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Abstract

The single crystal growth and the physical properties of the rare-earth based ternary in-
termetallic compounds RNi4Cd (R = Y and Yb) will be presented. The powder X-ray
diffraction measurement reveals that these compounds crystallize in the face-centered cubic
(fcc), MgCu4Sn-type structure (space group F 4̄3m). Magnetization, electrical resistivity,
and specific heat measurements are used to study thermodynamic and transport properties
of YbNi4Cd. The magnetic susceptibility shows that 4f electrons of Yb3+ ions are well
localized. The electrical resistivity and specific heat measurements show antiferromagnetic
ordering below TN = 0.97 K. Applying a field along the [111] direction results in the sup-
pression of TN below 0.4 K at the critical field Hc ∼ 4.5 kOe. No non-Fermi liquid behavior
is observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconven-
tional temperature dependence ρ(T ) = ρ0 +ATn with n > 2, suggesting that an additional
scattering mechanism in the resistivity needs to be considered. Based on the analysis of ex-
perimental results, we conclude that the Yb3+ moments and conduction electrons are weakly
coupled. Despite the antiferromagnetic ordering below TN , YbNi4Cd exhibits a large frus-
tration parameter |θp/TN | ∼ 16, where the magnetic Yb3+ ions occupy the tetrahedra on
the fcc lattice.

Keywords: Physical properties; Rare-earth intermetallics; Heavy Fermion; Magnetism
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Chapter 1

Introduction

1.1 The Scope of This Thesis

Among the intermetallic compounds, the rare-earth-based intermetallics are particularly of
interest due to the variety of exotic phenomena that they exhibit, such as the magnetocaloric
effect [1], unconventional superconductivity [2], multiferroicity [3], and heavy fermion be-
havior [4]. These phenomena depend on the interplay between structure and electrical and
magnetic properties. Thus, understanding structure and electronic and magnetic properties
of an pristine single crystal of intermetallic compound is the first stage of discovering novel
phenomena.

We have grown single-crystal YbNi4Cd for the first time. The crystal structure of
RNi4Cd has been reported by other group [5], but no thermodynamic and transport prop-
erties have been studied at the time of writing this thesis. Thus, we have published its
thermodynamic and transport properties, and this thesis will be based on the publication
with background information [6]. Theoretical background and general information about
rare-earth-based intermetallic compounds will be presented in the following sections of this
chapter. Both the temperature- and field-dependent specific heat and resistivity have been
studied, and the experiment procedure and the obtained results will be presented in Chap-
ter 2. Chapter 3 is dedicated to the analysis of the experimental results. In this chapter, the
H − T phase diagram of YbNi4Cd will be presented, and anomalous behavior in the elec-
trical resistivity and the specific heat will be discussed. Conclusions and future directions
for study will be discussed in Chapter 4.

1.2 Single Crystal Growth

A perfect single crystal is commonly referred to as a single solid piece in which the simplest
constituents, the atoms or molecules, are arranged periodically in a lattice where specific
geometrical symmetry operations are valid inside the whole piece. Polycrystalline material
is made up of many micrometer-sized single crystals which are also called crystallites or
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grains, and these crystallites have no preferred orientation with respect to each other. The
crystallinity of a material is important for characterizing it because its physical proper-
ties change dramatically depending on the degree of crystallinity. For example, electrical,
thermal, and magnetic properties can be affected significantly by grain boundaries in poly-
crystalline materials [7]. The preparation of a single crystal with sufficient size requires
understanding of phase relations and different stages in the crystallization processes [8].

There are a number of single crystal growth methods used in solid-state research. One
method is the floating zone (FZ) melting technique (melt growth). The floating zone tech-
nique does not require the use of a crucible, avoiding contamination from the crucible.
However, this method is used in cases where starting materials melt congruently and in-
volves temperature gradients for crystal growth. Another popular method is flux growth.
The flux growth method requires the use of a crucible to hold the constituent elements and
flux. The temperature is raised to allow the mixture to melt and become a homogeneous
molten solution at high temperatures. At this stage, the solution is supersaturated, and
the desired product precipitates out from the solution as the crucible is cooled slowly. The
material of crucible must be chosen carefully so that it does not react with the solution [9].
The advantage of this technique is that the flux increases the rate of the diffusion of the
elements in its mixture at a temperature lower than the melting point of the constituents
themselves, and the rate of reaction can be tuned by controlling the temperature, pres-
sure, and the ratio of constituent elements. Once the desired product is separated from the
flux, it is possible to remove excess flux on the surface by polishing or chemical etching.
Another advantage is that single crystals grown by the flux method show natural facets,
which makes it easier to measure anisotropic physical properties. The main disadvantage is
the low growth rate, which is generally much slower than that of the melt growth method.
Despite the long growing time, the flux method is widely used in a laboratory setting due
to its accessibility. We used the flux method to grow the single crystals of RNi4Cd (R = Y
and Yb) [10, 11].

1.3 Powder X-ray Diffraction Crystallography

Since the discovery of X-ray diffraction from crystals by Max von Laue in 1912 and by W.L
Bragg andW.H Bragg in 1913, X-ray diffraction (XRD), along with neutron diffraction, have
become important tools to characterize materials. X-ray crystallography is a well-established
field and many excellent books about X-ray diffraction crystallography are available [12, 13].

Atoms or molecules in crystal structure can be represented as points, and the resulting
three-dimensional array of points can be simplified to a primitive cell, a minimum volume
cell which satisfies translation symmetry, defined by the three primitive vectors ~a, ~b, and
~c. Typically, the lengths of each primitive vector, also known as lattice parameters, are
denoted as a, b, and c, respectively and the angles between ~b and ~c, ~a and ~c, and, ~a and
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~b are denoted as α, β, and γ, respectively. There are only seven possible crystal systems:
cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, monoclinic, and triclinic, each
of which has different relations among parameters. There are 14 Bravais lattices, each of
which fills space without overlapping. The seven crystal systems, six parameters which
define them, and 14 Bravais lattices with lattice symbols which classify them are given in
Table 1.1. In addition to these seven crystal systems, the point group symmetry operations
such as reflection, rotation and rotoinversion, and the screw axis and glide plane symmetry
operation give rise to 230 different space groups. The list of all 230 space groups can be
found elsewhere [9].

Table 1.1: Seven crystal systems with 14 Bravais lattices.
Crystal System Six Parameters Bravais Lattices

Cubic a = b = c;α = β = γ = 90◦
Primitive (P)
Face Centered (F)
Body Centered (I)

Orthorhombic a 6= b 6= c;α = β = γ = 90◦

Primitive (P)
Face Centered (F)
Body Centered (I)
Base Centered (C)

Tetragonal a = b 6= c;α = β = γ = 90◦ Primitive (P)
Body Centered (I)

Monoclinic a 6= b 6= c;α = γ = 90◦β 6= 90◦ Primitive (P)
Base Centered (C)

Rhombohedral a = b = c;α = β = γ 6= 90◦ Primitive (P)

Triclinic a 6= b 6= c;α 6= β 6= γ 6= 90◦ Primitive (P)

Hexagonal a = b 6= c;α = β = 90◦γ = 120◦ Primitive (P)

Nearly all crystals fall into one of 230 space groups, and the powder X-ray diffraction
instrument ultimately allows one to determine the space group and the atomic spacings,
thus the lattice parameters.

The principle behind X-ray diffraction is that reflection due to the constructive inter-
ference occurs when a monochromatic X-ray is incident on a crystalline sample with Bragg
conditions

nλ = 2d sin θ, (1.1)

where n is the nth order reflection, λ is the wavelength of the incident X-ray beam, d is the
interplanar spacing, and θ is the angle between the incident X-ray beam and the normal to
the reflection plane. For this condition to be satisfied, the wavelength must be comparable
to the interplanar distance, which is why X-rays are used. The angle between the diffracted
X-ray beam and the transmitted beam is 2θ, defined as the diffraction angle. The detector
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in the instrument records the intensities by scanning through a range of 2θ. For a cubic
crystal structure with lattice parameter a, the interplanar spacing d is given by

1
d2 = h2 + k2 + l2

a2 , (1.2)

where h, k, and l are the Miller indices of the diffracting planes. Similar relationships are
available for other six crystal systems.

For our X-ray diffraction measurements, we grind the single crystals into a powder
to produce an equal distribution of every possible crystalline orientations. The relative
intensities in the resulting pattern depend on the atomic constituents, and the positions
of the peaks depend only on its crystal structure. These combined characteristics in the
X-ray diffraction pattern serve as a fingerprint for a crystal. This diffraction pattern from
a single kind of crystal structure is also called the phase. In general, the powder X-ray
diffraction is also used to identify different or unknown phases within a sample. Given the
diffraction pattern of a powdered sample, one can identify the presence of other phases
in the sample and the crystal structure of an unknown phase by matching the unknown
diffraction pattern to the known pattern in the database such as International Center for
Diffraction Data (ICDD).

1.4 Curie-Weiss Paramagnetism

The quantity which describes the responsiveness to an applied magnetic field is the magnetic
susceptibility, which is defined as χ = M/H, where M is the magnetization and H is the
applied field. In paramagnetic materials, electrons give rise to non-zero moments and these
moments are treated independently because they interact weakly at high temperatures. At
sufficiently high temperature these individual magnetic moments fluctuate and point in ran-
dom directions, which results in the zero net magnetizationM = 0. The interaction of these
moments becomes dominant over thermal fluctuation at sufficiently low temperature and
high magnetic field. Thus, the degree of magnetization has the temperature and magnetic
field dependence. Upon cooling the magnetic material, there is a magnetic transition at the
magnetic ordering temperature TM . When T � TM , the magnetic susceptibility can be
described by the Curie-Weiss law:

χ = M

H
=

Nµ2
eff

3kB(T − θP ) = C

T − θP
, (1.3)

where N is the number of magnetic atoms per unit volume, µeff is the effective moment, C
is the Curie constant, and θP is the Weiss temperature. The dimensionless quantity χ is the
susceptibility per unit volume. µeff is defined as µeff = pµB, where µB is Bohr magneton
and p is the effective number of Bohr magnetons, p = g[J(J + 1)]1/2, where g is the Landé
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g-factor, given by
g = 1 + J(J + 1) + S(S + 1)− L(L− 1)

2J(J + 1) . (1.4)

The inverse magnetic susceptibility of a magnetic material at sufficiently high temperatures
is linear in temperature. By extrapolating the inverse magnetic susceptibility as a function
of temperature to low temperature, the Weiss temperature θp, can be obtained from the
T -intercept, and the sign of this value is associated with the type of the interaction between
moments. Typically, for θp > 0 these moments experience a net ferromagnetic interaction
and for θp < 0 they experience a net antiferromagnetic interaction, where θp = 0 indi-
cates that these moments behave like a paramagnet. The temperatures at which the ferro-
and antiferro-magnetic transitions occur are known as the Curie temperature TC and Néel
temperature TN , respectively.

1.5 RKKY Interaction

A long-range magnetic order which occurs in metallic rare-earth-based intermetallic com-
pounds can be explained by the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.
The overlap between 4f orbital wavefunctions from adjacent rare-earth atoms is small, thus
the direct exchange interaction is rather difficult. These localized 4f electrons in rare-earth
atoms interact indirectly by coupling through conduction electrons. The exchange coupling
of the RKKY interaction is weaker than that of the direct exchange interaction and os-
cillates in signs as the distance r between magnetic ions increases. The RKKY exchange
coupling is given by

JRKKY = J0(r) cos(2kF r), (1.5)

where J0 is the RKKY coefficient which decays as r3 and kF is the Fermi wave vector,
kF = (3π2n)1/3.

1.6 Rare-earth Intermetallic Compounds

Rare-earth-based intermetallic compounds have special properties in that 4f electrons in
rare earth elements are localized inside the 5s25p6 shell, and the effective moments of rare-
earth ions predicted theoretically using the ground state of configuration agrees well with
those obtained from experiments. In general, both metallic and insulating rare-earth inter-
metallic compound have localized moments. Most of rare-earth elements or lanthanide series
are trivalent with a few exceptions and their chemical properties are similar. Because 4f
electrons lie inside the 5s and 5p in lanthanides, which causes the poor screening, this gives
rise to the systematic decrease in atomic distances as the atomic number increases, which
is known as the lanthanide contraction. In this respect, the choice of rare-earth elements
in intermetallic compounds can serve as a parameter as it alters the distance-dependent
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interactions such as RKKY interactions; thus tuning the electrical and magnetic proper-
ties while conserving its stoichiometric ratio and crystal structure. The general magnetic
properties of lanthanide series are listed in Table 1.2.

Table 1.2: Magnetic properties of lanthanide series.
4f e− [R3+] Sa Lb J c gd gJ e 2J + 1f Rln(2J + 1)g pcalc.

h

0 La 0 0 0 – – – – –
1 Ce 1/2 3 5/2 6/7 15/7 6 14.90 2.54
2 Pr 1 5 4 4/5 16/5 9 18.27 3.58
3 Nd 3/2 6 9/2 8/11 36/11 10 19.14 3.62
4 Pm 2 6 4 3/5 12/5 9 18.27 2.68
5 Sm 5/2 5 5/2 2/7 5/7 6 14.90 0.84
6 Eu 3 3 0 – – – – 0
7 Gd 7/2 0 7/2 2 7 8 17.29 7.94
8 Tb 3 3 6 3/2 9 13 21.33 9.72
9 Dy 5/2 5 15/2 4/3 10 16 23.05 10.63
10 Ho 2 6 8 5/4 10 17 23.56 10.60
11 Er 3/2 6 15/2 6/5 9 16 23.05 9.59
12 Tm 1 5 6 7/6 7 13 21.33 7.57
13 Yb 1/2 3 7/2 8/7 4 8 17.29 4.54
14 Lu 0 0 0 – – – – –

aSpin angular momentum S
bOrbital angular momentum L
cTotal angular momentum J obtained by Hund’s rule: J = |L− S| when 4f shell is
filled less than half full and J = |L+ S| when filled more than half full
dg is the Landé g-factor, g = 1 + J(J+1)+S(S+1)−L(L−1)

2J(J+1)eSaturated moment, µsat = gJ
f(2J + 1)-fold degeneracy in the absence of external fields
gMagnetic entropy Sm, where R is 8.3144598 J K−1 mol−1.
hEffective Bohr Magnetons pcalc. = g[J(J + 1)]1/2

1.7 Specific Heat: Lattice and Electronic Contributions

Specific heat measurements provide useful information about the lattice, electronic, and
magnetic properties of a solid. It also provides information about structural, magnetic, and
superconducting phase transitions. It can also be used to detect an unwanted second phase
in the crystal. The heat capacity at fixed pressure is given by

Cp =
(
dQ

dT

)
p
. (1.6)

Because heat capacity is an extensive variable, it is often expressed as molar specific heat. In
ordinary metals, the electron and lattice contributions are dominant at low temperatures,

6



and the specific heat at low temperatures is given by

Cp(T ) = γT︸︷︷︸
electronic

+ βT 3︸︷︷︸
lattice

, (1.7)

where γ and β are electronic and lattice specific heat coefficients, respectively. The temper-
ature dependence of each contribution can be obtained from the free electron gas model and
the Debye model. The electronic specific heat coefficient is associated with the conduction
band density of states at the Fermi level. From γ, the Fermi energy can be estimated by
γ = π2k2

B/EF , where kB is the Boltzmann constant and EF is the Fermi energy. From β, the
Debye temperature θD can be estimated by β = 12π4kB/5θD. In the limit of high temperature,
the specific heat reaches the Dulong-Petit limit 3NAkBT due to the equipartition theorem,
where NA is the Avogadro’s number.

1.8 Schottky Anomaly

Specific heat measurements on rare-earth-based intermetallic compounds provide useful in-
formation about their magnetic properties. For an isolated rare-earth element with total
angular momentum J , it has (2J + 1)-fold degenerate levels. In the presence of an electric
or magnetic field, these levels are lifted. A Schottky anomaly, a peak in magnetic spe-
cific heat, can be observed when the CEF levels are populated. The full magnetic entropy
NAkB ln (2J + 1) has to be recovered at high temperatures. A quantitative interpretation
of the temperature-dependent specific heat and magnetic entropy requires the knowledge
of actual CEF splitting levels and CEF parameters [14]. The splitting energies due to CEF
can also be studied by inelastic neutron scattering. To extract the magnetic part of the spe-
cific heat, one can subtract the total specific heat of a non-magnetic compound, obtained
through La, Y or Lu substitution, from that of the magnetic compound. For a multi-level
system, the general expression for a Schottky anomaly is given by

CSch(T ) = kBβ
2
∑
i,j gigjEi(Ei − Ej)e−β(Ei+Ej)

[
∑
i gie

−βEi ]2
, (1.8)

where g is the degeneracy and E is the energy of the ith level.
For a system of two levels separated by the energy gap ∆ with degeneracies g0 and g1,

the specific heat due to a Schottky anomaly is

Ctwo−levelSch (T ) = kB (β∆)2 g0
g1

eβ∆[
1 + (g0/g1)eβ∆]2 . (1.9)

The specific heat due to a Schottky anomaly for a two-level system with several g1/g0

values is plotted in Fig. 1.1. When two levels are equally degenerate, the maximum specific
heat occurs at T ' 0.42∆/kB. When the excited level is more degenerate (g1/g0 = 2),
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Figure 1.1: Specific heat due to Schottky anomaly for a two-level system with g1/g0 = 0.5,
1, and 2.

the magnitude of specific heat is higher than that of the equally degenerate case, and the
maximum occurs at a slightly lower temperature (T ' 0.38∆/kB). When the ground level is
more degenerate (g1/g0 = 0.5), the magnitude of specific heat is less than that of the equally
degenerate case, and the maximum occurs at a higher temperature (T ' 0.45∆/kB). In the
presence of a magnetic field, the degenerate energy levels are lifted due to the Zeeman
effect. In general, there are two sources of Schottky contributions to the specific heat.
The degenerate energy levels of electron magnetic moment associated with J are split in
the presence of the field. Also, the atomic nucleus spins has a magnetic moment, and
the degenerate levels can be lifted by the field. A peak in specific heat associated with
atomic nuclear can be observed at extremely low temperatures. The entropy associated
with Schottky anomaly can be obtained by

SSch =
∫ T

0
dT

CSch
T

. (1.10)

In general, extracting CSch from the specific heat is often difficult because it requires a
subtraction of electronic and lattice contributions as well as other contributions such as
phase transitions.

1.9 Transport Phenomena: DC Conductivity

Transport phenomena (e.g. electrical and thermal conductivity) in crystals is often described
well by the semiclassical Boltzmann transport theory. The Drude model for the DC conduc-
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tivity can be derived from the evolution of the distribution function in space, momentum,
and time. The Boltzmann transport equation is given by

∂g

∂t
+ ~v · ∂g

∂~r
+ ~F · 1

~
∂g

∂~k︸ ︷︷ ︸
"Drift terms"

= ∂g

∂t

∣∣∣∣
coll︸ ︷︷ ︸

"Collision terms"

. (1.11)

where ~F is the macroscopic forces such as temperature gradient, electric field, and magnetic
field and g is the distribution function for electrons. If the system is perturbed by small
external force, the system will move out of equilibrium, and collisions within the system will
lead the system to relax back to equilibrium within a characteristic time. In the relaxation
time approximation (RTA), the collision term will become

∂g

∂t

∣∣∣∣
coll

= − [g(~k)− g0(~k)]
τ(~k)

, (1.12)

where τ is the relaxation time and g and g0 are distribution functions of perturbed and
equilibrium state, respectively. Since the electrical conductivity is the linear response from
a small applied electric field, the distribution function can be linearlized as

g = g0 + g1, (1.13)

where g0 is the distribution function in thermal equilibrium and g1 is the deviation from
the thermal equilibrium distribution. Substituting Eq. (1.13) and Eq. (1.12) into Eq. (1.11),
the linearized Boltzmann equation can be obtained:

∂g1
∂t

+ ~v · ∂g0
∂~r

+ ~F · 1
~
∂g0

∂~k
= −g1

τ
. (1.14)

For DC conductivity, a uniform (∂g0
∂~r = 0) and static field ~E (∂g0

∂t = 0) at fixed tem-
perature are considered. Using ~F (~r,~k) = −e ~E, the linearized distribution function can be
obtained:

g = g0 + e

~
~E · ∂g0

∂~k
(1.15)

The current density can be obtained by integrating the velocity and the distribution of
electrons in momentum space over the first Brillouin zone:

~j(~r, t) = − e

4π3

∫
1stBZ

v(~k)g(~k)d~k (1.16)
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By substituting the linearized distribution Eq. (1.15) into Eq. (1.16) and using ∂g0/∂kx =
(∂g0/∂ε)~vx, the conductivity can be obtained since jx = σEx:

σ = − e2

4π3

∫
d~kv2

x(~k)τ(~k)∂g0
∂ε

(1.17)

By changing d~k to energy ~ε and transforming to coordinates along the constant energy
surface,

d~k = dεdSε
|∂ε/∂~k|

= dεdSε

~|v(~k)|
. (1.18)

Using −∂g0
∂ε = δ(ε−εF ) since only electrons at the Fermi level contribute to the conduction,

the conductivity can be expressed as:

σ = e2

4π3~

∫
dSεdε

v2
x(~k)
v(~k)

τ(~k)δ(ε− εF ) (1.19)

In general, v(~k) and τ(~k) vary over Fermi surface, but an average value
〈

(v2
x(~k)/v(~k))τ(~k)

〉
εF

can be taken outside the integral. For nearly free electrons (i.e a Fermi sphere), this average
is 1

3v(εF )τ(εF ), where εF is ~2k2
F/2m∗. Using k3

F = 3π2n, Eq. 1.19 reduces to

σ = e2τ(εF )n
m∗ , (1.20)

which is the Drude’s equation for DC electrical conductivity.

1.10 Scattering Mechanism

The conductivity derived above is only valid when T = 0. The resistivity is defined as
the reciprocal of the conductivity. For temperature dependence of resistivity, an ad-hoc
temperature dependence in the relaxation time τ needs to be added to Eq. 1.20. Therefore,
the total observed resistivity is the sum of resistivities due to the contributions of the various
independent scattering mechanisms, which is described by the Matthiessen rule:

ρ = 1
σ

= me

ne2τtotal
= me

ne2 ( 1
τel−imp

+ 1
τel−ph

+ 1
τel−el

+ ...)

= ρel−imp + ρel−ph + ρel−el + ..., (1.21)

where ρel−imp is the resistivity due to electron-impurity scattering, ρel−ph is the resistiv-
ity due to electron-phonon scattering, and ρel−el is the resistivity due to electron-electron
scattering.

Types of electron scattering due to impurities include lattice imperfections, boundaries,
and impurity atoms. In general, the resistivity of a sample with impurities is always higher
than that of a perfect sample, and the scattering rate due to non-magnetic impurities is

10



temperature independent. As T → 0, the resistivity approaches to a finite value. This finite
resistivity ρ(T = 0) is known as the residual resistivity ρ0. There are some cases where
impurity atoms play a significant role in resistivity at low temperatures. When impurities
are magnetic atoms with a spin degree of freedom, electrons near the Fermi energy scatter
off the magnetic ions resonantly due to the coupling between the local spin from magnetic
impurities and the spin from conduction electrons, and this energy dependent resonant scat-
tering gives rise to temperature dependence of the resistivity at low temperatures. Upon
cooling a metallic sample, the resistivity typically decreases, but below a characteristic
temperature TK , the resistivity rises again, exhibiting a minimum in the resistivity of the
magnetically contaminated sample. This resonant scattering has the logarithmic tempera-
ture dependence, and this phenomena is observed in a material which exhibits the Kondo
effect.

The resistivity in typical metals increases with increasing temperature. This is due to the
scattering of electrons with the phonons, the collective excitations of the lattice vibration.
At high temperatures (T � ΘD), all modes are excited, and the relaxation time τel−ph
for electron-phonon scattering is proportional to the number of occupied phonon states,
and the total number of phonons which contribute to the scattering is proportional to
temperature. Thus, the resistivity due to electron-phonon scattering increases linearly with
T . At low temperatures (T � ΘD), the number of phonons increases with T 3, and there is an
additional T 2 contribution associated with the angle dependence of the scattering process,
which gives rise to the T 5 dependence in resistivity due to electron-phonon scattering. Thus,
the temperature dependence of resistivity due to electron-phonon scattering is given by

ρ(T ) ∝

T
5, T � ΘD

T, T � ΘD.
(1.22)

The scattering mechanisms mentioned above are described by the free electron gas model
which is based on the assumption that electrons are not interacting each other. At sufficient
low temperatures, the interaction between electrons becomes dominant, and the electron-
electron interactions need to be taken into account. According to Landau’s Fermi Liquid
(FL) theory, interacting electrons are treated as quasiparticles which scatter with themselves
and have an intrinsic decay time. The average lifetime of a Fermi liquid quasiparticle is
inversely proportional to the square of an energy required to excite an quasiparticle above
the Fermi surface:

τ(ε) ∝ 1
(ε− εF )2 . (1.23)

At temperatures T � TF , the average energy required to excite the quasiparticle above the
Fermi surface is ε = kBT . Thus, the average lifetime of the quasiparticle is proportional to
1/T 2. Since resistivity is inversely proportional to lifetime, the temperature dependence of
resistivity at low temperatures due to electron-electron interaction is quadratic in temper-
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ature:
ρel−el ∝ T 2. (1.24)

Because the electron-electron interactions and the scattering with impurities are dominant
at low temperatures T � TF , the resistivity of a typical metal can be described by

ρ = ρ0 +AT 2. (1.25)

1.11 Heavy Fermion

The Heavy Fermion (HF) system is typically referred to as a collection of intermetallic
compounds, especially Ce-, Yb-, or U-containing compounds, whose effective mass is much
larger than the mass of a free electron. The value of effective mass can be obtained by specific
heat measurement. In general, a compound with the γ value larger than 400 mJ/mol-K2

are considered to be heavy fermion material.
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Chapter 2

Thermodynamic and Transport
Properties of Single Crystal
YbNi4Cd

2.1 Introduction

The studies of Ce- and Yb-based intermetallic compounds have been shown diverse ground
states such as heavy fermion (HF) behavior, unconventional superconductivity, intermediate
valence, non-Fermi liquid behavior in the proximity of the quantum critical point (QCP)[15,
16, 17, 18, 19].

The competition between the Kondo effect and the Ruderman- Kittel - Kasuya - Yosida
(RKKY) exchange interaction often leads to unusual ground states and also plays the im-
portant role in our understanding of heavy fermion materials [20]. When the magnetic ions
occupy on a network of tetrahedra in a face-centered cubic lattice with antiferromagnetic
coupling, the frustration of antiferromagnetic interactions needs to be taken into account
[21, 22, 23, 24]. In addition, a significant role in determining the thermodynamic and trans-
port properties is expected from the crystalline electric field (CEF) effect.

Ytterbium-based ternary intermetallic compounds YbCu4X (X = Mg, Zn, Pd, Ag, Cd,
In, Au, Tl) with a face-centered cubic structure exhibit a number of magnetic ground states
[25]. The compounds with X = Ag, Cd, and Zn show a heavy fermion behavior without
magnetic ordering, with the linear specific heat coefficient γ ∼200 mJ/mol-K2 [26, 25]. The
compounds with X = Pd and Au exhibit magnetic ordering below 1 K, in which their
physical properties at low temperatures are dominated by the RKKY interaction and CEF
effect [27]. Among these compounds, YbCu4In has been studied extensively due to its first
order isostructural valence transition at Tv = 42 K [28, 29]. The low-carrier RCu4In (R =
Gd - Tm) system indicates a large frustration factor (|θp/TN |), implying the geometrical
frustration of spins [30, 31].

In a continuing search for new Yb-based heavy fermion compounds, we have successfully
grown single crystals of YbNi4Cd using Cd flux. Ternary RNi4Cd (R = Ce - Lu, Y, and Sc)
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Figure 2.1: Temperature profile of single crystal YbNi4Cd growth.

compounds crystallize in the cubic MgCu4Sn-type structure [32, 5], which have the same
crystal structure as YbCu4X. The lattice parameter of the RNi4Cd intermetallics follows
the lanthanoid contraction, where the lattice parameter decreases from Pr- to Lu-compound
[5]. The magnetic Yb3+ state, inferred from the lanthanoid contraction, led us to investigate
the thermodynamic and transport properties of YbNi4Cd single crystals.

2.2 Experimental Procedure

Raw elements of Yb, Ni, and Cd piece were cut into smaller pieces and placed in an alumina
crucible in the ratio 1:4:30, and then sealed into an amorphous silica tube under partial
Argon atmosphere. The ampoule was heated up to 1050 ◦C over two hours, held there for
two hours, and then slowly cooled down to 750 ◦C over 300 hours. The temperature profile
of the furnace for crystal growth is shown in Fig. 2.1. Right after the ampoule was removed
from the furnace, the crystals were separated from the flux by a centrifuge. The surfaces
of the crystals were polished to remove the excess flux prior to any measurements of its
physical properties. A single crystal of YbNi4Cd with flux droplets adhered to its surfaces
is shown in Fig. 2.2. For magnetization measurements, the dc magnetization as a function
of temperature from 1.8 to 300 K, and magnetic field up to 70 kOe, was measured in a
Quantum Design (QD) magnetic property measurement system (MPMS). For transport
properties, four-probe ac resistivity measurements were performed from 300 K down to
0.4 K in a QD physical property measurement system (PPMS) with a 3He option. Specific
heat was measured by the relaxation technique down to T = 0.36 K in a QD PPMS.

2.3 Experimental Results

2.3.1 Crystal Structure of YbNi4Cd and YNi4Cd

To verify the phase and determine the lattice parameter, powder X-ray diffraction patterns
were collected in a Rigaku MiniFlex diffractometer at room temperature. The single crystals
were crushed into fine powder using a mortar and pestle, and mixed with Si-reference powder
to calibrate the instrumental zero shift. The top and bottom panel in Fig. 2.3 show the XRD
patterns of YbNi4Cd and YNi4Cd, respectively. Whereas a small amount of cadmium phase
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Figure 2.2: Single crystal of YbNi4Cd with unpolished surfaces.

is detected for YbNi4Cd, as marked by a blue triangle, YNi4Cd shows no impurity phase.
The detected cadmium peaks are probably due to the flux inclusion inside the sample and/or
droplets on the sample surface. All the peak positions are well indexed with a face-centered
cubic MgCu4Sn-type structure with space group F4̄3m and a lattice parameter a = 6.975 Å
for R = Yb and a = 7.031 Å for R = Y. The obtained lattice parameters are consistent
with an earlier report: 6.983 Å for R = Yb and 7.031 Å for R = Y [5].

2.3.2 Magnetic and Electronic Properties of YNi4Cd

YNi4Cd has magnetic and electronic properties consistent with a paramagnetic, inter-
metallic compound. The temperature-dependent magnetic susceptibility, χ(T ) = M/H,
of YNi4Cd at H = 1 kOe applied along [111] direction is shown in Fig. 2.4 (a). The mag-
netic susceptibility depends weakly on temperature down to 75 K, then starts to rise below
75 K, which is probably due to the presence of paramagnetic impurities. The magnetization
isotherm at T = 2 K increases quasilinearly with increasing magnetic field up to 70 kOe as
shown in Fig. 2.4 (b). The temperature-dependent specific heat, Cp, of YNi4Cd is shown
in Fig. 2.4 (c). The specific heat reaches the value of ∼150 J/mol-K at 300 K, which is
close to the Dulong-petit limit and does not show any signature of a phase transition below
300 K. The electronic specific heat coefficient γ and the Debye temperature θD were ob-
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Figure 2.3: Powder X-ray diffraction patterns of YbNi4Cd (top) and YNi4Cd (bottom).
Blue triangles in top panel indicate impurity peaks assigned to Cd. In the bottom panel,
the observed and calculated XRD patterns and their difference are shown in open circle, red
line, and green line, respectively. Both YbNi4Cd and YNi4Cd diffraction patterns include Si
peaks, in which Si power is added intentionally to correct the zero shift of the diffractometer.

tained by taking into account only electronic and lattice contributions to the specific heat,
Cp(T ) = γT +βT 3. These coefficients are extracted from the Cp/T versus T 2 plot as shown
in the inset of Fig. 2.4 (c). The obtained γ and θD for YNi4Cd are ∼14 mJ/mol-K2 and
∼ 200 K, respectively. The temperature-dependent electrical resistivity, ρ(T ), of YNi4Cd
shown in Fig. 2.4 (d) clearly shows metallic behavior, with a linear decrease in resistivity
with decreasing temperature. Below 50 K, the resistivity curve starts to saturate with a
resistivity value of 2.92 µΩ cm at 1.8 K.

2.3.3 Magnetic Properties of YbNi4Cd

The temperature-dependent inverse magnetic susceptibility, 1/χ(T ) = H/M , of YbNi4Cd
is shown in Fig. 2.5. No phase transition is detected down to 1.8 K. The magnetic sus-
ceptibility follows the Curie-Weiss law, χ(T ) = C/(T − θP ) above 100 K, where C is the
Curie constant and θP is the Weiss temperature. The effective magnetic moment estimated
from the Curie constant is µeff = 4.81 µB, which is somewhat higher than the theoretical
effective magnetic moment of free Yb3+ ions (4.54 µB). The calculated Weiss temperature
is θP = −16 K, suggesting that the antiferromagnetic exchange interaction is dominant.
The magnetic susceptibility deviates from the Curie-Weiss law below 100 K, which suggests
that the degeneracy of the J = 7/2 of Yb3+ manifold is lifted by CEF effect.
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Figure 2.4: (a) Temperature-dependent magnetic susceptibility of YNi4Cd at H = 1 kOe.
(b) Magnetization isotherm of YNi4Cd at T = 2 K. (c) Temperature-dependent specific
heat of YNi4Cd. Inset: The specific heat is shown as CP /T vs T 2. The solid line is a fit to
determine γ and θD. The fit is performed below 15 K2. (d) Temperature-dependent electrical
resistivity of YNi4Cd.
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T = 2 K.

The magnetization isotherm,M(H), of YbNi4Cd at 2 K for H ‖ [111] is shown in the in-
set of Fig. 2.5. No hysteresis is observed upon increasing and decreasing the field. TheM(H)
curve follows a Brillouin-function-like behavior, reaches slightly above 2 µB/Yb at 70 kOe,
which is the half of the theoretical saturated magnetization value Msat = gJJ (4 µB/Yb).
This reduction in magnetization is possible evidence for CEF effects and Kondo screening.

2.3.4 Temperature-dependent Specific Heat of YbNi4Cd and YbNi4Cd

The temperature-dependent specific heat, Cp(T ), of YbNi4Cd and the nonmagnetic isostruc-
tural analog YNi4Cd are plotted in Fig. 2.6 (a). The Cp(T ) curve of YbNi4Cd shows a broad
hump at ∼20 K and a sharp pronounced peak at around ∼0.97 K, which is typically as-
cribed to the transition from a paramagnetic state to a magnetically ordered state, as shown
in Fig. 2.6 (b). In zero field, the estimated γ value of YbNi4Cd is ∼26 mJ/mol-K2 from the
Cp/T versus T 2 plot as shown in Fig. 2.6 (c). The obtained Sommerfeld coefficient value of
the magnetic YbNi4Cd compound is of the same order as in the nonmagnetic YNi4Cd. The
γ value can also be estimated by a linear extrapolation of the Cp/T curve below 0.4 K and
estimated to be ∼90 mJ/mol-K2 as shown in Fig. 2.6 (d). It should be noted that because
of the phase transition below 0.97 K and the broad feature around 20 K associated with
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Figure 2.6: (a) Cp(T ) curves for RNi4Cd (R = Yb and Y). (b) Expanded plot below 30 K.
(c) C/T vs. T 2 plot for YbNi4Cd. Solid line represents Cp(T ) = γT + βT 3 fit. (d) C/T vs.
T 2 plot for YbNi4Cd at low temperatures. Solid line is a linear extrapolation of the data
below 0.5 K.

the CEF effect, the γ and ΘD of YbNi4Cd cannot be reliably obtained by using the relation
Cp(T ) = γT + βT 3.

2.3.5 Temperature-dependent Magnetic Specific Heat of YbNi4Cd

The magnetic contribution, Cm, in specific heat can be estimated by taking the difference
between the specific heat of YbNi4Cd and YNi4Cd and is plotted in Fig. 2.7. The Cm curve
shows a broad maximum centered at ∼30 K, indicating that there is a significant magnetic
contribution from Yb3+ ions above the phase transition. The magnetic entropy is estimated
by integrating Cm/T from the base temperature, Sm =

∫ Cm
T dT , and plotted in the inset

of Fig. 2.7. Note that this will underestimate the total magnetic entropy, especially at low
temperature. The Sm at the magnetic ordering temperature reaches about 70 % of Rln(2),
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Figure 2.7: Temperature dependence of the Cm for YbNi4Cd. Inset shows the magnetic
entropy Sm. Dashed and solid lines represent Schottky contributions based on the 2-2-4 and
2-4-2 energy levels, respectively, with ∆1 = 40 K and ∆2 = 100 K.

suggesting that the sharp anomaly at 0.97 K in specific heat comes from the magnetic order
in a doublet ground state. The full Rln(8) entropy for J = 7/2 is recovered at ∼50 K.
The Sm curve saturates slightly higher than R ln(8), which we believe is due to subtraction
error. The pronounced anomaly around 30 K in Cm can be associated with an electronic
Schottky contribution involving three CEF split levels, as expected for Yb3+ in a cubic
crystal symmetry.

For cubic symmetry, the J = 7/2 multiplets can be split into either a doublet-quartet-
doublet (2-4-2) or a doublet-doublet-quartet (2-2-4)[33]. The Cm in the paramagnetic state
is analyzed in terms of a Schottky anomaly by considering these two energy level schemes,
and the resulting fits are shown in Fig. 2.7. Due to the subtraction error (mostly the lattice
contribution), the overall analysis is rather qualitative. A qualitative agreement with the
experimental data is obtained for both 2-4-2 (solid line) and 2-2-4 (dashed line) energy level
schemes with ∆1 ∼ 40 K and ∆2 ∼ 100 K. To observe the crystal field excitations directly,
neutron scattering experiments would be necessary. Although the fits only reproduce the
shape of the anomaly in Cm, it is clear that the ground state doublet is well separated from
the first excited state.
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Figure 2.8: Curves of Cm/T vs. T for YbNi4Cd in various magnetic fields.

2.3.6 Magnetic Field-dependent Specific Heat of YbNi4Cd

In order to examine the effect of an applied magnetic field on the magnetic ordering, the
specific heat was measured up to 90 kOe for H ‖ [111]. The Cm curves for selected magnetic
fields are plotted in Fig. 2.8 as Cm/T vs. log(T ). A shift of the magnetic ordering tempera-
ture to lower temperatures is clearly seen for H ≤ 4 kOe. For H = 4.5 kOe, the sharp peak
in Cm/T curve is no longer visible, indicating that the phase transition is suppressed below
0.4 K. At this field, the Cm/T curve exhibits a broad maximum centered ∼0.7 K. At higher
fields, this peak broadens further and moves to higher temperatures, indicating that the
magnetic entropy is removed at higher temperatures for larger applied fields. Such behavior
has been found in Kondo lattice systems under magnetic fields and can be explained within
the Kondo resonance-level model combined with CEF effect [34]. Note that Cm/T in the
proximity of the critical field Hc ∼ 4.5 kOe displays no clear indication of non-Fermi liquid
behavior such as -log(T ) dependence [17, 19].

2.3.7 Magnetic Field-dependent Magnetic Specific Heat of YbNi4Cd

The magnetic field dependence of Cm at T = 0.4 K is shown in Fig. 2.9. The Cm/T shows
a sharp peak as the magnetic field passes through the phase boundary. The peak shape
is sharpened as temperature increases (see inset). Although the electronic specific heat
coefficient (given by γ = Cm/T for T → 0) is not well-specified by the data, the Cm/T
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Figure 2.9: Cm/T vs. H for YbNi4Cd at T = 0.4 K. Inset shows Cm/T curves at selected
temperatures plotted as a function of field.

curve at T = 0.4 K provides an estimate of the magnetic field dependence of γ. In the
paramagnetic state, the Cm/T value drops from ∼3 J/mol-K2 at 5 kOe to ∼0.07 J/mol-K2

at 90 kOe, implying that the hybridization between 4f and conduction electrons in YbNi4Cd
can be destroyed by external magnetic fields. It should be noted that the enhanced value
of Cm/T at low temperatures is mainly associated with electronic Schottky contributions.

2.3.8 Temperature-dependent Resistivity of YbNi4Cd

The temperature dependence of the electrical resistivity, ρ(T ), of YbNi4Cd is shown in
Fig. 2.10. Electrical resistivity measurements show a behavior typical of Yb-based Kondo
lattice compounds. In zero field, ρ(T ) shows two broad features at ∼2 and 25 K; the lower
one is primarily related to Kondo scattering, while the higher one is primarily associated
with the thermal population of CEF levels. The inset of Fig. 2.10 shows the ρ(T ) curves
at various magnetic fields for H ‖ [111]. The magnetic transition in zero field manifests
itself as a precipitous drop in ρ(T ) below 0.97 K. As magnetic field increases, a gradual
suppression of the magnetic order is observed in ρ(T ). In the vicinity of the critical field,
Fermi liquid behavior [ρ(T ) ∝ T 2] is found over a limited range of temperature and field. At
very low temperatures and high fields, the ρ(T ) curves become flat, revealing an anomalous
Tn dependence with n > 2.
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2.3.9 Magnetic Field-dependent Resistivity of YbNi4Cd

The magnetic field dependence of electrical resistivity, ρ(H), elucidates some of features
observed in ρ(T ). Figure 2.11 shows ρ(H) curves for H ‖ [111] below 10 K. ρ(H) curves
below 1 K exhibit a peak at the phase boundary, whereas ρ(H) curves above 1 K vary
monotonically. In the paramagnetic state (H > 4 kOe) ρ(H) at 0.4 K shows a minimum
around 15 kOe and linearly increases above 20 kOe as magnetic field increases. Note that
ρ(H) measurements indicate no hysteresis down to 0.4 K.
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Chapter 3

Discussion

3.1 Phase Diagram of YbNi4Cd

The H - T phase diagram constructed from specific heat and resistivity measurements
is plotted in Fig. 3.1. The critical temperature determined from temperature sweep is in
good agreement with the critical field determined from field sweeps. As presented in the
phase diagram, the magnetic ordering shifts towards lower temperature when magnetic field
increases. The antiferromagnetic (AFM) ordering at TN = 0.97 K is inferred from the lack
of hysteresis in the electrical resistivity and specific heat measurements as well as the fact
that the magnetic phase transition can be suppressed below 0.4 K by an applied magnetic
field of 4 kOe.

3.2 Anomalous Electrical Resistivity of YbNi4Cd

At low temperatures it is expected that for metallic systems, Fermi liquid (FL) behavior
should be recovered in the paramagnetic (PM) state (H > Hc). Figures 3.2 (a), 3.2 (b),
and 3.2 (c) show the resistivity curves of YbNi4Cd varying as ρ(T ) = ρ0 + ATn with n ≥ 2
at low temperatures. In the vicinity of the AFM to PM phase boundary (H = 5 kOe),
a Tn dependence with n ≈ 2 in ρ(T ) is observed. For H > Hc, ρ(T ) displays an anoma-
lous Tn dependence with n > 2, indicative of deviation from FL behavior. This suggests
that an additional scattering mechanism in ρ(T ) needs to be considered. The exponent n
gradually increases as magnetic field increases from 5 kOe and eventually reaches n ' 4
for H > ∼40 kOe as shown in Fig. 3.2 (d). The coefficient An = (ρ(T ) − ρ0)/Tn and the
residual resistivity value ρ0, corresponding to each n, are plotted in Fig. 3.2 (e) and 3.2
(f), respectively. The An value quickly drops with increasing magnetic field for H > Hc.
While the ρ0 values above ∼20 kOe follow the resistivity curve at T = 0.4 K, the ρ0 values
below 20 kOe deviate from the resistivity curve at T = 0.4 K as shown in Fig. 3.2 (f). Note
that the anomalous exponent with n > 2 has been observed in the fully saturated para-
magnetic state for CeAuSb2 [35], YbNiSi3 [36], and CeNiGe3 [37]. Pronounced non-Fermi
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liquid (nFL) behavior (∆ρ = ATn with n < 2) is observed in the vicinity of the magnetic
field tuned quantum critical point in HF AFM systems such as YbRh2Si2 [38, 39], CeAuSb2

[35], YbAgGe [40], and YbPtBi [41]. However, for YbNi4Cd, there is no clear indication of
nFL behavior down to 0.4 K in the vicinity of Hc. In order to address the existence of nFL
behavior, it is necessary to measure the resistivity below 0.4 K.

3.3 Electronic Schottky Contribution to Magnetic Specific
Heat of YbNi4Cd

In zero field, the specific heat shows that the AFM order develops from Yb3+ moments
in a doublet ground state that is well separated from the first excited state. The rapid
recovery of the R ln(2) ground state entropy at TN , Sm(TN ) = 0.7 R ln(2), suggests that
the Kondo screening of the Yb3+ moments may play little role in YbNi4Cd. In many HF
antiferromagnets, despite the presence of a large ordered moment, one finds a small entropy
release at TN due to strong entanglement between 4f - and conduction electrons. Thus, it is
expected that the 4f -electrons in YbNi4Cd compound are spatially well localized and weakly
coupled to the conduction electrons. To explain the large value of Cm/T at low temperatures,
it is necessary to consider multiple contributions. In the PM state, for H > 4 kOe, a broad
peak is developed in Cm, which is the origin of the large Cm/T at low temperatures. The
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Figure 3.2: (a) ρ(T ) curves at H = 5, 7, and 10 kOe. (b) ρ(T ) curves at H = 12, 20, and
30 kOe. (c) ρ(T ) curves at H = 50, 70, and 90 kOe. Solid lines in (a), (b), and (c) represent
the fit with ρ(T ) = ρ0 + ATn. The fitting parameters n, A, and ρ0 are plotted in (d), (e),
and (f), respectively. The ρ(H) curve at T = 0.4 K is plotted in (f)
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broad peak moves to higher temperatures with increasing magnetic field as we expect for an
electronic Schottky contribution, CSch, to the specific heat due to the Zeeman effect. The
Schottky contribution on the ground state doublet is shown in Fig. 3.3. The fit curves for
CSch are obtained by only considering the splitting of the ground state doublet, where two
levels are equally degenerated and separated by a gap ∆. The field dependence of ∆ is plotted
in the inset of Fig. 3.3. The maximum temperature, Tmax, of the broad peak in Cm is shown
in Fig. 3.3 (phase diagram). As expected, ∆ increases linearly with magnetic field, which
confirms that is indeed a Schottky anomaly. Therefore, the CEF splitting via Zeeman effect
plays a crucial role in understanding the magnetic field dependence of thermodynamic and
transport properties observed in the YbNi4Cd. It should be noted here that the Cp curves
show an upturn below ∼0.5 K for H = 70 kOe and below ∼0.7 K for H = 90 kOe, which is
probably due to the nuclear Schottky contribution. Because the upturn shows only limited
temperature range, we were not able to reliably subtract the nuclear contribution.

3.4 Anomalous Electronic Contribution and Possible Origins

On the other hand, there is a large difference (∼1 J/mol-K2) at T = 0.4 K for H = 5 kOe
between Cm and the electronic Schottky contribution, indicating that the additional con-
tributions much be considered. In order to obtain insight into the electronic contribution,
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we assumed Cm = γT + CSch and γ was estimated by subtracting the electronic Schottky
contribution. The (Cm − CSch)/T curves are plotted in the inset of Fig. 3.4. As can be
seen from the figure, whereas (Cm − CSch)/T curves for Hc < H < ∼10 kOe continuously
increase below the Tmax, the curves for H >∼30 kOe are almost temperature independent.
Note that the (Cm − CSch)/T value around the critical field is much larger than the zero
field γ value (γ ∼ 90 mJ/mol-K2). Another convenient way of demonstrating the behavior
of (Cm − CSch)/T is to plot the values at the lowest measured temperature as a function
of magnetic field (Fig. 3.4). It can be clearly seen that the (Cm − CSch)/T at T = 0.4 K
is quickly suppressed by applied magnetic fields and becomes almost field independent for
H > 30 kOe. This behavior is also consistent with the ρ(H) curve at T = 0.4 K, where
the ρ(H) slope changes from negative to positive around 20 kOe, and increases linearly up
to 90 kOe. It should be noted that the (Cm − CSch)/T curves indicate a divergent behav-
ior close to the Hc. To confirm any divergence of γ [for example, − log(T ) or power law
divergence] it is necessary to measure specific heat below 0.4 K.

One possible explanation for the low temperature behavior of (Cm −CSch)/T is that it
originates from the Kondo contribution. This would be consistent with a large negative Weiss
temperature (θp ∼ -16 K) determined from the magnetic susceptibility. The magnetic field
dependence of (Cm−CSch)/T is typical for HF systems, where it originates from the fact that
the external magnetic field gradually destroys the Kondo effect. However, the absolute value
(∼ 1 J/mol-K2) and the temperature dependence [− log(T ) below Tmax] of (Cm −CSch)/T
curves close to the critical field cannot be solely explained by the Kondo effect. For a Kondo
lattice system, the Kondo temperature TK can be estimated by TK = WjπR/3γ [16], where
W is the Wilson number, j is the total angular momentum, and R is the gas constant. In
zero field, the estimated TK is ∼60 K for j = 1/2 and γ = 0.09 J/mol-K2. The Kondo
temperature can also be estimated from the magnetic susceptibility as TK ' |θp|/4 [16].
The θp value hints at the presence of Kondo interactions with a characteristic energy scale
of about 16 K (TK < 16 K). Note that this value of TK is not in good agreement with that
estimated from the specific heat. At Hc, the TK is estimated to be ∼5 K for j = 1/2 with
γ ∼ 1.1 J/mol-K2 at 0.4 K. Since the (Cm−CSch)/T continues to rise below 0.4 K, the TK
is expected to be smaller than 5 K. This is remarkable, since the Kondo temperature at Hc

is well below the zero field value. We do no believe that this large enhancement of γ at Hc

(which decreases the Kondo temperature) could be caused by such a small external magnetic
field (∼5 KOe). Therefore, we consider the possibility that antiferromagnetic short-range
correlations may produce a large γ value. The instability to magnetism due to the short-
range correlations has been shown in paramagnetic HF Kondo lattice compounds close to a
quantum critical point [17, 19, 42, 43]. In this case, the AFM fluctuations can be coexist with
Kondo fluctuations and the enhanced value of (Cm−CSch)/T observed for YbNi4Cd at low
temperatures would reflect a combination of Kondo and AFM fluctuations. With increasing
magnetic field the crossover between ordered state and paramagnetic state is evident at
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H = Hc, however the resistivity and specific heat data down to 0.4 K do not confirm
explicitly the presence of a QCP via non-Fermi-Liquid behavior. Therefore, although the
AFM order can be suppressed by an external magnetic field, a classical QCP is not observed
in YbNi4Cd. This may indicate a weak hybridization between 4f and conduction electrons.

The lack of non-Fermi-liquid behavior is an indication that the observed low tempera-
ture properties are not related to a classical QCP. If the temperature dependence and the
large value of (Cm − CSch)/T curves close to the critical field are not induced by the cou-
pling of 4f local moments to the conduction electrons, they must be explained by another
type of fluctuations. In a Kondo lattice system, quantum fluctuations can also be induced
by the 4f local moments on their own, where the fluctuations can be tuned by varying
the degree of magnetic frustration or tunning the dimensionality [44, 45]. In YbNi4Cd, the
antiferromagnetically coupled Yb3+ ions on the tetrahedra will be magnetically frustrated.
The frustration parameter |θp/TN | ∼ 16 observed for YbNi4Cd is sufficiently large to allow
us to infer that the frustration may dominate the magnetic properties. Similar behavior
has been observed in the related RCu4In (R = rare-earth) compounds. Although the low
carrier density RCu4In compounds order antiferromagnetically, they exhibits a large frus-
tration parameter as a signature of geometrical frustration [30, 31]. Since a large portion
of the R ln(2) entropy is recovered at TN , partial frustration, as suggested for the GdCu4In
compound [23], may need to be considered for YbNi4Cd. In general, the Kondo effect, de-
localizing the magnetic 4f -electrons to the Fermi level, is not beneficial for the formation
of a frustrated state. The frustration parameter defined fundamentally for an insulating
system is also no longer useful in metallic compounds, where the long-range RKKY inter-
action mediated by conduction electrons become dominant. It has been proposed, however,
that the 4f -electrons can be decoupled from the conduction electrons for sufficiently large
frustration in the Kondo lattice system [46, 47]. Therefore, to explain the low tempera-
ture thermodynamic and transport properties the effect of (partial) magnetic frustration in
YbNi4Cd should not be excluded from consideration. We suggest that the delicate balance
among competing energy scales of both short-range and long-range interactions plays a
crucial role for its low temperature phase. More detailed investigations of low temperature
physical properties are needed to clarify the ground state of YbNi4Cd.
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Chapter 4

Conclusion and Future Work

We have successfully grown the single crystals of YbNi4Cd and YNi4Cd, which crystallize in
the cubic MgCu4Sn-type structure. The obtained experimental data show that YbNi4Cd is
an antiferromagnetic Kondo lattice with strong crystalline electric field effect. The magnetic
susceptibility measurement indicates that the Yb3+ moments occupying the tetrahedra are
well localized. In zero field, the specific heat and resistivity measurements confirm that the
YbNi4Cd compound undergoes an antiferromagnetic transition at T = 0.97 K. The low
temperature behavior of specific heat and resistivity is strongly dependent on the strength
of the magnetic field. An H − T phase diagram has been constructed based on these mea-
surements. Upon applying a magnetic field along the [111] direction, the magnetic phase
transition can be suppressed below 0.4 K for H > 4 kOe. In the vicinity of the antiferromag-
netic to paramagnetic phase boundary, no clear indication of non-Fermi-liquid behavior was
observed. At higher fields an anomalous temperature dependence of the electrical resistivity
was observed. Thermodynamic and transport measurements below 0.4 K are desirable in
order to further clarify the ground state of YbNi4Cd. In particular, it is critical to measure
the specific heat to identify the origin of the large electronic specific heat coefficient close
to the critical field.
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