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Abstract

A 2-regular digraph is one where every vertex has in-degree and out-degree 2. This thesis
focuses on surface embeddings of 2-regular digraphs, one where the underlying graph is
embedded in a surface and all faces are bounded by directed closed walks. Immersion acts
as a natural minor-like containment relation for embedded 2-regular digraphs and this
theory is linked to undirected graph minors by way of the directed medial graph.

We parallel the theory of undirected graphs in surfaces by proving analogues of Whitney’s
Theorem and Tutte’s peripheral cycles theorem for 2-regular digraphs in the sphere. Then,
using a notion of branch-width and a 2-regular digraph grid theorem by Johnson, we prove
that for each fixed surface S, the 2-regular digraphs embeddable in S are characterized by a
finite list of immersion obstructions. We then present the current state of the art with regard
to classification of obstructions for surfaces: Johnson characterized the sphere obstructions,
we classify all projective plane obstructions, and we have a computer assisted partial list of
obstructions for the torus and Klein bottle.

We also consider two open problems in the world of undirected graphs on surfaces and
resolve their analogues in the world of 2-regular digraphs on surfaces. The first conjecture
by Negami we resolve in the affirmative, that a 2-regular digraph has a finite planar cover if
and only if it is projective planar. The second, the strong embedding conjecture, is resolved
in the negative and we provide an infinite family of well connected counter-examples.

Keywords: Planar graphs (05C10), Directed graphs (05C20), Eulerian graphs (05C45),
Graph structure (05C75), Graph minors (05C83)
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Chapter 1

Introduction

This thesis centers around 2-regular digraphs, directed graphs where each vertex has in-
degree and out-degree 2, and surface embeddings of these digraphs. We use the term surface
for a closed 2-manifold without boundary. And we say that a 2-regular digraph embeds in a
surface S if the underlying graph (a graph formed from a digraph by replacing every directed
edge with an undirected edge) embeds in S, and additionally if at every vertex v the edges
incident to v alternate in-out-in-out around v (see Figure 1.1).

Recall that an embedding, of an undirected graph G = (V,E) in S, is a map φ that sends
vertices in V injectively to points in S, and edges uv in E to pairwise internally disjoint
simple curves where φ(u) and φ(v) are the endpoints of the curve φ(uv) and φ(uv)∩φ(x) = ∅
for all x ∈ V \ {u, v}. The faces of φ are the connected components of S − (φ(V ) ∪ φ(E)).
Each face, F , of φ is bounded by a disjoint union of closed walks in G; accordingly, we
may refer to these closed walks as the face F as well. An embedding is 2-cell if each face is
homeomorphic to an open disk. Note that in a 2-cell embedding each face is bounded by a
single closed walk in G.

v

Figure 1.1: A 2-regular digraph, before and after splitting a vertex, embedded in a surface.

Graphs on surfaces form a minor-closed class; that is, if G has an embedding in a surface
S, then so does every minor of G. (Recall that an undirected graph H is a minor of an
undirected graph G if H is isomorphic to a graph obtained from a subgraph G′ of G by
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contracting a set of edges A ⊆ E(G′).) Saying this a different way: If G is embedded in S,
then for every e ∈ E(G) both G−e (G delete e) and G/e (G contract e) are embedded in S.
To see this, note that the deletion of e maintains the fact that all curves of φ(E(G)\{e}) are
pairwise internally disjoint. For contracting, choose x ∈ S where for each edge f incident
to an endpoint of e, one can continuously deform φ(f) so that all edges remain pairwise
internally disjoint and have a new common endpoint x.

The class of 2-regular digraphs embeddable in a surface S is similarly closed under
vertex splits, which we now define. Let D be a 2-regular digraph. To split a loop-free1

vertex v ∈ V (D), with in-edges e0, e1 and out-edges f0, f1, is to delete v, add an edge from
the tail of ei to the head of fj , and add an edge from the tail of ei+1 to the tail of fj+1 with
indices expressed modulo 2. Note that there are two ways to split a single vertex.

The digraph H obtained after splitting v is also 2-regular; thus, the class of 2-regular
digraphs is closed under vertex splits. To see that the class of 2-regular digraphs embeddable
in a surface S is also closed under vertex splits consider D as an embedded graph with
v ∈ V (D). Since the edges incident to v alternate in-out-in-out, the underlying graph
obtained after splitting v is embedded in S, and all neighbors of v have incident edges that
alternate in-out-in-out (see Figure 1.1).

The class of 2-regular digraphs under immersion (to be defined in Section 1.2) was
studied in Johnson’s 2002 thesis [20]. A chief result of his thesis is an rough structure
theorem for excluding a fixed 2-regular digraph as an immersion. This is an analogue of
some of the work in Robertson and Seymour’s Graph Minors project [32, 33, 34]. The
main goal of this thesis is to continue the work of Johnson and prove further graph minor
analogues for 2-regular digraphs. However, before we embark on this, we with to motivate
the study of the 2-regular digraph. And to do so we examine a naturally occurring instance
of a 2-regular digraph, the medial graph of an undirected graph embedded in an orientable
surface.

1.1 The medial graph

The class of 2-regular digraphs, equipped with the embedding definition above, is perhaps
a strange class to study. As a means to motivate this, we take a quick detour through the
medial graph construction. The medial graph has been studied in various different contexts
such as voltage and current graphs [6, 3] and graph polynomials/knots [9, 10, 24].

Let G be an undirected graph and let φ be an embedding of G into a surface S with
faces F . Form the undirected medial Gφ as follows:

• Let V (Gφ) = E(G).

1Splitting is defined at a more granular level in Section 1.2, so as to include loop edges.
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• For e, f ∈ V (Gφ), if e and f are consecutive in a facial walk from F , then ef ∈ E(Gφ).

Observe that Gφ is a 4-regular graph. This can be seen since each edge e ∈ E(Gφ)
appears exactly twice in faces of F and each occurrence of e contributes 2 to the degree
of e in Gφ. Furthermore, note that Gφ has a natural embedding ψ in S where each face
corresponds either to a face in F or a vertex in V (G). In fact, this forms a proper 2-coloring
of the faces of Gφ.

Figure 1.2: The directed medial of a graph embedded in the sphere.

If S is an orientable surface, then we can orient the edges of Gφ to form a directed medial
as follows:

• Choose one of the two color classes of faces of ψ.

• For each face in this color class, orient the edges so that the facial walks are directed
clockwise walks in S.

• Observe that the facial walks of the other color class are directed anticlockwise in S.

Let −→Gφ denote a directed medial of G. Observe that ψ is now an embedding of a 2-regular
digraph since every vertex of −→Gφ locally alternates in-out-in-out.

Additionally, this construction is reversible: if you take a 2-regular digraph D and an
embedding of D into an orientable surface S, one can read off an associated undirected
graph by reversing the construction described above.

There is also a strong link between an undirected graph G and an associated directed
medial graph D by way of minors of G and vertex splits of D. To see this, consider G and
D as embedded graphs on some orientable surface S (see Figure 1.2 for an example). Take
an edge e ∈ E(G) and observe that G− e and G/e have associated medial graphs obtained
by considering the two vertex splits of e ∈ V (D). Of course, this is also reversible: start
with e ∈ V (D) and split e in both ways and observe that there are associated undirected
graphs obtained from G by deleting e and contracting e.

3



1.2 Immersion

Let D = (V,E) be a digraph. Let e, f ∈ E where e = xy and f = zw. If x = y then we say
that e is a loop. If e 6= f but x = z and y = w, then we say that e and f are parallel edges.
Similarly, if e 6= f but x = w and y = z, then we say that e and f form a digon, {e, f}, or
a directed cycle of length 2.

For all v ∈ V we define E+(v) to be the set of edges whose tail is v and E−(v) to
be the set of edges whose head is v and we define E(v) = E+(v) ∪ E−(v). We call E+(v)
out-edges of v and E−(v) in-edges of v, and define deg+(v) = |E+(v)| as the out-degree
of v, deg−(v) = |E−(v)| as the in-degree, and deg(v) = |E(v)| is the degree of v. If D is
connected and deg+(v) = deg−(v) for all v ∈ V , then D is Eulerian. For a vertex v ∈ V , if
deg+(v) = deg−(v) = k then we say that v is k-regular. If all vertices in V are k-regular,
then D is k-regular.

For X ⊆ V let δ+
D(X) denote the set of edges with a tail in X and a head in V \ X,

let δ−D(X) denote the set of edges with a head in X and a tail in V \X, and let δD(X) =
δ+
D(X) ∪ δ−D(X). We call δD(X) an edge-cut of X. (When the context is clear we will drop
the subscript D.) We use the following notation to denote the sizes of the above sets of
edges: d+(X) = |δ+(X)|, d−(X) = |δ−(X)|, and d(X) = |δ(X)|. For Y ⊆ V disjoint from
X, we let d(X,Y ) denote the size of a minimum edge cut separating X from Y .

A walk in D is an ordered alternating sequence W = v1, e1, v2, e2, · · · ek−1, vk where
ei = vivi+1 for all 0 < i < k. The walkW is a trail if each ei is distinct. Let trails(D) denote
the set of trails of D. We say that a walk is closed if v0 = vk. If a walk in D uses every edge
in E exactly once, then we call the walk Eulerian. If an Eulerian walk is closed, we call it
an Euler tour.

For a digraph H, we say that H is immersed in D if there is a pair of functions (φ, φ′)
where φ : V (H) → V (D) is injective and φ′ : E(H) → trails(D) where for e = xy ∈ E(H)
we have φ′(e) = u1, e1, · · · , ek−1, uk with φ(x) = u1 and φ(y) = uk, and for any f ∈ E(H),
with f 6= e, φ′(e) and φ′(f) are edge disjoint. We say that an edge e ∈ E(H) and the trail
φ′(e) correspond.

Observe that in a digraph a walk, W = v1, e1, v2, e2, · · · ek−1, vk, is determined by the
sequence of edges (e1, e2, . . . , ek−1) (vi is the tail of ei and vi+1 is the head of ei for 1 ≤ i < k).
In light of this, we will abuse notation by treating walks as sequences of directed edges. This
treatment is used throughout the thesis. A subwalk U of W is a subsequence of consecutive
elements of W denoted U ⊆W .

For v ∈ V (D), we define a transition at v as an ordered pair of edges, t = (e, f), where
e is an in-edge of v and f is an out-edge of v. If e = uv and f = vw then we say that u is
the tail of t and that w is the head of t and {u,w} are the endpoints of t. Let T (v) denote
the set of transitions at v. Let T (D) =

⋃
v∈V (D) T (v) denote the set of all transitions of D.

Because of our notational abuse above, one may consider a transition as a walk of size 2.

4



1.2.1 2-regular digraph immersion

A 2-regular digraph D can have loops, digons, and parallel edges; D can also include a
somewhat unusual object, an edge with no endpoint. Such an edge should be viewed as a
directed circle, and it forms a component of the digraph. We call such an edge pointless.
Although this is a strange object, it appears naturally in the theory. (It is found in [10],
where it is called a “free loop”.) Given a vertex v with deg+(v) = deg−(v) = 1 and in-edge
e = uv and out-edge f = vw, to suppress v is to delete v and add an edge from u to w. If
{e, f} is a digon, then suppressing v creates a loop. If e = f , then we have a loop at v and
suppressing v creates a pointless edge.

Observe that since D is 2-regular, |T (v)| = 4 for all v ∈ V (D). Note that if e is a loop
at v, then t = (e, e) is a transition at v. If s, t ∈ T (v) with s = (e1, f1) and t = (e2, f2) we
say that s and t are complementary transitions at v if e1 6= e2 and f1 6= f2, (as splitting
either of them yields an isomorphic graph).

Let W = e1, . . . , ek be a directed walk in D. Thanks to our (above) abuse of notation,
when a transition t = (ei, ei+1) ⊆ W then we say that t is contained in W . We may also
replace the edges from t and write W = e1, . . . , ei−1, t, ei+2, . . . , ek. If W is closed, then
the transition (ek, e1) is also contained in W . And in the extreme case when k = 1 and
W is a closed walk (W is just a loop), we consider the transition (e1, e1) to be contained
in W . For a graph with a component that is a pointless edge e, the possible walks using e
are just (e, e, . . . , e) with e appearing k times to indicate the number of times that e has
been traversed in the walk. Note that as a pointless edge had no vertex, no transitions are
associated with a walk using a pointless edge.

v
or

v1

v2

v1

v2

Figure 1.3: Splitting a vertex with a transition.

Let t = (e1, f1) and s = (e2, f2) be complementary transitions from T (v). To split v
with t (or s) is to, for i ∈ {1, 2}:

i. Create children vertices v1 and v2.

ii. Change the head of ei to vi.

5



iii. Change the tail of fi to vi.

iv. Delete the now isolated v.

v. Suppress children vertices v1 and v2.

We call the new graph formed D/t (or D/s). For any two complementary transitions t
and t′, we have that D/t = D/t′. This implies that for every v ∈ V (D) at most 2 distinct
digraphs, up to isomorphism, can be obtained from splitting v.

It is helpful to have multiple ways of thinking about immersions of 2-regular digraphs.
Propositions 1.1 and 1.2 relate 2-regular digraph immersion to the vertex split operation.
We provide proof sketches of the “only if” direction for each proposition.

Proposition 1.1. Let H and D be 2-regular digraphs. H is immersed in D if and only if
a graph isomorphic to H can be obtained from D by the following sequence of operations:

i) Delete the edges of an Eulerian subgraph of D.

ii) Split a set of vertices of D.

iii) Suppress vertices of in-degree and out-degree 1.

iv) Delete isolated vertices and pointless edges.

Proof sketch. If H is immersed in D with (φ, φ′), then D − φ′(E(H)) breaks into Eulerian
components. Form D′ from D by deleting the edges of these components. Observe that every
vertex of D′ is either isolated, 1-regular, or 2-regular. For a 2-regular vertex v ∈ V (D′), if
v is not the endpoint of any trail from φ′(E(H)), then split v with the transition (or its
complement) that appears in a trail, from the immersion, through v. The 2-regular vertices
of D′ that are endpoints of trails of φ′(E(H)) come from φ(V (H)).

Proposition 1.2. Let H and D be connected 2-regular digraphs. H is immersed in D if
and only if a graph isomorphic to H can be obtained from D by a sequence of vertex splits
of D.

Proof. The “if” direction follows immediately from Proposition 1.1. For the “only if” direc-
tion, let H be immersed in D with the sequence of operations from Proposition 1.1. We
will split all vertices as instructed by Proposition 1.1 and replace deletion by splitting in
the following way: Let D′ be the union of the Eulerian subgraphs of D whose edges are to
be deleted. Consider a connected component D′′ ⊆ D′. Observe that D′′ contains at least
one 1-regular vertex v. Take an Euler tour W of D′′. Instead of deleting the edges of D′′,
split each vertex u ∈ V (D′′), where u 6= v, with one of the transitions from T (u) that are
contained in W . This results in a loop at v which can be split so as to not create a pointless
edge. Repeat for other connected components of D′.
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1.3 Combinatorial embeddings of 2-regular digraphs

Let S0 = {~x ∈ R3 : ‖~x‖ = 1} denote the 2-sphere (or sphere).2 Let Sh denote the surface
obtained from S0 by adding h handles to it, and let Nk denote the surface obtained from S0

by adding k cross-caps to it. We refer the reader to [26] for a proof of the fact that every
surface is homeomorphic to one of Sh or Nk with h ≥ 0 and k ≥ 1. We call Sh the orientable
surface of genus h and Nk the nonorientable surface of genus k. We define the Euler genus
of a surface to be eg(Sh) = 2h and eg(Nk) = k.

In 1963, using what he calls “the capping operation”, Youngs shows that embeddings
of undirected graphs in surfaces of minimal genus are necessarily 2-cell. We inherit the
following proposition from his work.

Proposition 1.3 (Youngs [49]). Every embedding of a 2-regular digraph in a surface of
minimum Euler genus is a 2-cell embedding.

Proof sketch. Let φ be an embedding of a 2-regular digraph in a surface S of minimal Euler
genus. Suppose towards a contradiction that φ is not 2-cell. Thus, there exists a face F ⊆ S
that is not homeomorphic to a disk where F contains a 2-manifold with boundary that has
possibly many boundary components. Modify S by capping these boundary components
with a disks from R2. This yields an embedding of D in a surface with lower Euler genus,
contradicting the assumption.

In light of Proposition 1.3, we introduce the following combinatorial description of an
embedding of a 2-regular digraph that is used extensively in the thesis. A 2-cell embedding
of a 2-regular digraph is defined as follows: For a 2-regular digraph D we define a 2-cell
embedding of D, denoted Ω, to be a collection of directed closed walks where each edge
of D appears twice and where each transition in T (D) is contained in exactly one closed
walk from Ω. (An analogous embedding definition also holds for undirected cubic graphs,
where transitions are defined as unordered adjacent edge pairs.) Each directed closed walk
F ∈ Ω is called a face of Ω. Given D and Ω, we can construct a surface S by sewing an open
disk onto the boundary of each face, i.e. “capping”. As such, this embedding necessarily
corresponds to a 2-cell embedding of D. We say that Ω is orientable (nonorientable) if S is
orientable (nonorientable).

Given a 2-cell embedding Ω of D, we say that a bipartition {A,B} of Ω is a partition
of Ω where

⋃
F∈AE(F ) = E(D) =

⋃
F∈B E(F ). Note that in a bipartition of Ω, every edge

e ∈ E(D) appears exactly once in both A and B.

2Throughout the thesis we predominately work with the sphere, but we also occasionally work with the
plane, R2, (recalling that the sphere is the one point compactification of the plane) and the disk. 2-regular
digraphs embed in the sphere if and only if they embed in the plane if and only if they embed in a disk. The
reason for making the distinction is to occasionally rely on the distinguished outer (unbounded) face of the
plane and to rely on the boundary of the disk.
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AB

Figure 1.4: An orientable embedding with bipartition {A,B} and faces A ∈ A and B ∈ B.

Proposition 1.4. Let D be a 2-regular digraph. A 2-cell embedding Ω of D is orientable if
and only if Ω has a bipartition.

Proof sketch. Let Ω be an orientable embedding in a surface S. Since S is orientable, fix a
global clockwise orientation of S. Define A,B ⊆ Ω by: F ∈ A (F ∈ B) if the directed walk
in D is clockwise (counter clockwise). The partition {A,B} is a bipartition of Ω, because
for every edge e ∈ E(D), e is incident to one face in A and one in B.

Conversely, let {A,B} be a bipartition of Ω. We follow the construction of a surface S,
but now we equip each open disk with an orientation. For every F ∈ A (F ∈ B), we orient
the associated disk so that the directed closed walk F is clockwise (counter clockwise). This
gives S a consistent orientation.

We define the Euler genus of a 2-regular digraph in analogy with undirected graphs. Let
D = (V,E) be a connected 2-regular digraph with n = |V | ≥ 1 and e = |E|. Let Ω be an
embedding of D in some surface with f = |Ω|. The Euler characteristic of Ω is

χ(Ω) = n− e+ f,

and the Euler genus of Ω is
eg(Ω) = 2− χ(Ω).

The Euler genus of D, denoted eg(D), is the minimum eg(Ω) over all embeddings Ω of D.
For n = 0, D consists solely of a pointless edge e. In this case, recall that T (D) = ∅;

however, according to our definition of a 2-cell embedding, there must exist closed walks
that cover e twice. This can be accomplished in two distinct ways: Ω1 = {(e), (e)} and
Ω2 = {(e, e)}. Taking Si to be the surface formed by sewing disks onto the face(s) of
Ωi, one can see that S1 is homeomorphic to the sphere and S2 is homeomorphic to the
projective plane. If e contributes zero to the edge count then this fact is verified via Euler
characteristic. For simplicity of presentation we generally omit pointless edges from our
analysis; nonetheless, the results in the thesis extend naturally to include it.
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Chapter 2

2-Regular Digraphs in the Sphere

In 1930 Kuratowski proved a famous result in topological graph theory classifying the graphs
that embed in the sphere. (An undirected graph H is a topological minor of an undirected
graph G if G contains a subdivision of H as a subgraph.)

Theorem 2.1 (Kuratowski [22]). A graph has an embedding in the sphere if and only if it
does not contain K5 or K3,3 as a topological minor.

Let φ1 and φ2 be 2-cell embeddings of an undirected graph G in surfaces S1 and S2.
We say that φ1 and φ2 are equivalent if their sets of facial walks in G are equal. If all
2-cell embeddings of G in a surface S are equivalent to φ, then we say that φ is the unique
embedding of G in S. If G is embedded in the sphere and G is not suitably connected, then
it is possible to modify the embedding to obtain an inequivalent embedding of G in the
sphere. One such modification is the Whitney flip (see Figure 2.1).

Let φ be a 2-cell embedding of G in a surface S. Suppose that D ⊆ S is homeomorphic
to a closed disk, and suppose that the boundary of D meets G in exactly two points, say x
and y. Then there is a homeomorphism α mapping D to a closed unit disk D′ ⊆ S0 where
α(x) and α(y) are antipodes of D′. Applying the map α, followed by the mirror reflection
of D′ through the line containing α(x) and α(y), and then applying α−1 gives us a new
embedding φ′ of G in the same surface S. We call this operation a Whitney flip of the disk
D. In 1933, Whitney proved the following theorem describing embeddings of 2-connected
undirected graphs in the sphere.

Theorem 2.2 (Whitney [48]). If φ1 and φ2 are embeddings of a 2-connected graph G in
the sphere, then by applying a sequence of Whitney flips, φ1 can be transformed into an
embedding equivalent to φ2.

For a 3-connected graph no meaningful Whitney flip can be performed, so by Theorem
2.2 we obtain the following corollary.

Corollary 2.3 (Whitney [48]). Any two embeddings of a 3-connected graph in the sphere
are equivalent.
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Figure 2.1: A Whitney flip of an undirected graph.

Another way to obtain Corollary 2.3 is through Tutte’s notion of peripheral cycles. In
1963, Tutte defines a peripheral cycle, of a connected graph G, as an induced cycle C where
G − V (C) is connected. Observe that for a connected graph G embedded in the sphere,
every peripheral cycle of G must be the boundary of a face by the Jordan Curve Theorem.

Theorem 2.4 (Jordan Curve Theorem - Veblen [46]). Any simple closed curve C in the
plane divides the plane into exactly two arcwise connected components. Both of these regions
have C as the boundary.

Tutte then proves the following theorem which, equipped with the above observation,
results in Corollary 2.3.

Theorem 2.5 (Tutte [45]). Every edge in a 3-connected undirected graph is contained in
at least two peripheral cycles.

In this chapter we prove 2-regular digraph analogues of the results listed above.

2.1 The sphere obstruction

The first 2-regular digraph analogue that we prove is the classification of the immersion-
minimal sphere obstructions. There turns out to be a single obstruction for the sphere, C1

3 .
For now, let C1

3 be the 2-regular digraph depicted in Figure 2.2. (We will provide a general
definition for the notation of C1

3 in Chapter 4.)

Figure 2.2: C1
3 the unique planar obstruction.
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Theorem 2.6 (Johnson). A 2-regular digraph has an embedding in the sphere if and only
if it has no C1

3 as an immersion.

Theorem 2.6 is attributed to Johnson [20], although its proof was never published. The
first step in the proof is to show that C1

3 has no embedding in the sphere. To do so we
prove the following more general fact about minimal feedback edge sets (set of edges when
removed from a digraph, leaves the digraph acyclic) of a 2-regular digraph.

Proposition 2.7. If D = (V,E) is a 2-regular digraph with a minimum feedback edge set
A, then eg(D) ≥ 2 + |V | − 2|A|.

Proof. Consider a minimum Euler genus 2-cell embedding Ω of D. Since faces in Ω are
directed closed walks and D−A is acyclic, this implies that every face from Ω uses an edge
from A. Therefore, |Ω| ≤ 2|A| since every edge is in at most 2 faces. Since D is 2-regular,
we have that 2|V | = |E|, and applying Euler’s formula we obtain

eg(Ω) = 2 + |V | − |Ω| ≥ 2 + |V | − 2|A|.

Let D be a 2-regular digraph with v ∈ V (D) and t ∈ T (v). We define a marked split of
t as a split of v with t (see the definition in Section 1.2.1) except the last step v. (where
you suppress the children vertices v1 and v2) is omitted and instead an undirected edge or
chord is placed between the children vertices v1 and v2. Note that performing a marked
split results in a mixed graph (one with both directed and undirected edges). This mixed
graph representation is convenient for immersion, as it serves as an intermediate step for
splitting a transition. Contract the chord v1v2 to undo the split at v, and delete the chord
and suppress v1 and v2 to complete the split at v. We used mixed graphs quite heavily in
the thesis, and their first appearance is here, in the proof of Johnson’s Theorem.

Proof of Theorem 2.6. First, see that C1
3 has no embedding in the sphere since a pair of

parallel edges form a minimum feedback edge set. So, eg(C1
3 ) ≥ 1 by Proposition 2.7.

Next we show that a 2-regular digraph with no embedding in the sphere contains C1
3 as

an immersion. Let D = (V,E) be a 2-regular digraph. We may assume that D is connected
(else restrict the proof to a connected component of D). Choose an Euler tour W of D. Let
v ∈ V and consider the behavior of the tourW at v. The tourW must pass through v twice,
say using the complementary transitions (e1, f1) and (e2, f2). Perform the marked split of
these transitions forming chord v1v2 so vi lies on the directed path with edge sequence ei, fi.
We may unambiguously refer to this chord as v as each chord of H corresponds to a vertex
of D.

If we do this at every vertex of D, we obtain a mixed graph H where U is the set of
chords, and E (the original edge set of D) is the set of directed edges of H. Note that (the
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edge sequence) W forms a directed cycle in H. We shall view H drawn with W as a circle
and all other edges as chords. We say that two chords cross if their endpoints interleave on
W . That is, u, v ∈ U with endpoints u1, u2 and v1, v2 respectively, cross if (u1, v1, u2, v2)
occurs in this order on W .

Based on this, we construct an auxiliary graph K with vertex set U and an edge between
u, v ∈ U if u and v cross. We call this graph a circle graph. We now split into cases depending
on whether K is bipartite. If K is a bipartite graph, then we may partition our chords into
two sets {A,B} so that no two chords in the same set cross. Based on this we can embed
the underlying graph of H in the sphere by first embedding the undirected cycle W in the
sphere and then embedding the chords from A and B in separate faces of S0 −W . Observe
that contracting all chords from U yields our original 2-regular digraph D embedded in S0.

The remaining possibility is that K is not bipartite, and in this case we may choose an
induced odd cycle C ⊆ K. For every chord v ∈ U that is not in V (C), delete v and suppress
the 1-regular vertices formed in H. Let H ′ be the mixed graph obtained by doing this for
every chord not in V (C), and let K ′ be its corresponding circle graph. Observe that the H ′

is immersed in D and that K ′ is precisely C.
If our cycle C = K ′ has length > 3 then we will modify it to make it shorter by two.

To do this, we choose two consecutive vertices u, v on C. Recall that u and v are chords
coming from some splits of respective transitions tu and tv in T (D). Consider the mixed
graph H ′′ formed from H ′ by contracting u and v, then splitting u and v with respective
transitions t′u and t′v where t′u 6= tu and t′v 6= tv and t′u is not a complement of tu and t′v is
not a complement of tv.

Note that H ′′ is immersed in D and that its associated circle graph is still a cycle but
is now two vertices shorter. By repeating this process, we may obtain a mixed graph H ′′′

immersed in D with the property that H ′′′ has exactly 3 chords and its circle graph is a
triangle. It follows that after contracting the chords of H ′′′, the 2-regular digraph C1

3 is
formed.

One can also view the proof of Theorem 2.6 through the lens of the pointless edge.
Taking an Euler tour of a 2-regular digraph is equivalent to choosing an immersion of the
pointless edge. Therefore, the proof essentially asks (in language we will introduce in Section
3.2.3) whether or not the chord model of a pointless edge immersion has an embedding in
the sphere.

2.2 Tutte’s peripheral cycles

Let Ω1 and Ω2 be 2-cell embeddings of a 2-regular digraph D in surfaces S1 and S2. As
in the case of undirected graphs, we say that Ω1 and Ω2 are equivalent if Ω1 = Ω2. If all
2-cell embeddings of D in a surface S are equivalent to Ω, then we say that Ω is the unique
embedding of D in S. By Corollary 2.3, undirected graphs have unique embeddings in the
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sphere if they are 3-connected. For 2-regular digraphs in the sphere, we will show that
strong 2-edge-connectivity guarantees unique embeddings. A digraph D is strongly k-edge-
connected if D−F is strongly connected (there is a path to and from every pair of vertices
in D) for any F ⊆ E(D) where |F | < k.

Next, we motivate the definition of a peripheral cycle for 2-regular digraphs. Consider a
2-regular digraph H and an embedding φ of H in S0. Let C ⊆ H be a directed cycle, and let
D1 and D2 be the components of S0−φ(C) (since φ is an embedding in the sphere, both D1

and D2 are homeomorphic to a disk). Since the local rotation at each v ∈ V (C) alternates
in-out-in-out, it follows that the two edges in E(H) \ E(C) incident to v are either both
contained in the closure of D1 or the closure of D2. This implies that H is disconnected
unless one of the Di was a face in φ. Thus, we define C to be peripheral if H − E(C) is
connected.

Theorem 2.8. Every edge in a strongly 2-edge-connected Eulerian digraph is contained in
at least two peripheral cycles.

Proof. Let D be a strongly 2-edge-connected Eulerian digraph with e = uv an edge of
D. Our first goal will be to find one peripheral cycle through e. To do this, we choose a
directed path P from v to u so as to lexicographically maximize the sizes of the components
of D′ = D− (E(P ) ∪ {e}). That is, we choose the path P so that the largest component of
D′ is as large as possible, and subject to this the second largest is as large as possible, and
so on.

We claim that D′ is connected. Suppose towards a contradiction that D′ has components
D1, D2, . . . , Dk with k > 1 where Dk is a smallest component. Let P ′ ⊆ P be the shortest
directed path that contains all vertices of V (Dk)∩V (P ). Let x be the first vertex of P ′ and
y the last (P ′ is directed). By construction, Dk contains both x and y. Furthermore, since
Dk is Eulerian, we may choose a directed path P ′′ in Dk from x to y. If there is a component
Di with i < k which contains a vertex in the interior of P ′, then we get a contradiction to
our choice of P , since we can reroute P along P ′′ instead of P ′ and get a new path which
improves our lexicographic ordering. Therefore, all vertices in the interior of P ′ must also
be in Dk. However, in this case Dk ∪ P ′ is a subgraph which is separated from the rest of
the graph by just two edges, and we have a contradiction to the strong 2-edge-connectivity
of D. It follows that k = 1, so the cycle C = P, e is indeed peripheral.

Since C is peripheral, there exists a directed path from v to u with no edges in common
to P . Choose Q to be such a path so that the unique component of D− (E(Q)∪{e}) which
contains P is as large as possible, and subject to that we lexicographically maximize the
sizes of the remaining components. By the same argument as above, this choice will result
in another peripheral cycle.
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Similar to the undirected case, given an embedding of a 2-regular digraph in the sphere,
every peripheral cycle must bound a face by the Jordan Curve Theorem 2.4. This fact
together with Theorem 2.8 implies a corollary analogous to Corollary 2.3.

Corollary 2.9. Any two embeddings of a strongly 2-edge-connected 2-regular digraph in the
sphere are equivalent.

2.3 Whitney flips

A Whitney flip of a 2-regular digraph H embedded in a surface S, is a Whitney flip of a
closed disk D ⊆ S in the underlying graph where we insist that D intersects H in points
interior to edges of H. In this section, we prove the following analogue to Theorem 2.2.

x

y

D

x

y

D

Figure 2.3: A Whitney flip of a 2-regular digraph.

Theorem 2.10. If Ω and Ω′ are embeddings of a connected 2-regular digraph D in the
sphere, then by applying a sequence of Whitney flips, Ω can be transformed into an embedding
equivalent to Ω′.

Our proof of Theorem 2.10 utilizes the notion of an induced embedding for 2-regular
digraphs. Let D be a connected 2-regular digraph with an embedding φ into a surface S. Let
H be a 2-regular digraph immersed in D. By Proposition 1.1, H can be obtained from D by
deleting edges of Eulerian subgraphs, splitting some set of vertices X ⊆ V (D), suppressing
1-regular vertices, and deleting isolated vertices and pointless edges. Consider the embedded
graph φ(D), and observe that the above operations can be performed in such a way as to
yield an embedded graph φ(H) in S. That is, the underlying graph of H remains embedded
in S, and the local rotation of curves with a common endpoint x ∈ φ(H) alternate in-out-in-
out around x. We call φ the induced embedding of H. In general, if φ is a 2-cell embedding
of D, φ may not be a 2-cell embedding of H. However, if φ is an embedding in the sphere,
then the induced embedding is 2-cell as long as H is connected.

Given a 2-regular digraph D = (V,E) and X ⊆ V with d+(X) = d−(X) = 1, we let DX

denote the 2-regular digraph formed from D by deleting V \X and adding an edge from the
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tail of δ+(X) to the head of δ−(X). Note that the assumption that D is Eulerian implies
that DX must be immersed in D.

Proof. We proceed by induction on |V (D)|. If D is strongly 2-edge-connected then Ω is
equivalent to Ω′ by Corollary 2.9, thus we may assume that there exists X ⊂ V (D) such
that d−D(X) = d+

D(X) = 1, subject to this take X minimal. Consider DX and let e be
the edge from E(DX) \ E(D). Observe that DX is strongly 2-edge-connected. Suppose
towards a contradiction that it were not, then there would be X ′ ⊂ V (DX) such that
d−DX (X ′) = d+

DX
(X ′) = 1. But since dDX (X ′) ≥ dD(X ′) this would contradict the minimality

of X. Therefore, all embeddings of DX in the sphere are equivalent by Corollary 2.9.
Next, let Y = V (D) \X and consider DY with edge f from E(DY ) \E(D). Let ΩY and

Ω′Y be induced embeddings of DY obtained from Ω and Ω′ respectively. By induction ΩY

can be transformed into an embedding equivalent to Ω′Y by a sequence of Whitney flips.
Moreover, these disks can be chosen such that f is not contained in any of them (if D ⊆ S0

is a disk to be flipped that contains f , then instead flip the closure of the disk D′ = S0−D).
Apply the same sequence of Whitney flips to Ω of D, note that the disks may need to be

modified so they do not intersect the subgraph of D induced on X. After this sequence of
flips, because all embeddings of DX are equivalent in the sphere, the resulting embedding
of D is either equivalent to Ω′ or one last Whitney flip (on a disk whose boundary intersects
D in exactly two points, the interior of δ+

D(X) and δ−D(X)) needs to be performed.
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Chapter 3

Kuratowski Theorem for General
Surfaces

Given a surface S and an undirected graph G, if G has no embedding in S but every proper
minor of G has an embedding in S then we say that G is a minor obstruction for S. Let
ForbM (S) denote the set of minor obstructions for S. Similarly, let ForbT (S) denote the set
of topological obstructions for S. In the 1930’s Erdős and König [21] conjectured that for
each fixed surface S, ForbT (S) was finite. In 1989 Archdeacon and Huneke [5] proved the
conjecture to be true for nonorientable surfaces, and a year later Robertson and Seymour
[37] proved that both ForbM (S) and ForbT (S) are finite for all surfaces S.

Analogously, a 2-regular digraph that has no embedding in a surface S, but every proper
immersion of it does, is called an immersion obstruction (or simply an obstruction). We let
ForbI(S) denote the set of obstructions for S. In this chapter we prove a result analogous
to Robertson and Seymour’s.

Theorem 3.1. ForbI(S) is finite for each surface S.

Theorem 3.1 is the main result of this chapter, and naturally, we follow the road map
laid out by Robertson and Seymour in the Graph Minors project. Their proof involves
tree-decompositions (see Diestel [7] for details on tree-decompositions) and at a high level
breaks into three parts: the first proves that graphs of bounded tree-width are well-quasi-
ordered [36]; the second proves that graphs of large tree-width contain a large grid minor
[35]; and the third proves that a graph with a large grid minor cannot be a minor minimal
obstructions for a fixed surface [44].

Our proof of Theorem 3.1 follows Robertson and Seymour’s road map but relies on more
modern techniques. In 1991 [38] Robertson and Seymour introduce branch-decompositions
for graphs, and in 2002 Geelen, Gerards, and Whittle [13] establish a general theory of
branch-decompositions using symmetric submodular functions. The first theorem that we
prove in this chapter is the following well-quasi-ordering result adapted from [13] and found
in Section 3.1.
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Theorem 3.2. Let n be an integer. Then each infinite set of 2-regular digraphs with branch-
width at most n has two members such that one is isomorphic to an immersion of the other.

Figure 3.1: The medial grid of size 6.

Next in the road map, Johnson [20] proves an analogue of Robertson and Seymour’s grid
theorem for 2-regular digraphs under immersion. We state his theorem below and include
it without proof. (We will formally define the medial grid in Section 3.3.)

Theorem 3.3 (Johnson [20]). Let D be a 2-regular digraph. For any k ∈ N there exists a
n ∈ N such that if the branch-width of D is at least n, then D immerses a medial grid of
size k.

To complete the proof of Theorem 3.1 we follow an elegant argument laid out by
Thomassen [44] and prove its analogue for 2-regular digraphs under immersion.

Theorem 3.4. For every surface S, there exists k ∈ N such that no D ∈ ForbI(S) immerses
a medial grid of size k.

3.1 Well-quasi-order: bounded branch-width

The main purpose of this section is to prove Theorem 3.2, which is a well-quasi-ordering
result for 2-regular digraphs with bounded branch-width. Subsection 3.1.1 is used to intro-
duce the technical tools needed, and the proof appears in Subsection 3.1.2. We follow the
notation, terminology, and proof technique from [13].

3.1.1 Branch-decompositions

A quasi-ordering (X,�) is a set X and a relation � that is reflexive and transitive. We
say that (X,�) is well-quasi-ordered if for every infinite sequence (x1, x2, . . .) of elements
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from X, there exist i, j ∈ N such that i < j and xi � xj . There are two ways that this can
fail to exist: either an infinite antichain exists (a set of pairwise incomparable elements) or
there is an infinite strictly descending chain, a sequence (x1, x2, . . .) such that xi+1 � xi and
xi � xi+1 for all i ∈ N. Observe that 2-regular digraphs with the relation “is isomorphic to
an immersion of” forms a quasi-order with no infinite strictly descending chains.

A function λ defined on the collection of subsets of a finite ground set S is called
submodular if λ(A) + λ(B) ≥ λ(A ∩ B) + λ(A ∪ B) for all A,B ⊆ S. And it is called
symmetric if λ(A) = λ(S \A) for all A ⊆ S.

A branch-decomposition is defined abstractly in [13] for a ground set S and a symmetric
submodular function λ. However, not needing this level of generality, we will define it on the
vertex set of a 2-regular digraph with the symmetric submodular edge-cut function defined
in Section 1.2.

Let D = (V,E) be a 2-regular digraph. A branch-decomposition of D is a cubic tree (a
tree where every vertex either has degree 1 or 3) T together with an injective mapping from
V to the leaves of T . A set displayed by a subtree of T is the set of elements of V in that
subtree. A set of elements X ⊆ V is displayed by an edge e ∈ E(T ) if X is displayed by
one of the two components of T − e. Let X ⊆ V be a set of elements displayed by an edge
e ∈ E(T ), then e corresponds to an edge-cut of D that separates X and V \X. So, we define
the width of e, denoted d(e), as the size of the corresponding edge-cut in D (see Section
1.2), d(X) = |δ(X)|. We further define the width of T as the maximum width of all edges in
E(T ), and the branch-width of D as the minimum width of a branch-decomposition of D.
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Figure 3.2: A branch decomposition of width 8. Switching the leaves a and b in the branch
decomposition yields a decomposition with width 6.

Note that V may be mapped to a proper subset of the leaves of T . In such a case, we
call the leaves with no vertex assigned to them unlabeled. If T has unlabeled leaves, we can
transform T into a branch-decomposition with no unlabeled leaves by deleting the unlabeled
leaves and suppressing degree 2 vertices. Conversely, if T has no unlabeled leaves, then we
may subdivide an edge of T and add a pendant leaf.
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Let T be a branch-decomposition of D. Given distinct edges f, g ∈ E(T ), let F ⊆ V be
the set displayed by the component of T−f not containing g, and similarly, let G ⊆ V be the
set displayed by the component of T −g not containing f . If P is the shortest path between
f and g in T , notice that each edge on P displays a partition of V with F in one part and
G in the other. Thus, for every edge e ∈ E(P ) we have that d(F,G) ≤ d(e) (recall d(F,G)
is the minimum size of an edge-cut separating F from G). We say that f and g are linked
if d(F,G) appears as the width of an edge in P . We say that the branch-decomposition
T is linked if all distinct edge pairs of E(T ) are linked. The following theorem (stated for
2-regular digraphs) is an analogue of a result from Thomas [43].

Theorem 3.5 (Geelen, Gerards, and Whittle [13]). Let n be an integer. A 2-regular digraph
with branch-width n has a linked branch-decomposition of width n.

A rooted digraph, denoted (D, r), is a digraph D with a distinguished root vertex r ∈
V (D). We call δ(r) the root edges of (D, r).

(HX , s)

sX

H

Figure 3.3: A digraph, a subset of vertices, and an associated rooted digraph.

Let H = (V,E) be a digraph with X ⊆ V . Form a new digraph by identifying V \X to
a single vertex s and deleting any loops formed at s. We denote the graph formed by this
operation HX . This forms a natural rooted digraph (HX , s).

Given two rooted digraphs (H, s) and (D, r), we say that (H, s) is immersed in (D, r) if
H is immersed in D with (φ, φ′), where additionally we have that φ(s) = r and for an edge
e ∈ δH(s), there exists f ∈ E(D) such that φ′(e)∩ δD(r) = {f}. We abbreviate this and say
that e maps to f under φ′.

Lemma 3.6. Let D = (V,E) be a 2-regular digraph with X1 ⊆ X2 ⊆ V . If d(X1) =
d(X1, V \X2) = d(X2), then (DX1 , r1) is immersed in (DX2 , r2).

Proof. Let H = DX1 − r1. Because H is a subgraph of DX2 , we have that H is immersed in
DX2 . Now, we extend this immersion. Consider H ′ = DX2 − E(H). By Menger’s theorem,
there are d(X1, V \X2) edge-disjoint trails in H ′ between r2 and X1. Mapping r1 to r2 and
mapping the root edges of r1 to these trails in H ′ gives the rooted immersion of (DX1 , r1)
in (DX2 , r2).
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A rooted tree is a finite directed tree with exactly one vertex with in-degree equal to
0 called the root. Note that in this case, all other vertices must have in-degree equal to 1
(since |E| = |V | − 1). The leaves are the vertices with out-degree 0. The edges incident to
the root are called root edges, and similarly, an edge incident to a leaf is called a leaf edge.
A rooted forest is a countable collection of disjoint rooted trees.

An n-edge labeling of a graph G as a map from E(G) to {0, 1, . . . , n}. Let F be a rooted
forest. If d is an n-edge labeling of F and e, f ∈ E(F ), then we say that e is d-linked to f
if F has a directed path P starting with e and ending with f such that d(g) ≥ d(e) = d(f)
for all g ∈ E(P ). Observe that being d-linked is not necessarily a symmetric property.

A binary forest (F, l, r) is a rooted forest together with functions l and r with the
following properties:

• Every tree T in F is a cubic tree whose root has out-degree 1.

• For every nonleaf edge e = uv of T , v has exactly two out-edges, a left edge l(e) and
a right edge r(e).

We state without proof, the following specialization of Robertson and Seymour’s “lemma
on trees” as it appears in [13]. Lemma 3.7 is used exclusively in the proof of Theorem 3.2.
In this proof, the binary forest (F, l, r) consists of finite binary trees, where each tree is a
linked branch-decomposition of a 2-regular digraph, and the quasi-order on the edges of the
forest is the immersion quasi-order on the rooted digraphs displayed by the edges of the
trees.

Lemma 3.7 (Robertson, Seymour [36]). Let (F, l, r) be an infinite binary forest with an
n-edge labeling d. Let (E(F ),�) be a quasi-order with no infinite strictly descending chains
and where f d-linked to e implies that e � f . If the leaf edges of F are well-quasi-ordered
by � but the root edges are not, then F contains an infinite sequence of nonleaf edges
(e0, e1, . . .) such that:

i) {e0, e1, . . .} is an antichain in (E(F ),�);

ii) l(e0) � l(e1) � · · · � l(ei−1) � l(ei) � l(ei+1) � · · · ; and

iii) r(e0) � r(e1) � · · · � r(ei−1) � r(ei) � r(ei+1) � · · · .

3.1.2 Proof of Theorem 3.2

With the necessary tools in place we now prove Theorem 3.2, that each infinite set of 2-
regular digraphs with bounded branch-width has two members such that one is isomorphic
to an immersion of the other.

Proof. Let D be an infinite set of 2-regular digraphs with branch-width at most n, and
assume towards a contradiction that it is not well-quasi-ordered by immersion. For each
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D ∈ D, by Theorem 3.5 let TD be a linked branch-decomposition with width at most n.
For each TD fix an unlabeled leaf as the root rD (if no unlabeled leaf exists, create one by
subdividing an edge of T (D) and attaching a pendant edge) and orient TD such that it is a
rooted cubic tree. For an edge e ∈ E(TD), let V e denote the set of vertices of D displayed
by the component of TD − e not containing rD. Let (De, se) be a rooted digraph where De

is shorthand for DV e .
Taking (F, l, r) as the rooted cubic forest with trees TD for each D ∈ D, define the

quasi-order (E(F ),�) as follows: For e, f ∈ E(F ), we define e � f if (De, se) is immersed
in (Df , sf ).

We now check that the assumptions required for Lemma 3.7 hold. Observe that if e, f ∈
E(F ) and f is d-linked to e, then (De, se) is an immersion of (Df , sf ) by Lemma 3.6, which
implies that e � f . Next, observe that (E(F ),�) has no strictly descending chains since
only finitely many proper immersions of a fixed graph exist. Lastly, the leaf edges are well-
quasi-ordered as they all induce a rooted isolated vertex as a graph and the root edges are
not well-quasi-ordered since D is not by assumption.

Thus, applying Lemma 3.7 there exists an infinite sequence of nonleaf edges A =
(e0, e1, . . .) such that conditions i), ii), and iii) of Lemma 3.7 hold. Our aim is to work
towards a contradiction of i). That is, we show how to find i < j such that (Dei , sei) is an
immersion of (Dej , sej ).

Observe that ii) and iii) give that, for all i < j, (Dl(ei), sl(ei)) is immersed in (Dl(ej), sl(ej))
and (Dr(ei), sr(ei)) is immersed in (Dr(ej), sr(ej)). We describe these immersions in more
detail below.

Since TD is a linked branch-decomposition of width at most n we have that d(sl(ei)) ≤ n
and d(sr(ei)) ≤ n for all i. Therefore, taking an infinite subsequence of A, A′ = (e′0, e′1, . . .)
we may assume that d(sl(e′i)) = d(sl(e

′
i+1)) and d(sr(e′i)) = d(sr(e

′
i+1)) for all i ≥ 0. Assign to

each edge of δ(sl(e′0)) a distinct left color from {1, 2, . . . , n} and to each edge of δ(sr(e′0)) a
distinct right color from {1, 2, . . . , n}. Extend the coloring for all i ≥ 0:

• (Dl(e′i), sl(e
′
i)) is immersed in (Dl(e′i+1), sl(e

′
i+1)) where edges in δ(sl(e′i)) are mapped to

edges in δ(sl(e
′
i+1)) with the same left color, and

• (Dr(e′i), sr(e
′
i)) is immersed in (Dr(e′i+1), sr(e

′
i+1)) where edges in δ(sr(e′i)) are mapped

to edges in δ(sr(e
′
i+1)) with the same right color.

Observe that edges in δ(sl(e′i)) ∩ δ(sr(e′i)) get colored with both a right and left color.
Moreover, since the subsequence A′ is infinite and there are finitely many colors {1, 2, . . . , n}
there must exist some i < j such that

• edges in δ(sl(e′i))∩ δ(sr(e′i)) and δ(sl(e
′
j))∩ δ(sr(e

′
j)) have the same left and right colors,

and

• the set of colors in δ(se′i) is the same as the set of colors in δ(se
′
j ).
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Obtain (De′i , se
′
i) from (Dl(e′i), sl(e

′
i)) and (Dr(e′i), sr(e

′
i)) by identifying edges in δ(sl(e′i))∩

δ(sr(e′i)). A similar identification yields (De′j , se
′
j ). However, this implies that (De′i , se

′
i) is

immersed in (De′j , se
′
j ) which contradicts the fact that A was an antichain.

3.2 Some helpful tools towards excluding a grid

The main purpose of this section is to establish the machinery necessary to prove Theorem
3.4. We introduce the induced 2-cell embedding and prove some genus decomposition results.
Then we introduce the concept of an immersion model.

3.2.1 Induced embedding

As mentioned in Section 2.3, if D is a 2-regular digraph embedded in a surface S, and H is a
2-regular digraph immersed in D, then the immersion operations from Proposition 1.1 can
be performed in such a way that H is also embedded in S. However, it is possible for D to
be 2-cell embedded in S and H to not be. Therefore, simply as a means of bookkeeping, we
introduce a notion of an induced embedding that preserves the property of an embedding
being 2-cell.

LetD be a connected 2-regular digraph with a 2-cell embedding Ω. We define the induced
2-cell embedding to be the 2-cell embedding obtained from splitting vertices of D. Note that
defining the induced embedding only for a vertex split is sufficient for the class of 2-regular
digraphs by Proposition 1.2.

v

h1

h0

e1

f1

e0

f0

F0,0F0,1

F1,1 F1,0

u0

w0

u1

w1

u0

w0

u1

w1

Figure 3.4: Inducing an embedding from a vertex split.

Proposition 3.8. Let D be a connected 2-regular digraph. Let Ω be a 2-cell embedding of
D. Let t ∈ T (D) and let Ω′ be the induced 2-cell embedding of D/t, then

eg(Ω′) ∈ {eg(Ω), eg(Ω)− 2}.

Proof. Let v ∈ V (D) be a loop-free vertex with E−(v) = {e0, e1} and E+(v) = {f0, f1}.
Recall that each transition of T (v) is contained in exactly one face in Ω. That is, for
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i, j ∈ {0, 1} let ti,j = (ei, fj) and consider the four, not necessarily distinct, faces Fi,j that
contain each transition. For notational clarity, let t = t0,0.

Consider D/t, and let h0 be the edge from the tail of t to the head of t and h1 be the
edge from the tail to the head of t1,1 (see Figure 3.4). Modify the edge sequence of each
Fi,j by replacing every occurrence of (e0, f0) with h0 and every occurrence of (e1, f1) (the
complementary transition) with h1 to form F ′i,j . Note that F ′i,j is not necessarily a face, but
rather a formal sequence of edges from E(D) ∪ {h0, h1}. We break into the following two
cases:

Case 1: F0,1 6= F1,0

There exist walks W and U such that F ′0,1 = W, t0,1 and F ′1,0 = U, t1,0. In the induced
embedding F ′0,1 and F ′1,0 merge to form the new face (W,h0, U, h1).

Case 2: F0,1 = F1,0

There exist walks W and U such that F ′0,1 = F ′1,0 = W, t0,1, U, t1,0. In the induced
embedding, F ′0,1 will divide to form the new faces (W,h0) and (U, h1).

In both cases, Ω has been modified to a collection of directed closed walks in D/t where
each transition in T (D/t) is contained in exactly one closed walk; i.e. a 2-cell embedding Ω′

of D/t. Note that |V (D/t)| = |V (D)| − 1, |E(D/t)| = |E(D)| − 2, and either |Ω′| = |Ω| − 1
(Case 1) or |Ω′| = |Ω|+ 1 (Case 2) yields the result via Euler’s formula.

If there is a loop edge incident to v, then a similar procedure will produce the induced
embedding of D/t.

3.2.2 Genus decompositions

ve1 f2

e2f1

D D1 D2

Figure 3.5: The configuration from Proposition 3.9.

Proposition 3.9. Let D be a connected 2-regular digraph with a 2-cell embedding Ω. If D
has a cut-vertex v with t ∈ T (v) such that D/t disconnects D into components D1 and D2,
then letting Ω1 and Ω2 be the induced 2-cell embeddings of D1 and D2 respectively,

eg(Ω) = eg(Ω1) + eg(Ω2).
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Proof. Let E−(v) = {e1, e2}, E+(v) = {f1, f2}, and ti,j = (ei, fj) for all i, j ∈ {1, 2} such
that splitting t1,1 disconnects D and the endpoints of t1,1 are in D1. Observe that since v
is a cut-vertex of D, there exists a face F ∈ Ω such that both the transitions t1,2 and t2,1
are contained in F . Notice that F splits into two faces F1 ∈ Ω1 and F2 ∈ Ω2 in the induced
embedding of D/t1,1.

Recall that the number of edges is twice the number of vertices in a 2-regular digraph.
Thus, if we let n = |V (D)|, ni = |V (Di)|, q = |Ω|, and qi = |Ωi| we obtain via Euler genus

eg(Ω) = 2 + n− q

= 2 + (n1 + n2 + 1)− (q1 + q2 − 1)

= (2 + n1 − q1) + (2 + n2 − q2)

= eg(Ω1) + eg(Ω2).

It’s important to note that the above result holds for every embedding of D; whereas
Proposition 3.10 is a result that pertains to the Euler genus of a 2-regular digraph.

For a digraph D, we say that a pair of subdigraphs (H1, H2) is a k-separation if
E(H1) ∩ E(H2) = ∅, E(H1) ∪ E(H2) = E(D), and |V (H1) ∩ V (H2)| = k. Given a k-
separation, (H1, H2), of a 2-regular digraph D we say that the k-separation is balanced
if every v ∈ V (H1) ∩ V (H2) satisfies |E+(v) ∩E(Hi)| = |E−(v) ∩E(Hi)| = 1 for i ∈ {1, 2}.

v0

v2

v

h1,0

h3,2

e0

f1

e2

f3

f0

e1

f2

e3

e0

f1

e2

f3

D D1 D2

Figure 3.6: The balanced 2-separation from Proposition 3.10.

Proposition 3.10. Let D be a connected 2-regular digraph with a balanced 2-separation
(H1, H2). Let D1 be obtained from H1 by identifying the vertices in V (H1)∩V (H2), and let
D2 be obtained from H2 by suppressing the vertices in V (H1) ∩ V (H2). Then

eg(D) ≥ eg(D1) + eg(D2).

Proof. Let V (H1) ∩ V (H2) = {v0, v2} and for k ∈ {0, 2} let E−(vk) = {ek, ek+1} and
E+(vk) = {fk, fk+1}. For i, j ∈ {0, 1, 2, 3}, let ti = (ei, fi), and for valid i 6= j pairs let
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ti,j = (ei, fj) where the endpoints of t0,1 and t2,3 lie in H1. Let T = {t0, t1, t2, t3} and let Ω
be a minimal genus 2-cell embedding of D. Consider the faces

F = {F ∈ Ω : ∃t ∈ T, t ⊆ F}.

Note that |F| ≤ 2 since every face in F has at least two ti contained in it.
Let F be the face containing t0 and observe that F ∈ F and F must also contain either

t1 or t3. We say that H2 switches (repeats) if in F after the transition t0, then next transition
from T is t3 (t1). Note that if H2 switches (repeats), then in the face with transition t2,
after t2 the next transition from T is t1 (t3). Similarly, if F ′ is the face containing t1 we say
that H1 switches (repeats) if in F ′ after the transition t1 the next transition from T is t2
(t0).

Let v ∈ V (D1) be the vertex after identifying v0 and v2. Since {e0, f1, e2, f3} ⊆ E(D1)
are the same edges as from E(D), we abuse notation and label the transitions T (v) ⊆ T (D1)
with the same notation, ti,j = (ei, fj), as from T (D). Let h1,0 and h3,2 be the edges in E(D2)
obtained after suppressing v0 and v2 respectively. We examine the following four cases for
the faces in F , and define F1 and F2 to be the set of closed walks, in D1 and D2 respectively,
that are “inherited” from F (in the following, Wj,i denotes a walk contained in either D1

or D2 from the head of fj to the tail of ei, or from the head of hi,j to the tail of hi,j , with
possibly empty edge sequence):

Case 1: Repeat in H1 and H2.

F = {(W1,0, t0,W0,1, t1), (W3,2, t2,W2,3, t3)}

F1 = {(W1,0, t0,3,W3,2, t2,1)} F2 = {(W0,1, h1,0), (W2,3, h3,2)}

Case 2: Repeat in H1 and switch in H2

F = {(W1,0, t0,W0,3, t3,W3,2, t2,W2,1, t1)}

F1 = {(W1,0, t0,3,W3,2, t2,1)} F2 = {(W0,3, h3,2,W2,1, h1,0)}

Case 3: Switch in H1 and repeat in H2

F = {(W1,2, t2,W2,3, t3,W3,0, t0,W0,1, t1)}

F1 = {(W3,0, t0,3), (W1,2, t2,1)} F2 = {(W0,1, h1,0), (W2,3, h3,2)}

Case 4: Switch in H1 and H2

F = {(W1,2, t2,W2,1, t1), (W3,0, t0,W0,3, t3)}

F1 = {(W3,0, t0,3), (W1,2, t2,1)} F2 = {(W0,3, h3,2,W2,1, h1,0)}
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For i ∈ {1, 2}, let Ω|Di denote the facial walks from Ω\F contained in Di. Observe that
in all four cases above, Ωi = Fi ∪ Ω|Di forms a 2-cell embedding of Di. Let n = |V (D)|,
q = |Ω|, ni = |V (Di)|, qi = |Ωi|, and notice that in all cases we have q = q1 + q2 − c where
c ∈ {1, 3}. We obtain via Euler genus

eg(D) = eg(Ω)

= 2 + n− q

= 2 + (n1 + n2 + 1)− (q1 + q2 − c)

= (2 + n1 − q1) + (1 + c+ n2 − q2)

≥ eg(Ω1) + eg(Ω2)

≥ eg(D1) + eg(D2).

3.2.3 Immersion model

We now define a helpful tool that we call an immersion model. A model of H in D is a
description of an immersion ofH inD that encodes the information needed to move between
the two graphs.

Chord model Model

a

b

c

c

b

a

f

f2f1

d

c

d

b

f1

f2

e

g

e1

e2

d1

d2

g1

g2
ae

g

D

Figure 3.7: Two models of C1
3 immersed in D.

If D = (V,E) is a 2-regular digraph and H is an Eulerian digraph immersed in D,
then by Proposition 1.1, H can be obtained from D by deleting edges, F ⊆ E(D), of an
Eulerian subgraph, splitting vertices X ⊆ V (D) and deleting isolated vertices and pointless
edges. If we omit the deletion of F and perform marked splits of transitions of X, and
let VX denote the set of children vertices from the marked splits, then we obtain a mixed
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digraph D∗ = (V ∗, E∗, U) where V ∗ = (V \X) ∪ VX , E∗ = E, and U is the set of chords.
Form a second digraph H∗ = (V ′, E′) from D∗ by deleting U , deleting F , and deleting
isolated vertices and pointless edges. Note that, H∗ is a subdivision of H where E′ ⊆ E∗

and V ′ ⊆ V ∗. We say that (D∗, H∗) is a model of H immersed in D; however, for readability,
we often drop D∗ and instead refer to just H∗ as the model.

Next we define an H∗-bridge, which is another analogue of a concept from the world of
undirected graphs (see [26]). An H∗-bridge is a nontrivial component of D∗− (E \F ). Note
that a chord may be (and often is) an H∗-bridge. When the model is clear we will simply
refer to an H∗-bridge as a bridge.

For an H∗-bridge, X, if v ∈ V (H∗) ∩ V (X) we say that v is an attachment vertex for
X. Given a non-chord bridge X and an attachment vertex v ∈ V (X), if you suppress v
in X we say that the newly formed edge in X is attached to D. For u ∈ V (H∗), if u is
2-regular then we call u is a branch endpoint or a branch vertex, and the directed walks in
H∗ between branch endpoints are called branches. Observe that H can be obtained from
H∗ by suppressing all attachment vertices, and that D can obtained from D∗ by contracting
all chords.

Definition 3.11 (Chord model). If H∗ is a model of H immersed in D where every bridge
is a chord, then we say that H∗ is a chord model.

If H and D are connected and H is also a 2-regular digraph, then by Proposition 1.2 H
can be obtained from D by a sequence of vertex splits. Such a model is necessarily a chord
model. We use the chord model quite heavily in Section 3.3.

Consider a subgraph J ⊆ H∗. We use BJ to denote the set of H∗-bridges with all
attachments on J . Let C ⊆ H∗ be a closed walk and let X,Y ∈ BC . We say that X and
Y cross (relative to C) if you can find an alternation of attachment vertices when walking
along C; i.e. there exist attachment vertices x, x′ of X and y, y′ of Y occurring in the order
(x, y, x′, y′) on C.

Definition 3.12 (Mixed graph embedding). Let D′ be a mixed graph where for every
vertex v ∈ V (D′), v is either 2-regular, 1-regular, or is incident to 1 in-edge, 1 out-edge, and
1 undirected edge. We say that D′ embeds in a surface S if the 2-regular digraph obtained
by contracting all undirected edges and suppressing all 1-regular vertices embeds in S.

Given a model (D∗, H∗), one can think of the D′ from Definition 3.12 as a subgraph
of D∗ after “removing” some H∗-bridges from D∗, but leaving the attachment vertices of
these bridges. This leads to a natural combinatorial description of embedding D′ itself. If we
treat the undirected edges as bidirectional edges, then the notion of a transition (as defined
in Section 1.2) can be extended to include edges of this type. Therefore, we call Ω a 2-cell
embedding of D′ if Ω is a collection of closed walks where every transition of D′ appears
exactly once and each edge of D′ appears exactly twice.
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3.3 Excluding a grid: unbounded branch-width

Equipped with the necessary tools from Section 3.2, we now set out to prove Theorem 3.4,
which states that an obstruction for a surface cannot immerse a large medial grid. We follow
the notation, terminology, and proof technique from [44].

A medial grid M of size n is a directed medial graph of Pn�Pn embedded in the plane;
where, as a convention, the clockwise cycles ofM correspond to the vertices of Pn�Pn. Note
that M is unique if n ≥ 3, since Pn�Pn is uniquely embedded in the plane by Corollary
2.3. Moreover, M has a unique embedding in the plane by Corollary 2.9. Define Sn as a
finite subgraph of the square tiling of the Euclidean plane. Let S1 be a cycle of length 4.
For n ≥ 2 we define Sn as as the union of Sn−1 and the 4-cycles in the square tiling that
intersect Sn−1. For all n ≥ 1, let Jn denote the medial grid of Sn. Note that each Jn is a
medial grid of size 2n. Consider an embedding Ω of Jn in the plane. The outer cycle is the
cycle C ∈ Ω that is the boundary of the outer face in R2. By the Jordan Curve Theorem
2.4, R2 − C divides the plane into the outer face and the interior of C.

Let J∗k be a model of a medial grid Jk immersed in a connected 2-regular digraph D,
and let C be the outer cycle of J∗k . We call the intersection of J∗k and the interior of C, the
interior of J∗k . We say that J∗k is good in D if every J∗k -bridge with an attachment in the
interior of J∗k has all attachments in a facial cycle of J∗k embedded in the plane, and the
union of J∗k and all such bridges is planar.

For the proof of Proposition 3.13 we fix some notational conventions: If a and b are
attachment vertices in J∗k , then we will always use the symbol Ra,b to denote a chord with
attachment vertices a and b. Similarly, we will always use the symbol Pa,b to denote a pair
of edge-disjoint paths to and from a and b in J∗k .

Proposition 3.13. Let D be a connected 2-regular digraph of Euler genus g that immerses
the medial grid Jm. If k ∈ N and m > 100k√g, then Jm immerses Jk with a good model in
D.

Proof. If k = 1, then all J1 models are vacuously good in D since the interior of J1 is
empty. Therefore, we may assume that k ≥ 2. Since Jm is 2-regular and D connected, let
J∗m be a chord model of the immersion by the paragraph following Definition 3.11. Since
m > 100k√g we may choose Q1, Q2, . . . , Q2g+2 disjoint subgraphs of J∗m such that after
suppressing attachment vertices, each Qj is isomorphic to Jk, and where additionally for
i 6= j, 1 ≤ i, j ≤ 2g + 2 the following is true: if xi is on the outer cycle of Qi and xj is on
the outer cycle of Qj and xi has an in-neighbor and out-neighbor in J∗m−Qi and xj has an
in-neighbor and out-neighbor in J∗m − Qj , then there exists two edge disjoint paths in J∗m
from xi to xj and back having only xi, xj in common with Q1 ∪Q2 ∪ · · · ∪Q2g+2.

We’ll show that at least one of these Qj ’s are good inD. Suppose towards a contradiction
that none of the Qj are good in D. We construct a sequenceM1,M2, . . . ,Mg+2 of connected
immersions of Jm adhering to the following conditions:
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Q1 Q2

Qj
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xi

Qi Q2g+2

Pxi,xj

Figure 3.8: Disjoint copies of Jk immersed in Jm with a pair of edge-disjoint paths Pxi,xj .

(i) M1 = Q1,

(ii) Mi ⊆Mi+1 for all 1 ≤ i ≤ g + 1,

(iii) Mi intersects at most 2i − 1 many Qj ’s, and if Mi intersects a Qj then Qj ⊆ Mi for
all 1 ≤ i ≤ g + 1, and 1 ≤ j ≤ 2g + 2,

(iv) eg(Mi) ≥ i− 1 for all 1 ≤ i ≤ g + 2.

Suppose that we have constructed Mi for 1 ≤ i ≤ g+ 1 that satisfies (i), (ii), (iii), and (iv).
We show how to constructMi+1 that satisfy the above conditions. This yields a contradiction
when i = g + 2 via (iv).

Take Mi. By (iii) there exists a Qj that does not intersect Mi. First suppose that every
chord with an attachment in the interior of Qj has its other attachment also in Qj , call
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this set of chords Ij . Let y be a vertex on the outer cycle of Qj where y has an in and
out-neighbor in J∗m −Qj . Choose y′ ∈Mi such that there exists Py,y′ ⊆ J∗m where the only
vertices from Py,y′ to intersectMi∪Q1∪· · ·∪Q2g+2 are y and y′. Let Q+

j = Qj∪Ij . Since Qj
is not good in D, Q+

j is nonplanar. Therefore, apply Proposition 3.9 to G = Q+
j ∪(Mi∪Py,y′)

(after contracting all chords in G) to obtain eg(G) ≥ eg(Q+
j ) + eg(Mi ∪Py,y′) ≥ 1 + eg(Mi)

and we can take Mi+1 = G.
Now suppose that there exists a chord Rx,x′ where x is in the interior of Qj and x′ is

not in Qj . Let y be on the outer cycle of Qj so that y is not cofacial (in the unique planar
embedding of Qj) with x, and y has an in and out-neighbor in J∗m−Qj . Once again, choose
y′ ∈ Mi such that there exists Py,y′ ⊆ J∗m where the only vertices from Py,y′ to intersect
Mi ∪Q1 ∪ · · · ∪Q2g+2 are y and y′. We break into cases based on the location of x′.

First assume that x′ is in Mi. Let G′ = Qj ∪ Rx,y. Observe that G′ is nonplanar by
Corollary 2.9. Therefore, apply Proposition 3.10 to G = (Mi∪Py,y′)∪ (Qj ∪Rx,x′) to obtain
eg(G) ≥ eg(G′) + eg(Mi ∪ Py,y′) ≥ 1 + eg(Mi). So, take Mi+1 = G.

Now assume that x′ is in J∗m − (Mi ∪ Qj). Choose x′′ ∈ Mi ∪ Py,y′ such that there
exists Px′,x′′ ⊆ J∗m where the only vertices from Px′,x′′ to intersect Mi ∪ Py,y′ are x′ and
x′′, and additionally, Px′,x′′ intersects at most one Qr for 1 ≤ r ≤ 2g + 2, r 6= j. Let
G′ = Qj∪Rx,y. Again, observe that G′ is nonplanar by Corollary 2.9. Apply Proposition 3.10
to G = (Mi ∪ Py,y′ ∪ Px′,x′′) ∪ (Qj ∪ Rx,x′) (or include Qr if it exists) to obtain eg(G) ≥
eg(G′) + eg(Mi ∪ Py,y′ ∪ Px′,x′′) ≥ 1 + eg(Mi) (or an analogous result if Qr exists). So, take
Mi+1 = G.

The next two results concern embeddings of digraphs containing good grids. In prepara-
tion for this it will be helpful to consider planar embeddings of digraphs containing (good)
grids. Let k ≥ 2 and let D be a planar digraph immersing a grid Jk with model J∗k . Let X
be a J∗k -bridge. We say that X is strong if it attaches on at least 2 distinct branches of J∗k .
Otherwise, X attaches on exactly one branch of J∗k , and we call it weak.

Consider an embedding Ω of D in the plane. First, note that Ω induces an embedding
of Jk where, by Corollary 2.9, each 4-cycle of Jk bounds a face (as does the outer cycle
of Jk); additionally, Ω induces an embedding of J∗k . Every J∗k -bridge is planarly embedded
in a disk whose boundary contains all of its attachment vertices. Moreover, the J∗k -bridges
satisfy the following:

i) If X,Y are weak bridges attaching on the same branch of J∗k and cross relative to one
of their facial walks, then they embed in distinct faces.

ii) If X is a strong bridge attaching on a facial walk C ⊆ J∗k and Y is a weak bridge such
that X and Y cross relative to C, then Y does not embed in the face bounded by C.

Conversely, if we’ve assigned each J∗k -bridge to a face of Ω containing all its attachment
vertices so that i) and ii) are satisfied, then there exists a planar embedding of D such that
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each J∗k -bridge is embedded in a disk bounded by the assigned facial walk. We call such an
embedding an assigned embedding.

Proposition 3.14. Let D be a connected 2-regular digraph of Euler genus g that immerses
a medial grid Jk whose model is good in D. Let Ω be an embedding of D with genus g. If
k ≥ 4g + 6, then the induced embedding of the medial grid Jk−4g−4 in Jk has genus zero.

Proof. Let J∗k be a good model of the Jk immersion in D. For 1 ≤ j ≤ k, consider the
subgraphs J∗j ⊆ J∗k and let Ij denote the set of J∗j -bridges with at least one attachment in
the interior of J∗j . Let J+

j = J∗j ∪ Ij . Note that J+
j is planar since J∗k is good in D.

Let Jj denote the medial grid obtained from J∗j by suppressing all attachment vertices.
For all j, Ω induces an embedding of Jj (and one of J∗j ) which we also denote by Ω. For
2 ≤ j ≤ k − 1 let Wj denote the outer cycle of Jj (where W ∗j denotes the outer cycle of
J∗j ) and let Fj denote the set of 4-cycles from Jk that contain an edge from Wj . For every
edge e ∈ Wj , there exist two 4-cycles Ie, Oe ∈ Fj that contain e where, Ie is the one with
nonempty intersection with the interior of Jj , and Oe is the other one. Let O∗e and I∗e denote
the cycles in J∗j corresponding to Oe and Ie and let O+

e = O∗e ∪BO∗e and I+
e = I∗e ∪BI∗e . We

claim that there exists an i, 1 ≤ i ≤ g + 1, such that for every edge e ∈Wk−4i+3:

i) Oe and Ie are a faces in Ω and

ii) O+
e ∪ I+

e is planar in the induced embedding Ω.

Given the existence of such an i, we call the union of O+
e ∪ I+

e for all e ∈ Wk−4i+3 a facial
ring.

Suppose that this were not the case. Then for every 1 ≤ i ≤ g + 1 you can find an
edge ei in Wk−4i+3 so that Iei or Oei is not a face in Ω or O+

ei ∪ I
+
ei is not planar in Ω. For

each i, let R′i be the 2-regular digraph obtained from the union of Iei and the collection of
4-cycles in Jk that surround Iei after suppressing the 1-regular vertices. Observe that each
R′i is isomorphic to the medial grid of P3�P3 which has a unique embedding in the plane
by Corollary 2.9. If Iei or Oei is not a face in Ω, then R′i has genus > 0 in the induced
embedding. Form Ri from R′i by taking the union of R′i and the bridges from BO∗ei ∪ BI∗ei .
If O+

ei ∪ I
+
ei is not planar in Ω, then the induced embedding of Ri has genus > 0.

We extend R1 ∪ R2 ∪ · · · ∪ Rg+1 to a connected 2-regular digraph R by the following
procedure:

• Start with R = R1.

• For each fixed 1 < i ≤ g + 1 choose a pair of edge-disjoint paths, Pi ⊆ (Jk −R), from
Ri to R.

• Add Ri ∪ Pi to R.
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Jk

Figure 3.9: Finding the planar grid in Proposition 3.14.

• To see that the genus of the induced embedding of R has increased by at least one
apply Proposition 3.9.

Since there are g + 1 many Ri’s the induced genus of R is at least g + 1 contradicting the
genus of D. Thus, such an i exists.

Note that as stated above, since J∗k is good in D, a bridge in Ik must attach in a cycle of
J∗k that corresponds to a 4-cycle of Jk. In particular, we can partition the bridges BJ∗

k−4i+3

into the following classes. Let X ∈ BJ∗
k−4i+3

, then either:

i) X ∈ Ik−4i+3 and we say that X is on the interior of J∗k−4i+3 or

ii) X is weakly attached to Wk−4i+3 and we say that X is on the boundary of J∗k−4i+3.
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We define M to be the mixed graph obtained from D by deleting the the interior of
J∗k−4i+3 and deleting all bridges in BJ∗

k−4i+3
(but leaving the attachment vertices of the weak

bridges on the boundary of J∗k−4i+3). By Proposition 1.1 M is immersed in D; moreover,
M is connected, and therefore the genus of the induced embedding of M is at most g. We
can extend the embedding of M to one of D in the following way (implying that the genus
of M is g):

First, observe that W ∗k−4i+3 is a face in the induced embedding of M , since Ie is a face
in Ω, for every e ∈ Wk−4i+3. Second, take an assigned planar embedding of J+

k−4i+3 =
J∗k−4i+3 ∪BJ∗k−4i+3

where every weak bridge on the boundary of J∗k−4i+3 embeds in the face
assigned to it from the facial ring. That is, for every e ∈ Wk−4i+3, if X is a weak bridge
attaching on the branch of J∗k−4i+3 corresponding to e, then

• if X embeds in O∗e in the facial ring, then embed X in the unbounded face of J∗k−4i+3
in the plane, and

• if X embeds in I∗e in the facial ring, then embed X in I∗e in J∗k−4i+3 in the plane.

Identifying W ∗k−4i+3 in M and J+
k−4i+3 yields an embedding of D.

To see that there exists a medial grid with whose induced embedding Ω has genus zero,
observe that every 4-cycle of Jk−4i must be a face in Ω. Otherwise, (as before) you could
take a nonfacial 4-cycle I of Jk−4i and union that with its surrounding 4-cycles to form
R′ and find a pair of edge-disjoint paths to and from R′ and M , which by Proposition 3.9
implies thatM∪R′ union the paths has genus > g, contradicting the assumption. Therefore,
Jk−4i has genus 0 in the induced embedding, and so taking the maximum possible value
for i, we obtain the smallest grid Jk−4g−4 in Jk that is necessarily planar in an induced
embedding.

We now prove Theorem 3.4. We restate it here with more exact parameters than when
mentioned before.

Theorem. Let D be a connected 2-regular digraph with no cut-vertex and let eg(D) = g but
eg(D/t) < g for any transition t ∈ T (D). Then D does not immerse Jm for m = d800g3/2e.

Proof. Suppose towards a contradiction that D contained Jm as an immersion. Let
k ≥ 4g + 4. By Proposition 3.13, Jm immerses Jk with a model that is good in D. Take a
vertex v in J1 (of this Jk) and split v with transition t, forming edges h1, h2 ∈ E(D/t). By
assumption D/t has genus < g. Let Ω be a 2-cell embedding of D/t of genus < g. We may
assume eg(Ω) = g′ = g − 1.

Notice that after splitting t,D/t immerses a medial grid Jk−1 whose model is good inD/t
where edges h1 and h2 are contained in the same 4-cycle of Jk−1. Since k−1 ≥ 4g+3 ≥ 4g′+7,
by Proposition 3.14, the induced embedding of the medial grid J(k−1)−4g′−4 in Jk−1 has
genus zero. Therefore, all the 4-cycles in J(k−1)−4g′−4 are faces in Ω. Thus, there exists
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a planar embedding of J(k−1)−4g′−4 together with all bridges that attach to the model of
J(k−1)−4g′−4 where subdividing h1 and h2, adding a chord, and contracting this chord yields
an embedding of D with genus g′ contradicting the assumption.

Now, we have the necessary tools to prove Theorem 3.1, that ForbI(S) is finite for each
fixed S.

Proof of Theorem 3.1. Let S be a fixed surface and consider ForbI(S). It follows from 3.3
and 3.4 that there exists a constant N ∈ N such that every graph in ForbI(S) has branch-
width ≤ N . Now, Theorem 3.2 implies that ForbI(S) is finite.

34



Chapter 4

Obstructions for Small Surfaces

As stated in Chapter 2, in 1930 Kuratowski [22] proved that ForbT (S0) = {K5,K3,3}, and
in 1937 Wagner [47] showed that ForbM (S0) = {K5,K3,3}. In 1979 Glover, Huneke, and
Wang [14] found a list of 103 topological obstructions for the projective plane, and in 1981
Archdeacon [2] proved that their list was complete. Unlike the sphere, after filtering this list
through the minor relation [12] we obtain a more compact list; that is, |ForbT (N1)| = 103
and |ForbM (N1)| = 35. To date, the sphere and the projective plane are the only surfaces
whose obstructions have been fully classified, but this is not for lack of trying. A 2018 paper
by Myrvold and Woodcock [27] has the current list of graphs so that |ForbT (S1)| ≥ 250, 815
and |ForbM (S1)| ≥ 17, 535.

We showed in Chapter 3 that for a fixed surface S, ForbI(S) is finite. And in Chapter 2
we showed that ForbI(S0) = {C1

3}. The purpose of this chapter is to provide the full clas-
sifications of obstructions for the projective plane as well as provide a partial classification
of obstructions for surfaces with Euler genus 2.

Theorem 4.1. ForbI(N1) =
{
C1

4 , C
2
6 , C

1
3 · C1

3 , C
1
3 ∪ C1

3
}
.

(a) C1
4 (b) C2

6
(c) C1

3 · C1
3

Figure 4.1: The connected obstructions for the projective plane.

Proposition 4.2.

ForbI(S1) ⊇
{
C1

5 , C
2
7 , D6, D10, C

1
3 · C1

3 , C
1
3 ∪ C1

3

}
.
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We define the sets: C1
3 · ForbI(S) = {C1

3 · D : D ∈ ForbI(S)} and C1
3 ∪ ForbI(S) =

{C1
3 ∪ D : D ∈ ForbI(S)}. With this, we can compactly state the partial results for the

classification of obstructions for the Klein bottle.

Proposition 4.3.

ForbI(N2) ⊇
{
C1

5 , C
2
7 , C

2
6 , D7, D9

}
∪
(
C1

3 · ForbI(N1)
)
∪
(
C1

3 ∪ ForbI(N1)
)

Now let us explain some of the naming conventions used above. For any digraph D and
i ∈ N with 0 ≤ i < |D|, letDi denote the digraph obtained fromD where for all u, v ∈ V (D),
the edge uv is added to D if the directed distance from u to v is i. Let Ck denote the directed
cycle of length k. Observe that Cik is a 2-regular digraph for 0 ≤ i ≤ k − 1. Let D1 and
D2 be 2-regular digraphs, then D1 ·D2 is a 2-regular digraph obtained by deleting an edge
uivi from Di, for i ∈ {1, 2}, and adding edges u1v2 and u2v1. Given D1 and D2 there may
be several nonisomorphic 2-regular digraphs that may be obtained by the above operation;
however, when we write D1 ·D2 we are invoking the instantiation of one of these graphs. In
the case where D1 and D2 are edge-transitive (there is an automorphism mapping any edge
of a graph to any other edge of the graph), then D1 · D2 unambiguously defines a single
graph up to isomorphism.

(a) D6 (b) D7 (c) D9 (d) D10

Figure 4.2: Some obstructions for Euler genus 2.

LetD be a 2-regular digraph with v ∈ V (D) such that e1, e2 ∈ E−(v) and f1, f2 ∈ E+(v).
The 2-regular digraph D is obtained from D by the following operations:

i) Add new vertices v1 and v2,

ii) change the head of ei to v1 and the tail of fi to v2 for i ∈ {1, 2},

iii) add a pair of parallel edges {v1v2, v1v2}, and

iv) delete the now isolated vertex v.

Given D there may be several nonisomorphic 2-regular digraphs that may be obtained by
the above operation; however, when we write D we are invoking the instantiation of one of
these graphs. In the case where D is vertex-transitive (there is an automorphism mapping
any vertex of a graph to any other vertex of the graph), then D unambiguously defines a
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single graph up to isomorphism. Observe that, for instance, C1
n is isomorphic to C1

n+1 for
n ≥ 1. We call D an inflation of D.

Lastly, the graphs D6, D7, D9, and D10 are as shown in Figure 4.2. It is perhaps curious
to note that D7 is isomorphic to D6.

4.1 Surface independent embedding results

In this section we prove some 2-regular digraph embedding results that do not rely on any
particular surface. Chief among them is the existence of two infinite families of 2-regular
digraphs where for each surface S, there exists a graph from the family that is a member
of ForbI(S). Another is the disk embedding extension problem, which is used quite heavily
in the proof of Theorem 4.1.

4.1.1 Obstructions for higher surfaces

In this section we provide two well-connected infinite families of obstructions that persists
throughout genera. Additionally, we provide some tools to help assist in determining the
Euler genus of a given 2-regular digraph. We start with the following observation. Let D be
a 2-regular digraph with a 2-cell embedding Ω in a surface with Euler genus g. To extend
Ω to a 2-cell embedding Ω of D is to continue the facial walks of Ω across the new parallel
edges of D. The extension Ω is unique since every transition of T (D) must appear exactly
once in Ω. Since no new faces were created, Ω has Euler genus g + 1. Observe that Ω is
necessarily an embedding in a nonorientable surface. We collect this fact below.

Observation 4.4. Let D be a 2-regular digraph. If D has an embedding in a surface with
Euler genus g, then D has an embedding in the nonorientable surface of Euler genus g+ 1.

Recall, that if D is a 2-regular digraph with an embedding Ω in an orientable surface,
then there exists a bipartition {A,B} of Ω where every edge e ∈ E(D) appears exactly once
in both

⋃
F∈AE(F ) and

⋃
F∈B E(F ). Moreover, notice that given say A, the faces of B are

uniquely determined since every transition in T (D) is contained in exactly one face of Ω.

Lemma 4.5. For n ≥ 2, C1
n has a 2-cell embedding in all surfaces with Euler genus n− 2.

Proof. We proceed by induction on n. If n = 2, then C1
2 has a 2-cell embedding in S0.

Therefore, we may assume n > 2. Let t ∈ T (C1
n) and observe that splitting t yields a

graph isomorphic to C1
n−1. By induction C1

n−1 has a 2-cell embedding Ω in a surface with
Euler genus n− 3. Take the extension Ω of C1

n−1 (which is isomorphic to C1
n) to obtain an

embedding in the nonorientable surface of genus n− 2.
If n is even, then we construct an embedding Ω′ of C1

n in the orientable surface of genus
n−2. Take two disjoint n cycles of C1

n as one part of the bipartition of Ω′. Given these facial
walks, Ω′ completes uniquely to a 2-cell embedding of C1

n that is in the orientable surface
with Euler genus n− 2.
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Proposition 4.6. For n ≥ 3, C1
n is an obstruction for each surface with Euler genus n−3.

Proof. Let n ≥ 3. Observe that a minimum feedback edge set of C1
n has size 2. Therefore,

eg(C1
n) ≥ n− 2 by Proposition 2.7, which implies that C1

n cannot embed in a surface with
Euler genus n − 3. To see that C1

n is minimal, let t ∈ T (C1
n) and observe that splitting t

yields a graph isomorphic to C1
n−1 which has an embedding in all surfaces with Euler genus

n− 2 by Lemma 4.5.

b2

b1

b3 a3

a2

a1

b′2

b′1

b′3 a′3

a′2

a′1

b2

b1

b3 a3

a2

a1

Figure 4.3: A minimum feedback edge set of C2
7 and C2

7 , whose edges are cut. Below is the
gadget G2 that is used to extend the embeddings to one of C2

11 and C2
11.

Next, we introduce digraphs with half-edges (edges with either a head or a tail but not
both). Half-edges with just a head are called in-half-edges and those with just a tail are
called out-half-edges. We call a digraph with half-edges a gadget. Let D be a digraph with
half-edges. For every vertex v ∈ V (D) we modify E(v) so as to include half-edges, and
then deg(v) is the sum of the number of edges and half-edges incident to v (deg+(v) and
deg−(v) extend analogously). Given an edge e ∈ E(D), to cut e is to delete e and add an
out-half-edge at the tail of e and an in-half-edge at the head of e. Given an out-half-edge
a ∈ E(D) and an in-half-edge b ∈ E(D), to glue a and b is to delete a and b and add an
edge from the tail of a to the head of b. If every v ∈ V (D) has deg+(v) = deg−(v) = 2 then
we say that D is a 2-regular gadget. We call walks in D sequences of edges or half-edges
and transitions are walks of size 2. We say that a 2-regular gadget D has a 2-cell embedding
Ω, if Ω consists of a set of walks W, starting and ending with the half-edges and a set of
closed walks C, where every transition appears exactly once in Ω. We call the members of
W and C faces of Ω.
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0

1
2

3

4

5
6
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C2
8

(0, 1, 3, 0) (0, 1, 2, 4, 0) (0, 1, 3, 5, 0) (0, 2, 4, 6, 0)
(0, 2, 3, 0) (0, 1, 3, 5, 0) (0, 2, 4, 5, 0) (1, 3, 5, 7, 1)
(0, 2, 4, 0) (0, 2, 3, 4, 0) (1, 2, 4, 6, 1) (0, 1, 2, 3, 5, 6, 0)
(1, 2, 4, 1) (0, 2, 4, 5, 0) (0, 2, 3, 4, 6, 0) (0, 1, 3, 4, 5, 7, 0)
(1, 3, 4, 1) (1, 2, 3, 5, 1) (1, 3, 4, 5, 6, 1) (0, 2, 3, 4, 6, 7, 0)
(0, 1, 2, 3, 4, 0) (1, 3, 4, 5, 1) (0, 1, 2, 3, 5, 6, 0) (1, 2, 4, 5, 6, 7, 1)

Figure 4.4: Each column represents C2
n embedded in each surface of Euler genus n − 4.

When n is even, one part of the bipartition of faces of the orientable embedding is shown
with edge colorings. The nonorientable embeddings are given by the rows, where each row
is a facial walk given by its vertex sequence.

Lemma 4.7. For n ≥ 5, C2
n has a 2-cell embedding in each surface with Euler genus n− 4.

Proof. Let S be a surface with Euler genus eg(S) = n−4, and suppose Ω was an embedding
of C2

n in S. We show how to extend this embedding to one of C2
n+4 in S. Form the gadget

Gn from C2
n by taking a minimum feedback arc set A = {e1, e2, e3} in C2

n and cutting each
edge in A to obtain 3 out-half-edges {a1, a2, a3} and 3 in-half edges {b1, b2, b3}, where ai and
bi are obtained from cutting ei for i ∈ {1, 2, 3} (see Figure 4.3). Note that the embedding
Ω is also an embedding of Gn.

Consider the 4 vertex gadget G2 as seen in Figure 4.3. Observe that gluing ai and a′i and
gluing bi and b′i for i ∈ {1, 2, 3} yields a graph isomorphic to C2

n+4 where the embedding
Ω has been extended to an embedding of C2

n+4 in S (note that extending this embedding
can be done in such a way as to preserve orientability of Ω). By Figure 4.4 we have that
C2

5 , C2
6 , C2

7 , and C2
8 each embed in every surface of the requisite Euler genus; therefore, we

obtain the result.

Lemma 4.8. For n ≥ 4, C2
n has a 2-cell embedding in each surface with Euler genus n− 3.

Proof. By Lemma 4.7, we have that C2
n embeds in all surfaces of Euler genus n−4. Therefore,

by Observation 4.4, this implies that C2
n embeds in all nonorientable surfaces of Euler genus

n − 3. It remains to show that for odd n, C2
n embeds in the orientable surface with Euler

genus n− 3.
Similar to the proof above, let S be the orientable surface with Euler genus eg(S) = n−3,

and suppose Ω was an embedding of C2
n in S. We show how to extend this embedding to

one of C2
n+4 in S. Form the gadget Gn from C2

n by taking a minimum feedback arc set
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A = {e1, e2, e3} in C2
n (not containing the parallel edges of C2

n) and cutting each edge in A
to obtain 3 out-half-edges {a1, a2, a3} and 3 in-half edges {b1, b2, b3}, where ai and bi are
obtained from cutting ei for i ∈ {1, 2, 3} (see Figure 4.3). Note that the embedding Ω is
also an embedding of Gn.

As before, take the 4 vertex gadget G2 from Figure 4.3. Gluing ai and a′i and gluing bi
and b′i for i ∈ {1, 2, 3} yields a graph isomorphic to C2

n+4 where the embedding Ω has been
extended to an embedding of C2

n+4 in S. By Figure 4.5 we have that C2
5 and C2

7 embed in
S1 and S2 respectively, and this yields the result.

C2
5 C2

7

Figure 4.5: Embeddings of C2
5 and C2

7 in S1 and S2 respectively where one part of the
bipartition of faces is shown with edge colorings.

Proposition 4.9. For n ≥ 6, C2
n is an obstruction for each surface with Euler genus n−5.

Proof. Let n ≥ 6. Observe that a minimum feedback edge set of C2
n has size 3. Therefore,

eg(C2
n) ≥ n− 4 by Proposition 2.7, which implies that C2

n cannot embed in a surface with
Euler genus n − 5. To see that C2

n is minimal, let t ∈ T (C2
n) and observe that splitting t

yields either a graph isomorphic to C2
n−1 or one isomorphic to C2

n−2. By Lemma 4.7 C2
n−1

embeds in each surface with Euler genus n − 5 and by Lemma 4.8 C2
n−2 embeds in each

surface with Euler genus n− 5.

Let D = (V,E) be a 2-regular digraph with e, f ∈ E and a digon {e, f}. To contract
{e, f} is to delete edges e and f and identify the endpoints of e and f to a single vertex.
Observe that the resulting digraph is also 2-regular. To replace v ∈ V with a digon is to
perform a marked split at v and instead of putting a chord with endpoints the children of
v, put a digon with endpoints the children of v. As with splitting, replacing a vertex with
a digon can be performed in two ways, possibly yielding nonisomorphic graphs.

Proposition 4.10. Let D be a 2-regular digraph and let D′ be the 2-regular digraph obtained
from D after replacing a vertex of D with a digon. If D has a 2-cell embedding in a surface
S, then D′ has a 2-cell embedding in S.

Proof. Let Ω be a 2-cell embedding of D. Let {e, f} be the digon in D′ that replaced
v ∈ V (D). We extend Ω to an embedding Ω′ of D′ by the following: Consider the facial
walks in Ω containing a transition from T (v). Two of these facial walks remain closed walks
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in D′ and two are no longer closed. Close the two open walks by adding one edge from {e, f}
to each one. Lastly, add the face (e, f) ∈ Ω′. Therefore, we have an embedding of D′ in a
surface with the same Euler genus as S. To see that orientability (or nonorientability) of the
embedding is preserved, observe that modifying Ω to form Ω′ does not alter the existence
(or nonexistence) of a bipartition.

In light of Proposition 4.10 we obtain the following corollary.

Corollary 4.11. If D′ is a 2-regular digraph with a digon {e, f} and D is the 2-regular
digraph obtained after contracting {e, f}, then eg(D) = eg(D′). Moreover, if H ∈ ForbI(S),
then H does not contain a digon.

Proof sketch. Proposition 4.10 tells us that eg(D′) ≤ eg(D). To see that eg(D) ≤ eg(D′),
observe that D is immersed in D′.

Corollary 4.11 essentially tells us that when we are trying to determine the Euler genus
of a 2-regular digraph, we may freely contract all digons.

Let Ω be a 2-cell embedding of a 2-regular digraph D. Each edge e ∈ E(D) either
appears in two distinct faces of Ω or e appears twice in a single face of Ω. In the latter case,
we say that e is singular.

Lemma 4.12. A minimum genus 2-cell embedding of a 2-regular digraph has no singular
edges.

Proof. Let Ω be a minimum genus embedding of a 2-regular digraph D. Suppose towards
a contradiction that there was an edge e ∈ E(D) appearing twice in F ∈ Ω. Therefore,
there exist walks W and U such that F = e,W, e, U . Observe that declaring F1 = e,W

and F2 = e, U yields an embedding Ω′ = (Ω \ {F}) ∪ {F1, F2} with smaller Euler genus,
contradicting the assumption.

Proposition 4.13. If D1 and D2 are connected 2-regular digraphs, then

eg(D1 ·D2) = eg(D1) + eg(D2).

Proof. Let Ω be a minimum genus 2-cell embedding of D1 · D2. Form the induced 2-cell
embeddings Ω1 and Ω2 of D1 and D2 respectively. Observe that there are two distinct faces
F,G ∈ Ω containing edges from E(D1 ·D2) \ (E(D1)∪E(D2)) by Lemma 4.12. These faces
appear as distinct “truncated” faces Fi, Gi ∈ Ωi for i ∈ {1, 2}. Therefore, for i ∈ {1, 2}, let
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n = |V (D)|, ni = |V (Di)|, q = |Ω|, qi = |Ωi|, and we obtain via Euler genus

eg(D1 ·D2) = 2 + n− q

= 2 + (n1 + n2)− (q1 + q2 − 2)

= (2 + n1 − q1) + (2 + n2 − q2)

≥ eg(D1) + eg(D2).

Similarly, let Ω1 and Ω2 be minimum genus 2-cell embeddings of D1 and D2 respectively.
For i ∈ {1, 2}, observe that there are two distinct faces Fi, Gi ∈ Ωi containing the edge in
E(Di) \E(D1 ·D2) by Lemma 4.12. These closed walks can be concatenated to form closed
walks F and G in D1 ·D2. Let Ω = (Ω1 \ {F1, G1}) ∪ (Ω2 \ {F2, G2}) ∪ {F,G} and observe
that this is an embedding of D1 · D2 where (using the same notation as above) by Euler
genus

eg(D1) + eg(D2) = (2 + n1 − q1) + (2 + n2 − q2)

= 2 + (n1 + n2)− (q1 + q2 − 2)

= 2 + n− q

≥ eg(D1 ·D2).

Proposition 4.14. For k ≥ 2, if D ∈ ForbI(Nk−1) with eg(D) = k, then C1
3 · D ∈

ForbI(Nk).

Proof. We have that eg(C1
3 ·D) = k+1 by Proposition 4.13. This implies that C1

3 ·D cannot
embed in Nk. To see that C1

3 ·D is minimal, let t ∈ T (C1
3 ·D) and consider (C1

3 ·D)/t. Observe
that there exists either a t′ ∈ T (C1

3 ) or a t′ ∈ T (D) such that (C1
3 ·D)/t is isomorphic to

either (C1
3/t
′) ·D or C1

3 · (D/t′). In the first case, eg((C1
3 ·D)/t) = 0 + eg(D) = k and in the

second eg((C1
3 ·D)/t) = 1 + eg(D/t′) ≤ k.

4.1.2 Embedding in a disk

In this section we prove an analogue of the disk embedding extension problem (see [26]).
We frame the problem in the following way: let H be a 2-regular digraph with a 2-cell
embedding into a surface S and F ⊆ S a face of this embedding with corresponding facial
walk C in D. Consider a “bridge” B. What are the obstructions to embedding B in F so
that B attaches to C and the resulting 2-regular digraph is embedded in S?

We first examine C1
2 . Observe that it is planar and strongly 2-edge-connected, so by

Corollary 2.9 it has a unique planar embedding. However, one can see that in a planar
embedding of C1

2 , pairs of parallel edges are not cofacial. Thus, C1
2 has no embedding in

the plane with parallel edges bounding a common face. Therefore, a “bridge” containing
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Figure 4.6: The essentially unique planar embedding of C1
2 . Parallel edges are not cofacial.

C1
2 as an immersion cannot embed in a disk where a pair of its parallel edges attach to the

boundary of the disk. We formalize this in Lemma 4.16.
Let D be a 2-regular digraph with an embedding φ into a surface S. Let F ⊆ S be the

set of faces of S − φ(D). We define the dual of D (with respect to φ), denoted D̂, as the
geometric dual of the embedding of the underlying graph. That is:

• For every face f ∈ F , associate a vertex f̂ ∈ V (D̂).

• For every edge e ∈ E(D), let f, g ∈ F be the (not necessarily distinct) faces whose
boundary walks in D contain e. Add the edge ê ∈ E(D̂) so that ê has endpoints f̂ , ĝ.

Note that D̂ is an abstract graph, but there exists a natural embedding of D̂ in S.

Lemma 4.15. Let D be a connected planar 2-regular digraph with a distinguished set of
edges F ⊆ E(D). Let {e, f} be a pair of parallel edges from C1

2 . Either there exists an
embedding of D in the plane where all edges F lie on the outer face, or there exists an
immersion (ψ,ψ′) of C1

2 in D where ψ′(e) ∩ F 6= ∅ and ψ′(f) ∩ F 6= ∅.

Proof. We induct on |V (D)|. First, assume that D is strongly 2-edge-connected. Let Ω be
the unique embedding of D in the plane by Corollary 2.9. We claim that if every pair of
edges of F lie in a common face, then all edges of F lie in a common face.

Suppose that every pair of edges of F was in a common face. Consider the dual graph D̂
and let F̂ = {ê ∈ E(D̂) : e ∈ F}. Let Ĥ be the subgraph of D̂ with edge set F̂ . Observe that
every pair of edges from Ĥ have an endpoint in common. Therefore Ĥ is either isomorphic
to a star (a complete bipartite graph K1,k) or a triangle (a cycle of length 3). If Ĥ is a
star, than all edges of F lie on a common face. In the latter case, let Ĥ be the triangle
(ê1, ê2, ê3). Consider the corresponding edges e1, e2, e3 ∈ F . Since Ω is an embedding in the
plane, {e1, e2, e3} forms a 3 edge-cut in the underlying graph of D. However, this cannot
exist since D is Eulerian and every edge-cut has even size. Thus, the claim is verified.

Now, we may assume that there exists e1, e2 ∈ F such that they do not lie in a common
face. Let e1 = u1v1 and consider two peripheral cycles, from Theorem 2.8, F1 and F2

containing e1. It follows that F1 and F2 are faces in Ω. Note that the only edge in common
to both F1 and F2 is e1 since D is strongly 2-edge-connected (consider the dual).

Let H be the subgraph obtained from D by deleting the edges of F1 ∪ F2. Since e2 was
assumed not cofacial with e1 we get that e2 is an edge of H. We claim that H is connected.
Since F1 and F2 are peripheral in D, every component of H has at least one vertex in V (F1)
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and one vertex in V (F2). Now, since every w ∈ V (H) \ {u1, v1} has deg+
H(w) = deg−H(w)

and deg+
H(u1) = deg−H(v1) = 1 we get that there exists a component H ′ of H with a path

from u1 to v1. But since the underlying graph of H is embedded in the plane, we obtain
that H ′ = H by the Jordan Curve Theorem 2.4. Thus H is connected. Let T be an Eulerian
walk of H from u1 to v1, we obtain an immersion (φ, φ′) of C1

2 in D where φ′(e) = e1 and
φ′(f) = T .

If D is not strongly 2-edge-connected then choose X ⊆ V (D) such that δ+(X) = {x1y1}
and δ−(X) = {y2x2}. Let Y = V (D) \X, and form DX and DY (as defined in Section 2.3).
If all edges of F have both end-points in X, then applying induction to DX we either get
that DX has an embedding ΩX in the plane with edges of F on the outer face, or (φ, φ′) is
an immersion of C1

2 in DX where φ′(e) ∩ F 6= ∅ and φ′(f) ∩ F 6= ∅.
In the latter case, DX is immersed in D and by transitivity of immersion we obtain

the obstruction. In the former case, since DY is immersed in D, eg(DY ) = 0. Let ΩY be
an embedding of DY in the plane where edge y2y1 appears on the outer face. Obtain an
embedding of D in the plane with edges of F on the outer face by embedding ΩY in a face
of R2 − ΩX(DX) that contains the edge x1x2. Delete x1x2 and y2y1 and add back edges
x1y1 and y2x2. A similar argument holds if all end-points of F are contained in Y .

In the remaining case, there exists an edge e ∈ F such that one endpoint is in X and
the other is in Y . Define FX = (F ∩E(DX))∪{x1x2} and FY = (F ∩E(DY ))∪{y2y1} to be
the new sets of distinguished edges. By induction either DX embeds with FX on the outer
face, or (φX , φ′X) is an immersion of C1

2 in DX where φ′X(e)∩FX 6= ∅ and φ′X(f)∩FX 6= ∅.
By induction, a similar conclusion holds for DY and FY .

If both DX embeds with FX on the outer face and DY embeds with FY on the outer face,
then embed both graphs in the plane, delete x1x2 and y2y1 and add edges x1y1 and y2x2 to
obtain D embedded in the plane with F on the outer face. Otherwise, (φX , φ′X) works as
an immersion of C1

2 in D with φ′X(e) ∩ F 6= ∅ and φ′X(f) ∩ F 6= ∅ since DX is immersed in
D by taking an Euler trail from x1 to x2 of the nontrivial component of D − E(DX).

To state the next obstructions, we use the language of the immersion model. Let H∗ be
a model of H immersed in D and let C be a directed closed walk in H∗ (we are implicitly
treating C as the boundary of our disk). One obstruction is a bridge X ∈ BC whose
“orientation agrees with C”; we formalize this in Lemma 4.16. The last obstruction is when
two bridges X,Y ∈ BC cross each other, relative to C.

Lemma 4.16. Let D and H be 2-regular digraphs and let H∗ be a model of H immersed in
D. Let C be a closed walk in H∗. The mixed graph C+ = C ∪ BC either embeds in a closed
disk with C as the boundary, or there exist an X ∈ BC where:

i) X is nonplanar, or

ii) X contains an immersion of C1
2 with a pair of parallel edges attaching to C, or
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iii) X has attachment vertices (a, b, c), appearing in that order on C, and a closed walk
in X encountering the vertices (a, b, c) in that order, or

iv) there exists a Y ∈ BC such that X and Y cross relative to C.

Figure 4.7: Different types of obstructions to embedding in a disk.

Proof. First, we can see that if either i), ii), or iii) hold then C+ immerses C1
3 and is therefore

nonplanar by Theorem 2.6. Next, observe that if iv) holds, then C+ cannot be embedded
in a disk with C as the boundary by the Jordan Curve Theorem 2.4. Thus, we now show
that if iv), i), ii), and iii) do not hold, then C+ embeds in a disk with C as the boundary.
We prove this by induction on |BC |.

If |BC | = 0 then C+ is a subdivision of a cycle, which has an embedding in a disk with
C as the boundary. Let X ∈ BC . Consider the nontrivial component J obtained from C+

by deleting E(X). By induction, J has an embedding Ω in a disk with C as the boundary.
Since iv) does not hold, there exists a face C ′ ∈ Ω that contains all attachments of X. If

X was a chord, we can extend Ω to an embedding of C+ in a disk with C as the boundary.
If X was not a chord, since i) does not hold X is planar. Let F ⊆ E(X) be the set of edges
of X incident to the attachment vertices of X. By Lemma 4.15 either there exists a planar
embedding of X with F on the outer face, or X contains C1

2 as an immersion where the
trails corresponding to a pair of parallel edges has nonempty intersection with F . However,
the latter cannot happen since ii) does not hold. Thus, consider the planar embedding ΩX

of X whose outer face contains all edges from F . Observe that C ′ contains the edges from
C that are incident to the attachment vertices of X. Therefore, since iii) does not hold for
C, it also does not hold for C ′ and we can extend Ω to an embedding of C+ in a disk with
C as the boundary.

4.2 Immersion tools

In this section we introduce what we call the efficient immersion model. This model is quite
helpful in classifying the projective plane obstructions. We also prove additional tools for
immersing non-Eulerian digraphs.
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4.2.1 The efficient model

Let H and D be 2-regular digraphs where H is immersed in D with a model (D∗, H∗). If
every chord is an H∗-bridge (i.e. for all v1v2 ∈ U(D∗) we have v1, v2 ∈ V (H∗)), then we say
that H∗ is a tidy model. We call a model H∗ efficient if:

i) H∗ is tidy and

ii) every H∗-bridge has attachment vertices on ≥ 2 branches of H∗.

The proof of Lemma 4.17 is reminiscent of the proof of Theorem 2.8.

Lemma 4.17. If H is immersed in D and D is strongly 2-edge-connected, then there exists
an efficient model of this immersion.

Proof. Given a model J∗ of H immersed in D, we say that a J∗-bridge is rich if it has
vertices on ≥ 2 branches of J∗ and poor otherwise. If J∗ is not tidy, then we may form a
tidy model of H immersed in D by contracting any chord that is not a J∗-bridge.1

Among all tidy models, choose an immersion model H∗ so as to lexicographically max-
imize the sizes of the rich H∗-bridges, and subject to this, lexicographically maximize the
sizes of the poor H∗-bridges. That is, the largest rich H∗-bridge is as large as possible, and
subject to this the second largest rich H∗-bridge is as large as possible, and so on until all
rich H∗-bridges are accounted for. Then the largest poor H∗-bridge is as large as possible,
and so on. We claim that H∗ is efficient.

Suppose for a contradiction that there exists a poor H∗-bridge. According to our or-
dering, choose the smallest one X. Since X is poor its attachment vertices lie on only one
branch T of H∗. Let P be the shortest subpath of T that contains all attachment vertices of
X and suppose that P starts at vertex x and ends at vertex y. If there is another H∗-bridge
with an attachment in the interior of P , then we break into cases depending on X.

If X is a chord, contracting X yields a model of H in D that merges all H∗-bridges
with attachments on P and the edges of P into a new bridge. Note that this model can be
made tidy by contracting every chord that is not a bridge. This improves the lexicographic
ordering of the bridges as X was the smallest poor bridge. If X not a chord, since X is
Eulerian, take a directed path Q in X from x to y. Switching P for Q on T yields a model
of H in D that merges all H∗-bridges with attachments on P and the edges of P into a
new bridge. Once again, this model can be made tidy, and after doing so, this improves
the lexicographic ordering of the bridges. Thus, all attachment vertices on P belong to X,
but then X is separated from the rest of D by two edges, contradicting the fact that D is
strongly 2-edge connected. It follows that all bridges are rich and thus H∗ is efficient.

1This amounts to prioritizing the deletion of Eulerian subgraphs of D over vertex splits when immersing
H (see Proposition 1.1).
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Given a model H∗ of H immersed in D and an H∗-bridge that is not a chord X, we
can move to a “simpler” model by reducing bridge sizes. We say that we replace X with a
chord (replace X with a cycle of length k) when we do the following:

• select distinct attachment vertices x1, x2 (vertices x1, x2, . . . xk) of X,

• delete E(X) from X,

• add chord x1x2 (add cycle Ck with E(Ck) = {v1v2, v2v3, . . . vkv1}) to X, and

• delete isolated vertices of X and suppress the remaining attachment vertices in H∗.

Keep in mind that if k ≥ 3 one can replace X by a cycle in nonisomorphic ways. More-
over, note that replacing X with a chord or a cycle are immersion closed operations (the
replacement can be done via vertex splits).

Lemma 4.18. Let H∗ be an efficient model of H immersed in D and let C ⊆ H∗ be a
directed closed walk. If X,Y ∈ BC cross relative to C, then X and Y can be replaced by
chords, each with attachment vertices on 2 distinct branches of H∗, that cross relative to C.

Proof. Let x, x′ be attachment vertices of X and y, y′ be attachment vertices of Y such that
they appear in the order (x, y, x′, y′) when walking along C. If all attachment vertices are
on the same branch B of H∗, then since H∗ is efficient, there must be another attachment
vertex y′′ of Y on another branch B′ 6= B and another attachment vertex x′′ of X on a
(possibly the same) branch B′′ 6= B.

The attachment vertices either appear in the order (x, y, x′, y′, x′′, y′′) or they appear
in the order (x, y, x′, y′, y′′, x′′) when walking around C. In the first case, replacing X by a
chord with endpoints x′ and x′′ and replacing Y by a chord with endpoints y′ and y′′ yields
one such desired model. In the second case, replacing X by a chord with endpoints x′ and
x′′ and replacing Y by a chord with endpoints y and y′′ yields a desired model.

4.2.2 Immersing non-Eulerian digraphs

Observation 4.19. Let D be a non-Eulerian digraph with vertex set V . For every u ∈ V
with deg+(u) > deg−(u) there exists a trail from u to v where v ∈ V satisfies deg−(v) >
deg+(v).

Proof sketch. Take a maximal trail starting at u.

Let D be an Eulerian digraph and let H be a digraph immersed in D. If H is not
Eulerian, then since D is Eulerian one can “complete” H to an Eulerian immersion. The
following lemma formalizes this and defines the term Eulerian completion.

Lemma 4.20. If D is an Eulerian digraph immersing a digraph H, then there exists an
Eulerian digraph H ′ immersed in D such that:
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i) H is a subgraph of H ′,

ii) V (H) = V (H ′), and

iii) for every v ∈ V (H), deg+
H′(v) = deg−H′(v) = max

{
deg+

H(v),deg−H(v)
}
.

We call H ′ an Eulerian completion of H in D.

Proof. Let H be immersed in D with maps (φ, φ′). Define the deficit of v ∈ V (H) as
def(v) = |deg+

H(v)− deg−H(v)| and the deficit of H as

def(H) =
∑

v∈V (H)
def(v).

We induct on def(H).
If def(H) = 0 then H is Eulerian and we can take H ′ = H. Otherwise, consider D′ =

D−E(H). Since def(H) > 0, there exists a vertex u ∈ V (D′) such that deg+
D′(u) > deg−D′(u).

Observation 4.19 yields a trail T from u to v where v ∈ V (D′) and deg−D′(v) > deg+
D′(v).

Create a super graph J of H by adding edge uv to J . Notice that J is immersed in D by
modifying the immersion so that φ′(uv) = T . Since def(J) < def(H) by induction there
exists an H ′ meeting the conditions of the lemma. This same H ′ works for H as well.

4.3 The projective plane

It is quite easy to show one direction of Theorem 4.1, that C1
4 , C

2
6 , C

1
3 ·C1

3 , and C1
3 ∪C1

3 are
all obstructions for the projective plane; however, showing that this list is complete needs
some additional tools. This section builds towards the proof of Theorem 4.1. First, we deal
with the poorly connected obstructions, and then we show that C2

5 (not an obstruction) is
an important intermediate graph to consider.

4.3.1 Poorly connected obstructions

Proposition 4.21. If a connected 2-regular digraph contains C1
3 ∪ C1

3 as an immersion,
then it contains C1

3 · C1
3 as an immersion.

Proof. Let D be a 2-regular digraph immersing C1
3 ∪ C1

3 and let H∗ be a model of this
immersion. Let H1 and H2 be distinct subgraphs of H∗ each isomorphic to a subdivision of
C1

3 . Since D is connected there exists a bridge X with attachment vertices v1 ∈ V (H1) and
v2 ∈ V (H2). Replace X with a chord whose endpoints are v1, v2. Observe that this mixed
graph immerses C1

3 · C1
3 .

The following is a well-known fact in the world of digraph immersion. We prove a version
for 2-regular digraphs.
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Proposition 4.22 (Lovász [23]). Let D = (V,E) be a strongly 2-edge-connected 2-regular
digraph. For every v ∈ V there exists a transition t ∈ T (v) such that D/t is strongly
2-edge-connected.

Proof. Let v ∈ V with in-edges {av, bv} and out-edges {vc, vd}. Let t = (av, vc) and t′ =
(av, vd) be non-complementary transitions at v. Suppose towards a contradiction that both
D/t and D/t′ are not strongly 2-edge connected. This implies that there exists X ⊂ V where
{a, c} ⊆ X and {b, d} ⊆ V \X and there exists Y ⊂ V where {a, d} ⊆ Y and {b, c} ⊆ V \Y
and dD(X) = dD(Y ) = 4.

Let D′ = D− v, X ′ = X \ {v}, and Y ′ = Y \ {v}. Observe that dD′(X ′) = dD′(Y ′) = 2.
By submodularity, one of dD′(X ′ ∩ Y ′) and dD′(X ′ ∪ Y ′) is at most 2; assume without loss
that dD′(X ′ ∩ Y ′) ≤ 2. But this implies that dD(X ′ ∩ Y ′) ≤ 3 contradicting the assumption
that D is strongly 2-edge-connected.

To aid in the proof of the following proposition let C1−
3 denote C1

3 − e for e ∈ E(C1
3 ).

Since C1
3 is edge transitive, C1−

3 is unique up to isomorphism.

Proposition 4.23. If a strongly 2-edge-connected 2-regular digraph contains C1
3 ·C1

3 as an
immersion, then it contains C1

5 or D6 as an immersion.

Proof. Let D be a strongly 2-edge-connected 2-regular digraph immersing C1
3 ·C1

3 . Observe
that D also immerses C1−

3 ∪ C1−
3 . We proceed by induction on |V (D)|.

LetH∗ be a model of C1
3 ·C1

3 inD whereW1 andW2 are the branches ofH∗ corresponding
to the underlying 2-edge-cut in C1

3 ·C1
3 , and let A and B be the two nontrivial components

of H∗ − (E(W1)∪E(W2)), each isomorphic to a subdivision of C1−
3 . For i ∈ {1, 2, 3} let Ai

and Bi denote the branches of A and B shown in Figure 4.8.
Suppose that there was a bridge X with attachments a ∈ V (A) and b ∈ V (B). Replace

X with a chord whose attachments are a and b. There are four possible configurations of
X (up to symmetry):

i) a ∈ V (A1) and b ∈ V (B1)

ii) a ∈ V (A1) and b ∈ V (B2)

iii) a ∈ V (A3) and b ∈ V (B2)

iv) a ∈ V (A3) and b ∈ V (B3)

In configurations i) and ii) observe that C1
5 is immersed, and in configurations iii) and

iv) D6 is immersed. Thus, we may assume that no such bridge exists.
Next, we claim that any bridge attaching on either W1 or W2 must be a chord whose

other attachment is in either A or B. Suppose, without loss, that X was a bridge attached
to W1. If X is a chord, contract X to a vertex x, otherwise, let x ∈ V (W1) be the name of
this attachment vertex. By Theorem 4.22, there exists a transition t ∈ T (x) so that D/t is
strongly 2-edge-connected. Notice that C1−

3 ∪C
1−
3 is still immersed inD/t. Therefore, we can

apply Lemma 4.20 to obtain either C1
3 ·C1

3 or C1
3∪C1

3 as an Eulerian completion of C1−
3 ∪C

1−
3
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B2

A1
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B3

Figure 4.8: A labeled model of C1
3 · C1

3 .

in D/t; however, since D/t is connected, if we obtain C1
3 ∪ C1

3 as the Eulerian completion,
then apply Proposition 4.21 to get a C1

3 · C1
3 immersion in D/t. Then, by induction D/t

contains either C1
5 or D6 as an immersion and thus so does D.

Call a bridge an A-bridge (B-bridge) if either all its attachments are in A (B) or it’s a
chord with exactly one attachment in A (B) and the other attachment on either W1 or W2.
Fix i ∈ {1, 2} and let X be an A-bridge chord with attachments a ∈ V (A) and x ∈ V (Wi),
and let Y be a B-bridge chord with attachments b ∈ V (B) and y ∈ V (Wi). We say that
X and Y cross on Wi if when i = 1, y appears before x on W1, or when i = 2, x appears
before y on W2. If there are no bridges that cross on W1 or W2 then there is a 2-edge cut
separating A from B, contradicting the assumption. Thus, without loss, we consider the
possible configurations of X and Y crossing on W1 (up to symmetry):

i) a ∈ V (A1) and b ∈ V (B1)

ii) a ∈ V (A1) and b ∈ V (B2)

iii) a ∈ V (A1) and b ∈ V (B3)

iv) a ∈ V (A2) and b ∈ V (B2)

v) a ∈ V (A2) and b ∈ V (B3)

vi) a ∈ V (A3) and b ∈ V (B2)

In all configurationsD6 is immersed. Also in configurations i), ii), and iii) C1
5 is immersed.

Proposition 4.23 is stated so that the graphs C1
5 and D6 are the target because these

(as well as C1
3 ∪C1

3 and C1
3 ·C1

3 ) are toridal obstructions. Since C1
4 is immersed in both C1

5
and D6, we obtain the following corollary for the projective plane.

Corollary 4.24. If a 2-regular digraph is strongly 2-edge-connected and immerses either
C1

3 ∪ C1
3 or C1

3 · C1
3 , then it also immerses C1

4 .
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4.3.2 Running into a nice graph

Any obstruction in ForbI(N1) must contain C1
3 as an immersion, otherwise it embeds in

the sphere (Theorem 2.6). We look at “extending” immersions of C1
3 . Let D be a 2-regular

digraph with H immersed in D with model H∗. We say that an H∗-bridge X attaches on
a transition t ∈ T (H) if all attachment vertices of X lie on branches corresponding to t.

Lemma 4.25. Let D be a strongly 2-edge-connected 2-regular digraph that immerses C1
3

with efficient model H∗. One of the following holds:

i) D immerses either C1
4 or C2

5 or

ii) every H∗-bridge attaches on a transition of C1
3 and for every cycle C ⊆ H∗, C ∪ BC

embeds in a disk with C as the boundary.

Proof. We may assume there exists at least one H∗-bridge, otherwise ii) is satisfied. If there
exists a bridge with attachment vertices on parallel branches (branches that correspond to
a pair of parallel edges of C1

3 ), then it suffices to replace the bridge with a chord with these
attachment vertices. This yields an immersion of C1

4 (contract the chord). Therefore, we
may now assume that no bridge attaches on parallel branches of H∗. This implies that for
every H∗-bridge, there is a cycle of H∗ that contains all of the attachment vertices of the
bridge. All such cycles correspond to directed triangles of C1

3 . Let C be such a cycle and
let X ∈ BC . If X has attachment vertices on 3 distinct branches of C, then replacing X
with a C3 on these attachment vertices (this can be done in two distinct ways) yields a C2

5
immersion. Therefore, we may now assume that every bridge in BC attaches on exactly two
distinct branches of C.

By Lemma 4.16, either C∪X embeds in a disk with C as the boundary or one of the first
three cases from the lemma occurs. In the latter case, first suppose that Case i) holds. Then
X contains C1

3 as an immersion and hence D contains C1
3 ∪ C1

3 as an immersion. Since D
is strongly 2-edge-connected we apply Corollary 4.24 to obtain C1

4 as an immersion. Thus,
we now assume that every bridge in BC is planar.

If Case ii) holds then X immerses C1
2 where a pair of parallel edges of C1

2 attach to C.
It suffices to consider the various ways of attaching a copy of C1

2 to C where each edge in a
parallel class has been subdivided once (see Figure 4.7). Observe that all such configurations
yield an immersion of either C1

3 · C1
3 or C1

4 . In the former case, since D is strongly 2-edge-
connected we apply Corollary 4.24 to obtain C1

4 as an immersion. Thus, we now assume
that Case ii) does not hold for any bridge in BC .

Lastly, if Case iii) holds then it suffices to replace X with C3 whose orientation agrees
with C. Observe that all such configurations yield an immersion of either C1

3 ·C1
3 or C1

4 . In
the former case, since D is strongly 2-edge-connected we apply Corollary 4.24 to obtain C1

4
as an immersion. Thus, we now assume that Case iii) does not hold for any bridge in BC .
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This implies that for any X ∈ BC , C ∪ X embeds in a disk with C as the boundary.
This leaves Case iv) of Lemma 4.16. Let X,Y ∈ BC where X and Y cross with respect to
C. Using Lemma 4.18 we can replace X and Y by crossing chords X ′ and Y ′ such that X ′

and Y ′ cross with respect to C. If the attachment vertices of X ′ and Y ′ lie on exactly two
branches of C, then this yields a C1

4 immersion. If X ′ and Y ′ have attachment vertices on
all three branches of C, then this yields a C2

5 immersion. Thus, we may now assume that
Case iv) does not hold for any pair of bridges from BC . But this implies that C∪BC embeds
in a disk with C as the boundary. As C was chosen arbitrarily ii) holds.

A B

C

AB

C

Figure 4.9: C1
3 embedded in the projective plane.

Observe that by Euler characteristic and Proposition 1.3 any embedding of C1
3 in the

projective plane consists of exactly four triangular faces arranged as in Figure 4.9. This
embedding is unique up to edge relabeling. (To see this, choose one triangular face and see
that the remaining three triangular faces are forced.) Therefore, by Lemma 4.25 we obtain
the following corollary.

Corollary 4.26. A strongly 2-edge-connected 2-regular digraph either embeds in the pro-
jective plane or it contains C1

4 or C2
5 as an immersion.

Lemma 4.27. C2
5 has a unique embedding in the projective plane.

Proof. Let Ω be an embedding of C2
5 in the projective plane. By Proposition 1.3 and Euler

characteristic we see that |Ω| = 6. Furthermore, a counting argument gives that Ω must
contain either four or five faces of length 3 (every edge must appear twice faces of Ω). For
reference, color the edges of C2

5 black and grey as in Figure 4.10 and observe that up to
automorphism, C2

5 has one type of 3-cycle. It consists of two grey edges and one black edge.
Suppose that Ω had exactly four faces of length 3. Since there are only five 3-cycles in

C2
5 , there is a unique way up to automorphism of selecting these 3-cycles as faces. However,

doing so forces a face in Ω that is longer than length 4. This contradicts the fact that Ω
was an embedding on the projective plane. Suppose that Ω had exactly five faces of length
3. Taking each 3-cycle as a face in Ω uniquely forces the last face of length 5 in Ω.

52



A

B

C

D

E

A

B

C

D

E

Figure 4.10: An edge coloring of C2
5 and the unique embedding of C2

5 in the projective plane.

Lemma 4.28. A strongly 2-edge-connected 2-regular digraph immersing C2
5 either embeds

in the projective plane or contains C1
4 or C2

6 as an immersion.

Proof. Let D be a strongly 2-edge-connected 2-regular digraph immersing C2
5 , and let H∗

be an efficient model of this immersion given by Lemma 4.17. By Lemma 4.27 let Ω be
the unique embedding of H∗ in N1. We may assume that there exists at least one H∗-
bridge, otherwise D is isomorphic to C2

5 and thus projective planar. We consider the various
attachment points for bridges. For reference, color the edges of C2

5 black and grey as in
Figure 4.10 and let EB be the set of branches of H∗ corresponding to the black edges and
EG be the set of branches of H∗ corresponding to the grey edges. Observe that there is an
automorphism of order 5 that permutes the edges of C2

5 contained in each color class.
We first consider when an H∗-bridge attaches on branches that do not have a face in

common in Ω. Let X be such an bridge. If X attaches to a branch B in EB then there are
three branches in EG that are not cofacial with B. If X also attaches to any of these three
branches, then in all three cases it suffices to replace X with a chord on these attachment
vertices as this yields a C1

4 immersion. Therefore, if X attaches on two distinct branches
that are not cofacial in Ω, we may assume they are two branches from EG. Suppose that
X attaches to a branch B in EG. There are two branches in EG that are not cofacial with
B. If X attaches to either of these, then in both cases it suffices to replace X with a chord
on these attachment vertices as this yields a C2

6 immersion. Therefore, we may assume that
every pair of branches that X attaches on are cofacial.

Suppose that X attached on two branches B and B′ that share a face, but still not all
branches that X attached on were cofacial. As we have considered all pairs of branches that
do not share a face, there must exist another bridge B′′ that X attaches on where B′′ shares
a face with B and one with B′ but there is no face containing all three. We claim there is

53



only one such configuration, up to symmetry, where without loss B and B′ are nonadjacent
branches (branches that do not share a branch endpoint) from EB and B′′ ∈ EG.

To prove the claim, suppose that B and B′ are not nonadjacent branches from EB. This
means that since B and B′ are cofacial, they are either adjacent branches of EB or they
are branches corresponding to a triangle of C2

5 where one is in EB and the other in EG, or
both are in EG. Observe that in all cases there is no suitable choice for B′′.

Thus, consider B and B′ as nonadjacent branches from EB. There is one choice for B′′

in EG up to symmetry. It suffices to replace X with a C3 (in both possible ways) attached
to these same branches. Observe that both orientations of C3 yield C2

6 as an immersion in
D. Therefore, we may now assume that every H∗-bridge attaches on branches that have a
common face.

Up to automorphism, there are two types of faces in Ω. There is the 5-cycle from C2
5

consisting of branches from EB, and there is a 3-cycle from C2
5 consisting of branches from

both EB and EG. Let F5 denote the 5-cycle face and let F3 be one of the 3-cycle faces.
Applying Lemma 4.16 to F5 we get that either F5 ∪ BF5 embeds in a disk with F5 as the
boundary or one of i), ii), iii), iv) from the lemma occurs. A similar conclusion holds for
F3. In both cases, if i), ii), or iii) occurs, then by splitting the branch vertices of H∗, we
can move to a model of C1

3 immersed in D without affecting any H∗-bridges. By the proof
of Lemma 4.25, we obtain C1

4 as an immersion. Therefore, we consider what happens when
iv) occurs. By Lemma 4.18 this amounts to considering all configurations of crossing chords
in BF5 and BF3 where each chord has its endpoints on distinct branches.

Observe that reversing the direction of all edges of C2
5 yields an isomorphic graph.

Therefore, to cut down on the case analysis we consider the chord crossings up to this
additional symmetry. There are 11 such cases: 7 of them are crossing chords in BF5 , and
the remaining 4 are crossing chords in BF3 . These configurations are shown in Figure 4.11.
All such configurations yield either an immersion of C1

4 or C2
6 .

The proof of Theorem 4.1 is below. It follows a similar format to that of Theorem 2.6 in
that we first argue that C1

4 , C
2
6 , C

1
3 ·C1

3 , C
1
3 ∪C1

3 are indeed obstructions for the projective
plane, then we prove that an arbitrary 2-regular digraph either embeds in the projective
plane or has one of these four obstructions as an immersion.

4.3.3 Proof of Theorem 4.1

Proof of Theorem 4.1. By Propositions 4.6 and 4.9, we have that C1
4 ∈ ForbI(N1) and

C2
6 ∈ ForbI(N1). Next, we have C1

3 · C1
3 who also has a feedback edge set of size 3, thus

apply Proposition 1.1. Then notice that every vertex split of C1
3 · C1

3 , after contracting
digons, results in a graph isomorphic to C1

3 . Lastly, C1
3 ∪C1

3 is not projective planar because
every embedding of C1

3 in N1 is a 2-cell embedding. Thus, after embedding the first copy
of C1

3 , we would require that the second C1
3 embeds in a disk, but C1

3 is not planar by
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Figure 4.11: Distinct pairs of crossing chords in C2
5 .

Theorem 2.6. See that it is minimal since any split of C1
3 ∪ C1

3 gives C1
3 ∪ H where H is

planar. Therefore, C1
3 ∪H is projective planar.

Now we show that an arbitrary 2-regular digraph D = (V,E) either embeds in the pro-
jective plane, or D contains one of the obstructions as an immersion. If D is not connected,
consider two distinct components D1 and D2 of D. Suppose without loss that D1 did not
embed in N1. Then it suffices to only consider D1, because an obstruction immersed in D1 is
also immersed in D. Thus, we may assume that both D1 and D2 embed in N1. Now suppose
without loss that D1 was planar. Then embedding D2 in N1 and embedding D1 in a face
of the embedding of D2 yields an embedding of D. Thus it must be the case that both D1

and D2 are nonplanar and thus D immerses C1
3 ∪ C1

3 .
IfD is connected but not strongly 2-edge-connected, then considerX ⊆ V with d+(X) =

d−(X) = 1 and let Y = V \ X. Recall the construction of DX and DY . Suppose without
loss that DX did not embed in N1. Then as before, it suffices to only consider DX , because
an obstruction immersed in DX is also immersed in D. Thus, we may assume that both
DX and DY embed in N1. Now suppose without loss that DX was planar. In this case, let
ΩY be a 2-cell embedding of DY in N1 with face F ⊆ N1 whose boundary contains the edge
from E(DY )\E. Take an embedding ΩX of DX in the plane with the edge from E(DX)\E
on the other face. Embed DX in F with ΩX and reconstruct D to obtain an embedding of
D in N1. Thus, we may assume that both DX and DY are nonplanar. In this case, both
contain C1

3 as an immersion. But this implies that D contains C1
3 ∪ C1

3 as an immersion.
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Now, suppose that D is strongly 2-edge-connected. If D does not contain C1
3 as an

immersion, thenD embeds in the projective plane. Otherwise, apply Lemma 4.25. Therefore,
eitherD contains C1

4 or C2
5 as an immersion or embeds in the projective plane. IfD immerses

C2
5 then apply Lemma 4.28 to obtain the result.

4.4 The torus and Klein bottle

In this section we discuss computational results that culminate in the partial classification
of obstructions for Euler genus 2 surfaces (Propositions 4.2 and 4.3):

ForbI(S1) ⊇
{
C1

5 , D6, C
2
7 , D10, C

1
3 · C1

3 , C
1
3 ∪ C1

3

}
ForbI(N2) ⊇

{
C1

5 , C
2
7 , C

2
6 , D7, D9

}
∪
(
C1

3 · ForbI(N1)
)
∪
(
C1

3 ∪ ForbI(N1)
)

We also provide a human readable proofs of the above propositions.

4.4.1 Computational results

The first stage in computation was exhaustive 2-regular digraph generation. Let Dn denote
the set of connected 2-regular digraphs with order ≤ n. Given a connected 2-regular digraph
D with n vertices, we can create a 2-regular digraph with n + 1 vertices, that contains D
as an immersion, by attaching a single chord on edges of D and contracting this chord. If
this is done in all possible ways, then we obtain all graphs of order n + 1 containing D as
an immersion by Proposition 1.2. Starting this procedure with the pointless edge, we can
generate Dn (see Algorithm 1).

Algorithm 1 2-Regular Digraph Generation
1: procedure Generate(n)
2: H0 ← {D0} . Initialize H0 as a set containing D0, the pointless edge.
3: for 1 ≤ k ≤ n do
4: Hk ← { } . Initialize Hk as an empty set.
5: for D ∈ Hk−1 do
6: for e, f ∈ E(D) do . e and f may be the same edge.
7: H ← D.Copy( )
8: x, y ← H.Subdivide(e, f) . Subdivide e and f with vertices x and y.
9: H.Identify(x, y) . Vertex identification.
10: Hk.Add(H)
11: end for
12: end for
13: end for
14: return Dn ← H0 ∪H1 ∪ · · · ∪ Hn
15: end procedure
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Before the combinatorial framework that is used in the thesis was formalized (treating
2-cell embeddings as a collection of closed walks where each transition appears exactly once)
we used the more standard combinatorial embedding description, the rotation system (see
[26] for details). Let D be a 2-regular digraph and let v ∈ V (D). Observe that there are
only two distinct rotation systems at v, since edges incident to v must alternate in-out-in-
out. Therefore, generating all possible rotation schemes and using the standard face tracing
procedure (see [26]), we were able to exhaustively check D10 for members of ForbI(S1) and
D9 for members of ForbI(N2).

4.4.2 Proofs for humans

For the proof of Proposition 4.2, we rely heavily on the fact that S1 is an orientable surface.
Recall, that if D is a 2-regular digraph with an embedding Ω in an orientable surface, then
there exists a bipartition {A,B} of Ω where every edge e ∈ E(D) appears exactly once in
both

⋃
F∈AE(F ) and

⋃
F∈B E(F ). Moreover, notice that given say A, the faces of B are

uniquely determined since every transition in T (D) is contained in exactly one face of Ω.
We refer to this as extending A to Ω.

Given an integer vector ~v = (n1, n2, . . . , nk), we say that ~v is a configuration of D if
for 1 ≤ i < k, 1 ≤ ni ≤ ni+1 and

∑
1≤i≤k ni = |E(D)|. We say that ~v is realizable if there

exists closed walks F1, F2, . . . , Fk ⊆ D such that len(Fi) = ni for all 1 ≤ i ≤ k and each
edge e ∈ E(D) appears exactly once in

⋃
1≤i≤k E(Fi) and we say that (F1, F2, . . . , Fk) is

a realization of ~v. A realization of ~v forms one side of a bipartition of an orientable 2-cell
embedding of D.

H5 H7

H9H8 H ′
9

C1
3

Figure 4.12: Each color class represents one face from one part of the bipartition of the
embedding in S1.
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To cut down on case analysis in the proofs below, we talk about “essentially unique”
realizations of configurations. By this, we mean realizations up to automorphism of D as
well as realizations that take into account the action of reversing all edge directions of D,
if such an action yields a digraph isomorphic to D.

Proof of Proposition 4.2. By Propositions 4.6 and 4.9, C1
5 ∈ ForbI(S1) and C2

7 ∈ ForbI(S1).
Next, consider D6. Suppose towards a contradiction that Ω was an embedding of D6 in S1

with bipartition {A,B}, each part containing a copy of E(D6). By Euler genus, |Ω| = 6;
therefore, we may assume that |A| = |B| = 3 since D6 does not contain four edge-disjoint
triangles or digons. By edge count, the possible realizable configurations of D6 are (3, 3, 6)
and (3, 4, 5). Each vector is essentially uniquely realizable as A. In both cases, extending
A to Ω yields |Ω| < 6. To see that D6 is minimal, let t ∈ T (D6) and observe that after
contracting digons (Corollary 4.11) D6/t is isomorphic to either C1

3 or H5. Both of these
graphs embed in S1 (see Figure 4.12).

Next, consider D10. Suppose towards a contradiction that Ω was an embedding of D10 in
S1 with bipartition {A,B}. By Euler genus, |Ω| = 10; therefore, we may assume that either
|A| = 6 and |B| = 4 or |A| = |B| = 5 since D10 does not contain any digons. First, suppose
that |A| = 6. By edge count, the possible realizable configurations of D10 are (3, 3, 3, 3, 3, 5)
and (3, 3, 3, 3, 4, 4). The first vector is essentially uniquely realizable while the second is
not realizable. Taking the first and extending A to Ω yields |Ω| < 10. Now, suppose that
|A| = |B| = 5. Once again, by edge count, the possible realizable configurations of D10

are (3, 3, 3, 3, 8), (3, 3, 3, 5, 6), (3, 3, 3, 4, 7), (3, 3, 4, 5, 5), and (3, 3, 4, 4, 6). The configuration
(3, 3, 4, 5, 5) is not realizable and all others are essentially uniquely realizable as A. However,
in all cases extending A to Ω yields |Ω| < 10. To see that D10 is minimal, let t ∈ T (D10)
and observe that after contracting digons D10/t is isomorphic to one of H7, H8, H9, or H ′9
all of which embed in S1 (see Figure 4.12).

Next, consider C1
3 · C1

3 . Suppose towards a contradiction that Ω was an embedding of
C1

3 · C1
3 in S1 with bipartition {A,B}. By Euler genus, |Ω| = 6; therefore, we may assume

that |A| = |B| = 3 since C1
3 ·C1

3 contains only two edge-disjoint triangles and no digons. By
edge count, the possible realizable configurations of C1

3 · C1
3 are (3, 3, 6) and (3, 4, 5). Since

C1
3 ·C1

3 does not contain 4-cycles, (3, 4, 5) is not realizable and (3, 3, 6) is essentially uniquely
realizable as A. However, extending A to Ω yields |Ω| < 6. To see that C1

3 · C1
3 is minimal,

let t ∈ T (C1
3 · C1

3 ) and observe that after contracting digons, C1
3 · C1

3/t is isomorphic to C1
3

which embeds in S1 (see Figure 4.12).
Lastly, consider C1

3 ∪ C1
3 . By the proof of Proposition 1.3, every embedding of C1

3 in
S1 must be 2-cell; otherwise, the capping operation would result in C1

3 embedded in S0

contradicting Theorem 2.6. This implies that C1
3 ∪C1

3 has no embedding in S1. To see that
C1

3 ∪C1
3 is minimal, let t ∈ T (C1

3 ∪C1
3 ) and observe that C1

3 ·C1
3/t is isomorphic to C1

3 ∪H
where H is planar.
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H5 D6H5 C1
3 · C1

3

Figure 4.13: Embeddings of graphs in the Klein bottle.

Proof of Proposition 4.3. By Propositions 4.6 and 4.9, C1
5 ∈ ForbI(N2) and C2

7 ∈ ForbI(N2).
Next, consider D7. Observe that a minimum feedback edge set of D7 has size 3. Therefore,
eg(D7) ≥ 3 by Proposition 2.7. To see that D7 is minimal, let t ∈ T (D7) and observe that
after contracting digons D7/t is isomorphic to one of C1

4 , H5, D6 or H5. All of these graphs
embed in N2 by Lemma 4.5 and Figure 4.13.

Next, consider C2
6 . Observe that a minimum feedback edge set of C2

6 has size 3. Therefore,
eg(C2

6 ) ≥ 3 by Proposition 2.7. To see that C2
6 is minimal, let t ∈ T (C2

6 ) and observe that
after contracting digons C2

6/t is isomorphic to one of C1
4 , H5, D6, C2

6 , or C2
5 . All of these

graphs embed in N2 by Lemmas 4.5, 4.7, and 4.8 and Figure 4.13.
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5
0

6

73

4

1 2
5

(1, 6, 3, 4, 1) (1, 6, 2, 4, 1) (1, 6, 3, 2, 4, 1)
(0, 7, 2, 5, 0) (0, 7, 3, 5, 0) (1, 6, 7, 5, 1)
(1, 2, 5, 1) (1, 6, 3, 5, 1) (0, 7, 5, 0)
(0, 6, 3, 5, 0) (0, 6, 3, 4, 0) (0, 6, 7, 2, 5, 0)
(1, 6, 7, 3, 5, 1) (1, 7, 2, 5, 1) (0, 6, 3, 4, 0)
(1, 2, 4, 1) (0, 6, 2, 5, 0) (1, 3, 2, 5, 1)
(0, 7, 3, 4, 0) (1, 7, 3, 4, 1) (1, 3, 4, 1)
(0, 6, 7, 2, 4, 0) (0, 7, 2, 4, 0) (0, 7, 2, 4, 0)

Figure 4.14: On the left, each column represents an embedding of the graph in the Klein
bottle, where each row is a facial walk given by its vertex sequence.
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Next, consider D9. Observe that a minimum feedback edge set of D9 has size 4. There-
fore, eg(D9) ≥ 3 by Proposition 2.7. To see that D9 is minimal, let t ∈ T (D9) and observe
that after contracting digons D9/t is isomorphic to one of four graphs, all of which embed
in N2 (see Figure 4.14).

To see that every graph in C1
3 ·ForbI(N1) is an obstruction for the Klein bottle, observe

that by Lemmas 4.5, 4.7 and Figure 4.13, each connected graph D ∈ ForbI(N1) has an
embedding in the Klein bottle, and apply Proposition 4.14. Similarly, every graph in C1

3 ∪
ForbI(N1) is an obstruction for the Klein bottle since every embedding of D ∈ ForbI(N1)
in N2 is a 2-cell embedding by Proposition 1.3.
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Chapter 5

Negami’s Conjecture

This chapter discusses a conjecture, by Negami, on undirected graphs. We give a brief
overview of the problem and its current state but refer the reader to an excellent survey by
Hliněný [17] to fill in the gaps in this exposition.

A graph H is a cover of a graph G if there exists a pair of onto mappings (φ, ψ),
φ : V (H) → V (G) and ψ : E(H) → E(G), such that ψ maps the edges incident to each
vertex v ∈ V (H) bijectively onto the edges incident to φ(v). If H and G are directed graphs,
then for uv ∈ E(H) we also insist that ψ(uv) = φ(u)φ(v); i.e. ψ preserves edge direction.

Given a map f : X → Y we call f−1(y) the fiber of f over y ∈ Y . Observe that for all
v ∈ V (G), degH(φ−1(v)) = degG(v). If G is connected then all fibers φ−1(v), have a fixed
size k, and we say that H is a k-fold cover. When k = 2 we say that H is a double cover of
G. In 1986 Negami proved the following result about undirected graphs.

Theorem 5.1 (Negami [28]). A connected undirected graph G has a double planar cover if
and only if G embeds in the projective plane.

Two years later Negami extended this result for a type of cover called a regular cover.
A cover H of G with maps (φ, ψ) is regular if there is a subgroup A of the automorphism
group of H such that for u, v ∈ V (H), φ(u) = φ(v) if and only of there exists some τ ∈ A
such that τ(u) = v.

Theorem 5.2 (Negami [31]). A connected undirected graph G has a finite regular planar
cover if and only if G embeds in the projective plane.

In this same paper Negami made the conjecture that the regular condition could be
relaxed.

Conjecture 5.3 (Negami [31]). A connected undirected graph G has a finite planar cover
if and only if G embeds in the projective plane.

By Theorem 5.1 (or by the fact that the sphere is a double cover of the projective
plane), the “if” direction of Conjecture 5.3 is true; however, the “only if” direction has
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eluded capture despite years of research and a multitude of papers. Combining results from
1988 to 2002 we arrive at the following theorem.

Theorem 5.4 (Archdeacon, Fellows, Hliněný, Hueneke, Negami [4, 11, 16, 18, 29, 31]). If
K1,2,2,2 has no finite planar cover, then Conjecture 5.3 is true.

In this chapter we prove an analogue of Conjecture 5.3 in the setting of 2-regular digraphs
on surfaces. The main theorem is the following:

Theorem 5.5. A connected 2-regular digraph D has a finite planar cover if and only if D
has a embedding in the projective plane.

5.1 Projective plane obstructions have no finite planar covers

One method of attacking Conjecture 5.3, is to take the classified list of minor-obstructions
for the projective plane [5, 14] and show that each graph in the list has no finite planar
cover. Our proof of Theorem 5.5 uses a similar technique. We lean on the classification
theorem for 2-regular digraph projective plane obstructions from Section 4.3 and show that
each connected graph appearing in the list has no finite planar cover.

Recall that ForbI(N1) = {C1
4 , C

2
6 , C

1
3 · C1

3 , C
1
3 ∪ C1

3}.

5.1.1 Euler’s formula

Lemma 5.6. C1
4 has no finite planar cover.

Proof. Suppose for a contradiction that H = (V,E) was a finite planar cover of C1
4 . Let

Ω be a planar embedding of H and let v = |V |, e = |E|, and f = |Ω|. Recall that faces
of Ω are directed closed walks and observe that each face in Ω is a walk of size at least 4.
Therefore, we have that 2e ≥ 4f . Thus, using Euler’s formula we obtain 4v − 2e ≥ 8. But
by the handshake lemma, 2e = 4v which is a contradiction.

5.1.2 Combinatorial curvature

For the next result, we extend the idea of Euler’s characteristic formula with the concept
of combinatorial curvature as defined by Ishida [19]. Given a 2-regular digraph D = (V,E)
and an embedding Ω, let v ∈ V and let F ∈ Ω. If v appears in the walk F then we say
that F and v are incident and write F ∼ v. Let #inc(v, F ) denote the number of times v
in incident to F . The combinatorial curvature is the function Φ : V → R where for every
v ∈ V :

Φ(v) = 1− deg(v)
2 +

∑
F∈Ω

#inc(v, F )
len(F ) .

Summing the combinatorial curvature over all vertices of D yields the Euler characteristic
of Ω:

Φ(Ω) =
∑
v∈V

Φ(v) = |V | − |E|+ |Ω| = χ(Ω).
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(a) C1
4

e

f

v

u

(b) C1
3 · C1

3 (c) C2
6

Figure 5.1: The connected obstructions for the projective plane.

Lemma 5.7. C1
3 · C1

3 has no finite planar cover.

Proof. Suppose for a contradiction that H = (V,E) is a finite planar cover of C1
3 · C1

3 with
planar embedding Ω. First observe that C1

3 · C1
3 has no closed walks of length 2, 4, or 5.

Next, observe that C1
3 · C1

3 has two types of vertices up to symmetry:

Type 1: v ∈ V (C1
3 · C1

3 ) is incident to two pairs of parallel edges,

Type 2: v ∈ V (C1
3 · C1

3 ) is incident to a single pair of parallel edges.

When v ∈ V and v is mapped to a Type 1 (Type 2) vertex, we say that v is also a Type 1
(Type 2) vertex. We now consider the vertices of H and show that they all have non-positive
combinatorial curvature contradicting the fact that Ω was an embedding in the plane.

Let v′ ∈ V be a Type 2 vertex, where without loss it is mapped to the vertex labeled
v in Figure 5.1b. Every face in Ω that contains an edge from the fiber over e (where e is
labeled in Figure 5.1b) has length ≥ 6 by inspection. Since v′ is incident to such an edge, at
least two of its face incidences come from faces with length ≥ 6. Taking the remaining two
incidences to come from the shortest possible faces (triangles) we maximize Φ(v′) and obtain
Φ(v′) ≤ −1 + 1

3 + 1
3 + 1

6 + 1
6 = 0. Hence, all Type 2 vertices have non-positive combinatorial

curvature.

u′

f ′
f ′′

Figure 5.2: An impossible configuration of a Type 1 vertex in H.

Let u′ ∈ V be a Type 1 vertex, where without loss it is mapped to the vertex labeled
u in Figure 5.1b. We claim that there are at most two face incidences with u′ and faces of
length 3. To see this, observe that any triangular face incident to u′ contains an edge in
the fiber over f (where f is labeled in Figure 5.1b). Suppose that f ′, f ′′ ∈ E are both in
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the fiber over f and both contained in triangles with u′. It must be the case that f ′ = f ′′

in H, else the heads of f ′ and f ′′ are distinct, contradicting the fact that a cover is locally
bijective (see Figure 5.2). Thus, we have at most two triangular face incidences to u′ since
each edge (f ′) is contained in at most 2 faces. Taking the remaining two incidences with
u′ to come from the shortest possible faces (length ≥ 6) we maximize Φ(u′) and obtain
Φ(u) ≤ −1 + 1

3 + 1
3 + 1

6 + 1
6 = 0.

5.1.3 Discharging

We extend the idea of Euler’s characteristic yet again by way of discharging. However, in-
stead of encoding the information on the vertices, as was done with combinatorial curvature,
we now encode the information on the faces of the proposed embedding. More formally, for
a 2-regular digraph D and a 2-cell embedding Ω, we define the charge of F ∈ Ω as

charge(F ) = 30(4− len(F )).

If you sum over all the faces in Ω you obtain the charge of Ω

charge(Ω) =
∑
F∈Ω

charge(F ) = 120 · χ.

Our strategy for proving that C2
6 does not have a finite planar cover is the same as with

C1
3 ·C1

3 ; we will take a cover H and an embedding and show that every face has non-positive
charge.

Lemma 5.8. C2
6 has no finite planar cover.

Proof. We start with some observations about C2
6 . First, note that the drawing in Figure 5.1c

has bold edges and non-bold edges. Next, note that C2
6 has exactly two directed triangles,

comprised of the bold edges. Finally, note that every vertex of C2
6 is incident with exactly

one bold in-edge and one bold out-edge. This bold-edge-coloring extends to any cover of
C2

6 .
Now suppose towards a contradiction, that H was a finite planar cover of C2

6 with
embedding Ω of H. We say that two faces F,G ∈ Ω are adjacent if F 6= G and F shares a
vertex or an edge with G. We refer to these respectively as vertex-adjacent or edge-adjacent
faces, and we denote face adjacency by F ∼ G.

Let F ∈ Ω and notice that charge(F ) > 0 if and only if len(F ) = 3 (since C2
6 has no

faces of length 2). Thus, our discharging rule is simple, every triangular face sends its charge
to its adjacent faces that are “long enough”. Before we state the discharging rule explicitly
we note that, up to automorphism, C2

6 has one type of triangular face.
Let charge′(F ) represent the charge on face F after one step of discharging. Let T be

the set of triangular faces in Ω. For τ ∈ T define Fτ be the set of faces adjacent to τ with
length ≥ 5. Our discharging rule is the following:
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τ

10

66

8

(a) Edge-Adjacent

τ

66

9 9

(b) Edge/Vertex-Adjacent

τ

6

8

88

(c) Vertex-Adjacent

Figure 5.3: Discharging rules for the various configurations of n4(τ) = 2.

• For all τ ∈ T and ci ∈ Z+

charge′(τ) = 30−
∑
Fi∈Fτ

ci where
∑
Fi∈Fτ

ci = 30

• and for all Fi ∈ Fτ
charge′(Fi) = charge(Fi) + ci.

We’ve left the distribution of charge to Fτ vague, because we will distribute differently
based on the number of faces in Fτ where len(Fi) = 4. Before we nail down these charges,
we define another term; for an arbitrary face F , let nk(F ) denote the number of faces of
length k adjacent to F . We have the following distribution of charges to Fτ :

• If n4(τ) = {0, 1, 3}, then distribute equally to Fi ∈ Fτ :

charge′(Fi) = charge(Fi) + 30
6− n4(τ)

• If n4(τ) = 2, then we say that τ is either Type Edge-Adjacent, Type Edge/Vertex-
Adjacent, or Type Vertex-Adjacent as depicted in Figure 5.3, where ci is written
explicitly for each Fi ∈ Fτ in Figure 5.3.

We claim that this discharging rule is well defined (i.e. for all τ ∈ T , all possible
configurations of adjacent faces have been considered), that n4(τ) ≤ 3, and if a closed walk
of length 4 is adjacent to τ , then we know whether or not it is edge-adjacent or vertex-
adjacent to τ .

Proof of claim. First notice that no other directed triangle may be adjacent to τ . This can
be seen since the only two directed triangles in C2

6 share no vertices or edges, so triangular
faces cannot share vertices or edges in Ω.

Let W be a closed walk of length 4 in C2
6 , note that W is a cycle and that, up to

automorphism, there are only two types of 4-cycles in C2
6 and they both have exactly 2 bold

edges (see Figure 5.1c):
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Type 1: W has two adjacent bold edges,

Type 2: W has two nonadjacent bold edges.

When a face F ∈ Ω of length 4 is mapped to a Type 1 (Type 2) 4-cycle in C2
6 then we say

that F is also of Type 1 (Type 2). Now, using the fact that every vertex of H has exactly
one bold in-edge and one bold out-edge, we can see that if F is adjacent to τ and Type 1
(Type 2), then it must be vertex-adjacent (edge-adjacent). Next, let F be a Type 2 face
(not necessarily adjacent to a triangular face) and consider the following: F cannot have
short faces (len < 5) edge-adjacent to its non-bold edges. This is the case since, once again,
all vertices of H have exactly one bold in and out edge and triangles are solely comprised of
bold edges and there are no 4-cycles with 3 non-bold edges. Using these facts, we conclude
that a triangular face, τ , has n4(τ) ≤ 3 which implies the claim.

Note that after discharging every triangular face has zero charge. Next, we show that
any face with length ≥ 6 does not have positive charge. Let γ ∈ Ω with len(γ) ≥ 6. As
stated above, no triangle face may be adjacent to another triangle face. Therefore, there
are at most len(γ) many triangles adjacent to γ. However, the maximum amount of charge
that a triangle can send to γ is 10 (either Figure 5.3a or when n4(τ) = 3); therefore, γ gains
at most a charge of 10 len(γ). But

charge′(γ) ≤ charge(γ) + 10 len(γ)

≤ 30(4− len(γ)) + 10 len(γ)

≤ 0.

Thus, we have shown that after discharging, if Ω has any positive charge, then it must be
on faces of length 5.

Let φ ∈ Ω be a face of length 5. If n3(φ) < 4 then by the above argument there is no
positive charge on φ; therefore, let us assume that n3(φ) ≥ 4. Notice that in C2

6 there is
only one closed walk of length 5, up to automorphism, and it is a cycle that uses exactly
one bold edge. This forces the number of adjacent triangular faces to φ to be at most four.
Therefore, we may assume that n3(φ) = 4 with adjacent faces as configured in Figure 5.4.

First note that F2 and F6 have length ≥ 5 since they are adjacent to triangle F1, and
they cannot complete to 4-cycles of Types 1 or 2. This implies that n4(Fi) ≤ 2 for i ∈ {3, 5}.
If n4(Fi) = 1 then Fi sends 6 charge to φ, and if n4(Fi) = 2, then as per the discharging
rules in Figure 5.3, Fi sends ≤ 6 charge to φ. Next consider, F4 which has no restriction and
therefore sends ≤ 10 charge to φ. Lastly, observe that n4(F1) ≤ 2 since φ, F2, and F6 are
all of length ≥ 5. Therefore, F1 sends ≤ 8 charge to φ (it can be of type Edge-Adjacent).
Therefore, the total charge on φ is non-positive.

charge′(φ) ≤ charge(φ) + (6 + 6 + 10 + 8) = 0
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φ

F1

F3

F4

F5

F2 F6

Figure 5.4: A face φ of length 5 with a maximum amount of adjacent triangles.

Thus, no face of Ω has positive charge which contradicts the fact that Ω was a planar
embedding. Therefore, C2

6 has no finite planar cover.

5.1.4 Proof of Theorem 5.5

Observe that if a 2-regular digraph D has a finite planar cover and H is immersed in D, then
H also has a finite planar cover since surface embedding is an immersion closed property.
We use the negation of this fact in the proof of Theorem 5.5, if an immersion H of D does
not have a finite planar cover, then neither does D.

Proof of Theorem 5.5. For the “if” direction, let D be a connected 2-regular digraph em-
bedded in the projective plane. Since the sphere is a double cover of the projective plane,
we have that D has a double cover in the plane.

For the “only if” direction, we prove the contrapositive. Let D be a connected 2-regular
digraph with no embedding in the projective plane. Therefore, D contains either C1

4 , C2
6 ,

C1
3 ·C1

3 , or C1
3∪C1

3 as an immersion. Applying Lemma 5.6, 5.7, 5.8, or 4.21 where appropriate
implies that D does not have a finite planar cover.
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Chapter 6

Strong Embeddings

Let G be an undirected graph, and let φ be a 2-cell embedding of G in a surface S. The
embedding φ is called strong if the closure of each face of S − φ(G) homeomorphic to a
closed disk. Combinatorially, this is equivalent to each face of φ being bounded by a cycle (a
closed walk with no repeated edges or vertices) in G. (In the literature cycles are sometimes
referred to as circuits and strong embeddings are also called closed 2-cell embeddings or
circular embeddings.) At the combinatorial level, an obvious obstruction to a graph having
a strong embedding is a cut-vertex, as any embedding of a graph with a cut-vertex x must
contain a facial walk that encounters x twice. However, it is conjectured that aside from
this, every graph should have a strong embedding.

Conjecture 6.1 (Haggard [15]). Every 2-connected graph has a strong embedding in some
surface.

It is straightforward that Conjecture 6.1 is true for 2-connected planar graphs. And it has
been shown, independently, by Negami [30] and Robertson & Vitray [39] that Conjecture
6.1 is true for projective planar graphs. It was also shown by Zha that Conjecture 6.1 is
true for doubly toridal graphs [50] (graphs that embed in S2) and 5-crosscap embeddable
graphs [51] (those that embed in N5). In the vein of minors, it has also been shown by Zhang
[52] that Conjecture 6.1 is true for K5-free graphs and by Robertson & Zha [40] that the
conjecture is true for V8-free graphs (where V8 is the Wagner graph or the 8-vertex Möbius
ladder). Many more results are also known [1, 8, 25].

Taking the faces of a strong embedding one obtains a cycle double cover. Thus, Conjec-
ture 6.1 implies the more well known Cycle Double Cover Conjecture.

Conjecture 6.2 (Seymour [41], Szekeres [42]). For every 2-edge-connected graph, there
exists a collection of cycles C so that every edge appears exactly twice in C.

In this thesis, 2-regular digraphs are equipped with a suitable definition of embeddings
and so we can ask a question analogous to Conjecture 6.1. Call a 2-cell embedding of a
2-regular digraph strong if the closure of each face is homeomorphic to a closed disk. The
combinatorial equivalence of this is every face being bounded by a directed cycle.
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Question 6.3. Does every loopless 2-regular digraph with no cut-vertex have a strong em-
bedding in some surface?

As in the case of undirected graphs, two obvious obstructions to a 2-regular digraph
having a strong embedding are a cut vertex and a loop. Let D be a 2-regular digraph and
let Ω be a 2-cell embedding of D in some surface S. If D has a cut vertex v ∈ V (D), then
observe that there is a pair of complementary transitions from T (v) that appear in the
same face of Ω, which implies that v is repeated in this facial walk and Ω is not strong. For
a very similar reason a loop edge obstructs the existence of a strong embedding. Besides
these obvious obstructions, one can ask (as in the case of undirected graphs) if a strong
embedding exists.

In this chapter, we answer Question 6.3 in the negative. We show that there exist in-
finitely many “well”-connected 2-regular digraphs that have no strong embedding in any sur-
face. That is, the analogue of Conjecture 6.1 is false for 2-regular digraphs (when equipped
with our notion of a strong surface embedding). This chapter culminates in the following
result.

Theorem 6.4. There exist infinitely many internally strongly 3-edge-connected 2-regular
digraphs with no strong embedding in any surface.

6.1 A 2-regular digraph with no strong embedding

Through computer search (see Algorithm 2), a single smallest 2-regular digraph with no
cut-vertex and no strong embedding in any surface was found to be of order 7. We will
refer to it as G7 (see Figure 6.1). We give a proof below that G7 does not have a strong
embedding in any surface that does not rely on the algorithm used in the computer search.
In this proof we find a vertex in G7 where the local transitions at this vertex cannot be
covered by cycles of G7. For a 2-regular digraph D, we say that two cycles conflict (or are
incompatible) if there exists a transition of T (D) contained in both.

Figure 6.1: The smallest (simple) 2-regular digraphs with no strong embedding.
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Proposition 6.5. G7 has no strong embedding in any surface.

Proof. We begin by making a few observations about the structure of G7. First observe that
the underlying undirected graph is K4,3 with an added 2-edge matching on the independent
set of order 4. As per Figure 6.1 we will refer to the two matching edges as the left and right
of G7 and the bipartition of size 3 as the middle of G7. The middle has two vertex classes:
the clones (pictured at the top and bottom of the middle of Figure 6.1) and the center. Let
v0 denote the center vertex. Note there is an automorphism of G7 switching the two clones,
and there is another automorphism switching the left and right.

Suppose towards a contradiction that Ω was a strong embedding of G7 in some surface.
Notice that the only directed cycles that use v0 are of length 4 and length 7. Since Ω
is strong, every transition of T (v0) is contained in a distinct face of Ω, giving four faces
containing v0. We reach the contradiction by showing that four facial cycles cannot cover
T (v0).

Suppose that Ω had two 7-cycles as faces with transitions in T (v0) (up to automorphism
there is only one such 7-cycle). Choosing one 7-cycle as a face in Ω uniquely determines the
other one (recall that each transition in T (G7) can only appear once in Ω). Taking these
two 7-cycles, we cannot complete Ω to a strong embedding, the 4-cycles necessary to cover
the remaining transitions at v0 are incompatible with the chosen 7-cycles. Thus, Ω cannot
contain two 7-cycle faces with transitions in T (v0).

So suppose Ω contained exactly one 7-cycle as a face with a transition in T (v0). This uses
1 of the 4 transitions at v0; therefore, three 4-cycles must be used to cover the remaining
transitions of T (v0). However, at most two 4-cycles can be chosen as faces in Ω without
conflicting with the chosen 7-cycle. Thus, Ω cannot contain a 7-cycle face with a transition
in T (v0).

Now it must be the case that Ω consists of four 4-cycles that cover the transitions at
v0. Up to automorphism there is a unique way to choose four such cycles, none of which
conflict. However, after these faces have been chosen, the rest of Ω is forced (use the fact
that each transition of T (G7) appears exactly once in Ω) and there exists a face with a
repeated vertex.

6.1.1 Computational results

The algorithm mentioned above was developed in SageMath and used to exhaustively search
all 2-regular digraphs up to 11 vertices. There are, in total, 103 strongly 2-edge-connected
2-regular digraphs up to order 11 with no strong embedding: 13 of them have underlying
simple graphs and 90 have digons. A table of all underlying simple 2-regular digraphs with
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no strong embedding is included, for the interested reader, where the graphs are given in
the digraph6 format.1

order digraph6 string
7 F@c‘eB?PE?
9 H?X_?gIKE?o?SB?
10 I?Kc@AACa@GoB??c@O

I?KWCO?Ka@CoA_?o?o
11 J?EW?CGOcCGC?XGA_?S?W?

J?EH@O?GQ@K?APCA@?D?Q?
J?ED?SACACH?GDAAO?@OE?
J?EAGAIAACACAH_A_?o?W?
J?EA‘AA?Q@B?E@OA@?H?I?
J?EK@@@A?PGCK@@AG?GOI?
J?EE@OAAAGCACPCAC?@OI?
J?EG‘G?G_Gh?K@OA@?D?Q?
J?EG‘G?G_A‘OS@OA_?D?S?

Table 6.1: Underlying simple 2-regular digraphs, up to order 11, with no strong embedding.

Given a 2-regular digraph D, we can create an auxiliary undirected graph CD in the
following manner. For each directed cycle C ⊆ D there is a vertex C ∈ V (CD) and C1C2 ∈
E(CD) if C1 and C2 contain a common transition from T (D). Assign to each vertex C ∈
V (CD) the weight w(C) = |C|. A strong embedding, Ω ofD, is an independent set I ⊆ V (CD)
where

w(I) =
∑
C∈I

w(C) = 2|E(D)|.

The Euler genus of Ω is found by considering |I|.
Algorithm 2 takes a 2-regular digraph D on input and creates this auxiliary cycle graph

CD. It then finds all independent sets of CD and returns either an independent set of requisite
weight (a strong embedding of D) or returns nothing.

6.2 Infinite families of 2-regular digraphs with no strong em-
bedding

One example of a 2-regular digraph with no strong embedding is nice, but an infinite family
is better. We construct one infinite family by taking advantage of the D · H operation
introduced in Chapter 4. After this we construct another, more “well-connected”, infinite
family.

1https://users.cecs.anu.edu.au/~bdm/data/formats.html
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Algorithm 2 Strong Embedding
1: procedure StrongEmbedding(D)
2: H ← CycleGraph(D)
3: for i ∈ H.IndependentSets( ) do . All independent sets of H
4: if Weight(i) = 2 · |E(D)| then
5: return i
6: end if
7: end for
8: return None
9: end procedure

10:
11: function CycleGraph(D) . Builds auxiliary cycle graph of D
12: H ← Graph( )
13: for C ∈ D.Cycles( ) do . All directed cycles of D
14: H.AddVertex(C)
15: end for
16: for C1, C2 ∈ V (H) C1 6= C2 do
17: if D.ShareTransition(C1, C2) then
18: H.AddEdge((C1, C2))
19: end if
20: end for
21: return H
22: end function

6.2.1 A poorly connected family

Lemma 6.6. Let D and H be connected 2-regular digraphs. If D has no strong embedding
in any surface, then D ·H has no strong embedding in any surface.

Proof. Suppose towards a contradiction that D · H has a strong embedding Ω. Let e0 =
uv ∈ E(D) be the edge deleted in forming D ·H. Let (φ, φ′) be an immersion of D in D ·H
where for all e ∈ E(D), φ′(e) = e and φ′(e0) is mapped to a trail in (D ·H) − E(D). Let
ΩD be the induced embedding formed by this immersion. We claim that ΩD is a strong
embedding of D.

Every face in Ω ∩ ΩD is a cycle since Ω is strong; therefore, it remains to show that
faces in ΩD \ Ω are cycles. Let F ∈ ΩD \ Ω. Since Ω is a strong embedding D · H has no
cut-vertex; therefore, there exists a nontrivial path P ⊆ D from v to u so that F = P, e0 is
a cycle. Therefore, ΩD is strong.

Using Lemma 6.6 we obtain the following corollary by using copies of G7 (or one of the
other graphs found to have not strong embedding, see Table 6.1).

Corollary 6.7. There exist infinitely many connected 2-regular digraphs with no strong
embedding in any surface.
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6.2.2 A more well connected family

The infinite family found via Corollary 6.7 is nice but poorly connected (D · H has an
edge-cut of size 2 in the underlying graph for all D and H). We now work towards showing
the existence of infinitely many 2-regular digraphs with no strong embedding and higher
edge connectivity by using gadgets, as introduced in Section 4.1.1.

v0

v1

v2

e2

f2

e0

f0

e1

f1

Figure 6.2: A labeling of the directed triangle gadget G3 from Lemma 6.8.

Let G be a 2-regular gadget. Recall that a 2-cell embedding Ω of G is a collection of
walks W starting and ending with half-edges and a collection of closed walks C, where each
transition appears exactly once in C ∪ W. As before, if two walks in G contain the same
transition, then we say that they conflict or are incompatible. If W is a set of paths and C
a set of cycles, then Ω is a strong embedding of G.

Lemma 6.8. The directed triangle gadget G3 has 2 strong embeddings: one where the di-
rected triangle appears as a face and one where it does not.

Proof. Let G3 be labeled as in Figure 6.2. Let Ω be a strong embedding of G3. Observe
that for i ∈ {0, 1, 2}, the half-edge path (ei, fi) must appear as a face in Ω since it is the
only way for the transition (ei, fi) to appear.

If the directed triangle C = v0v1, v1v2, v2v0 appears as a face in Ω, then there is a unique
way to complete Ω to an embedding. Expressing indices modulo 3, the faces (ei, vivi+1, fi+1)
are forced to be in Ω for all i. If C is not in Ω, then the faces (ei, vivi+1, vi+1vi−1, fi−1) are
forced to be in Ω for all i.

The proof of Lemma 6.8 is slightly more enlightening than the statement. In the proof
we show that in a strong embedding of G3 the edges of the directed triangle C are either
covered by C plus 3 other faces, each sharing exactly one edge with C, or the edges of C
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are covered by 3 faces each containing exactly 2 edges of C. We use this fact repeatedly in
the following lemma.

v0

v1v2

e2

e0

e1

f1

f2

f0

Figure 6.3: A labeling of the gadget G6.

Proposition 6.9. The gadget G6 has no strong embedding.

Proof. Let G6 be labeled as in Figure 6.3 and suppose towards a contradiction that G6 had
a strong embedding Ω. Observe that for i ∈ {0, 1, 2}, the half-edge path Pi = ei, fi must
appear as a face in Ω since it is the only way for the transition (ei, fi) to appear. Thus,
since each transition must appear exactly once in Ω (and since Ω is strong) we have that
either faces {P0,1, P1,2, P2,0} ⊆ Ω or faces {P0,2, P2,1, P1,0} ⊆ Ω where Pi,j denotes a path
starting on the in-half-edge ei and ending with the out-half-edge fj .

Notice that G6 contains five edge-disjoint directed triangles. If we treat each of these
directed triangles separately as a directed triangle gadget (in the obvious way) then since
Ω is strong, it must be the case that each of these triangle gadgets has a strong embedding,
so we can apply Lemma 6.8 to each one of them.

Suppose that {P0,1, P1,2, P2,0} ⊆ Ω. Observe that there are only 2 valid paths P0,1 (one
uses 4 vertices of G6 and the other uses 7). Take P0,1 to be either one of these and observe
that by applying Lemma 6.8 to each triangle in G6, we get that P1,2 is forced. But now P2,0

cannot be a face of Ω because it is either incompatible with the already chosen 2 faces or it
violates Lemma 6.8. The argument for {P0,2, P2,1, P1,0} ⊆ Ω is similar.

Proof of Theorem 6.4. Let D be an internally strongly 3-edge-connected 2-regular digraph
with 3 distinct edges e0, e1, e2 ∈ E(D), not all incident to the same vertex. Form a new
digraph D′ by subdividing each ei. Let A ⊆ E(G6) be the set of half-edges of G6. Let D′′

be a 2-regular digraph obtained from D′ ∪ (G6 − A) by pairwise identifying the 1-regular
vertices in D′ and G6 − A. Since D was internally strongly 3-edge-connected, so is D′′. It
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follows from Proposition 6.9 that D′′ has no strong embedding. Since there exist infinitely
many internally strongly 3-edge-connected 2-regular digraphs, we obtain the result.

The simplest 2-regular digraph that one can make by “attaching” G6 to a 2-regular
digraph is the 9 vertex graph shown in Figure 6.1. This graph can be realized by subdividing
a pointless edge three times, deleting the half-edges of G6 and pairwise identifying the 1-
regular vertices in each graph (there are two ways to do this, but they give isomorphic
graphs).
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Chapter 7

Open Problems

In this thesis, we studied the class of 2-regular digraphs, immersion, and a sensible notion
of embedding in a surface. We were able to prove analogues of many results for undirected
graphs on surfaces. In this chapter, we suggest some open problems.

7.1 Classifying obstructions for fixed surfaces

Conjecture 7.1. If D ∈ ForbI(Nk), then D ∈ ForbI(Nk+1) for k ≥ 1.

Conjecture 7.1 is true for k = 1; however, there may also be something at play with
orientable surfaces. Inflating a vertex of the torus obstruction D6 ∈ ForbI(S1) yields D6

which is isomorphic to the obstruction D7 ∈ ForbI(N2). However, this may be anecdotal.
As in general, obstructions for orientable and nonorientable surfaces need not be related. For
instance, D10 ∈ ForbI(S1) but D10 embeds in the projective plane; i.e. D10 is an obstruction
for the orientable surface of Euler genus 2 but embeds in the nonorientable surface of Euler
genus 1. Perhaps a more general conjecture is in order.

Conjecture 7.2. If D is a loop-free 2-connected 2-regular digraph, then eg(D) < eg(D).

Since D is immersed in D, we know that eg(D) ≤ eg(D). We also know that if Ω is a
2-cell embedding of D in a surface with Euler genus g, then we can extend Ω to a 2-cell
embedding Ω of D in the nonorientable surface with Euler genus g+ 1. Therefore, one way
to prove Conjecture 7.2 would be to prove that Ω is a minimal genus embedding. Note
that both the loop-free and connectivity conditions are necessary. If a vertex with a loop
edge v ∈ V (D) is replaced by a pair of parallel edges, then D contains a digon, where after
contracting the digon yields a graph isomorphic to D. If (H1, H2) is a 1-separation of D,
then for i ∈ {1, 2} embedding Hi in its surface of minimal genus Si, one can obtain an
embedding of both D and D in a surface with Euler genus eg(S1) + eg(S2), which is the
Euler genus of D.

While we’re on the subject of conjectures and obstructions for fixed surfaces. We might
as well offer up the partial lists of obstructions for the torus and the Klein bottle.
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Conjecture 7.3.

ForbI(S1) =
{
C1

5 , C
2
7 , D6, D10, C

1
3 · C1

3 , C
1
3 ∪ C1

3

}
.

Conjecture 7.4.

ForbI(N2) =
{
C1

5 , C
2
7 , C

2
6 , D7, D9

}
∪
(
C1

3 · ForbI(N1)
)
∪
(
C1

3 ∪ ForbI(N1)
)
.

The evidence for either Conjecture 7.3 or 7.4 is only that the list was found via exhaustive
computer search of 2-regular digraphs up to 9 and 10 vertices respectively, and independently
verified in Propositions 4.2 and 4.3. It’s not clear why either list would be complete, but it
seems remiss to not conjecture a partial list complete.

7.2 Relating 2-regular digraphs to undirected graphs

As explained in Section 1.1, viewing a 2-regular digraph as a medial of an undirected graph
is a way to link the two classes of graphs. However, this requires that the undirected graph,
as well as a medial counterpart, to be embeddable in the same orientable surface. Is there
a way to relate these two classes of graphs without a surface? In particular:

Question 7.5. Let S be a fixed surface. How are ForbI(S) and ForbM (S) related?

surface S |ForbI(S)| |ForbM (S)| |ForbT (S)|
S0 1 2 2
N1 4 35 103
S1 ≥ 6 ≥ 17, 535 ≥ 250, 815
N2 ≥ 16 ? ?

Table 7.1: Comparison of sizes of obstructions for fixed surfaces.

Question 7.5 isn’t the most well formed; however in light of Table 7.1, a meaningful
answer could help in the classification of undirected obstructions for fixed surfaces. A few
similar questions are the following:

Question 7.6. Can Theorem 5.5 be used to prove (or disprove) Negami’s Conjecture 5.3
for undirected graphs?

In the case of Question 7.6, a stumbling point is the fact that Negami’s Conjecture 5.3
deals with the projective plane, a nonorientable surface. Therefore, the medial construction
(as it appears in Section 1.1) cannot be used. Perhaps a suitable medial graph construction
for nonorientable surfaces can be devised.

Question 7.7. Can Theorem 6.4 be used to disprove (or prove) the strong embedding con-
jecture 6.1 for undirected graphs?
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Question 7.7 seems especially hard. There also seems to be a disconnect between 2-
regular digraphs and undirected graphs with regard to strong embeddings. As stated in
Chapter 6, it has been shown that undirected graphs with Euler genus ≤ 5 have strong
embeddings. However, some 2-regular digraphs with Euler genus 2 have been shown to have
no strong embedding.
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