed as a
peak in CCePtPb(T ). The Sommerfeld coefficient of CePtPb [inset of Fig.3.9(a)] is estimated
by a linear least-square fit to a plot of Cp/T versus T2 between 0.16 and 0.4 K2, which yields
a value of γ ≈ 0 mJ/mol K2. An attempt to estimate the coefficient from the paramagnetic
state is shown in the inset of Fig. 3.9(b). By using the data between T 2 = 65 and 500 K2,
a linear least-square fit yields a small value of γ = 6 mJ/mol K2. These values are very
different from the earlier reported value of γ ≈ 300 mJ/mol K2 [54].

Experimentally, the magnetic contribution to the specific heat of CePtPb may be ap-
proximated by

Cm(T ) ≡ CCePtPb(T )− CLaPtPb(T ). (3.3)

As seen in Fig. 3.9(b), Cm(T ) has a sharp peak at TN with a tail that extends to ∼ 10 K
and a broad peak centered around 100 K that is due to CEF effect. The solid curve in Fig.
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Figure 3.9: (a) The temperature dependence of the specific heat Cp(T ) for CePtPb and
LaPtPb in zero field. The inset is a plot of Cp/T versus T 2 for CePtPb. The line is a
linear fit between 0.16 and 0.4 K2 extrapolated to zero temperature. (b) The magnetic
contribution to the specific heat for CePtPb. The curve is a fit to the three-level Schottky
anomaly model given in Eq. (3.4), which assumes each CEF energy level has a doublet
degeneracy. The inset is a plot of Cp/T versus T 2 for CePtPb. The line is a linear fit
between 65 and 500 K2 extrapolated to zero temperature.
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heat Cm(T ) of CePtPb for magnetic fields H ≤ 6 kOe applied in the ab-plane. (b) A plot
of Cm/T versus T for magnetic fields H between 10 and 90 kOe applied in the ab-plane.

3.9(b) is an attempt to fit this broad peak with a three-level Schottky anomaly given by

CSch,three(T ) = kB
T 2Z2

[
∆2

1g0g1e
−∆1/T +∆2

2g0g2e
−∆2/T +(∆1−∆2)2g1g2e

−(∆1+∆2)/T
]
, (3.4)

where kB is the Boltzmann constant, Z = g0exp(−βE0) + g1exp(−βE1) + g2exp(−βE2) is
the partition function, g0 = g1 = g2 = 2 are the degeneracies of the three energy levels, and
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kB∆i for i = 1, 2 are the energies of the excited levels. The formula assumes ∆0 = 0 K. The
fit yields ∆1 = 141 K and ∆2 = 489 K.

For small magnetic fields H ≤ 6 kOe applied in the ab-plane [Fig. 3.10(a)], the sharp
peak at TN in zero field broadens and shifts to lower values of temperature as the applied
field increases. At H = 10 kOe [Fig. 3.10(b)], a peak is clearly observed around T = 1.2 K,
which broadens and shifts to higher values of temperature as the magnetic field increases
to H = 90 kOe.
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Figure 3.11: The temperature dependence of the magnetic entropy Sm(T ) for CePtPb in
zero field. The inset shows Sm(T ) for different magnetic fields applied in the ab-plane for
T ≤ 15 K.

The magnetic entropy Sm(T ) for T > 0.4 K is defined as follows

Sm(T ) =
∫ T

0.4

Cm(T )
T

dT. (3.5)

The temperature dependence of Sm(T ) for magnetic fields applied in the ab-plane are plotted
in Fig. 3.11. In zero field, Sm(T ) increases rapidly as the temperature increases from 0.4
to 3 K. An inflection point is observed at TN. Above 3 K, Sm(T ) appears to approach
saturation near a value of R ln 2 up to 15 K, suggesting a CEF doublet ground state. Above
25 K, Sm(T ) increases appreciably with temperature up to 300 K, reaching a value of R ln 4
at 200 K without any sign of saturating to this value.
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At TN, a magnetic entropy of 0.4R ln 2 is recovered, consistent with the earlier study
[54]. Moreover, the full value of the R ln 2 entropy is not recovered until a temperature
TS ≈ 25TN. The high TS/TN ratio can have two possible origins. The first one is short-range
magnetic or AFM correlations (e.g. magnetic frustration), which is observed even in simple
antiferromagnets such as NiCl2 [66]. The second possibility is Kondo screening of the Ce3+

ions by the conduction electrons. Under magnetic fields H ≥ 10 kOe applied in the ab-plane,
the behaviour of Sm(T ) associated with the ground state doublet broadens with the applied
field and TS is pushed to higher temperatures, consistent with a Zeeman splitting of the
ground state doublet.
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Figure 3.12: The magnetic field dependence of the specific heat Cp(H) for CePtPb at T =
0.5 K. The data is plotted in terms of Cp/T versus H. The inset is a blow up of Cp/T for
H ≤ 10 kOe.

The magnetic field dependence of the specific heat Cp(H) for CePtPb at T = 0.5 K
for magnetic fields applied in the ab-plane is shown in Fig. 3.12. The data are plotted as
Cp/T versus H. Despite the scatter in the data points, it is clear that Cp(H)/T increases
gradually from 1.94 J/mol K2 at H = 0 kOe to 2.3 J/mol K2 at H = 2.5 kOe. There appears
to be a change of slope around 1 kOe. A broad maximum is observed around H = 2.5 kOe
and Cp(H)/T decreases quickly as H increases from 2.5 to 90 kOe, with an inflection point
observed around H = 6.5 kOe.
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3.5 µSR

The zero-field (ZF) asymmetry spectra A(t) for CePtPb between 0.03 and 9 µs at various
temperatures are plotted in Fig. 3.13. The first 30 ns of the spectra are potentially con-
taminated by µ+ that missed the sample and triggered the positron detectors directly, and
consequently has been removed. Above TN, A(t) decays slowly as a function of time. This is
consistent with fast Ce-4f spin fluctuations in the paramagnetic state. In this regime, the
asymmetry spectra are well described by a fit function of the form

A(t) = ASe
−λtPGKT(t) +AB, (3.6)

where PGKT(t) is a temperature-independent static Gaussian Kubo-Toyabe function with
a fitted relaxation rate ∆G = 0.07 µs−1, and AS and AB are the sample and background
contributions to the initial asymmetry a0, respectively. The background component arises
from µ+ that did not stop in the CePtPb sample, but rather in the Ag backing plate and
in parts of the cryostat. The static Gaussian Kubo-Toyabe function PGKT(t) accounts for
the nuclear dipole moments in CePtPb, which are randomly oriented and static on the µSR
time scale. The exponential relaxation function describes the contribution from the Ce-4f
spins.
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Figure 3.13: Representative ZF-µSR asymmetry spectra for CePtPb at various tempera-
tures. The initial muon spin polarization P(0) was parallel to the ab-plane. Each data point
shown is an average of 250 raw data points packed in a time bin ∆t = 97.7 ns and the curves
are fits to the raw data (see main text). The inset shows the spontaneous development of a
rapid decrease in A(t) at early time below TN. Each data point shown is an average of 10
raw data points packed in a time bin ∆t = 3.9 ns.
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When CePtPb is cooled below TN, a rapid decrease in A(t) develops within the first
0.1 µs. The asymmetry spectra A(t) for T < TN are well described by the following three-
component fit function with two exponentially damped terms

A(t) = A1e
−λ1t +A2e

−λ2t +AB, (3.7)

where A1 and A2 are the asymmetry contributions from muons stopping in the sample,
such that AS = A1 +A2. The two exponential terms are associated with slow-relaxing and
fast-relaxing components with corresponding exponential relaxation rates λ1 and λ2.
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Figure 3.14: Representative LF-µSR asymmetry spectra for CePtPb at T = 0.1 K, for
various applied magnetic fields. The initial muon spin polarization P(0) was parallel to the
ab-plane. Each data point shown is an average of 250 raw data points packed in a time bin
∆t = 97.7 ns and the curves are fits to the raw data (see main text). The inset is a blow
up of A(t) over the first 0.5 µs, where each data point shown is an average of 10 raw data
points packed in a time bin ∆t = 3.9 ns.

In a longitudinal magnetic field (LF) applied in the ab-plane [Fig. 3.14], the fast relaxing
component of A(t) at T = 0.1 K is suppressed continuously with the applied field. For an
applied field H ≥ 3.5 kOe, A(t) at all temperatures is well described by a single exponential
function of the form

A(t) = ASe
−λt +AB. (3.8)

Note that the first term does not include PGKT(t), as the applied field decouples the muon
spin from the nuclear dipole fields, which are on the order of 1 G. The temperature depen-
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dence of the fitting parameters in zero field and at different applied fields are shown in Figs.
3.15 and 3.16, respectively.
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Figure 3.15: Temperature dependence of the ZF-µSR fit parameters for CePtPb. (a) Tem-
perature dependence of the sample asymmetries A1 and A2 associated with the slow- and
fast-relaxing exponential components of Eq. (3.7). The sample asymmetry AS from Eq. (3.6)
above TN is also shown along with the temperature dependence of AS = A1 +A2 above TN.
(b) and (c) show the fitted exponential relaxation rates associated with Eq. (3.6) and Eq.
(3.7). The dashed vertical line indicates the Néel temperature TN in zero field determined
by the specific heat measurements.
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Figure 3.16: Temperature dependence of the ZF-µSR and LF-µSR fit parameters for
CePtPb. (a) The normalized sample asymmetry A2/AS associated with the fast-relaxing
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relaxation rate λ1 (open symbols) from fits to Eq. (3.7). (c) The exponential relaxation rate
λ2 of the sample asymmetry associated with the fast-relaxing exponential component of Eq.
(3.7).
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Chapter 4

Discussion

4.1 Construction of T -H Phase Diagram

A temperature versus magnetic field (T -H) phase diagram for CePtPb can be constructed
for external magnetic fields applied in the ab-plane from the anomalies observed in the data
for ρ(T,H) and Cm(T,H). For Cm(T,H), the feature associated with the AFM order in
CePtPb is a peak at TN in zero field [Fig. 3.10(a)], which shifts to lower values of temperature
as the applied field is increased up to H = 7 kOe. At H = 7 kOe, a different peak is
observed at T ∼ 1.2 K, which shifts to higher values of temperature as the applied field is
increased up to H = 90 kOe. Above 30 kOe, this peak becomes too broad to determine the
temperature of the peak maximum. For ρ(T,H), the features associated with the AFM order
are indicated by peaks and kinks in the temperature and field derivatives of ρ, as shown in
Figs. 4.1(a) and 4.1(b). The anomalies in dρ/dH at T = 0.4 K [Fig. 4.1(a)] evolve smoothly
as the temperature is increased and disappear above TN. On the other hand, the anomaly
associated with the AFM order in dρ/dT [Fig. 4.2(b)] evolves smoothly to lower values of
temperature as the applied field is increased to H = 5.5 kOe. Above this field, the anomaly
disappears. Between 2 and 4 kOe, another anomaly is apparent at lower temperatures. For
H ≥ 6 kOe, a broad peak is observed above TN and shifts to higher values of temperature
as the applied field increases to H = 90 kOe. The anomalies in Cm(T,H) and ρ(T,H) are
compiled in the temperature-versus-magnetic field phase diagram shown in Fig. 4.3.

Similar to CePdAl and YbAgGe, the constructed phase diagram for CePtPb shows
multiple regions. The AFM transition temperature TN ≈ 0.9 K in zero field is continuously
suppressed by field to T = 0.4 K at H = 6.6 kOe, with a linearly extrapolated critical
applied field Hc ≈ 7 kOe. Between 0.8 and 3.5 kOe, hysteresis is observed in ρ(T,H).
Without further knowledge from neutron diffraction measurements, the magnetic structure
of each ordered region remains unclear.
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Figure 4.1: (a) The magnetic field dependence of the electrical resistivity ρ(H) for CePtPb at
T = 0.4 K plotted together with the derivative dρ/dH. The data were measured as a function
of increasing applied field. (b) The temperature dependence of the electrical resistivity ρ(T )
for CePtPb in zero field plotted together with the derivative dρ/dT . The data were measured
while warming. The vertical dashed lines in (a) and (b) indicate the phase transition points.
(c) The magnetic field dependence of dρ/dH at different temperatures. The ρ(H) data were
for increasing applied field. The dρ/dH data points are connected by lines. The red lines
are guides to the eye for the observed anomalies. The phase transition are indicated by the
black edge diamonds, squares, and triangles, and are also indicated by the intercepts of the
red lines.
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applied in the ab-plane. All of the ρ(T ) data in this figure, except the 80 and 90 kOe data,
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Figure 4.3: Temperature-versus-magnetic field phase diagram for CePtPb (with the mag-
netic field applied in the ab-plane) inferred from the ρ(T,H) and Cm(T,H) measurements.
The diamonds are the phase transitions observed in the temperature dependence of the
magnetic specific heat. The nablas are the temperature of the maximum of the broad peak
seen in the magnetic specific heat for H ≥ 7 kOe, which is qualitatively described by an
electronic Schottky anomaly. The circles and squares are phase transitions indicated in the
temperature derivative and the field derivative of the electrical resistivity, respectively. The
triangles are the anomaly observed in the field derivative of the resistivity for H ≥ 6 kOe.
The shaded region represents the part of the phase diagram where hysteresis is observed in
the resistivity measurements. The labels "down" and "up" denotes decreasing and increasing
H [or T ], respectively, for the ρ(H) [or ρ(T )] measurements.
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4.2 Behaviour in the Magnetically Ordered States

Although the specific nature of each of the magnetically-ordered regions in the phase dia-
gram of Fig. 4.3 is unknown, it is insightful to compare the transport and thermodynamic
properties of CePtPb in these ordered regions to CePdAl [Fig. 1.8(b)] and YbAgGe [Fig.
1.7(b)] to determine where this compound sits in the family of the field-tuned antiferro-
magnets that have quasi-Kagome lattices for the rare-earth ions. Hysteresis is observed in
ρ(T,H) in the two intermediate phases of CePtPb between 0.8 and 3.5 kOe. Similarly, hys-
teresis in ρ(T,H) is also observed in the two intermediate phases (phase B and C) [Fig.
1.8(b)] situated next to the zero-field phase (phase A) in CePdAl. It was speculated in [22]
that phase B and C in CePdAl are canted AFM phases with spin flip-flop transitions at
the phase boundaries AB and BC. This speculation is based on the Ising-like character of
the Ce-4f spins in phase A, which is inferred from the large magnetic anisotropy in zero
field. Based on the same argument, there is a possibility that the intermediate phases with
hysteresis in CePtPb are also canted AFM phases, given that a large magnetic anisotropy
is also observed in the magnetic susceptibility at H = 1 kOe. On the other hand, hysteresis
in ρ(T,H) has only been observed in the zero-field phase (phase I) of YbAgGe [13, 14].
The zero-field phase of CePtPb doesn’t exhibit any hysteresis in ρ(T,H), suggesting the
underlying magnetism in the zero-field phase of YbAgGe is different from CePtPb.

Furthermore, a power law analysis ρ(T ) = ρ0 + ATn of the electrical resistivity in zero
field between 0.4 and 0.9 K has yielded an anomalous n ≈ 3 exponent [Fig. 3.6(b) inset].
By plotting ρ(T ) versus T 3 for various applied fields as shown in Fig. 4.4, similar n ≈ 3
dependence is found in all of the magnetically ordered phases in CePtPb. This n ≈ 3
behaviour has also been reported in all of the magnetically ordered phases of CePdAl [22],
but has not been reported for YbAgGe.

4.3 Behaviour in the Paramagnetic State

The power-law analysis ρ(T ) = ρ0 + ATn of the electrical resistivity for CePtPb in the
paramagnetic region for H ≥ Hc indicates an anomalous evolution of the exponent n as a
function of H. The fitting curves for representative values of the applied fields are shown
in Figs. 4.5(a), (b), and (c). The data are fit in the temperature interval [0.4 K, Tmax],
where Tmax grows with applied field as shown in the inset of Fig. 4.5(e). The values of
ρ0 are plotted together with the ρ(H) data at T = 0.4 K [Fig. 4.5(d)] to show that the
fitted ρ0 agrees with the ρ(H) data for H ≥ 20 kOe. The value of n [Fig. 4.5(e)] increases
continuously from n = 2.5 at H = 7 kOe to n = 4.1 at H = 90 kOe, and shows a tendency
towards saturation near the value n ≈ 4 for H > 30 kOe.

A similar enhancement of the resistivity exponent n by applied magnetic field is also
observed in CeAuSb2 [39] and CeNiGe3 [67]. In CeAuSb2, an exponent n ≈ 1 was observed
below 3 K near a critical applied field Hc = 55 kOe. As the applied field is increased, the
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The arrows indicate the Néel temperature TN found in Section 4.1 through an analysis of
dρ/dT . The solid lines are linear fits to the plotted data below TN.

exponent n grows rapidly and saturates to n = 3 near H = 70 kOe. For H > 70 kOe,
the temperature range where this n = 3 behaviour is observed appears to increase linearly
with increasing applied field, up to at least H = 250 kOe. It was speculated in [39] that
the saturation to n = 3 is related to the alignment of the Ce-4f spins, because both the
resistivity exponent n and the magnetization appear to saturate at about the same field at
a temperature T < TN. In CeNiGe3, the value of n grows from n = 2 at Hc = 30 kOe to
n ≈ 3.8 at H = 90 kOe, and continuous to grows markedly without signs of saturation.

In comparison to CeAuSb2, the resistivity exponent n for CePtPb shows very similar
behaviour. Firstly, the exponent n in both compounds grows rapidly and saturates at high
values of the applied field. Secondly, the temperature interval where the saturation of n is
observed increases linearly with applied field in both compounds. However, it is unclear why
CePtPb shows a saturation value n ≈ 4, whereas saturation n = 3 is observed in CeAuSb2.

The value of A shows divergent behaviour near the critical field Hc ≈ 7 kOe [Fig. 4.5(f)],
as H is decreased from H = 90 kOe. Such divergent behaviour of A has been observed in
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Figure 4.5: The power-law analysis, ρ(T ) = ρ0 +ATn, of the electrical resistivity for CePtPb
between 7 and 90 kOe. Graphs (a) to (c) show the fits of the data near the critical applied
magnetic field Hc = 7 kOe, at intermediate fields, and at high fields, respectively. The data
are fits in the temperature interval [0.4 K, Tmax], where Tmax is indicated by the arrows and
the values of n listed beside them. The fitted values of the parameters are shown in (d) to
(f).

several heavy-fermion compounds [13, 39, 22] (with n = 2) and has been attributed to
proximity to a quantum critical point.

The anomaly observed in Cm(T ) for H ≥ Hc [Fig. 3.10(b)] shifts to higher tempera-
tures as the applied field increases. The field-dependent behaviour of this anomaly can be
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Figure 4.6: The magnetic contribution to the specific heat for CePtPb in the paramag-
netic state for different magnetic fields H ≥ 10 kOe applied in ab-plane. The data can be
qualitatively fitted to a two-level Schottky anomaly model with an energy difference ∆.
The magnetic field dependence of the peak temperature Tpeak for this anomaly and ∆ are
plotted in the inset, where the lines are linear fits to the data.

attributed to an electronic Schottky contribution CSch(T ), associated with Zeeman splitting
of the ground state CEF doublet. The Schottky contribution is given by

CSch(T ) = kB∆2e∆/T

T 2[e∆/T + 1]2
, (4.1)

where kB is the Boltzmann constant and kB∆ is the energy difference between the two CEF
energy levels in the doublet [Fig. 4.6]. A reasonably good fit of the temperature dependence
of Cm(T ) is achieved in the higher temperature region of the anomaly. At low temperatures,
there is a clear discrepancy between the fit and the data, suggesting there is an additional
contribution to Cm(T ) unaccounted for by the fit. This is discussed in the next section.
The inset of Fig. 4.6 shows that the temperature of the peak in the anomaly TPeak and the
fitted value of ∆ increase linearly with increasing magnetic field. This is consistent with a
Zeeman splitting of the ground-state CEF doublet.
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4.4 Behaviour Near the Critical Applied Magnetic Field

When the electronic Schottky contribution to the specific heat CSch(T ) is subtracted from
the magnetic contribution to the specific heat Cm(T ), an additional contribution to Cm(T )
is observed as a broad peak. This peak is shown in a (Cm − CSch)/T plot in the inset of
Fig. 4.7. When the applied field increases, this peak shifts to higher values of temperature
and broadens. Signatures of NFL behaviour, such as a − log T dependence, are not observed
near the critical applied field Hc = 7 kOe. At T = 0.4 K and H = Hc, (Cm−CSch)/T has a
large value of 0.56 J/mol K2 that rapidly decreases with increasing applied field, as shown
in the main panel of Fig. 4.7. This behaviour is typical for heavy-fermion systems, and is
due to a suppression of the Kondo effect or the presence of short-range AFM correlations.
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Figure 4.7: The magnetic field dependence of (Cm − CSch)/T for CePtPb at T = 0.4 K.
The inset shows the temperature dependence of (Cm−CSch)/T for different magnetic fields
applied in the ab-plane. The data points are connected by lines.

4.5 Interpretation of µSR Results

In the paramagnetic state of CePtPb [Fig. 3.15(b)], the ZF exponential relaxation rate λ
associated with the Ce-4f moments increases as the temperature is lowered towards TN.
This is due to slowing down of the Ce-4f spin fluctuations that causes fluctuations of the
local field component perpendicular to the initial muon spin polarization. Below TN, where
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the sample contribution to the ZF asymmetry spectra A(t) develops two components [Fig.
3.15(a)], the amplitude of the slow-relaxing exponential component decreases smoothly to
37 % of the total sample asymmetry AS at 25 mK. The corresponding relaxation rate
λ1 decreases with decreasing temperature to a non-zero value of 0.25 µs−1 at 25 mK [Fig.
3.15(b)]. The sharp rise in λ at TN and fall of λ1 below TN indicates a peak that is consistent
with critical slowing down of the Ce-4f spin fluctuations when TN is approached from the
paramagnetic state and gradual slowing down when CePtPb is cooled below TN. The non-
zero value of the relaxation rate λ1 = 0.25 µs−1, however, suggests that slow Ce-4f spin
fluctuations persist in part of the sample.

In contrast to A1, the amplitude A2 of the ZF fast-relaxing exponential component
grows below TN to a value of 63 % of AS at 25 mK [Fig. 3.15(a)]. Likewise the corresponding
relaxation rate λ2 increases to the large value 17 µs−1 [Fig. 3.15(c)], which is indicative of
a broad internal magnetic field distribution.

The temperature dependences of A1 and A2 below TN are compatible with two different
scenarios. The first scenario is that there is a gradual Ce-4f spin reorientation with de-
creasing temperature, such that the orientation of the average local field with respect to the
initial muon spin polarization P(0) changes with decreasing temperature. The second, and
more likely scenario, is that inhomogeneous freezing occurs below TN, where part of the to-
tal volume contains Ce-4f spins that do not freeze. These spins contribute a slowly relaxing
signal component and hence are associated with the first term of Eq. (3.7). Conversely, the
fast relaxing component of Eq. (3.7) is due to frozen spins. The amplitude A1 and A2 are
dependent on the volume of the sample containing unfrozen and frozen spins, respectively.
Hence the increase of the frozen spin volume (A2) with decreasing temperature, comes at
the expense of a diminished unfrozen spin volume (A1). At 25 mK, A2/AS = 63 % and
A1/AS = 37 %. The second scenario appears to be consistent with the magnetic structure
proposed for CePdAl [48, 49], where 2/3 of the Ce-4f spins order antiferromagnetically and
the other 1/3 of the spins remains fluctuating.

In a longitudinal magnetic field applied in the ab-plane [Fig. 3.16(a)], the ratio of A2/AS

at T = 25 mK increases slightly to 69 % at H = 1 kOe, but is drastically reduced to
15 % at H = 3 kOe. The higher A2/AS ratio at H = 1 kOe is consistent with a partial
alleviation of the magnetic frustration by the applied field, which agrees with an earlier
neutron diffraction study of CePdAl [52]. The lower A2/AS ratio at H = 3 kOe though is
likely due to a Ce-4f spin reorientation, because a phase boundary is apparently crossed
when the magnetic field is increased from 1 to 3 kOe (see Fig. 4.3). The peak in λ1(T ) in
zero field shifts to lower temperatures due to suppression of TN by the applied field [Fig.
3.16(b)]. The absence of a peak in λ1(T ) for H ≥ 7 kOe is consistent with the critical
applied field Hc ≈ 7 kOe extrapolated from the electrical resistivity measurements. The
significant drop in λ1 between 0 and 1 kOe for T < TN is also consistent with magnetic
frustration being lifted as previously stated. On the other hand, as shown in Fig. 3.16(c),

53



λ2(T ) is suppressed towards zero with increasing LF. This is because the LF competes with
the internal magnetic field distribution and dominates at higher field.
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Chapter 5

Conclusion

To date, studies of quantum critical behaviour in magnetically-frustrated heavy-fermion sys-
tems have primarily been restricted to non-metallic compounds. The addition of conduction
electrons in the metallic systems further complicates the interplay between the 4f -moments
and has opened up a brand new field of physics. In this thesis, single crystals of CePtPb
were grown from a Pb-rich solution and the crystal structure was characterized by Laue
and powder X-ray diffraction measurements. A temperature-versus-magnetic field phase dia-
gram constructed from electrical resistivity and specific heat measurements suggests several
magnetically-ordered phases that terminate at a zero-temperature extrapolated critical ap-
plied magnetic field Hc ≈ 7 kOe. The specific nature of each magnetically-ordered phase
is uncertain, which warrants neutron diffraction measurements in the future. Nevertheless,
some insight into the nature of these phases could be obtained by µSR.

The ZF-µSR measurements indicate residual spin dynamics at 25 mK, consistent with
the magnetic structure proposed for the related compound CePdAl, where 2/3 of the Ce-4f
spins order antiferromagnetically and the other 1/3 of the Ce-4f spins remain fluctuating
due to geometric frustration. In the future, µSR experiments with a weak magnetic field
applied transverse to the initial muon spin polarization P(0) could potentially confirm
whether there is phase separation in the sample at T < TN associated with frozen and
unfrozen spins.

Similar to CePdAl, neither Fermi-liquid (FL) nor non-Fermi-liquid (NFL) behaviour is
observed for H ≥ Hc [22, 53]. Instead, the electrical resistivity of each compound exhibits
a power-law dependence on temperature with exponent n > 2 in both the magnetically-
ordered and paramagnetic states. On the other hand, NFL behaviour is observed near a
critical field Hc = 45 kOe in YbAgGe that extends over a wide field range to H = 105 kOe
before FL behaviour is recovered at higher fields [13, 16]. It is speculated that the physics
driving the ground state of the Ce- and Yb-based compounds is slightly different. In the
future, it will be interesting to study the quantum critical behaviour of CePdPb, which is
another compound with the Ce-4f moments occupying quasi-Kagome lattices in the ab-
plane. An earlier study [68] concluded that CePdPb does not ordered magnetically down to
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T = 3 K, but estimated a Curie-Weiss temperature θCW = −35 K that suggests an AFM
ground state for this compound. Hence, this may be another magnetically frustrated AFM
compound, which could provide further insight into the physics driving the ground state of
CePtPb with the replacement of only one constituent element (i.e., Pd rather than Pt).

In CePtPb, the exponent n of the temperature-dependent electrical resistivity for H ≥
Hc shows an anomalous increase with field and saturates to an exponent n ≈ 4 for H >

30 kOe. Similar behaviour has also been observed in CeAuSb2 [39] and CeNiGe3 [67] with
different saturation exponents. In CeAuSb2, the saturation to n = 3 is speculated [39]
to be related to the alignment of the Ce-4f spins, because both the magnetization and n
saturates at the same applied field. This agreement between the magnetization and n should
also be investigated for CePtPb. A density functional theory calculation of the electrical
resistivity [69] for different lattices with fully polarized Ce-4f spins might provide insight
to the different observed saturation exponents.
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