Efficient Periodic Graph Traversal on
Graphs with a Given Rotation System

by
Xiao Luo

B.Sc., Simon Fraser University, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Xiao Luo 2018
SIMON FRASER UNIVERSITY
Summer 2018

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely
to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Xiao Luo
Degree: Master of Science (Mathematics)
Title: Efficient Periodic Graph Traversal on Graphs with

a Given Rotation System

Examining Committee: Chair: Nathan Ilten
Assistant Professor

Ladislav Stacho
Senior Supervisor
Associate Professor

Jan Manuch

Co-Supervisor

Science Researcher

Department of Computer Science
University of British Columbia

Tamon Stephen
Internal Examiner
Associate Professor

Date Defended: 22 Aug 2018

ii

Abstract

We consider periodic graph traversal in anonymous undirected graphs by a finite state Mealy
automaton (agent). The problem is to design an automaton A and a port labeling scheme L
such that A (using L) performs on any undirected graph an infinite walk that periodically
visit all vertices. The goal is to minimize the revisit time of any vertex over all graphs

(traversal period) .

If the labeling scheme L is given by an adversary, it has been shown by Budach [6] that no
such finite automaton A exists. If L does not need to be a permutation at every vertex, one
can easily encode a spanning tree and A can perform a traversal with period 2n — 2 even if

it is an oblivious agent. The problem is difficult when L is limited to be a permutation.

The best known upper bound on the traversal period in such a case is 3.5n — 2 by Czyzowicz
et al. [11], where n is the number of vertices. It is an open problem whether it is possible

to achieve traversal period of 2n — 2.

In this thesis, we answer this question affirmatively under the assumption that the input
graph G is given with a rotation system, where a rotation system of a graph is given by

lists of local orders of edges incident to each vertex the graph.

Keywords: graph exploration; periodic graph traversal; perpetual traversal; local orienta-

tion; finite state automaton; rotation system; period 2n-2; master thesis

iii

Dedicated to

my wife, Sarah,
my son, Royson,
and my dogqgy, Romeo,

who bring love and joy to my life.

iv

Acknowledgements

This research started in Dr. Ladislav Stacho’s office three years ago when three mathemati-
cians met together and began drawing things on board. I firstly give my appreciation to
Dr. Jan Manuch, Dr. Stefan Dobrev as their ideas and insight are important contributors
to this thesis.

My next appreciation is to Dr. Ladislav Stacho. As my professor in my first upper level
math course “Linear Optimization” six years ago, then as my supervisor and mentor from
three years ago until now, he has had so much influence on me, in the aspect of teaching
me knowledge, shaping my learning attitude and more importantly, showing me how a
mathematician thinks and works. The achievement comes from diligence, persistence and
determination. I finally in the last year gave up my old habits, and learned do the work.
Then the progress was accelerating. I will keep the two Ladislav’s most saying words as the
maxim for my life, “Is it really hard?” and “What is it exactly about?”. I will ask myself
the two questions whenever I encounter any difficulty in my future. A mathematician will
not think about the hardness; a mathematician will always ask questions and do the work,
focus on detail one at a time, and pursuit the perfection in his heart.

Additionally, I would like to give my appreciation to Dr. Tamon Stephen, Dr. Zhaosong
Lu and Dr. Abraham Punnen, as my professors when I studied optimization in operational
research. Since then, I have learned broad knowledge in computational mathematics, com-
puting science and statistics, which are turned to be very beneficial to me.

Finally, I want to thank Dr. Jennifer Jing Zhao. She encouraged me to study mathe-
matics when I walked into a crossroad in my study career. Today, we live in an algorithmic
world. People are striving for optimization anywhere, in any form. And mathematicians are

interested in solving problems. What a good age for us!

Table of Contents

Approval ii
Abstract iii
Acknowledgements v
Table of Contents vi
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Fundamental Concepts 1
1.1.1 Graphs oL 1

1.1.2 Finite Automaton 2

1.2 Periodic Graph Traversal 3
1.3 Other Related Results 10
1.4 OurResults 11

2 Preliminaries 13
2.1 Definitions and Notations 13
2.2 Overview of The Thesis 14

3 Constructing the tree T 16
4 The Labeling Scheme 19
4.1 Labeling scheme for non-root vertices of degree d >5. 19
4.2 Labeling scheme for non-root vertices of degreed <5 21
4.3 Labeling scheme for root vertices 23

5 The Transition Function 25
6 Correctness 37

vi

7 Concluding Remark
7.1 Open Questions

Bibliography

vii

List of Tables

Table 5.1 Step by step simulation of the graph traversal process. The agent starts
at the vertex b, and € represents no input label, and gy is the initial

state. . . . oL e e

viii

List of Figures

Figure 1.1
Figure 1.2

Figure 1.3

Figure 1.4

Figure 2.1

Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7

An example of port labelling at a vertexv
A trap subgraph is constructed by removing the two dotted edges
and adding the dashed edge.
At vertex v, swap port number 1 with 2; at vertex us, if port number
t + 1 is on the edge (u2,v), swap it with ¢ + 2.

Rotation System is marked by the two arrows. The numbers repre-

sent port labellingat v. oo oL

An example of configuration 1100110 and its labeling sequence 1276345
at a vertex v with the solid lines representing tree edges and the

dashed lines representing the non-tree edges.

The unique up-tree edge is the only tree edge.
There is at least one tree edges and at least one non-tree edge in the
down-tree edges and there is no non-tree edge proceeding a tree edge
in the labeling sequence.
The left figure only shows the tree edges with their port numbers
and hides the non-tree edges, while the right figure only shows the
non-tree edges with their port numbers and hides the tree edges in
the down-tree. The two figures are from a same configuration.

The decision tree shows that the first three labels lo, I3, I4 in the
labeling sequence excluding the first leading 1 determine the config-
uration type for vertices of degree at least 5.
Labeling for vertices with d < 5. In each figure, the topmost edge is
the up tree edge and the bottom edges are the down tree edges. The
solid lines represent tree edges and the dashed lines depict non-tree
edges. The sequence under each figure is the labeling sequence.

An example of a C-tree with degy(r) =3..
An example of double-rooted tree with r1 as the main root, ro as
the second root. The bold 1 depicts the one that is assigned after
considering the edge as an up-tree edge when assigning ports to root

vertices.

ix

10

12

14

20

20

20

21

22
24

24

Figure 5.1
Figure 5.2

A example of given graph G.
Constructed T as a double-rooted tree with ag as the main root. An

agent starts its traversal at vertex bo. L.

Chapter 1

Introduction

1.1 Fundamental Concepts

1.1.1 Graphs

A simple (directed) graph is a two-tuple consisting of a verter set V(G) and an edge set
E(G). The elements of this relation are called edges and two related elements of V(G) are
called endpoints of the corresponding edge. In this thesis, V(G) will be a finite set. When
u and v are the endpoints of an edge, they are adjacent and are neighbors. We also say an
endpoint is incident to its corresponding edge, and vice versa. Given a directed graph G
and an ordered pair (u,v) € E(G), u is tail of the edge, and v is the head. We say u is
adjacent to v but v is not adjacent to wu.

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent
if and only if they are consecutive in this order. The number of edges in a path is its length.
If w is the first vertex of a path and v is its last vertex, we say the path is a u — v path. A
cycle is a u — v path of length at least two with added edge joining u and v. The length of
the cycle is the number of edges on the path.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G). We
then write H C G and say that G contains H. A graph is connected if each pair of vertices
in G belongs to a path; otherwise, G is disconnected.

The degree of vertex v in a graph G, written dg(v) or d(v), is the number of edges
incident to v. The maximum degree A(G) and the minimum degree §(G) of a graph G are
defined as: A(G) = max,cy(g)d(v) and §(G) = minyey () d(v). A graph G is regular if
A(G) = 0(G). The graph is k-regular if the common degree is k. The neighborhood of a
vertex v, written as N (v), is the set of vertices adjacent to v. For any vertex v in a directed
graph C_j, the number of head ends adjacent to v is called the indegree of v and the number
of tail ends adjacent to v is called the outdegree of v.

Given a connected graph G, a tree is a connected subgraph of G without a cycle. A leaf

is a vertex of degree 1 in a tree. A spanning subgraph of G is a subgraph with vertex set

V(G). A spanning tree of G is a spanning subgraph of G that is a tree. Given graph G and
its spanning tree T, a vertex v is called saturated if dp(v) = dg(v). If an edge in G also
belongs to T', we call it a tree edge; otherwise we call it a non-tree edge.

If G has a u — v path, then the distance from u to v, written as dg(u,v) or d(u,v), is
the least length of a u — v path. The diameter of connected graph G' is max,, ,ev () d(u,v).

At every vertex we assign different integer labels from {1,...,d(v)}, called port numbers
or labels, to edges incident to that vertex. Since every edge is incident to two vertices, it has
two port numbers (labels), one at each endpoint. These two port numbers have no relation
with each other.

In this thesis, we will consider simple connected graphs unless we specify otherwise.

1.1.2 Finite Automaton

A finite Mealy automaton, see 23], is defined by the 5-tuple
M = (Qa q0, E) Aa 6)

where

e () is a finite set of states,

qo € @ is the initial state,

. is a finite set of symbols called the input alphabet,

A is a finite set of symbols called the output alphabet,

J: QXX — @QxA is mapping pairs (current state, input symbol) to pairs (next state,

output symbol). This function is called the transition function.

The computation of such automaton starts in the initial state gg while reading first
symbol say sg from an input, i.e., in a configuration (g, o). In each step of computation the
transition function ¢ is applied to the current configuration producing a new configuration.
The computation terminates when the input string is read completely.

In this thesis, we will refer to a finite Mealy automaton as an agent. The agent will
traverse a given graph G in the following way. The transition function é of an agent maps
the current state and the input to a new state and an output. For the agent used in perpetual
graph traversal, the input is the labeling sequence at a current vertex (a sequence of port
numbers assigned to the edges incident to the vertex in counter-clockwise order) together
with the incoming port number. The output is the outgoing port number which will be used
by agent to leave the vertex. Refer for details to Section 2.1. Every transition from current

configuration to the next is called a step.

1.2 Periodic Graph Traversal

Exploration of graphs is one of the fundamental problems in graph theory and commu-
nication networks, with applications in autonomous searching known and unknown envi-
ronments, e.g., indexing data sets (Internet, file systems, etc.) and monitoring (hazardous
environments, computer networks). In some specific tasks of graph exploration, every ver-
tex has to be visited or checked periodically. This field of research is called Periodic Graph
Traversal problems and it is particularly useful for network maintenance, data searching,
etc. In this thesis, we will consider the following graph traversal problem.

In the graph traversal problem, we are given a simple connected undirected graph on n
vertices, which is anonymous, that is, vertices are indistinguishable from each other, they
cannot be marked or labelled. The goal is to design an agent that will visit every vertex
of the graph regularly. To simplify the model, we ignore the time spent by the agent when
doing local processing at a vertex (reading the permutation of port numbers on incident
edges, scanning for the next tree edge, etc.) Hence, we will concentrate only on moves along
edges, which we will refer to as steps. The period, denoted by 7(n), is the maximum number
of steps between two consecutive visits at any vertex by the agent in a given graph. The
period is used to measure the time efficiency of the periodic traversal.

Our first result in review is a probabilistic approach to traversal in [17]. It can be used

to design an agent which revisits every vertex in expected time O(n?) regularly.

Theorem 1. [17] The expected time for a random walk to visit all n vertices of a connected

graph is at most 5=n3 + o(n?).

Proof. (sketch) We only show here the bound of O(n?). Let G = (V, E) be a graph with n
vertices and m edges. An agent will perform a random walk on vertices of G, where at each
step the agent at vertex v has equal probability moving from v to any of its neighbors. Let
u,v be any two vertices in V(G). Define the hitting time H(u,v) as the expected number
of steps the agent walks from u to v, where u,v € V. Define the commute time C(u,v) as
the expected number of steps the agent walks from u to v, then walks from v back to wu.
Clearly, C(u,v) = H(u,v) + H(v,u). Define the cover time EC(v) as the expected number
of steps the agent takes starting at vertex v until it visits all other vertices. For a graph G,
its hitting time is defined as H(G) = max, ,ev(q) H (u,v), its commute time is defined as
C(G) = max, ,ev(g) C(u,v), and its cover time is defined as FC(G) = max,cy (g EC(v).
The cyclic cover time of G, denoted by ECC(G), is the expected number of steps an agent
takes to visit all vertices of the graph in a pre-specified cyclic order, that minimizes the

number of steps. That is,

ECC(G) = H(v1,v2) + H(v2,v3) + -+ + H(vp—1,v,) + H(vp,v1)

where (vi,ve,...,v,) is a permutation of vertices of G that minimizes the sum. Clearly,
EC(G) < ECC(G).

There is a well known correspondence between random walks and electrical resistance
[8]. View graph G as an electrical network with unit resistors as edges. For instance, consider
each edge of G as an electrical resistance of 1 ohm. The effective resistance between vertex
u and vertex v, denoted by R(u,v), is the voltage that develops in v when a current of 1
amp is injected into v and the vertex u is grounded. Chandra et al. [8] have shown some

important results under this analogy.
C(u,v) = 2mR(u,v)

where m is the number of edges in G.

It follows from the laws of electrical physics that the effective resistance between two
endpoints of an edge of G is at most 1. Let T' be a spanning tree of G. Define R(T),
the effective resistance of T', as the sum of the effective resistance along its edges. Then,
R(T) < n—1, since T has n — 1 edges. Let Rgpq, denote the effective resistance of the

minimum resistance spanning tree of G. It is proved by Chandra et al. [8] that
ECC(G) < 2mRspan
Observe that 2m < n(n — 1) and Rspen < n — 1. Then,

ECC(G) < 2mRgpan
<n(n—1)(n—-1)

=n(n— 1)2

This gives an upper bound of O(n?). Further work can be done to improve the bound
to %n?’ + o(n?) by showing there is a tradeoff between m and Rspan, and that they cannot

both attain their maximum value at the same time. O

If the edges incident to a vertex are not distinguishable, it cannot be guaranteed that
the agent traverses the whole graph even for a star graph with three leaves. To overcome
this trivial barrier, we will assume that the graph is pre-labelled with port numbers and the
agent visiting a vertex v can read the port numbers on edges incident to v at the v-ends,
cf. Figure 1.1. If these port numbers are assigned by an adversary, Budach [6] proved in
1978 that for any agent there exists a graph which can have port numbers assigned in such
a way that the agent fails to traverse all its vertices. Later, Rollik [26] proved that for any
finite set of automata, there is a planar graph which the automata together cannot explore
(visit each vertex at least once). This result is improved by Cook and Rackoff [10], in which
they introduced the concept of Jumping Automaton for Graphs (JAG). A JAG is a finite

Figure 1.1: An example of port labelling at a vertex v

team of finite automata that can permanently cooperate and that can use “teleportation”
to move from their current location to the location of any other automaton. In [10], it is
shown that no JAG can explore all graphs.

A recent paper by Fraigniaud et al. [20] gives a lower bound on memory bits required
for a traversal on anonymous d-regular d-edge-colorable graphs. As the authors in [20] note
any proper d-edge-coloring of d-regular graph corresponds to a port-labelling in which the
two port numbers on each edge are identical. They use this correspondence in their proof

of the next theorem.

Theorem 2. [20] For any integer d > 3 and any agent with K states, there exists an
anonymous planar graph G of mazimum degree d with at most K + 1 vertices that the agent
cannot explore all its vertices and traverse all its edges. In particular, any agent that can

explore all n vertex graphs requires at least [logn]| bits of memory.

Proof. (sketch) Let Ty be a d-edge-colored infinite d-regular tree. Each color represents a
port label. For any given agent with K states, we let it start on any vertex ug in Ty. After
at most K steps, the agent has been in the same state twice. Let S be the first repeated
state, and let u and u’ be the first two vertices where the agent was in the state S. Assume
this happened at time ¢ and #', respectively. Since the agent is in an edge-colored regular
graph, the sequence of states the agent is in during traversal becomes periodic after time ¢,
with the period p = #' —t. The construction of the resulting graph G will use this subgraph
of T, that the agent explores from time ¢ to ¢/, plus in some more difficult cases the part of
Ty that is explored by the agent in next p steps must be used. In general this subgraph will
be a walk. The construction is completed by creating a cycle (possibly cyclic walk) in which
the agent will be trapped without ever visiting at least one vertex. For example, suppose
that the first and the last edge labels on the walk are different, i.e., the agent is leaving
u on edge labelled | and coming to «’ on edge labelled I’ from a vertex say w. Since T} is
d regular, There must be edge incident to u labeled I’. Now remove the edges (w,u’) and
the edge incident to u with label I from the subgraph and add new edge (w,u) and label
it I’. This is obviously a trap for the agent since it will never leave the created cycle and

never visits the vertex u’. The construction is completed by making the subgraph an almost

- -~

Figure 1.2: A trap subgraph is constructed by removing the two dotted edges and adding
the dashed edge.

d-regular graph (the only exception will be the unvisited vertex) so that we can obtain a

port labelling. O

If we can assign port numbers instead of adversary, can an agent explore given graph
periodically? In the remainder of this thesis, we will use a port labelling algorithm to assign
port numbers to assist the agent with the periodic traversal.

An agent is oblivious if it has only one state. The transition function of the oblivious
agent used in [14] is very simple: arriving to a current vertex on a port i, the agent will be
leaving it on the port ¢+1 mod the degree of the current vertex. Such a transition function
is called the Right-Hand-On-The-Wall transition function. Dobrev et al. [14] presented a
port labelling algorithm and proved that a periodic graph traversal can be achieved by an

oblivious agent with a period at most 10n on any n vertex graph.

Theorem 3. [14] There exists a port labelling algorithm such that an oblivious agent can

traverse any simple connected undirected graph G on n vertices with a period at most 10n.

Proof. (sketch) For a given graph G, one can find a spanning subgraph H of G and assign
directions to edges of H so that H becomes a directed closed walk C in G. The agent will
strictly traverse on C and since C is a closed walk the agent can be oblivious.

The subgraph H is constructed iteratively by first adding all possible cycles of G (in any
order) whose consecutive vertices are not both in the already constructed subgraph. If H is
a spanning connected subgraph of GG, we are done. To make H a spanning subgraph of G,
we add all remaining vertices (not yet in the constructed subgraph) and all their incident
edges into the subgraph. To make the subgraph connected we add additional edges bridging
such components.

It can be shown that such H has at most 5n edges, so the length of C is at most 10n.
For an illustration of a justification of this, suppose H was connected and spanning after
adding all cycles as described above. First cycle will add, say, ni vertices and n; edges into
the subgraph. By the requirement on cycles added in all subsequent iterations, if they are
adding, say, k new edges, they must be also adding at least k/2 new vertices. Therefore
such H will have at most 2n edges as claimed. To bound number of edges of H in other

cases are more involved.

To assign port numbers to edges of G, we first obtain a closed walk c (a closed Eulerian
trail) from H by assigning arbitrary direction to every cycle added to H and orienting all
remaining edges in both directions. Then we start assigning port numbers to edges of G
first by following C and using smallest unassigned port number each time. The remaining
port numbers are assigned arbitrarily. Such a port labeling will work provided C does not
have edges that are oriented in both directions. In such cases some sort of reassigning of

port numbers is performed.]

For an oblivious agent, in the following theorem, we have the following improvement on

the upper bound, as well as first non-trivial lower bound.

Theorem 4. [11] For an oblivious agent the upper bound for the period is %n —4 and a

lower bound is 2.8n — 2.

For non-oblivious agent, an obvious lower bound for period of traversal is 2n — 2, when
the graph is a n vertex tree. One might ask whether it is possible to achieve this bound. The
initial bound of 10n on the period was improved in several papers. The common approach
is similar to that of [14], one finds a subgraph of the original graph and somehow uses
that subgraph in a labelling scheme and design of the agent. In particular, Ilcinkas in
[22] improved the 10n bound to 4n — 2 by using an arbitrary rooted spanning tree as the

subgraph.

Theorem 5. [22] For any undirected graph G on n vertices, there is a port labelling algo-
rithm such that an agent with 3 states can periodically traverse the graph G with the period

at most 4n — 2.

Proof. (sketch) Let T be any spanning tree of a given graph G. Choose any leaf as the root
of T', denoted as r. For any vertex v, let d, be its degree in G and let ¢, be its degree in T

The port numbers are assigned by the following port labelling algorithm.

1. For any vertex v # r, assign the port number 1 to the incident edge which leads to

the root, assign port numbers 2,...,t, to the remaining tree edges, and assign port
numbers ¢, + 1,...,d, to the remaining non-tree edges arbitrarily;
2. For v = r, assign port numbers 1,...,t, to the tree edges and assign port numbers

ty +1,...,d, to the non-tree edges arbitrarily.

It follows from the labelling that an edge e is a tree edge if and only if at least one
of its ends is labelled 1. This property can be used by an agent to perform the required
traversal. The agent will start by taking an edge with the port number 1, and then it will
use the Right-Hand-On-The-Wall transition function to take next edge. However it must
test whether the edge it wants to take is a tree edge, or it must backtrack to the parent of

the current vertex (recall T' is rooted). Again, by the properties of the labelling, the edge

7

leaving to the parent has label 1, so backtracking is easy to perform. To test for a tree edge,
the agent takes the edge and checks whether the label on its other end is 1, in which case
the edge is a tree edge and agent will take it. If the label is not 1, the edge is not tree edge
and the agent returns back to the current vertex and tests next edge (stopping on edge with
label 1 and consequently returning to the parent of the current vertex).

The algorithm described above leads to the following bound on the period. Every tree
edge will be traversed by the agent twice, and because at every vertex only one non-tree
edge will be traversed (after its traversal the agent will know it needs to backtrack). The
period of this traversal is 2n — 2 + 2n = 4n — 2.]

Ilcinkas in his approach used an arbitrary spanning tree and assumes every vertex is
non-saturated. If one uses a special spanning tree, the period of traversal can be further
improved. Such approach was taken by Leszek et al. in [21] and resulted in a period of 3.75n

and by Czyzowicz et al. in [11] and resulted in a period of 3.5n.

Theorem 6. [21] For any undirected graph G on n vertices, there is a port labelling algo-
rithm such that an agent with 33 states can periodically traverse the graph G with the period
at most 3.75n — 2.

Proof. (sketch) Given a graph G, we find a connected acyclic subgraph B, and then find
a special spanning tree T" based on B (B is a subtree of T'). Let R, Y be two vertex sets.
We call a vertex in R red and a vertex in Y yellow. Let v be any vertex in V(G). Initialize
R={v},Y =0,and V(B) = RUY, E(B) = (. Iteratively, for any vertex v in V(G)/V(B)
with distance three in G to some red vertex v, add u into R, add the remaining two vertices
on the u — v path into Y, and add the edges on the u — v path into E(B). This procedure
terminates when no such vertex can be found.

One can show that the acyclic subgraph B has two properties:

1. on the path between a red vertex and another red vertex closest to it, there are exactly
two yellow vertices;

2. the distance between any vertex in V(G)/V(B) to R is at most two. Initialize T' =
(V(B),E(B)). Then, we complete the construction of T" by first making all red vertices
saturated, and second connecting all remaining vertices in V(G) but not in V(7T') to their
neighbors in T'. Pick any leaf r as the root of T'.

Let v be any vertex in 7. Assume c1, ..., are the children of v satisfying |T'(¢1)| >
|T(c2)| > -+ > |T(ck)|, where T'(¢;) is the subtree of T" rooted at ¢; and |T'(¢;)| is the order
(number of vertices) of T'(¢;) for i = 1,2,..., k. The port labelling algorithm is similar to
the one in Theorem 5 except instead of arbitrarily assigned port numbers at a vertex v
they are assigned in an increasing order depending on the cardinality of the subtree. This
enables the agent to traverse on the larger subtrees first. This together with the properties

of the trees allows the agent to traverse G with period 3.75n — 2 as claimed. O

Theorem 7. [11] For any undirected graph G on n vertices, there is a port labelling algo-
rithm such that an agent with finite number of states can periodically traverse the graph G

with the period at most 3.5n — 2.

Proof. (sketch) For the proof, a new graph decomposition method called three-layer parti-
tion was introduced in [11]. For a given graph G, one can find three mutually disjoint vertex

sets X, Y, Z and a connected cycle-free graph Tz such that:
1. XUYUZ=V(G)
2. Y =Ng(X), Z=Ng(Y)\ X, where Ng(X) is the set of neighbors of X in G;
3. V(IT'p) =X UY, all vertices in X are saturated,;
4. edges incident to vertices in X form the edge set of Tp.

The algorithm for finding three-layer partition will successively add an unused vertex from
V(G) to X, and will make it saturated by adding all its incident edges to E(Tg). It will
be continuously updating Y and Z as above, while adding a vertex from Y or Z to X
if this does not create a cycle in Ts. The algorithm terminates when there is no more
vertex which can be added into X. The resulting three-layer partition (X,Y, Z,Ts) has the

following properties:
1. each vertex in Y has a non-tree edge which is incident to another vertex in Y
2. each vertex in Z has at least two neighbors in Y.

It is easy to prove above properties by contradiction. If property 1. does not hold for a
vertex, this vertex must be saturated in Tz, then we can add it into X by our construction.
If property 2. does not hold, let v be such a vertex in Z with one neighbor in Y. Then
adding v into X and making it saturated will not create a cycle in Tg.

The spanning tree T is formed from T'(B) by adding every vertex in Z and one its
incident edge into T'(B).

The port labelling algorithm is modified from previous paper [21] by a port swap op-
eration. This ensures that the agent from [21] will not pay penalty steps at any vertex in
X (as these are all saturated vertices) and Z. Let v be any vertex in Z and assume it will
not be chosen as the root of 7. From property 2, v has two neighbors, denoted by u; and
ug, in Y with one incident edge in T', one not in T. Let e; = (v, u;) be the tree edge and
e2 = (v,u2) be the non-tree edge. The port number on e; at v—end is 1. We swap 1 with
the port number on es at v—end. Now, e; has two port numbers not equal to 1. The agent
walks on e; will think it is a non-tree edge and return back. This prevents the agent taking
additional penalty steps at v since v has only one tree edge. To avoid the agent walking on

edge ey and thinking it is a tree edge, if the port number on edge ez at ug—end is t + 1 (¢ is

Figure 1.3: At vertex v, swap port number 1 with 2; at vertex wg, if port number ¢ + 1 is
on the edge (ug,v), swap it with ¢ + 2.

the degree of ug in T'), we swap it with port number ¢+ 2 on another non-tree edge. Such a
non-tree edge exist by property 1, us has a non-tree edge incident to another vertex in Y.
See Figure 1.3. It can be shown that the agent can save additional portion of penalty steps

thus achieving period 3.5n — 2. 0

1.3 Other Related Results

The graph exploration problem has been extensively researched under different assumptions.
The first aspect of assumption is on the environment for exploration. Some papers [5, 12]
assume the environment is a rectilinear region, the agent knows absolute positions of starting
point s and target point ¢, but does not know the positions of obstacles it will encounter. The
problem is to explore the unknown environment using the shortest possible total distance
travelled. In particular, the objective is to minimize the ratio of the worst-case distance
travelled from s to ¢ over the optimum distance needed from s to t. In other papers, the
agent is traversing an unknown graph and its movement is restricted to move along the
edges. Starting from any vertex in the graph, the agent is asked to visit every vertex in the
graph with a minimum number of steps.

Under the latter assumption, there are two branches of studies based on whether the
graph is directed or undirected. In [1, 3, 13, 18, 19|, the environment is modeled by a
directed, strongly connected graph. In [1, 13], it is assumed that the agent knows all visited
vertices and edges and can recognize them when encountered again; at any visited vertex,

the agent knows all the unvisited edges with tails at it. An upper bound of k©€(ogk) .

m
is achieved by applying a divide-and-conquer approach and a greedy algorithm, where m
is the number of edges in the graph and £ is the minimum number of edges needed to be
added to make the graph Eulerian. This result is improved to O(k®)-m in [18]. The memory
requirements of an agent required to perform digraphs exploration is studied in [19] and an
upper bound on memory is proved to be at most O(log d), where d is the maximum degree of

the digraph. Note that vertices are indistinguishable, otherwise a simple depth-first-search

10

can explore a graph with n vertices in O(n - m) memory. We also have a local assumption
that the edges incident to a vertex are distinguishable, otherwise an agent cannot explore a
star with three leaves. It is assumed that port numbers 1,...,d, can be assigned to edges
incident to v at the v—end, where d,, is the degree of the vertex v in the graph. In the paper
[3] a special additional assumption was made that the agent can drop a pebble at any visited
vertex and can pick up the pebble when returns to the vertex again. This allows the agent
to mark one vertex at a time. It is proved that if n is known to the agent, with only one
pebble, the agent is able to explore the graph (including find the closed path which covers
all the vertices and edges) in a polynomial time in terms of n and d. If n is unknown to the
agent, then ©(loglogn) pebbles are both necessary and sufficient to perform the digraph
exploration.

In remaining work, the graphs are assumed to be undirected and the agent can move in
both directions of edges. For graphs with distinguishable vertices, the worst-case number
of steps for traversal, which is O(m - n) by depth-first-search, is improved to O(n) in paper
[25] by monitoring the exploration in the order given by a dynamically constructed tree.
In [2, 4, 15], the authors introduced the piecemeal constraint which is that the agent is
required to return to its starting position every so often (for refuelling, etc.) The limitation
on number of steps the agent can move in every round is B = (2 + «) - D, where a > 0 is
a constant number and D is the diameter of the graph. It is proved in [2] that the agent

needs at most O(m + n1+0(1)) steps for such piecemeal graph explorations.

1.4 Our Results

In this thesis, we study graphs with given rotation system.

Definition 1. Rotation System: A rotation system of a graph is given by prescribing a local

ordering of edges incident to a vertex for each vertex of the graph.

Note that a rotation system is commonly used to describe graph’s embedding into an
orientable surface in a combinatorial way. Each system of such permutations gives an em-
bedding, as each embedding is specified by a circular ordering of edges around each vertex
in a counter-clockwise order as they appear on faces. In this thesis we will not use any
specific properties of the embedding except the rotation system itself.

In many practical applications such a system is naturally given, for example, IO ports
on a router are ordered, a cyclic order of streets at intersections, etc. See Figure 1.4 for an
example of a rotation system. Graphs we consider are simple, connected, undirected, and
anonymous. Moreover, at every vertex v, we assign port numbers 1,2,...,d, to incident
edges. The port numbers will be used by the agent. For an example of a port labeling
see Figure 1.4. In previous subsection, we have summarized results on periodic traversal

when no rotation system is given. We only recall here that for an oblivious agent the best

11

known upper bound for the period is %n — 4 and a non-trivial lower bound is 2.8n — 2, see
Theorem 4.

It is obvious that the minimum period of traversal on an n-vertex tree is 2n — 2, thus
an obvious lower bound of period of traversal on a general graph is 2n — 2. In this thesis we
show that this optimal period is achievable when the graph is given with a rotation system.
More specifically, we answer positively the main unsolved problem whether there is a port
labelling of any graph G and a corresponding agent which can perform periodic traversal
on G with a period of 2n — 2 in case when G is provided with a rotation system.

As we saw above, in the periodic graph traversal problem, special spanning tree is often
constructed in order to design a traversal. In Chapter 3, we introduce a method to construct
a special spanning tree that will be used by an agent.

Our main result is the following theorem, the proof of which is covered in the remainder
of this thesis.

Theorem 8. There exists a labeling scheme L and an agent (finite-state automaton) which
can perform a periodic traversal with period at most 2n—2 of any simple connected n vertex

graph G given with a rotation system and labeled by L.

Figure 1.4: Rotation System is marked by the two arrows. The numbers represent port
labelling at v.

12

Chapter 2

Preliminaries

2.1 Definitions and Notations

Let G be a simple connected undirected graph with a given rotation system and 7" be a
connected spanning subgraph of G with oriented edges in such a way that every vertex has
exactly one up-tree edge, (note that this is not necessarily rooted tree). Other edges of T'
are called the down-tree edges. Denote by ¢(T, G) the characteristic function that assigns 1
to each edge of T, and 0 otherwise. Projecting to a vertex v € G, ¢(v,G,T) is a function
assigning 1 or 0 to each port of v, depending on whether the corresponding edge is in T" or
not. When the context is clear, we will omit G and T and use ¢(v) and call it a configuration
of v. Since every vertex of G has a unique up-tree edge in 7" and a cyclic order on incident
edges given by the rotation system, we can represent the configuration of v as a binary
sequence starting with 1 which will correspond to the unique up-tree edge.

A Labeling scheme s is a function that assigns to each configuration c(v) of a vertex
v a permutation of port numbers from 1 to d. The labeling sequence l(v) at vertex v (as
seen by the agent) is the circular permutation of permutation ls(c(v)), i.e., a permutation
that groups all cyclic shifts of Is(c(v)) to one equivalence class. To represent the circular
permutation [(v) we will choose the permutation from the class that starts with 1. See
Figure 2.1 for an example.

A vertex v is unambiguous if it is possible from a given labeling scheme to determine
the up-tree edge and the configuration ¢(v) from the labeling sequence [(v). More precisely,
a vertex v is unambiguous if the only configuration that is mapped by Is to a permutation
of l(v) is ¢(v). A vertex is ambiguous if it is not unambiguous.

If an agent is currently at a vertex v, the incoming port number is the port number on
the edge lastly visited by the agent at the v—end, i.e., the edge via which the agent moved
to v, and the outgoing port number is the port number of the edge the agent will leave the

vertex v at the v—end.

13

Figure 2.1: An example of configuration 1100110 and its labeling sequence 1276345 at a
vertex v with the solid lines representing tree edges and the dashed lines representing the
non-tree edges.

2.2 Overview of The Thesis

In order to achieve the period of 2n—2, we first construct a special rooted spanning subgraph
T of a given graph G, then use a labeling scheme to assign port numbers at every vertex such
that the agent can recognize which edges are in 7', and finally design a traversal algorithm
for the agent so that after some preprocessing the agent can follow an Euler tour given by
T and periodically visits every vertex of G with the period 2n — 2.

This approach has several challenges.

1. It is not always possible to have unambiguous configurations for small degree vertices.
Therefore the agent may wrongly decode the configuration from the observed labeling
sequence and may take wrong edge. However when we add another parameter which
is the direction of traversal along 7', ambiguous configurations become unambiguous
for the agent. As the agent will have to guess the direction at the beginning, we will
have to show that after finite number of moves the agent is alway able to correct its

assumption if wrong.

2. Even if the labeling scheme for the configuration of a given vertex is injective, the
agent must be able to decode it (or, more precisely, to determine the next edge to
take) using only its limited memory (number of states). We describe a way how this
can be done in O(d) iterations of local computation at a vertex, where d is the degree

of the vertex. Note that these are not counted towards the period.
We start with easy cases which will be covered by the following observation.

Observation 1. There exists a labeling scheme which is injective for vertices with degree
d>5.

Proof. As we declared earlier, every vertex has one incoming edge the up-tree edge (edge
leading to a root). The configuration and labeling sequence of every vertex with d > 5 will
always start with 1. For a vertex v with degree d in G, there are 2971 different possible

configurations and (d — 1)! possible permutations of labeling sequences. We have (d —1)! >

14

249=1 when d > 5. Hence, for vertices with d > 5, there are more permutations of labeling

sequences than the number of possible configurations.]

It follows from Observation 1 that for the vertices with degree d > 5, problem 1 does
not occur, but problem 2 does. If the agent needs to remember all the possible labeling
sequences and its corresponding configurations, the size of the input alphabet is Al. On the
other hand, for the vertices of degree at most 4, the decoding can be done in O(1) memory
just by memorizing all pairs of labeling sequence and configurations, but the number of
possible labeling sequences is insufficient to encode all possible configurations.

To cope with these problems, we use a special spanning subgraph of G as our T, instead
of an arbitrary spanning tree. We also pick a special vertex as the root of T, instead of an
arbitrary one. The construction of the spanning subgraph T and assigning an orientation
on its edges are discussed in Chapter 3. There are two states, “up-tree” and “down-tree”,
denoted by 1 and | representing the current direction of the traversal by agent. Each
represents the agent’s assumption of traversing direction which is either going up-tree to
the root or going down-tree to the leaves. The agent may change this assumption either
when an inconsistency has been detected (this may happen only once), or when passing on
root-path (this will be discussed later). The details of port labelling are given in Chapter 4.
The transition function of the agent is discussed in Chapter 5, and the correctness is proved
in Chapter 6. In Chapter 7, we conclude with a summary of our results and propose a few

open questions.

15

Chapter 3
Constructing the tree T

Recall that G is a simple connected undirected graph with a given rotation system. Let T’

be a connected spanning subgraph of G. We start with some definitions.

Definition 2. Double Rooted Tree: An acyclic graph T is called a double-rooted tree if it
can be obtained from two disjoint rooted trees joined together by a path, referred to as root
path between the two roots. The two roots will be considered as roots in T, and one of them

will be selected as the main root. See Figure 4.7.

Definition 3. C-tree: T is called a C-tree if T consists of one cycle C' and one tree
attached to C. We refer to the vertexr of attachment as the root of the C-tree. We call
a C-tree orientable if in the rotation system the two cycle edges adjacent to the root are
consecutive or separated by only non-tree edges. Note that if the root is of degree three in
T, the C-tree is orientable. See Figure 4.6.

Definition 4. Eligible vertex: A vertex v is eligible if it is not a transit vertex (a vertex
with one of the configurations (c), (d),(k), or (1) depicted in Figure 4.5), and if v is a leaf
of T then must have dp(v) = dg(v) = 1, i.e., its configuration is (o) depicted in Figure 4.5.

Lemma 1. Any connected graph G contains either
e o Hamiltonian cycle, or
e a spanning orientable C-tree T with root r so that dp(r) =3, or
e a double-rooted spanning tree T in which the two roots are eligible vertices.

Moreover, the spanning subgraph T' can be chosen so that there is no edge of G joining

two leaves of T'.

Proof. Suppose G is not Hamiltonian. Let T" be a spanning tree of G with as few leaves as
possible.

If T" has no branch vertex, then it is a Hamiltonian path. There are three possibilities:

16

e both leaves of T" are of degree 1 in G: they are two eligible vertices, hence T" can be

double-rooted at these two vertices;

e the two leaves of T" are connected by a non-tree edge, which is a contradiction since

G has no Hamiltonian cycle;

e one leaf u has a non-tree edge to an internal vertex v of T'. Add the edge uv into T to
produce a C-tree. Since the root is of degree three, the C-tree is orientable. Obviously,
dT(U) =3.

We may now assume 7' is not a Hamiltonian path. Next we show that the leaves of T" are
not joined by an edge in G. Indeed, suppose by a contradiction, v and v are two leaves of
T and that uv € E(G). Now T+ uv has a unique cycle C' and since T is not a Hamiltonian
path, there must be a branch vertex x € C' with dp(z) > 3. Let 2/ € C be a neighbor of
x on the x — u path. Now the new tree T + uv — xa’ has at least one less leaf than T, a
contradiction.

We continue our analysis of T depending on the number of branch vertices. First assume
T has at least two branch vertices. Choose two branch vertices u, v that are connected in T
by the path whose internal vertices are not branch vertices as the roots of the double-rooted
tree T'. Again, since dr(u) > 3 and dr(v) > 3, u, v are two eligible vertices.

Second assume 1" has exactly one branch vertex v. If there is a leaf u connected in G
to an vertex w on the u — v path, add this edge (u,w) to T to form a C-tree with root w.
Obviously, dr(w) = 3.

Finally, among all trees with a single branch vertex, choose T so that the lengths of
branches from the branch vertex in lexicographic order is maximized, i.e., the longest branch
is longest possible, with respect to this, the second longest branch is as long as possible,
etc..

By excluding the previous cases, we may assume 1" has the following properties:

1. a leaf on branch ¢ is not adjacent in G to a neighbor of the branch vertex, or to any
vertex on branch j > i.
Indeed, if a leaf is adjacent to a neighbor of the branch vertex, we can modify T
to have one less leaf, a contradiction. If a leaf on branch i is adjacent to a vertex
on branch j > ¢, we can modify T to a new tree having not more leaves than T,
lengths of branches < i same as in T', and the branch ¢ of length greater than in 7', a

contradiction.

2. any leaf of T is of degree at least two in G.
Indeed, a leaf of degree one in G is an eligible vertex and together with the branch

vertex, can be the two roots in the double-rooted tree T'.

3. the leaf on a branch ¢ is not adjacent in G to an internal vertex of the branch 4.

We have proved above that a C-tree would have been constructed.

17

4. the leaf on the branch 1 is of degree two and its non-tree edge is adjacent to the

branch vertex.

Let v be the branch vertex of T" and let u be the leaf in branch 1, let w be the neighbor of
the branch vertex v in branch 1. It follows from above restrictions on 7', and as we consider
simple graphs, w # u. Remove (v,w) from T and add (u,v). Note that the degree of the
branch vertex v remains the same and vertex u is now of type (m) in Figure 4.5, i.e. an

eligible vertex. Select v and u as the two roots to form a double-rooted tree T
O

Constructing the tree T: The proof of Lemma 1 actually provides a way how to al-
gorithmically find 7. We can start with an arbitrary spanning tree 7' and then, using the
methods described in the proof, decreasing the number of leaves and number of branch
vertices as long as this is possible. It is easy to see that we either arrive to a Hamiltonian
cycle, a C-tree, or a tree. In last two cases, there will be no edge joining two leaves of T
Finally, since every tree has at least two leaves, if T' is a tree take the unique path between
two leaves and consider two vertices that are either the leaves in G or of degree at least
three in 7" on the path which are closest to each other. These two vertices will be the two
roots of the double-rooted tree T

Assigning the Orientation of 7: Here we describe how to assign the orientation to

edges in T.

1. T is a Hamiltonian cycle: It does not matter where the root is, choose the orientation
of the cycle such that the up-tree direction is in the counter-clockwise order, i.e., the

cycle will be oriented clockwise;

2. T is an orientable C-tree consisting of a cycle C' and subtree 7 attaching to its root r:
The orientation for edges in subtree 7 is from the leaves to r as the up-tree direction.
The orientation for the edges in the cycle C' is assigned so that the up-tree direction

is the counter-clockwise direction on the cycle.

3. T is a double-rooted tree with two roots r; and r9. Assign the orientation in both
subtrees such that the up tree direction is from the leaves to the roots r1 and ro,

respectively. The orientation on the root path is from ro to ry.

We have explained how to construct the spanning subgraph 7" in G and assign the
orientation of edges in 7. In the next chapter, we will describe how to assign the port
numbers to vertices of G. For the root vertices, we distinguish several cases how to do
this. Setting port numbers for remaining vertices will be done by a general procedure, so
called labelling scheme. The assignment of port numbers for given vertex v will depend on

configurations c¢(v).

18

Chapter 4

The Labeling Scheme

The labeling scheme will be divided into three parts: for vertices of large degree in G, i.e.,
d > 5, for vertices of small degree in G, i.e., d < 4, and for root vertices.
Also note that non-root vertices of the root path, if T' is double-rooted tree, and the

non-root vertices of the cycle, if T' is a C-tree are labeled using this labelling scheme.

4.1 Labeling scheme for non-root vertices of degree d > 5

Recall that we consider the configuration and labeling sequence starting from the up-tree
edge, in counter-clockwise order. We know from the Observation 1 that there is a labeling
scheme that makes each vertex of degree at least 5 unambiguous. Here we give an explicit
construction of labelling sequence which, in addition, allows the agent to determine the next
edge without the need to look at once at the whole labeling sequence of the vertex.

Given a vertex v in G with d = dg(v) > 5, let t be its degree in T'. We will distinguish

three cases based on the configuration: 10!, 11*=109~* and anything else.

Case 1: Configuration 109", We set the labels 1,d,d — 1,...,2 starting from the up-
tree edge. See Figure 4.1. The agent arriving to a vertex with this configuration will always

go back to previous vertex with up-tree direction no matter what the current direction was.

Case 2: Configuration 117109 with 1 <t < d. We set the first ¢ + 1 labels starting
from the up-tree edge to 1,3,4,...,t+ 1,2 and the remaining labels to the remaining edges
in decreasing order. See Figure 4.2. In case when ¢ = 2, we also set the next label after 2 to

4, i.e., the labeling sequence starts with 1,3, 2,4 and the rest in decreasing order.

Case 3: All other configurations. We label the tree edges in counter-clockwise order
starting from the up-tree edge with labels 1,2,...,¢ and assign label ¢ + 1 to the first non-
tree edge (if there is any). Remaining labels are assigned to remaining non-tree edges in

decreasing order. See Figure 4.3.

19

=T, Tl 2
- ’ ~o
- ¢ I S~o
_-- Y ~<.
1
. 1 \
,' 1 1
1 \
4 J—
’ d 1' 1
4
[\
4
rd — 2

Figure 4.1: The unique up-tree edge is the only tree edge.

Figure 4.2: There is at least one tree edges and at least one non-tree edge in the down-tree
edges and there is no non-tree edge proceeding a tree edge in the labeling sequence.

1
’a"/ \“x\\
- ’ \
—”‘ ’ \\ \\‘t+2
PR t—‘,—l ’ q \\\
~
S/d W+ 3
o - . v
, .
0 \

Figure 4.3: The left figure only shows the tree edges with their port numbers and hides the
non-tree edges, while the right figure only shows the non-tree edges with their port numbers
and hides the tree edges in the down-tree. The two figures are from a same configuration.

20

Lemma 2. Consider any simple connected graph G, its spanning subgraph T' and the labeling

scheme described above. Then every vertex of degree at least 5 in G is unambiguous.

Proof. Recall that v is unambiguous if for [(v) there is a unique configuration ¢(v) such that
Is(c(v)) = I(v). We prove by contrapositive. Let ¢; and co be two different configurations
and let L1 = ls(c;) and Lo = ls(ca) be their corresponding labeling sequences given by
the labeling scheme described above. We will show that L # Lo by contradiction. Assume
Ly =Ly = (1,la,...,1lg). It follows from the construction of the labeling scheme, that the
first three labels after 1 uniquely determine the configuration type (Case 1, 2 or 3), cf.
Figure 4.4. We may also assume ¢; and co have the same length, otherwise L1 # Lo. Hence,
in Case 1, directly ¢; = co. In Case 2, the position of label 2 in the labeling sequence marks
the first non-tree edge in both ¢; and ¢, hence, they must be equal. In Case 3, the number
and position of tree edges are uniquely determined by the smallest label ¢ for which ¢ + 1

precedes t in the labeling sequence. Hence, again ¢; = co. This completes the proof. O

[14 :j [Case 2] [Case 3] [Case 3] [Case 1]

[Case 2] [Case 3]

Figure 4.4: The decision tree shows that the first three labels I, I3, [4 in the labeling sequence
excluding the first leading 1 determine the configuration type for vertices of degree at least
5.

4.2 Labeling scheme for non-root vertices of degree d < 5

The scheme is completely described in Figure 4.5, where all configurations are depicted and

edges labeled with corresponding port numbers in labeling sequences.

21

(©)

A J ‘K% e K$

(a) 1423 1423 1234 1234 1324 1243 1342 1432
} & I zI
1 : o)
3 oo i
2 o 1
(i) 123) 123) 132 (1) 132 (m) 12 (n) 12 (0) 1

Figure 4.5: Labeling for vertices with d < 5. In each figure, the topmost edge is the up tree
edge and the bottom edges are the down tree edges. The solid lines represent tree edges
and the dashed lines depict non-tree edges. The sequence under each figure is the labeling
sequence.

Unlike for d > 5, some configurations will be ambiguous, and as a consequence, the port
numbers 1 and 2 will be assigned to the up-tree edges. We designed the labeling scheme

with the following properties which can be readily observed:

1. (e), (f), (g), and (h) are unambiguous configurations. They can be identified by the
corresponding labeling sequence and port number 1 is always assigned to the up-tree

edge.

2. The configurations (a) and (b), (c) and (d), (i) and (j), (k) and (1), (m) and (n) come
in pairs. They are called dual to each other. Each pair of dual configurations maps to
one labeling sequence, hence the ambiguity is created on these configurations. Note
that only port numbers 1 and 2 are assigned to the up-tree edge and port number 2

is always on the tree edge.

Among these, there are two types of ambiguous configurations:

e (c) and (d), (k) and (1) are called transit configurations, configurations for which
both vertices in the pair have t = 2, i.e., degree of the vertex in T is two. The
transition function of the agent will be designed so that, whenever the agent
arrives to such vertex on one tree edge, it will directly leave on the other tree
edge without changing traversing direction.

The agent will not be able to notice any inconsistency when its assumption of
traversing direction is wrong. A vertex with any of these transit configurations

is called a transit vertex.

e (a)and (b), (i) and (j), (m) and (n) are pairs of ambiguous flip-flop configurations.

The transition function will be designed so that the agent will traverse these

22

configurations along tree edges in counterclockwise order and changing direction
of traversal accordingly, arriving via up-tree edge of the configuration in down-
tree direction, will continue down and coming back, eventually leaving again on

the up-tree edge of the configuration in up-tree direction.

The ambiguity can result in the following behaviour. If an agent arrives to (a),
(j), (n) on a tree edge with entering port number 2 and with wrong assumption
on direction, i.e., in up-tree direction, it will interpret the vertex as having con-
figuration (b), (i), (m), respectively. The agent will flop (will walk on a non-tree
edge) according to one of these configurations. While, if an agent arrives to (b),
(i), (m) on a tree edge with entering port number 2 and with wrong assumption
about the direction, i.e., in down-tree direction, it will interpret it as (a), (j), (n),
respectively. The agent will flip (bounce back to the last visited vertex). These
ambiguities could create serious problems, however as we show, they cannot oc-
cur, except when the agent starts in (a), (j), and (n) and takes the non-tree edges

with port 1. After this step the agent recognizes error immediately.

At vertices with configurations (b), (j), and (n), the transition function of the
agent will be designed so that, the agent comes to these vertices no matter in
down-tree or up-tree direction, it simply reverses its direction and returns back

to the last visited vertex in up-tree direction.

3. (o) is a special unambiguous configuration. The transition function of the agent will be
designed so that, the agent comes to (0) no matter in down-tree or up-tree direction,

it simply returns back to the last visited vertex in up-tree direction.

4.3 Labeling scheme for root vertices

Above we have described the labeling scheme for general vertices in T' that have an edge
leading to the root, the up-tree edge. Recall, normally this edge will be labeled with 1,
sometimes 2. In this subsection we handle remaining vertices. These are the root vertex
in case T is a C-tree, and the main root in case T is a double rooted tree. Note that the
non-main root is treated as a regular vertex (it has an edge leading to the main root). Also
every vertex on the root-path has an edge leading to the main root and so these vertices
behave as non-root vertices. The non-root vertices on the cycle C' in case 1" is a C-tree have
the unique incoming edge that is on C, and this edge will be the up-tree edge.

If T' is a Hamiltonian cycle, as we mentioned above it does not matter which vertex
is considered as a root, and in fact, in this special case every vertex will have an up-tree
edge, the one on the cycle oriented into the vertex (incoming edge). Once we fix the up-tree
edge, we determine the corresponding configuration of the vertex and assign port numbers

on edges according to the configuration of the vertex which is now fixed.

23

If T is a C-tree, let r be its root. Then by Lemma 1, we have dr(r) = 3. When r is an
ambiguous vertex, it is easy to see that the configuration ¢(r) must be type (i). Label the
incoming edge into r that is on C' by 2, the outgoing edge from r that is on C by 1, and the
remaining tree edge by 3. If r is an unambiguous vertex, the labeling scheme is essentially
the same way as in the previous case, but the port numbers on the two down-tree edges are
referred to its specific port labelling rule.

Finally if T is a double-rooted tree, let r be the main root. Note that r is the only vertex
we need to specify which edge is the up-tree edge. We fix the edge incident to r that is on
the root-path as the up-tree edge. This fixes a configuration at r, ¢(r) and we assign port
numbers to edges accordingly. A very important note is that the edges on the root-path will

be always traversed by the agent in up-tree direction.

ANA

Figure 4.6: An example of a C-tree with degy(r) = 3.

?“1 N N T2

Figure 4.7: An example of double-rooted tree with r; as the main root, ry as the second
root. The bold 1 depicts the one that is assigned after considering the edge as an up-tree
edge when assigning ports to root vertices.

24

Chapter 5

The Transition Function

We first provide a high level overview of how the agent performs the traversal. The tran-
sition function will be designed so that the agent at every vertex will be traversing on
tree edges only in counterclockwise order. In general, the agent enters a vertex on an edge
and reads its port number. Then it reads the current state, the configuration of the ver-
tex, and it determines the port number of the leaving edge. Usually this will be next tree
edge counterclockwise around the vertex from the entering edge. The agent will distinguish
tree edges from non-tree edges using the configuration and labeling. At unambiguous con-
figurations/vertices it is always possible to distinguish tree edges from non-tree edges. At
ambiguous configurations/vertices the agent can make a mistake. However, as we show, only
a finite number of steps after it starts.

Note that scanning for the next tree-edge can be done in O(d) steps of local processing.
Indeed, the agent will scan counter-clockwise from the arrival port p and takes the first
port corresponding to a tree-edge. In vertices of degree at most 4, this can be done by
observing the whole labeling sequence and the edge will be determined by corresponding
configuration (direction of traversal will resolve ambiguous configurations), while in vertices
of degree at least 5, this will be done by first scanning counterclockwise for port with label
1, then observing the label on next three edges counterclockwise uniquely determines which
of the tree cases of configuration the vertex is, see Figure 4.4. Finally scanning back to the
incoming port the agent can determine the outgoing port. It is easy to see that the decision
tree in Figure 4.4 can be turned into a subroutine of the agent and only three extra states
will be needed to execute this subroutine.

Following is a more detailed description.

e While traversing, the agent maintains in its state its assumption about the traversal
direction, it is either up-tree 1, or down-tree |. The direction of traversal can only

change at internal vertices of T of degree at least three.

e On start-up, the agent takes the edge with port 1, assuming the direction is up-tree,

and it will start the preprocessing phase at the end of which the agent will correct

25

its assumptions if the assumption was wrong. This phase is not counted towards the

period estimate and will take no more that n steps.

e The direction is changing as follows: when the agent arrives to a vertex v from its
subtree, i.e., in direction up-tree and there is a tree edge counterclockwise around v
witch leads to another subtree, the agent will leave v on that edge and changes the
direction to down-tree. Eventually the agent arrives at a leaf at which it will change
the direction to up-tree and bounces back. This way, eventually the agent returns to v
and will be leaving it towards its parent (usually such edge is labelled by port number
1, sometimes 2 - see the configurations in previous chapter). At this point the agent

will also keep the up-tree direction.

e The labeling scheme and the transition function are constructed so that the process
described in item above will work as described, except when T is double rooted tree.
In this case the agent will have to change direction also when passing between the two
roots. The labeling scheme is designed so that the labels on edges at the two roots
which are the first /last edge of the root-path are the up-tree labels in the configuration
of the corresponding root. Hence the agent in up-tree direction leaving one of the roots
will arrive to the other root (via the root path consisting of transit vertices) via an
up-tree edge in an up-tree direction. The agent will recognize this and handles it via

a Subroutine Error 2 - will change its direction to down-tree.

e Because both ports 1 and 2 are used as up-tree direction ports, as the agent starts on
port 1 and assuming direction up-tree, the direction assumption may be wrong. This

has two consequences.

(a) either the agent is performing traversal with wrong direction (e.g., it is traversing

T towards the leaves but its state is up-tree), or

(b) because of wrong assumption of direction, at ambiguous vertices the agent may

take a non-tree edge, thinking it is a tree edge.

In both cases we show the agent will recover from these errors and once it does, it
will never encounter these errors again. This is easy to see when the agent enters an
unambiguous vertex. We will prove the same also in the case when the agent will not
reach an unambiguous vertex before correction. The error in (a) is of the same flavour
as Error 2, and so will be handled by the Error 2 subroutine. The error in (b) will be
handled by the Error 1 subroutine.

Subroutine Error 1: This subroutine is executed when the agent determines that it

passed on a non-tree edge. The agent determines this from the configuration at the arriving

vertex. It will arrive to the vertex on an edge whose port will correspond to a non-tree

26

edge. For example, if the agent arrives to a vertex with labeling sequence 1234 via port 3,
it recognizes that it is in a vertex with configuration (¢) or (d), and since in both these
configurations port 3 is a non-tree edge, the agent detects inconsistency. The agent will

backtrack to previous vertex and takes port 2, with up-tree direction.

Subroutine Error 2: This subroutine is executed when the agent detects inconsistent
direction, i.e., it will arrive to a vertex via edge whose port number corresponds to an edge
in the configuration which cannot be entered via agent’s direction. For example, if the agent
arrives in down-tree direction to a vertex with configuration (e) via an edge with port 3.
The agent corrects its assumption about the direction and calculates the port number of

outgoing edge based on the configuration.

Exception 1: Exception when direction is overwritten. This subroutine overrides the
standard handling in the cases when the agent it traversing in the up-tree direction and
will arrive to an eligible vertex on the up-tree edge of the configuration, except when the
configuration is (o). Note that this only happens on the root-path when the agent traverses
between two roots. In this case the agent switched its direction to down-tree direction and

continues execution of the transition function.

Exception 2: Exception when errors are not generated. For configurations that corre-
spond to vertices that are on the cycle C' in case T is a C-tree or on the root-path in case T’
is a double-rooted tree, we need special handling so that the agent can be traversing these
in both directions without generating and handling errors. The idea is that these vertices
will be always traversed in up-tree direction (direction will be changing only at the root
vertices of C, resp. the root-path). For example, if the labeling sequence is 1423 and the
configuration is (b). It follows that a vertex with such configuration could be on C' or on
the root-path. If it is on a root-path, the edge with label 1 will be the up-tree edge and
when the agent enters the vertex via the edge with port 2, everything will be fine. However,
eventually the agent will be passing through the vertex, again in up-tree direction, but now
entering via edge with port 1. As we see, if the agent assumes the configuration is (a) it
will handle this as Error 1, and if it assumes the configuration is (b), it would handle this
as Error 2. However, we override this behaviour and treat this as transit vertex. Inspecting
all ambiguous configurations in which the vertex has degree two (can be transit vertex on
C or the root-path), we conclude that for labelling sequences 1423, and 12, if the agent is
entering in up-tree direction on the edge with port number 1, we treat this particular situ-
ation as the vertex is a transit vertex - pass through and keep up-tree direction. The same
adjustment is done in configurations for d > 5 when the corresponding vertex has degree

two in T'. Note that in the other direction (when arriving to these vertices not on the port

27

3
2
(m) () (0)
2 7, 2
bs T8)
4
. 1 3
X
: RO —()
(d > 5: case 3) (0)

Figure 5.2: Constructed 1" as a double-rooted tree with as as the main root. An agent starts
its traversal at vertex bo.

1) the pass is handled by regular rules. As we mentioned earlier, the transit configurations
(c), (d), (k), (1) will be handled by transition function the same way.

An example: We demonstrate the computation of the agent in the following example.
Figure 5.1 depicts an input graph. The rotation system is implied from its embedding into
the plane. In Figure 5.2 we have chosen a spanning tree T according to Lemma 1.

In the Table 5.1, we list all steps the agent will take starting from the vertex by, making

one round trip along T, and coming back to bs.

Formal description of the transition function: Given current vertex v, the agent will
decide about the outgoing port number j and the next state s’ based on its current state s,
the labeling sequence at current vertex L = [(v), the degree of the current vertex d = dg(v)
(d is the length of L) and the incoming port number i. Formally, the transition function &

maps 4-tuples (s, L, d, i) to pairs (s, j).

28

Step

Vertex ‘ Input

‘ Output ‘ Description

1 bo (qo,1(b2), dpy,€) | (T,1) Started at by, by default take 1 and assume going up-tree.

2 c1 (1,132,3,3) (1,3) In type (k), 3 is on a non-tree edge.
The agent found Error 1: it walked on a non-tree edge.
It backtracks to previous vertex bs.

3 bo (1,1423,4,1) (1,2) The agent took port number 2 going up-tree.
From step 3 to step 23,
the agent would complete a Euler tour in 7.

4 a2 (1,123,3,3) (1,1) In type (i), port 3 is on the last down-tree edge. The agent
left as to up-tree by port 1.

5 as (1t,1,1,1) (1,1) Exception 1 found, agent returned back to root path.

6 as (1,123,3,1) (,2) Exception 1 found, set direction to down-tree,
recompute the output as ({,2).

7 ay (4,132,3,2) (1) Crossed a transit vertex.

8 by (4,12,2,1) 1,2) Crossed a transit vertex.

9 c1 (4,132,3,2) (1) Crossed a transit vertex.

10 co (4,12534,5,1) | ({,2) Went to the first down-tree branch.

11 c3 (,1,1,1) (1, 1) The agent reached a leaf, reversed back to up-tree.

12 c2 (1,12534,5,2) | ({,3) After returned back from the first brach,
the agent went to the second branch at ca.

13 bs (4,12,2,1) ,2) Crossed a transit vertex.

14 by (4,132,3,1) 1,2) Crossed a transit vertex.

15 bs (,1,1,1) (1,1) The agent reached a leaf, reversed back to up-tree.

16 by (1,132,3,2) (1,1) Crossed a transit vertex.

17 bs (1,12,2,2) (1,1) Crossed a transit vertex.

18 Co (1,12534,5,3) | (1,1) The agent had traversed all the down tree vertices at co,
then it left ¢ back to the root.

19 c1 (1,132,3,1) (1,2) Crossed a transit vertex.

20 b1 (1,12,2,2) (1,1) Crossed a transit vertex.

21 ay (1,132,3,1) (1,2) Crossed a transit vertex.

22 as (1,123,3,2) ,3) The agent turned down-tree to the second branch.

23 bo (,1423,4,2) (1,2) A full Euler tour of T' completed in 20 steps.

In this graph, n =11, 2n — 2 = 20.

Table 5.1: Step by step simulation of the graph traversal process. The agent starts at the
vertex bs, and e represents no input label, and ¢q is the initial state.

29

Let S = {1,]} be the two states of the agent, representing traversal direction up-tree or
down-tree. Let L = (1,l2,13,14,...,13) be the labelling sequence at the current vertex. The
labels in L are representing the port numbers assigned at every incident edges to v starting
from the up-tree edge in a counter-clockwise order. The cyclic order in L means the label
after the last label is the first label in L. The order is repeating cyclically.

As we mentioned above, we will not provide the code for the error processing phases.
These are simple and are left for the reader. For clarity, we split the formal description of
the remaining part of the transition function into procedures, depending on the degree d
of the current vertex v. The first case covers cases when d > 5. We refer the reader to the
Subsection 4.1 for corresponding cases to consider. When an error is returned, the agent will
perform the corresponding error handling subroutine as described above. The corresponding
code is in Algorithm 1.

The remaining cases cover scenarios when d < 5. We refer the reader to the Subsection
4.2 for corresponding cases to consider. As before, when an error is returned, the agent will
perform subroutines as described above. We provide the code in Algorithm 2, Algorithm 3,
and Algorithm 4.

30

Algorithm 1: Transition function of main subroutine when d > 5

© 0w N O A W N

[
= o

12
13
14
15
16
17
18
19
20
21

22
23
24
25

26
27
28

29
30
31

32
33

Input : (s,L,d,1)
Output: (s,)

12, lg, l4 «~— L
Case Number < Iy, 13,14
t < Case Number,L, d
Case 1:
if : =1 then
if s =| then
‘ return (1,1)
else
‘ Exception 1: set direction to |, process configuration, and hence output (1,1)
else
L execute Error 1 subroutine (output (1,4) will be returned by Error 1)
Case 2:
ifi=10r3<i<t+1then
if t =2 then
if : =1 then
if s =| then return (|, 3);
else Exception 2: output (1,3) ;
if : =3 then
if s =1 then return (1,1);
else
L execute Error 2 subroutine (output (1, 1) will be returned by Error 2)
else
if i =1 then
if s =] then return (|, 3);
else Exception 1: set direction to |, process configuration, and hence
output ({,3);
else if 3 <i <t then
if s =1 then return (},7+ 1);
else execute Error 2 subroutine (output ({,7 + 1) will be returned by
Error 2);
else if i =t 4 1 then
if s =1 then return (1,1);
else execute Error 2 subroutine (output (1,1) will be returned by Error 2);
else
L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

31

34
35
36
37
38
39
40
41
42

43
44
45
46

47
48
49

50
51
52

53
54

Case 3:
if 1 <i¢<tthen
if ¢t =2 then
if © =1 then
if s =| then return (J,2);
else Exception 2: output (1,2) ;
if + =2 then
if s =1 then return (1,1);
else execute Error 2 subroutine (output (1,1) will be returned by Error 2)
else
if =1 then
if s =| then return (,2);
else Exception 1: set direction to |, process configuration, and hence
output ({,2);
else if 2 <43 <t—1 then
if s =1 then return (},i+ 1);
else execute Error 2 subroutine (output ({,7 + 1) will be returned by
Error 2);
else if i = ¢ then
if s =1 then return (1,1);
else execute Error 2 subroutine (output (1, 1) will be returned by Error 2);
else
L execute Error 1 subroutine (output (1,4) will be returned by Error 1)

32

Algorithm 2: Transition function of main subroutine when d < 3

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

31
32
33
34
35

Input : (s,L,d,q)
Output: (¢, 7)
Given d < 3:
if L =123 then
if i =1,s =] then
‘ return (/,2)
else if i = 1,5 =1 then
‘ Exception 1: set direction to |, process configuration, and hence output ({,2))
else if i = 2, s =1 then
‘ return (|, 3)
else if i = 2,s =] then
‘ return (1, 2)
else if i = 3,5 =1 then
‘ return (1,1)
else if i = 3,s =] then
L execute Error 2 subroutine (output (1, 1) will be returned by Error 2)

if L =132 then
if i =1 then
‘ return (s,2)
else if i = 2 then
‘ return (s, 1)
else
L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

if L =12 then
if i =1,s =] then
‘ return (/,2)
else if i = 1,5 =1 then
‘ Exception 2: output (T, 2)
else if i = 2,5 =1 then
‘ return (1,1)
else if i = 2,5 =| then
L return (7, 2)

if L =1 then
if s =] then
‘ return (1,1)
else if s =7 then
L Exception 1: set direction to |, process configuration, and hence output (1,1))

33

Algorithm 3: Transition function of main subroutine when d =4 and t = 1,2

Input : (s,L,d,q)
Output: (¢, 7)

1t<+ L,d

2 Givend=4and t=1,2:

3 if L = 1423 then

4 if i =1,s =] then

5 ‘ return (/,2)

6 else if i = 1,5 =1 then

7 ‘ Exception 2: output (T, 2)
8 else if i = 2,5 =] then

9 ‘ return (71,2)
10 else if i = 2, s =1 then
11 ‘ return (1,1)
12 else
13 L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

14 if L = 1234 then
15 if : =1 then

16 ‘ return (s,2)

17 else if ¢ = 2 then

18 ‘ return (s, 1)

19 else

20 L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

34

Algorithm 4: Transition function of main subroutine when d =4 and ¢t = 3,4

© 0w N o oA W N

e O = S =yt
N0 U A W N = O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Input : (s,L,d,1)
Output: (¢, j)

t+< L,d

Given d =4 and t = 3, 4:
if L = 1324 then

if i =1,s =] then

‘ return (|, 3)
else if i = 1,s =1 then

‘ Exception 1: set direction to |, process configuration, and hence output ({,3)
else if i = 2,5 =1 then

‘ return (1,1)
else if i = 2,5 =] then

‘ execute Error 2 subroutine (output (1, 1) will be returned by Error 2)
else if i = 3,s =1 then

‘ return (/,2)
else if i = 3,5 =] then

‘ execute Error 2 subroutine (output ({,2) will be returned by Error 2)
else

L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

if L = 1243 then

if i=1,s =] then

‘ return (/,2)
else if i = 1,5 =1 then

‘ Exception 1: set direction to |, process configuration, and hence output (,2)
else if i = 2, s =1 then

| return ({,3)
else if i = 2,5 =| then

‘ execute Error 2 subroutine (output ({,3) will be returned by Error 2)
else if i = 3,5 =1 then

‘ return (1,1)
else if i = 3,5 =| then

‘ execute Error 2 subroutine (output (1,1) will be returned by Error 2)
else

L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

35

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

if L = 1342 then

if i =1,s =] then

‘ return (J,4)
else if i = 1,s =1 then

‘ Exception 1: set direction to |, process configuration, and hence output (J,4)
else if i = 2,s =1 then

‘ return (1,1)
else if i = 2,5 =] then

‘ execute Error 2 subroutine (output (1, 1) will be returned by Error 2)
else if i = 4, s =1 then

‘ return (/,2)
else if i = 4,5 =] then

| execute Error 2 subroutine (output (|,2) will be returned by Error 2)
else

L execute Error 1 subroutine (output (1,7) will be returned by Error 1)

if L = 1432 then

if i =1,s =] then

‘ return (/,4)
else if i = 1,5 =1 then

‘ Exception 1: set direction to |, process configuration, and hence output (J,4)
else if i = 2, s =1 then

‘ return (1,1)
else if i = 2,5 =| then

‘ execute Error 2 subroutine (output (1, 1) will be returned by Error 2)
else if i = 3,5 =1 then

‘ return (/,2)
else if i = 3,5 =| then

‘ execute Error 2 subroutine (output (|, 2) will be returned by Error 2)
else if i = 4,s =1 then

| return ((,3)
else if i = 4,s =] then

L execute Error 2 subroutine (output ({,3) will be returned by Error 2)

36

Chapter 6

Correctness

In this chapter, we prove the correctness of our algorithm. First, by the construction of
T and the labelling scheme, the agent will recognize an error at any unambiguous vertex,
and will correct the error and direction. So after recognizing an error, the agent will be in
perfect knowledge of current vertex (recognizes which are tree and non-tree edges, and hence
also the up-tree edge). Whenever the agent is in such a situation, we say it has the correct
assumption. We start with a useful observation which allows us to concentrate only on cases
when the agent does not have the correct assumption, and some special considerations will

have to be given to root vertices.

Observation 2. If an agent has a correct assumption at a current non-root vertez, then in
subsequent step it will keep correct assumption, i.e., in next vertex will recognize the up-tree

edge, edges and non-edges even if the vertex is ambiguous.

Proof. 1t is easy to see, by simple but tedious inspection of the transition function and
configurations, that if the agent arrives to a non-root vertex (unambiguous or ambiguous)
on a tree edge and with correct assumption, its transition function will output the outgoing
tree edge and correct direction following labelling on the corresponding configuration of the

vertex. O

Note that the Observation 2 is valid also for the transit vertices and for the vertices
with exceptional handling - see paragraph “Exceptions when errors are not generated”.

The next lemma will extend the previous observation and justifies the correctness of
our algorithm once the agent has the correct assumption. The phase before this happens is

called the initialization and moves by the agent do not count towards the period.

Lemma 3. If the agent has a correct assumption at a current vertex, then it will perform a

periodic traversal of G by following a trail along edges of T with the period at most 2n — 2.

Proof. The proof is essentially the same as proof of Observation 2, however we need to be
more careful that all the local considerations “fit together”. For this, we examine all cases

of T"in Lemma 1. We will assume the current direction is up-tree. The other case is similar.

37

1. If T' is a Hamiltonian cycle, by Observation 2, the agent will follow the up-tree direc-
tion on transit vertices or vertices with configurations (b), (m), and similar special
configurations when d > 5, only and will do a periodic traversal of the cycle with the

period n.

2. If T is a spanning orientable C-tree, with the subtree 7 rooted at a vertex r. It is
easy to see that r is either an unambiguous vertex, or an ambiguous vertex, in which
case the only possibility for the configuration of r is of type (i). In both cases we
have the following. If the current vertex is in 7, by Observation 2, it follows that the
agent will traverse only on edges of m and eventually will arrive at r. Now either the
agent will change direction to down-tree and will continue back to mw, or because C
is orientable, eventually the agent will continue to up-tree edge (which is edge of the
cycle C') with port number 1. Then again by Observation 2, the agent will traverse the
whole cycle and returns back to r. Because the agent is still in up-tree direction and
C is orientable, after arriving to r, it will switch the direction to down-tree, and will
take next tree edge in counter-clockwise order about r leading back to the subtree .
Now the agent has correct assumption and is on an internal vertex of 7. The argument
that shows that the agent traverses only tree edges of m and eventually returns back
to r is similar to the one above. Since the C-tree is spanning, it follows that the period
of the traversal is |C| 4 2|7| — 2 which is at most 2n — 2.

Similar analysis can be performed on the agent’s moves when the current vertex is on

C.

3. If T is a double-rooted tree with roots r1 and ro, let ro being the main root. Let m
and my be the corresponding subtrees rooted at r; and 79, respectively. By Lemma
1, both roots are eligible vertices. If the current vertex is in 7, by Observation 2, it
follows that the agent will traverse only on edges of w1 and eventually will arrive at
r1. Now either the agent will change direction to down-tree and will continue back to
w1, or will enter the root-path and keeps direction up-tree. Then again by Observation
2, the agent will traverse the whole root-path and enters ro. Because 79 is an eligivle
vertex and main root, the port on the incoming edge to 7 is the up-tree port of the
configuration, and the agent detects Error 2, it will flip direction to down-tree, and will
traverse the subtree my eventually coming back to ro and continuing on the root-path
in up-tree direction. Since 7; is eligible vertex and the incoming edge to r; has port
corresponding to the up-tree edge of the configuration, the agent detects Error 2, it
will flip direction to down-tree, and will traverse w1, eventually reaching the original

vertex. It follows that the agent will traverse G with period 2n — 2.

The cases when the current vertex is in w9 or on the root-path are similar.

38

The next lemma guarantees that the agent will eventually have correct assumption.

Lemma 4. If the agent starts with wrong assumption about the direction, i.e., at the initial
vertex the port number 1 is either on a non-tree edge, or on a down-tree edge (of the

configuration), it will correct its assumption in at most n steps.

Proof. 1t follows from Lemma 3 that if the agent starts in an unambiguous vertex or its
assumption about direction is correct (port 1 is on an up-tree edge, of the configuration),
it will perform a periodic traversal with the period at most 2n — 2. Thus, we may assume
the agent starts in an ambiguous vertex with wrong assumption about the direction. As the
agent starts by taking the edge with port number 1 and assuming the direction is up-tree,
it will have wrong assumption only in configurations (a), (d), (j), (k), and (n). The first
time the agent arrives to a vertex with an unambiguous configuration, i.e., a configuration
for d > 5, or (e)-(h), or (o), the agent will correct its assumption. Hence the agent will start
in one of the configurations (a), (d), (j), (k), and (n), and will be visiting only vertices with

ambiguous configurations. We analyze all cases.

1. The agent starts at a vertex u with configuration (a). The port 1 is on the non-tree
edge in (a). Since (a) represents a leaf of T" and since there is no non-tree edge joining
two leaves in 7', the other end of the non-tree edge, must be of degree at least two
in T, and its configuration must be one of the ambiguous configurations, say (x).
Also in order for the agent not to recognize an error of walking on a non-tree edge,
the port on the non-tree edge in (x) must be a tree edge in the corresponding dual
configuration to (x), say (y). Moreover (y) must also represent a vertex of degree at
least two in T'. This is because (y) represents a leaf and the agent would continue
back to previous vertex in up-tree direction which would now be correct direction. We
inspect all possible pairs (x)-(y) of ambiguous configurations.

The pair (a)-(b): The port 1 is on a non-tree edge in (a) and on tree edge in (b),
however the edge is a down-tree edge. The port 2 is on tree edge in both (a) and (b).
The ports 2 and 4 are on non-tree edges in both (a) and (b). In all cases, we either

reach a contradiction or the agent recognizes an error.

The pair (c)-(d): The only ports on non-tree edges are ports 3 and 4 and they are

both on non-tree edges in both (c¢) and (d), hence the agent will realize an Error 1.

The pair (i)-(j): The configuration (j) is the only one (of the two) having a non-tree

edge. However, it represents a leaf, a contradiction with Lemma 1.

The pair (k)-(1): The only port on non-tree edges in these two configurations is port

3. The agent will realize an Error 1.

The pair (m)-(n): The only configuration (of the two) with a non-edge is (n). However,

(n) represents a leaf, a contradiction with Lemma 1.

Note that the agent will will realize an error after first step in all cases.

39

2. The agent starts at a vertex u with configuration (d). The port 1 is on a tree-edge in
(d), so let the vertex v be the other end of the edge. Also assume the configuration of
v is (x). Since the agent has wrong assumption about the direction, in 7" it will reach
v on the up-tree edge of (x). Hence the port must be either 1 or 2. In order for the
agent not to realize Error 1 or Error 2, only candidates for (x) are (b), (c), (d), (i),
(k), (1), and (m). As long as the agent is traversing in this way only via vertices with
configurations (c), (d), (k), and (1), it will stay on tree-edges and it will be approaching
a leaf in T'. Since G is finite and visited vertices cannot repeat, after at most n — 2
steps the agent must reach a leaf of T. By our previous assumptions, the leaf must

have labelling sequence 1423, 123, or 12.

In the case of 1423, the agent will wrongly assume the vertex has configuration (b)
and it has entered it on port 2, so will continue on port 1. In reality the vertex has

configuration (a) and the agent will leave it on a non-tree edge with port 1.

In the case of 123, the agent will wrongly assume the vertex has configuration (i)
and it has entered it on port 2, so will continue on port 1. In reality the vertex has

configuration (j) and the agent will leave it on a non-tree edge with port 1.

In the case of 123, the agent will wrongly assume the vertex has configuration (m)
and it has entered it on port 2, so will continue on port 1. In reality the vertex has

configuration (n) and the agent will leave it on a non-tree edge with port 1.

Since configurations (a), (j), and (n) represent leaves of T', one can complete the proof

in the same way as in 1.
3. The agent starts at a vertex u with configuration (j). This case is the same as 1.
4. The agent starts at a vertex u with configuration (k). This case is the same as 2.

5. The agent starts at a vertex u with configuration (n). This case is the same as 1.

We have covered all possible cases and concluded that they either lead to a contradiction
or the agent will recognize an error in at most n steps and correct its direction. It is clear
that in this phase the agent traverses only on tree-edges, except possibly its last step when
it will take a non-tree edge and immediately realizes this in next vertex. This justifies that

the handling of Error 1 (backtracking one step and changing direction) is correct. O

Combining results above yields the main theorem Theorem 8.

40

Chapter 7
Concluding Remark

In this thesis we proved that the periodic traversal of graphs by a finite state automaton
with period 2n — 2 is possible if we assume that the graph is given with a rotation system
that specifies a circular ordering of edges at each vertex. Hence the agent at any vertex
v in the graph G can read the permutation of port numbers on the incident edges to v.
Under this assumption, an agent with two states can perform an Euler tour on the spanning
subgraph T of G periodically once it has correct assumption of traveling direction; if the
agent starts its traversal with wrong assumption, it can correct it within n steps.

We constructed the spanning graph T in a special way that there is no edge of GG joining
two leaves of T" and T falls into three cases, each with strong structural properties, refer
to Lemma 1. These properties overcome the shortage of labeling sequences compared to
number of configurations for vertices with d < 5, and help to resolve the ambiguity. The
choice of using this spanning tree was crucial in this research.

We gave labeling scheme, for vertices of d > 5 and for vertices of d < 5. The correctness

of our approach has been proved in Chapter 6.

7.1 Open Questions

The labeling sequence at each vertex when compared to this circular ordering encodes
©(dlogd) bits of information. A natural question is whether instead of a rotation system
having (precomputed) bits of information available at each vertex could help the agent with
the traversal. In particular, what is the least amount of bits of information at each vertex
(or overall) that allows for periodic traversal with period 2n — 27 Could we achieve such a
traversal with one bit of information per vertex?

Another way to look at the problem is to evaluate competitive ratio w.r.t. to best
solution of TSP. There are various approximation results, from classical ones [9] to fairly

recent improvements [24], including work on sub-cubic graphs [7] which as we have seen are

41

the difficult case. However, these results use specific walks which might not be possible to

encode with the very limited information available.

42

Bibliography

[1]

2]

[3]

[10]

[11]

Susanne Albers and Monika R. Henzinger. Exploring unknown environments. SIAM
J. Comput., 29(4):1164-1188, February 2000.

Baruch Awerbuch, Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal graph
exploration by a mobile robot. Information and Computation, 152(2):155 — 172, 1999.

Michael A. Bender, Antonio Ferndndez, Dana Ron, Amit Sahai, and Salil Vadhan.
The power of a pebble: Exploring and mapping directed graphs. Information and
Computation, 176(1):1-21, 2002.

Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal learning of an unknown
environment. Machine Learning, 18(2):231-254, Feb 1995.

Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar
geometric terrain. STAM Journal on Computing, 26(1):110-137, 1997.

Lothar Budach. Automata and labyrinths. Mathematische Nachrichten, 86(1):195-282,
1978.

Barbora Candrikova and Robert Lukotka. Cubic TSP - a 1.3-approximation. CoRR,
abs/1506.06369, 2015.

Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and
Prasoon Tiwari. The electrical resistance of a graph captures its commute and cover
times. Computational Complexity, 6(4):312-340, Dec 1996.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976.

Stephen A. Cook and Charles W. Rackoff. Space lower bounds for maze threadability
on restricted machines. SIAM Journal on Computing, 9(3):636-652, 1980.

Jurek Czyzowicz, Stefan Dobrev, Leszek Gasieniec, David Ilcinkas, Jesper Jansson, Ralf
Klasing, Ioannis Lignos, Russell Martin, Kunihiko Sadakane, and Wing-Kin Sung. More
efficient periodic traversal in anonymous undirected graphs. Theoretical Computer
Science, 444:60-76, 2012.

Xiaotie Deng, Tiko Kameda, and Christos Papadimitriou. How to learn an unknown
environment. i: The rectilinear case. J. ACM, 45(2):215-245, 1998.

43

[13]

[14]

[15]

[16]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

Xiaotie Deng and Christos H. Papadimitriou. Exploring an unknown graph. Journal
of Graph Theory, 32(3), 1999.

Stefan Dobrev, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Finding
short right-hand-on-the-wall walks in graphs. In Structural Information and Commu-
nication Complexity: 12 International Colloquium, SIROCCO, pages 127-139, Berlin,
Heidelberg, 2005. Springer.

Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal con-
strained graph exploration. ACM Trans. Algorithms, 2(3):380-402, July 2006.

J.R. Edmonds. A Combinatorial Representation for Oriented Polyhedral Surfaces.
1960.

Uriel Feige. A tight upper bound on the cover time for random walks on graphs.
Random Structures and Algorithms, 6(1):51-54, 1995.

Rudolf Fleischer and Gerhard Trippen. FEzxploring an Unknown Graph Efficiently.
Springer, Berlin, Heidelberg, 2005.

Pierre Fraigniaud and David Ilcinkas. Digraphs Ezploration with Little Memory.
Springer, Berlin, Heidelberg, 2004.

Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph
exploration by a finite automaton. Theoretical Computer Science, 345(2):331-344, 2005.

Leszek Gasieniec, Ralf Klasing, Russell Martin, Alfredo Navarra, and Xiaohui Zhang.
Fast periodic graph exploration with constant memory. In Structural Information and
Communication Complezity: 14th International Colloquium, SIROCCO, Proceedings,
pages 26-40, Berlin, Heidelberg, 2007. Springer.

David Ilcinkas. Setting port numbers for fast graph exploration. Theoretical Computer
Science, 401(1):236-242, 2008.

G. H. Mealy. A method for synthesizing sequential circuits. The Bell System Technical
Journal, 34(5):1045-1079, Sept 1955.

Tobias Moemke and Ola Svensson. Approximating graphic tsp by matchings. In
Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations of Computer
Science, FOCS 11, pages 560-569, Washington, DC, USA, 2011. IEEE Computer So-
ciety.

PetriAor Panaite and Andrzej Pelc. Exploring unknown undirected graphs. Journal of
Algorithms, 33(2):281 — 295, 1999.

H. A. Rollik. Automaten in planaren graphen. Acta Informatica, 13:287-298, 1980.

44

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Fundamental Concepts
	Graphs
	Finite Automaton

	Periodic Graph Traversal
	Other Related Results
	Our Results

	Preliminaries
	Definitions and Notations
	Overview of The Thesis

	Constructing the tree T
	The Labeling Scheme
	Labeling scheme for non-root vertices of degree d5
	Labeling scheme for non-root vertices of degree d<5
	Labeling scheme for root vertices

	The Transition Function
	Correctness
	Concluding Remark
	Open Questions

	Bibliography

