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Abstract

My thesis focuses on macroeconomics and monetary policy, with a concentration on belief
heterogeneity, household portfolio choice and wealth distribution. I also work on real option
models in monetary policy.

The first chapter of my thesis, entitled “Wait and See" Monetary Policy , was co-
authored with my classmate Michael Tseng, and is recently published in Macroeconomic
Dynamics. The paper develops a model of the optimal timing of interest rate changes. With
fixed adjustment costs and ongoing uncertainty, changing the interest rate involves the
exercise of an option. Optimal policy therefore has a “wait-and-see" component, which can
be quantified using option pricing techniques. We show that increased uncertainty makes
the central bank more reluctant to change its target interest rate, and argue that this helps
explain recent observed deviations from the Taylor Rule.

The second chapter is entitled Risk, Uncertainty and the Dynamics of Inequality,
which is co-authored with my senior supervisor Professor Kenneth Kasa, and is recently
published in Journal of Monetary Economics. That paper studies the dynamics of wealth
inequality in a continuous-time Blanchard/Yaari model. Its key innovation is to assume
that idiosyncratic investment returns are subject to (Knightian) uncertainty. In response,
agents formulate ‘robust’ portfolio policies (Hansen and Sargent (2008)). These policies
are non-homothetic; wealthy agents invest a higher fraction of their wealth in uncertain
assets featuring higher mean returns. This produces an endogenous feedback mechanism
that amplifies inequality. It also produces an accelerated rate of convergence, which resolves
a puzzle recently identified by Gabaix, Lasry, Lions, and Moll (2016).

The third chapter, entitled Information and Inequality, studies wealth inequality in
a continuous-time Blanchard/Yaari model with idiosyncratic investment returns. Its key
innovation is to assume that individuals can buy information. Information reduces uncer-
tainty about the unknown mean investment return. If the coefficient of relative risk aversion
exceeds unity, reduced estimation risk encourages investment in higher yielding risky as-
sets. As a result, endogenous information acquisition amplifies wealth inequality. Relatively
wealthy individuals buy more information, which leads them to invest more in higher yield-
ing assets, which then makes them even wealthier.
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Chapter 1

“Wait and See" Monetary Policy

One possible FOMC strategy is to simply pocket the lower yields and continue to wait-and-see on the
U.S. economic outlook. James Bullard, Federal Reserve Bank of St. Louis President, June 5, 2012
Speech.

1.1 Introduction
Interest rate adjustments occur at a lower frequency than macroeconomic data releases. For example,
Figure 1.1(a) plots the monthly US federal funds target rate against the inflation rate. The frequency
mismatch is apparent. Of course, in recent years interest rates have remained at zero for standard
liquidity trap reasons, but rates exhibited inertia even before the financial crisis. Such inertia is not
specific to the US Federal Reserve. The same plot for the Bank of Canada (BoC), Figure 1.1(b),
shows that the BoC rates exhibits even more pronounced inertia.

(a) US Federal Fund Rate vs. Inflation (b) Bank of Canada annual interest rate vs. In-
flation

Figure 1.1: US Federal Fund Rate and Bank of Canada annual interest rate vs. inflation,
monthly data.

There are several possible reasons why a central bank might be reluctant to change interest
rates. The most obvious reason is that there is some sort of cost to changing the interest rate.
However, standard convex adjustment cost models would not explain the observed long periods
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without change. Such models instead generate continuous gradual adjustment. Another possibility
is that inertia arises for strategic reasons (see e.g. Woodford (1999)). Once again, however, strategic
inertia produces continuous adjustment. A third possibility is insufficient data, as most national
accounts data arrive only quarterly. Two facts run counter to this explanation. First, highly relevant
financial market data is now available at virtually a continuous rate. Second, the plots in Figure 1.1
show that central banks respond even more haltingly than the frequency at which data is released.

Another information-based explanation comes from the demand-side rather than the supply-
side. Perhaps the Fed simply cannot process all the information that is available. Therefore “rational
inattention" produces inertia. This is also contradicted by the facts. First, standard linear-quadratic
models of rational inattention produce attenuated adjustments, not discrete adjustments (see Sims
(2010)). Second, the Fed employs thousands of economists and data analysts, whose primary job is
to process data. Although rational inattention might be a plausible explanation for a lone central
banker, it seems less plausible when applied to an entire institution of data processing specialists.
Finally, probably the most common explanation is that wait-and-see is motivated by learning, i.e.,
the desire to reduce uncertainty. Despite its apparent plausibility, keep in mind standard learning
models produce continuous adjustment, or at least adjustment at the same frequency at which the
data is available. Even more problematic is the prediction that learning should generate trends in
the data. As learning gradually reduces uncertainty, the central bank should become more willing
to respond. Such trends are not apparent in the data.

Although all of these factors are no doubt important parts of monetary policy, they do not
explain infrequent adjustment. Instead, in our view such inaction signals the presence of a fixed
cost to taking action. What is this cost? Clearly, it is not a technical cost. The Fed could dictate a
minute-by-minute target if it so desired. One possibility arises from the fact that monetary policy
decisions are not made by a single individual, but by a committee. As anyone who has ever served
on a committee can attest, committee decision-making has costs. We focus on the inertia induced by
these costs. It is possible that committee decision-making introduces inertia by itself, independent
of option value considerations, which arise from possible delays in reaching consensus.1 However,
Blinder (2009) cites evidence that it does not. Moreover, Blinder (2009) argues that such procedural
delays are likely to be relatively low in the case of US and Canadian monetary policy, at least for
the time period studied here, since they are both examples of what he calls “autocratically collegial"
committees, in which a single chairman has a dominant influence.

The Federal Open Market Committee (FOMC) must meet at least four times each year in
Washington, D.C. Since 1981, eight regularly scheduled meetings have been held each year at intervals
of five to eight weeks. At each regularly scheduled meeting, the Committee votes on the policy to be
carried out during the interval between meetings. Other central banks have similar meeting schedules.
Although in theory the Fed can change rates between meetings, this rarely happens. According to
FOMC statements, since 2002, 47 out of 52 target rate changes occurred at meeting times. Moreover,
as the above plots reveal, it is not uncommon for rates to remain unchanged following a meeting
of the FOMC. This suggests that there is more to infrequent adjustment than the costs of holding
meetings.

1We thank an anonymous referee for pointing this out.

2



In this paper, we take the presence of fixed costs as given, and study their implications in a
general equilibrium framework. We consider a continuous-time version of the standard New Key-
nesian model, in which the central bank attempts to balance inflation and output gap deviations.
Without fixed costs, optimal policy would produce a version of the Taylor rule. Continuous evolution
of macroeconomic data would produce continuous interest rate adjustments. Our primary goal is to
show that the option value of waiting-to-see does not just explain infrequent adjustment. If Taylor
rule predictions were simply wiggles around the implied wait-and-see policy, the value-added here
would be second-order. Instead, we argue that an option value perspective introduces fundamen-
tally new and important considerations into policy, which help to explain several widely noted and
debated discrepancies between observed interest rates and Taylor rule predictions. In particular, we
show that uncertainty becomes an important input into policy. In contrast, standard Taylor rule
models are based on certainty-equivalence, and therefore predict that uncertainty does not influence
policy.2 Greater uncertainty increases the option value of waiting. We argue that post-2001 in the
US is a period with higher uncertainty than pre-2001, thus policy makers react with more inertia
in interest rate changes. In calibrating the model to US data, we find that the implied fixed cost
corresponds to an approximately 1.89% of additional annual welfare loss.

Before proceeding, we note some important caveats to our analysis. First, although the novelty
here is to incorporate option value considerations into macroeconomic policy, these option values
are no doubt present in the private sector as well. In fact, studying these problems is where the
analytical techniques were first developed ( Dixit (1994), Stokey (2008)). For simplicity, we assume
that only the policy maker faces fixed costs. There are reasons to believe, however, that waiting-to-
see could interact in mutually destructive ways if both the government and the private sector has
an option value to wait-and-see, especially if each side lacks information about the other ( Caplin
and Leahy (1994)). Second, the only uncertainty in our model is that regarding the future values
of exogenous shocks. The central bank is fully informed about the underlying structural model and
its parameter values. As noted above, we doubt whether learning about parameters would, by itself,
explain observed inertia. However, if policy makers confront more diffusive forms of uncertainty, in
combination with fixed costs, this might influence the implied option value of waiting-to-see (see e.g.
Miao and Wang (2011) and Trojanowska and Kort (2010)).

The remainder of the paper is organized as follows. Section 2 relates our work on optimal
monetary policy to the real options literature and to recent debates about Taylor Rule deviations.
Section 3 derives a benchmark model without fixed costs of adjustment, which is essentially a version
of the Taylor Rule. Section 4 solve for partial equilibrium where the private sector’s expectation is
exogenous. Section 5 proves that the central bank’s optimal policy is part of a rational expectation
equilibrium. Section 6 examines the properties of an optimal “wait-and-see" rule with respect to
parameter changes. Section 7 takes the model’s testable predictions to both US Fed and BoC data
and studies its quantitative implications. Section 8 discusses future research in this framework and
concludes. The Appendix contains a technical proof for sufficiency of appropriate Euler equations
for optimality in terms of general stopping time problems.

2In fairness, some have argued that the Taylor rule is desirable not because it is optimal within the
context of a given model, but rather because it is robust to the presence of model uncertainty (see, e.g.
Levin, Wieland, and Williams (1999) and Levin and Williams (2003)).
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1.2 Literature Review
Our study is motivated by recent debates about Taylor Rule deviations. Kahn (2010) examines
various of versions of the Taylor Rule, and shows that although a Taylor Rule matches Federal
funds target rate data well during 1980-1990s, there are large deviations from it in recent years. In
particular, policy appears to have been too accommodative. Taylor (2014) argues that interest rate
policy has become less predictable, and that the central bank has been “keeping rates too low for too
long". In addition, Woodford (1999) shows that the optimal nominal interest rate rule should exhibit
“inertia". In our model, the central bank exhibits a type of inertia different from that of Woodford.
Here, higher inertia means the central bank widens the “no-action" band in which it allows the state
to drift freely without applying interest rate adjustment. In contrast, Woodford shows that the ability
to pre-commit to an interest rate path introduces an autoregressive component into the Taylor Rule.
A larger autoregressive component corresponds to higher inertia. The idea is that small adjustments
in the same direction improve the inter-temporal trade-off between inflation and the output-gap
( Rudebusch (2006)). However, in practice, interest rates exhibit not only small adjustment but also
large shifts, and, more recently, periods of no adjustment. Such time series does not have the typical
sample path properties of an autoregressive process, suggesting possible misspecification. Rather
than tying the current interest rate to the last adjustment via an autoregressive mechanism, in our
model the central bank decides whether to adjust based on the current state of the economy. In this
“wait-and-see" approach, apparent inertia arises from an option value. Periods of no adjustment and
occasional large shifts, unaccounted for in an autoregressive specification, are naturally explained in
our model by the central bank’s reluctance to exercise an option.

In related work, Davig and Leeper (2008) and Svensson and Williams (2008) compute opti-
mal Markov switching rules in which a policy maker sets different degrees of response to inflation
depending on whether the state has crossed an exogenous threshold. Alba and Wang (2017) and
Murray, Nikolsko-Rzhevskyy, and Papell (2015) fit empirical Markov switching models to US mon-
etary policy. In these models, discrete adjustment reflects a switch between two sets of Taylor rules.
In contrast, we study optimal policy with endogenously set optimal thresholds. Our model is also
related to prior work on “sticky information". For example, Mankiw and Reis (2002) study the
impact of discrete, optimally chosen, information updating on the Phillips curve. However, their
focus is on the firm’s side.

There has been considerable effort in bringing the real option effect into macroeconomic models
(see e.g. Froot and Obstfeld (1991), Dixit (1993), Dixit (1994), and Stokey (2008)), which
drives the key “wait and see" feature of our model. The techniques that we employ are also used
in the menu cost literature. When firms face both first and second moment uncertainty about
total-factor productivity, Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) shows
that uncertainty increases during recessions. The non-convexities together with time variation in
uncertainty imply that firms become more cautious in investing when uncertainty increases. Stokey
(2013) develops a model which shows that uncertainty about future tax policy induces firms to
temporarily stop investing. Both papers look at uncertainty from the firm side. A recent paper
that examines uncertainty from the policy side is Alvarez and Dixit (2014), which analyzes the
optimal timing of a break-up of the Euro zone using a real options framework, with the private
sector modelled in a reduced form way. In contrast, our model casts a standard New Keynesian
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model into an impulse control framework and remain in a general equilibrium setting where both
the central bank and private section have rational expectations.

1.3 Monetary Policy Without Fixed Costs
We briefly recall the optimal monetary policy under discretion in the absence of fixed costs. Assume
time is discrete. Let πt denote inflation and xt denote the output gap. The Phillips curve and the
dynamic IS curve in a standard New Keynesian model, are:

πt = κxt + βEt(πt+1) + ut (1.1)

and
xt = − 1

γ
(it − Et(πt+1)− r) + Et(xt+1) (1.2)

where γ is the household’s coefficient of risk-aversion, κ denotes the response of inflation to an output
shock, it is the nominal interest rate, and r is the natural rate of interest, which is assumed to be
constant here. The cost-push shock ut is essential in our analysis. It represents the uncertainty the
central banker is facing.

The central banker in our model conducts monetary policy with discretion, and therefore has
the myopic goal of minimizing the deviations of current inflation and the output gap from target
(normalized to zero).3Without adjustment costs, the central banker’s problem is a static one:

min
xt,πt

1
2(λx2

t + π2
t ) (1.3)

subject to
πt = κxt + vt (1.4)

.
where vt ≡ βEt(πt+1) + ut, and λ is the weight put on the output gap.4 Assuming ut is an AR(1)
process with coefficient ρu, the optimal interest rate rule is given by

i∗t = r + Φiut (1.5)

where Φi = κγ(1−ρu)+λρu
κ2+λ(1−βρu) . In the special case where ut follows a random walk, we have Φi =

λ
κ2+λ(1−β) . It is well-known that, without fixed costs, a linear-quadratic objective function implies
certainty equivalence for the central bank’s problem. Uncertainty plays no role in optimal monetary
policy, and only the current state matters. As expected, the optimal interest rate is linear and con-
tinuous in the cost push shock. Under discretion, the output gap and inflation are also linear in the
cost-push shock. Thus we can view this linear rule as a version of the Taylor Rule, which will be

3Such preference is a second-order approximation of a CRRA household’s utility function, which is proved
in Rotemberg and Woodford (1999) and Woodford (2003).

4With discretion, the central bank cannot influence the private sector’s expectation in a systematic way.
Thus, he treats expectations as an exogenous process when conducting policy.

5



compared with the central bank’s optimal rule from our model in Section 4.

1.4 Model
We continue to assume the bank operates with discretion. The model is obtained by taking continuous
time limits of the previous two standard discrete time New Keynesian equations (see e,g. Galí
(2009)). Instead of solving a continuous time New Keynesian model from the outset (as is done, for
example, in Fernández-Villaverde, Posch, and Rubio-Ramírez (2012)), we start by deriving discrete
time counterpart, which summarizes the private sector’s behavior under any policy, then take the
continuous time limit. Our New Keynesian continuous time model admits analytic solutions, using
techniques from stochastic control.

Rational Expectations requires the private sector to form expectations of the output gap and
inflation that are consistent with central bank policy. Given such expectations, the central bank
chooses optimal monetary policy taking the private sector’s expectations as given. The resulting op-
timal policy must then conform to the private sector’s expectations. In discrete time, it is reasonable
to conjecture that the private sector’s expectations follow a martingale:5

Etπt+1 = πt (1.6)

Etxt+1 = xt. (1.7)

In a discrete time setting, the private sector’s information set at time t includes the current period
interest rate. In our continuous time model, the interest rate is determined by the current state of
the economy, which is evolving stochastically. The k-th adjustment ik happens at a random, rather
than a deterministic, time τk. Therefore the continuous time counterparts to the above conditions
for stochastic processes πt and xt are that, conditional on the central bank’s last adjustment, the
private sector’s expectation remains the same between interest rate adjustments:

E[πτ |τ ′, ik] = πτ ′ and E[xτ |τ ′, ik] = xτ ′ .

where τ and τ ′ are any stopping times with τk+1 > τ ≥ τ ′ ≥ τk.6

Substituting (6) and (7) into (1) and (2) respectively gives

5In general, we are not able to tell whether such expectations are unique. In fact, when banks’ interest
rate threshold is fixed, the private sector could have highly nonlinear expectations, as demonstrated by Davig
and Leeper (2008). However, since we focus on an endogenous interest rate band rather than endogenous
expectation, studying a version of martingale expectation and verifying that it is rational simplifies the
analysis and helps us to focus on the model’s inertia predictions.

6Recall that a filtration is an increasing sequence {Gt} of σ-algebras representing information flow. The
σ-algebra Gt, or information set at time t, contains events known up to time t. A stopping time τ is a random
variable such that τ−1(−∞, t] ∈ Gt for all t. A stopping time is therefore a random time that is known to the
agent at time t. In our context, this means that the timing of interest rate adjustments that have occurred
up to time t is known to the private sector at time t.
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xt = a1ĩ+ b1ut (1.8)

πt = a2ĩ+ b2ut (1.9)

where ĩ = ik − r for some k. The cost-push shock ut is exogenous and is modelled by a Brownian
motion.7

We derive a rational expectations equilibrium in which the central bank incorporates ex ante
assumptions about the private sector’s expectations into his cost minimization problem. Then vari-
ables xt and πt in the objective function in the central bank’s problem can be summarized by a
single state variable:

1
2(λx2

t + π2
t ) = 1

2 [λ(a1ĩ+ b1ut)2 + (a2ĩ+ b2ut)2]

= 1
2(λa2

1 + a2
2)̃i2 + (λb21 + b22)u2

t + 2(a1b1λ+ a2b2)̃iut

= 1
2 λ̃(̃i− θut)2 + λ2β(2− β)

(λ(1− β)2 + κ2)2u
2
t

(1.10)

where θ = λ(1−β)
λ(1−β)2+κ2 , and λ̃ = λa2

1 + 1.
Define zt ≡ ĩt − θut. Note that the second term in (10) is independent of monetary policy. It is

the efficiency loss that cannot be mitigated when adjusting the interest rate. The first term implies
a squared deviation of optimal interest rate. Assuming the above assumption holds, we could derive
the conjectured coefficients a1 = β−1

κ , b1 = − 1
κ , a2 = −1, b2 = 0.

LetK denote the fixed cost of adjustment. A discretionary policy maker’s problem is to minimize
the expected discounted sum of squared deviations of zt and adjustment cost by choosing a sequence
{τk, ik}, where τk and ik are the time and size, respectively, of the k-th adjustment. The central
bank’s problem is then to find

V (z0) = inf
τk,ik

Ez0 [
∫ ∞

0
e−ρt

[
1
2 λ̃z

2
t

]
dt+

∞∑
k=1

e−τkK] (1.11)

where

• The expectation operator Ez0 [·] denotes expectation taken with respect to the law of the shock
process zt.

• The cost-push shock ut is assumed to follow a Brownian motion dut = σdBt where σ is the
volatility of the process. Increasing σ increases the uncertainty faced by the central bank.

7Evidence exists that inflation and output gap processes are persistent. In our model this translates to
the choice of modelling the output gap and inflation as continuous-time random walks. Relaxing the unit root
restriction, one could allow for mean reversion. In continuous-time, we can readily incorporate more general
cost-push shocks by using an Ornstein-Uhlenbeck process, a sum of Brownian motion and a mean-reverting
drift. Mean reversion in the cost-push shock would have two competing effects on the central bank’s policy.
The tendency of the process to revert to its long-run mean makes the central bank more reluctant to adjust.
On the other hand, mean reversion makes the process stationary, which in turn decreases central bank’s
uncertainty, thereby increasing the frequency of adjustment.
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• From (10), the summarized variable zt then evolves according to dzt = −θσdBt = dut with
initial state z0 almost surely.

• {τk} is a non-decreasing sequence of stopping times with respect to the natural filtration {Ft}
generated by dut. The timing of the k-th adjustment, which is a state-dependent random time
τk, must be decided only using the central bank’s information.

• Each ik, the size of k-th adjustment, is a τk-measurable random variable. In other words, the
central bank determines the size of an adjustment using information available at the (state-
dependent random) time of adjustment.

• zτk − zτ−
k

= iτk − iτ−
k
. Since the cost-push shock is exogenous, changes in zt correspond to

changes in the interest rate.

Therefore the central bank’s problem is to choose a random state-dependent sequence of ad-
justment times based on information available, along with the interest rate at those times. In the
presence of a fixed cost K, continuous adjustment is clearly suboptimal.

The central bank’s problem can be seen as a dynamic programming problem. Define the “best
adjustment operator" A, acting on bounded functions W : R→ R, by8

AW (z) = inf
i∈R

W (z − i) +K.

If V (z) is the central bank’s value function, then AV (z) is the resulting value from the best possible
interest rate adjustment, if an adjustment is made at state z. Therefore we must have

V (z) = inf
τ
Ez[
∫ τ

0
e−ρtf(zt)dt + e−ρτAV (zτ−)]

where, for ease of notation, we put f(z) = 1
2 λ̃z

2 and infτ denotes the infimum over all finite stopping
times. By optimality, V (z) ≤ AV (z) since the central bank always has the choice of not exercising
the option of adjusting. The central bank’s problem can be therefore further rewritten as:

V (z) = inf
τ
Ez[
∫ τ

0
e−ρtf(zt)dt + e−ρτV (zτ−)].

Assuming now that V (z) ∈ C2(R), i.e. is twice-differentiable with continuous second derivative and
the infimum infτ is actually attained at a stopping rule τ∗ given by an open region U ⊂ R, then
applying Dynkin’s Formula to the right-hand side gives910

V (z) = V (z0) + Ez[
∫ τ∗

0
e−ρt(f(zt)− ρV (zt) + 1

2V
′′(zt)θ2σ2)dt]. (1.12)

8More formally, A acts on bounded Borel-measurable functions on R.

9The value function V we construct below using smooth pasting is actually not twice-differentiable. The
Appendix contains a proof why this derivation is nevertheless true.

10Dynkin’s Formula is a classical result that generalizes the Fundamental Theorem of Calculus V (z(τ)) =
V (z(0)) +

∫ τ
0 V ′(z(t))z′(t)dt from ordinary differential equations to Itô diffusions ( Protter (2004), p356).
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Therefore the state space R is divided into two regionsρV = 1
2 λ̃z

2 + 1
2V
′′θ2σ2 on U

ρV < 1
2 λ̃z

2 + 1
2V
′′θ2σ2 on R\U.

The inaction region U is therefore characterized by the central bank’s first order condition11

ρV = 1
2 λ̃z

2 + 1
2V
′′θ2σ2 (1.13)

between adjustment and non-adjustment of the interest rate. It states that the expected loss of a
central banker’s value is equal to the sum of an immediate squared deviation of optimal interest
rate, and the expected rate of capital loss of holding the option of not changing rates. Adjustment
is applied immediately on R\U .

Conjecture now that U is an interval U = (a, b) for some a < b. On U , the first order condition
is an inhomogeneous ordinary differential equation with general solution

V = Az2 +B1e
δ1z +B2e

δ2z + C

with unknown constants A,B, δ1, δ2, and C. The constants A,B, δ1, δ2 are found by matching coef-
ficients:

A = λ̃

2ρ , C = λ̃θ2σ2

2ρ2 , δ1,2 = ±
√

2ρ
θσ

. (1.14)

What remains is to solve for the free boundaries a and b, and to determine the adjustment amount i
once the boundary is reached. We note that that z− i = c must lie in (a, b). Furthermore, to satisfy
the C2 assumption on V in the above derivation, it is necessary that V (a) = V (b) = V (c) − K,
V ′(a) = V ′(b) = 0, and V ′′(a) = V ′′(b) = 0. We prove in the Appendix that the first two set of
conditions

V (a) = V (b) = V (c)−K (1.15)

V ′(a) = V ′(b) = 0 (1.16)

are sufficient for V to be the value function by generalizing Dynkin’s Formula beyond C2-functions.
In other words, the optimizing central bank need only satisfy continuity, (15), and an Euler equation,
(16), on the adjustment thresholds. The value function V is constant V = V (c) on R\(a, b). When
facing a starting state z0 ∈ R\(a, b), the central bank immediately adjusts the state to c. Given the
model’s symmetry, it is reasonable to guess that (a, b) is of the form (−S, S) and c = 0. Using this
guess, the Euler equations become:

11The Appendix shows the necessary first order condition is in fact part of a sufficient condition, as
assumption (iii) of the theorem.
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AS2 +B1e
δ1S +B2e

δ2S = B1 +B2 −K, (1.17)

2AS +B1δ1e
δ1S +B2δ2e

δ2S = 0, (1.18)

respectively. This is the same set of equations encountered in Dixit (1993). An approximate ana-
lytical solution for the threshold S is

S∗ ≈
(

12θ2σ2K

λ̃

) 1
4

. (1.19)

This implies that a fixed cost K of 4th order magnitude has first order importance in determining
the adjustment threshold, while uncertainty of second order has first order effects on inertia.

1.5 Rational Expectations
It is clear that the inflation process πt and output process xt, under the central bank’s optimal interest
rate policy, is consistent with the private sector’s expectations. Indeed, recall that the private sector’s
expectations regarding the two processes satisfy a local martingale-type condition:

E[πτ |τ ′, ik] = πτ ′ and E[xτ |τ ′, ik] = xτ ′ .

where τ and τ ′ are any stopping times with τk+1 > τ ≥ τ ′ ≥ τk. On the other hand, under the
central bank’s optimal policy,

xτ = a1ik + b1uτ , xτ ′ = a1ik + b1uτ ′

and

πτ = a2ik + b2uτ , πτ = a2ik + b2uτ ′ .

By Doob’s Optional Stopping Theorem ( Lipster and Shiryayev (1989)), we have

E[xτ |τ ′, ik] = a1ik + b1uτ ′ = xτ ′

and

E[πτ |τ ′, ik] = a2ik + b2uτ ′ = πτ ′ .

Hence, expectations are confirmed.
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1.6 Expected Hitting Times and Adjustment
The properties of the optimal rule in our model shed some light on how different uncertainty regimes
contributes to monetary policy inertia.12 Given an arbitrary initial point z, the expected time to the
first such resetting is found by13

T (z) = S2 − z2

σ2 . (1.20)

Expressed in terms of the endogenous threshold ±S∗ from Equation (18), expected hitting time is

T (z) =

√
12θ2K
λ̃

σ
− z2

σ2 . (1.21)

The derivative of T (z) with respect to σ is

∂T (z)
∂σ

=
2(z2 − σ

√
3θ2K/λ̃)

σ3 . (1.22)

Thus, the effect of uncertainty on expected hitting times depends on the current state of the economy.
There are two countervailing effects. On one hand, given a fixed threshold, a higher variance increases
the probability that z hits the boundary, so the expected hitting time decreases. On the other hand,
increased uncertainty also increases the optimal threshold, which makes the state less likely to
reach the threshold. In our case, when z2 < σ

√
3θ2K/λ̃, the first effect dominates, and increased

uncertainty decreases expected hitting times. This corresponds to the case where the initial interest
rate is nearly optimal, but if the economy is hit with a severe negative shock, the central banker must
react by immediately lowering interest rate.14 If z2 > σ

√
3θ2K/λ̃, the second effect dominates, and

increased uncertainty would increase expected hitting time. This could be the scenario where, given
a mild level of inflation, the central banker would have increased the interest rate during normal
times, but is less likely to do so during a recession. The two plots in Figure 1.1 show that both
effects are present in the data. A large downward adjustment usually corresponds to an unexpected
recession followed by a longer period of interest rate inertia. For example, consider the two recession
periods of the US economy during early 90’s and early 2000’s. In both cases, the Fed lowered target
rates swiftly at first, then waited for a long period (15 months and 9 months, respectively) before
further adjustments.

12Incorporating stochastic volatility into our model, i.e. allowing the central bank to anticipate possible
changes in uncertainty regime, would retain the general adjustment/non-adjustment regions of optimal
policy. The non-adjustment region would depend on the specification of the volatility stochastic process.
Although a similar comparison between different specifications and their resulting policies can be carried
out, the simplifying assumption of an unanticipatory central bank highlights the effects of uncertainty in our
setting and unburdens the discussion from technicalities.

13The hitting time distribution of Brownian motion can be derived using the strong Markov property.
See, for example, Dixit (1993).

14Since the problem is symmetric, all the intuitions that follows also applies to a deflation shock.
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Table 1.1: Parametrization (Monthly)

Description Notation Value
Risk aversion γ 0.5
Discount rate β 0.9967
Natural rate (US) rUSA 0.2385%
Natural rate (Canada) rCanada 0.1570%
Sensitivity of inflation on output κ 0.0076
Weight on output deviation λ 1/2
Adjustment cost (Fed) KFed 0.0126
Adjustment cost (BoC) KBoC 0.1300
US before 2001 volatility σl 0.0126%
US after 2001 volatility σh 0.0242%
Canada volatility σ 0.0135%

1.7 Calibration
Our model has testable implications for observed interest rate targets. In particular, we take our
wait-and-see rule to US Fed and Bank of Canada interest rate data, and examine whether the
model can explain both the observed inertia and the timing of shifts in rates. For the US, monthly
industrial production, inflation, and federal funds rate data for the period October 1982 to July 2008
are obtained from the Federal Reserve Bank of St. Louis website. Since monthly data on GDP is not
available, industrial production serves as a proxy for the output variable.15 To compute potential
monthly output, a Hodrick-Prescott filter with λ = 14400 is used.

Using the parameters reported in Table 1.1, we calibrate the model to the observed federal
funds target. The initial model interest rate is calibrated to match the actual initial interest rate in
the sample period. The risk aversion parameter γ is set to be 0.5. The monthly discount factor β is
0.9967, to match an average annual discount rate of 4%. We calibrate the natural interest rate r from
the sample average estimate in Holston, Laubach, and Williams (2016) of US from 1990 and 2007. A
similar sample average estimate is computed for Canada from 2007 to 2015. This gives rUSA = 2.9%
yearly, implying rUSA = 0.2385% monthly, and rCanada = 1.9% yearly, implying rCanada = 0.1570%
monthly. The weight on output deviation is 0.5. We take monthly κ = 0.0076 from Galı and Gertler
(1999).16 We then break the US data into two periods, before and after 2001, since we view the

15The early 80’s corresponded to a period where the Fed adopted a money supply target instead of
targeting the interest rate. Therefore, it is appropriate to set that period as the starting time of our analysis.

16 Galı and Gertler (1999) estimate the quarterly Philips curve

πt = κqxt + βqEt(πt+1)

with κq = 0.023, where superscript q denotes the quarterly parameter. Using the martingale assumption
that πt = Et(πt+1), we have

πt = κq

1− βq xt = κ

1− β xt.

This relationship between xt and πt holds regardless of data frequency. Thus, we can back out monthly κ
by matching coefficients. With an annual discount rate of 4%, the implied monthly and quarterly discount
rates are β = 0.9967, and βq = 0.99, respectively. The implied monthly κ is 0.0076. For robustness check,
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post-2001 period as being more volatile (e.g., the tech stock boom and bust, the 9/11 attack, the
financial crisis, etc). The parameters σl and σh are then computed from the standard deviation of
the ut series in these two periods. The ut process is inferred from output gap and inflation data,
along with the Phillips curve and model-implied private sector beliefs.1718 To be more concrete, we
know that the New Keynesian Phillips curve gives us19

πt = κxt + βEt(πt+1) + ut (1.23)

We also know from the model that Et(πt+1) = πt. Therefore, we can infer the following cost shock
process

ut = (1− β)πt − κxt (1.24)

We then calibrate the adjustment cost K to match the weighted average interest rate duration
(weighted by its duration). With US data, this produces KFed = 0.0126. With Canadian data, this
produces KBoC = 0.13. We will explain the quantitative interpretation of this shortly. Figures 1.2
and 1.3 demonstrate how the wait-and-see rule compares with the Taylor Rule. The main visual
difference is that our rule exhibits policy inertia and large discrete jumps.

The adjustment cost parameters KFed or KBoC can be translated to loss function equivalents.
K = 0.0126 implies a fixed cost of 1.26% standard deviation from the steady state. The median
interest rate duration in the US is 8 months, which implies the Fed changes rates about 1.5 times
per year on average. Therefore, the annual cost is approximately an extra 1.5 × 1.26% = 1.89% of
welfare loss. Using the above parameters, we compare the goodness of the fit of the Taylor rule and
the wait-and-see rule: The result is shown in Table 1.2. The result that wait-and-see rule has a better
overall fitness is also robust to alternative parametrization of discount rate and elasticity of inflation
to output parameter.

The previous results calibrate the adjustment cost K to match the weighted average interest
rate duration, and study the overall fitness. For a robustness check, one can also calibrate K to
minimize the mean squared error between the target rate and the model implied interest rate, and
study how well they match the probability of interest rate change and the average size of interest

when we also take the alternative value of 5.355% as the annual discount rate, the implied discount rates
are βq = 0.9870, and β = 0.9956, with κ = 0.0078.

17Not only do we assume that volatility before and after 2001 is different, we also assume it is constant
within each regime and not adapted to the central bank’s filtration. Therefore, the central bank in our
model cannot anticipate volatility changes ex ante. Incorporating stochastic volatility into the central bank’s
decision is in our framework is possible topic to be explored in detail in future research. More detailed
remarks on this possibility are given in Section 8.

18Since the New Keynesian Phillips curve is widely used to study monetary policy, and our purpose is
not to test the Phillips curve, we condition on the validity of the model and identify cost push shocks using
the model. This back-solving strategy is also used in The Conquest of American Inflation ( Sargent (1999)),
where a series of residuals are inferred from the Phillips curve using observed data and the initial conditions
for the government’s beliefs.

19For the sake of tractability, the volatility here is conservatively estimated by that of the cost push shock,
which is relatively smooth. One might expect that, in a richer model with more shocks, e.g. financial shocks,
differences in volatility during recessions and normal regimes would be even larger, implying a stronger
wait-and-see effect.
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Figure 1.2: US: Model vs. Taylor Rule

Table 1.2: Mean Squared Error, Percent

Central banks Model Taylor
US Fed 2.04 2.17
BoC 1.11 1.20

rate changes. This produces KFed = 0.017, and KBoC = 0.1 when keeping all other parameters with
the same value as Table 1.1. Tables 1.3, 1.4, and 1.5 report the results.

We compare three statistics associated with the policy rule from our model and the Taylor rule.

a. Probability of non-adjustment Table 1.3 displays an obvious distinction between the
Taylor rule and the wait-and-see rule. The Taylor rule produces a zero probability of keeping rates
constant, while our model generates a reasonable probability of inaction. While it captures the pos-
sibility of not changing rates, which the Taylor Rule cannot explain, the wait-and-see rule generates
an inaction probability that is larger than the data.

Table 1.3: Probability of Leaving Rates Unchanged

Central banks Actual Model Taylor
US Fed 0.5 0.8949 0
BoC 0.7410 0.9398 0
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Figure 1.3: Canada: Model vs. Taylor Rule

Table 1.4: Conditional average absolute percentage change of rates

Central banks Actual Model Taylor
US Fed 0.0531 0.1981 0.0676
BoC 0.1327 0.5843 0.1282

b. Conditional average absolute percentage change of rates Our model also has implica-
tions for the magnitude of rate changes. To see this, we take the absolute value of percentage change
of rates conditional on changes occurring. The absolute value is taken both due to the symmetry
of our model, and because the direction of change is not of immediate interest. We find that the
wait-and-see rule generates larger changes than in the data.

c. Unconditional average absolute percentage change of rates An arguably better mea-
sure of overall fit is to consider the conjunction of the above two statistics. That is, taking into
the account both the probability of adjustment and the magnitude of adjustment, we compute the
unconditional average absolute percentage change of rates. The last column in Tables 1.4 and 1.5

Table 1.5: Unconditional average absolute percentage change of rates

Central banks Actual Model Taylor
US Fed 0.0304 0.0208 0.0676
BoC 0.0344 0.0352 0.1282
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are the same, since the probability of changing rates in the Taylor Rule is always one. However, the
wait-and-see rule outperforms the Taylor rule in both US and Canada. One can see that although
the Taylor rule matches the magnitude of changes fairly well, its inability to capture the timing
of rate shifts forces it to produce a much larger deviation from the actual interest rate than the
wait-and-see rule.

1.8 Conclusion
This is the first paper to study the optimal timing of interest rate changes. By combining uncertainty
and adjustment costs, we are able to rationalize observed interest rate jumps and inertia using a
simple impulse control model. The model is consistent with observed target interest rates of both
the Fed and the BoC. By focusing on the question of when to change interest rates as opposed to
how much, our framework sheds light on the essential role that uncertainty plays in policy. This
motivates many possible directions for future research.

An immediate economic question is the welfare implications of a wait-and-see monetary policy.
Without adjustment costs, a discretionary central bank is able to implement the first best outcome
by minimizing output gap and inflation deviations instantaneously. With adjustment costs, it is clear
that output and inflation deviations will persist, which generates potentially large efficiency losses.

Our technical framework admits several modifications and generalizations. Rather than one
discrete adjustment at a time, the central bank may switch between regimes of continuous adjustment
and no adjustment. The BoC time series in Figure 1.1 could very well reflect such a policy. To better
match the level of interest rates shown by data, the exogenous policy-independent cost-push shock
could be modelled by a more general Lévy process rather than Brownian motion.20 One could also
think about imposing a zero lower bound on interest rates. All such extensions fall under the umbrella
of general optimal stopping/option exercise problems.

Of particular relevance is the question of how a zero lower bound would affect the central bank’s
policy in our model. A binding zero lower bound constrains the central bank’s ability to react
to shocks, since the only option would be an upward adjustment at the zero lower bound. The
central bank might alter its behavior in response to this restriction. Near the zero lower bound, the
inability, once the bound is reached, to set a negative nominal rate makes the central banker more
sensitive to small negative shocks. The option of a large negative adjustment in response to the next
large negative shock is no longer available. As a preventive measure, the central bank would apply
downward adjustments more frequently near the bound. Away from the bound, the potential loss
that could occur at the bound due to restricted ability to adjust could lead the central banker to
make positive adjustments larger than she would in our model when positive shocks occur.

One could also argue that the central bank anticipates upturns and downturns of the economy
in setting monetary policy, rather than just reacting to changes in uncertainty levels ex post. This
could be addressed by a two-factor stochastic volatility model, where volatility of the cost-push
shock follows a stochastic process, in the option exercise framework. The driving factor could be

20Lévy processes are continuous-time analogues of random walks, of which Brownian motion is a special
case ( Barndorff-Nielsen, Mikosch, and Resnick (2001)). One example is the independent sum of a Brownian
motion and a compound Poission process. A general Lévy process can have infinitely many jumps during a
finite time interval.
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observable or latent. A latent stochastic volatility factor is often argued to be a major concern for
monetary policy makers.

Also to be explored is the relationship between learning and a wait-and-see policy. For example,
if the natural interest rate is unobservable, waiting not only brings the benefit of more information
about the underlying shocks, but also refines estimates of parameter values. One could also envision
a model where the private sector also faces fixed investment costs. Firms will delay investing due
to policy uncertainty, which then feeds back to more uncertainty by the policy maker. This kind
of feedback loop might be an impediment to recovery, with both the central bank and the firm
waiting-to-see about each other. Lastly, future research could dig deeper into the way uncertainty
is modelled here. For example, with fears of model misspecification, the central bank might want to
react more aggressively with respect to the current state. So it might be important to examine how
a preference for robustness would interact with the wait-and-see policy generated from our baseline
model.
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Chapter 2

Risk, Uncertainty and the
Dynamics of Uncertainty

2.1 Introduction
It is well known that models of idiosyncratic labor income risk, in the tradition of Aiyagari (1994),
cannot explain observed inequality. Although these models shed some light on the lower end of
the wealth distribution, they cannot generate sufficient concentrations of wealth in the right-tail
(Huggett, 1996).1 In response, a more recent literature considers models of idiosyncratic investment
risk. These so-called ‘random growth’ models can generate the sort of power laws that characterize
observed wealth distributions.2

Although investment risk models are successful in generating empirically plausible wealth distri-
butions, they suffer from two drawbacks. First, existing applications focus on stationary distributions.
However, what is notable about recent US wealth inequality is that it has increased. This suggests
that some parameter characterizing the stationary distribution must have changed. It’s not yet clear
what changed. Second, Gabaix, Lasry, Lions, and Moll (2016) have recently shown that standard
investment risk models based on Gibrat’s Law cannot account for the rate at which inequality has
increased. Top wealth shares have approximately doubled over the past 35-40 years. Standard model
parameterizations suggest that this increase should have taken at least twice as long.

Our paper addresses both of these drawbacks. The key idea is to assume that agents con-
front (Knightian) uncertainty when investing. Following Hansen and Sargent (2008), agents have
a benchmark model of investment returns. In standard random growth models, agents fully trust
their benchmark model. That is, they confront risk, not uncertainty. In contrast, here agents distrust
their model, in a way that cannot be captured by a conventional Bayesian prior. Rather than com-
mit to single model/prior, agents entertain a set of alternative models, and then optimize against
the worst-case model. Since the worst-case model depends on an agent’s own actions, agents view

1 Benhabib, Bisin, and Luo (2017) note that models based on idiosyncratic labor income risk cannot
generate wealth distributions with fatter tails than the distribution of labor income.

2The original idea dates back to Champernowne (1953) and Simon (1955). Recent examples include
Benhabib, Bisin, and Zhu (2011) and Toda (2014). Gabaix (2009) provides a wide ranging survey of power
laws in economics and finance. Benhabib and Bisin (2017) survey their application to the distribution of
wealth.
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themselves as being immersed in a dynamic zero-sum game. Solutions of this game produce ‘robust’
portfolio policies. To prevent agents from being unduly pessimistic, in the sense that they attempt
to hedge against empirically implausible alternatives, the hypothetical ‘evil agent’ who selects the
worst-case model is required to pay a penalty that is proportional to the relative entropy between
the benchmark model and the worst-case model.

This is not the first paper to study robust portfolio policies. Maenhout (2004) applied Hansen-
Sargent robust control methods to a standard Merton-style consumption/portfolio problem. He
showed that when the entropy penalty parameter is constant, robust portfolio policies are nonhomo-
thetic, i.e., portfolio shares depend on wealth levels. He went on to show that homotheticity can be
preserved if the penalty parameter is scaled by an appropriate function of wealth. Subsequent work
has followed Maenhout (2004) by scaling the entropy penalty, and thereby confining attention to
homothetic portfolio policies.

Here the entropy penalty parameter is not scaled. The problematic long-run implications of non-
homotheticity are not an issue, since we study an overlapping generations economy. If the coefficient
of relative risk aversion exceeds one, robustness concerns dissipate with wealth. As a result, wealthier
agents choose to invest a higher fraction of their wealth in higher yielding assets.3 This produces
a powerful inequality amplification effect. It also provides a novel answer to the question of why
inequality began increasing around 1980, not just in the US, but in many other countries as well.
Many have argued that the world became more ‘turbulent’ around 1980. Some point to increased
globalization. Others point to technology. Whatever the source, micro evidence supports the notion
that individuals began to face greater idiosyncratic risk around 1980.4 Given this, it seems plausible
that idiosyncratic uncertainty increased as well.5

Idiosyncratic uncertainty also helps resolve the transition rate puzzle of Gabaix, Lasry, Lions,
and Moll (2016). They show that models featuring scale dependence, in which shocks to growth rates
depend on the level of income or wealth, produce faster transition rates than traditional random
growth models based on Gibrat’s Law. Robust portfolio policies induced by uncertainty produce
a form of scale dependence. Inequality dynamics are analytically characterized using the Laplace
transform methods popularized by Moll and his co-authors. Although the model itself is nonlinear,
this nonlinearity only arises when the inverse of the entropy penalty parameter is nonzero. For small
degrees of uncertainty the parameter is close to zero. This allows us to employ classical perturbation
methods to obtain approximate analytical solutions of the Laplace transform of the Kolmogorov-
Fokker-Planck (KFP) equation, which then yield approximations of the transition rates.

To illustrate the quantitative significance of uncertainty induced inequality, we suppose the US
economy was in a stationary distribution without uncertainty in 1980. Even without uncertainty
wealth is concentrated at the top due to a combination of investment luck and longevity luck.
Assuming agents live/work on average about 40 years, the wealth share of the top 1% is 24.3%,

3Although there is widespread agreement that wealthier individuals earn higher average returns, it is not
clear whether this reflects portfolio composition effects, as here, or whether it reflects higher returns within
asset categories. See below for more discussion.

4See, e.g., Gottschalk and Moffitt (1994), Ljungqvist and Sargent (1998), Kambourov and Manovskii
(2009).

5Note, here it is sufficient that agents perceive an increase in risk. The increase itself might not actually
occur, but fears of its existence would still be relevant if they are statistically difficult to reject.
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roughly equal to the observed 1980 share. Uncertainty is then injected into the economy by setting
the (inverse) entropy penalty parameter to a small nonzero value, while keeping all other parameters
the same. This increases the top 1% wealth share to 36.9%, close to its current value of about 40%.
If this increased inequality had been generated by a change in some other parameter, the transition
rate at the mean level of wealth would be only 1.14%, implying a half-life of more than 60 years.
Thus, assuming the economy is currently at least 90% of the way to a new stationary distribution, it
should have taken 200 years to get here, rather than the observed 35-40 years! However, if increased
inequality was instead generated by increased uncertainty, the transition rate at the mean more than
triples, to 3.85%. This reduces the model implied transition time from 200 years to about 60 years;
still longer than observed, but significantly closer.

Aoki and Nirei (2017) also study the dynamics of wealth inequality in a Blanchard-Yaari OLG
model. A portfolio composition effect is also the key force behind increased inequality in their model.
However, their paper features several important differences. First, they focus on income inequality
rather than wealth inequality. Second, their model lacks a natural pertubation parameter, so they
resort to numerical solutions of the KFP equation. They find that if the variance of idiosyncratic
productivity shocks is calibrated to those of publicly traded firms, the model produces transition
rates that are comparable to those in the data. However, if privately held firms are included, which
is more consistent with the model, transition rates are too slow. Third, and most importantly, the
underlying mechanism in their paper is different. They argue that reductions in top marginal income
tax rates were the trigger that produced increased inequality. In support, they cite Piketty, Saez,
and Stantcheva (2014), who report evidence on top income shares and tax rates from 18 OECD
countries for the period 1960-2010. They show that countries experiencing the largest reductions in
top marginal income tax rates also experienced the largest increases in top income inequality. We
do not dispute the role that tax policy likely played in growing inequality. However, an interesting
additional result in Piketty, Saez, and Stantcheva (2014) is that if you split the sample in 1980, the
link between taxes and inequality increases markedly. This is exactly what you would expect to find
if increased uncertainty coincided with tax reductions in 1980.6

The remainder of the paper is organized as follows. Section 2 quickly reviews evidence on US
wealth inequality. Section 3 outlines the model. Section 4 compares the stationary distribution of
wealth with and without uncertainty. Section 5 provides an approximate analytical characterization
of the transition rate between these two distributions and compares it to a numerical solution.
Section 6 shows how detection error probabilities can be used to calibrate the entropy penalty
parameter (Anderson, Hansen, and Sargent, 2003). Section 7 offers a few concluding remarks, while
an Appendix provides proofs and outlines an extension to recursive preferences.

6 ? compare the roles of taxes and technologically-induced changes in wage inequality in accounting
for recent US wealth inequality. They find that wage inequality is more important. However, to generate
fat tailed wealth distributions with idiosyncratic labor income risk, they follow ? and introduce ‘awesome
states’ in labor productivity. This procedure has been criticized by Benhabib, Bisin, and Luo (2017).
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2.2 Motivation
This paper focuses on wealth inequality. To focus on the role of uncertainty, it abstracts from all
other sources of heterogeneity that contribute to inequality, including labor income heterogeneity.
Hence, this section only presents evidence on wealth inequality.

Arguably the best current estimates of US wealth inequality come from Saez and Zucman
(2016a). They combine data from the Fed’s Survey of Consumer Finances with IRS data on capital
income. Wealth estimates are computed by capitalizing reported income data. Attempts are made to
include the value of assets that do not generate capital income (e.g., pensions and life insurance), but
Social Security is excluded. The value of owner occupied housing is computed from data on property
taxes and mortgage interest payments. The major omission is human capital. One potential problem
with this data is that the methodology assumes rates of return within asset categories are identical
across households. This can produce biased estimates if returns are correlated with wealth within
asset categories (Fagereng, Guiso, Malacrino, and Pistaferri, 2016b).7

In principle, we could look at the entire cross-sectional distribution, but since current interest
(and our model) are focused on the right-tail, Figure 2.1 simply reports the top 1% wealth share.
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Figure 2.1: Top 1% Wealth Share in the USA

The most striking feature of this plot is the U-shaped pattern of top wealth shares. Wealth has
always been concentrated at the top, but top wealth shares actually declined from 1950-80. This was
part of much longer process that began during WWI, which has been discussed by Piketty (2014)
and others. Here we focus on the increase that began around 1980. From its minimum of 23% in
1978, the top 1% wealth share has increased steadily ever since. By 2012 it had roughly doubled, to
42%.

Who are these top 1%? In 2012, the top 1% consisted of the wealthiest 1.6 million families,
with a minimum wealth of about $4 million. Average wealth in this group is about $13.8 million. As
noted by Saez and Zucman (2016a), wealth has become even more concentrated than indicated by

7 Kopczuk (2015) discusses the pros and cons of the capitalization method. He notes that other estimation
methods (e.g., those based on estate taxes) show a much more gradual increase in inequality.
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the conventional focus on the top 1%. The top 0.1% now own 22% of US wealth, more than triple
its value in 1978. To belong to this exclusive club, one needs a minimum wealth of $20.6 million.
Although we focus on the top 1%, it should become clear below that our model would likely do even
better at accounting for the top 0.1%.

It is of course debatable whether an economy is ever in a stationary equilibrium, but our basic
modeling strategy here is to suppose that the US economy was in such a state around 1980. We
then ask whether an empirically plausible increase in (Knightian) uncertainty could have produced
the sort of rapid increase in inequality observed in Figure 2.1. To address this question we need a
model.

2.3 The Model
The basic model here is the workhorse continuous-time Blanchard-Yaari OLG model. Benhabib,
Bisin, and Zhu (2016) have recently studied the implications of this model for wealth inequality
in the absence of uncertainty (i.e., when agents fully trust their models of asset returns). The key
simplifying assumption, which makes the model so tractable, is that lifetimes are exponentially
distributed. This eliminates life-cycle effects. Unlike Benhabib, Bisin, and Zhu (2016), we ignore
bequests. Unintentional bequests are not an issue, because another key simplifying assumption of the
Blanchard-Yaari model is the existence of perfectly competitive annuity markets. This allows agents
to borrow and lend at a constant rate despite their mortality risk. Of course, ignoring bequests is
not innocuous when studying wealth inequality. Dynastic wealth accumulation undoubtedly plays a
role in observed wealth inequality. However, it is less clear whether the role of bequests has changed.
If anything, it has likely decreased (Saez and Zucman, 2016). Since we are primarily interested in
explaining the rapid rise in inequality, it seems safe to ignore bequests.

The economy is comprised of a measure 1 continuum of finitely-lived agents. Death occurs at
Poisson rate, δ. Hence, mean lifetimes are δ−1. When an agent dies he is replaced by a new agent
with wealth w0. This initial wealth can either be interpreted as the capitalized value of expected
(riskless) labor income or, following Benhabib, Bisin, and Zhu (2016), as transfers funded by capital
income taxes. In the latter case, rates of return should be interpreted as net of taxes. The important
point is that w0 is identical across all newborn agents.

Agents can invest in three assets: (1) A risk-free technology.8 The value of the risk-free asset
follows the deterministic process

dQ = r̃Qdt

(2) Annuities issued by competitive insurance companies, with rate of return r. By no arbitrage
and zero profits, r = r̃ + δ. Hence, agents devote all their risk-free investments to annuities. (3) A
private/idiosyncratic risky technology. Agents are assumed to share the following benchmark model
for the returns on risky capital

dS = µSdt+ σSdB (2.1)

where µ is the common mean return, and σ is the common idiosyncratic volatility. The noise, dB, is
an increment to a standard Brownian motion, and is assumed to be uncorrelated across individuals.

8This can be interpreted as a small open-economy assumption.
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Again, the key departure point of this paper is to suppose that agents have doubts about their
idiosyncratic investment opportunities. In other words, they confront ‘uncertainty’, not risk. By
assumption, these doubts cannot be captured by specifying a finite-dimensional Bayesian prior over
alternative models. Instead, agents fear a broad spectrum of nonparametric alternatives. These
alternatives might reflect omitted variables or complicated nonlinearities. As emphasized by Hansen
and Sargent (2008), we want agents to be prudent, not paranoid, so that they only hedge against
models that could have plausibly generated the historically observed data. To operationalize this,
let q0

t be the probability measure defined by the Brownian motion process in the benchmark model
(2.1), and let qt be some alternative probability measure, defined by some competing model. The
(discounted) relative entropy between qt and q0

t is then defined as follows:9

R(q) =
∫ ∞

0
e−ρt

[∫
log
(
dqt
dq0
t

)
dqt

]
dt (2.2)

Evidently, R(q) is just an expected log-likelihood ratio statistic, with expectations computed us-
ing the distorted probability measure. It can also be interpreted as the Kullback-Leibler ‘distance’
between qt and q0

t . From Girsanov’s Theorem we have∫
log
(
dqt
dq0
t

)
dqt = 1

2 Ẽ
∫ t

0
|hs|2ds

where Ẽ denotes expectations with respect to the distorted measure qt, and hs represents a square-
integrable process that is progressively measureable with respect to the filtration generated by qt.
Again from Girsanov’s Theorem, we can view qt as being induced by the following drift distorted
Brownian motion10

B̃(t) = B(t)−
∫ t

0
hsds

which then defines the following conveniently parameterized set of alternative models

dS = (µ+ σh)Sdt+ σSdB̃

Agents are assumed to have time-additive CRRA preferences. Each agent wants to construct
robust consumption and portfolio policies that perform adequately for all h’s that lie within some
convex set centered around the benchmark model in (2.1). To do this, agents enlist the services of
a hypothetical ‘evil agent’, who is imagined to select models that minimize their utility. That is,
agents view themselves as being engaged in the following dynamic zero-sum game:

V (w0) = max
c,α

min
h
E

∫ ∞
0

(
c1−γ

1− γ + 1
2εh

2
)
e−(ρ+δ)tdt (2.3)

subject to
dw = [(r + α(µ− r))w − c+ ασwh]dt+ αwσ · dB (2.4)

9See Hansen, Sargent, Turmuhambetova, and Williams (2006) for a detailed discussion of robust control
in continuous-time models, and in particular, on the role of discounting in the definition of relative entropy.

10There are some subtleties here arising from the possibility that B̃ and B generate different filtrations.
See Hansen, Sargent, Turmuhambetova, and Williams (2006) for details.
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The parameters have their usual interpretations: w is the agent’s wealth; c is his rate of consumption;
α is the share of wealth invested in the risky technology; γ is the coefficient of relative risk aversion,
and ρ is the rate of time preference. The key new parameter here is ε. It penalizes the evil agent’s
drift distortions. If ε is small, the evil agent pays a big cost when distorting the benchmark model.
In the limit, as ε→ 0, the evil agent sets h = 0, and agents no longer doubt their risky technologies.
Decision rules and the resulting equilibrium converge to those in Benhabib, Bisin, and Zhu (2016).
Conversely, as ε increases, agents exhibit a greater preference for robustness.

We can solve the robustness game using dynamic programming. Ito’s Lemma implies the Hamilton-
Jacobi-Bellman equation can be written

(ρ+ δ)V (w) = max
c,α

min
h

{
c1−γ

1− γ + 1
2εh

2 + [(r + α(µ− r))w − c+ ασwh]V ′(w) + 1
2α

2σ2w2V ′′(w)
}

(2.5)

The first-order conditions deliver the following policy functions in terms of the unknown value
funcion, V (w):

h = −εσαwV ′(w) (2.6)

α = − (µ− r)V ′(w)
[V ′′(w)− ε(V ′(w))2]wσ2 (2.7)

c = [V ′(w)]−1/γ (2.8)

Even before solving the model, these policy functions reveal a lot about the equilibrium. First,
notice that robustness takes the form of pessimism, i.e., by (2.6) the drift distortion h is negative
since α > 0 and V ′(w) > 0. Second, notice that the distortion increases with volatility (σαw). When
volatility increases, it becomes statistically more difficult to rule out alternative models. Third, notice
that it is not a priori obvious how the magnitude of the distortion depends on wealth. If V (w) is
concave, so that wealthier agents have a lower marginal utility of wealth, then (ceteris paribus)
weathier agents will be less pessimistic. Having money in the bank allows you to relax. However, the
volatility term offsets this. For a given portfolio share, α, wealthier agents have more at stake. This
makes them more worried, and triggers a greater preference for robustness and a more pessimistic
drift distortion.11 This volatility effect will be reinforced if the first effect leads wealthier agents to
invest a higher fraction of their wealth in the risky technology.12

Turning to the portfolio policy in (2.7), we can see that robustness in some sense makes the
investor more risk averse, in that it subtracts a positive term from V ′′(w). However, as noted by
Maenhout (2004), unless the utility function is quadratic (γ = −1) or logarithmic (γ = 1), the
resulting portfolio policy is nonhomothetic, and α will depend on w. Observe that the implicit
degree of risk aversion falls as w increases if V (w) is concave, so that V ′(w) decreases with wealth.
In the limit, as V ′(w) → 0, the preference for robustness completely dissipates, and the limiting

11To quote Janis Joplin (or actually, Kris Kristofferson): ‘Freedom’s just another word for nothing left to
lose’.

12Below we will show that this is the case if and only if γ > 1.
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portfolio is the same as when ε = 0. Notice that this portfolio is just the classic Merton portfolio

α0 = µ− r
γσ2 (2.9)

since one can readily verify that V (w) ∼ w1−γ in this case. Finally, notice that the consumption
function in (2.8) is the usual one. However, that does not mean uncertainty is irrelevant to saving
decisions, since in general V (w) will depend in complicated ways on the value of ε.

This analysis of the policy functions was premised on the properties of the unknown value
function, V (w). To verify and quantify these effects we must solve for V (w). To do so we first
substitute the policy functions in (2.6), (2.7), (2.8) into the HJB equation in (2.5), and then solve
the resulting second-order ODE. Unfortunately, the resulting equation is nonlinear, and does not
possess a known analytical solution. However, the fact that it does have a known analytical solution
when ε = 0 opens the door to a classical perturbation approximation. That is, we look for a solution
of the form13

V (w) = V0(w) + εV1(w) +O(ε2)

We know that V0(w) will just be the standard Merton solution, V0(w) = A0
w1−γ

1−γ , where A0 is a
complicated but well known function of the underlying parameters. The V1(w) function turns out to
satisfy a linear ODE with a nonhomogeneous forcing term given by V0(w). The results are given by

Proposition 2.3.1. A first-order pertubation approximation of the value function for the HJB
equation in (2.5) is given by

V (w) = A0
w1−γ

1− γ + εA1
w2(1−γ)

2(1− γ) +O(ε2) (2.10)

with

A0 =
[

1
γ

(
ρ+ δ − (1− γ)

(
r + (µ− r)2

2γσ2

))]−γ
A1 = 1

2

[
σ2(α0A0)2

r −A−1/γ
0 + 1

2γσ
2α2

0(1 + β)− (ρ+ δ)/β

]

where β = 2(1− γ) and α0 is given by the nonrobust portfolio share in equation (2.9).

Proof. See Online Appendix A.

This result immediately yields the following corollary, which characterizes the policy functions:

Corollary 2.3.2. First-order perturbation approximations of the optimal portfolio policy, α(w), and
saving rate, s(w) = 1− c(w)/w, are given by

α(w) = α0 − εα0

(
A2

0 + (γ − 1)A1

γA0

)
w1−γ (2.11)

s(w) = 1−A−1/γ
0 + ε

1
γ

(
A
−1/γ−1
0 A1

)
w1−γ (2.12)

13See Anderson, Hansen, and Sargent (2012) for a more sophisticated (and accurate) perturbation ap-
proximation to robust control problems.
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where α0 is the nonrobust portfolio policy in (2.9), and (A0, A1) are constants defined in Proposition
2.3.1.

Proof. See Online Appendix B.

Notice that there are two cases when these policy functions are homothetic (i.e., independent of
wealth). First, and most obviously, is when ε = 0. In this case, the agent has no doubts, and the
model degenerates to the standard case of risky investment, with no uncertainty. Second, when γ = 1
(i.e., preferences are logarithmic), the approximate decision rules become independent of wealth. In
this case, the saving rate assumes its usual Permanent Income value, s = 1 − (ρ + δ). Although
the portfolio policy is homothetic, uncertainty still matters, but its effect is isomorphic to enhanced
(constant) relative risk aversion. It simply scales down the Merton portfolio share, α = α0(1− εA0).

More generally, however, the portfolio share and saving rate depend on wealth. This dependence
is the key mechanism in our paper. Whether our model can quantitatively account for observed
wealth inequality dynamics depends on the quantitative properties of these functions for plausible
values of the parameters.

2.3.1 Comment on Units

A convenient implication of homotheticity is that model parameterizations become independent
of scale. Units do not matter. Here that is not the case, so we must be a careful when selecting
parameters. Notice that the key source of nonhomotheticity is the term εwV ′(w). (In principle, α
matters too, but its value is bounded between [0, 1]). This determines the order of magnitude of
the drift distortion. Later we discuss how detection error probabilities can be used to calibrate this
distortion. For now, just note that for a given empirically plausible drift distortion, the units of ε
become linked to those of w. For a given distortion, larger values of w can either increase or decrease
wV ′(w), depending on the value of γ. Whichever way it goes, ε must move inversely so as to maintain
the given drift distortion. Hence, the units of w are still irrelevant as long as we are careful to adjust
the magnitude of the penalty parameter appropriately. The only caveat is that our perturbation
approximation presumes a ‘small’ value of ε, so for given values of the remaining parameters, this
puts limits on the units of w.

2.3.2 Benchmark Parameterization

To illustrate the quantitative effects of model uncertainty on saving and portfolio choice the following
benchmark parameter values are used

TABLE 1
Benchmark Parameter Values

w0 µ r δ σ2 ρ γ ε

100 .0586 .044 .026 .0085 .021 1.31 .045
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These parameters are discussed in more detail in the following section. For now it is sufficient
to focus on γ, since it determines the nature of the saving and portfolio policies. Empirical evidence
yields a wide range of estimates, depending on data and model specifics. However, most estimates
suggest γ > 1. We set γ = 1.31. Figure 2.2 plots the resulting portfolio policy:
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Figure 2.2: Robust Portfolio Share

Later we shall see that it is more convenient when computing the cross-sectional wealth distri-
bution to work in terms of the natural log of wealth, so the horizontal axis plots log(w). Note that
log wealth at birth is log(w0) = log(100) ≈ 4.6. Hence, newborns invest about 65% of their wealth
in the risky technology. If they are lucky, and their wealth grows, so does their investment share in
the risky technology. If log wealth increases to 7, implying a ten-fold increase in the level of wealth,
the investment share reaches 100%.

Figure 2.2 reveals the key feedback mechanism in our model. Wealth begets wealth because
it leads agents to invest in higher yielding technologies.14 Notice, however, that inequality is not
only a result of wealthy agents investing more than average in higher yielding assets. The effect is
symmetric, in that bad luck and low wealth makes agents pessimistic, which leads them to hold
most of their wealth in the safe asset. The very poorest agents invest only about 30% in the risky
technology. Our model therefore provides a novel explanation for why poor households hold most,
if not all, of their wealth in safe low-yielding assets. It is also broadly consistent with the empirical
evidence in Carroll (2002), who examines portfolio data from the Survey of Consumer Finances for
the period 1962-95. He finds that the top 1% hold about 80% of their wealth in risky assets, while
the bottom 99% hold (on average) about 40%. (See his Table 4).

The other force driving inequality is saving. Empirical evidence suggests wealthy households have
higher saving rates (Saez and Zucman, 2016). Wealth increasing saving rates also produce deviations

14From eq. (2.11) and the expressions for (A0, A1) in Proposition 3.1, we can see that A0 > 0 whenever
γ > 1. Hence, a sufficient condition for α′(w) > 0 is that A1 > 0. A necessary and sufficient condition for
A1 > 0 is that γ−1[r − (ρ + δ)] + 1

2
ρ+δ
γ−1 + 1

2σ
2α2

0[3(1 − γ) + 1] > 0. A sufficient condition for this is that
γ < 1.33. Alternatively, if γ > 1.33, then the condition will be satisfied if r ≥ ρ + δ and σ2 is sufficiently
small.
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from Gibrat’s Law, which amplifies inequality. Figure 2.3 plots individual saving rates as a function
of log wealth:
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Figure 2.3: Robust Saving Rate

Evidently, the model’s predictions along this dimension are counterfactual. Saez and Zucman
(2016a) report ‘synthetic’ saving rate estimates that increase with wealth. Dynan, Skinner, and
Zeldes (2004) also find increasing saving rates in a variety of US data sets. Note that a saving
rate that decreases with wealth actually reduces inequality, since poorer households save a larger
fraction of their wealth. What’s happening here is that, for a given portfolio allocation, wealthy
agents are less pessimistic and expect higher mean returns. Because the intertemporal elasticity
of substitution (1/γ) is less than one, higher expected returns reduce the savings rate, since the
income effect dominates the substitution effect. This suggests that we could avoid this problem by
employing recursive preferences, which delivers a separation between risk aversion and intertemporal
substitution. Online Appendix C outlines such an extension using a Duffie-Epstein (1992) aggregator
with an intertemporal elasticity of substitution of one. It shows that for very similar parameter values
to those in Table 1, saving rates actually increase with wealth.15

Together, Figures 2 and 3 suggest that whether uncertainty amplifies inequality depends on the
relative strength of the portfolio effect versus the saving effect. In the following section we shall see
that, at least for these parameter values, the portfolio effect dominates, and uncertainty amplifies
inequality. This result is perhaps not too surprising if you look closely at Figures 2 and 3. Notice
that the decline in saving is very mild. The poorest households save only a few tenths of a percent
more than the wealthiest. In contrast, the portfolio allocation effect is quite strong.

The mechanism driving these portfolio and saving dynamics is a pessimistic drift distortion.
Earlier it was noted that it is not at all clear whether wealthy agents are more or less pessimistic
in equilibrium. On the one hand, wealth provides financial security, so wealthy agents can afford to
be less robust. This effect operates via the decline in V ′(w) in the evil agent’s policy function. On

15 Borovicka (2016) makes a similar point. He notes that long-run survival in models featuring hetero-
geneous beliefs depends on a delicate interplay between risk aversion, which governs portfolio choice, and
intertemporal substitution, which governs saving.
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the other hand, greater financial security enables you to take on more risk. As a result, wealthier
agents have more to lose from model misspecification. This effect operates via the scaling term, αw,
in the evil agent’s policy function. The following result shows that for small values of ε the first
effect dominates if γ > 1.

Corollary 2.3.3. To a first-order approximation, the equilibrium distortion function, h(w), is in-
creasing if and only if γ > 1.

Proof. Note that the portfolio effect on h(w) is 2nd-order in ε. To a first-order approximation we
can set α = α0. Therefore, we have (ignoring inessential constants)

h(w) ∼ −εwV ′(w)

Again, to a first-order approximation, we can ignore the εV1(w) component of V (w). Hence,

h(w) ∼ −εwV ′0(w) = −εA0w
1−γ =⇒ h′(w) ∼ −ε(1− γ)w−γ

To interpret the h(w) function it is convenient to map it into an implied drift distortion. Notice
that if h(w) is substituted into the HJB equation in (2.5) the agent’s problem becomes equivalent
to the standard one, but with an endogenous, wealth-dependent, drift equal to µ + σh(w). Figure
2.4 plots this implied drift distortion using the benchmark parameter values given in Table 1:
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Figure 2.4: Drift Distortion

Perhaps not surprisingly, the drift distortion mirrors the portfolio policy depicted in Figure 2.2.
Agents begin life with a small degree of pessimism, equivalent to about a 60 basis point negative drift
distortion. However, if they are unlucky, and they move into the left tail of the wealth distribution,
their pessimism grows to more than a 1.0 percentage point negative drift distortion. As seen in Figure
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2.2, this is enough to nearly keep them out of the market. Hence, robustness generates something
like a ‘poverty trap’, in that pessimism and low wealth become self-fulfilling.16

2.3.3 Comment on Preferences vs. Environment

Before turning to the aggregate implications of the model, we briefly comment on an identification
issue. As noted by Hansen, Sargent, Turmuhambetova, and Williams (2006), from a mathematical
perspective continuous-time robust control is just a special (nonhomothetic) case of Duffie and
Epstein’s (1992) Stochastic Differential Utility (SDU) preferences. For a constant value of ε, the two
are observationally equivalent. Following Hansen and Sargent (2008), we prefer the robust control
interpretation because it views ε as an aspect of the environment, which is subject to change. It is
changes in the distribution of wealth we are attempting to explain. In contrast, SDU views ε as an
attribute of preferences, and for the usual reasons, we prefer to think of preferences as being time
invariant.

2.4 Stationary Distributions
This analysis thus far has focused on the problem and decision rules of a single agent. Our primary
interest, however, is on wealth inequality. To address this we must aggregate the individual wealth
dynamics and compute the cross-sectional distribution of wealth. The first step is to substitute the
optimal policy functions into the individual’s budget constraint in equation (2.4). When doing this
it is important to observe that, as in Hansen and Sargent (2008), fears of model misspecification are
solely in the mind of the agent. The agent’s benchmark model is the true data-generating process,
the agent just doesn’t know it. Uncertainty still matters, however, because it influences behavior.

It turns out to be mathematically convenient to work in terms of log wealth, x = log(w). Using
Ito’s Lemma to translate from w to x gives us:

Proposition 2.4.1. To a first-order approximation in ε, individual log wealth follows the diffusion
process

dx = (a0 + εa1e
(1−γ)x)dt+ (b0 + εb1e

(1−γ)x)dB (2.13)

with

a0 = r −A−1/γ
0 + γσ2α2

0 −
1
2b

2
0

a1 = γA1A
−1/γ
0 − (σγα0)2(A2

0 + (γ − 1)A1)
A0γ2 − b0b1

b0 = σα0

b1 = −σγα0

[
A2

0 + (γ − 1)A1

A0γ2

]
where (A0, A1) are constants defined in Proposition 2.3.1 and α0 is the nonrobust portfolio share
defined in equation (2.9).

16Note that if the aggregate economy exhibited growth, represented here as a steadily rising w0, then for
a given ε pessimism would disappear from the economy, and so would the robustness-induced poverty trap.
Hence, our model is more suited to explain the temporary effects of change in ε.
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Proof. See Online Appendix D.

Notice that the drift and diffusion coefficients are constant when either ε = 0 or γ = 1. Also
notice that the exponential terms in the coefficients damp to zero as wealth grows when γ > 1.
However, when (a1, b1) < 0 this diminishing effect implies that the mean growth rate and volatility
of wealth are increasing in the level of wealth.

Next, let f(t, x) be the time-t cross-sectional distribution of wealth. It obeys the following
Kolmogorov-Fokker-Planck (KFP) equation:

∂f

∂t
= −∂[(a0 + εa1e

(1−γ)x)f ]
∂x

+ 1
2
∂2[(b0 + εb1e

(1−γ)x)2f ]
∂x2 − δf + δζ0 (2.14)

where ζ0 is a Dirac delta function at x0 = log(w0). This is a linear PDE, which can be solved using
(two-sided) Laplace transforms.

L{f(x)} ≡ F (t, s) ≡
∫ ∞
−∞

f(t, x)e−sxdx

Applying the Laplace transform to equation (2.14) and dropping O(ε2) terms yields the following
approximation of the cross-sectional wealth dynamics:17

∂F

∂t
= Λ(s)F (t, s) + εΦ(s− β)F (t, s− β) + δe−sx0 (2.15)

where β ≡ 1− γ and

Λ(s) = 1
2b

2
0s

2 − a0s− δ (2.16)

Φ(s) = b0b1s
2 + (2b0b1β − a1)s+ β(b0b1β − a1) (2.17)

The Λ(s) and Φ(s) functions pick-up the derivatives of the KFP equation, since L{f ′(x)} = sF (s)
and L{f ′′(x)} = s2F (s). The fact that derivatives are converted to a simple multiplication is what
makes Laplace transforms so useful. This method is less commonly applied to problems with variable
coefficients, as is the case here, since the Laplace transform of the product of two functions is not
the product of their Laplace transforms.18 However, the particular form of variable coefficients
here, which involves multiplication by an exponential function, is one case that works out nicely. In
particular, the so-called ‘shift theorem’ implies L{eβxf(x)} = F (s − β). This result follows rather
obviously from the defintion of a Laplace transform after a simple change of variables.

The F (t, s − β) term on the right-hand side of (2.15) makes the KFP equation nonstandard.
Later we shall obtain an approximate solution by approximating the discrete shift with a derivative.
For now, notice that in the nonrobust case, when ε = 0, the problem becomes entirely standard, and
we get:

17Remember, as with moment-generating functions, which the Laplace transform generalizes, all the
information about the cross-sectional distribution is contained in the transform.

18Instead, the Laplace transform of the convolution of two functions is the product of their Laplace
transforms.
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Proposition 2.4.2. The nonrobust stationary distribution of log wealth is double exponential, with
a mode at x0 = log(w0),

f(x) = c1h(x0 − x)eφ1x + c2h(x− x0)eφ2x (2.18)

where h(·) is the Heaviside (unit-step) function, and (c1, c2) are constants of integration chosen to
ensure continuity at the switch point, x0, and satisfaction of the adding-up constraint

∫∞
−∞ f(x) = 1.

The exponents (φ1, φ2) are the positive and negative roots, respectively, of the quadratic Λ(s) = 0,
where Λ(s) is given by equation (2.16).

Proof. Since this result is standard, we merely sketch a proof. First, the Laplace transform of the
stationary distribution can be obtained by setting ∂F/∂t = 0 in equation (2.15), and then solving
the resulting algebraic equation for F (s). When ε = 0, this just gives F (s) = −δe−sx0/Λ(s). Next, we
invert F (s) to get f(x). This can either be accomplished by expanding Λ(s)−1 into partial fractions,
and using the result that L−1{(s − φ)−1} = eφx, or by using contour integration and the residue
calculus, noting that the singularity in the left-half plane corresponds to x > 0, while the singularity
in the right-half plane corresponds to x < 0.

In applications one is really more interested in the distribution of the level of wealth. However,
this distribution follows immediately from the previous result:

Corollary 2.4.3. In the nonrobust (ε = 0) case, the stationary distribution of wealth is double
Pareto

f(w) = c1h(w0 − w)wφ1−1 + c2h(w − w0)wφ2−1 (2.19)

Proof. The Jacobian of the transformation from x to w is w−1.

The fact that the conventional (nonrobust) distribution of wealth is Pareto is no accident. This is
a well documented feature of the data, and the main attraction of constant parameter idiosyncratic
investment risk models is that they quite naturally generate a steady-state Pareto distribution.19

The key parameter here is φ2,

φ2 = a0 −
√
a2

0 + 2δb20
b20

< 0

As |φ2| decreases, top wealth shares increase. Although values of φ2 ∈ [−1, 0) generate a stationary
distribution, mean wealth becomes infinite if |φ2| ≤ 1, so we restrict parameters to satisfy the con-
straint |φ2| > 1. The comparative statics of this parameter are intuitive. For example, |φ2| decreases
as δ decreases. When people live longer, saving and portfolio decisions become more important, and
there is more time to accumulate wealth. |φ2| also decreases when σ2 increases, since luck plays a
role in generating inequality.

19 Reed (2001) appears to have been the first to note that the combination of exponentially distributed
lifetimes and idiosyncratic investment returns following geometric Brownian motions generates a double
Pareto wealth distribution. Toda (2014) shows that this result is robust to a number of extensions, e.g.,
aggregate shocks, recursive preferences, endogenously determined interest rates, and heterogeneous initial
wealth. However, he assumes homotheticity and wealth independent portfolio shares.
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The basic strategy for computing the robust stationary distribution is the same as above, but
now the equation characterizing this distribution is the more complicated functional equation

Λ(s)F (s) + εΦ(s− β)F (s− β) + δ = 0 (2.20)

Although a perturbation approximation with respect to ε seems natural, the distribution changes
quite quickly, even for ε ≈ 0, making a first-order approximation unreliable. This will become
apparent later. So instead we approximate (2.20) by converting it to an ODE in s, using β as a
step-size. This presumes β is ‘small’, so that γ ≈ 1. Solving this ODE yields the following result,

Proposition 2.4.4. To a first-order approximation in β, the robust stationary distribution of log
wealth is double exponential, with a mode at x0 = log(w0),

fr(x) = c1rh(x0 − x)eψ1x + c2rh(x− x0)eψ2x (2.21)

where h(·) is the Heaviside (unit-step) function, and (c1r, c2r) are constants of integration chosen to
ensure continuity at the switch point, x0, and satisfaction of the adding-up constraint

∫∞
−∞ f(x) = 1.

The exponents (ψ1, ψ2) are the positive and negative roots, respectively, of the quadratic

ε+ Λ(s) + βΦ′(s− β) = 0

where Φ′(s− β) is the derivative of the Φ(s) function in (2.17) evaluated at (s− β).

Proof. See Online Appendix E.

Hence, the question of how uncertainty influences wealth inequality has been distilled into the
question of how ψ2 compares to φ2. If |ψ2| < |φ2|, then uncertainty leads to greater inequality. In
general, there are two competing forces. On the one hand, doubts create pessimism, which discourages
investment, which in turn reduces the mean growth rate of wealth for everyone. Lower mean growth
reduces inequality. On the other hand, since pessimism depends on the level of of wealth, this creates
heterogeneity in the growth rate of wealth (or ‘scale dependence’ in the language of Gabaix, Lasry,
Lions, and Moll (2016)), and this heterogeneity increases inequality. It turns out that for reasonable
parameter values the heterogeneity effect dominates.

Although it is not obvious from the statement of Proposition 2.4.4, one can also show that the
robust stationary distribution satisfies the following correspondence principle,

Corollary 2.4.5. As ε → 0, the robust stationary distribution in eq. (2.21) converges pointwise to
the nonrobust stationary distribution in eq. (2.18).

Proof. See Online Appendix F.

2.4.1 Top Wealth Shares

It should be emphasized that Propositions 2.4.2 and 2.4.4 characterize the entire cross-sectional
distribution of wealth. They could be used to compute Gini coefficients, Theil/entropy indices, or
any other inequality measure of interest. However, in line with recent debate, we focus here on top
wealth shares, in particular, on the top 1% wealth share. Given the stationary distribution f∞(w),

33



this is defined as follows
top 1% share =

∫∞
ŵ
wf∞(w)dw∫∞

0 wf∞(w)dw

where ŵ solves
∫ ŵ

0 f∞(w)dw = .99. With a double Pareto distribution, these integrals can be com-
puted analytically. This yields,

Lemma 2.4.6. Given a double Pareto distribution as in eq. (2.19), the top 1% wealth share is given
by

top 1% share =
c2
ŵ1+φ2

1+φ2

c2
w

1+φ2
0

1+φ2
− c1

w
1+φ1
0

1+φ1

(2.22)

where ŵ = w0 [1 + φ2(.99/c̄− 1/φ1)]1/φ2 and c̄ = φ1φ2/(φ2 − φ1).

Standard (one-sided) Pareto distributions have a well known fractal nature, meaning that any
given wealth share is a scalar multiple of any other. For example, if one ignores the left-half of the
above distribution, the top 0.1% share would simply be 10−φ−1

2 −1 as large as the top 1% share, while
the top 10% share would be

( 1
10
)−φ−1

2 −1 larger. Evidently, wealth shares implied by double Pareto
distributions bear a (slightly) more complicated relationship to each other.

2.4.2 Benchmark Parameterization

Here we plot and compare the stationary distributions for two economies. In the first, agents only
confront idiosyncratic risk, meaning ε = 0. This distribution is assumed to describe the US economy
in 1980. In the second, agents confront idiosyncratic ‘uncertainty’, meaning ε is set to a small positive
value. This is the distribution toward which the US economy has been gravitating. All the remaining
parameters are set to the benchmark values displayed in Table 1.

As discussed earlier, initial wealth, w0, is arbitrary, as long as we are careful to adjust ε to
maintain a ‘reasonable’ drift distortion. (Later we discuss how we define reasonable, but Figure 2.4
shows that it is only around 1%, even for the poorest agents). We simply normalize initial wealth
to w0 = 100. Moskowitz and Vissing-Jorgensen (2002) provide evidence from the 1989 SCF on the
distribution of private equity returns, and report a value of 6.9% for the median return, so we set
µ = 5.86%, to be conservative. The more important parameters are δ, σ2, and γ. It is natural to
calibrate δ to the mean work life, keeping in mind that this has been changing over time and that
the model abstracts from important life-cycle effects. We simply set δ = 0.026, which implies a mean
work life of about 38 years.20 Calibrating σ2 is more difficult. The model is based on idiosyncratic
investment risk, so using values from the stock market would be misleading. Benhabib and Bisin
(2017) cite evidence on the returns to owner-occupied housing and private equity which suggest
a standard deviation in the range of 10-20%, so to be conservative we set σ = 9.2%. Finally, the
basic mechanism in our paper hinges on people becoming less pessimistic as they become wealthier.

20It should be noted that setting δ = .026 implies an implausibly large number of very old agents. For
example, 7.4% of our agents are over 100 years old. Even worse, 0.55% are over 200! The natural way to
avoid this counterfactual prediction is to introduce age-dependent death probabilities. Unfortunately, this
would make the model much less tractable analytically. An alternative strategy would be to increase δ to
reduce (though not eliminate) the number of Methuselahs, and then to offset the effects of this on inequality
by incorporating bequests.
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For this we need γ > 1. Fortunately, this is consistent with a wide range of evidence. However,
there is less agreement on the magnitude of γ. Asset market data imply large values. However, as
noted by Barillas, Hansen, and Sargent (2009), these large values are based on models that abstract
from model uncertainty. They show that a modest amount of uncertainty can substitute for extreme
degrees of risk aversion, and their argument applies here as well. In addition, our approximate
solution strategy presumes that 1− γ is small, so we set γ = 1.31.

Figure 2.5 displays the two distributions, using the results in Propositions 2.4.2 and 2.4.4,
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Figure 2.5: Stationary Distributions

The main thing to notice is that the robust distribution has a fatter right tail, reflecting greater
wealth inequality. The nonrobust distribution has a right-tail exponent of φ2 = −1.45, whereas the
robust distribution has a right-tail exponent of ψ2 = −1.28. Using Lemma 2.4.6 we find that the
top 1% share in the nonrobust economy is 24.3%, roughly equal to the actual value in 1980 depicted
in Figure 2.1. In contrast, the top 1% share in the robust economy is 36.9%, which represents a
significant increase, but is still 5 percentage points lower than the data. We could of course increase
robust inequality to more closely match recent data simply by increasing ε. We argue later that higher
values of ε would still be plausible in terms of drift distortions and detection error probabilities.
However, higher values of ε start to produce implausible portfolio policies. We should also note that
the robust distribution comes somewhat closer to matching the growth in inequality in the extreme
right-tail which, according to Saez and Zucman (2016a), is where most of the action has been. They
find that the share of the top 0.1% increased from 7% in 1978 to 22% in 2012. Our model generates
an increase from 11.9% to 22.3%.

It is easier to visualize the extreme right tail using a log-log scale, as depicted in Figure 2.6.
Since the distribution of log wealth is exponential, these are simply linear.

These plots extend to the top 0.1% in the nonrobust case (i.e., e−7 ≈ .001), and to the top 0.2%
in the robust case (i.e., e−6 ≈ .002). Since median wealth is about 111 in the nonrobust case, and
about 123 in the robust case, these plots suggest that the threshold top 0.2% individual is about 66
times wealthier than the median (i.e., e9 = 8, 103 ≈ 66× 123). For comparison, Saez and Zucman’s
(2016) data show that the threshold 0.1% individual is more than 400 times wealthier than the
median, whose wealth is about $50,000 (i.e., 20.6mill/50, 000 = 412). Although a 0.2% threshold
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Figure 2.6: Stationary Distributions: Log/Log Scale

would produce a smaller number, it seems safe to conclude that the model does not fully capture
the extreme wealth levels that occur in the extreme right tail of the US wealth distribution. This is
not too surprising given that the model abstracts from labor income inequality and bequests.

Finally, it should also be observed that while the model sheds light on the right tail of the wealth
distribution, it does less well on the left tail. Actual wealth distributions are strongly skewed to the
right, with a mode that is significantly smaller than the median. In contrast, the above distributions
are nearly symmetric. For example, in the robust case the median is only 23% larger than the mode.
Again, this is not too surprising, since the model abstracts from borrowing constraints and other
frictions that bind at low wealth levels. Still, it is noteworthy that the robust distribution is more
skewed than the nonrobust distribution.

2.5 Transition Dynamics
As emphasized by Gabaix, Lasry, Lions, and Moll (2016) (GLLM), rising inequality is not really
a puzzle. A number of possible mechanisms have been identified, for example, taxes, technology,
globalization, and so on. Each of these can be interpreted as altering one or more of the parameters of
a standard random growth model, in way that generates empirically plausible increases in inequality.
However, GLLM show that if you just perturb the parameters of a standard random growth model,
transition rates are far too slow. This is especially true in the tails of the distribution, which converge
at a slower rate. Hence, the real puzzle is why inequality has increased so rapidly.

GLLM argue that the key to resolving this puzzle is to consider deviations from Gibrat’s Law,
which produce heterogeneity in mean growth rates or volatility. They outline two possibilities. The
first features ‘type dependence’, in which there are both high growth types and low growth types, with
individuals experiencing (exogenous) stochastic switches between types. Although type dependence
seems like a plausible way to introduce heterogeneity into labor income dynamics, it seems less
persuasive as a description of heterogeneity in wealth dynamics. The second model they outline
features ‘scale dependence’, in which growth rates depend on the level of wealth or income. This
seems better suited to wealth dynamics. They show that scale dependence can be captured by simply
adding an aggregate multiplicative shock to the Brownian motion describing individual log income
or wealth. Interestingly, they show that scale dependence modeled in this way produces an infinitely
fast transition, since it produces an immediate jump in the Pareto exponent.
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Although increased uncertainty (as opposed to increased risk) provides an interesting and plau-
sible explanation of the rise in steady state inequality, its real advantage is to generate more rapid
transition rates. It does this by producing a form of scale dependence. In our model, wealth de-
pendent pessimism generates wealth dependent portfolio policies, which in turn generates wealth
dependent growth rates. This form of scale dependence is more complicated than the simple multi-
plicative aggregate shock considered in GLLM, and so we do not obtain their simple and dramatic
increase in transition rates. Nevertheless, we now show that the scale dependence produced by non-
homothetic portfolio policies generates transition rates that are much closer to the data than those
of traditional random growth models.

To characterize the transition rate the differential equation in (2.15) must be solved. Although
this describes the evolution of the Laplace transform, remember the Laplace transform embodies
all the information in the distribution itself. In fact, it does so in an especially revealing way. In
particular, the convergence rate of F (s) at a particular value of (−s) provides the convergence rate of
the (−s)th moment of f(x).21 Without uncertainty (ε = 0), the solution of (2.15) is straightforward,
and is the same as in GLLM

F (s, t) =
[
F 0
∞(s)− F 1

∞(s)
]
eΛ(s)t + F 1

∞(s)

where F 0
∞(s) is the Laplace transform of the initial stationary distribution and F 1

∞(s) is the Laplace
transform of the new stationary distribution. Our model assumes the only parameter that changes
is ε, so here some other parameter would have to change so that F 0

∞(s) 6= F 1
∞(s). The convergence

rate of the (−s)th moment is just Λ(s). Since our parameter values are similar to those in GLLM,
it is no surprise we get similar results when ε = 0. For example, the rate of convergence of mean
wealth is

Λ(−1) = −.0114

implying a half-life of 60 years! Convergence in the tails is even slower.22

Unfortunately, solution of equation (2.15) when ε 6= 0 is more complicated. The exponential
functions in the drift and diffusion coefficients of (2.13) produce a discrete shift in the Laplace
transform, so that both F (s, t) and F (s − β, t) appear on the right-hand side of the differential
equation. While a first-order perturbation approximation of the stationary distribution is defensi-
ble, a first-order perturbation approximation of F (s, t) along the entire convergence path is more
problematic, given the discrete shift, which essentially creates a ‘singular perturbation’ problem.

Our strategy for solving (2.15) is to approximate the discrete shift with a differential equation.
This yields,

∂F

∂t
= Λ(s)F (t, s) + εΦ(s− β)

[
F (t, s)− β ∂F

∂s

]
+ δe−sx0 (2.23)

21The minus sign derives from the fact that we defined the Laplace transform as
∫∞
−∞ f(x)e−sxdx, while

a moment-generating function is defined as
∫∞
−∞ f(x)esxdx.

22Unless |φ2| > 2, the variance does not exist. For the benchmark parameter values the largest moment
that exists is about 1.5.
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where β ≡ 1− γ. Note this is a partial differential equation. However, it is amenable to a standard
separation of variables approach. In particular, we posit a solution of the form,

F (s, t) = H(t)G(s) + F∞(s)

and obtain separate ODEs for H(t) and F∞(s). Solving the ODE for F∞(s) produces the station-
ary distribution, characterized in Propostion 2.4.4. Solving the ODE for H(t) then gives us the
convergence rate. The G(s) function is determined by boundary conditions, and it turns out to be
G(s) = F 0

∞(s)− F 1
∞(s), where F 0

∞(s) is the Laplace transform of the initial stationary distribution
(given in Propostion 2.4.2), and F 1

∞(s) is the Laplace transform of the new stationary distribution
(given in Proposition 2.4.4). We relegate the details to the Appendix, and merely state the following
result

Proposition 2.5.1. Let F̃ (t, s) ≡ H(t)G(s) be the solution of the homogeneous part of the PDE in
(2.23), which describes the dynamics of the cross-sectional distribution of wealth. Then to a first-
order approximation in β, F̃ (t, s) is given by

F̃ (t, s) = F̃ (0, s)e[Λ(s)+εΦ(s−β)]t (2.24)

where F̃ (0, s) = F 0
∞(s)− F 1

∞(s).

Proof. See Online Appendix G.

The convergence rate is determined by the function Λ(s) + εΦ(s − β). Naturally, when ε = 0,
the convergence rate is the same as in the nonrobust case. Note that the convergence rate depends
on s, implying that different moments converge at different rates. Figure 2.7 plots this function. It
extends from s = 0 to s = −1.3. Since the robust Pareto exponent is 1.28, the largest moment that
exists for both distributions is 1.28.
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Figure 2.7: Convergence Rates

The top line plots Λ(s), the nonrobust convergence rate. As in GLLM, convergence is slower in the
tails. At the mean (s = −1), the convergence rate is 1.14%. Slower tail convergence reflects the fact
that parametric disturbances move along the distribution like a ‘traveling wave’, first hitting young
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individuals with low wealth, then spreading to older, more wealthy individuals. With exponentially
distributed lifetimes, most individuals are young, and possess little wealth.

The bottom line plots the robust convergence rate. Note that convergence is faster in the tails.
Higher-order moments convergence faster due to scale dependence. When γ > 1 and (a1, b1) < 0,
the drift and diffusion coefficients of wealth increase with the level of wealth. This produces faster
convergence in the tails. Now convergence at the mean takes place at a rate of 3.85%, more than
three times faster than in the nonrobust case.

As emphasized by GLLM, standard random growth models obeying Gibrat’s Law converge far
too slowly to explain the recent rise in inequality. At a 1.14% convergence rate it would take more
than 100 years to approach reasonably close to a new stationary distribution, so unless we are
moving to an economy with far more inequality than already exists, random growth by itself seems
inadequate. We claim that increased uncertainty and the resulting scale dependent growth dynamics
provides a plausible explanation not only for the increase itself, but more importantly, for its rapid
pace. A 3.85% convergence rate implies that it would take only 60 years to move 90% of the way to
a new stationary distribution. Without uncertainty, this same transition would require more than
200 years. The strength of our argument increases the farther out in the tails we go.

Finally, one should remember that robustness induced amplification and acceleration occurs
despite the fact that with additive preferences a counterfactually declining saving rate acts as a
stabilizing force. As noted earlier in Section 2.3, and discussed in more detail in Online Appendix
C, we can avoid this by using recursive preferences. Online Appendix H presents plots comparing
stationary distributions and convergence rates when preferences are assumed to be recursive, as in
Duffie and Epstein (1992). It shows that recursive preferences reinforce the paper’s main findings
concerning steady state inequality and convergence rates.

2.5.1 Numerical Solution

Analytical solutions are attractive because they reveal the underlying mechanisms at work. Still, it
is important to keep in mind that all the previous results are just approximations. These approxi-
mations can be avoided by solving the model numerically. In principle, even the agent’s optimization
problem could be solved numerically, but here we focus on the accuracy of our key result, related to
convergence rates. Proposition 5.1 is based on approximating a shifted Laplace transform with a dif-
ferential equation, and it is not entirely clear how good this approximation is. So here we numerically
solve an O(ε) approximation of the KFP equation in (2.14) using a standard discretization algo-
rithm, based on central-difference approximations of the derivatives.23 Even this O(ε) approximation
is nonstandard, due to the dependence of the drift and diffusion coefficients on x.

The parameters are the same as those in Table 1. The algorithm is initialized at the known
stationary distribution when ε = 0. The boundary conditions are f(∞) = f(−∞) = 0, approximated
using large positive and negative values of x. Figure ?? depicts the evolution of the top 1% wealth
share for the 32 year period from 1981 to 2012, along with the actual Saez-Zucman (2016) data. The
dotted line near the top is the share implied by the robust stationary distribution when ε = .045.
For comparison, we also plot the paths generated by recursive preferences and a standard random
growth model.

23Our matlab code is available upon request.
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Figure 2.8: Actual vs Predicted Top Wealth Shares: Numerical Solution

The path of the benchmark time-additive model lies in the middle, showing an increase in
in the top 1% share from about 24% to 30%. Although significant, this clearly understates the
observed increase. Part of the apparent discrepancy simply reflects the fact that the new stationary
distribution understates long-run inequality by about 5 percentage points. As noted earlier, although
we could increase steady state inequality by increasing ε, this would produce counterfactual portfolio
policies. However, the path discrepancy reflects more than a discrepancy in steady states. The
convergence rate appears to be too slow as well, both in terms of the data and the model’s prediction.
Proposition 5.1 suggests the top 1% share should be converging at a rate of at least 3.85%, since that
is the predicted mean convergence rate, and our model predicts the tails should converge faster than
the mean. In contrast, Figure ?? suggests the top 1% share is converging at about a 1.9% (average)
rate. Hence, we are off by at least a factor of 2. This suggests that γ − 1 = .31 might be too large
for the ODE to accurately approximate the shifted Laplace transform.

Given the discrepancy in the benchmark model, it is useful to examine the convergence properties
of the model with recursive preferences. As discussed in the Appendix, our analytical approximations
suggest that recursive preferences should generate faster convergence, since an increasing savings
rate now reinforces the portfolio channel. The top (green) line in Figure ?? depicts the numerical
convergence path using recursive preferences. As predicted, it converges more rapidly, reaching a top
1% share of about 33% by 2012. Hence, with recursive preferences we can account for about half of
the observed 18 pecentage point increase in the top 1% share.

Although these numerical results might seem disappointing, remember that traditional random
growth models do even worse. Following GLLM, suppose we instead attribute increased inequality
to increased risk, as opposed to increased uncertainty. In doing this, we must be careful to shut down
the portfolio channel, since in our model increased risk reduces investment in the higher yielding
asset. Ceteris paribus, this reduces inequality. So in an effort to stay as close as possible to GLLM,
we simply fix α = 1, and assume the equity premium is 1%. Initial volatility is calibrated to match
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the 1981 top 1% wealth share (of about 24%). This yields an initial standard deviation of 12.2%.
We then assume σ increases so as to match the uncertainty model’s steady state share of about
37%. This implies a standard deviation of 13.4%. We then numerically calculate the transition path
to the new long run steady state. The bottom dotted line displays the results. As discovered by
GLLM, the risk model generates a very slow transition. The top 1% share increases by only a few
percentage points over the entire 32 year period. Again, it does worse because it lacks any sort of
feedback induced scale effects.

Finally, as noted in Section 2, there are reasons to believe the Saez-Zucman data overstate the
actual increase in top wealth shares. If this is indeed the case, then our results might be much closer
than they appear. For example, a 9 percentage point increase in the top 1% share would more than
fully account for the increase registered by SCF or estate tax data.

2.6 Detection Error Probabilities
This paper has claimed that increased Knightian uncertainty provides a plausible explanation for
the timing, magnitude, and rate of increase of US wealth inequality. Here the basis of this assertion
is examined. The key mechanism in our model is wealth dependent pessimism, which produces
wealth dependent portfolio allocations. Pessimism is formalized using a max-min objective function,
in which agents optimize against an endogenous worst-case scenario. A criticism of this approach is
to ask why agents should expect the worst. Following Hansen and Sargent (2008), this critique is
answered by constraining the set of alternative models the agent considers. In particular, we suppose
agents only hedge against models that could have plausibly generated the observed data.

Plausiblity is quantified using ‘detection error probabilities’. The idea is to think of agents as
statisticians who attempt to discriminate among models using likelihood ratio statistics. When
likelihood ratio statistics are large, detection error probabilities are small, and models are easy to
distinguish. Detection error probabilities will be small when models are very different, or when there
is a lot of data. Classical statistical inference is based on adopting a null hypothesis, and fixing
the probability of falsely rejecting this hypothesis. Detection error probabilities treat the null and
alternative symmetrically, and average between Type I and Type II errors. In particular,

DEP = 1
2Prob(HA|H0) + 1

2Prob(H0|HA)

Hence, a DEP is analogous to a p-value. Our results would therefore be implausible if the DEP is
too small. Small DEPs imply agents are hedging against models that could easily be rejected based
on observed data.

Models in our economy are continuous-time stochastic processes. Likelihood ratio statistics are
integrals of the conditional relative entropies between models, and as discussed previously, these
entropies are determined by the evil agent’s policy function, h(x), where x is the logarithm of
wealth. In particular, Anderson, Hansen, and Sargent (2003) provide the following bound

avg DEP ≤ 1
2E exp

{
−1

8

∫ T

0
h2(x)dx

}

where T is the sample length. This bound is difficult to evaluate since x is stochastic. As a result,
we compute the following (state-dependent) approximation, avg DEP (x) ≤ 1

2 exp
{
− 1

8Th
2(x)

}
.
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By fixing x, this overstates the bound at values of x where h(x) is small, while understating it at
values of x where h(x) is large. Figure 2.9 plots this approximation using the benchmark parameter
values and assuming T = 200.
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Figure 2.9: Detection Error Probability Bound

Notice the DEP bound is nonmonotonic. This reflects the nonmonotonicity of h(x), which itself
reflects the endogeneous nature of pessimism in the model. The agents who are least pessimistic in
equilibrium are the very poor, because they choose to avoid the risky technology, and the very rich,
because they have a low marginal utility of wealth. Agents in the middle have the most to worry
about. When interpreting this plot one should keep in mind that a fixed T might not be appropriate
given the model’s OLG structure. In particular, one could argue that T should be age-specific. This
would be the case if agents weight their own experience more heavily than the entire past history of
data, as evidence suggests they do.24 If this were the case, the DEP would be smaller than Figure
2.9 portrays for large values of x, while being larger for small values of x.

The main point to notice, however, is that the DEPs are quite large, for all values of x. This is
true despite the fact that setting T = 200 overstates the data that is actually available to agents.
(Remember, our time unit here is a year). Although AHS suggest the bound is not always tight, the
numbers in Figure 2.9 are so large that we suspect more refined estimates would still preserve the
basic conclusion that the degree of pessimism here is plausible. In fact, another way to see this is
to simply suppose investment outcomes are i.i.d coin flips. With a 10% standard deviation and 200
years of data, a 95% confidence interval for the mean would be ±2× .10√

200 ≈ 1.4%. The implied drift
distortions reported in Figure 2.4 are well within this interval.

2.7 Conclusion
The recent increase in US wealth inequality raises three important questions: (1) What caused it?, (2)
Why did it start around 1980?, and (3) Why has it been so rapid? There are already many answers

24See, e.g., Malmendier and Nagel (2016).
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to the first two questions. Although we think our proposed explanation - increased uncertainty -
provides an interesting and novel answer to these two questions, we view it more as a complement
than a substitute to existing explanations. However, as recently emphasized by Gabaix, Lasry, Lions,
and Moll (2016), answering the third question is more challenging. Standard random growth models
cannot explain why top wealth shares more than doubled in little more than a single generation. To
account for the rate of increase in inequality, they argue it is necessary to extend random growth
models by incorporating either ‘type dependence’ or ‘scale dependence’, which produce heterogeneity
in growth rates. Using the tools of robust control theory, we show that increased uncertainty produces
a natural form of scale dependence, which generates significantly more rapid convergence rates.

More work needs to be done to make increased uncertainty a fully convincing explanation of
recent US wealth inequality. First, the notion that the world became more uncertain around 1980
seems plausible, but should be more carefully documented. There is abundant evidence that idiosyn-
cratic labor income risk increased around this time ( Ljungqvist and Sargent, 1998), but risk is not
the same as uncertainty, and wealth is not the same as labor income. Robust control provides a link
between objective risk and subjective uncertainty by viewing distortions as ‘hiding behind’ objective
risk. Hence, it would be interesting to consider an extension to stochastic volatility, which would open
the door to stochastic uncertainty as well. In fact, there is no reason to view risk and uncertainty as
competing explanations. Using panel data on the Forbes 400, Gomez (2017) finds that inequality
during 1980-95 was primarily driven by increased risk, while return heterogeneity (possibly driven by
increased uncertainty) was primarily responsible for increased top wealth shares during the period
1995-2015. Combining both increased risk and increased uncertainty might help to close the gap in
Figure 2.8. Second, the key source of scale dependence in our model is that wealthy individuals earn
higher mean returns. Again, there is abundant evidence in support of this (although the evidence
is less clear using after-tax returns). However, it is not clear whether this return differential reflects
portfolio allocation decisions, as in our model, or whether wealthy individuals receive higher returns
within asset categories as well. Using tax records from Norway, Fagereng, Guiso, Malacrino, and
Pistaferri (2016a) argue that wealthy investors receive higher returns within asset categories. Hence,
it would be interesting to consider a model where both forces are at work. Finally, we have argued
that wealth dependent pessimism is empirically plausible because the drift distortions it produces
could not be statistically rejected based on historical data. However, we suspect our detection error
probability bound is not very tight, and one could easily obtain tighter bounds using simulations.
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Chapter 3

Information and Inequality

3.1 Introduction
We live in a so-called ‘information age’. We also live in an age of growing inequality. This paper
shows these phenomena might be connected. It attempts to formalize and quantify an argument by
Arrow (1987). Arrow noted that in financial markets the value of information is greater, the greater
is the amount invested. At the same time, the cost is likely to be nearly independent of the amount
invested. Consequently, wealthy individuals devote a higher fraction of their wealth to information.
Arrow used a simple 2-period/1-agent example to argue that endogenous information acquisition
amplifies inequality.

Although suggestive, Arrow’s (1987) example cannot address the quantitative significance of
information acquisition in the dynamics of wealth inequality. This paper quantifies Arrow’s example
by incorporating learning and information acquisition into recent models of idiosyncratic investment
risk. In contrast to models of idiosyncratic labor income risk ( Aiyagari (1994)), investment risk
models can generate the sort of power laws that characterize observed wealth distributions.1

To focus on the role of information, this paper abstracts from all other sources of heterogeneity
that create inequality. Agents have identical life expectancies, are born with identical initial wealth,
and have access to private investment projects that feature identical mean returns. In this environ-
ment, inequality is initially created by luck. Relatively wealthy agents have good luck with their
investments, and are blessed with long lifetimes. Interestingly, we shall see that learning magnifies
the importance of luck, since good luck makes agents relatively optimistic (at least temporarily),
and this encourages risk-taking.

Although it is now well known that random growth over a random length of time are enough to
generate fat-tailed Pareto wealth distributions ( Reed (2001)), recent work by Gabaix, Lasry, Lions,
and Moll (2016) (henceforth GLLM) shows that these random growth models fall short quantitatively
in accounting for observed inequality. In particular, they show their transition dynamics are far too

1 Benhabib, Bisin, and Luo (2017) note that idiosyncratic labor income risk models cannot generate
wealth distributions with fatter right tails than the distribution of labor income. Investment risk models are
examples of so-called ‘random growth’ models, which go back to the work of Champernowne (1953) and
Simon (1955). Recent examples include Angeletos (2007), Benhabib, Bisin, and Zhu (2011), Benhabib,
Bisin, and Zhu (2016), Cao and Luo (2017) and Toda (2014).
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slow. GLLM argue that it is important to allow for either ‘type dependence’ or ‘scale dependence’,
which generate deviations from Gibrat’s Law.

This paper shows that learning and information acquisition combine to produce a form of scale
dependence. The mean growth rate and volatility of an agent’s wealth increase with wealth. This
occurs for two reasons. First, relatively wealthy agents have higher savings rates. This is a widely
documented feature of the data ( Dynan, Skinner, and Zeldes (2004)). Second, relatively wealthy
agents allocate a higher fraction of their portfolios to risky assets. Again, this is a widely documented
feature of the data ( Carroll (2002)). The key mechanism driving both these decisions is that wealthy
agents buy proportionally more information. They do this because information is proportionally more
valuable to them. In fact, we shall see that if learning were based on exogenous information, wealthy
agents would have lower savings rates.

One downside of studying a scale-dependent growth model is that we can no longer solve the
model analytically. The model’s dynamics are characterized by a coupled pair of partial differential
equations (PDEs). A Hamilton-Jacobi-Bellman (HJB) equation describes optimal decisions by a sin-
gle agent, while a Kolmogorov-Fokker-Planck (KFP) equation aggregates these decisions to describe
the evolution of the cross-sectional distribution of wealth and beliefs.2 Neither PDE can be solved in
closed-form. In response, I employ a combination of monte carlo simulation techniques and classical
perturbation approximations.

Perturbation approximations of an individual agent’s decision rules are based on the fact that
we can analytically solve the HJB equation for a log utility investor who faces an infinite cost of
information. Hence, the analysis here presumes agents have preferences that are ‘close’ to logarithmic
and that information is ‘expensive’. After substituting these approximate decision rules into the
agent’s wealth accumulation equation, monte carlo simulation methods are used to numerically
compute the stationary distribution of wealth.

To shed some analytical light on this distribution, I then turn to the KFP equation. This is a 3-
dimensional PDE, describing the distribution of wealth and beliefs (as summarized by the conditional
mean and variance of expected returns). I study this system using classical time-scale separation
methods. These methods convert the problem to one of studying the interaction between two lower
dimensional subsystems. In particular, when uncertainty about mean returns is ‘small’, learning is
‘slow’. As a result, wealth and beliefs evolve on different time-scales. Wealth evolves quickly, while
beliefs evolve slowly. I first solve a 1-dimensional KFP equation for wealth, holding beliefs fixed.
I then use the implied stationary distribution of wealth to average over wealth dependence in the
equations describing the cross-sectional distribution of beliefs. Finally, Laplace’s method is used to
characterize the right-tail of the marginal distribution of wealth. I show that endogenous information
acquisition reduces the absolute value of the right-tail Pareto exponent, thereby increasing top wealth
shares.3

One might suspect that lowering the cost of information would exert an equalizing force on the
distribution of wealth. Models based on asymmetric information and insider trading no doubt have

2For recent technical advances in macro models using this approach, see Achdou, Han, Lasry, Lions,
and Moll (2017).

3This time-scale separation approach is closely related to the ‘mean ODE’ method pioneered by Marcet
and Sargent (1989) in the macroeconomic learning literature.
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this implication. However, here investment projects are agent specific. One agent’s information is of
no value to anyone else.4 As far as information choice is concerned, each agent is a Robinson Crusoe.
From the perspective of an individual agent, information is simply a source of increasing returns,
since it encourages risk-taking, which encourages growth. However, when these agent specific scale
effects are combined with heterogeneous, nondiversifiable shocks, a powerful force for inequality is
ignited. Agents who get lucky early in life use their good fortune to acquire information about future
investment returns. In this way, wealth begets wealth.

Although the ‘information revolution’ did not occur overnight, for the purposes of this paper I
assume that it did. Specifically, I assume that until 1980 information was prohibitively expensive.
Agents could passively learn from observed data, but they could not speed up learning by buying
information. I also assume the US economy had settled into a stationary distribution. I calibrate
the model’s parameters to replicate this distribution. Then all of a sudden the cost of information
declines. Of course, information is not easily measured, nor is its cost easy to quantify. Given this, I
proceed indirectly. I use my model along with observed changes in household portfolios to infer an
information cost reduction. Since the units of the information cost are not independent of the units
of wealth, one has to be a little careful when interpreting the magnitude of the information cost
parameter. From a behavioral standpoint, what matters is how much wealth is spent on information.
I show that this share is quite small, even for the wealthiest agents, amounting to less than 1%
of wealth. Hedge fund data are used to support this calibration. Using the previously described
simulation and approximation strategies, I find that the steady state top 1% wealth share increases
from 23.9% to 32.9%. Although this is less than the increase reported by Saez and Zucman (2016b),
who find the top 1% wealth share is now around 42%, it is still quite significant, given that the
model abstracts from labor income heterogeneity, bequests, and other factors generating inequality.

The analysis here is related to recent work by Kacperczyk, Nosal, and Stevens (2014). They
too are motivated by Arrow (1987). However, there is an important difference between their work
and mine. Their paper is based on the ‘rational inattention’ literature ( Sims (2003)). They study
an economy in which some agents are endowed with greater ‘sophistication’, as measured by channel
capacity. Sophisticated investors can process more information. They argue that observed wealth is a
good proxy for sophistication. They then show that financial markets enable sophisticated investors
to increase their relative wealth. In my model, causation runs the other way. Wealthy agents become
sophisticated (perhaps by hiring agents with large channel capacities). Beyond this difference in
cause and effect, the approach here is arguably more consistent with the critique of Sims (2006),
who points out that financial markets might not be the best application of rational inattention.
In financial markets, information is certainly not free, and the relevant constraints are not on the
ability to process free information that is lying around. Instead, the relevant constraint is being able
to pay others to gather and process information for you. The entire hedge fund industry owes its
existence to this difference.

The remainder of the paper is organized as follows. Section 2 motivates the discussion by pro-
viding background information on wealth inequality, hedge fund growth, and household portfolios.
Section 3 outlines the model. Section 4 derives first-order perturbation approximations of an agent’s

4Caveat: Since all projects are assumed to have the same (unknown) mean return, in principle agents
could speed up their learning by observing the returns on other agents’ projects. I assume these other returns
are either unobserved, or that agents are unaware that all projects have the same mean return.
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policy functions. I show that policy functions can be decomposed into an exogenous learning compo-
nent and an endogenous learning component. Section 5 studies aggregation and the cross-sectional
distribution of wealth and beliefs. I first compute monte carlo simulations of the cross-sectional
wealth distribution. I then use the KFP equation to derive analytical approximations of the sta-
tionary marginal distributions of wealth and beliefs. Section 6 examines data from the hedge fund
industry in more detail. It shows that more expensive funds earn higher returns. Section 7 provides a
brief discussion of related literature, while Section 8 offers some concluding remarks and suggestions
for future research. Proofs and derivations are contained in the Appendix.

3.2 Motivation
This paper focuses on wealth inequality. Arguably the best current estimates of US wealth inequality
come from Saez and Zucman (2016b). They combine data from the Fed’s Survey of Consumer
Finances with IRS data on capital income. Wealth estimates are computed by capitalizing reported
income data. Some attempts are made to include assets that do not generate capital income (e.g.,
pensions and and life insurance). However, Social Security is excluded. Housing values are imputed
from data on property taxes and mortgage interest payments. One potential problem with these
data is that the methodology presumes rates of return within asset categories are identical across
households. This can produce biased estimates if returns are correlated with wealth within asset
categories ( Fagereng, Guiso, Malacrino, and Pistaferri (2016b)).5

Although the model could be used to study the entire cross-sectional distribution of wealth,
following convention, Figure 3.1 simply reports the top 1% wealth share.6 In 2012, the top 1%
consisted of the wealthiest 1.6 million households, with a minimum wealth of about $4 million.

Figure 3.1: Top 1% Wealth Share in the USA

5 Kopczuk (2015) discusses the pros and cons of the capitalization method. He notes that other methods
(e.g., those based on estate taxes) show a much more gradual increase in inequality.

6 Saez and Zucman (2016b) note that wealth has become even more concentrated than indicated by the
conventional focus on the top 1%. The top 0.1% now own 22% of US wealth, more than triple its 1978 value.
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The most striking feature of this plot is the U-shaped pattern. Wealth has always been concen-
trated at the top, but top wealth shares actually declined from 1950-80. This was part of a much
longer process that began during WWI ( Piketty (2014)). Here I focus on the increase that began
around 1980. From a minimum of 23% in 1978, the top 1% wealth share has increased steadily ever
since. By 2012 it had roughly doubled, to 42%.

There are many proposed explanations for this increase. Perhaps the most common focuses on
taxes ( Aoki and Nirei (2017)). There were indeed shifts in tax policy in the early 1980s that favored
the wealthy, and this paper does not dispute the potential role of taxes. However, one intriguing
finding in Aoki and Nirei (2017) is that the impact of taxes on inequality seemed to increase as well
around this time. This suggests that additional factors might be at play. For example, Kasa and
Lei (2017) argue that increased (Knightian) uncertainty, perhaps due to technological change, intro-
duction of new investment opportunities, like financial securitization, financial derivatives, emerging
market assets, etc. and globalization, led investors to adopt ‘robust’ portfolio policies, which then
contributed to inequality, since robust portfolio policies imply that wealthy agents invest relatively
more in risky assets.

This paper focuses on a different implication of technological change. Instead of creating doubts
about returns, here technological change creates opportunities, by making information acquisition
and information processing less costly. We can gauge the importance of these changes indirectly by
looking at changes in household portfolios and in the wealth management industry. Figure 3.2 plots
SCF data on the share of risky assets (as proxied by stocks) in household portfolios. Households
are grouped by relative log wealth, in increments of 5 percentage points. The blue line pertains to
1983, and the red line pertains to 2013. Two features stand out. First, relatively wealthy investors

Figure 3.2: Fraction of Risky Assets Holding

hold a higher share of risky assets in their portfolios. Simple dynamic consumption/portfolio models
in the Merton tradition predict that portfolio shares are independent of wealth. Second, portfolio
disparities across households have increased over time. This simply reflects the growth in inequality
over time. Notice that households below the median are now investing a smaller share of their
portfolios in risky assets than they were in 1983!

There are many potential reasons why risky portfolio shares might increase with wealth. This
paper attributes it to the fact that wealthy investors have better information. They have better
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information because they can afford to buy it. Figure 3.3 reports one piece of evidence to support
this idea. It plots the percentage of households who pay either a hedge fund or a mutual fund for
wealth management services as a function of log wealth. The data are from 2013.

Figure 3.3: Percentage of households delegating wealth

Evidently, if your wealth is less than $22,000 (≈ e10), you are very unlikely to be delegating your
wealth. Interestingly, the plot suggests that this represents something of a threshold. The likelihood
of paying for wealth management rises rapidly after this point. This suggests the presence of a fixed
cost. This is one feature of reality my model will abstract from.

Finally, from the perspective of my model, looking at simple stock holdings data is a bit mis-
leading. Anyone can buy shares in Apple or Microsoft. My model presumes that risky investment is
idiosyncratic. Hence, it is perhaps more consistent with recent work on private equity markets and
entrepreneurship. (See Quadrini (2009) for a survey). However, even shares in public companies can
become somewhat private if they are used in dynamic trading strategies based on private information
and research. That’s what the hedge fund industry is all about. Figures 3.4 and 3.5 present data on
the explosive growth of the hedge fund industry.

Figure 3.4: Number of Hedge FundsFigure 3.5: Average Min. Investment
in Hedge Funds

Figure 3.4 shows that the hedge fund industry grew slowly during the 1980s, and then took off
during the 1990s. This explosive growth coincided with a rapid fall in their fees during the 1980s, as
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seen in Figure 3.5.7 As discussed above, in a model with scale effects, lower fees do not necessarily
translate into greater equality. In Section 6 I shall explore the performance of these funds in greater
detail. For now, the key feature of these funds is that one can obtain better performance by paying
higher fees.

Although the evidence in these figures is suggestive, the real question is whether plausible changes
in the market for information can quantitatively account for the dramatic and rapid rise in inequality
depicted in Figure 2.1. To address this question we need a model.

3.3 The model
The model here combines two existing literatures. The first extends the workhorse Blanchard/Yaari
continuous-time OLG model by incorporating idiosyncratic investment returns. Benhabib, Bisin,
and Zhu (2016) show that this extension produces a double Pareto wealth distribution, with tail
exponents that are easily interpretable functions of the model’s underlying parameters. However,
their model is a traditional random growth model without scale effects, i.e., it obeys Gibrat’s Law.
Rather than study scale effects, they focus on the role of bequests and fiscal policy in amplifying
inequality. The second consists of a single paper, an unpublished Ph.D thesis by Turmuhambetova
(2005). She incorporates endogenous information acquisition into a traditional Merton portfolio
problem. However, her model consists of a single agent, so obviously there isn’t much discussion of
inequality.

3.3.1 The Setup

The economy consists of a measure 1 continuum of agents with exponentially distributed lifetimes.
Death occurs at Poisson rate δ. When an agent dies, he is instantly replaced by a new agent with
initial wealth w0. One can interpret this initial wealth as the present value of an agent’s (riskless)
lifetime labour income. Agents have no bequest motive. Agents can invest in three assets: a risk free
technology, a competitively supplied annuity, and a risky technology. The value of the risk free asset
follows the deterministic process

dQ(t) = r̃Q(t)dt (3.1)

with constant rate of return r̃. Since agents face idiosyncratic death risk, there is a gain from setting
up an annuities market, which allows agents to die in debt. By no arbitrage and free entry, the rate
of return on these annuities is r = r̃+δ. Therefore, in equilibrium, no rational agent has an incentive
to use the risk free technology. The value of the private risky technology obeys a geometric Brownian
motion

dS(t) = µS(t)dt+ σS(t)dB(t) (3.2)

To focus on scale dependence rather than type dependence (GLLM), I assume the mean and volatility
are identical across agents. What is important is that the shocks, dB, are uncorrelated across agents.

7The average hedge fund entry cost has gone down. However, this does not imply that it is cheap. Hedge
funds have always been a club for the wealthy, even now. For example, for a typical hedge fund in 2013, one
still needs at least $1.26 mill. to enter, which implies one must be within the top 12.5% to take advantage
of the hedge fund industry.
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A novel feature of my model is the assumption that agents do not know the mean return, µ, of
their investment project.8 They must learn about it over time. As noted in section 3.1, I assume they
do this by observing their own returns. Agents are unaware their ancestors used a technology with
the same mean, so history does not matter to them. Likewise, they are unaware that other currently
alive agents have the same mean return, so there is no perceived gain from observing other agents.
Interestingly, even when agents observe a common stochastic process, evidence suggests they weight
their own experience more heavily ( Malmendier and Nagel (2016)).9

Uncertainty is represented by a filtered probability space (Ω,P, {Ft}t≥0,F), induced by an (un-
observed) one-dimensional standard Brownian motion B(t), which satisfies the usual conditions.
Each agent has an equivalent probability measure P̂ that generates his own observable filtration

ˆ{Ft} ⊂ {Ft}. This filtration defines the following conditional mean, µ̂(t), and variance, γ(t), of an
agent’s estimate of µ

µ̂(t) = E[µ | F̂t] (3.3)

γ(t) = E[(µ̂(t)− µ)2 | F̂t] (3.4)

At birth, the investor has a prior mean ˆµ(0) and a prior estimation variance γ(0).
By Girsanov’s theorem, B̂(t) is a Brownian motion under the investor’s own filtration.10 Follow-

ing standard filtering theory [ Liptser and Shiryaev (2001)], the innovation process B̂(t) induced by
the investor’s own filtration is related to the unobserved B(t) by

ˆdBs(t) = 1
σ

[dS(t)
S(t) − µ̂(t)dt] = dBs(t) + µ− µ̂(t)

σ
dt (3.5)

3.3.2 Filtering and Information

In addition to observed returns, at each instant of time t the investor observes a noisy signal y that
correlates with µ,

dy(t) = µdt+ σy(t)dBy(t) (3.6)

where {By(t)} are standard Brownian motions, independent of {B(t)}. This generates a stream of
additional information about the unobserved µ, which can be used by the investor to update his
beliefs in Bayesian fashion.

The investor’s Kalman filtering equations can be written in innovations form

8As noted by Merton (1980), uncertainty about σ decreases as sampling frequency increases. It disap-
pears in the continuous time limit.

9 Ehling, Graniero, and Heyerdahl-Larsen (2016) and Nakov and Nuño (2015) incorporate experiential
learning into an OLG framework. They focus on asset pricing.

10Girsanov’s theorem delivers a stochastic process analog of a Jacobian. It describes how the dynamics
of a stochastic process change when the original measure is changed to an equivalent (mutually absolutely
continuous) probability measure. For details, see Liptser and Shiryaev (2001) or Øksendal (2003).
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dµ̂(t) = γ(t)
σ

ˆdBs(t) + γ(t)
σy(t)

ˆdBy(t) (3.7)

dγ(t) = −γ(t)2
(

1
σ2 + 1

σy(t)2

)
dt (3.8)

where dB̂y is related to dBy(t) according to

ˆdBy(t) = 1
σy(t) [dy(t)− µ̂(t)dt] = dBy(t) + µ− µ̂(t)

σy(t) dt (3.9)

Now, the key innovation of my model is to allow agents to reduce the variance of the noisy signal,
σ2
y(t), by paying an information cost. Note, this is a monetary cost, expressed in units of wealth, not

an information processing cost, expressed in bits per unit of time. However, I assume this monetary
cost is a function of the informativeness of the signal, as measured in conventional information-
theoretic terms. In particular, I suppose the investor chooses an instantaneous channel capacity, κ(t).
This constrains the maximum rate of information flow that can be noiselessly transmitted, measured
in bits.11 It provides a measurement of uncertainty reduction in a random variable. Formally, it is
defined by the Kullback-Leibler divergence

κ =
∫

log dP
dQ

dP (3.10)

where dP and dQ represent the posterior and prior conditional distributions of µ. In this particular
case with a Gaussian information structure, σy(t) and κ(t) are related by

γ(t)
σy(t)2 ≤ κ(t) (3.11)

This relates signal precision to the rate of information. Given the current estimation variance, a
higher channel capacity allows a more precise signal (i.e., a lower signal variance). This speeds up
learning.

The investor chooses instantaneous capacity, κ(t), by paying a monetary cost. I assume the cost
function, q(κ), is quadratic:

q (κ(t)) = 1
2θ (κ(t))2 (3.12)

where θ is a cost parameter. When θ is small, information is costly. This function captures the in-
creasing marginal complexity of processing financial information accurately. The increasing marginal
cost structure also ensures the investor can never perfectly learn the parameter µ. One interpreta-
tion of this cost function is that there is a competitive industry producing and selling financial
information at its marginal cost.12

11In rational inattention models ( e.g: Sims (2003)), it is conventional to use base 2 logs, so that the
entropy of a discrete distribution with equal weight on two points, −0.5 log (0.5)− 0.5 log (0.5) = 1, and this
unit of information is called one “bit".

12A general convex information cost structure is considered in Turmuhambetova (2005). As here, Andrei
and Hasler (2014) use a quadratic cost function.
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3.3.3 Optimization Problem

Each agent is assumed to have time-additive constant relative risk aversion (CRRA) preferences.
She needs to make continuous decisions on consumption, c(t), the fraction of wealth invested in the
risky technology, π(t), and how much information to acquire, κ(t). Formally, she faces the following
dynamic optimization problem:

V (w, µ̂, γ) = max
c,κ,π

E
[∫ ∞

t

exp(−(ρ+δ)s) c(s)α

α
ds|F̂t

]
(3.13)

s.t:

dw(t) = [w(t)(r + π(t)(µ̂(t)− r))− c(t)− q(κ(t))]dt+ π(t)σw(t) ˆdB(t) (3.14)

dµ̂(t) = γ(t)
σ
d̂B(t) + γ(t)

σy(t)
ˆdBy(t) (3.15)

dγ(t) = −γ(t)2
(

1
σ2 + 1

σy(t)2

)
dt (3.16)

γ(t)
2σy(t)2 ≤ κ(t) (3.17)

where 1 − α is the coefficient of relative risk aversion, and ρ denotes the rate of time preference.
The capacity constraint on information is binding for an optimizing investor. Therefore, the choice
of σ2

y(t) is equivalent to the choice of κ(t). Thus we can substitute κ(t) for σ2
y(t) in what follows.

Using Ito’s lemma, the HJB equation for this optimization problem can be written

βV (w, µ̂, γ) = max
c,κ,π

cα

α
+ Vw (rw + π (µ̂− r)w − c− q(κ)) + 1

2Vwwπ
2σ2w2

+ (1
2Vµ̂µ̂ − Vγ)(γ

2

σ2 + 2κγ) + Vwµ̂πwγ

(3.18)

where β = ρ + δ. The first-order conditions deliver the following policy functions, expressed in
terms of the unknown value function V (w, µ̂, γ)13:

c∗ = V
1

α−1
w (3.19)

π∗ = −Vw(µ̂− r)− Vwµ̂γ
Vwwwσ2 (3.20)

κ∗ = θγ

(
Vµ̂µ̂ − 2Vγ

Vw

)
(3.21)

Notice the optimal consumption function is the same as in the full information case, although
consumption is indirectly influenced through changes in the value function. The risky portfolio share,
π∗, has two terms. The first term reflects myopic asset demand as in a standard Merton portfolio
problem, where the investor trades off between excess expected returns and its volatility. The second
term reflects a hedging demand, which comes from learning about the parameter µ. Its sign depends

13Given the recursive structure, I now drop the time t notation for convenience.
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on the level of risk aversion, α, and its intuition will become clearer after we derive the perturbation
approximations in the next section. The κ∗ policy function shows that less information will be
purchased when its cost is high (θ is low), and when uncertainty about returns is low (γ is small).
Notice that the effect of uncertainty is greater when agents are more averse to it (i.e., when Vγ

is more negative). More interestingly, it shows that, ceteris paribus, wealthy agents will buy more
information, since their marginal utility of wealth, Vw, is relatively low. The role of the numerator
will become clear in the next section.

3.4 Policy Function Approximations
To compute the policy functions, we need to know the value function, V (w, µ̂, γ). To compute
V , we first substitute the policy functions in eqs. back into the HJB eq. (??). This produces a
3-dimensional, highly nonlinear PDE. A closed-form solution is wishful thinking. However, in a
particular limiting case we can obtain a closed-form solution. This opens the door to a classical
perturbation approximation. It turns out that when information is prohibitively expensive (θ = 0),
and the investor has log preferences (α = 0), the PDE for V can be solved analytically. In this case,
learning is based on exogenous information, and the learning problem decouples from the saving
and portfolio problems. This is due to the fact that a log investor does not need to hedge against
perceived changes in the investment opportunity set. Income and substitution effects offset each
other (Gennotte (1986)).

Since the value function is not of interest by itself, details of its derivation are relegated to
Appendix C.2. Here we focus on the implied policy functions:

Proposition 3.4.1. To an O (θ, α) approximation, the policy functions for consumption, risky
portfolio share, and information choice are given by

c∗ ≈ βw[1− α

2βσ2

[
(µ̂− r)2 + γ2

βσ2

]
− 1

2θwλγ
2] (3.22)

π∗ ≈ 1
σ2 [(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2 + 1

2θwλ(µ̂− r)γ2] (3.23)

κ∗ ≈ θw

β

[
1− βσ2

γ
eβσ

2/γΓ(0, βσ2/γ)
]
≈ θwγ

β2σ2 (3.24)

where Γ(a, x) =
∫∞
x
ta−1e−tdt is the incomplete Gamma function and λ =

[
β2σ2[2βσ2 − (µ− r)2]

]−1.

Proof. See Appendix C.2.

3.4.1 Comments on Information Choice

Like any other good, the optimal amount of information is chosen so that its marginal cost equals
its marginal benefit. With the above approximate solution for κ∗, the marginal cost and marginal
benefit of information can be seen quite clearly. Recall that the information cost function is q(κ(t)) =
1
2θ (κ(t))2, which implies that the marginal cost of information at the optimum is equal to κ∗

θ .
Therefore, another way to interpret eq. (3.24) is that, to a first order approximation, the agent
is willing to spend her wealth on acquiring information up to a point where her marginal cost of
acquiring it at the moment, κ

∗

θ , equals the perceived expected discounted lifetime marginal benefit
from acquiring it, wγ

β2σ2 . It is not surprising that the marginal benefit rises when either wealth or
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uncertainty increase. An essential observation is that β and σ are the same for everyone. Thus,
heterogeneity in information choice comes from the multiplication of w and γ. A potential conflict
arises between w and γ. On one hand, increased wealth enhances the marginal benefit of acquiring
more information. On the other hand, most rich people will already have a relatively low γ (except
for those who were poor and are suddenly hit with a large positive return shock), which implies that
acquiring more information pays off less in further reducing estimation variance. Since both w and
γ are endogenous outcomes of the model, and are interdependent, one needs to resort to numerical
solutions to know which effect dominates. Policy functions are plotted using the parameter values in
Table 3.1. The choice of these parameter values will be discussed in detail in the following section.

Table 3.1: Benchmark Parameter Values

µ β δ γ0 σ θ w0

0.15 0.06 0.04 0.001 0.26 0.0016 1

For now, let’s focus on what determines optimal information choice by inspecting Figure 3.6. It
plots κ∗ as a function of wealth w and estimation variance γ, which are the only two state variables
that differ across agents concerning κ. It is obvious from this figure that wealthy agents buy more
information. Although κ also increases with γ, it does so to a much less extent quantitatively. Finally,
it is useful to summarize how other parameter values influence information choice

Figure 3.6: Optimal Information Choice

Corollary 3.4.2. Information choice κ increases when w increases, θ increases, σ decreases, δ
decreases, ρ decreases and γ increases. In the limit, when uncertainty γ vanishes, agents don’t buy
information. (limγ→0 κ = 0).

Proof. See Appendix C.3.
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Not surprisingly, when the cost of information goes down (θ ↑), agents demand more information.
However, notice the effect interacts with wealth. This implies that even though everyone buys more
information when information is cheaper, the marginal effect is greater for wealthy agents. As will
be discussed in the next section, this give them a greater incentive to accumulate wealth through a
portfolio channel. Second, there is an interesting interplay between the volatility parameter σ and
information choice. On the one hand, increased σ implies a noisier investment environment, which
reduces the marginal benefit of paying money to understand mean growth rate µ. On the other
hand, an increased σ also implies that the asset return is a less reliable signal. For better estimation,
one would demand more external information, which implies that κ should increase. Interestingly,
the latter effect turns out to be at most of second order importance. To a first-order approximation,
the first effect dominates. Third, when people live longer (δ ↓), the lifetime benefit of acquiring
information increases. Therefore, agents acquire more information. This effect is enhanced with rising
patience (ρ ↓), since agents with more patience are more willing to sacrifice current consumption
for the long-term benefit of acquiring information. Finally, the benefit from information increases
with greater uncertainty. The intuition for this result will be clearer in the next section discussing
belief dynamics. Briefly, the same amount of information reduces the level of uncertainty more when
uncertainty is high, thus stimulating more demand for information.

3.4.2 Saving Rate

Let s̃∗ denote an agent’s optimal saving rate. From equation (3.22), we know that

s̃∗ ≈ (1− β)︸ ︷︷ ︸
benchmark saving rate

+ α

2σ2

[
(µ̂− r)2 + γ2

βσ2

]
︸ ︷︷ ︸
exogenous learning

+ 1
2θβwλγ

2︸ ︷︷ ︸
endogenous learning

(3.25)

Therefore, to a first-order approximation, one can decompose the saving rate into three pieces.
The first piece (1 − β) is the saving rate of a benchmark log utility agent without learning. The
agent adheres to the Permanent Income Hypothesis in this case, and consumes a percentage of
wealth equivalent to their effective discount rate (ρ + δ). The interpretation of the second piece is
the additional saving rate of a CRRA agent, whose sign may or may not be positive, depending on
the level of risk aversion. With CRRA utility, when α < 0, the intertemporal elasticity of substitution
is less than unity, so that agents are less willing to substitute consumption across time. The reverse
is true when α > 0.

The last component of saving reflects information choice. An important observation is that this
component is wealth dependent. Ceteris paribus, wealthy agents have higher saving rates. This is
consistent with the data.14 In this model, it is due to the fact that wealthy investors prefer to save
their wealth for acquiring information and invest in risky assets. Figure 3.7 illustrates this effect
quantitatively. From the graph, one can see that although the saving rate increases with wealth,
which contributes to inequality, the increase is quite mild. Although the information choice model
says something interesting on saving rate qualitatively, its important quantitative implications are
not about saving.

14See, for example, Carroll (2001).
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Figure 3.7: Saving Rate

3.4.3 Portfolio Choice

Just like saving rate, one can also decompose optimal portfolio choice into three pieces.

π∗ ≈ 1
σ2 [(1 + α)(µ̂− r)︸ ︷︷ ︸

myopic portfolio

+ α
(µ̂− r)γ
βσ2︸ ︷︷ ︸

exogenous learning

+ 1
2θwλ(µ̂− r)γ2︸ ︷︷ ︸

endogenous learning

] (3.26)

The first part is the myopic demand of a Merton agent. The second piece is a portfolio hedging
demand coming from learning ( Gennotte (1986)). Notice this is independent of wealth, so learning
by itself is not a source of scale effects. It is worthwhile to examine the sign of this hedging demand.
With a small initial estimation error, (µ̂ − r) is almost always positive. Therefore, the sign of the
hedging demand is determined by one’s risk aversion coefficient α. Going back to equation (3.20),
we will discover the source of hedging demand, which comes from the term −Vwµ̂γ

Vwwwσ2 . We know that
Vww < 0. Therefore, the sign of hedging demand is determined by Vwµ̂, which in turn depends on the
sign of α. On the one hand, a higher mean estimate makes the agent want to take the opportunity
of investing more in risky assets. On the other hand, estimates are mean reverting, which implies a
potential downward adjustment in future estimates. Uncertainty of the mean estimates makes the
agent to invest less than the myopic portfolio. For a log utility agent, these two effects cancel out
exactly. When α > 0, the first effect dominates, and when α < 0, the second effect dominates. Since
agents invest in their own private technology and receive private signals, this source of idiosyncratic
shocks in learning already creates heterogeneity in portfolios. However, it is not a source of scale
dependence. The last component of portfolio demand is. The presence of information choices increases
portfolio demand directly, whose effect is stronger the wealthier an agent is.
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Figure 3.8: Risky Portfolio Share

Figure 3.8 illustrates the portfolio share quantitatively. We can see that not only do wealthy
investors invest more in risky assets, but they also invest a higher fraction of wealth in risky assets.
In some sense, they might appear to be less risk averse than poorer investors. However, such apparent
“risk-loving" behavior is driven by endogenous information choice.

3.4.4 Optimism vs. Confidence

From above, we know that endogenous information introduces more risk taking among wealthy
investors. However, what does it do for beliefs? With a Gaussian information structure, beliefs
are fully summarized by the conditional mean and variance. We can define “optimism" by µ̂, and
confidence by γ−1. Figure 3.9 compares the effect of optimism in both the exogenous and endogenous
learning cases by setting estimation variance and wealth at its initial value. Greater optimism leads
to more risk taking in both cases, and the effect is stronger in the endogenous information case,
making all agents appear less risk averse.
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Figure 3.9: Portfolio Share vs. Optimism

Figure 3.10: Portfolio Share vs. Confidence

It is interesting to examine how the level of confidence affects portfolio choice, and how it depends
on the nature of information. Without information choice, a higher γ implies less confidence in one’s
estimate. A relatively risk-averse agent (α < 0) would want to reduce her risky portfolio. Although
this effect is still present in the endogenous information case, it is dominated by the other effect:
Ceteris Paribus, lower confidence raises the marginal benefit of acquiring more information (equation
(3.24)), which in turn increases confidence, and stimulates more risk taking. In general, the overall
effect is ambiguous, depending on agents’ risk preference and the learning environment. Nevertheless,
with reasonable parameters, Figure 3.10 illustrates that the second effect dominates when γ is high,
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and vice versa. This is because the marginal benefit of acquiring information is higher when the level
of uncertainty is higher.

3.5 The Distribution of Wealth and Beliefs
Thus far we have studied the problem and decision rules of a single agent. Since our main goal is
to study inequality, we must now aggregate these decision rules and characterize the cross-sectional
distribution of wealth.

3.5.1 Individual Wealth and Belief Dynamics

We begin by describing the wealth and belief dynamics of an individual agent. Wealth dynamics are
obtained by substituting the policy functions into the wealth accumulation equation in (3.14).

Lemma 3.5.1. To a first-order approximation, an individual’s wealth dynamics under filtration
{Ft} are governed by the diffusion

dw = (a+ θwb)wdt+ (c+ θwd̂)wdB (3.27)

where

a = (µ− r)
σ2

[
(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2

]
+ α

2σ2

[
(µ̂− r)2 + γ2

βσ2

]
(3.28)

b = λγ2(µ− r)(µ̂− r)
2σ2 + β

2 λγ
2 − γ2

2β4σ4 (3.29)

c = 1
σ

[
(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2

]
(3.30)

d̂ = 1
2σλ(µ̂− r)γ2 (3.31)

Proof. See Appendix C.4.

Notice that the drift term collapses to a(µ̂, γ) as θ → 0. This is the case when information is
infinitely costly. Thus, agents learn exogenously. Notice also from equation (3.28) that the effect of
learning on wealth depends on α. For the knife-edge case of log utility (α = 0), parameter uncertainty
does not affect the growth rate. To a first order approximation, we know that risk aversion does not
affect information choice. However, risk aversion does alter an agent’s portfolio composition. As long
as α < 0(α > 0), learning decreases (increases) the growth rate of wealth because hedging causes
the agent to invest less (more) in risky assets. The drift term also has a wealth-dependent piece
as long as θ > 0. The benchmark parameters ensure that b(µ̂, γ) > 0. Therefore, the growth rate
is higher when either θ or w is higher. Since higher θ implies cheaper information, agents acquire
more information, and invest more in risky assets. However, wealthy agents invest even more. This
generates “scale dependent" growth.
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Figure 3.11: Sample Path: Growth Rate Difference

Figure 3.12: Sample Path: Volatility Difference

This scale dependence is illustrated in Figure 3.11, which plots a sample path of the growth rate
difference between the exogenous learning and endogenous learning cases. Although it fluctuates
between 0 − 6% due to shocks, the difference is always positive. A byproduct of the information
model is that the volatility of wealth is also wealth dependent. c(µ̂, γ) can be higher or lower than
in the no learning case, again depending on the sign of α. However, a positive d(µ̂, γ) ensures that
volatility increases with wealth. Figure 3.12 plots the added volatility from endogenous information.
Although occasionally the number goes negative due to noise, it is most of the time positive, due to
a higher risky portfolio share. This is consistent with the data because wealthy people are known
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to have more risky portfolios, and thus are more vulnerable to financial shocks.15 This could be an
important channel on its own, which says something interesting about the second moment of wealth
inequality. However, I will focus on the mean rather than volatility of wealth inequality for now.

Lemma 3.5.2. The following equations characterize approximate belief dynamics under the data-
generating filtration {Ft}. The conditional variance follows

dγ = −γ2
(

1
σ2 + 2θw

β2σ2

)
dt (3.32)

and the conditional mean follows

dµ̂ = γ(µ− µ̂)
β2σ2 [β2 + 2θw]dt+ γ

σ
dB +

√
2θwγ
βσ

dBy (3.33)

Proof. This comes from substituting the optimal information choice eq.(3.24) into the Kalman filter
eqs. (3.15) and (3.16) after using κ to substitute out for σ2

y.

From eq. (3.32), we see that the estimation variance of wealthy investors decreases faster. Another
way of expressing eq. 3.32 is dγ

γ = −
(
γ
σ2 + 2κ∗

)
dt. That is, higher information capacity increases

the rate at which uncertainty is reduced. Therefore, for a fixed κ, its marginal benefit in reducing
γ is higher when the level of γ is higher. The conditional mean µ̂ is mean-reverting. Higher wealth
tilts the agent’s attention from the free signal dB towards the costly private signal dBy due to its
increased relative informativeness. Therefore, the drift of this mean-reversion process also increases
with wealth in response to the increased sensitivity to the new external signal.

3.5.2 Numerical Solution

A stationary distribution is computed numerically using Monte Carlo simulation. 5000 agents are
endowed with initial wealth w = w0. Wealth and belief dynamics are simulated using eqs. (3.14),
(3.15) and (3.16), with time step size discretized such that dt ≈ 0.3. Agents experience birth and
death with probability δdt at each time step. After simulating the economy for 300 years, a stationary
distribution is achieved. Constraints on parameter values constrain the parameter space. These
constraints are discussed in detail in Appendix C.9. Moskowitz and Vissing-Jorgensen (2002) provide
evidence using samples from the Survey of Consumer Finances up until 1998 that the mean annual
return to private equity is about 13.2%. Kartashova (2014) extends the SCF sample till 2010, and
using her Table 5 results, I compute its average annual mean return to be equal to 16.53%. I choose
the closest possible combinations of µ and σ to these empirical values, which implies that µ = 0.15.16

Benhabib and Bisin (2016) cite evidence on the returns to owner-occupied housing and private equity
which suggest a standard deviation in the range of 10 − 20%. I set the closest value to this range,
that also satisfies parameter space constraints , which implies that σ = 0.26.

15Think of the sharp decrease in wealth inequality following the financial crisis, where very rich people
got very unlucky because their wealth is mostly in unsafe assets.

16Following Ehling, Graniero, and Heyerdahl-Larsen (2014), I set prior mean µ̂0 = µ, so that all agents
start with the true mean estimate.
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To satisfy the constraints, β is chosen to be 0.06, and δ = 0.04. This implies a mean (work) life
of 25 years. I pose the following thought experiment: Suppose that information is infinitely costly to
acquire before 1980 (θ = 0). Then suddenly investors have access to information by paying a finite
but large information cost (θ > 0). How does this change the stationary distribution of wealth? To
answer this, I first jointly select the two remaining free parameters, risk aversion α and the initial
estimation variance, γ0, such that the exogenous learning economy (θ = 0) matches the observed
top 1% share in 1980, which is about 23.9%. I then chose the one combination of γ0, α such that
they are as close as possible to log utility, consistent with previous analytical approximation. This
implies that α = −0.4 and γ0 = 0.001. This is in keeping with the analytic assumption of a “small"
α. Although γ0 might seem quite small, we shall see that even this modest degree of uncertainty
can generate quantitatively significant effects. Lastly, the choice of θ is clearly important. However,
since all the action comes from the multiplication of θ and w, not θ per se, we must calibrate θw
jointly. This is pinned down by matching the average observed portfolio difference between 1983 and
2013, which is around 30% in SCF data. From the portfolio equation, this implies that the average
θw = 0.0016 at the mass point. Finally, I choose w0 = 1 and θ = 0.0016 for convenience.

Figure 3.13 compares the stationary distributions of wealth in these two cases. The blue line
pertains to the distribution in 1980. The red line pertains to the endogenous learning economy.
We can see that the endogenous learning economy generates a fatter right tail, implying higher
concentration of wealth at the top. The implied top 1% wealth share increases to 32.9%, nine
percentage points higher than in the exogenous learning economy.

Figure 3.13: Stationary Wealth Distributions

3.5.3 The KFP Equation

Although we have just seen that it is straightforward to simulate the stationary cross-sectional dis-
tribution of wealth, for some questions it is convenient to characterize this distribution analytically.
For example, doing so will clarify the interaction between belief heterogeneity and wealth inequal-
ity. We shall also see that learning induced inequality produces a right-tail Pareto exponent that
is smaller in absolute value than without learning, and we can interpret this exponent in terms of
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the model’s underlying parameters. Analytical characterization of the cross-sectional distribution of
wealth and beliefs can be done by studying the properties of the Kolmogorov-Fokker-Planck (KFP)
equation. Although the KFP equation can be used to study the transition dynamics of inequality,
here I focus on stationary distributions.17

We begin by collecting together the stochastic differential equations describing an individual’s
wealth an beliefs.

Proposition 3.5.3. Let x = log (w). To an O(θ) approximation, each agent’s states evolves accord-
ing to the diffusion dx

dµ̂

dγ

 =

 a− 1
2c

2 + θ(b− cd)ex
γ(µ−µ̂)
β2σ2 [β2 + 2θex]
−γ2( 1

σ2 + 2θex
β2σ2 )

 dt+

 c+ θdex 0 0
γ
σ

√
2θexγ
βσ 0

0 0 0


 dB

dBy

0

 (3.34)

Let f(x, µ̂, γ) denote the stationary cross-sectional distribution of (log) wealth and beliefs. It obeys
the following KFP partial differential equation (subscripts denote partial derivatives)

0 = f

[
3γ
σ2 − δ + θex( 6γ

β2σ2 + λγ2

σ2 + 2cd− b)
]

+ fx

[
1
2c

2 − a+ γ

σ
cµ̂ + θex(3cd− b+ λγ2

σ2 )
]

+fµ̂
[
γ(µ̂− µ)

σ2 + θex
(

2γ(µ̂− µ)
β2σ2 + γd

σ

)]
+ fγγ

2
(

1
σ2 + 2θex

β2σ2

)
+
(

1
2c

2 + θexcd

)
fxx

+1
2fµ̂µ̂

(
γ2

σ2 + 2θexγ2

β2σ2

)
+ (c+ θexd)γ

σ
fxµ̂ + δζ(X −X0) (3.35)

where X = [x, µ̂, γ]T represents the state vector, and X0 = [x0, µ0, γ0]T represents initial (log) wealth
and beliefs at birth. The function ζ(.) is a Dirac delta function.

Proof. See Appendix C.5.

A mere glance at eq. (3.35) will send shivers down the spine of anyone who has tried to solve
PDEs. Although it is linear, the coefficients are complicated functions of the state, which rules out a
transform function approach. The key to making analytical headway here is to notice that the bottom
two equations in (3.34), describing the evolution of beliefs, are scaled by the conditional variance, γ.
Moreover, we know γ is monotonically decreasing, so that if γ0 is small, γ remains small. This means
that we can use time-scale separation methods to effectively decouple the evolution of wealth from
the evolution of beliefs. Since x is ‘fast’ and (µ̂, γ) are ‘slow’, we first characterize the x dynamics
while keeping beliefs fixed. Next, we use the implied stationary distribution of x (which depends on
(µ̂, γ)) to average over the wealth dependence in the equations describing beliefs. Finally, we can
substitute the resulting stationary distribution of beliefs back into the conditional distribution for x
to get the stationary marginal distribution of wealth.18

In other words, remember the solution of the (steady state) KFP equation gives us the stationary
joint distribution of wealth and beliefs. Our averaging solution strategy is based on decomposing

17 Gabaix, Lasry, Lions, and Moll (2016) focus on transition dynamics. Kasa and Lei (2017) use the
time-dependent KFP equation to argue that ambiguity accelerates transition dynamics.

18 ? provide a good textbook description of averaging and time-scale separation methods.
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this joint distribution into the product of a conditional and a marginal,

f(x, µ̂, γ) = f1(x|µ̂, γ)f2(µ̂, γ)

The conditional density f1 is described by a nonlinear ODE, which can be solved using an O(θ)
perturbation approximation. In general, the marginal distribution of beliefs would be difficult to
handle, since beliefs interact with wealth. However, when beliefs are relatively ‘slow’, we can use
averaging to obtain a simpler 2-dimensional PDE for (µ̂, γ) which can again be solved relatively
easily using an O(θ) perturbation approximation.

Yet another way of describing this solution strategy can be seen by looking directly at the KFP
equation in (5.35). Notice that when γ = 0 all terms involving partials of µ̂ and γ disappear. Hence,
to an O(γ) approximation, we can view µ̂ and γ as constants. Hence, we can describe our time-scale
separation strategy as an O(γ) perturbation approximation,

Proposition 3.5.4. To an O(γ, θ) approximation, the stationary distribution of x(> 0) is

f1(x|µ̂, γ) = A0(µ̂, γ)eφ(µ̂,γ)x + θA1(µ̂, γ)e[1+φ(µ̂,γ)]x (3.36)

where the normalizing constants (A0, A1) are chosen to maintain continuity at x = 0 and ensure
adding up,

∫
f1 = 1. The exponent φ(µ̂, γ) is the negative root of the quadratic 1

2c
2φ2 − âφ− δ = 0,

where â ≡ a− 1
2c

2.

Proof. See Appendix C.6.

Several points are worth noting here. First, since we are only interested in top wealth shares, this
result only characterizes the distribution for x > 0. However, a completely analogous and symmetric
result applies for x < 0. Second, remember that (µ̂, γ) are being treated as fixed parameters. The
notation here reminds us that the Pareto exponents and normalizing constants depend on these
slowly varying parameters. To fully characterize the distribution over long time-scales, we need
the distribution of beliefs. Third, notice that when learning is exogenous (θ = 0) the distribution
is exactly Pareto, with an exponent that solves the same sort of quadratic that applies in the
geometric Brownian motion case. Still, this exponent depends on (µ̂, γ) since beliefs influence the
portfolio allocation, which influences the drift and volatility of wealth. Finally, and most importantly,
notice that when learning is endogenous (θ > 0), the distribution of wealth is only approximately
Pareto, with an extra component that dies out more slowly. Asymptotically, for large x, this piece
will dominate top wealth shares, and we obtain

Corollary 3.5.5. To an O(γ, θ) approximation, endogenous information increases top wealth shares.

Proof. This follows simply from the fact that |φ+ 1| < |φ|.

We can now turn to the distribution of beliefs. When doing this, it is convenient to define the
following linear operator

L[h] =
(

3γ
σ2 − δ

)
h+ γ

σ2 (µ̂− µ)hµ̂ + γ2

σ
hγ + 1

2
γ2

σ2hµ̂µ̂ (3.37)

To an engineer, this is a ‘diffusion operator’, with source and convection terms. This is useful for us,
since learning and diffusion are inverses of each other. In particular, when θ = 0, the evolution of
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beliefs satisfies the PDE, ht = L[h], plus appropriate delta functions capturing the prior. Stationary
beliefs are then the solution of L[h] = 0.

Lemma 3.5.6. When θ = 0 the stationary cross-sectional distribution of beliefs is

h(µ̂, γ) ≡ N IG(µ̂, γ) = 1√
2πσγ3

exp
[
− (µ̂− µ)2

2γ − δσ2

γ

]
(3.38)

Proof. Take derivatives and substitute into eq. (3.37).

The stationary joint density of beliefs is the product of a normal distribution (i.e., a ‘heat kernel’),
and an inverse gamma density. The notation N IG is used as a mnemonic for this. It is the product
of two separate densities because when θ = 0, the conditional variance for an individual agent is
deterministic, and evolves independently from the conditional mean µ̂. The stationary cross-sectional
conditional variance reflects the balancing of individual learning with exponential lifetimes. In terms
of γ, this generates an inverse-gamma density.

Of course, when θ 6= 0, wealth influences beliefs, so in principle we need to account for this.
However, since wealth evolves on a faster time-scale, we can simply average out this dependence.
The details are relegated to the Appendix C.7.

Proposition 3.5.7. To an O(γ, θ) approximation, the stationary cross-sectional distribution of
beliefs is

f2(µ̂, γ) = B0N
IG(µ̂, γ) + θB1G(µ̂, γ) (3.39)

where (B0, B1) are normalizing constants, and G(µ̂, γ) is a function defined in the Appendix C.7.

Proof. See Appendix C.7.

The process of averaging over x is reflected in the properties of the G(µ̂, γ) function. If we
let ψ(µ̂, γ) = Eex, where expectations are computed with respect to the stationary conditional
distribution derived in Proposition 3, then G depends on ψµ̂ and ψγ . These determine how changes
in beliefs affect mean wealth.

Finally, by combining the conditional distribution of x derived in Proposition 3.5.4 with the
marginal distribution for beliefs derived in Proposition 3.5.7, we get the following characterization
of the marginal distribution of (log) wealth

Proposition 3.5.8. To an O(γ, θ) approximation, the stationary cross-sectional marginal distribu-
tion of (log) wealth is (for x > 0)

Λ(x) =
∫ γ0

0

∫ ∞
−∞

f1(x|µ̂, γ)f2(µ̂, γ)dµ̂dγ (3.40)

=
∫ γ0

0

∫ ∞
−∞

{
A0B0e

φx ·N IG(µ̂, γ) + θ
[
A0B1e

φx ·G(µ̂, γ) +A1B0e
(φ+1)x ·N IG(µ̂, γ)

]}
dµ̂dγ

where for notational convenience the dependence of φ and (Ai, Bi) on (µ̂, γ) has been suppressed.

Proof. By direct substitution.

As long as we confine our attention to top wealth shares, we can focus on the x coefficients in the
integrand. They are nonlinear functions of (µ̂, γ). Existence of a well defined distribution requires
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φ < −1. By inspection, the dominating term will be the last one. We can approximate this around
(µ̂, γ) = (µ, 0),

(φ+ 1)x ≈ φ0x+ [1 + φµ̂(µ̂− µ) + .5φµ̂µ̂(µ̂− µ)2 + φγγ]x (3.41)

Note that φ0 is the coefficient in a standard scale independent random growth model without learn-
ing. Hence, to assess the impact of endogenous information and learning on top wealth shares, we
can focus on the term in brackets. It turns out that φµ̂µ̂ < 0, so that the bracket term is a concave
function of µ̂, with a unique maximum. As x → ∞, this maximum point will dominate the value
of the integral. Hence, for large x we can just focus on it. This can be formalized using ‘Laplace’s
Method’. Applying Laplace’s Method yields,

Corollary 3.5.9. For large x, the (right) tail Pareto exponent with learning, φL, is approximately

φL ≈ φ0 + (1 +
φ2
µ̂

2|φµ̂µ̂|
) ⇒ |φL| < |φ0|

Hence, endogenous information and learning increase top wealth shares.

Proof. See Appendix C.8.

Substituting the parameter values from Table 1 into the expression φ0 = â−
√
â2±2c2δ
c2 , where â =

a− c2

2 , we find φ0 = −1.49. This is the Pareto exponent without learning or endogenous information.
It implies a top 1% wealth share of 23.9%. Then, with learning and endogenous information, Corollary
5.5 implies φL = −0.43. One cannot easily translate this into an implied wealth share, since the
distribution is no longer Pareto, and this exponent pertains to an exponential that is scaled by the
small parameter θ. Still, such a small (absolute) value points to a high level of inequality.

3.6 Additional Evidence
The key mechanism in this paper is that wealthier households have more information, and this
information leads them to invest more in riskier, higher yielding assets. In this section I use data
from the hedge fund industry and the Survey of Consumer Finances (SCF) to lend support to this
mechanism.

3.6.1 Results

To empirically examine how wealth affects risk taking and the decision to pay for wealth management,
I use SCF data to run two regressions. Both regressions attempt to control for life-cycle effects and
demographic characteristics that are absent from my model. The first regresses the percentage of
wealth invested in risky assets on log wealth,
IV regression:

Percentagewealthinriskyassetsi =α+ β1logwealthi + β2agei + β3age
2
i

+
∑
s

β4sI(races) +
∑
s

β5sI(educations) + εi
(3.42)

A potential endogeneity problem arises here since the dependent variable is deflated by wealth,
which also appears as a regressor. In response, I use log wage income and log housing values as
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instruments for log wealth. Both are clearly correlated with wealth, but should be less correlated
with portfolio shares.

The second regression examines the link between wealth an information. I run a logit regression
of the probability of paying for wealth management on log wealth, again controlling for life-cycle
effects and demographics. Although in terms of my model it would be preferable to use the amount
spent on information as the dependent variable, rather than the 0/1 choice of paying for wealth
management, this data is not available. Logit regression:

Probabilityofdelegatingwealthi =α+ β1logwealthi + β2agei + β3age
2
i

+
∑
s

β4sI(races) +
∑
s

β5sI(educations) + εi
(3.43)

Table 2 displays the results from both regressions. All asset values are expressed in 2013 dollars,
and robust standard errors are used.

Table 3.2: Are the rich more likely to delegate wealth? Do they invest more in stocks?

(1983 p.stock) (2013 p.stock) (prob.delegate wealth(2013))

(1) (2) (3)

log wealth 6.084 (0.495) 8.280 (0.150) 1.337 (0.078)

Notice that in both 1983 and 2013 an increase in wealth produces a highly significant increase in
the share invested in risky assets. As predicted, the effect is larger in 2013. The dependent variable
has been scaled by 100, so a coefficient of 8.28 suggests that a 10% increase in wealth produces a
8.28 percentage point increase in the share invested in risky assets. This is a stronger effect than
implied by the benchmark parameterization of my model (see, e.g., Figure ??). The coefficient in
the logit regression suggests that in 2013 a 10% increase in wealth produces a highly significant 13%
increase in odds of paying for wealth management.

What does this increased risk taking and wealth delegation imply about rates of return on
wealth? To investigate this, I regress after tax and after fee private equity returns on log wealth
in both 1983 and 2013.19 Table 3.3 reports results of the following cross-sectional IV regression of
returns on log wealth, again controlling for individual household characteristics.

19The same endogeneity issue arises here, since only previous survey year income/profit and current survey
year market value of private equity are reported in the survey, but not previous survey year market value.
Therefore, if we define the dependent variable return on equity as the ratio of previous year income/profit
to current year market value, the denominator appears on both sides, which creates a potential bias of the
estimate. Again, log wage and log housing values are used as instruments.
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IV regression

Returnonequityi =α+ β1logwealthi + β2risktolerancei

+ β3agei +
∑
s

β4sI(years) +
∑
s

β5sI(educations) + εi
(3.44)

Table 3.3: Do the rich have higher returns on wealth?

ROR 1983(percent) ROR2013(percent)
(1) (2)

log wealth 3.350e-02 (8.038e-3) 4.049e-02 (2.589e-03)

Although the rich have always enjoyed higher returns, we can see the effect is stronger in 2013. In
1983, a 10% increase in wealth was associated with a 33.5 basis point increase in the rate of return.
In 2013, this same increase corresponded to a 40.49 basis point increase. Clearly, these estimates
overstate return differentials in the extreme tails of the distribution, where wealth can different by
several orders of magnitude.

Next, I turn to the Lipper Hedge fund dataset to examine the relationship between hedge fund
performance and their fee structures. We know wealthy investors are more likely to delegate their
wealth to these hedge funds, but how did they perform? Figure 3.14 compares the average annualized
after fee rate of return on investment in different hedge funds with a passive investment strategy of
holding the S&P 500 index. The red vertical line represents the annualized mean return of the S&P
500, and the histogram shows the distribution of average annualized returns for a sample of hedge
funds. The sample runs from 1977 January to 2015 January, which is a reasonable indicator of their
long-term performance. A common perception is that hedge fund performance has been declining,
with average performance even worse than holding a passive stock index. In the data, I do indeed
observe this pattern for the average hedge fund. However, if we look at the whole distribution of
these funds, more than 30% of them have superior after fee returns than holding a passive S&P 500
index.

Figure 3.14: Distribution of Hedge Fund ROR vs. S&P500
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Notes: This histogram plots the density of annualized rate of returns. The S&P500 historical
return data is taken from NYU Stern school (Aswath Damodaran’s website).

It is therefore of interest to identify those hedge funds that have superior returns. Hedge funds
differ substantially in terms their investment type, leverage ratio, lock up period, and high water
marks. Our focus is on the fee structure and return performance. A typical hedge fund usually
charges two types of fees: a management fee as a percentage of total wealth delegated to the fund,
and an incentive fee charged as a percentage of the return. I run the following random effects panel
regression to study the effect of these two fees on hedge fund monthly return performance.

TASS random-effect panel regression

RateofReturni,t =α+ β1incentivefeei,t + β2managementfeei.t + β3netassetvaluei,t

+ β4highwatermarki,t + β5lockupperiodi,t + β6averageleveragei,t

+
∑
s

β7sI(primarycategorys) +
∑
s

β8sI(years) + εi,t

(3.45)

Here a random effects model makes more sense than a fixed effect model because fees are typically
set at the inception date, and do not usually change over time. This makes it more reasonable in
understanding how heterogeneity of fees between different funds affects their return performance,
rather than how changes in fees within a fund affect its time-series return performance . For now,
let’s focus on the main results presented in Table 3.4.

Table 3.4: Do hedge fund fees affect hedge fund performance (all funds, annual)?

RoR(all years) RoR(before 2008) RoR(after 2008)

incentive fee 0.092 (0.016) 0.099(0.023) 0.087 (0.019)

The key result here is that better performance is associated with higher fees.20 This is consistent
with my model, which features a quadratic information cost. Improved return estimates can be
purchased, but the marginal cost is increasing.

3.7 Related Literature
As discussed earlier, this paper is a direct descendent of work by Arrow (1987), Benhabib, Bisin, and
Zhu (2016), and Turmuhambetova (2005). However, it can also be viewed as part of larger literature
attempting to incorporate endogenous information into macroeconomics and finance. This literature
is nicely summarized by Veldkamp (2011). However, there are a couple of important differences
between this recent literature and this paper. First, most of this literature focuses on either asset
pricing or portfolio choice. Asset pricing is not an issue here, since projects are private and returns
are (implicitly) generated by linear technologies. On the other hand, portfolio choice is important

20 Liang (1999) finds the same positive effect of incentive fees on return performance using Hedge Fund
Research data.
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here, but rather than being an end in itself, I use heterogeneous portfolio choice as an input to the
study of inequality. A second important difference is that this literature focuses on either rational
inattention or noisy rational expectations equilibria. In addition to the previously discussed work
of Kacperczyk, Nosal, and Stevens (2014), work by Van Nieuwerburgh and Veldkamp (2010) and
Batchuluun, Luo, and Young (2017) shows that rational inattention has interesting implications for
both asset pricing and portfolio choice, generally in the direction of discouraging risky investment and
diversification, and increasing risk premia. However, as noted by Sims (2006), rational inattention
is perhaps not a great fit to financial markets, where information is scarce and costly. Rather than
impose exogenous capacity constraints on agents, this paper views causality as going in the other
direction. Here wealth determines an agents ability to pay for information processing. Besides being
more plausible, viewing information as costly makes it easier to quantify. For example, Luo (2016)
finds that capacity constraints must be implausibly tight before rational inattention begins to exert
significant effects on portfolio choice.

Probably the most common approach to incorporating endogenous information into macroeco-
nomics and finance is to follow Grossman and Stiglitz (1980) and study a noisy rational expectations
environment. In fact, the extension by Verrecchia (1982) is quite similar to this paper, since he al-
lows agents to buy more precise return signals. However, these models are typically static, and so are
ill-suited to a quantitative analysis of inequality trends. They are static for a good reason. In these
models, agents invest in a common asset, and information is private. The focus of the analysis in
then on a difficult signal extraction problem from endogenously determined prices. Dynamic versions
of these models are notoriously difficult to solve ( Wang (1993)). This paper sidesteps this problem
entirely, by assuming investment projects are linear and agent specific. Signal extraction takes place,
but it only influences agent specific decisions, not market-clearing prices.21

Finally, this paper is related to recent work on ‘financial literacy’ and asset market participa-
tion.22 However, this literature focuses more on the left-tail of the distribution, as opposed to top
wealth shares. My paper shows why endogenous information leads the rich to get richer. In contrast,
the financial literacy literature helps explain why the poor stay poor.

3.8 Conclusion
Arguably the two dominant trends in the global economy in recent decades have been the explosive
growth in information technology, which has reduced the cost of information, and the widening gap
between rich and poor. This paper shows why these trends might be related. Perhaps surprisingly,
the model here suggests that when individuals can buy information, reduced information costs
can increase inequality. Increased access to information makes investment less risky for everyone,
which encourages everyone to take greater risks, which encourages growth. However, it encourages
wealthier individuals relatively more, and this exacerbates inequality. As Arrow (1987) surmised

21 Ziegler (2012) reviews a closely related, but distinct, literature on ‘heterogeneous beliefs’ based on
the assumption that agents have different priors. This literature might have interesting implications for
inequality, but it begs the question of why agents have different priors.

22Examples include Lusardi, Michaud, and Mitchell (2017), Vissing-Jorgensen (2003), Van Rooij,
Lusardi, and Alessie (2011), and Luo, Nie, and Wang (2017).
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long ago, information naturally lends itself to increasing returns, and when increasing returns are
combined with idiosyncratic shocks, wealth inequality emerges.

Some people argue that inequality isn’t necessarily a bad thing. What about in my model? Here
inequality emerges from a Pareto improving decrease in the cost of information. Since investment
projects are idiosyncratic, there is no sense in which the rich are benefiting at the expense of the poor.
If you want to make a case against inequality in my model, you must lay blame on the idiosyncratic
nature of investment. The right way to address inequality in my model is not by taxing information,
but by encouraging risk-sharing and the pooling of investment projects. ? develop a model in which
there are fixed costs of risk sharing. Their model generates a Kuznets Curve in the distribution
of wealth. At low levels of wealth, idiosyncratic shocks dominate, and inequality increases as the
economy develops. Once it becomes economical to pay the fixed cost, however, risk-sharing emerges
and inequality decreases. A similar dynamic would likely emerge in my model as well, if households
were allowed to pool risks. However, since my model features finite lifetimes and no secular growth
in per capita initial wealth, a fixed cost to risk sharing could actually exacerbate inequality, since
only the wealthy would find it advantageous to pool risks.23

There are (at least) two important avenues for future work. First, this paper has focused on
stationary distributions. However, recent work by Gabaix, Lasry, Lions, and Moll (2016) suggests
that the real challenge is to understand transition dynamics. Why has inequality grown so rapidly?
Transition dynamics could easily be studied here numerically, but the time-scale separation approach
I used to characterize the stationary distributions does not extend easily to transition dynamics.
Second, one might argue that the 1% get too much attention. Perhaps more important are the
bottom 50%, who for a variety of reasons that are outside my model, do not participate in financial
markets at all. It would be interesting to combine endogenous participation with both endogenous
information and endogenously determined prices. It seems possible that encouraging more market
participation, as is typically done in the ‘financial literacy’ literature, could actually backfire when
information is endogenous, since it encourages entry by relatively uninformed investors, who in
equilibrium end up losing money on average to the informed investors.

23 Favilukis (2013) shows that a fixed cost not only helps explain trends in inequality and market partic-
ipation, it also helps explain asset price dynamics.
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Appendix A

“Wait and See" Monetary Policy

This section contains a proof that the derivation contained in Section 4 holds when the value function
V only satisfies the Euler equations, or so called smooth pasting condition, rather than being C2,
i.e. twice differentiable with continuous second derivative. The difficulty is that the classical Itô’s
Lemma, and its corollary Dynkin’s Formula, are applicable only for C2-functions. A value function
V constructed via smooth pasting is clearly not C2 everywhere, in particular at points where the
pasting is done. On its state space R, the central bank’s value function V is only C1; differentiating
twice as was done in (12) in Section 4 might not make sense. Here we show that our results remain
true nevertheless. In addition to the current model, this formal argument is provided also with
a view towards extending our analysis to more general settings discussed in the Conclusion, such
as one where the central bank is allowed to switch between periods of continuous adjustment and
no adjustment, or is restricted by a zero lower bound, or faces a cost-push shock that is a more
general Lévy process with jumps, or a stochastic volatility model. In practice, our theorem is a
general verification theorem, i.e. one that provides a sufficient condition—the Euler equation—for
optimality.

We recall the following notation: For Rn-valued Itô diffusion zt with infinitesimal generator Lz and
a bounded domain W ⊂ Rn, consider the expectations operator f(z) 7→ Ez[

∫ τV
0 Lzf(zt)dt]1. If

Ez[τV ] < ∞ for all z ∈ W , then a finite measure, called the Green measure, can be defined on W
by2

∫
V

φ(z′)dµz(z′) = Ez[
∫ τV

0
φ(zt)dt], ∀φ ∈ C(W ).

In other words, the Green measure µz is the length of time that zt, given the initial state z, is expected
to spend in W . In our model, the W of interest is the conjectured inaction region (a, b) ⊂ R of the
central bank.

1The infinitesmal generator Lz of an Itô diffusion zt is the operator defined by, for f : Rn → R suffi-
ciently smooth, Lzf(z0) = lim∆t→

Ez0 [f(z∆t)]−f(z0)
∆t . For example, Lz of the cost-push shock dzt = θσdBt

is the second-order differential operator 1
2θ

2σ2 d2

dz2 . For a central bank with value function V , LzV (z0) =
1
2θ

2σ2V ′′(z0) is therefore the expected marginal change of option value V under the law of dzt with initial
state z0. This term, plus the flow cost, appears in the central bank’s first order condition Equation (13).

2See, for example, Øksendal (1985).
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If the differential operator Lz is uniformly elliptic onD, then for all z ∈ D, µz is absolutely continuous
with respect to Lebesgue measure, in which case we denote its density by dµz(x′) = G(z, z′)dz′. In
fact, one has3

G(z, z′) ∈ Lqloc(R
n), if q < 1 + n

2 ,

where Lqloc(Rn) denotes the Lebesgue space of functions with finite Lq-norm when restricted to
compact subsets.

As stated in Section 4, the central bank’s problem can be reduced to an optimal stopping problem.
Therefore we prove sufficiency of the Euler equation in terms of the general optimal stopping problem.
Let g : Rn → R be Borel-measurable. The problem is to find

V (z) = inf
τ
Ez[g(zτ )],

where infτ denotes the infimum over all stopping times. In our context, g is the central bank’s time
discounted value function plus total flow cost due to deviations driven by the cost-push shock.

Let V : Rn → R that satisfy the following conditions:

(i) There exists a region D ⊂ Rn with C1-boundary δD and V ∈ C2
b (Rn\δD).

(ii) h|D ≥ g|D. (Continuation)

(iii) Lzh = 0 on D where Lz is the infinitesimal generator of zt. (First order condition)

(iv) h|Rn−D = g|Rn−D and LXh ≤ 0 on Rn −D. (Non-continuation)

(v) h ∈ C1(Rn). (Euler equation/C1-smooth pasting condition)

Then V solves the optimal stopping problem, with the infimum being attained by the first exit time
of D.

Proof. Using Assumptions (i) (C1-boundary and C2 almost everywhere), and (v) (C1-pasting),
integration by parts shows that the second mixed partials δzizjh, defined almost everywhere (outside
δD), is the distributional second derivative of V .45

By the boundedness assumption on V (part of (i)) and existence of distribution derivatives, V lies
in the Lp-Sobolev space W 2,p for any p. Since C2(Rn) is dense in W 2,p, there exists a sequence
{fk} ⊂ C2(Rn) such that

3See Theorem 5.4 in Littman, Stampacchia, and Weinberger (1963).

4The notion of distributional derivative generalizes the classical derivative to tempered distributions, or
generalized functions (see Gel’fand and Vilenkin (2014)).

5Our proof strategy is as follows: First observe that V is C2 except on a set of measure zero, where smooth
pasting is applied. Its classical second derivative, defined almost everywhere, is in fact its distributional second
derivative. Use the Sobolev Embedding Theorem to argue that the distributional second derivative can be
well approximated by C2-functions. Apply Dynkin’s Formula to the approximating C2-sequence and show
that this is well-behaved with respect to taking appropriate limit.
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‖fk − h‖W 2,p → 0.

On the other hand, by the Sobolev Embedding Theorem, if p > n
2 ,

6

‖fk − h‖∞ → 0.

Now Dynkin’s Formula holds for each fk:

Ez[fk(zτ )] = fk(z) +
∫
V

Lzfk(z′)G(z, z′)dz′.

So
lim
k→∞

Ez[fk(zτ )] = lim
k→∞

fk(z) + lim
k→∞

∫
V

Lzfk(z′)G(z, z′)dz′.

Choose p > n
2 + 1, then its conjugate exponent q satisfies q < 1 + 2

n . The boundedness assumption
means that the Sobolev norm can be approximated by the uniform norm:

lim
k→∞

fk(z) = V (z)

As a by-product, the approximating sequence {fk} can be chosen as regular, in the sense of large p,
to accommodate possible singularities of the Green density: by choice of {fk},

‖Lzfk(z′)− LzV (z′)‖Lp → 0.

By Hölder’s inequality,

|
∫
V

Lzfk(z′)− LzV (z′)G(z, z′)dz′| ≤ ‖Lzfk(z′)− LzV (z′)‖Lp · ‖G(z, z′)‖Lq → 0.

(Strictly speaking, we have assumed D is compact, but this is without loss of generality). So, for all
z,

lim
k→∞

Ez[fk(zτ )] = V (z) +
∫
V

LzV (z′)G(z, z′)dz′.

By the Dominated Convergence Theorem,

Ez[V (zτ )] = lim
k→∞

Ez[fk(zτ )].

So we have that a Dynkin’s Formula holds for V :

Ez[V (zτ )] = V (z) +
∫
W

LzV (z′)G(z, z′)dz′.

6See, for example, Chapter 4 of ?.
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It follows that h is superharmonic locally on δD, therefore everywhere (see Dynkin (1965), p22).
This proves the theorem.
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Appendix B

Risk, Uncertainty and the
Dyanamics of Uncertainty

B.1 Proof of Proposition 2.3.1

After substituting the h policy function in eq. (2.6) into the HJB equation in eq. (2.5) we get

(ρ+ δ)V (w) = max
c,α

{
c1−γ

1− γ + [(r + α(µ− r))w − c]V ′(w) + 1
2α

2σ2w2V ′′(w)− 1
2εα

2σ2w2(V ′(w))2
}

(B.1)
Except for the last term multiplying ε, this is a standard Merton consumption/portfolio problem,
with a well known solution. Hence, this suggests a perturbation approximation around ε. To obtain
this, we posit

V (w) ≈ V 0(w) + εV 1(w)

Our goal is to solve for V 0(w) and V 1(w). With this approximation, a first-order approximation of
the c(w) policy function is

c(w) = V
− 1
γ

w

≈ [V 0
w + εV 1

w ]−
1
γ

≈
(
V 0
w

)− 1
γ − ε 1

γ

(
V 0
w

)− 1
γ−1

V 1
w (B.2)

≡ c0 + εc1

and a first-order approximation of the α(w) policy is

α(w) = − (µ− r)
σ2

[
Vw

w(Vww − εV 2
w)

]
≈ − (µ− r)

σ2

[
wV 0

w

w2V 0
ww

+ ε
wV 1

wV
0
ww − wV 0

w(V 1
ww − (V 0

w)2)
w2(V 0

ww)2

]
(B.3)

≡ α0 + εα1

Substituting these approximations into HJB equation in (B.1) gives us
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(ρ+ δ)[V 0 + εV 1] =
c1−γ0
1 − γ

+ εc−γ0 c1 + (V 0
w + εV 1

w)[(r + (α0 + εα1)(µ− r))w − (c0 + εc1)] +
1
2

(α0

+εα1)2σ2w2[V 0
ww + εV 1

ww] −
1
2
ε(α0 + εα1)2σ2w2(V 0

w + εV 1
w)2

Matching terms of equal order and dropping terms of order O(ε2) gives us

ε0 : (ρ+ δ)V 0 = c1−γ0
1− γ + V 0

w [(r + α0(µ− r))w − c0] + 1
2α

2
0σ

2w2V 0
ww

ε1 : (ρ+ δ)V 1 = c−γ0 c1 + V 1
w [(r + α0(µ− r))w − c0] + V 0

w [α1(µ− r)w − c1]

+ σ2w2[α0α1V
0
ww + α2

0V
1
ww]− 1

2α
2
0σ

2w2(V 0
w)2

Note this system is recursive. We can first solve the ε0 equation for V 0, and then substitute this
into the ε1 equation. Solving for V 0 just gives the Merton solution. In particular, we conjecture
V 0(w) = A

1−γw
1−γ . Note, this implies c0 = A−1/γw and α0 = (µ−r)

γσ2 . After canceling the common
w1−γ term we can solve for A. This produces the expression for A0 stated in Proposition 2.3.1.

To solve the ε1 equation we conjecture V 1(w) = B
ε w

ε, and try to solve for B and ε. From (A.26) and
(A.27), this guess implies c1 = −γ−1A−1/γ−1Bw2−γ and α1 = −

(
µ−r
σ2

) (A2+(γ−1)B
Aγ2

)
w1−γ . Note,

these now depend on w. Substituting these into the ε1 equation, we find that if ε = 2(1 − γ), we
can cancel out the terms in w and solve for B. Doing so produces the expression for A1 stated in
Proposition 2.3.1. �

B.2 Proof of Corollary 2.3.2

This follows immediately from the proof of Proposition 2.3.1. Here we fill in some of the details
omitted in the above proof. Substituting the expressions for V 0 and V 1 into the expression for α(w)
in eq. (B.3) gives

α(w) ≈ α0 − ε
(
µ− r
σ2

)[
−γA0A1w

−3γ −A0A1(1− 2γ)w−3γ +A3
0w
−3γ

γ2A2
0w
−2γ−1

]
= α0 − εα0

[
−γA1 − (1− 2γ)A1 +A2

0
γA0

]
w1−γ

One can readily verify this is the same expression as stated in Corollary 2.3.2. Next, substituting
the expressions for V 0 and V 1 into the expressions for c(w) in eq. (B.2) gives

c(w)
w

= A
−1/γ
0 − ε 1

γ

(
A
−1/γ−1
0 A1

)
w1−γ

This then implies the expression for s(w) = 1− [c(w)/w] stated in Corollary 2.3.2. �

B.3 Recursive Preferences I

The main text considers a traditional robust control problem with observable states where an agent
conditions on a given benchmark model, and then formulates policies that are robust to local un-
structured perturbations around this model. As noted by Hansen, Sargent, Turmuhambetova, and
Williams (2006), continuous-time versions of this problem are observationally equivalent to Duffie
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and Epstein’s (1992) Stochastic Differential Utility (SDU) model of recursive preferences. Hence,
risk aversion is not separately identified from ambiguity/uncertainty aversion.

This observational equivalence has sparked a more recent literature that attempts to distinguish risk
aversion from both ambiguity aversion and intertemporal substitution. Hansen and Sargent (2008,
chpts. 18 and 19) note that the key to separating risk aversion from ambiguity aversion is to introduce
hidden state variables, which the agent attempts to learn about. Early robust control methods were
criticized because they abstracted from learning. Ambiguity is then defined by distortions of the
agent’s estimates of the hidden states.1

Hidden states can be used to represent a wide range of unobservables. For example, time invariant
hidden states can index alternative models. Here we assume the hidden state is an unobserved,
potentially time-varying, mean investment return. In principle, we could allow the agent to be
uncertain about both the dynamics conditional on a particular mean growth rate, as well as the
mean itself. However, for our purposes it is sufficient to assume the agent is only uncertain about
the mean.2

Distorted beliefs about the hidden state can be interpreted from the perspective of the Klibanoff,
Marinacci, and Mukerji (2005) (KMM) model of smooth ambiguity aversion. In the KMM model an
agent prefers act f to act g if and only if

Eµφ(Eπu ◦ f) ≥ Eµφ(Eπu ◦ g)

where E is the expectation operator, π is a probability measure over outcomes conditional on a
model, and µ is a probability measure over models. Ambiguity aversion is characterized by the
properties of the φ function, while risk aversion is characterized by the properties of the u function.
If φ is concave, the agent is ambiguity averse. KMM refer to Eπ as ‘first-order beliefs’, while Eµ is
referred to as ‘second-order beliefs’. Note that when φ is nonlinear, the implicit compound lottery
defined by selecting a model with unknown parameters cannot be reduced to a single lottery over
a ‘hypermodel’, as in Bayesian decision theory, so the distinction between models and parameters
becomes important. Also note that from the perspective of smooth ambiguity aversion, evil agents
and entropy penalized drift distortions are just a device used to produce a particular distortion in
second-order beliefs about continuation values, i.e., where φ(V ) ≈ − exp(−εV ).

The original KMM model was static. Klibanoff, Marinacci, and Mukerji (2009) extend it to a re-
cursive, dynamic setting. However, their implicit aggregator is additive, so risk and intertemporal
substitution cannot be distinguished. In response, Hayashi and Miao (2011) propose a model of
generalized smooth ambiguity aversion by combining KMM with an Epstein-Zin aggregator. Unfor-
tunately, as noted by Skiadas (2013), this model does not extend to continuous-time with Brownian
information structures. Intuitively, first-order uncertainty (risk) is O(dt), whereas second-order un-
certainty (ambiguity) is O(dt2), and so it evaporates in the continuous-time limit. In response,
Hansen and Sargent (2011) propose a trick to retain ambiguity aversion, even as the sampling in-
terval shrinks to zero. In particular, they show that if the robustness/ambiguity-aversion parameter
is scaled by the sampling interval, then ambiguity aversion will persist in the limit. Intuitively, even
though second-order uncertainty becomes smaller and smaller as the sampling interval shrinks, be-
cause the agent effectively becomes more ambiguity averse at the same time, ambiguity continues
to matter.

1This definition of ambiguity aversion is based on the axiomatization of Ghirardato and Marinacci
(2002), which defines ambiguity aversion as deviations from subjective expected utility. Epstein (1999)
proposes an alternative definition based on deviations from probabilistic sophistication.

2In the language of Hansen and Sargent (2008, chpt. 18), we activate the T 2-operator by setting θ2 <∞,
while deactivating the T 1-operator by setting θ1 =∞. This is a subtle distinction, since at the end-of-the-day
they both produce drift distortions. However, they do this in different ways.
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In what follows we outline a heuristic combination of the discrete-time generalized KMM preferences
of Hayashi and Miao (2011) and the continuous-time scaling trick of Hansen and Sargent (2011).
As far as we know, there are no formal decision-theoretic foundations for such a combination, at
least not yet.

With recusive preferences, the agent’s problem becomes

Vt = max
c,α

min
h
Et

∫ ∞
t

f(cs, Vs)ds

where f(cs, Vs) is the (normalized) Duffie-Epstein aggregator,

f(c, V ) = ϕ(1− γ)V
[
log(c)− 1

1− γ log((1− γ)V )
]

and where for simplicity we’ve assumed the the elasticity of intertemporal substitution is unity. The
effective rate of time preference is ϕ = ρ + δ, and the coefficient of relative risk aversion is γ 6= 1.3
The budget constraint is the same as before

dw = {[r + α(µ− r)]w − c+ ασwh} dt+ ασwdB

The HJB equation is

0 = max
c,α

min
h

{
f(c, V ) + 1

2εh
2 + ([r + α(µ− r)]w − c+ ασwh)V ′(w) + +1

2α
2σ2w2V ′′(w)

}
Note that discounting is embodied in the properties of the aggregator. Also note that in contrast
to Bayesian learning models, where the drift is regarded as an unknown parameter and its current
estimate becomes a hedgeable state variable, here the drift is viewed as a control variable, which is
selected by the agent to produce a robust portfolio.

The first-order conditions for (α, h) are the same as before, while the first-order condition for c
becomes:

c = ϕ(1− γ)V
V ′(w)

If these are substituted into the HJB equation we get:

0 = f [c(V, V ′), V ] + (rw − c)V ′ − 1
2

(µ− r)2(V ′)2

[V ′′ − ε(V ′)2]σ2

Our goal is to compute the following first-order approximation

V (w) ≈ V 0(w) + εV 1(w)

By inspection, it is clear that when ε = 0 it is natural to guess

V 0(w) = Â0

1− γw
1−γ

3We could easily allow γ = 1 by slightly modifying the aggregator. However, this would be uninteresting,
since preferences would then collapse to additive form given that we’ve already assumed the elasticity of
intertemporal substitution is unity.
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Note that this implies c0 = ϕw and α0 = (µ − r)/γσ2. Substituting into the HJB equation and
cancelling out the common w1−γ term gives the following equation for Â0

0 = ϕ

[
log(ϕ)− 1

1− γ log(Â0)
]

+(r−ϕ)−1
2

(µ− r)2

γσ2 ⇒ Â0 = exp
{

(1− γ)
[

log(ϕ) + r − ϕ
ϕ
− 1

2
(µ− r)2

ϕγσ2

]}
Next, matching the O(ε) terms in the HJB equation yields the following ODE for V 1(w)

0 = ϕ(1−γ)
{
V

1
[

log(c0)−
1

1− γ
log((1− γ)V 0)

]
+ V

0
(
c1

c0
−

1
1− γ

V 1

V 0

)}
+(r−ϕ)wV 1

w−
1
2
α

2
0σ

2(wV 0
w)2+

1
2
σ

2
w

2[2α0α1V
0
ww+α2

0V
1
ww ]

where

c1 = ϕ(1− γ)V
1V 0
w − V 0V 1

w

(V 0
w)2

α1 = −γα0
wV 1

wV
0
ww − wV 0

w(V 1
ww − (V 0

w)2)
w2(V 0

ww)2

Note that the expression for α1 is the same as before. Also as before, note that the system is recursive,
with the above solutions for (V 0, c0, α0) becoming inputs into the V 1 ODE. If you stare at this ODE
long enough, you will see that a function of the following form will solve this equation

V 1(w) = Â1

ε
wε

where as before ε = 2(1− γ). Substituting in this guess, cancelling the common wε terms, and then
solving for Â1 gives

Â1 =
− 1

2α
2
0σ

2Â0

−γϕ log(ϕ) + (1− γ)(r − ϕ) + ϕγ
2(γ−1) − ϕ+ α2

0σ
2[ 1

2 (γ2 − 1) + (γ − 1)2]

From here, the analysis proceeds exactly as in the main text. We just need to replace (A0, A1) with
(Â0, Â1).The approximate saving rate now becomes

s(w) = 1− ϕ+ ε
ϕÂ1

2Â0
w1−γ

If γ > 1, then this is increasing in w as long as Â1 < 0, since Â0 > 0.

To examine the quantitative properties of the model with recursive preferences, we use the same
parameter values as those in Table 1, with three minor exceptions. First, since the model with
recursive preferences seems to be somewhat less sensitive to the robustness parameter, we increased
ε from 0.045 to 0.45. Second, we increased γ slightly from 1.31 to 1.5. Finally, we increased µ slightly,
from 5.86% to 5.95%. These parameter values remain consistent with available empirical estimates.
Figure B.1 displays the resulting portfolio shares and savings rates.
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Figure B.1: Policy functions
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The portfolio shares are similar to those in Figure 2.2, though wealth dependence is somewhat
weaker. The key difference here is the saving rate. Now it is increasing in wealth. However, as in
Figure 2.3, wealth dependence is very weak.

B.4 Proof of Proposition 2.4.1

Substituting the policy functions into the budget constraint gives

dw = [(r + α(w)(µ− r))w − c(w)]dt+ α(w)σwdB

where α(w) and c(w) are the approximate policy functions given in Corollary 2.3.2. Collecting terms,
individual wealth dynamics can be described

dw

w
= a(w; ε)dt+ b(w; ε)dB

where the drift coefficient is given by

a(w; ε) = r + (µ− r)2

γσ2 −A−1/γ
0 + ε

{
−γ2σ2α2

0[A2
0 + (γ − 1)A1)] + γA1A

−1/γ
0

γ2A0

}
w1−γ (B.4)

≡ ā0 + εā1w
1−γ

and the diffusion coefficient is given by

b(w; ε) = σα0 − ε
{
α0σγ

A2
0 + (γ − 1)A1

γ2A0

}
w1−γ (B.5)

≡ b0 + εb1w
1−γ

In a standard random growth model, these coefficients would be constant. Hence, the wealth de-
pendence here reflects the ‘scale dependence’ of our model. Next, let x = log(w) ≡ g(w) denote log
wealth. Ito’s lemma implies

dx = g′(w)dw + 1
2w

2b(w)2g′′(w)dt

= dw

w
− 1

2
(
b0 + εb1w

1−γ)2 dt
Substituting e(1−γ)x = w1−γ into the right-hand side and dropping O(ε2) terms gives

dx = [ā0 −
1
2b

2
0 + ε(ā1 − b0b1)e(1−γ)x]dt+ (b0 + εb1e

(1−γ)x)dB

Finally, defining a0 ≡ ā0 − 1
2b

2
0 and a1 = ā1 − b0b1 gives the result stated in Proposition 2.4.1. �

B.5 Proof of Proposition 2.4.4

For convenience, we start by reproducing the KFP equation in (2.14)

∂f

∂t
= −∂[(a0 + εa1e

(1−γ)x)f ]
∂x

+ 1
2
∂2[(b0 + εb1e

(1−γ)x)2f ]
∂x2 − δf + δζ0
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Evaluating the derivatives gives

∂f

∂t
= (−ax + b2x + bbxx)f + (2bbx − a)∂f

∂x
+ 1

2b
2 ∂

2f

∂x2 − δf + δζ0

where a(x) and b(x) are the drift and diffusion coefficients defined in equations (B.4) and (B.5) after
the change of variables w = ex. In general, these sorts of partial differential equations are not fun
to solve. However, this PDE is linear, which opens the door to transform methods. The first step is
to evaluate the derivatives of the a(x) and b(x) functions, and then drop the O(ε2) terms. Then we
take the Laplace transform of both sides, with x as the transform variable. When doing this we use
the following facts

L{∂f
∂t
} = ∂F (s)

∂t
L{∂f

∂x
} = sF (s) L{∂

2f

∂x2 } = s2F (s) L{eβxf} = F (s− β) L{ζ0} = 1

where L{f(x)} ≡ F (t, s) ≡
∫∞
−∞ f(t, x)e−sxdx defines the (two-sided) Laplace transform. The first

result follows from interchanging differentiation and integration, while the second and third results
follow from integration by parts (using the boundary conditions f(−∞) = f(∞) = 0). The fourth
result is called the ‘shift theorem’, and follows from the change of variable s→ s−β. The last result
is more subtle. The fact that the Laplace transform of a delta function is just equal to 1 uses results
from the theory of generalized functions.4

Following these steps produces equation (2.15) in the text, which we repeat here for convenience

∂F

∂t
= Λ(s)F (t, s) + εΦ(s− β)F (t, s− β) + δ (B.6)

where β ≡ 1− γ and

Λ(s) = 1
2b

2
0s

2 − a0s− δ

Φ(s) = b0b1s
2 + (2b0b1β − a1)s+ β(b0b1β − a1)

To solve equation (B.6) we use the approximation F (t, s− β) ≈ F (t, s)− β ∂F∂s . This gives us

Ft = Λ(s)F (t, s) + εΦ(s− β) [F (t, s)− βFs] + δ (B.7)

where subscripts denote partial derivatives. Note that we are now back to solving a PDE. We solve
this using a standard guess-and-verify/separation-of-variables strategy. In particular, we posit a
solution of the following form

F (t, s) = H(t)G(s) + F∞(s)

Loosely speaking, H(t) captures transition dynamics, G(s) captures initial and boundary conditions,
and F∞(s) captures the new stationary distribution. Here we focus on this last component. Plugging
this guess into (B.7) gives

H ′G = Λ[HG] + εΦ[HG− βHG′] + {[Λ + εΦ]F∞ − εΦβF ′∞ + δ} (B.8)

where for convenience we have suppressed function arguments. The key point to notice here is that
the last term in parentheses is independent of time, so we can solve it separately. Doing so gives us the
robust stationary distribution. Another important observation here is that ε multiplies the derivative
F ′∞. This ‘singular perturbation’ term makes conventional first-order perturbation approximation
unreliable. To deal with this term we employ the change of variables ŝ = s/ε. With this change of

4 Kaplan (1962) provides a good discussion of Laplace transform methods.
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variable we can write the ODE in parentheses as follows

F ′∞ = 1
β

(
ε+ Λ

Φ

)
F∞ + δ

βΦ

We can eliminate the nonhomogeneous term’s dependence on ŝ by defining Q(ŝ) = Φ(ŝ− β)F∞(ŝ),
which implies F ′∞ = Q′ − (Φ′/Φ)Q. This delivers the following ODE

Q′ =
(
ε+ Λ + βΦ′

βΦ

)
Q+ δ

β

The general solution of this linear ODE is the sum of a particular solution to the nonhomogeneous
equation and the solution of the homogeneous equation. However, we can ignore the homogeneous
solution, since we know that a stationary distribution does not exist when δ = 0.5 Stated in terms
of F∞, the particular solution is

F∞(ŝ) = −δ
ε+ Λ(ŝ) + βΦ′(ŝ− β)

After expanding the denominator polynomial into partial fractions we obtain the result stated in
Proposition 2.4.4. To prove the correspondence principle stated in Corollary 2.4.5 we can just reverse
the change of variables back to s. Let (R1, R2) denote the two roots of F (ŝ), (φ1, φ2) denote the
roots of Λ(s), and (r1, r2) denote the roots of Φ(s). After substituting s/ε for ŝ and then multiplying
numerator and denominator by ε2 we get

ε2

(s− εR1)(s− εR2) = −ε2δ

ε3 + (s− εφ1)(s− εφ2) + εβ[s− εr1 + s− εr2]

Taking limits we obtain limε→0(R1, R2) = (φ1, φ2), which is the stated correspondence principle. �

B.6 Proof of Proposition 2.5.1

This follows directly from the proof of Proposition 2.4.4. Having solved for the stationary distribu-
tion, F∞, the PDE in eq. (B.8) becomes

F̃t = [Λ(s) + εΦ(s− β)]F̃ − εβΦ(s− β)(G′/G)F̃

where F̃ ≡ HG. Assuming O(β) = O(ε), the last term can be dropped since it is second-order. �

B.7 Recursive Preferences II

To examine inequality dynamics with recursive preferences we just need to replace the expressions for
(A0, A1) in the main text with the expressions for (Â0, Â1) derived in Appendix B.3, and then replace

5Also note that since ŝ = s/ε, as ε → 0 we know ŝ → ∞. From the ‘initial value theorem’ we know
lims→∞ F (s) = 0 since f(x) is bounded at the switch point.
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Figure B.2: Distribution and convergence rate

the expressions for (a0, a1) stated in Proposition 4.1 with the following expressions for (â0, â1):

â0 = r − ϕ+ γσ2α2
0 −

1
2b

2
0

â1 =
1
2γ

2Â1 − (σγα0)2(Â2
0 + (γ − 1)Â1)

Â0γ2
− b0b1

We can then follow the exact same approximation strategy as outlined in the main text. Figure B.2
displays the resulting stationary distributions and convergence rates. We use the same parameter
values as those in Table 1, with the exceptions noted in Appendix B.3. In particular, we increase ε
from 0.045 to 0.45, we increase γ slightly from 1.31 to 1.5, and increase µ slightly, from 5.86% to
5.95%.

Given the higher value of ε and the reinforcing effect of the saving rate, it is perhaps not too
surprising that we now see a greater increase in inequality. The top 1% wealth share increases from
13.1% to 39.1%. Although 39.1% is very close to current estimates, 13.1% is somewhat smaller than
its 1980 value. Finally, and most importantly, we find that robust convergence rates are even higher
than those reported in the main text. At the mean level of wealth, the nonrobust convergence rate is
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1.6%, close to its original value of 1.14%. However, now the robust convergence rate becomes 6.4%,
more than 200 basis points higher than before, and four times greater than its nonrobust value.

One concern with using a higher value of ε is that it induces an overly pessimistic drift distortion and
implausibly small detection error probability. However, we find that ε = 0.45 still produces maximal
drift distortions around 1%, and detection error probabilities above 40%.

93



Appendix C

Information and Inequality

C.1 Value function with log utility

When α = θ = 0, the HJB equation becomes

βV = max
c,π

[
log (c) + [rw + π(µ̂− r)w − c]Vw + 1

2Vwwπ
2σ2w2 + 1

2
γ2

σ2Vµ̂µ̂ −
γ2

σ2Vγ

]
(C.1)

With log utility, we know c = βw and π = (µ̂− r)/σ2 as in the Merton consumption portfolio choice
problem. Comparing the above HJB equation with the HJB with general risk aversion coefficient
α, the term Vwµ̂ is omitted, because the changes in estimate µ̂ doesn’t affect affect a log agent’s
portfolio decision, thus has zero effect on his marginal utility of wealth. If we assume β = r 1, we
can guess the following wealth-separable functional form for the value function

V 00 = A log (w) + g0(µ̂, γ) +K (C.2)

Substituting this guess into the original HJB equation (C.1), we find that A = 1/β, K = log (β)/β,
and that g0(µ̂, γ) solves the following 2D PDE

g0 = 1
2β2

(µ̂− r)2

σ2 + γ2

βσ2

(
1
2g

0
µ̂µ̂ − g0

γ

)
(C.3)

Let’s further guess that

g0(µ̂, γ) = 1
2β2

(µ̂− r)2

σ2 + g̃0(µ̂, γ) (C.4)

This implies that g̃ satisfies the PDE

g̃0
γ = 1

2 g̃
0
µµ + 1

2β2σ2 −
βσ2

γ2 g̃0 (C.5)

1This assumption is used throughout the rest of the paper.
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The boundary condition requires that g̃0(µ̂, 0) = 0, because the value function converges to its no-
learning counterpart as long as learning finishes (i.e: γ = 0). We can eliminate the last term using
the change of variables

g̃0 = eβσ
2/γw(µ̂, γ) (C.6)

which gives us the following heat equation for w

wγ = 1
2wµ̂µ̂ + 1

2β2σ2 e
−βσ2/γ (C.7)

The above equation resembles a heat equation with a source term, and has the following solution

w(µ̂, γ) = 1
2β2σ2

∫ γ

0

∫ ∞
−∞

1√
2π(γ − s)

exp
(
−(µ̂− y)2

2(γ − s)

)
e−βσ

2/sdyds

= 1
2β2σ2

∫ γ

0
e−βσ

2/s

[
1√

2π(γ − s)
exp

(
−(µ̂− y)2

2(γ − s)

)
dy

]
ds

= 1
2β2σ2

∫ γ

0
e−βσ

2/sds

(C.8)

Unwinding the change of variables gives us

g0(µ̂, γ) = 1
2β2

(µ̂− r)2

σ2 + eβσ
2/γ

(
1

2β2σ2

∫ γ

0
e−βσ

2/sds

)
(C.9)

Finally, the value function follows

V 00(w, µ̂, γ) = 1
β

log (w) + log (β)
β

+ 1
2β2σ2

[
(µ̂− r)2 + eβσ

2/γ

∫ γ

0
e−βσ

2/sds

]
(C.10)

The last term can be expressed in terms of the exponential integral function, i.e:

eβσ
2/γ

∫ γ

0
e−βσ

2/sds = βσ2eβσ
2/γEi(−βσ2/γ) + γ (C.11)

where the exponential integral function is defined as

Ei(−βσ2/γ) = −
∫ ∞
βσ2/γ

e−s

s
ds (C.12)

By exploiting the relationship between exponential integral equation and incomplete gamma func-
tion, Ei(−βσ2/γ) = −Γ(0, βσ2/γ), we could be ready for further policy function approximation.

C.2 Perturbation Approximation

Proof. Let’s posit the following value function, consisting of a first order expansion in θ around
θ = 0.

V (w, µ̂, γ) = 1
β

[
[weg(µ̂,γ)]α − 1

α
+ θ( [wef(µ̂,γ)]α+1 − 1

α+ 1 + C)
]

(C.13)
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Further, let’s do a first order expansion of the solution of g(µ̂, γ) and f(µ̂, γ) around α = 0 2, i.e:

g = g0 + αg1 + O(α2) (C.14)

f = f0 + αf1 + O(α2) (C.15)

Next, substitute this functional form into the policy functions. To an O(α,θ) approximation, one
gets the approximate policy functions

c∗ ≈ βw[1− α(g0 − log β)− θwef
0
] (C.16)

π∗ ≈ 1
σ2 [(µ̂− r) + α(g0

µγ + (µ̂− r)) + θwef
0
(µ̂− r + f0

µγ)] (C.17)

κ∗ ≈ θγw(g0
µµ − 2g0

γ) (C.18)

As it turns out, we do not need to fully solve functions g(µ̂, γ) and f(µ̂, γ) to get the policy functions.
All we need to solve are g0 and f0. Note that

lim
α→0,θ→0

V (w, µ̂, γ) = 1
β

(logw + g0(µ̂, γ)) (C.19)

which is the same g0(µ̂, γ) in eq. (C.9).

One can further approximate the solution:

g0 = log β + 1
2βσ2 [(µ̂− r)2 + γ − βσ2eβσ

2/γΓ(0, βσ2/γ)] ≈ log β + 1
2βσ2 [(µ̂− r)2 + γ2

βσ2 ] (C.20)

The approximation takes a second order Taylor expansion of g0 around γ = 0.

Next, let’s solve for the f0(µ̂, γ) term using perturbation. To do this, we first plug in policy functions
(C.16), (C.17), (C.18) into the HJB equation, and get

βV = V
α
α−1
w − 1
α

+ Vw[rw − (µ̂− r)wVw(µ̂− r) + Vwµγ

Vwwwσ2 − V
1

α−1
w − θ

2(Vµµ − 2Vγ
Vw

γ)2]

+ 1
2Vwwσ

2
(
Vw(µ̂− r) + Vwµγ

Vwwσ2

)2
+ (1

2Vµµ − Vγ)γ2( 1
σ2 + 2θVµµ − 2Vγ

Vw
)

− Vwµγ(Vw(µ̂− r) + Vwµγ

Vwwσ2 )

(C.21)

Note that eq. (C.13) can be rewritten into

V = V 0 + θV 1 (C.22)

where V 0 denotes the solution when θ = 0 and V 1 is the value function’s derivative w.r.t θ when
θ = 0. I take derivative of eq. (C.21) w.r.t θ, and evaluate it at θ = 0. After some algebra, we get

2Similar perturbation techniques are used in robust portfolio problems for a CRRA agent in Trojani
and Vanini (2002).
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βV 1 = wV 1
w

(
(µ̂− r)2

(1− α)σ2 + αgµγ(µ̂− r)
σ2(1− α) − ( 1

β
)

1
α−1 e

α
α−1 g

)
+ w2V 1

ww

(
(µ̂− r)2

2σ2(1− α)2 +
γ2α2g2

µ

2σ2(1− α)2 + γ(µ̂− r)αgµ
σ2(1− α)2

)

+ wV 1
wµ

(
γ2αgµ

σ2(1− α) + γ(µ̂− r)
σ2(1− α)

)
+ V 1

µµ

γ2

2σ2

− V 1
γ

γ2

σ2 + 1
2β e

αg
(
(gµµ + αg2

µ − 2gγ)γ
)2
wα+1

(C.23)

Note that the non-homogeneous term is proportional to wα+1. Therefore, the previous conjecture of
the functional form on V 1 is confirmed. Evaluating the above at α = 0 and simplifying, we get

β[wef
0

+ C − 1] = wef
0
(

(µ̂− r)2

σ2 − β
)

+ wf0
µe
f0 γ(µ̂− r)

σ2

+ γ2

σ2

(
1
2e

f0
(f0
µµ + (f0

µ)2)− f0
γe
f0
)
w + γ2

2 w
(
g0
µµ − 2g0

γ)2
(C.24)

By matching the constant term and the wef0 terms, we get

C = 1 (C.25)

and a PDE that f0(µ̂, γ) needs to satisfy

2βσ2 = (µ̂− r)2 + (µ̂− r)γf0
µ + γ2

2

[
f0
µµ + (f0

µ)2 − 2f0
γ + σ2(g0

µµ − 2g0
γ)2e−f

0
]

(C.26)

Let f0(µ̂, γ) = log (p(µ̂, γ)), s.t. p(µ̂, γ) needs to satisfy

2βσ2p = (µ̂− r)2p+ (µ̂− r)γpµ + γ2

2 [pµµ − 2pγ + σ2(g0
µµ − 2g0

γ)2] (C.27)

There is no direct analytic solution to the above. However, one can approximate it when estimation
risk is small. Guess a second order approximate solution s.t:

p(µ̂, γ) ≈ D0 +D1(µ̂− µ) +D2γ + 1
2D3(µ̂− µ)2 + 1

2D4γ
2 +D5(µ̂− µ)γ (C.28)

Plug back into the PDE (C.27) and match coefficients, we will get D0 = D1 = D2 = D3 = D5 = 0,
and that D4 =

[
β2σ2[2βσ2 − (µ− r)2]

]−1. Let D4 = λ, the complete solution of f0 is given by

f0(µ̂, γ) ≈ log (1
2λγ

2) (C.29)

C.3 Proof of Corollary 3.4.2

Proof. It is directly observed from eq. (3.24) how κ varies with θ, w, σ and γ. Recall that we have
β = ρ + δ. Therefore, κ decreases with both ρ and δ. Finally, let x = βσ2/γ. With the small γ
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assumption, we have when γ → 0, x → ∞. Since Γ(a,x)
xa−1e−x → 1 as x → ∞. (See Abramowitz and

Stegun (1964)). From equation 3.24, we have limγ→0 κ = 0.

C.4 Proof of Lemma 3.5.1

Proof. Combining policy functions (3.22), (3.23) and (3.24) and individual wealth dynamics (3.14),
one can write down each agents’ perceived law of motion for wealth as

dw = µ̂(w)wdt+ σ(w)wd̂B (C.30)

Note that this is the agent’s perceived law of motion of his wealth. To study wealth distribution, it
is useful to relate agents’ perceived law of motion to actual law of motion using, again, the Girsanov
theorem. Recall that d̂B = dB − (µ̂−µ)

σ dt. Therefore,

µ(w) = µ̂(w)− σ(w) (µ̂− µ)
σ

= (µ̂− r)
σ2

[
(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2 + θw

2 λ(µ̂− r)γ2
]

+ α

2σ2

[
(µ̂− r)2 + γ2

βσ2

]
+ θβw

2 λγ2 − θwγ2

2β4σ4

(C.31)

and that
σ(w) = 1

σ
[(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2 + 1

2θwλ(µ̂− r)γ2] (C.32)

To simplify, one would see
µ(w) = a(µ̂, γ) + θwb(µ̂, γ) (C.33)

σ(w) = c(µ̂, γ) + θwd(µ̂, γ) (C.34)

s.t:
a(µ̂, γ) = (µ− r)

σ2

[
(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2

]
+ α

2σ2

[
(µ̂− r)2 + γ2

βσ2

]
(C.35)

b(µ̂, γ) = λγ2(µ− r)(µ̂− r)
2σ2 + β

2 λγ
2 − γ2

2β4σ4 (C.36)

c(µ̂, γ) = 1
σ

[
(1 + α)(µ̂− r) + α

(µ̂− r)γ
βσ2

]
(C.37)

d(µ̂, γ) = 1
2σλ(µ̂− r)γ2 (C.38)

98



C.5 Proof of Proposition 3.5.3

Proof. Let x = logw. Applying Ito’s lemma, one can then write the log wealth dynamics as

dx = [a+ θbex − 1
2(c+ θd̂ex)2]dt+ (c+ θd̂ex)dB (C.39)

Dropping the second order term of θ, we can simplify the law of motion to

dx = [(a− 1
2c

2) + θex(b− cd̂)]dt+ [c+ θd̂ex]dB (C.40)

Therefore, the system can be written as dx
dµ̂
dγ

 =

 a− 1
2c

2 + θ(b− cd̂)ex
γ(µ−µ̂)
β2σ2 [β2 + 2θex]
−γ2( 1

σ2 + 2θex
β2σ2 )

 dt+

 c+ θd̂ex 0 0
γ
σ

√
2θexγ
βσ 0

0 0 0


 dB
dBy

0

 (C.41)

The above state dynamics can be written in the matrix form

dX = G(X)dt+ Σ(X)d̄B (C.42)

The stationary KFP equation is thus written

0 = −
3∑
i=1

∂

∂Xi
[Gi(X)f ] + 1

2

3∑
i=1

3∑
j=1

∂2

∂Xi∂Xj

[(
σ(X)σT (X)

)
i,j
f
]
− δf + δζ(X −X0) (C.43)

where X = [x, µ̂, γ]T represents the vector of the state variables, X0 = [x0, µ0, γ0]T represents initial
endowment and beliefs at the mass point, and that ζ(.) represents the Dirac delta function.

C.6 Proof of Proposition 3.5.4

Proof. We can write f1(x|µ̂, γ) into

f1(x|µ̂, γ) = f0(x|µ̂, γ) + θf1(x|µ̂, γ) (C.44)

where f0(x|µ̂, γ) solves the following quadratic function

δf0 = −âf0
x + 1

2c
2f0
xx + δζ(x0) (C.45)

where ζ(x0) is the Dirac delta function at the mass point x0 where x0 = 0. Therefore, the solution
becomes

f0(x|µ̂, γ) =
{
A0e

φ1x;x > 0
Ã0e

φ2x;x < 0

where coefficients A0 and Ã0 are determined by integrating the distribution to one, and the continuity
condition at x0 = 0.
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Next, combining eq. (3.35) and the solution of f0(x|µ̂, γ), we know that the PDE for f1 is

δf1 = −âf1
x + 1

2c
2f1
xx + ex

[
(cd̂− b̂)f0 + (2cd̂− b̂)f0

x + cd̂f0
xx

]
+ex(φ+1)

[
(cd̂− b̂) + φ(2cd̂− b̂) + φ(φ− 1)cd̂

]
+ δζ(0)

(C.46)

where â ≡ a− 1
2c

2 and b̂ ≡ b− cd̂. The homogeneous part of the solution is the same as for f0. The
particular solution is A1e

(φ+1)x where A1 must solve

δA1 = −â(φ+ 1)A1 + 1
2c

2(φ+ 1)φA1 +A0

[
(cd̂− b̂) + φ(2cd̂− b̂) + φ(φ− 1)cd̂

]
(C.47)

This gives

A1 =
A0

[
(cd̂− b̂) + φ(2cd̂− b̂) + φ(φ− 1)cd̂

]
δ + â(φ+ 1)− 1

2c
2(φ+ 1)φ

(C.48)

C.7 Proof of Proposition 3.5.7

Proof. The "fast" dynamics of x can be averaged out by

ψ(µ̂, γ) ≡ Eex =
∫ ∞

0
ex
[
A0e

φx + θA1e
(φ+1)x

]
dx

= − 1
φ+ 1A0 − θA1

1
φ+ 2

(C.49)

Since O(θ) term is of second order, we can approximate the above as

ψ(µ̂, γ) ≈ −A0

φ+ 1 (C.50)

Let q(µ̂, γ) = f2(µ̂, γ). Again, let’s look for a first order perturbation solution for (µ̂, γ), i.e:

q(µ̂, γ) = q0 + θq1 (C.51)

where q1 solves
2
β2ψL[q1] + 2

β2

[
(µ̂− µ)
σ2 ψµ̂ + γ2

σ2ψγ

]
q0 = 0 (C.52)

This is equivalent to

L[g1] +
[

(µ̂− µ)
σ2

ψµ̂
ψ

+ γ2

σ2
ψγ
ψ

]
N(µ̂, γ) = 0 (C.53)

which could be written into the following form:

L[q1] +Q(µ̂, γ) = 0 (C.54)

where Q(.) can be interpreted as a "source" term in a standard diffusion problem. Although this is
an operator equation, we can exploit an analogy from the theory of ODEs. Suppose we have the
non-homogeneous ODE

ut +Au = f(t), u(0) = u0 (C.55)
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We know the solution is
u(t) = e−tAu0 +

∫ t

0
e(s−t)Af(s)ds (C.56)

Now suppose we have the diffusion problem

ut(x, t) = L[u] + λ(x, t) (C.57)

where L[.] is some diffusion operator, and λ(.) is a source. It turns out, the solution is analogous to
the ODE case

u(x, t) = L(t)u(x, 0) +
∫ t

0
L(t− s)λ(s)ds

=
∫ ∞
−∞

N(x− y, t)u0(y)dy +
∫ t

0

∫ ∞
−∞

N(x− y, t− s)λ(y, s)dyds
(C.58)

where in the standard diffusion problem

N(x, t) = 1
2
√
πkt

e
−x2
4kt (C.59)

is called the heat kernel, and u0 is the delta function at µ̂0, γ0. Therefore, the G(.) function defined
in Proposition 3.5.7 given in abstract terms is

G(µ̂, γ) =
∫ ∞

0

∫ ∞
0

N(µ̂− y, γ − s)Q(y, s)ds (C.60)

C.8 Proof of Corollary 3.5.9

Proof. The integral is approximated using Laplace’ method, which is used to approximate the fol-
lowing functional form ∫ b

a

h(s)eMf(s)ds ≈

√
2π

Mf ′′(s0)h(s0)eMf(s0) (C.61)

as M →∞, where f(s) < 0 is maximized at s0.

The dominant piece of the marginal density∫ γ0

0

∫ ∞
−∞

A1(µ̂, γ)B0(µ̂, γ)e(φ+1)xdµ̂dγ (C.62)

can thus be approximated using this method. Using the approximation

(φ+ 1)x ≈ φ0x+ [1 + φµ̂(µ̂− µ) + .5φµ̂µ̂(µ̂− µ)2 + φγγ]x (C.63)

Since φγ < 0, we know that (µ̂, γ) = (−φµ̂/φµ̂µ̂ + µ, 0) maximizes the exponent. The exponent
evaluated at the maximum thus becomes

(φ+ 1)x ≈ φ0x+ (1 +
φ2
µ̂

2|φµ̂µ̂|
)x (C.64)
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Therefore,

φL ≈ φ0 + (1 +
φ2
µ̂

2|φµ̂µ̂|
) (C.65)

which implies that |φL| < |φ0|.

C.9 Constraints on Parameter Space

The combination of parameters (µ̂, β, γ0, θ, σ, α, w0) need to satisfy the following constraints:
1. Benchmark mean growth rate a(µ̂, γ) and volatility parameter c(µ̂, γ) are positive.
2. Portfolio share (3.23) is between 0 and 1.
3. Saving rate (3.25) is between 0 and 1.
4. Information cost share between 0 and 1.
5. Parameter λ > 0 to ensure existence of perturbation solution of the value function.
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C.10 Supplementary Tables

Table C.1: Cross-sectional households wealth characteristics

Statistic N Mean St. Dev. Min Max
2013 SCF

Stock 11,782 71,490.890 913,754.600 0 27,000,000
Bond 11,782 21,629.760 405,470.800 0 13,010,000
Cash 11,782 45,046.150 399,630.200 0 10,096,000
Market Value of Private Equity 11,782 1,275,563.000 22,109,295.000 0 795,730,000
Total Wealth 11,782 1,413,730.000 22,521,950.000 1 802,855,000
If Delegate Wealth 11,782 0.057 0.232 0 1
Risk Tolerance 11,782 1.805 0.809 1 4
Capital Income 11,782 6,004.741 116,560.500 0 4,160,000

1983 SCF
Stock 4,009 297,654.700 2,972,495.000 0.000 125,434,000.000
Bond 4,009 85,243.550 846,403.000 0.000 35,400,000.000
Cash 4,009 73,046.270 346,524.100 0.000 9,847,100.000
If Delegate Wealth 4,009 1.853 0.886 1 4
Units: Value are adjusted to 2013 dollar value using CPI data from Federal Reserve St. Louis. Notes:
This table shows the summary statistics of various household wealth characteristics in Survey of
Consumer Finance imputed full public data, weighted using the SCF weights. Stock variable is
defined as the summation of direct holding and delegated holding of stocks. Direct holding of stocks
include holding of households’ own company stock, other companies’ stocks and direct holding of
foreign stocks. Delegated stock holding consists of stock mutual funds, saving stock, managed stocks
and stock holding in all retirement accounts, adjusted by the reported fraction of investment in
stocks. Likewise, Bond is defined as the summation of households’ direct holding of bonds, bond
mutual funds, government bond funds, other bond funds and all retirement accounts bonds value.
Cash is defined as the summation of reported checking account, saving and money market accounts
and certificate of deposit values. Following Moskowitz and Vissing-Jorgensen (2002), I focus on the
largest private business when computing private equity values. Market Value of Private Equity is
computed by subtracting net worth of the private business in 2013 with its 2012 income, further
adjusted by the difference between net debt owed by the private business to households. Pre-Tax
Profit of Private Equity is defined as the reported 2012 pre-tax profits. Wealth is the aggregation of
all stock, bond, cash and private equity value. Percentage of Risky Assets is derived by dividing the
sum of households stock holding and private equity value by total wealth. If Delegate Wealth equals
1 is households report having invested in any mutual funds or hedge funds. Finally, the survey asks
the question "Which of the statements on this page comes closest to the amount of financial risk
that you (and your husband/wife/partner) are willing to take when you save or make investments?
Households can choose one of the following: 1. *Take substantial financial risks expecting to earn
substantial returns, 2. *Take above average financial risks expecting to earn above average returns, 3.
*Take average financial risks expecting to earn average returns, 4. *Not willing to take any financial
risks. The variable Risk Tolerance is thus defined by recoding "1 = 4; 2 = 3; 3 = 2; 4 = 1".

103



Table C.2: Summary statistics of Lipper TASS hedge fund panel data

Statistic N Mean St. Dev. Min Max

incentive fee 158,158 15.621 7.492 0.000 35.000
rate of return 158,158 0.853 5.944 −89.922 934.480
net asset value 158,158 16,193.760 227,304.700 0.861 6,003,175.000
lock up period 158,158 4.049 8.675 0 90
minimum investment 158,003 1,239,778.000 6,436,964.000 0 100,000,000
high water mark 158,158 0.756 0.430 0 1
average leverage 146,618 60.959 179.984 0.000 2,000.000
Notes: This table shows the summary statistics of variables used for analysis from Lipper
TASS hedge fund data. Time-series fund monthly performance data is merged with fee
history and fund product details data set into one panel. The final data set spans from
1977 January to 2015 January. Variable incentive fee and management fee are measured in
percentage terms. The original rate of return data is computed in the end of each month.
net asset value denotes the overall size of the hedge fund. lock up period serves as a measure
of liquidity of the investment. minimum investment denotes minimum dollar value one
needs to put in front when entering the fund. high water mark is equal to 1 if the fund
only charges incentive fee based on net historical positive returns, 0 if otherwise. Finally,
average leverage controls the average risk the fund takes.
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Table C.3: Does the rich have higher returns on wealth?

ROR 1983 ROR2013
(1) (2)

log wealth 3.35e-02∗∗∗ 3.912e-02∗∗∗

(8.038e-03) (0.029)

risk tolerance −1.116e− 02∗∗∗ −1.404∗∗∗

(4.489e-03) (0.128)

age -2.868e-04 0.054∗∗∗

(3.482e-03) (0.005)

age2 3.637e-06∗∗∗

(3.721e-05)

Constant −2.178e− 01∗∗ −2.886∗∗∗

(7.809e-02) (0.730)

Observations 573 24,221
R2 0.1521 0.098
Adjusted R2 0.1339 0.097
Residual Std. Error 0.1494 (df = 560) 12.457 (df = 24197)

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table C.4: Does the rich delegate more wealth and invest more in stocks

(1983 p.stock) (2013 p.stock) (prob.delegate wealth(2013))
(1) (2) (3)

log wealth 6.084∗∗∗ 7.0367∗∗∗ 1.3369e+00∗∗∗

(0.557551) (1.2712e-01) (7.8434e-02 )

logwealth2 -3.6865e-02∗∗∗

(2.8847e-03)

age 0.496739∗∗∗ 4.6650e-01 3.7808e-02∗

(0.327165) (8.1163e-02) (1.5831e-02)

age2 −3.7753e− 03∗∗∗ 3.252∗∗∗ -3.5246e-04∗

(8.8104e-04) (0.390) (1.4829e-04)

constant -2.5182e+01 ∗∗ −50.559∗∗∗ −34.221∗∗∗

( 2.3041e+00) (1.161e+01 ) (8.6822e+00)

Observations 573 4009 4009
R2 0.4306 0.5532 0.264
Adjusted R2 0.5526 0.224 0.263
Residual Std. Error 25.32 (df = 17100) 21.858 (df = 2695) 29.529 (df = 16192)

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

106


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	``Wait and See" Monetary Policy
	Introduction
	Literature Review
	Monetary Policy Without Fixed Costs
	Model
	Rational Expectations
	Expected Hitting Times and Adjustment
	Calibration
	Conclusion

	Risk, Uncertainty and the Dynamics of Uncertainty
	Introduction
	Motivation
	The Model
	Comment on Units
	Benchmark Parameterization
	Comment on Preferences vs. Environment

	Stationary Distributions
	Top Wealth Shares
	Benchmark Parameterization

	Transition Dynamics
	Numerical Solution

	Detection Error Probabilities
	Conclusion

	Information and Inequality
	Introduction
	Motivation
	The model
	The Setup
	Filtering and Information
	Optimization Problem

	Policy Function Approximations
	Comments on Information Choice
	Saving Rate
	Portfolio Choice
	Optimism vs. Confidence

	The Distribution of Wealth and Beliefs
	Individual Wealth and Belief Dynamics
	Numerical Solution
	The KFP Equation

	Additional Evidence
	Results

	Related Literature
	Conclusion

	Bibliography
	Appendix ``Wait and See" Monetary Policy
	Appendix Risk, Uncertainty and the Dyanamics of Uncertainty
	Proof of Proposition 2.3.1
	Proof of Corollary 2.3.2
	Recursive Preferences I
	Proof of Proposition 2.4.1
	Proof of Proposition 2.4.4
	Proof of Proposition 2.5.1
	Recursive Preferences II

	Appendix Information and Inequality
	Value function with log utility
	Perturbation Approximation
	Proof of Corollary 3.4.2
	Proof of Lemma 3.5.1
	Proof of Proposition 3.5.3
	Proof of Proposition 3.5.4
	Proof of Proposition 3.5.7
	Proof of Corollary 3.5.9
	Constraints on Parameter Space
	Supplementary Tables


