
Application of Machine Learning
Techniques for Detecting Anomalies in

Communication Networks
by

Qingye Ding

M.Sc., New Jersey Institute of Technology, 2014
B.Sc., Northeast Agricultural University, 2012

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the
School of Engineering Science
Faculty of Applied Science

c© Qingye Ding 2018
SIMON FRASER UNIVERSITY

Summer 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Qingye Ding

Degree: Master of Applied Science (Engineering Science)

Title: Application of Machine Learning Techniques for
Detecting Anomalies in Communication Networks

Examining Committee: Chair: Ivan V. Bajić
Professor

Ljiljana Trajković
Senior Supervisor
Professor

Parvaneh Saeedi
Supervisor
Associate Professor

Qianping Gu
Internal Examiner
Professor
School of Computing Science

Date Defended: June 19, 2018

ii

Abstract

Detecting, analyzing, and defending against cyber threats is an important topic in cyber
security. Applying machine learning techniques to detect such threats has received consid-
erable attention in research literature. Anomalies of Border Gateway Protocol (BGP) affect
network operations and their detection is of interest to researchers and practitioners. In this
Thesis, we describe main properties of the BGP and datasets that contain BGP records col-
lected from various public and private domain repositories such as Réseaux IP Européens
(RIPE) and BCNET.

With the advent of fast computing platforms, the neural network-based algorithms have
proved useful in detecting BGP anomalies. We apply the Long Short-Term Memory machine
learning technique for classification of known network anomalies. The models are trained
and tested on various collected datasets. Various classification techniques and approaches
are compared based on accuracy and F-Score.

Keywords: Border Gateway Protocol; routing anomalies; machine learning; classification
algorithms; long short-term memory

iii

Acknowledgements

I would like to express my sincere appreciation to my advisor Prof. Ljiljana Trajković for
her great guidance with my research, for her patience, kindness, and immense knowledge.

I would also like to thank the rest of my committee: Prof. Ivan V. Bajić, Prof. Qianping
Gu, and Prof. Parvaneh Saeedi, for their insightful comments and suggestions.

My thanks also go to my friends and colleagues in Communication Networks Laboratory
at Simon Fraser University for their support and assist during my graduate study.

Finally, I would like to thank my family for supporting me spiritually throughout writing
this Thesis. In particular, I am grateful to my husband for his wise counsel and sympathetic
ear. You were always there for me.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Overview of Border Gateway Protocol (BGP) 1
1.2 Machine Learning Techniques . 3

1.2.1 Machine Learning Process . 4
1.2.2 Unsupervised Learning . 6
1.2.3 Supervised Learning . 11

1.3 Recurrent Neural Network . 12
1.4 Motivation . 13
1.5 Related Work . 14
1.6 Research Contribution . 15
1.7 Organization of the Thesis . 16

2 Border Gateway Protocol Datasets 17
2.1 Examples of BGP Anomalies . 17
2.2 Analyzed BGP Datasets . 22

2.2.1 Processing of the Collected Data . 23

3 Extraction of Features from BGP Update Messages 26

4 Performance Metrics and the Long Short-Term Memory Neural Network 31
4.1 Introduction of Classification Algorithm . 31
4.2 Performance Metrics . 32

v

4.3 Long Short-Term Memory (LSTM) Neural Network 33
4.3.1 Vanishing Gradient Problem . 33
4.3.2 LSTM Module . 35

5 Description of Classification Algorithms used for Comparison 40
5.1 Support Vector Machine (SVM) . 40
5.2 Naïve Bayes . 43
5.3 Decision Tree Algorithm . 44
5.4 Extreme Learning Machine (ELM) Algorithm 46
5.5 Performance Comparison of Classification Algorithms 48

5.5.1 Unbalanced Datasets . 49
5.5.2 Balanced Datasets . 50

6 Discussion 52

7 Conclusion and Future Work 54

Bibliography 56

Appendix A Script of the Long Short-TermMemory model used to classify
BGP datasets 64

vi

List of Tables

Table 1.1 Sample of a BGP update message. IGP: Interior Gateway Protocol;
NLRI: Network layer reachability information. 3

Table 2.1 Examples of known BGP Internet worms. 17
Table 2.2 Internet anomalous events. 20
Table 2.3 Training and test datasets. 23

Table 3.1 List of features extracted from BGP update messages. 27
Table 3.2 Definition of volume and AS-path features extracted from BGP update

messages. 28
Table 3.3 Example of BGP features. 28

Table 4.1 Confusion matrix. 32
Table 4.2 The actions of the internal state corresponding to values of input and

forget gates. 37

Table 5.1 Accuracy and F-Score using various classification models for unbal-
anced datasets. 49

Table 5.2 Accuracy and F-Score using LSTM and SVM models for balanced
datasets. 51

vii

List of Figures

Figure 1.1 Illustration of the machine learning process. 4
Figure 1.2 Illustration of the 10-fold cross validation. The original training dataset

is partitioned into 10 folds. Each fold is used once as a validation set
during the training phase. The final estimation result is the average
number of the 10 validation results. 5

Figure 1.3 Procedure of data clustering with a feedback loop. The result of clus-
tering may affect feature extraction/selection and the computation
of pattern proximity. 7

Figure 1.4 Illustration of hard clustering in a 2-dimensional space. The vertical
and horizontal axis represent two dimensions. Each data point in the
original dataset (a) is clustered to a single cluster (b). Triangle and
circle represent features of the dataset. 8

Figure 1.5 Shown is an example of fuzzy clustering in a 2-dimensional space.
The vertical and horizontal axis represent two dimensions. Each data
point in the original dataset (a) may belong to multiple clusters (b). 9

Figure 1.6 Example of hierarchical clustering. The vertical axis represents the
similarity between clusters and the horizontal axis represents the
combined clusters. Each data point in the original dataset (a) is
considered as a single cluster (b). These clusters are merged based
on their similarity. 10

Figure 1.7 Example of partitional clustering. The vertical and horizontal axis
represent two dimensions. Several centroid points are selected from
the original dataset (a). The algorithm then calculates proximity of
clusters (b). Centroid points and clusters are updated based on the
proximity (right). 10

Figure 1.8 Example of a recurrent neural network (RNN). A node represents a
unit. An RNN is unrolled by expanding its computation graph to a
directed acyclic graph. Shown is an expanded RNN at times t− 1, t,
and t+ 1. 13

viii

Figure 2.1 Number of BGP announcements occurred between January 23, 2003
and January 28, 2003. The announcements occurred during Slammer
anomaly are labeled as the “anomaly” class while others belong to
the “regular” class. 18

Figure 2.2 Number of BGP announcements occurred between September 16,
2001 and September 21, 2001. The number of announcements issued
during Nimda anomaly are labeled as the “anomaly” class while oth-
ers belong to the “regular” class. 19

Figure 2.3 Number of BGP announcements issued from July 17, 2001 to July
22, 2001. The number of announcements occurred during Code Red
I anomaly are labeled as the “anomaly” class while others belong to
the “regular” class. 20

Figure 2.4 Number of BGP announcements occurred between December 18,
2001 and December 22, 2001. Shown is an example of BGP announce-
ments occurred during regular traffic. The number of announcements
belong to the “regular” class. 21

Figure 2.5 BGP announcements occurred during the Slammer worm attack:
number of duplicate announcements (top) and number of EGP pack-
ets (bottom). The red streams (light grey) are anomalous data points
and the blue (dark grey) ones are regular data points. 24

Figure 2.6 BGP announcements occurred during the Slammer worm attack:
maximum AS-path length (top) and maximum AS-path edit dis-
tance (bottom). The red streams (light grey) are anomalous data
points and the blue (dark grey) ones are regular data points. 25

Figure 3.1 Distribution of the maximum AS-path length (top) and the max-
imum edit distance (bottom) collected during the Slammer worm.
Shown maximum AS-paths contains up to 24 ASes, and the paths
change frequently. 29

Figure 3.2 Distribution of the number of BGP announcements (top) and with-
drawals (bottom) for the Code Red I worm. 30

Figure 4.1 Shown is an example of a simple RNN with an input layer, a hidden
layer, and an output layer. The loss is calculated using the prediction
value and the target value. 34

Figure 4.2 Repeating module for the LSTM neural network. Shown are the in-
put layer, LSTM layer with one LSTM cell, and output layer. . . . 35

Figure 4.3 Architecture of the employed LSTM classifier. Shown are input layer
with 37 nodes, LSTM layer with 256 cells, the dropout layer with
50% dropout rate, and the output layer. 38

ix

Figure 5.1 Illustration of the soft margin SVM [8]. Shown are correctly and
incorrectly classified data points. Regular and anomalous data points
are denoted by circles and stars, respectively. The circled points are
support vectors. 41

Figure 5.2 Illustration of the role of a kernel function. Blue circles and yellow
stars are regular and anomalous data points, respectively. A nonlin-
ear kernel function maps the input data points from input space to a
higher dimensional feature space and calculates an optimal separat-
ing hyperplane. Then the hyperplane is mapped back to input space
and results in a nonlinear decision boundary. 42

Figure 5.3 An example of the Decision Tree used to detect a BGP anomaly.
The input data points are categorized based on the features shown
in rectangles. The classification results are shown by ellipses that
represent leaf nodes. 45

Figure 5.4 Neural network architecture of the ELM algorithm. Shown structure
consists of an input layer with d dimensions, a hidden layer with k
hidden neurons, and an output layer with m output samples. 47

x

Chapter 1

Introduction

1.1 Overview of Border Gateway Protocol (BGP)

Border Gateway Protocol (BGP) [1] is a routing protocol that plays an essential role in for-
warding Internet Protocol (IP) traffic between the source and the destination Autonomous
Systems (ASes). An Autonomous System (AS) is a collection of BGP peers (neighbors)
managed by a single administrative domain [2]. It consists of one or more networks that
possess uniform routing policies while operating independently. Internet operations such as
connectivity and data packet delivery are facilitated by various ASes.

The main function of BGP is to select the best routes between ASes based on network
policies enforced by network administrators. Routing algorithms determine the route that
a data packet takes while traversing the Internet. They exchange reachability information
about possible destinations. BGP is an upgrade of the Exterior Gateway Protocol (EGP) [3].
It is an interdomain routing protocol used for routing packets in networks consisting of
a large number of ASes. BGP version 4 allows Classless Interdomain Routing (CIDR),
aggregation of routes, incremental additions, better filtering options, and it has the ability
to set routing policies. BGP employs the Path Vector protocol, which is a modified version
of the Distance Vector protocol [5]. It is a standard for the exchange of information among
the Internet Service Providers (ISPs).

BGP relies on the Transport Control Protocol (TCP) to establish a connection (port 179)
between the routers. A BGP router establishes a TCP connection with its peers that reside
in different ASes. Because of their size, BGP routing tables are exchanged once between
the peering routers when they first connect. BGP allows ASes to exchange reachability
information with peering ASes to transmit information about the availability of routes
within an AS. Based on the exchanged information and routing policies, it determines
the most appropriate path to destination. Hence, BGP allows each subnet to announce its
existence to the Internet and to publish its reachability information. Hence, all sub-networks
are interconnected and are known to the Internet.

1

BGP is an incremental protocol that sends updates only if there are reachability or
topology changes within the network. Afterwards, only updates regarding new prefixes or
withdrawals of the existing prefixes are exchanged. BGP routers exchange four types of mes-
sages: open, update, keep-alive, and notification [3]. After a transport protocol connection
is established, the open message that contains basic information such as router identifier,
BGP version, and the AS number is used to open a peering session. Once the open mes-
sage is confirmed, update, keep-alive, and notification messages are exchanged. BGP routers
exchange known routing information using the update message after the BGP session is es-
tablished and when there is a change of BGP routes in their routing tables. They advertise
only one available route, withdraw multiple unavailable routes, or execute both simultane-
ously. Network Layer Reachability Information (NLRI) field of the update message contains
attributes of all paths that apply to the destination. The Update message contains informa-
tion of the relationships among various ASes. It may be used to detect network anomalies
and prevent routing loops. The Minimal Route Advertisement Interval (MRAI) limits the
minimum time interval between two update messages that are sent to the same destination.
The default MRAI value is 30 s in practice [4]. Instead of using transport protocol to deter-
mine if peers are reachable, BGP routers frequently exchanges keep-alive messages between
peers during inactivity periods to ensure that the connections do not expire the hold time,
which is usually 90 seconds. The maximum interval between keep-alive messages is typically
one third of the hold time interval. The notification message closes a peering session if there
is a disagreement in the configuration parameters.

A sample of a BGP update message is shown in Table 1.1. The Origin attribute is
generated by the AS that originates the routing information. It is a mandatory attribute and
will be propagated to other BGP speakers that are used to advertise the routing information.
The AS-path attribute in the BGP update message indicates the path that a BGP packet
traverses among AS peers. Only when a BGP speaker propagates a route to another BGP
speaker located within the same AS, the AS-path attribute will not be modified. The AS-
path attribute enables BGP to route packets via the best path. The next-hop attribute
defines the IP address of the next hop to the destination. NLRI announcements share a list
of IP address prefixes.

Propagation of the BGP routing information is susceptible to various anomalous events
such as worms, malicious attacks, power outages, blackouts, and misconfigurations of BGP
routers. BGP anomalies are caused by changes in network topologies, updated AS policies,
or router misconfigurations. They affect the Internet servers and hosts and are manifested
by anomalous traffic behavior. Anomalous events in communication networks cause traffic
behavior to deviate from its usual profile. These events may spread false routing information
throughout the Internet by either dropping packets or directing traffic through unauthorized
ASes and, hence, risking eavesdropping. Large-scale power outages may affect ISPs due to
unreliable power backup. They could also cause network equipment failures leaving affected

2

Table 1.1: Sample of a BGP update message. IGP: Interior Gateway Protocol; NLRI: Net-
work layer reachability information.

Field Value
TIME 2003 1 24 00:39:53
TYPE BGP4MP/BGP4MP_MESSAGE AFI_IP
FROM 192.65.184.3
TO 193.0.4.28
BGP PACKET TYPE UPDATE
ORIGIN IGP
AS-PATH 513 3320 7176 15570 7246 7246 7246

7246 7246 7246 7246 7246 7246
NEXT-HOP 192.65.184.3
ANNOUNCED NLRI PREFIX 198.155.189.0/24
ANNOUNCED NLRI PREFIX 198.155.241.0/24

networks isolated and their service disrupted. Configuration errors in BGP routers also
induce anomalous routing behavior. Routing table leak and prefix hijack [6] events are
examples of BGP configuration errors that may lead to large-scale disconnections in the
Internet. A routing table leak occurs when an AS (such as an ISP) announces a prefix from
its Route Information Base (RIB) that violates previously agreed upon routing policy. A
prefix hijack is the consequence of an AS originating a prefix that it does not own.

1.2 Machine Learning Techniques

Machine learning is a subfield of artificial intelligence, which is closely related to statistics
and various interdisciplinary fields, such as neocognitron in biology [7], cognitive science,
control theory, and information theory [8]. Unlike traditional computing techniques, machine
learning enables computers to build models and make decisions based on input datasets.
Machine learning was defined [9] as a computer program that could learn from experiences
with respect to classes of objectives and performance metrics, as long as they improve the
experience.

The concept of machine learning was introduced in Alan Touring’s paper “Computing
Machinery and Intelligence” [10]. Machine learning gained more attention after he brought
up the research question “Can machines think?” in 1950. Since 1990s, machine learning
flourished and became well known. In 2006, Geoffrey Hinton introduced the deep learning
and proved that machines are able to distinguish objects and texts in images and videos [11].
Machine learning is able to analyze complex and large volume of data, which makes it cru-
cial in various areas. For example, image recognition technology allows surveillance cameras
to detect faces; speech recognition translates spoken words into texts while recommender
systems suggest commodities based on user preferences. Machine learning techniques have

3

also been employed to develop models for detecting anomalies and designing BGP anomaly
detection systems [12]. They are the most common approaches for classifying BGP anoma-
lies. A typical goal of machine learning applications is to map input instances to an output
value. An illustration of the machine learning process is shown in Fig. 1.1.

Figure 1.1: Illustration of the machine learning process.

1.2.1 Machine Learning Process

Raw data typically contain missing values and redundant information and, thus, they need
to be parsed, cleaned, pre-processed, and transformed into a proper form. The data is then
divided into training and test datasets. In the training phase, the machine learning algo-
rithms are applied to the training data to create candidate models. Models “observe” and
learn from the training dataset. However, a model may be biased due to the limited number
of data points that the model has observed. In order to avoid such biased observations, the
validation phase is introduced to estimate the quality of the model based on classification
accuracy, recall, precision, or F-Score. Hyperparameters of the model are tuned based on
the validation results to improve the existing model.

K-fold cross-validation is commonly used in machine learning tasks [13]. The advantage
of using k-fold cross validation is that the training dataset is fully used for both training and
validating, and each subset is used for validation only once. In the k-fold cross-validation,
the original training dataset is randomly partitioned into k equal-sized subsets. For example,
for a 10-fold validation set, machine first partitions the training dataset into 10 subsets and
then randomly shuffles them. Nine subsets are trained and one is left out as a validation set
to estimate the quality of the model. This process repeats until all subsets have been used
as both training and validation sets and have returned 10 estimation results. The average

4

number of the 10 results is the final estimation of the model. An illustration of a 10-fold
cross validation is shown in Fig. 1.2.

Figure 1.2: Illustration of the 10-fold cross validation. The original training dataset is par-
titioned into 10 folds. Each fold is used once as a validation set during the training phase.
The final estimation result is the average number of the 10 validation results.

The validation phase is also used to prevent underfitting and overfitting. If the training
and validation accuracy are both low, the model is underfitting, and it is not suitable for
training datasets. The solution may be to use alternative machine learning algorithms or
increase the number of iterations. In practice, underfitting is easy to detect while overfitting
is rather challenging. If the training accuracy is high while the validation accuracy is very
low, the model is probably overfitting, which implies that the model learns too well details
including noise information in the training dataset and it may fail to reliably fit future
observations [14]. The overfitting model learns the noise data as the useful information and
captures details of the dataset. However, the capture does not suitable for new dataset
and negatively impacts the generality of the model. Overfitting is more likely to happen
when training nonparametric (the complexity of the model increases with the number of the
training data) or nonlinear models that have distribution-free structures. Therefore, machine
learning models for nonparametric datasets may use techniques to constrain the information
that the model may learn. For example, a Long Short-Term Memory nonparametric model
addresses overfitting by using dropout technique [15] by removing a certain portion of
information that it has learned. The validation phase repeats until the validation accuracy
becomes constant and is within a certain threshold. In most cases, the validation error
is larger than the training error. Empirically, the training and validation sets within the

5

original training dataset are split in proportions 7:3 or 8:2. How to split the dataset mainly
depends on the total number of data samples and properties of the training model. For
example, in case of a model that needs a large number of data to train, the validation
subset may be reduced to optimize the performance.

After the validation phase, test data are used to evaluate the developed models. The
difference between validation and test sets is that the validation set is partitioned from the
training set while the test set is only released when the training and validation phases are
completed. The test set should not be learned beforehand. Otherwise, the learning is invalid.
Generally the test dataset contains data samples with various classes that the model would
encounter the reality. The model is then applied to the real-world data after the procedure
of training, validation, and test phases.

There are various types of machine learning algorithms. They may be grouped as un-
supervised or supervised learning based on their characteristics. A key distinction between
unsupervised and supervised learning techniques is the target (label) [8]. For unsupervised
learning, the task is to find the relationships among various unlabeled inputs. For supervised
learning, every training input has a corresponding target (label) and the machine provides
labels for new inputs after sufficient training.

1.2.2 Unsupervised Learning

Unsupervised learning aims to learn a function that represents the underlying structure
from unlabeled input data by reducing amount or dimension of input datasets and tuning a
set of parameters. The main motivation for using unsupervised learning is the labeled data
is difficult to obtain, limited in quantity, and may contain errors. Unsupervised machine
learning models have been used to detect anomalies in networks with non-stationary traf-
fic [16]. The one-class neighbor machines [17] and recursive kernel-based [18] online anomaly
detection algorithms are effective methods for detecting anomalous network traffic [19]. An
online algorithm does not need to “observe” the entire input data and it may provide par-
tial solutions at each iteration. In contrast, all offline algorithm requires apriori to have the
entire data in order to produce the ultimate solution of the problem.

Data clustering is a commonly-used technique of unsupervised learning. Data points
are grouped together based on their closeness in a suitable feature space. The goal of data
clustering is to assign data points with similar traits into the same group. The procedure
of data clustering typically includes feature extraction/selection, pattern representation,
pattern proximity, and clustering. The procedure is illustrated in Fig. 1.3. Feature extraction
technique transforms the original input data and extracts desired features. Feature selection
is the process where the system selects the most effective features from the original dataset.
These techniques may be used in clustering to obtain the most suitable feature sets. Pattern
representation refers to the information extracted or selected from the original dataset such

6

Figure 1.3: Procedure of data clustering with a feedback loop. The result of clustering may
affect feature extraction/selection and the computation of pattern proximity.

as the number of classes, types, and the number of available patterns. Pattern proximity
basically forms the elements in a group when they are placed close to each other.

Distance functions are used to measure distances between pairs of patterns. The mea-
surement of distance should be carefully selected because the feature types and scales vary
in a dataset. The Euclidean distance is the most commonly used metric to evaluate the
proximity of patterns. It is well suited for datasets with isolated clusters. The Euclidean
distance [20] between two data points is the length of the straight line between them. It is
calculated as:

distEuc(xi, xj) =
√

(
∑d

k=1(xi,k − xj,k)2)
= ||xi − xj ||2,

(1.1)

where xi, xj , and xk are data points in a d-dimensional feature space, where xi has coordi-
nates xik, · · · , xid and xj has coordinates xjk, · · · , xjd. Euclidean distance is a special case
that is only suitable for data points in two or three dimensional space. A general form of
Euclidean distance is the Minkowski distance [21]. For higher dimensional feature space d,
Minkowski metric uses the Lp norm that is calculated as:

distp(xi, xj) = p

√
(
∑d

k=1(xi,k − xj,k)p)
= ||xi − xj ||p,

(1.2)

Another well-known metric is Cosine distance. It measures the divergence between a pair
of data points using the cosine of the angle between their locations. The Cosine distance is
well suited for high-dimensional data. Thus, it is widely used in data mining for tasks with
large datasets such as identifying plagiarism. The Cosine distance is calculated as:

distcos(xi, xj) = 1− cos(x̂i, xj)

= 1−
∑d

k=1(xik·xjk)√∑d

k=1(xik)2
√∑d

k=1(xjk)2

(1.3)

7

After the pattern proximity is identified, clustering algorithms are used. It is the key of
the data clustering procedure. Clustering techniques may be divided into several categories.

Hard vs. fuzzy clustering techniques: Clustering techiniques may be categorized as hard
or fuzzy (soft) based on the clustering output. A hard clustering algorithm assigns each
data point to a distinct cluster and each data point may only belong to one cluster. Instead
of assigning data points to distinct clusters, a fuzzy clustering (also called soft clustering)
may assign each data point to multiple clusters. Membership grade is used in the soft
clustering to maintain a list of cluster nodes without inappropriate duplications. The list
continuously changes during the clustering procedure. Based on the membership list, soft
clustering algorithms assign each data point a likelihood to indicate the probability of a
data to be allocated in different clusters. An examples of hard clustering method is shown
in Fig. 1.4. An illustration of fuzzy clustering is shown in Fig. 1.5. Each data point in the
original dataset is assigned a membership degree for each cluster that it may be allocated.
For instance, data point 1 (a) has membership degrees u1,1, u1,2, and u1,3 corresponding to
its potential clusters 1, 2, and 3, respectively. The final clustering result (b) is generated
based on membership degrees of all data points.

Figure 1.4: Illustration of hard clustering in a 2-dimensional space. The vertical and hori-
zontal axis represent two dimensions. Each data point in the original dataset (a) is clustered
to a single cluster (b). Triangle and circle represent features of the dataset.

Hierarchical vs. partitional clustering techniques: The goal of hierarchical clustering is
to group data into a hierarchy or a tree of clusters. Hierarchical clustering algorithms ini-
tially assume that each data point is a cluster. The algorithms then compute the proximity
(similarity between clusters) and combine pairs of the most similar clusters. The procedure

8

Figure 1.5: Shown is an example of fuzzy clustering in a 2-dimensional space. The vertical
and horizontal axis represent two dimensions. Each data point in the original dataset (a)
may belong to multiple clusters (b).

continues until reaching a pre-defined number of clusters. Unlike hierarchical methods, par-
titional clustering techniques do not initialize each point as a cluster. Instead, they randomly
select some of the points as centers of clusters. The center point is called the centroid. Each
data point is randomly assigned to a cluster. The algorithms then compute the proximity
between each center and data point, update the centroid, and re-assign data points to the
cluster with the most similar centroid. The procedure repeats until the number of clusters
reaches a pre-defined threshold. Examples of hierarchical and partitional clustering methods
are shown in Fig. 1.6 and Fig. 1.7.

Among clustering algorithms, k-means, which belongs to the partitional clustering method,
has been widely used in machine learning tasks such as Natural Language Programming [8].
The number of clusters is decided apriori based on mixture models, a hierarchical clustering
algorithm, or a neural network-based method such as the Kohonen map [22].

The ultimate goal of clustering is to find the most appropriate partitioning that fits the
underlying data. To evaluate the performance of clustering algorithms, various clustering
validation techniques have been used [23]. They may be classified into three approaches:
external measurement, internal measurement, and relative criteria. External measurement
evaluates the clustering results based on pre-specified ground truth that is not contained
in the dataset such as structures of underlying dataset and labels. Well known metrics of
external measurement are F-Score, purity, and entropy. Internal measurement validates the

9

Figure 1.6: Example of hierarchical clustering. The vertical axis represents the similarity
between clusters and the horizontal axis represents the combined clusters. Each data point
in the original dataset (a) is considered as a single cluster (b). These clusters are merged
based on their similarity.

Figure 1.7: Example of partitional clustering. The vertical and horizontal axis represent two
dimensions. Several centroid points are selected from the original dataset (a). The algorithm
then calculates proximity of clusters (b). Centroid points and clusters are updated based
on the proximity (right).

10

properties of created clusters in order to determine if the data points are well partitioned.
These properties may be the distance between clusters, intra-cluster distance, or distances
among certain points that belong to different clusters. Metrics of internal measurement [24]
include Bayesian information criterion, Calinski-Harabasz index, and Dunn index. The ma-
jor drawback of external and internal measurement is high computational demands. Thus,
relative criteria [25] is introduced to avoid statistical tests. The approach of relative cri-
teria is to compare a set of defined cluster schemes and select the one that best fits the
pre-specified criterion.

1.2.3 Supervised Learning

Supervised learning encompasses most of the traditional types of machine learning. Unlike
unsupervised learning, supervised learning obtains information and builds predictions from
observed input data. In supervised learning, a labeled dataset with a specific predictive goal
is given, where each observation from the dataset associates with a label corresponding to
the predictive goal. A learning algorithm or classifier trains data based on the observation to
predict the label for new events [8]. An example is detecting email spam, where supervised
learning aims to accurately detect whether a newly received email is spam by training a
large number of past emails labeled as either spam or not spam [26].

We denote a labeled training dataset as:

S = (X1, Y1), (X2, Y2), · · · , (Xn, Yn), Xi ∈ Ω, Yi ∈ {−1, 1}, (1.4)

where the i’th observation Xi is in a feature space Ω. We use m features/dimensions in
this Thesis. Hence, X ∈ Rm and Ω = Rm. The label of Xi is denoted by Yi. For binary
classification problems, we use two labels: -1 for regular and 1 for anomaly. The goal of
supervised learning is to train a function that maps a new observation X ∈ Ω to a label
Y ∈ {−1, 1}:

f(X; θ) 7→ {−1, 1}, (1.5)

where vector θ represents a set of parameters optimized by the classification algorithm to
enhance the accuracy of the classifier.

Most applications employ features for classification tasks. If the function is very simple,
such as a linear function f(X; θ) = θ>X, the classification results may only fulfill simple
tasks by using few parameters. Furthermore, if the training dataset is relatively small, it is
difficult to train a complex function with many parameters due to the risk of overfitting.

Supervised learning is employed for anomaly classification when the input data are la-
beled based on various categories. Well-known supervised learning algorithms include Long
Short-Term Memory (LSTM) [27], [28], Support Vector Machine (SVM) [8], [29], Hidden
Markov Model (HMM) [8], Naïve Bayes [30], Decision Tree [31], and Extreme Learning
Machine (ELM) [32], [33]. The SVM algorithms often achieve better performance compared

11

to other machine learning algorithms albeit with high computational complexity. LSTM is
trained using gradient-based learning algorithms implemented as a recurrent neural network.
It outperforms other sequence learning algorithms because of its ability to learn long-term
dependencies from past experiences. No single learning algorithm performs the best for all
given classification tasks [34]. Hence, an appropriate algorithm needs to be selected by eval-
uating its performance based on various parameters. Statistical methods, data mining, and
machine learning have been employed to evaluate and compare various algorithms [35], [36].

1.3 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are artificial neural network models that enable net-
works to deal with sequence recognition, pattern classification, and temporal prediction
tasks with sequential inputs and outputs by performing temporal processing and sequence
learning [37]. Basic RNNs consist of neuron-like nodes that directly connects to any other
node. An RNN contains three types of elements: input node, hidden state, and output node.
The input node receives input data from various sources and passes the information to the
hidden state. The hidden state may be considered as the memory of the network. The en-
tire memory calculated from previous time steps is reserved in the current hidden state. In
practice, a traditional RNN may only capture information from limited previous time steps.
The output node shows the prediction result that is calculated based on the hidden state.
Across the entire learning procedure, a RNN shares the same parameters such as weights
for input node, hidden state, and output node, respectively. It implies that the network is
performing the same at each time step with different inputs, which reduces the total num-
ber of parameters that need to be learned. Although RNNs perform the same computation
for each input element, various values of hidden states lead to different outcomes of the
outputs. A typical architecture of an RNN is shown in Fig. 1.8.

At time t, the hidden state ht is calculated based on the input xt at the current time
and the previous hidden state ht−1:

ht = f(Wixt +Whht−1 + bh), (1.6)

where f denotes an activation function that updates at each time step t = 1, 2, · · · . The
function is typically a nonlinear function such as tanh or Rectified Linear Unit (ReLU). Wi

is the matrix of conventional weights between the input and the hidden layers while Wh

is the matrix of recurrent weights between the hidden layers at adjacent time steps. The
vector bh is a bias parameter that is added to the hidden layers. The bias allows the hidden
layer to generalize beyond the original dataset.

The output at time t is calculated as:

ot = f(Woht + bo), (1.7)

12

Figure 1.8: Example of a recurrent neural network (RNN). A node represents a unit. An
RNN is unrolled by expanding its computation graph to a directed acyclic graph. Shown is
an expanded RNN at times t− 1, t, and t+ 1.

whereWo denotes the matrix of conventional weights between the hidden and output layers.
The bias parameter is denoted by bo.

One of the most successful RNN architectures for sequence learning tasks is Long Short-
Term Memory (LSTM) [28]. It introduces the memory cell which replaces traditional nodes
in the hidden layer. The memory cells enable neural networks to overcome the problem
of vanishing gradients that was encountered by earlier RNNs. Another successful RNN is
Bidirectional Recurrent Neural Network (BRNN) [38]. Unlike the traditional RNNs that
only calculate outputs based on the past memory, BRNN involves both the past and the
future information to predict the output sequence. BRNN has been proved to be well-suited
for sequence labeling tasks in natural language processing.

1.4 Motivation

The Internet is a critical asset of information and communication technology. Border Gate-
way Protocol (BGP) plays an essential role in routing data between Autonomous Systems
(ASes) where an AS is a collection of BGP peers administrated by a single administrative
domain [39]. The main function of BGP is to select the best routes between ASes based on
routing algorithms and network policies enforced by network administrators. BGP anomalies
may be caused by changes in network topologies, updated AS policies, or router misconfig-
urations. BGP anomalies affect Internet servers and hosts and are manifested by anomalous

13

traffic behavior. Hence, detecting such network anomalies is of great interest to researchers
and practitioners.

1.5 Related Work

Detailed comparison of various network intrusion techniques has been reported in the litera-
ture [40]. Demands for Internet services have been steadily increasing and anomalous events
and their effects have dire economic consequences. Determining the anomalous events and
their causes is an important step in assessing loss of data by anomalous routing. Hence, it
is important to classify these anomalous events and prevent their effects on BGP.

Anomaly detection techniques have been applied in communication networks [19]. These
techniques are employed to detect BGP anomalies such as intrusion attacks, worms, and
distributed denial of service attacks (DDoS) [41], [42] that frequently affect the Internet
and its applications. BGP data have been analyzed to identify anomalous events and design
tools that have been used in anomaly predictions [42–47]. Network anomalies are detected
by analyzing collected traffic data and generating various classification models. A variety
of techniques have been proposed to detect BGP anomalies.

Early approaches include developing traffic models using statistical signal processing
techniques where a baseline profile of network regular operation is developed based on a
parametric model of traffic behavior and a large collection of traffic samples to account
for regular (anomaly-free) cases [43]. Anomalies may then be detected as sudden changes
in the mean values of variables describing the baseline model. However, it is infeasible to
acquire datasets that include all possible cases. In a network with quasi-stationary traffic,
statistical signal processing methods have been employed to detect anomalies as correlated
abrupt changes in network traffic [44].

The main focus of other approaches also proposed in the past is developing models for
classification of anomalies. The accuracy of a classifier depends on the extracted features,
combination of selected features, and underlying models. Recent research reports describe a
number of applicable classification techniques [45–47]. One of the most common approaches
is based on a statistical pattern recognition model implemented as an anomaly classifier and
a detector [45]. Its main disadvantage is the difficulty in estimating distributions of higher di-
mensions. For example, a Bayesian detection algorithm was designed to identify unexpected
route mis-configurations as statistical anomalies [46]. An instance-learning framework em-
ployed wavelets to systematically identify anomalous BGP route advertisements [47]. Other
proposed techniques are rule-based methods that have been employed for detecting BGP
anomalies. An example is the Internet Routing Forensics (IRF) that was applied to classify
anomaly events [48]. However, rule-based techniques are not adaptable learning mecha-
nisms. They are slow, have high degree of computational complexity, and require a priority
knowledge of network conditions.

14

Recent trends in designing BGP anomaly detection systems more frequently rely on
machine learning techniques. Known classifiers are tested for their ability to reliably detect
network anomalies in datasets that include known BGP anomalies. A survey of various meth-
ods, systems, and tools used for detecting network anomalies reviews a variety of existing
approaches [40]. The authors have examined recent techniques to detect network anoma-
lies and discussed detection strategy and employed datasets, including performance metrics
for evaluating detection method and description of various datasets and their taxonomy.
They also identified issues and challenges in developing new anomaly detection methods
and systems.

Various machine learning techniques to detect cyber threats have been reported in the
literature. One-class SVM classifier with a modified kernel function was employed [49] to
detect anomalies in IP records. However, unlike the approach in our studies, the classifier
is unable to indicate the specific type of anomalies. Stacked LSTM networks [50] with sev-
eral fully connected LSTM layers have been used for anomaly detection in time series. The
method was applied to detect anomalous regions for medical electrocardiograms, space shut-
tle Marotta’s valve time series , power demand, and engine sensors that measure dependent
variables such as temperature and torque. The analyzed data contain both long-term and
short-term temporal dependencies. Another example is the multi-scale LSTM [51] that was
used to detect BGP anomalies using accuracy as a performance measure. In the preprocess-
ing phase, data were compressed using various time scales. An optimal size of the sliding
window was then used to determine time scale in order to achieve the best performance
of the classifier. Multiple HMM classifiers [52] were employed to detect Hypertext Trans-
fer Protocol (HTTP) payload-based anomalies for various Web applications. Authors first
treated payload as a sequence of bytes and then extracted features using a sliding window
to reduce the computational complexity. HMM classifiers were then combined to classify
network intrusions. It was shown [53] that the Naïve Bayes classifier performs well for cate-
gorizing the Internet traffic emanating from various applications. Weighted ELM [54] deals
with unbalanced data by assigning relatively larger weights to the input data arising from
a minority class. Signature-based and statistics-based detection methods also have been
proposed [55].

1.6 Research Contribution

In this Thesis, we consider BGP update messages because they contain the information
about the protocol status and configurations. BGP update messages are extracted from the
collected data during the time periods when the Internet experienced known anomalies.
However, redundancies in the collected data may affect the performance of classification
methods. Feature extractions are used to select a subset of features from the original feature
space and, thus, reduce redundancy among features and improve the classification accuracy.

15

Various methods for feature extraction such as principal component analysis project the
original data points onto a lower dimensional space. However, features transformed by
feature extraction lose their original physical meaning. We extract AS-path and volume BGP
features based on the attributes of BGP update messages. We compare the performance of
anomalies prediction use both unbalanced and balanced datasets.

We view anomaly detection as a classification problem of assigning an “anomaly” or
“regular” label to a data point. We apply Long Short-Term Memory machine learning
techniques to develop classification models for detecting BGP anomalies. These models
are trained and tested using various datasets that consist extracted features. They are
also used to evaluate the effectiveness of the extracted features. We improve classification
results emanating from our previous studies [12,57,58] by carefully processing the considered
datasets and selecting better parameters.

1.7 Organization of the Thesis

The Thesis is organized as follows: We first briefly describe BGP, the effect of network
anomalies and approaches for their detection. In Chapter 2, we provide details of vari-
ous BGP anomalies that have been considered in this Thesis as well as the description of
datasets and the data processing. Various approaches to extract features from BGP up-
date messages are described in Chapter 3. Performance metrics and the Long Short-Term
Memory algorithm are introduced in Chapter 4. We introduce various classification algo-
rithms and compare their classification results with the LSTM algorithm in Chapter 5. The
challenges of detecting BGP anomalies as well as advantages and shortcomings of various
classification algorithms are offered in Chapter 6. We describe the future work and conclude
in Chapter 7. The list of references is provided in the Reference section.

16

Chapter 2

Border Gateway Protocol Datasets

2.1 Examples of BGP Anomalies

Anomalous events considered in this Chapter are worms. They are manifested by sharp and
sustained increases in the number of announcement or withdrawal messages exchanged by
BGP routers. Volume and AS-path features are collected over one-minute time intervals dur-
ing five-day periods for well known anomalous Internet events. While the available datasets
contain data over much longer periods of time, we have selected for our analysis a five-day
period to minimize storage and computational requirements. Furthermore, selecting longer
periods of regular data would make datasets ever more unbalanced. Several methods that
we surveyed offer better performance when dealing with balanced datasets. Details includ-
ing dates of the events, remote route collectors (RRC) that acquired data using Routing
Information Service (RIS), and observed peers are given in Table 2.1. For example, Slam-
mer event occurred on January 25, 2003 and lasted almost 16 hours. Hence, BGP update
messages collected between January 23, 2003 and January 27, 2003 are selected as samples
for feature extraction.

Table 2.1: Examples of known BGP Internet worms.

Dataset Class Date Duration
Beginning of the event End of the event (min)

Slammer Anomaly 25.01.2003 at 5:31 GMT 25.01.2003 at 19:59 GMT 869
Nimda Anomaly 18.09.2001 at 13:19 GMT 20.09.2001 at 23:59 GMT 3,521
Code Red I Anomaly 19.07.2001 at 13:20 GMT 19.07.2001 at 23:19 GMT 600

Records of three BGP anomalies and regular RIPE traffic are shown in Fig. 2.1–Fig. 2.4.
The effect of Slammer worm on volume and AS-path features is shown in Fig. 2.5 and Fig. 2.6.
We consider Slammer [59], Nimda [60], and Code Red I [61] BGP anomalous events, other
Internet anomalies are also listed in table 2.2.

Slammer [59]: The Structured Query Language (SQL) Slammer worm attacked Mi-
crosoft SQL servers on January 25, 2003 [59]. Microsoft SQL servers were infected through

17

Figure 2.1: Number of BGP announcements occurred between January 23, 2003 and Jan-
uary 28, 2003. The announcements occurred during Slammer anomaly are labeled as the
“anomaly” class while others belong to the “regular” class.

a small piece of code that generated IP addresses at random. Furthermore, code replicated
itself by infecting new machines through randomly generated targets. If the destination IP
address was a Microsoft SQL server or a user’s PC with the Microsoft SQL Server Data
Engine (MSDE) installed, the server became infected and began infecting other servers. The
number of infected machines doubled approximately every nine seconds. As a result, the
update messages consumed most of the routers’ bandwidth, which in turn slowed down the
routers and, in some cases, caused the routers to crash. Single infected machines have re-
ported additional traffic of 50 Mbps [62] as a consequence of increased generation of update
messages.

Nimda [60]: The Nimda worm [60] exploited vulnerabilities in the Microsoft Internet
Information Services (IIS) web servers for the Internet Explorer 5 on September 18, 2001.
It propagated fast through email messages, web browsers, and file systems. The worm
propagated by sending an infected attachment that was automatically downloaded after
viewing the email messages. A user could also download it from the website or access an

18

Figure 2.2: Number of BGP announcements occurred between September 16, 2001 and
September 21, 2001. The number of announcements issued during Nimda anomaly are
labeled as the “anomaly” class while others belong to the “regular” class.

infected file through the network. The worm modified the content of the web document file
in the infected hosts and copied itself in local host directories.

Code Red I [61]: Although the Code Red I worm attacked Microsoft IIS web servers
earlier, the peak of infected computers was observed on July 19, 2001. The worm affected
approximately half a million IP addresses a day. It took advantage of vulnerability in the
Internet Information Services (IIS) indexing software. The worm replicated itself by exploit-
ing weakness of the IIS servers and, unlike the Slammer worm, Code Red I searched for
vulnerable servers to infect. It triggered a buffer overflow in the infected hosts by writing to
the buffers without checking their limits. Rate of infection was doubling every 37 minutes.

Panix domain hijack: Panix, the oldest commercial ISP in New York state, was hijacked
on January 22, 2006. Its services were unreachable from the greater part of the Internet. Con
Edison (AS 27506) advertised routes that it did not own at the time. Panix was previously a
customer of Con Edison, which was once authorized to offer advertised routes. Even though
AS 27506 originated improper routes, major downstream ISPs did not properly configure
filters and propagated those routes, leading to excess number of update messages.

19

Figure 2.3: Number of BGP announcements issued from July 17, 2001 to July 22, 2001.
The number of announcements occurred during Code Red I anomaly are labeled as the
“anomaly” class while others belong to the “regular” class.

Table 2.2: Internet anomalous events.

Event Date RRC Peers
Panix domain hijack Jan. 2006 Route Views AS 12956, AS 6762, AS 6939,

AS 3549
AS 3356/AS 714 de-peering Oct. 2005 RIS 01 AS 13237, AS 8342, AS 5511,

AS16034
Moscow power blackout May 2005 RIS 05 AS 1853, AS 12793, AS 13237
AS 9121 routing table leak Dec. 2004 RIS 05 AS 1853, AS 12793, AS 13237
AS-path error Oct. 2001 RIS 03 AS 3257, AS 3333, AS 6762,

AS 9057
AS 3561 improper filtering Apr. 2001 RIS 03 AS 3257, AS 3333, AS 286

De-Peering: The AS 3356/AS 714 De-Peering event occurred on October 5, 2005. Even
though the Level 3 Communications (AS 3356) notified the Cogent Communications (AS
714) two months in advance of de-peering, the event created reachability problems for many
Internet locations. Mostly affected were single-homed customers of Cogent (approximately

20

Figure 2.4: Number of BGP announcements occurred between December 18, 2001 and De-
cember 22, 2001. Shown is an example of BGP announcements occurred during regular
traffic. The number of announcements belong to the “regular” class.

2, 300 prefixes) and Level 3 Communications (approximately 5, 000 prefixes). De-Peering
resulted in partitioning of approximately 4 % of prefixes in the global routing table.

Moscow power blackout: The blackout occurred on May 25, 2005 and lasted several hours.
The Moscow Internet exchange was shut down during the power outage. Routing instabilities
were observed due to loss of connectivity of several ISPs peering at this exchange. This
effect was apparent at the RIS remote route collector in Vienna (rrc05) through a surge in
announcement messages arriving from peer AS 12793.

AS 9121 routing table leak: It occurred on December 24, 2004 when AS 9121 announced
to peers that it could be used to reach almost 70% of all prefixes (over 106,000). As a
consequence, numerous networks had either misdirected or lost their traffic. The AS 9121
began announcing prefixes to peers around 9:20 GMT and the event lasted until shortly after
10:00 GMT. It continued to announce bad prefixes throughout the day. The announcement
rate reached the second peak at 19:47 GMT.

AS 3561 improper filtering: This was a BGP mis-configuration error that occurred on
April 6, 2001. AS 3561 allowed improper route announcements from its downstream cus-

21

tomers, which created connectivity disruptions. Surge of announcement messages originating
from peer AS 3257 was observed at the RIS rrc03.

AS-path error : The AS-path error occurred on October 7, 2001. It was caused by an
abnormal AS-path (AS 3300, AS 64603, AS 2008) that contained private AS 64603 that
should not have been included in the path. At the time, AS 3300 and AS 2008 belonged
to INFONET Europe and INFONET USA, respectively. The path was distributed to the
network via mis-configured routers and caused the leak of the private AS numbers.

2.2 Analyzed BGP Datasets

The Internet routing data used in this Thesis to detect BGP anomalies is acquired from
projects that provide valuable information to networking research: the Route Views project
[63] at the University of Oregon, USA and the Routing Information Service (RIS) project
initiated in 2001 by the Réseaux IP Européens (RIPE) Network Coordination Centre
(NCC) [64]. Both projects collect and store chronological routing data that offer a unique
view of the Internet topology by establishing a BGP peering agreements with different
ISP’s around the world. The archives include recent data and hitorical data dating back
to a decade. The Route Views and RIPE BGP update messages are publicly available to
the research community. The regular BCNET dataset is collected at the BCNET location
in Vancouver, British Columbia, Canada [65], [66]. We use RIPE BGP update messages
originated from the AS 513 (route collector rrc04) member of the CERN Internet Exchange
Point (CIXP). Only data collected during the periods of Internet anomalies are considered.

The Route Views project collects BGP routing tables from multiple geographically dis-
tributed BGP Cisco routers and Zebra servers every two hours. At the time of BGP anoma-
lies considered in this study, two Cisco routers and two Zebra servers were located at the
University of Oregon, USA. The remaining five Zebra servers are located at Equinix-USA,
ISC-USA, KIXP-Kenya, LINX-Great Britain, and DIXIE-Japan [63]. Most participating
ASes in the Route Views project are located in North America.

The RIPE NCC began collecting and storing Internet routing data in 2001 through
the RIS project RIPE. The data were exported every fifteen minutes until July 2003. The
interval between consecutive exports was later decreased to five minutes. BGP update mes-
sages are collected by the RRCs and stored in the multi-threaded routing toolkit (MRT)
binary format [67]. The Internet Engineering Task Force (IETF) [68] introduced MRT to
export routing protocol messages, state changes, and content of the routing information
base (RIB). We converted BGP update messages from MRT into American Standard Code
for Information Interchange (ASCII) format by using the libBGPdump library [69] on a
Linux platform. LibBGPdump is a C library maintained by the RIPE NCC and it is used
to analyze dump files, which are in MRT format.

22

BGPMon [70] is another tool for collecting BGP. It has been developed within the
Oregon Route Views project. In addition to downloading data from the site, a user may
also open a TCP connection and receive real-time data of both BGP update messages and
routing tables. The advantage of using real-time data is that it decreases the delay caused
by network propagation. The archived data may be delayed by several hours. BGPmon
collects the data in the eXtensible Markup Language (XML) format that is self-descriptive.
The format is similar to HyperText Markup Language (HTML). In the message, it includes
both binary attributes and ASCII text. Thus, users could easily edit local tags and share the
message. An example of the local tag is the timestamp that a BGP message should include.
A Unix timestamp is preferred by MRT format while a human friendly listing is preferred by
users. Some applications may require a finer granularity of milliseconds. The XML format
includes all three types (ASCII, MRT, and combined) of time display. A user may select
the suitable <TIME> tag in the message according to the requirement of applications.

2.2.1 Processing of the Collected Data

BGP update messages are collected during the time period when the Internet experienced
anomalies. Datasets are concatenated to increase the size of training datasets and, thus, im-
prove the classification results. Anomaly datasets and their concatenations used for training
and testing are shown in Table 2.3. Slammer, Nimda, and Code Red I anomalies are used to
create three training and three test datasets. Each training dataset contains two anomalies
with the corresponding test dataset contains the remaining anomaly data.

Table 2.3: Training and test datasets.

Training dataset Anomalies Test dataset
1 Slammer and Nimda Code Red I
2 Slammer and Code Red I Nimda
3 Nimda and Code Red I Slammer

For Slammer and Code Red I anomalies, we consider a five-day period: the days of the
attack (anomalous data points) and two days prior (regular data points) and two days after
the attack (regular data points). Attacks of Slammer and Code Red I lasted for 869 and 600
minutes, respectively. The duration of regular data stream within two days before and after
the Slammer and Code Red I are 6,331 and 6,600 minutes, respectively. The Nimda dataset
is an exception because the attack lasted for two and half days (3,521 minutes). Hence,
we only use two and half days prior to the event as regular data points (3,679 minutes).
Each dataset consists of 14,400 (2× 7, 200) data points represented by 14, 400× 37 matrix
that corresponds to 37 features. In addition to anomalous test datasets, we also use regular
datasets collected from RIPE [64] and BCNET [71].

23

Figure 2.5: BGP announcements occurred during the Slammer worm attack: number of
duplicate announcements (top) and number of EGP packets (bottom). The red streams
(light grey) are anomalous data points and the blue (dark grey) ones are regular data
points.

24

Figure 2.6: BGP announcements occurred during the Slammer worm attack: maximum AS-
path length (top) and maximum AS-path edit distance (bottom). The red streams (light
grey) are anomalous data points and the blue (dark grey) ones are regular data points.

25

Chapter 3

Extraction of Features from BGP
Update Messages

Feature extraction is the first step in the classification process. We used a software tool
(written in C#) to parse the ASCII files and extract statistics related to the desired features.
The AS-path is a BGP update message attribute that enables the protocol to select the
best path for routing packets. It indicates a path that a packet may traverse to reach its
destination. If a feature is derived from the AS-path attribute, it is categorized as an AS-path
feature. Otherwise, it is categorized as a volume feature. There are three types of features:
continuous, categorical, and binary. Extracted AS-path and volume features are shown in
Table 3.1 [72].

Definitions of the extracted features are listed in Table 3.2. BGP update messages are
either announcement or withdrawal messages for the NLRI prefixes. The NLRI prefixes that
have identical BGP attributes are encapsulated and sent in one BGP packet [73]. Hence,
a BGP packet may contain more than one announced or withdrawn NLRI prefixes. The
average and the maximum number of AS peers are used for calculating AS-path lengths.
Duplicate announcements are the BGP update packets that have identical NLRI prefixes
and the AS-path attributes. Implicit withdrawals are the BGP announcements with dis-
trict AS-paths for already announced NLRI prefixes [74]. The edit distance is a metric to
quantify the similarity of strings. A router uses edit distance to measure the difference be-
tween two AS paths. The edit distance between two AS-path attributes is the minimum
number of deletions, insertions, or substitutions that need to be executed to match the two
attributes [45]. For example, the edit distance between AS-path 513 940 and AS-path 513
4567 1318 is two because one insertion and one substitution are sufficient to match the
two AS-paths. The more frequent changes in an AS path, the larger is the edit distance,
which makes the routing update less trustworthy [75]. The maximum AS-path length and
the maximum edit distance are used to count Features 14 to 33. We also consider Features
34, 35, and 36 based on distinct values of the origin attribute that specifies the origin of a
BGP update packet and may assume three values: IGP, EGP, and incomplete. Even though

26

Table 3.1: List of features extracted from BGP update messages.

Feature Name Category
1 Number of announcements volume
2 Number of withdrawals volume
3 Number of announced NLRI prefixes volume
4 Number of withdrawn NLRI prefixes volume
5 Average AS-path length AS-path
6 Maximum AS-path length AS-path
7 Average unique AS-path length AS-path
8 Number of duplicate announcements volume
9 Number of duplicate withdrawals volume
10 Number of implicit withdrawals volume
11 Average edit distance AS-path
12 Maximum edit distance AS-path
13 Inter-arrival time volume

14-24 Maximum edit distance = n, AS-path
where n = (7, ..., 17)

25-33 Maximum AS-path length = n, AS-path
where n = (7, ..., 15)

34 Number of Interior Gateway Protocol (IGP) packets volume
35 Number of Exterior Gateway Protocol (EGP) packets volume
36 Number of incomplete packets volume
37 Packet size (B) volume

the EGP protocol is the predecessor of BGP, EGP packets still appear in traffic traces con-
taining BGP updates messages. Under a worm attack, BGP traces contained large volume
of EGP packets. Furthermore, incomplete update messages imply that the announced NLRI
prefixes are generated from unknown sources. They usually originate from BGP redistribu-
tion configurations [73]. Examples are shown in Table 3.3 while various distributions during
the Slammer worm are shown in Fig. 3.1 and Fig. 3.2. During the Slammer worm attack,
the number of autonomous systems included in the maximum AS-path length ranges from
6 to 24. The most frequent number of ASes in an AS-path is 12, which occurs more than
1,200 times. The edit distance reflects the changes in AS paths. During the Slammer worm,
the paths change frequently.

Performance of the BGP protocol is based on trust among BGP peers because they
assume that the interchanged announcements are accurate and reliable. This trust relation-
ship is vulnerable during BGP anomalies. For example, during BGP hijacks, a BGP peer
may announce unauthorized prefixes that indicate to other peers that it is the originating
peer. These false announcements propagate across the Internet to other BGP peers and,
hence, affect the number of BGP announcements (updates and withdrawals) worldwide.

The top selected AS-path features appear on the boundaries of the distributions. This
indicates that during BGP anomalies, the edit distance and AS-path length of the BGP

27

Table 3.2: Definition of volume and AS-path features extracted from BGP update messages.

Feature Name Definition
1 Number of announcements Routes available for delivery of data
2 Number of withdrawals Routes no longer reachable
3/4 Number of announced/withdrawn BGP update messages that have

NLRI prefixes type field set to announcement/withdrawal
5/6/7 Average/maximum/average unique Various AS-path lengths

AS-path length
8/9 Number of duplicate Duplicate BGP update messages with

announcements/withdrawals type field set to announcement/withdrawal
10 Number of implicit withdrawals BGP update messages with type field

set to announcement and different AS-path
attribute for already announced NLRI prefixes

11/12 Average/maximum edit distance Average/maximum of edit distances of messages
34/35/36 Number of IGP, EGP or, BGP update messages generated by IGP, EGP,

incomplete packets or unknown sources

Table 3.3: Example of BGP features.

Time Definition BGP update type NLRI AS-path
t0 Announcement Announcement 199.60.12.130 13455 614
t1 Withdrawal Withdrawal 199.60.12.130 13455 614
t2 Duplicate

announcement
Announcement 199.60.12.130 13455 614

t3 Implicit
withdrawal

Announcement 199.60.12.130 16180 614

t4 Duplicate
withdrawal

Withdrawal 199.60.12.130 13455 614

announcements tend to have a very high or a very low value and, hence, large variance.
This implies that during an anomaly attack, AS-path features are the distribution outliers.
For example, approximately 58% of the AS-path features are larger than the distribution
mean. Large length of the AS-path BGP attribute implies that the packet is routed to its
destination via a longer path, which causes large routing delays during BGP anomalies.
Similarly, very short lengths of AS-path attributes occur during BGP hijacks [6] when the
new (false) originator usually gains a preferred or shorter path to the destination.

28

Figure 3.1: Distribution of the maximum AS-path length (top) and the maximum edit
distance (bottom) collected during the Slammer worm. Shown maximum AS-paths contains
up to 24 ASes, and the paths change frequently.

29

Figure 3.2: Distribution of the number of BGP announcements (top) and withdrawals (bot-
tom) for the Code Red I worm.

30

Chapter 4

Performance Metrics and the Long
Short-Term Memory Neural
Network

Classification aims to identify various classes in a dataset. Each category in the classifi-
cation domain is called a class. A classifier labels the data points as either anomaly or
regular events. We consider datasets of known network anomalies and test the classifier’s
ability to reliably identify the anomaly class. Training and test datasets usually contain
fewer anomalous samples compared to the regular data points. Classifier models are usually
trained using datasets containing limited number of anomalies and are then applied on a
test dataset. Performance of a classification model depends on a model’s ability to correctly
predict classes. Classifiers are evaluated based on various metrics such as accuracy, F-Score,
precision, and sensitivity.

4.1 Introduction of Classification Algorithm

Most classification algorithms minimize the number of incorrectly predicted class labels
while ignoring the difference between types of misclassified labels by assuming that all mis-
classifications have equal costs. The assumption that all misclassification types are equally
costly is inaccurate in many application domains. In the case of BGP anomaly detection,
incorrectly classifying an anomalous sample may be more costly than incorrect classification
of a regular sample. As a result, a classifier that is trained using an unbalanced dataset may
successfully classify the majority class with a good accuracy while being unable to accurately
classify the minority class. A dataset is unbalanced when at least one class is represented
by a smaller number of training samples compared to other classes. The Slammer and Code
Red I anomaly datasets that have been used in this Thesis are unbalanced. In our studies,
out of 7,200 samples, Slammer and Code Red I contain 869 and 600 anomalous events,
respectively. The majority of samples are regular data. Only the Nimda dataset containing
3,521 anomalous events is more balanced compared to Slammer and Code Red I.

31

Various approaches have been proposed to achieve accurate classification results when
dealing with unbalanced datasets. Examples include assigning a weight to each class or learn-
ing from one class (recognition-based) rather than two classes (discrimination-based) [76].
The weighted SVMs [29] assign distinct weights to data samples so that the training algo-
rithm learns the decision surface according to the relative importance of data points in the
training dataset. The fuzzy SVM [77], a version of weighted SVM, applies a fuzzy mem-
bership to each input sample and reformulates the SVM so that input points contribute
differently to the learning decision surface. In this Thesis, we create the balanced datasets
by randomly reducing the number of regular data points. Each balanced dataset contains
the same number of regular and anomalous data samples.

4.2 Performance Metrics

The confusion matrix shown in Table 4.1 is used to evaluate performance of classification
algorithms. True positive (TP) and False negative (FN) are the number of anomalous data
points that are classified as anomaly and regular, respectively. False positive (FP) and True
negative (TN) are the number of regular training data points that are classified as anomaly
and regular, respectively.

Table 4.1: Confusion matrix.

Predicted class
Actual class Anomaly (positive) Regular (negative)
Anomaly (positive) TP FN
Regular (negative) FP TN

Variety of performance measures are calculated to evaluate classification algorithms,
such as accuracy and F-Score:

accuracy = TP + TN

TP + TN + FP + FN
(4.1)

F-Score = 2× precision× sensitivity
precision + sensitivity , (4.2)

where

precision = TP

TP + FP
(4.3)

sensitivity (recall) = TP

TP + FN
. (4.4)

As a performance measure, accuracy reflects the true prediction over the entire dataset.
It is commonly used in evaluating the classification performance. Accuracy assumes equal
cost for misclassification and relatively uniform distributions of classes. It treats the regular

32

data points to be as important as the anomalous points. Hence, it may be an inadequate
measure when comparing performance of classifiers [78] and misleading in the case of unbal-
anced datasets. The F-Score, which considers the false predictions, is important for anomaly
detection because it is a harmonic mean of the precision and sensitivity, which measure the
discriminating ability of the classifier to identify classified and misclassified anomalies. Preci-
sion identifies true anomalies among all data points that are correctly classified as anomalies.
Sensitivity measures the ability of the model to identify correctly predicted anomalies.

As an example, consider a dataset that contains 900 regular and 100 anomalous data
points. If a classifier identifies these 1,000 data points as regular, its accuracy is 90%, which
seems high at the first glance. However, no anomalous data point is correctly classified and,
hence, the F-Score is zero. Hence, the F-Score is often used to compare performance of
classification models. It reflects the success of detecting anomalies rather than detecting
either anomalies or regular data points. In this Thesis, we use both accuracy and F-Score
to compare various classification algorithms.

4.3 Long Short-Term Memory (LSTM) Neural Network

A typical recurrent neural network (RNN) has a short-term memory because they use feed-
back connections to store recent input instances in the form of activations. However, the
weights in RNNs have long-term memory because they change slowly during the training
phase [28]. Traditional RNNs are designed to store inputs in order to predict the out-
puts [79]. However, they perform poorly when they need to bridge segments of information
that have long-time gaps. As an alternative to traditional RNN architecture, LSTM is an
intermediate model that enables short-term memory to last for a long period of time. The
activations of the LSTM network have short-term memory while the weights correspond to
long-term memory. Unlike traditional RNNs, LSTM networks are capable of concatenating
time intervals to form a continuous memory [28]. LSTM, in conjunction with an appropriate
gradient-based learning algorithm, was introduced to overcome long-term dependency and
vanishing gradient problems [80].

4.3.1 Vanishing Gradient Problem

RNNs have simple structures and are effective for classification tasks. However, they are
hard to train in practice due to the vanishing gradient problem, where the gradient becomes
vanishingly small. The network may stop updating the values of weights and, thus, may stop
the neural network from further training.

A simple example is a RNN with an input node, a hidden layer, and an output node as
shown in Fig. 4.1. The hidden layer is associated with a weight, and the output is a function
of its weight and the input:

yyy = f(WWWxxx). (4.5)

33

Figure 4.1: Shown is an example of a simple RNN with an input layer, a hidden layer, and
an output layer. The loss is calculated using the prediction value and the target value.

At the end of the training, we calculate the difference between the prediction value and the
actual target value named loss (error). We denote the actual target vector as ŷ̂ŷy. The cross
entropy loss is calculated as:

L(yyy, ŷ̂ŷy) = −yyy log ŷ̂ŷy. (4.6)

The network then employs backpropagation in order to adjust weights and minimize the
error. First, the chain rule is applied to calculate the gradient of the loss with respect toWWW :

∂LLL

∂xxx
= ∂LLL

∂f(yyy) ·
∂f(yyy)
∂LLL

= ∂LLL

∂f(yyy) · f
′(yyy) ·WWW. (4.7)

In a typical RNN, weights are usually initialized based on the Gaussian distribution
with mean zero and standard deviation one, which implies that WWW < 1 in most cases. The
activation function f(yyy) is usually an S-shaped sigmoid function with returned value [0,1]
defined as:

σ(xxx) = 1
1 + e−x

, (4.8)

where xxx is the input vector. The derivative of sigmoid function is always smaller than 0.25.
Thus, the result of the gradient will be rather small and may even “vanish.” In the opposite
scenario, if the weight happens to be a large value, then the gradient will “explode.”

The selection of activation functions is critical to prevent vanishing gradient. For exam-
ple, in the case of the rectified linear unit (ReLU) function is defined as:

R(xxx) = max(0, x),
R(xxx) = 0 when x < 0,
R(xxx) = x when x > 0.

(4.9)

34

The derivative of ReLU function is one when x > 0. Therefore, ReLU creates a more stable
model compared to Sigmoid function.

4.3.2 LSTM Module

The LSTM module that is considered in this Thesis consists of an input layer, a single
hidden LSTM layer, and an output layer. The input layer consists of 37 nodes (each node
corresponds to a feature) that serve as inputs to the LSTM layer, which consists of self-
connected LSTM cells called the “memory blocks” [81]. An LSTM module may contain
multiple LSTM cells. The nth LSTM cell is composed of an input node xt, a multiplicative
input gate int, internal state ct, a forget gate fnt, and a multiplicative output gate fnt.
An LSTM module is shown in Fig. 4.2 [82]. Components of an LSTM cell are described as
follows [28], [81]:

Figure 4.2: Repeating module for the LSTM neural network. Shown are the input layer,
LSTM layer with one LSTM cell, and output layer.

• Input node gt contains information of current input instances and cell states from other
LSTM cells in the network. This information is then combined and passed through
the input node with a tanh activation function. Thus, the generated value of the input
node is [-1,1].

• Input gate int connects the input node with the internal state. Inputs to the input
gate and to the input node are independent. Similarly with traditional RNNs, inputs

35

include the current input data points and hidden states from the previous time step.
The input gate controls the information that will be updated in the LSTM cell by
multiplying the generated value of the input node. The input gate applies a linear
function to the input data, followed by a logistic activation function (typically a sig-
moid function) applied to output a value [0,1]. The information flows to the internal
state if the value is 1.

• Internal state ct is placed at the heart of each memory cell. It has an activation function
such as the tanh function and a self-connected recurrent loop. The loop is modulated
by the forget gate. The weight of the loop is [0,1], which is equal to the value of the
forget gate. The internal state is the key to solve vanishing gradient problems.

• Forget gate fnt determines whether to remember or discard the memories of the in-
ternal state [83]. Similar as the input gate, the forget gate applies a linear function
to its inputs (including the previous hidden state and the new input) and uses a lo-
gistic activation function to generate value 1 to keep the memory or 0 to discard the
information.

• Output gate ont works as a filter to clear irrelevant memories that are currently stored
in the cell and, thus, controls the output. It has the same form as the input and forget
gates and generates a value [0,1]. Whether the information may pass to the rest of
the network is determined by the value of the internal state that multiplies the value
generated by the output gate. Typically, the internal state runs a tanh activation
function and outputs values [-1,1]. We used ReLU activation function in this Thesis
because ReLU has a greater dynamic range and, thus, it is easier to train and to
converge. If the output value is 1, the information may pass through the network.

At time t, the input node gt, input gate int, forget gate fnt, and output gate ont in
LSTM cell n are calculated as:

gntgntgnt = tanh(UgnUgnUgnht−1ht−1ht−1 +WgWgWgxtxtxt + bgnbgnbgn) (4.10)

intintint = σ(UinUinUinht−1ht−1ht−1 +WiWiWixtxtxt + binbinbin) (4.11)

fntfntfnt = σ(Ufn
UfnUfnht−1ht−1ht−1 +WfWfWfxtxtxt + bfn

bfnbfn) (4.12)

ontontont = σ(UonUonUonht−1ht−1ht−1 +WoWoWoxtxtxt + bonbonbon), (4.13)

where the sigmoid activation function is denoted by σ and tangent function is denoted by
tanh. Parameters U∗n and W∗ represent the weights. The output from the hidden layer at
the previous time step is denoted as ht−1 while the input at the current time step is denoted
as xt. Biases are denoted by b∗n . An activation function outputs a value 0 or 1 for each
gate. The value determines how much information a gate may remain. For example, value 1
implies that the gate keeps all information while 0 implies that it cleans the entire memory.

36

The LSTM cell updates the internal state at each time step. At time t, the cell state ct

is calculated as:

ctctct = fntfntfnt ∗ ct−1ct−1ct−1 + intintint ∗ tanh(UcUcUcht−1ht−1ht−1 +WcWcWcxtxtxt + bcbcbc). (4.14)

The tanh activation function is used to return a value in the range [-1, 1]. The output of an
LSTM cell is calculated as:

hththt = ontontont ∗ReLU(ctctct), (4.15)

where vector notation refers to values of nodes in an entire layer of cells. For example, fff
is a vector of the value of the forget gate at each LSTM cell in a layer while fnfnfn is used to
index the individual LSTM cell n.

The internal state is the key to help LSTM networks prevent the vanishing gradient
problem. The actions of the internal state based on values of input and forget gates are shown
in Table 4.2. The weight of the internal state is essentially the output of the forget gate,
and the LSTM algorithm sets the value of the forget gate to one for important information
within the internal state. Thus, if the forget and output gates are on and the input gates is
off, the gradients of the internal state is passed through the network unchanged at each time
step. Consequently, the LSTM architecture helps avoid the vanishing gradients problem.

Table 4.2: The actions of the internal state corresponding to values of input and forget
gates.

Input gate Forget gate Actions of the internal state
0 1 Keep the memory from the previous time step
1 1 Add the current information to the memory
0 0 Discard both current and the past information
1 0 Overwrite the memory by the current information

Keras [84] is an open source neural networks Application Program Interface (API) writ-
ten in Python. It is capable of running on top of TensorFlow [85], Deeplearning4j [86],
Microsoft Cognitive Toolkit [87], or Theano [88]. Keras focuses on enabling fast experi-
mentation with deep neural networks. It was developed as a part of the research project
Open-ended Neuro-Electronic Intelligent Robot Operating System (ONEIROS) [89]. Keras
is an interface that makes it easy to configure neural networks regardless of the backend
computing library. In 2017, Google’s TensorFlow team decided to support Keras in Tensor-
Flow’s core library. Keras became TensorFlow’s default API [89]. It is the first high-level
library added to core TensorFlow.

Keras provides a user-friendly environment. Users may use Keras without interacting
with the underlying backend engine. It is also an object-oriented library where all compo-
nents including layers, cost functions, optimizers, activation functions, and regularization

37

schemes are individual models. For example, ‘model.layers[3].output’ is the output tensor
of the 3rd layer in the model. These fully-configured models may be combined together or
added with new models with little restrictions.

We use Keras with Python 2.7 to generate LSTM models. As the first step, we im-
port the sequential model from Keras. The generated LSTM sequential models contain 37-
dimensional inputs, 1 hidden layer, and 1-dimensional outputs. The original BGP dataset
is split into training (70%) and test (30%) datasets. Biased weights are assigned to features
having large variations. Thus, we normalize the data points and scale their values within
the range [0, 1] in order to set the same importance to all features. In the original dataset,
anomaly samples are labeled as -1. We replace these labels by 0 for the sake of computation
because Keras does not recognize -1 as a label. We implement the look_back function to
calculate the number of previous time steps that are used as input variables to predict the
data point at next time step. The length of time sequence is set to 20. We empirically set
the look_back value to 19, which implies each prediction is based on 19 previous and 1
current instances. The architecture of implemented LSTM classifier is shown as Figure 4.3.

Figure 4.3: Architecture of the employed LSTM classifier. Shown are input layer with 37
nodes, LSTM layer with 256 cells, the dropout layer with 50% dropout rate, and the output
layer.

The implemented LSTM model contains an input layer with 37-dimensional input nodes,
a hidden layer with 256 LSTM cells, a dropout layer with 50% dropout rate, and an output
layer that produces one result at each time step. The dropout [90] layer lies between the
hidden layer and the output layer. Its function is to randomly discard LSTM blocks and their
connections from the neural network during training. It effectively prevents overfitting for
large neural networks. The LSTM layer uses the ReLU activation function while the output

38

layer uses the sigmoid function. The “Adam” optimizer [91] offers superior performance
when dealing with large datasets and high-dimensional parameter spaces. Thus, we use the
“Adam” optimizer with the learning rate “lr = 0.001” to calculate the gradients and update
the weight when compiling LSTM models. After the model is created, a random seed is
used to initialize a pseudorandom number generator. We set the value of random seed to 77
in order to ensure the results are reproducible (otherwise, the system generates a random
seed number at each time that would lead to a different result). The batch size needs to be
defined when using Keras library. It increases the efficiency of the algorithm by setting the
number of samples to be trained in the network during the learning phase. We set the batch
size to 32, which implies 32 instances are trained together and 32 predictions are made each
time. We use 20% of the original training dataset to validate the model. The parameters
that lead to a desirable classification result are saved and are then applied in the test phase.
To avoid overfitting, 30 trials are made for all tested datasets.

39

Chapter 5

Description of Classification
Algorithms used for Comparison

We describe here machine learning classification techniques used to detect BGP anomalies
that are reported in our previous studies. We then compare their results with the LSTM
classifier in terms of classification accuracy and F-Score in order to examine the effectiveness
of various BGP anomaly classifiers.

5.1 Support Vector Machine (SVM)

SVM was introduced as a technique for pattern recognition, the main author is Vapnik [92].
It is a supervised learning algorithm used for classification and regression tasks. It has been
successfully applied to various areas such as face recognition [93], text-categorization [94],
and BGP anomaly detection [12]. It outperforms neural networks in various applications.

In this Thesis, SVM is applied as a binary classifier for a classification task rather than
regression. Given a set of labeled training samples, the SVM algorithm learns a classifica-
tion hyperplane (decision boundary) by maximizing the minimum distance between data
points belonging to various classes. There are two types of SVM models: hard-margin and
soft-margin [92]. The hard-margin SVMs require that each data point is correctly classified
while the soft-margin SVMs allow some data points to be misclassified. Soft-margin SVM
allows flexible margin, which implies assigning small weights to data points on the incor-
rect side of the margin to reduce their influence. Illustration of the soft margin is shown in
Fig. 5.1 [8]. The solid line indicates the decision boundary while dashed lines indicate the
margins. Encircled data points are support vectors. The maximum margin is the perpen-
dicular distance between the decision boundary and the closest support vectors. The SVM
classifier finds the only hyperplane that maximizes the margin between two data sets. Data
points for which ζ = 0 are correctly classified and are either on the margin or on the correct
side of the margin. Data points for which 0 ≤ ζ < 1 are also correctly classified because
they lie inside the margin and are on the correct side of the decision boundary. Data points

40

for which ζ > 1 lie on the wrong side of the decision boundary and are misclassified. The
outputs 1 and -1 correspond to anomaly and regular data points, respectively. The SVM
solution maximizes the margin between the data points and the decision boundary. Data
points that have the minimum distance to the decision boundary are called support vectors.

Figure 5.1: Illustration of the soft margin SVM [8]. Shown are correctly and incorrectly
classified data points. Regular and anomalous data points are denoted by circles and stars,
respectively. The circled points are support vectors.

The objective of SVM is to find the optimal hyperplane (a generalization of a plane):
a hyperplane is a point in one dimension; a line in two dimentsions; a plane in three di-
mensions; a hyperplane in more than three dimensions. Multiple valid hyperplanes may
be generated that successfully separate input data sets in a feature space. However, only
optimal hyperplane ensures that maximum margin is achieved between both classes. The
hyperplane is acquired by minimizing the loss function [8]:

C ×
N∑

n=1
ζn + 1

2 ||w||
2,

with constraints: tny(xn) > 1− ζn, n = 1, ..., N, (5.1)

where the regularization parameter C controls the trade-off between the slack variable ζn,
N is the number of data points, and 1

2 ||w||
2 is the margin. The regularization parameter

C > 0 is used to avoid over-fitting problem. The target value is denoted by tn while y(xn)
and xn are the training model and data points, respectively. The SVM solves a loss function
as an optimization problem (5.1).

Instead of employing a minimization model (5.9), the problem may be formulated using
Lagrangian dual multiplier β as:

max
N∑

n=1
βn −

1
2

N∑
n=1

N∑
m=1

βnβmynym(xxxn · xxxm), (5.2)

41

subject to:

0 ≤ βi ≤ C ∀ i = 1, 2, ..., n
n∑

i=1
βiyi = 0. (5.3)

Find the optimal hyperplane in high dimensional feature space is complicated and com-
putationally expensive. Therefore, the SVM employs a nonlinear kernel function to map
input space to a feature space where linear separation is possible [95]. Illustration of the
role of a kernel function is shown as Fig. 5.2.

Figure 5.2: Illustration of the role of a kernel function. Blue circles and yellow stars are
regular and anomalous data points, respectively. A nonlinear kernel function maps the
input data points from input space to a higher dimensional feature space and calculates an
optimal separating hyperplane. Then the hyperplane is mapped back to input space and
results in a nonlinear decision boundary.

In the training phase, we first calculate scalar inner products xk · xl of the training
data points. Their mapping from an input space to a feature space may be achieved by
substituting the inner product:

xxxn · xxxm 7→ φ(xxxn) · φ(xxxm), (5.4)

where xkxkxk and xlxlxl are feature vectors. The mapping function is denoted as φ.
Instead of calculating each φ, a kernel function k(xk, xl) is used. A kernel function takes

two feature vectors as arguments and calculates the value of their inner product:

k(xxxn,xxxm) = φ(xxxn)>φ(xxxm). (5.5)

The result is returned to a new input space and generates a decision boundary for input data
points. The advantage of using the “kernel trick” is that the complexity of the optimization

42

problem only depends on the input space instead of the feature space [95]. The objective
function for nonlinear SVM has the form [96]:

max
N∑

n=1
βn −

1
2

N∑
n=1

N∑
m=1

βnβmynymk(xxxn,xxxm). (5.6)

The Radial Basis Function (RBF) is often chosen [12] because it creates a large function
space and outperforms other types of SVM kernels [8]. The RBF kernel k is used to avoid
the high dimension of the feature matrix:

k(xnxnxn,xmxmxm) = exp(−‖xnxnxn − xmxmxm‖2/2σ2). (5.7)

It relies on the Euclidean distance between xnxnxn and xmxmxm feature vectors. The datasets are
trained using 10-fold cross validation to select parameters (C, 1/2σ2) that gives the best
accuracy.

5.2 Naïve Bayes

The Naïve Bayes classifiers are among the most efficient machine learning classification
techniques. The generative Bayesian models are used as classifiers using labeled datasets.
They assume conditional independence among features, implying that given a class label,
the probability distribution of each event is not influenced by the occurrence of other events.
Hence,

Pr(Xk = xxxk,Xl = xxxl|cj) = Pr(Xk = xxxk|cj) Pr(Xl = xxxl|cj), (5.8)

where xxxk and xxxl are realizations of feature vectors Xk and Xl, respectively. In a two-way
classification, classes labeled c1 = 1 and c2 = −1 denote anomalous and regular data
points, respectively. An arbitrary training data point xxxi is classified as anomalous if the
posterior Pr(c1|Xi = xxxi) is larger than Pr(c2|Xi = xxxi). Even though it is naive to assume
that features are independent for a given class (5.8), for certain applications Naïve Bayes
classifiers perform better compared to other classifiers. They have low complexity, may be
trained effectively with smaller datasets, and may be used for online real time detection of
anomalies.

The probability distributions of the priors Pr(cj) and the likelihoods Pr(Xi = xxxi|cj) are
estimated using the training datasets. Posterior of a data point represented as a row vector
xxxi is calculated using the Bayes rule:

Pr(cj |Xi = xxxi) = Pr(Xi = xxxi|cj) Pr(cj)
Pr(Xi = xxxi)

≈ Pr(Xi = xxxi|cj) Pr(cj). (5.9)

43

The naive assumption of independence among features helps calculate the likelihood of a
data point as:

Pr(Xi = xxxi|cj) =
K∏

k=1
Pr(Xik = xik|cj), (5.10)

where K denotes the number of features. The probabilities on the right-hand side (5.10)
are calculated using the Gaussian distribution N :

Pr(Xik = xxxik|cj , µk, σk) = N (Xik = xik|cj , µk, σk), (5.11)

where µk and σk are the mean and standard deviation of the kth feature, respectively. We
assume that priors are equal to the relative frequencies of the training data points for each
class cj . Hence,

Pr(cj) = Nj

N
, (5.12)

where Nj is the number of training data points that belong to the jth class and N is the
total number of training data points.

5.3 Decision Tree Algorithm

The Decision Tree approach is commonly used in data mining to predict the class labels
based on several input variables. A classification tree is a directed tree where the root
is the source dataset and each internal (non-leaf) node is labeled with an input feature.
The tree branches are prediction outcomes that are labeled with possible feature values
while each leaf node is labeled with a class or a class probability distribution [97]. The
advantage of using Decision Tree is that the feature selection is not required for data pre-
processing because Decision Tree algorithm automatically selects the important features
during the classification. Moreover, Decision Tree does not require linear datasets. A top-
down approach is commonly used for constructing Decision Trees, which implies that the
tree is divided from a root node into subsets that contain homogeneous data points.

The Decision Tree algorithm is one of the most successful supervised learning tech-
niques [31]. During the Decision Tree learning, each input instance is represented by fea-
tures, which are categorical or continuous variables. A tree is “learned” by splitting the
input dataset into subsets based on appropriate features. This process is repeated on each
derived subset using recursive partitioning until the splitting no longer adds values to the
predictions. After a Decision Tree is learned, each path from the root node (source) to a leaf
node is transformed into a decision rule. Therefore, a set of rules is obtained by a trained
Decision Tree that is used for classifying unseen samples. An example of the Decision Tree
approach to detect a BGP anomaly is shown in Fig. 5.3. In the example, the data set con-
sists of regular and anomalous data with three features: number of announcement, number

44

of EGP packets, and number of AS path lengths. The input data points are categorized by
the number of announcement and are divided into three groups: (1) Data points with the
number of announcements smaller than 100 are classified as regular data points; (2) Data
points with the number of announcements between 100 and 1000 are sorted by the number
of EGP packets. Samples with the number of EGP packets < 4 are classified as regular; (3)
Data points with the number of announcements larger than 1000 are sorted by the AS path
lengths. Samples with the AS path lengths < 17 are classified as regular. The procedure
repeats until the bottom of the tree is reached. The ellipses with classification results are
called leaf nodes. The straight lines between layers of the tree represent branches. The same
classification result applies to each new instance that follows the exact same branch. In
practice, proper pruning of the tree is the key to achieving the desirable result. Otherwise,
the tree may cause overfitting and lead to a poor result.

Figure 5.3: An example of the Decision Tree used to detect a BGP anomaly. The input data
points are categorized based on the features shown in rectangles. The classification results
are shown by ellipses that represent leaf nodes.

Entropy and information gain are key criteria for feature selection during the tree split-
ting. Entropy measures the level of impurity in a dataset. If we are given a training dataset
X, entropy is calculated as [100], [101]:

E(X) =
∑
c∈C

−p(c)log2p(c), (5.13)

45

where c is a class label that belongs to a set of classes C. The proportion of a sample from
data set X that belongs to class c is denoted as p(c). The higher the entropy, the better
dataset it is for training. For example, E(X) = 0 implies that all samples in X belong to
the same class. For binary classification, E(X) = 1 implies that training samples with 50%
in each class, which is desirable for classification.

The information gain measures the importance of features and determines how to split
the Decision Tree. It is calculated based on the entropy:

InformationGain = entropy(parent)− average[entropy(children)] (5.14)

or:
IG(a,X) = E(X)−

∑
s∈S

p(s)E(s), (5.15)

where IG represents the information gain. We denote the original dataset as X while a
feature of the data is a. IG(a,X) implies that the dataset is split based on the feature a.
E(X) is the entropy of the original dataset. s is a subset that belongs to a set of subsets S.
We denote the proportion of the subset s to the number of total samples in X as p(s). The
entropy of the subset is denoted as E(s).

C4.5 [98] software is a well known algorithm and software tool to generate a Decision
Tree. As an extension from C4.5, C5.0 software, which was introduced in 1997, handles big
datasets faster and more efficiently. C5.0 was used to generate Decision Tree [99] due to
various advantages [102]:

• Boosting technique generates multiple classifiers that are combined together to vote
for a final classification result. It supports Boosting to improve the prediction accuracy.

• It applies variable misclassification costs to minimize the costs for misclassification.

• Several new data types are permitted in C5.0 such as date, time, and case labels.
Furthermore, it enables missing values to be noted as “not applicable”.

• It contains additional functions such as sampling and cross-validation.

• Scalability is enhanced by multi-threading and may be used for computers with mul-
tiple CPUs and cores.

5.4 Extreme Learning Machine (ELM) Algorithm

The Extreme Learning Machine (ELM) [32], [103] is an efficient learning algorithm imple-
mented with a single hidden layer feed-forward neural network. It randomly initializes the
weights of the hidden layer and analytically determines the output weights. It is capable
of universal approximation of any non-constant piecewise continuous function. ELM avoids

46

the iterative tuning of the weights used in traditional neural networks and, hence, it is fast
and may be used as an online algorithm.

ELM employs weights connecting the input and hidden layers with the bias terms ran-
domly initialized while the weights connecting the hidden and output layers are analytically
determined. Its learning speed is higher than the traditional gradient descent-based method.
Reported research results indicate that ELM may learn much faster than SVMs. Hence, the
ELM algorithm is suitable for applications that require fast response and for real-time pre-
dictions. Incremental and weighted extreme learning machines are variants of the typical
ELM.

A neural network architecture of the ELM algorithm is shown in Fig. 5.4, where [x1, x2,

. . . , xd] is the input vector; d is the feature dimension; f(.) is the activation function; W is
the vector of weights connecting the inputs to hidden units; [y1, y2, . . . , ym] is the output
vector; and β is the weight vector connecting the hidden and output units.

Figure 5.4: Neural network architecture of the ELM algorithm. Shown structure consists
of an input layer with d dimensions, a hidden layer with k hidden neurons, and an output
layer with m output samples.

In the case that the single-layered neural network performs a perfect approximation
(the prediction error is zero), the output of the neural network with k hidden neurons is

47

calculated as:
k∑

i=1
βif(wixd + bi) = ym (5.16)

or:
Hβ = Y, (5.17)

where H denotes the hidden layer matrix that is defined as:

H =

f(w1x1 + b1) . . . f(wkx1 + bk)

...
f(w1xd + b1) . . . f(wkxd + bk)

 , (5.18)

where the bias is β = (β1 · · ·βk)> and the output is Y = (y1 · · · ym)>.
The three training and test datasets used in our previous study [72] to verify ELM’s

performance are shown in Table 2.3. The number of hidden units was selected by a 5-fold
cross validation for each training dataset [72]. The best testing accuracy was achieved by
using 315 hidden units for each dataset. Radial basis transfer function was chosen for the
activation function. The input vectors of the training datasets were mapped onto [−1, 1] as:

x
(p)
i = 2 x

(p)
i − ximin

ximax − ximin

− 1, (5.19)

where x(p)
i is the ith feature of the pth sample while ximin and ximax are the minimum and

maximum values of the ith feature of the training sample, respectively.

5.5 Performance Comparison of Classification Algorithms

In a two-way classification, all anomalies are treated as one class. Validity of the proposed
models is tested by applying two-way LSTM classification algorithm on BGP traffic traces
collected from RIPE and BCNET on December 20, 2011. We then compare LSTM classifica-
tion performance with SVM [12], Naïve Bayes, Decision Tree, and ELM models [57] reported
in the previous study. The regular RIPE and BCNET datasets contain no anomalies and,
hence, data points are labeled as regular traffic. Datasets listed in Table 2.3 are used to
train the two-way classifiers. The test datasets are Code Red I, Nimda, Slammer, regular
RIPE, and regular BCNET. The predicted models are estimated and validated by a 10-fold
cross-validation. The exemption is the ELM models, which use 5-fold cross-validation.

Keras [84], a modular neural network library for the Python language, is designed for
deep learning and used as a framework for implementing the LSTM classifier. It uses either
TensorFlow or Theano library as the back-end. In this Thesis, we use Keras 2.0.2 with
Python 2.7.13 and TensorFlow 1.0.1 [104]. We use all 37 features [12] because LSTM cells
select the useful features during the learning process. LSTM models developed in the pre-

48

vious study [12] are improved by adjusting the length of time sequence and the choice of
the optimizer.

5.5.1 Unbalanced Datasets

We utilize the datasets shown in Table 2.3 to generate LSTM models: The dataset used
for Training Modelu1 is a concatenation of Slammer and Nimda anomalies while the corre-
sponding test dataset contains Code Red I anomaly; the dataset used for Training Modelu2
contains Slammer and Code Red I anomalies while the corresponding test dataset contains
Nimda anomaly; the dataset used for Training Modelu3 combines Nimda and Code Red I
anomalies while the test dataset contains Slammer anomaly.

We implement LSTM classifier using unbalanced datasets with 37 features. We com-
pare LSTM classification results to SVM, Naïve Bayes, Decision Tree, and ELM results
reported in previous studies [12], [56], [57],. Comparison of classification results are shown
in Table 5.1.

Table 5.1: Accuracy and F-Score using various classification models for unbalanced datasets.

Training model Test datasets
Accuracy (%) F-Score (%)

Code Red I RIPE regular BCNET Code Red I
LSTMu1 95.22 65.49 57.30 83.17
SVMu1 78.65 69.17 57.22 39.51
Naïve Bayesu1 82.03 82.99 79.03 29.52
Decision Treeu1 85.36 89.00 77.22 47.82
ELMu1 80.92 75.81 69.03 36.27

Nimda RIPE regular BCNET Nimda
LSTMu2 53.94 51.53 50.80 11.81
SVMu2 55.50 89.89 82.08 24.29
Naïve Bayesu2 62.56 82.85 86.25 48.78
Decision Treeu2 58.13 94.19 81.18 26.16
ELMu2 54.42 96.15 91.88 13.72

Slammer RIPE regular BCNET Slammer
LSTMu3 95.87 56.74 58.55 84.62
SVMu3 93.04 73.92 59.24 75.93
Naïve Bayesu3 83.58 84.79 81.18 51.12
Decision Treeu3 95.89 89.42 77.78 84.34
ELMu3 86.96 78.57 73.47 55.31

The Training Datasetu1 consists of 14,400 data points, among which 4,390 points are
anomalous. Test Dataset1 consists of 7,200 data points, where 869 data points are anomalies.
When using Training Modelu1, LSTMu1 outperforms other classification algorithms with
the best accuracy (95.22 %) and F-Score (83.17 %). Our previous studies [56], [57] reported
that feature selection algorithms may slightly improve the performance of both SVM and

49

Naïve Bayes. However, none of the algorithms performs better than LSTM for Training
Datasetu1.

In case of Training Modelu2, the highest accuracy (62.56 %) and F-Score (48.78 %) are
achieved by Naïve Bayesu2 using 37 features. The overall performance of all algorithms are
not desirable, which implies that none of the models is suitable for the analyzed dataset.
We suspect the poor performance of the second training dataset is due to the distributions
of anomaly and regular data points in the training dataset. The dataset consists of 14,400
data points while only 1,469 data points are anomalous. Thus during the training phase,
the algorithms may not be able to capture the relations and features among data points.

Training Modelu3 consists of 14,400 data points while 4,121 data points are anoma-
lous. Test Datasetu3 consists of 7,200 data points while 600 data points are anomalous.
LSTMu3 achieves the best F-Score (84.62 %) for Training Modelu3. Although Decision
Treeu3 achieves the best accuracy (95.89 %), LSTMu3 presents competitive performance
(95.87 %). In our previous study [57], the performance of SVM and Naïve Bayes was slightly
better when using Fisher and mutual information base (MIBASE) feature selection algo-
rithms. Among three models using unbalanced datasets, the best F-Score for binary classi-
fication is achieved by using LSTM3 for the Slammer test dataset.

We have also implemented a deeper LSTM model with two LSTM layers to train un-
balanced datasets. However, the model was overfitting because the number of training data
samples is not sufficient in this project, and, thus we did not record the results.

5.5.2 Balanced Datasets

We created three LSTM models using balanced datasets in order to compare to SVM
models. Only two SVM models using balanced datasets were reported in previous stud-
ies [12], [57] and, thus, in this Thesis we compare LSTMb2 and LSTMb3 to SVMb2 and
SVMb3, respectively.

The balanced Training Datasetb1 consists of 8,780 samples in total while half data
points are regular and half are anomalous; the balanced Training Datasetb2 consists of
2,938 samples with equal numbers of regular and anomalous data points; the balanced
Training Datasetb3 consists of 4,121 samples with equal numbers of regular and anomalous
data points. The three test datasets contain same anomalies as the corresponding unbal-
anced test datasets. Performance of the LSTM and SVM models using balanced datasets
is shown in Table 5.2. The SVMb2 and SVMb3 models perform better than LSTMb2 and
LSTMb3 models, respectively. Among all models, the SVMb2 model achieves the best F-
Score (72.32 %) while SVMb3 gains the highest accuracy (87.19 %).

We compare performance of LSTMmodels for unbalanced and balanced training datasets.
When using unbalanced datasets, LSTMu1 and LSTMu3 models achieve higher accuracy
and F-Score than LSTMb1 and LSTMb3 models, respectively. We believe it is because un-
balanced datasets contain more data samples than balanced datasets , and, hence data

50

Table 5.2: Accuracy and F-Score using LSTM and SVM models for balanced datasets.

Training model Test datasets
Accuracy (%) F-Score (%)

Code Red I RIPE regular BCNET Code Red I
LSTMb1 56.43 60.48 62.78 26.59

Nimda RIPE regular BCNET Nimda
LSTMb2 56.32 44.27 53.58 65.96
SVMb2 69.26 51.81 44.86 72.32

Slammer RIPE regular BCNET Code Red I
LSTMb3 82.98 55.00 48.20 58.54
SVMb3 87.19 63.31 51.11 64.76

points are trained well by the LSTM model. Furthermore, the number of anomalous data
points is large enough for LSTM to train. LSTM contains various gates, blocks, and layers,
which requires a rather large amount of training samples in order to avoid overfitting and
misclassification.

51

Chapter 6

Discussion

The Border Gateway Protocol (BGP) is the most widely used inter-domain routing protocol.
Over the past two decades, the Internet has been subjected to various types of malicious
attacks such as the routing table leak and domain hijack. Anomaly detection is a challenging
task because it is difficult to obtain labeled anomaly datasets. A dataset typically contains
only a small portion of labeled anomalous data points, which may affect the classification
result. One approach is to take regular data samples and randomly add artificial anomalies
to create a new dataset. However, this may negatively affect the effectiveness of algorithms
because the artificial datasets may not contain properties of the real-world data. Therefore,
we used real data collected from RIPE and BCNET to avoid producing unrealistic results.
We did not use Route Views datasets because they do not archive BGP data earlier than
2003 while Nimda and Code Red I occurred in 2001.

The selection of appropriate performance metrics is another challenge. Accuracy mea-
sures the ratio of true predictions to the entire dataset. Therefore, if all regular points are
correctly classified while anomalies are all misclassified, the accuracy would be high because
regular points are majority in unbalanced datasets. Therefore, we used the F-Score as the
major performance metric. It is based on precision and sensitivity and is more suitable for
anomaly detection tasks because it emphasizes importance of the anomaly class.

We have introduced and compared the LSTM classifier with SVM, Naïve Bayes, De-
cision Tree, and ELM classifiers from our previous studies [12], [57] in order to examine
the effectiveness of each approach for detecting network anomalies. We did not find any
comparative experiment to compare our performance to. Because no one used the datasets
that we used in this when we were conducting the experiment. Researchers use different
data sources such as KDD cup 1999 data. It is the dataset used for the Third International
Knowledge Discovery and Data Mining Tools Competition, whose task is to build a network
intrusion detector.

The main goal of this project is to apply machine learning to detect BGP anomalies
and to show that LSTM is a feasible approach. Each approach studied in this project has
its unique advantages and limitations. In this Thesis, LSTM models achieved high accuracy

52

and F-Score for time sequential input data. However, they may not suitable for data samples
that do not follow time sequence. Soft-margined SVMs perform well in classification tasks.
However, they require relatively long computational time for training models when dealing
with large datasets. Naïve Bayes algorithm computes probabilities of the occurrence of
events and are suitable for detecting multiple classes of anomalies. Decision tree is commonly
used in data mining due to its explicit and efficient decision making. ELM is an efficient
classifier while its performance is limited due to its simple structure. In practice, the selection
of anomaly detection approaches is influenced by the intended purpose.

53

Chapter 7

Conclusion and Future Work

In this Thesis, we have classified anomalies in BGP traffic traces using a number of clas-
sification models. We conducted experiments using a number of datasets and various fea-
tures extracted from data points. We compared the performance of BGP anomaly detection
models based on the LSTM, SVM, Naïve Bayes, Decision Tree, and ELM classifiers. The
performance of classifiers is greatly influenced by the employed datasets. While no single
classifier performs the best across all used datasets, machine learning has been proved to
be a feasible approach to successfully classify BGP anomalies using various classification
models.

Datasets used in this project are collected by RIPE and BCNET. Additional data sources
such as Center for Applied Internet Data Analysis (Caida) [105], KDD Cup 1999 data [106],
and Routing Assets Database (RADb) [107] and additional types of anomalies such as prefix
hijack attacks may be used to evaluate the performance of classifiers in the further study.
In this Thesis, we concatenated two anomalies to generate training datasets and used the
other anomaly as the test dataset. New approach may be to concatenate three anomalies
to form a large dataset, and then split it into the training and test datasets and, thus, to
detect one of three anomalies. This method may help machine learning algorithms find more
characteristics of the datasets and better reveal relations among data points.

LSTM is a relatively new technique and it requires further studies to examine its advan-
tage and limitations for detection of BGP anomalies. Additional techniques may be used
to optimize the LSTM performance. For example, LSTM models may learn independent
representation of the datasets better by using dropout in the input layers.

Furthermore, dropout technique may reduce the proportion of noisy data points and,
thus, increase the computational efficiency of LSTM models. We may also improve the
convergence efficiency by tuning hyperparameters such as the number of LSTM cells in
each LSTM layer and the number of epochs during the training phase.

Regarding the application of RNN architectures to anomalies detection, a new direction
is to use Gated Recurrent Unit (GRU) [108], which is a simplified LSTM, and, thus it
is computationally more efficient than LSTMs and may require smaller training datasets.

54

Another variant of LSTM is the deep LSTM architecture [110] that has multiple LSTM
layers to further increase the classification accuracy. However, deep networks require larger
amount of training data points.

55

Bibliography

[1] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC 1771, IETF,
Mar. 1995. [Online]. Available: http://tools.ietf.org/rfc/rfc1771.txt [June
2018].

[2] D. P. Watson and D. H. Scheidt, “Autonomous systems,” Johns Hopkins APL Tech-
nical Digest, vol. 26, no. 4, pp. 368–376, Oct.–Dec. 2005.

[3] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),” RFC 4271,
IETF, Jan. 2016. [Online]. Available: http://tools.ietf.org/rfc/rfc4271.txt
[June 2018].

[4] T. G. Griffin and B. J. Premore, “An experimental analysis of BGP convergence time,”
in Proc. ICNP, Riverside, CA, USA, Nov. 2001, pp. 53–61.

[5] J. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach (6th edi-
tion). J. F. Kurose, K. W. Ross, Eds, Addison-Wesley, 2012, pp. 305–431.

[6] YouTube Hijacking: A RIPE NCC RIS case study [Online]. Available:
http://www.ripe.net/internet-coordination/news/industry-developments/
youtube-hijacking-a-ripe-ncc-ris-case-study [June 2018].

[7] K. Fukushima, “Neocognitron: a self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position,” Biol Cybern, vol. 36, pp. 193–
202, 1980.

[8] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA:
Springer-Verlag, 2006, pp. 325–358.

[9] T. M. Mitchell, “Decision tree learning,” in Machine Learning, Eric Munson Ed.
WCB/McGraw-Hill, 1997, pp. 52–78.

[10] A. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, pp. 433–
460, Oct. 1950.

[11] G. E. Hinton, S. Osindero, and Y-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Compt., vol. 18, no. 7, pp. 1527–1554, July. 2006.

[12] Q. Ding, Z. Li, P. Batta, and Lj. Trajković, “Detecting BGP anomalies using machine
learning techniques,” in Proc. IEEE Int. Conf. Syst., Man, and Cybern., Budapest,
Hungary, Oct. 2016, pp. 3352–3355.

56

http://tools.ietf.org/rfc/rfc1771.txt
http://tools.ietf.org/rfc/rfc4271.txt
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

[13] R. Picard and D. Cook, “Cross-validation of regression models,” J. Amer. Statist.
Assoc., vol. 79, no. 387, pp. 575–583, 1984.

[14] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference (2nd
ed.), New York, NY, USA: Springer-Verlag, 2002, pp. 32–35.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” [On-
line]. Available: https://arxiv.org/pdf/1207.0580.pdf [June 2018].

[16] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in traffic
classification,” IEEE Network, vol. 26, no. 1, pp. 35–40, Feb. 2012.

[17] A. Munoz and J. Moguerza, “Estimation of high-density regions using one-class neigh-
bor machines,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 3, pp. 476–480,
Mar. 2006.

[18] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly detection using
kernel recursive least squares,” in Proc. 26th IEEE Int. Conf. Comput. Commun.,
Anchorage, AK, USA, May 2007, pp. 625–633.

[19] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning approaches to network
anomaly detection,” in Proc. USENIX Workshop on Tackling Comp. Syst. Problems
with Mach. Learn. Techn., Cambridge, MA, Apr. 2007, pp. 1–6.

[20] J. Mao and A. K. Jain, “A self-organizing network for hyperellipsoidal clustering
(HEC),” IEEE Trans. Neural Netw., vol. 7, no. 1, pp, 16–29, Jan. 1996.

[21] M. W. Richardson, “Multidimensional psychophysics,” Psychological Bulletin, vol. 35,
pp. 659–660, 1957.

[22] T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9, pp. 1464–1480,
Sep. 1990.

[23] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput.
Surv., vol. 31, no. 3, pp. 264–323, 1999.

[24] A. Raftery, “A note on Bayes factors for log-linear contingency table models with
vague prior information,” Journal of the Royal Statistical Society, vol. 48, no. 2,
pp. 249–250, 1986.

[25] M. J. A. Berry and G. S. Linoff, Data Mining Techniques: For Marketing, Sales, and
Customer Support. Indianapolis, Indiana, USA: Wiley Publishing, Inc., 2004.

[26] T. S. Guzella and W. M. Caminhas, “A review of machine learning approaches to
spam filtering,” Expert Syst. Appl., vol. 36, no. 7, pp. 10206–10222, Sept. 2009.

[27] D. N. T. How, K. S. M. Sahari, Y. Hu, and C. K. Loo, “Multiple sequence behavior
recognition on humanoid robot using long short-term memory (LSTM),” in Proc. Int.
Conf. Robot. Autom. (ICRA), Hong Kong, China, Dec. 2014, pp. 109–114.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol.
9, no. 8, pp. 1735–1780, Oct. 1997.

57

https://arxiv.org/pdf/1207.0580.pdf

[29] X. Yang, Q. Song, and A. Cao, “Weighted support vector machine for data classifi-
cation,” in Proc. IEEE Int. Joint Conf. Neural Netw., Montreal, QC, Canada, Aug.
2005, vol. 2, pp. 859–864.

[30] D. Mladenic and M. Grobelnik, “Feature selection for unbalanced class distribution
and naive Bayes,” in Proc. Int. Conf. Machine Learning, Bled, Slovenia, June 1999,
pp. 258–267.

[31] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106,
Mar. 1986.

[32] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: theory and
applications,” Neurocomputing, vol. 70, pp. 489–501, Dec. 2006.

[33] G. B. Huang, X. J. Ding, and H. M. Zhou, “Optimization method based extreme
learning machine for classification,” Neurocomputing, vol. 74, no. 1–3, pp. 155–163,
Dec. 2010.

[34] D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,” Neural
Comput., vol. 8, no. 7, pp. 1341–1390, Oct. 1996.

[35] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach.
Learn. Rev., vol. 7, pp. 1–30, Jan. 2006.

[36] T. G. Dietterich, “Approximate statistical tests for comparing supervised classification
learning algorithms,” Neural Comput., vol. 10, no. 7, pp. 1895–1924, Oct. 1998.

[37] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural net-
works for sequence learning,” CoRR, vol. abs/1506.00019, Oct. 2015.

[38] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” Trans. Sig.
Proc., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[39] D. P. Watson and D. H. Scheidt, “Autonomous systems,” Johns Hopkins APL Tech-
nical Digest, vol. 26, no. 4, pp. 368–376, Oct.–Dec. 2005.

[40] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly detection: meth-
ods, systems and tools,” IEEE Commun. Surveys Tut., vol. 16, no. 1, pp. 303–336,
Mar. 2014.

[41] F. Lau, S. H. Rubin, M. H. Smith, and Lj. Trajković, “Distributed denial of service
attacks,” in Proc. IEEE Int. Conf. Syst., Man, and Cybern., SMC 2000, Nashville,
TN, USA, Oct. 2000, pp. 2275–2280.

[42] C. Patrikakis, M. Masikos, and O. Zouraraki, “Distributed denial of service attacks,”
The Internet Protocol, vol. 7, no. 4, pp. 13–31, Dec. 2004.

[43] H. Hajji, “Statistical analysis of network traffic for adaptive faults detection,” IEEE
Trans. Neural Netw., vol. 16, no. 5, pp. 1053–1063, Sept. 2005.

[44] M. Thottan and C. Ji, “Anomaly detection in IP networks,” IEEE Trans. Signal
Process., vol. 51, no. 8, pp. 2191–2204, Aug. 2003.

58

[45] S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar, “An online mechanism for BGP
instability detection and analysis,” IEEE Trans. Comput., vol. 58, no. 11, pp. 1470–
1484, Nov. 2009.

[46] K. El-Arini and K. Killourhy, “Bayesian detection of router configuration anomalies,”
in Proc. Workshop Mining Netw. Data, Philadelphia, PA, USA, Aug. 2005, pp. 221–
222.

[47] J. Zhang, J. Rexford, and J. Feigenbaum, “Learning-based anomaly detection in BGP
updates,” in Proc. Workshop Mining Netw. Data, Philadelphia, PA, USA, Aug. 2005,
pp. 219–220.

[48] J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal, “An Internet routing forensics frame-
work for discovering rules of abnormal BGP events,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 55–66, Oct. 2005.

[49] C. Wagner, J. Francois, R. State, and T. Engel, “Machine learning approach for IP-
flow record anomaly detection,” in Lecture Notes in Computer Science: Proc. 10th
Int. IFIP TC 6 Netw. Conf., J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont,
C. Scoglio, Eds. Springer 2011, vol. 6640, pp. 28–39.

[50] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks
for anomaly detection in time series,” in Proc. Eur. Symp. Artificial Neural Netw.,
Comput. Intell. Mach. Learn., Bruges, Belgium, Apr. 2015, pp. 89–94.

[51] M. Cheng, Q. Xu, J. Lv, W. Liu, Q. Li, and J. Wang, “MS-LSTM: a multi-scale
LSTM model for BGP anomaly detection,” in Proc. 2016 IEEE 24th Int. Conf. Netw.
Protocols, Workshop Mach. Learn. Comput. Netw., Singapore, Nov. 2016, pp. 1–6.

[52] D. Ariu, R. Tronci, and G. Giacinto, “HMMPayl: an intrusion detection system based
on Hidden Markov Models,” Comput. Security, vol. 30, no. 4, pp. 221–241, 2011.

[53] A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian analysis
techniques,” in Proc. Int. Conf. Measurement and Modeling of Comput. Syst., Banff,
AB, Canada, June 2005, pp. 50–60.

[54] W. Zong, G. B. Huang, and Y. Chen, “Weighted extreme learning machine for imbal-
ance learning,” Neurocomputing, vol. 101, pp. 229–242, Feb. 2013.

[55] K. Zhang, A. Yen, X. Zhao, D. Massey, S.F. Wu, and L. Zhang, “On detection of
anomalous routing dynamics in BGP,” in Lecture Notes in Computer Science: Proc.
Int. Conf. Research Netw., N. Mitrou, K. Kontovasilis, G. N. Rouskas, I. Iliadis,
L. Merakos, Eds. Springer 2004, vol. 3042, pp. 259–270.

[56] Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, “Application of machine learning tech-
niques to detecting anomalies in communication networks: datasets and feature selec-
tion algorithms," inÂăCyber Threat Intelligence, M. Conti, A. Dehghantanha, and T.
Dargahi, Eds., Berlin: Springer, pp. 47–70, 2018.

[57] Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, “Application of machine learning tech-
niques to detecting anomalies in communication networks: classification algorithms,”
in Cyber Threat Intelligence, M. Conti, A. Dehghantanha, and T. Dargahi, Eds.,
Berlin: Springer, pp. 71–92, 2018.

59

[58] Y. Li, H. J. Xing, Q. Hua, X. Z. Wang, P. Batta, S. Haeri, and Lj. Trajković, “Classi-
fication of BGP anomalies using decision trees and fuzzy rough sets,” in Proc. IEEE
Trans. Syst., Man, Cybern., San Diego, CA, USA, Oct. 2014, pp. 1331–1336.

[59] Center for Applied Internet Data Analysis. The Spread of the Sapphire/Slammer
Worm [Online]. Available: http://www.caida.org/publications/papers/2003/
sapphire/ [June 2018].

[60] Sans Institute. Nimda Worm—Why Is It Different? [Online]. Available: http://www.
sans.org/reading-room/whitepapers/malicious/nimda-worm-different-98
[Jan. 2017].

[61] Sans Institute. The mechanisms and effects of the Code Red worm. [On-
line]. Available: https://www.sans.org/reading-room/whitepapers/dlp/
mechanisms-effects-code-red-worm-87 [June 2018].

[62] Sans Institute. Malware FAQ: MS-SQL Slammer. [Online]. Available: https://www.
sans.org/security-resources/malwarefaq/ms-sql-exploit [June 2018].

[63] University of Oregon Route Views project [Online]. Available: http://www.
routeviews.org/ [June 2018].

[64] RIPE NCC: RIPE Network Coordination Center. [Online]. Available: http://www.
ripe.net/data-tools/stats/ris/ris-raw-data [June 2018].

[65] T. Farah, S. Lally, R. Gill, N. Al-Rousan, R. Paul, D. Xu, and Lj. Trajković, “Col-
lection of BCNET BGP traffic,” in Proc. 23rd ITC, San Francisco, CA, USA, Sept.
2011, pp. 322–323.

[66] S. Lally, T. Farah, R. Gill, R. Paul, N. Al-Rousan, and Lj. Trajković, “Collection
and characterization of BCNET BGP traffic,” in Proc. 2011 IEEE Pacific Rim Conf.
Commun. Comput. and Signal Process., Victoria, BC, Canada, Aug. 2011, pp. 830–
835.

[67] MRT rooting information export format. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-grow-mrt-13 [June 2018].

[68] The Internet Engineering Task Force (IETF) [Online]. Available: https://www.ietf.
org/ [June 2018].

[69] Bgpdump [Online]. Available: https://bitbucket.org/ripencc/bgpdump/wiki/
Home [June 2018].

[70] BGPmon [Online]. Available: https://bgpmon.net/ [June 2018].

[71] BCNET. [Online]. Available: http://www.bc.net [June 2018].

[72] N. Al-Rousan and Lj. Trajković, “Machine learning models for classification of BGP
anomalies,” in Proc. IEEE Conf. on High Performance Switching and Routing, HPSR
2012, Belgrade, Serbia, June 2012, pp. 103–108.

[73] D. Meyer, “BGP communities for data collection,” RFC 4384, IETF, Feb. 2006. [On-
line]. Available: http://www.ietf.org/rfc/rfc4384.txt [June 2018].

60

http://www.caida.org/publications/papers/2003/sapphire/
http://www.caida.org/publications/papers/2003/sapphire/
http://www.sans.org/reading-room/whitepapers/malicious/nimda-worm-different-98
http://www.sans.org/reading-room/whitepapers/malicious/nimda-worm-different-98
https://www.sans.org/reading-room/whitepapers/dlp/mechanisms-effects-code-red-worm-87
https://www.sans.org/reading-room/whitepapers/dlp/mechanisms-effects-code-red-worm-87
https://www.sans.org/security-resources/malwarefaq/ms-sql-exploit
https://www.sans.org/security-resources/malwarefaq/ms-sql-exploit
http://www.routeviews.org/
http://www.routeviews.org/
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://tools.ietf.org/html/draft-ietf-grow-mrt-13
http://tools.ietf.org/html/draft-ietf-grow-mrt-13
https://www.ietf.org/
https://www.ietf.org/
https://bitbucket.org/ripencc/bgpdump/wiki/Home
https://bitbucket.org/ripencc/bgpdump/wiki/Home
https://bgpmon.net/
http://www.bc.net
http://www.ietf.org/rfc/rfc4384.txt

[74] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and L. Zhang,
“Observation and analysis of BGP behavior under stress,” in Proc. 2nd ACM SIG-
COMM Workshop on Internet Meas., New York, NY, USA, 2002, pp. 183–195.

[75] D. Blazakis and J. S. Baras, “Analyzing BGP ASPATH behavior in the Internet,” in
Proc., 9th IEEE Glob. Int. Symp., 2006.

[76] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: special issue on learning from
imbalanced data sets,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 1–6, June 2004.

[77] C. F. Lin and S. D. Wang, “Fuzzy support vector machines,” IEEE Trans. Neural
Netw., vol. 13, no. 2, pp. 464–471, Feb. 2002.

[78] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy estimation for
comparing induction algorithms,” in Proc. 15th Int. Conf. Mach. Learn., Madison,
WI, USA, July 1998, pp. 445–453.

[79] K. Morik, P. Brockhausen, and T. Joachims, “Combining statistical learning with a
knowledge-based approach-a case study in intensive care monitoring,” in Proc. Int.
Conf. Mach. Learn., ICML 1999, Bled, Slovenia, June 1999, pp. 268–277.

[80] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Mach. Learn., vol. 8, no. 3, pp. 229–256, May 1992.

[81] “Long short-term memory based recurrent neural network architectures for large vo-
cabulary speech recognition,” [Online]. Available: http://arxiv.org/pdf/1402.1128
[June 2018].

[82] Understanding LSTM Networks [Online]. Available: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/ [June 2018].

[83] F. A. Gers, J. Schimidhuber, and F. Cummins, “Learning to forget: Continual pre-
diction with LSTM,” Neural Computation, vol, 12, no. 10, pp. 2451–2471, Oct. 2000.

[84] Keras: Deep Learning library for Theano and TensorFlow. [Online]. Available: https:
//keras.io/ [June 2018].

[85] TensorFlow. [Online]. Available: https://www.tensorflow.org [June 2018].

[86] Deeplearning4j [Online]. Available: https://deeplearning4j.org/ [June 2018].

[87] Microsoft Cognitive Toolkit [Online]. Available: https://www.microsoft.com/
en-us/cognitive-toolkit/ [June 2018].

[88] Theano [Online]. Available: http://deeplearning.net/software/theano/ [June
2018].

[89] A. Gulli and S. Pal, Deep Learning with Keras, Birmingham, UK: Packt Publishing
Ltd. 2017, pp. 28–39.

[90] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: a simple
way to prevent neural network from overfitting,” J. Mach. Learn. Res., vol. 15, pp.
1929–1958, 2014.

61

http://arxiv.org/pdf/1402.1128
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://keras.io/
https://keras.io/
https://www.tensorflow.org
https://deeplearning4j.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://deeplearning.net/software/theano/

[91] D. P. Kingma and J. Ba, “Adam: A method for sochastic optimization,” in Proc. 3rd
Int. Conf. Learn. Representations, San Diego, USA, Dec. 2014.

[92] V. Vapnik, The Nature of Statistical Learning Theory, New York, NY: Springer-Verlag
New York, Inc., 1995.

[93] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: An applica-
tion to face detection,” in Proc. 1997 Conf. Compt. Vision and Pattern Recognition,
San Juan, Puerto Rico, USA, June 1997, pp. 130–138.

[94] T. Joachims, “Text categorization with support vector machines: learning with many
relevant features,” in Proc. 10th Eur. Conf. Mach. Learn., Chemnitz, Germany, Apr.
1998, pp. 137–142.

[95] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,”
The Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, 2008.

[96] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning: With Applications in R, New York, NY, USA: Springer Publishing Com-
pany, Inc., 2014.

[97] X. Z. Wang, L. C. Dong, and J. H. Yan, “Maximum ambiguity based sample selection
in fuzzy decision tree induction,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 8,
pp. 1491–1505, Aug. 2012.

[98] C4.5 Tutorial. [Online]. Available: http://www2.cs.uregina.ca/~dbd/cs831/
notes/ml/dtrees/c4.5/tutorial.html [June 2018].

[99] Y. Li, H. J. Xing, Q. Hua, X.-Z. Wang, P. Batta, S. Haeri, and Lj. Trajković, "Classi-
fication of BGP anomalies using decision trees and fuzzy rough sets," in Proc. IEEE
Int. Conf. Syst., Man, and Cyber. (SMC 2014), San Diego, CA, October 2014, pp.
1312-1317.

[100] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, Aug.
1996.

[101] L. Rokach and O. Maimon, “Top-down induction of decision trees classifiers–a survey,”
IEEE Trans. Syst., Man, Cybern., Appl. and Rev., vol. 35, no. 4, pp. 476–487, Nov.
2005.

[102] C5.0: An Informal Tutorial [Online]. Available: http://rulequest.com/see5-unix.
html [June 2018].

[103] Extreme Learning Machines. [Online]. Available: http://www3.ntu.edu.sg/home/
egbhuang/elm_codes.html [June 2018].

[104] TensorFlow. [Online]. Available: https://www.tensorflow.org/ [June 2018].

[105] Caida: Center for Applied Internet Data Analysis [Online]. Available: http://www.
caida.org/home/ [Aug. 2018].

[106] KDD Cup 1999 Data [Online]. Available: hhttp://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html [Aug. 2018].

62

http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html
http://rulequest.com/see5-unix.html
http://rulequest.com/see5-unix.html
http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html
http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html
https://www.tensorflow.org/
http://www.caida.org/home/
http://www.caida.org/home/
hhttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
hhttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[107] RADb: The Internet Routing Registry [Online]. Available: http://www.radb.net/
[June 2018].

[108] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation,” [Online]. Available: https://arxiv.org/abs/1406.1078
[June 2018].

[109] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-
current neural networks on sequence modeling,” [Online]. Available: https://arxiv.
org/abs/1412.3555 [June 2018].

[110] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning.” MIT Press, 2016. [On-
line]. Available: http://www.deeplearningbook.org [June 2018].

63

http://www.radb.net/
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
http://www.deeplearningbook.org

Appendix A

Script of the Long Short-Term
Memory model used to classify
BGP datasets

The implemented LSTM model contains an input layer with 37-dimensional input nodes, a
hidden layer with 256 LSTM cells, a dropout layer with 50% dropout rate, and an output
layer. The hidden layer uses the ReLU activation function while the output layer uses the
sigmoid function. We use the “Adam” optimizer with the learning rate “lr = 0.001” to
calculate the gradients and update the weight when compiling LSTM models. We set the
value of the random seed to 77 in order to ensure the results are reproducible. We set the
batch size to 32, which implies 32 instances are trained together and 32 predictions are
made each time. We use 20% of the original training dataset to validate the model. The
parameters that lead to a desirable classification result are saved and are then applied in
the test phase. To avoid overfitting, 30 trials are made for all tested datasets.

import numpy
from keras . models import Sequent i a l
from keras . l a y e r s import Dense
from keras . l a y e r s import LSTM
from keras . l a y e r s import Dropout
from keras . l a y e r s import Dense , Act ivat ion
from sk l ea rn . p r ep ro c e s s i ng import MinMaxScaler

Fix the random number seed to ensure our r e s u l t s are r ep roduc ib l e .
num_feature = 37
look_back = 19
num_epoch = 30
Load the dataset , X: data , Y: l a b e l
datase t = numpy . l oadtx t ("/ Users /Desktop/data_1 . csv " , d e l im i t e r =" , ")
origin_X = datase t [: , 0 : num_feature]
origin_Y = datase t [: , num_feature]
origin_X = origin_X . astype (’ f l o a t32 ’)

64

origin_Y = origin_Y . astype (’ int16 ’)

t e s tData s e t = numpy . l oadtx t ("/ Users /Desktop/data_2 . csv " , d e l im i t e r =" , ")
test_X = tes tData s e t [: , 0 : num_feature]
test_Y = tes tData s e t [: , num_feature]
test_X = test_X . astype (’ f l o a t32 ’)
test_Y = test_Y . astype (’ int16 ’)

Normalize the datase t
#X_std = (X − X.min (ax i s =0)) / (X.max(ax i s=0) − X.min (ax i s =0))
#X_scaled = X_std ∗ (max − min) + min
s c a l e r = MinMaxScaler (feature_range =(0 , 1))
train_X = s c a l e r . f i t_t rans fo rm (origin_X)
train_Y = origin_Y
test_X = s c a l e r . f i t_t rans fo rm (test_X)
test_Y = test_Y

#Change l a b e l s −1 to 0
inds = numpy . where (train_Y == −1)
train_Y [inds] = 0
inds = numpy . where (test_y == −1)
test_Y [inds] = 0

Convert an array o f va lue s in to a matrix
de f c reate_dataset (X, Y, look_back=1):
dataX , dataY = [] , []
f o r i in range (l en (X) − look_back − 1) :
a = X[i : (i + look_back) , :]
dataX . append (a)
dataY . append (Y[i + look_back])
re turn numpy . array (dataX) , numpy . array (dataY)

Reshape the datase t i n to X=t and Y=t+1
trainX , trainY = create_dataset (train_X , train_Y , look_back)
testX , testY = create_dataset (test_x , test_y , look_back)
p r i n t trainX . shape
p r in t trainY . shape

Reshape the input to be [samples , time steps , f e a t u r e s]
trainY = numpy . reshape (trainY , (trainY . shape [0] , 1))
p r i n t trainY . shape

Create and va l i d a t e the LSTM network
model = Sequent i a l ()
model . add (LSTM(256 , input_shape=(look_back , num_feature) , \
a c t i v a t i o n=’ re lu ’ , return_sequences=True))
model . add (Dropout (0 . 5))

65

model . add (Dense (1 , a c t i v a t i o n=’ sigmoid ’))
model . compi le (l o s s =’binary_crossentropy ’ , opt imize r=’adam ’ , \
metr i c s =[’ accuracy ’])

numpy . random . seed (77)
model . f i t (x=trainX , y=trainY , epochs=num_epoch , batch_size=37, \
verbose=2, v a l i d a t i o n_ sp l i t =0.2 , s h u f f l e = true)
model_score = model . eva luate (testX , testY)
p r in t (" v a l i d a t i o n accuracy : %.2 f%%’’ % (model_score [1] ∗ 1 0 0 . 0))

model . save (’ model_lstm . h5 ’)
model = load_model (’ model_lstm . h5 ’)

#Apply the model to t e s t the datase t
t r a i nP r ed i c t = model . p r ed i c t (trainX)
test_pred = model . p r ed i c t (testX)

tra inPredict_rounded = [round (x [0]) f o r x in t r a i nP r ed i c t]
t ra in_f1 = f1_score (trainY , tra inPredict_rounded)
p r i n t (" Train F−s co r e : %.2 f%%’’ % (t ra in_f1 ∗100 . 0))

t e s t_sco re = model . eva luate (testX , testY)
p r in t (" Test accuracy : %.2 f%%’’ % (te s t_sco re [1] ∗ 1 0 0 . 0))

test_pred_rounded = [round (x [0]) f o r x in test_pred]
f 1 = f1_score (testY , test_pred_rounded)
p r i n t (" Test F−s co r e : %.2 f%%’’ % (f1 ∗100 . 0))

66

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview of Border Gateway Protocol (BGP)
	Machine Learning Techniques
	Machine Learning Process
	Unsupervised Learning
	Supervised Learning

	Recurrent Neural Network
	Motivation
	Related Work
	Research Contribution
	Organization of the Thesis

	Border Gateway Protocol Datasets
	Examples of BGP Anomalies
	Analyzed BGP Datasets
	Processing of the Collected Data

	Extraction of Features from BGP Update Messages
	Performance Metrics and the Long Short-Term Memory Neural Network
	Introduction of Classification Algorithm
	Performance Metrics
	Long Short-Term Memory (LSTM) Neural Network
	Vanishing Gradient Problem
	LSTM Module

	Description of Classification Algorithms used for Comparison
	Support Vector Machine (SVM)
	Naïve Bayes
	Decision Tree Algorithm
	Extreme Learning Machine (ELM) Algorithm
	Performance Comparison of Classification Algorithms
	Unbalanced Datasets
	Balanced Datasets

	Discussion
	Conclusion and Future Work
	Bibliography
	Appendix Script of the Long Short-Term Memory model used to classify BGP datasets

