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Abstract

Functional data analysis (FDA) plays an important role in analyzing function-valued data
such as growth curves, medical images and electromagnetic spectrum profiles, etc. Since
dimension reduction can be achieved for infinite-dimensional functional data via functional
principal component analysis (FPCA), this technique has attracted substantial attention.
We develop an easy-to-implement algorithm to perform FPCA and find that this algorithm
compares favorably with traditional methods in numerous applications. Knowing how ran-
dom functions interact is critical to studying mechanisms like gene regulations and event-
related brain activation. A new approach is proposed to calibrate dynamical correlations
of random functions and we apply this approach to quantify functional connectivity from
medical images. Scalar-on-function regression, which is widely used to characterize the re-
lationship between a functional covariate and a scalar response, is an important ingredient
of FDA. We propose several new scalar-on-function regression models and investigate their
properties from both theoretical and practical perspectives.

Keywords: functional data analysis; functional principal component analysis; dynamical
correlation; sparse; semiprametric additive models; quantile regression
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Chapter 1

Introduction

This thesis mainly focuses on developing new methodologies in functional data analysis
(FDA) for applications in environmental science, genetics, and neuroscience. Functional data
analysis refers to studying curves or functions with multiple measurements over a continuum
like space or time. With the development of modern computing technology, functional data
are frequently encountered in the above fields. Functional principal component analysis
(FPCA) and regression models with functional covariates and a scalar response are two
main problems of interest in FDA. Both of them are covered in the thesis. In addition,
we investigate methods to calibrate dynamical correlations between random functions; this
provides another perspective to look at gene regulation networks and functional connectivity
of brain signals at different locations.

A critical problem in FDA is to analyze functional data by dimension reduction since
functional data are intrinsically infinite dimensional. In this regard, there has been extensive
research on FPCA, which is an extension of the principal component analysis in multivariate
data analysis. More specifically, FPCA explores major sources of variability in a sample of
random curves by finding functional principal components (FPCs) that maximize curve
variation. Consequently, the top few FPCs play a dominant role in capturing the variability
in the random curves. Classical FPCA employs flexible functions such as B-spline or Fourier
basis functions to represent top FPCs. These flexible representations usually yield FPCs
without analytic formulae; hence users often find it onerous to understand and interpret
FPCs. To address this issue, we developed the parametric FPCA method to represent FPCs
with simple functions such as polynomials in Chapter 2. Numerical studies demonstrate that
the proposed method is competitive in terms of explaining similar variations of functional
data in comparison with the classical FPCA method.

[25] proposed the concept of dynamical correlation, which extends the basic idea of
the correlation coefficient to functional data and reflects the dynamical feature of associa-
tions between random functions. A new approach is proposed in Chapter 3 to implement
statistical inference for the dynamical correlation. Compared with the bootstrap approach
suggested by [25], our approach is considerably more efficient in computation. Furthermore,
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simulation studies demonstrate that the confidence interval of the dynamical correlation
obtained from our new approach has a more accurate coverage probability than its coun-
terpart from the bootstrap approach for random functions with irregular observations. This
approach is applied to real examples such as gene regulations, functional connectivity in
brain imaging data and air pollutants.

Functional regression models are widely used to predict a scalar response given func-
tional covariates. In Chapter 4, we propose a functional semiparametric additive model
for the effects of a functional covariate and several scalar covariates on a scalar response.
The effect of the functional covariate is modeled nonparametrically, while a linear form is
adopted to model the effects of the scalar covariates. This strategy can enhance flexibility in
modeling the effect of the functional covariate and maintain interpretability for the effects of
scalar covariates simultaneously. We develop the method for estimating the functional semi-
parametric additive model by smoothing and selecting non-vanishing components for the
functional covariate. Asymptotic properties of our method are also established. Two simu-
lation studies are implemented to compare our method with various conventional methods.
We demonstrate our method with two real applications.

Due to simplicity and easy interpretation, the functional linear model (FLM) is exten-
sively studied in literature and frequently applied in practice. However, this specific linear
form may lead to an inadequate fit of the relationship between a functional covariate and
a scalar response. To address this issue, we propose a sparse functional additive model in
Chapter 5. The effect of the functional predictor is represented in a nonparametric additive
form, where the arguments are the scaled functional principal component scores. Component
selection and smoothing are considered when fitting the model to reduce the variability and
enhance the prediction accuracy, while providing an adequate fit. The convergence rate of
the proposed estimator is established. Simulation studies show that the proposed estimation
method compares favourably with various conventional methods in terms of prediction ac-
curacy and component selection. The advantage of our proposed model and the estimation
method is further demonstrated in two real data examples.

In contrast to the models that focus on the conditional mean structure of a scalar
response in Chapter 4 and Chapter 5, a regression model characterizing the conditional
quantiles is discussed in Chapter 6. This new model connects the conditional quantile of a
response with a linear functional of a functional covariate using a nonparametric adaptive
link function. We propose a generalized profiling approach to estimate both the unknown
linear functional and the link function in the model. Simulation studies show that, compared
with approaches modelling the conditional mean, the proposed model is more robust to
extremely large outcomes in the response. In addition, when applying them to predict
the maximal intraday PM10 concentrations, we find that the quantile regression model
outperforms its counterpart in prediction accuracy.
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Chapter 2

Parametric Functional Principal
Component Analysis

2.1 Introduction

Functional data analysis has received considerable attention in diverse areas of applications
where the data are random curves ([85]; [30]). One major tool in functional data analysis is
functional principal component analysis (FPCA). FPCA explores major sources of variabil-
ity in a sample of random curves by finding functional principal components (FPCs) that
maximize curve variation. Consequently, the top few FPCs explain most of the variability in
the random curves. Each curve can be approximated by a linear combination of the top few
FPCs. In other words, the infinite dimensional curves are projected to a low-dimensional
space defined by the top FPCs. This powerful dimension reduction feature also promotes
the popularity of FPCA.

Asymptotic properties of FPCA have been studied and discussed at length. For example,
[20] built asymptotic theories for the principal component analysis of a vector of random
functions by treating the covariance as a linear operator from a separable Hilbert space.
Functional analysis is also an excellent tool to boost theoretical developments of FPCA,
including the work by [9], [67] and [11], among many others.

FPCA has not only gained considerable breakthroughs in theoretical developments,
but also achieved great success in applications. [116] applied FPCA in functional linear
regression models for longitudinal data; [87] employed FPCA to analyze paired functional
data with complex variations within and across individuals. A general assumption in FPCA
is that the observed data are dense and regularly spaced. For sparse and irregularly spaced
data, [115] proposed estimating the principal component scores via conditional expectation
(in short PACE), which recovers the individual trajectories by exploiting information from
all curves.

As suggested by [86], FPCA is more appealing if we control the roughness of FPCs to
achieve some degree of smoothness. Three methods have been proposed as far as we know.
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The first method smooths functional data in the first step, and then conducts the regular
FPCA procedure on the smoothed functional data ([84]; [10]). The second method adds a
roughness penalty term on the FPCs in the optimization criterion of FPCA ([81]; [96]). The
third method first smooths the variance-covariance function of functional data, and then
conducts eigenanalysis of the smoothed variance-covariance function ([115]).

FPCs explain the major variation of the curves and project the infinite-dimensional
curves to low-dimensional spaces; therefore it is important to interpret FPCs accurately.
Conventional methods provide flexible estimates of FPCs without analytic formulae; hence
users often find it onerous to understand and interpret FPCs. This bottleneck of FPCA has
gained recent attention. [62] proposed a penalty-based method to derive smooth FPCs that
are nonzero only in intervals where curves display major variation; while [15] considered a
localized version of FPCA to achieve both interpretability and functionality.
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Figure 2.1: The number of eggs laid by 50 medflies in 25 days.

In the line of interpretable FPCA, our work is motivated by observing the following fact:
although functional data may be complicated, the top few FPCs often display simple trends
in most applications we know of. For instance, medfly data have been discussed and analyzed
in substantial literature (e.g., [90]; [70]). This dataset consists of records of number of eggs
laid by Mediterranean fruit flies in 25 days. Figure 2.1 displays the number of eggs laid by
50 flies across 25 days. FPCA can be employed to explore the major variation of 50 curves.
Figure 2.2 shows the top three FPCs obtained from the smooth FPCA method ([86]). The
top three FPCs explain about 97.8% of total variations among 50 curves. Even though the
top three FPCs display simple trends, it is still challenging for users to understand and
interpret them because they are given numerically without parametric forms.
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Figure 2.2: The top three FPCs obtained from the nonparametric FPCA method for the
medfly data.

The above phenomenon is also found in many other applications of FPCA such as addi-
tional applications introduced in Section 2.3. Therefore, we propose to use simple parametric
functions to approximate the top FPCs, which possess both simple shapes and easy interpre-
tations for users. We call this method parametric FPCA. Although many simple parametric
functions can be used, we find that for most practical purposes polynomial functions suffice
for approximating the top FPCs.

In comparison with the conventional nonparametric FPCA method, our parametric
FPCA method has three major advantages. The first advantage is that the estimated FPCs
have a closed-form expression, which helps to understand and interpret the FPCs. The
second advantage is that the parametric FPCA method is more robust to outlier curves than
the conventional FPCA method, which will be justified in our simulation studies in Section
2.4. The third advantage is that the FPCs estimated by the parametric FPCA method
are always smooth, so it is unnecessary to add a roughness penalty on the FPCs. Thus,
parametric FPCA allows us to circumvent the smoothing parameter selection procedure
when estimating the FPCs.

The rest of this chapter is organized as follows. In Section 2.2, after presenting a brief
review of the conventional nonparametric FPCA method, we propose the parametric FPCA
method for analyzing regularly spaced and dense functional data and then for analyzing
irregularly spaced and sparsely observed functional data. In Section 2.3, three real appli-
cations are presented to demonstrate the utility of parametric FPCA. In Section 2.4, a
simulation study is conducted to justify the robustness of parametric FPCA. Section 2.5
concludes the chapter.
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2.2 Parametric FPCA

In this section, we first review the conventional nonparametric functional principal compo-
nent analysis (FPCA), with emphasis on regularized FPCA. Then we propose the parametric
FPCA method and illustrate how to carry out this method for densely observed and regu-
larly spaced functional data. Next we provide procedures to implement parametric FPCA
to analyze sparsely observed and irregularly spaced functional data. In the end we propose
an approach to choose the degree of polynomials when implementing parametric FPCA.

2.2.1 Nonparametric FPCA

In classical functional data analysis, FPCA is widely used to explain the major variations
in curves. Suppose we have a square integrable stochastic process X(t), t ∈ I, with mean
E (X(t)) = µ(t) and covariance function Cov (X(s), X(t)) = G(s, t). Mercer’s Theorem
states that G(s, t) has an orthogonal expansion in L2(I):

G(s, t) =
∞∑
k=1

λkψk(s)ψk(t), (2.1)

where ψk(t) and λk are eigenfunctions and eigenvalues of the covariance function with the
order λ1 ≥ λ2 ≥ · · · ≥ 0. The eigenfunctions {ψk(t)}∞k=1 satisfy∫

ψ2
k(t) dt = 1, and

∫
ψj(t)ψk(t) dt = 0 for any j 6= k. (2.2)

Let xi(t), i = 1, . . . , n be the sample curves of the stochastic processX(t). The Karhunen-
Loève expansion of xi(t) is :

xi(t) = µ(t) +
∞∑
k=1

ξikψk(t),

where {ψk(t)}∞k=1 are called the functional principal components (FPCs), and {ξik}∞k=1 are
the corresponding FPC scores. All sample curves xi(t) can be well approximated by the first
K FPCs, provided that these K FPCs explain most of the variability in the sample curves.
In practice, we choose the value of K such that the first K FPCs can explain at least 85%
of total variability in the sample curves, as suggested by [59]. Since all sample curves can
be projected to the finite K-dimensional space expanded by the first K FPCs, it is of great
interest to estimate these FPCs.

Usually, FPCs are represented nonparametrically as a linear combination of some flex-
ible basis functions such as B-spline or Fourier basis. The estimation procedure requires
numerical integration and calculation of a high dimensional inverse matrix to achieve high
precision for densely observed functional data. In addition, the nonparametric estimate may
be excessively wiggly or locally variable due to a large number of basis functions employed
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in the representation of the FPCs. [86] argued that it would be more appealing to accom-
modate smoothness when estimating FPCs. They proposed two different approaches to
obtain smooth estimates for FPCs. One method directly smooths FPCs by penalizing their
roughness; the second method first smooths the functional data and then computes the cor-
responding FPCs from the smoothed data. The latter approach is used in all applications
and simulations in this chapter, where we call it as the nonparametric FPCA method. In
the proposed parametric FPCA method, we also adopt the latter approach: smooth raw
functional data and then apply parametric FPCA to the smoothed functional data.

2.2.2 Parametric FPCA for Dense Functional Data

Now we propose how to carry out parametric FPCA for densely observed and regularly
spaced functional data. We find that the top few FPCs often display some simple trends in
most applications we know of. In particular, the first FPC is often close to a constant over
time, which reflects the mean level of the sample curves; the second FPC is close to a straight
line over time, which usually crosses the x-axis and reflects a change of the sample curves
between two time intervals; and the third FPC is close to a quadratic curve, crossing the
x-axis twice and representing the change of the sample curves among three time intervals.

Motivated by the simple shapes of the top few FPCs in many situations, we propose to
approximate the top K FPCs using a simple parametric form. Meanwhile, we hope that the
parametric FPCs can still explain most variations of sample curves, which will be assessed
by our three applications in Section 2.3. Any appropriate parametric form can be used to
represent the top K FPCs. In this chapter, we assume that the top K FPCs are given in
the following polynomial forms of degree p (p ≥ K − 1):

ψk(t) = bk0 + bk1t+ · · ·+ bkpt
p, k = 1, . . . ,K, (2.3)

where the coefficients bkj are chosen to satisfy the constraints (2.2). The choice of the degree
of polynomials p will be discussed in Section 2.2.4.

Based on (2.1) and (2.2), all FPCs ψk(t), k = 1, . . . ,K, satisfy the following eigenequa-
tion ∫

I
G(s, t)ψk(s) ds = λkψk(t), (2.4)

where G(s, t) is the covariance function of X(t), i.e., G(s, t) = Cov (X(s), X(t)). In the rest
of this subsection, we show how to estimate the coefficients bkj for the FPCs in (2.3) based
on the above eigenequation.

The parametric FPCs in (2.3) can be expressed in a matrix notation ψk(t) = φ′(t)bk,
where φ(t) = (1, t, . . . , tp)′ and bk = (bk0, . . . , bkp)′. Plugging this expression into (2.4), it
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follows∫
I
G(s, t)ψk(s) ds =

∫
I
G(s, t)φ′(s)bk ds =

{∫
I
G(s, t)φ(s) ds

}′
bk = λkφ

′(t)bk.

The above eigenequation holds for all t ∈ I. We choose M + 1 equally spaced time points,
t0 < t1 < · · · < tM on I, where t0 and tM are the two endpoints of I, respectively. Then
for any tm, m = 0, . . . ,M , the eigenequation is

{∫
I
G(s, tm)φ(s) ds

}′
bk = λkφ

′(tm)bk.

Let Φ be an (M + 1) × (p + 1) matrix with the (m, j)-th entry Φmj = φj(tm), where
φj(t) = tj−1, and A be an (M + 1)× (p+ 1) matrix with the (m, j)-th entry

Amj =
∫
I
G(s, tm)φj(s) ds .

Then the eigenequation can be written in the matrix form

Abk = λkΦbk.

Therefore,
(Φ′A)bk = λkΦ′Φbk. (2.5)

Defining ck = (Φ′Φ)
1
2bk, Equation (2.5) can be expressed in terms of ck:

(Φ′Φ)−
1
2 (Φ′A)(Φ′Φ)−

1
2 ck = λkck.

Therefore, ck is the eigenvector of the symmetric matrix (Φ′Φ)−
1
2 (Φ′A)(Φ′Φ)−

1
2 and λk is

the eigenvalue of this matrix. Here the matrix (Φ′Φ)−
1
2 (Φ′A)(Φ′Φ)−

1
2 is symmetric since

we approximate the integral for Amj . Let λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 be the K eigenvalues of
this matrix, and ck be the corresponding eigenvector of this matrix. Then bk = (Φ′Φ)−

1
2 ck,

and the k-th FPC ψk(t) = φ′(t)bk. When k1 6= k2, the orthogonality of ck1 and ck2 implies
the approximate orthogonality of FPCs ψk1(t) and ψk2(t), which can be verified as follows:∫

I
ψk1(t)ψk2(t) dt =

∫
I
b′k1φ(t)φ′(t)bk2 dt

=
∫
I
c′k1(Φ′Φ)−

1
2φ(t)φ′(t)(Φ′Φ)−

1
2 ck2 dt

≈ c′k1(Φ′Φ)−
1
2

{
L

M
(Φ′Φ)

}
(Φ′Φ)−

1
2 ck2

= 0,

where L is the length of I.
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Algorithm 1 details our parametric FPCA method for dense functional data.

Algorithm 1 : Parametric FPCA for dense functional data
Step 1: Smooth the original functional data.

Step 2: Obtain the sample variance-covariance function for G(t`, tm):

Ĝ(t`, tm) = 1
n

n∑
i=1
{x̂i(t`)− x̄(t`)}{x̂i(tm)− x̄(tm)}, (2.6)

where x̂i(t) is the smooth estimate for each functional data by using the smooth spline
method ([109]), and x̄(t) = 1

n

∑n
i=1 x̂i(t).

Step 3: Employ the rectangle rule to approximate the entries in the (m, j)-th entry of the
matrix A

Amj =
∫
I
G(s, tm)φj(s) ds ≈ L

M

M∑
`=0

Ĝ(t`, tm)φj(t`) ,

where L is the length of I, and Ĝ(s, t) is the sample covariance function estimated by
(2.6).

Step 4: Find eigenvalues and eigenvectors of the matrix (Φ′Φ)−
1
2 (Φ′A)(Φ′Φ)−

1
2 . Let

ck, k = 1, . . . ,K, be the eigenvectors of this matrix. The k-th FPC ψk(t) = φ′(t)bk,
where bk = (Φ′Φ)−

1
2 ck.

2.2.3 Parametric FPCA for sparse functional data

Sometimes the functional data only have sparse observations, and the time points when the
observations are made are irregularly spaced ([115]). Our parametric FPCA method can
also be extended to conduct FPCA for irregularly spaced and sparsely observed functional
data. The FPCs obtained under these conditions also have simple parametric forms and
straightforward interpretations, unlike the nonparametric estimation method proposed in
[115].

Let Yij denote the jth observation of Xi(t) at time point tij , where j = 1, . . . , ni and
i = 1, . . . , N . It’s natural to assume that the observation Yij made at time tij contains some
measurement error. Thus we consider the model:

Yij = Xi(tij) + εij , (2.7)

where εij denotes the measurement error with mean 0 and variance σ2. In addition, εij
are assumed to be i.i.d and independent of Xi(tij). The mean curve µ(t) of the functional
data Xi(t) can be estimated using local linear regression ([28]) from the pooled data of all
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subjects. Denote the corresponding estimator as µ̂(t), t ∈ I. Note that in Model (2.7),

Cov (Yij , Yil) = Cov (Xij(tij), Xil(til)) + σ2δ(tij = til),

where δ(t = s) = 1 if t = s; and δ(t = s) = 0 if t 6= s. Define

Gi(tij , til) = {Yij − µ̂(tij)}{Yil − µ̂(til)}.

We can pool {Gi(tij , til) : tij 6= til, i = 1, . . . , n} together to estimate the covariance function
G(s, t). The diagonal elements are eliminated from Gi(·, ·) since they account for additional
variance of noises. As suggested by [115], a local linear estimator can be employed to estimate
the covariance function, where the two-dimensional tuning parameters can be chosen based
on leave-one-curve-out cross-validation to smooth the covariance function. Then we can
obtain FPCs for the sparse functional data with the following Algorithm 2:

Algorithm 2 : Parametric FPCA for sparse functional data
Step 1: Estimate the mean curve µ(t) using the local linear regression.
Step 2: Estimate the covariance function using the local linear regression method. Denote
the estimator as Ĝ(s, t).
Step 3: Employ the rectangle rule to approximate the entries in the (m, j)-th entry of the
matrix A

Amj =
∫
I
G(s, tm)φj(s) ds ≈ L

M

M∑
`=0

Ĝ(t`, tm)φj(t`) ,

where L is the length of I, and Ĝ(s, t) is the estimated covariance function.

Step 4: Find eigenvalues and eigenvectors of the matrix (Φ′Φ)−
1
2 (Φ′A)(Φ′Φ)−

1
2 . Let

ck, k = 1, . . . ,K, be the eigenvectors of this matrix. The k-th FPC ψk(t) = φ′(t)bk,
where bk = (Φ′Φ)−

1
2 ck.

2.2.4 Choosing the Degree of Polynomials p

A practical consideration when employing parametric FPCA is to choose p, the degree of
polynomials. Polynomials with a smaller p yield a less flexible, less accurate but more inter-
pretable and robust estimate of FPCs. On the other hand, a more accurate and flexible but
less interpretable and robust estimate can be obtained when choosing a larger p. The degree
of polynomials p therefore controls the trade off between flexibility and interpretability. The
optimal choice of p may depend on the context of the study. In this chapter, we suggest to
choose p by comparing the distance between the first K FPCs estimated using parametric
FPCA and nonparametric FPCA for each given p. To account for different importance of
each FPC, a weighted sum is adopted. To be more specific, we define the weighted distance
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of the FPCs estimated using parametric FPCA and nonparametric FPCA:

J(p) =
K∑
k=1

wk

∫
I
|ψ̂P
k (t)− ψ̂NP

k (t)|dt,

where the weight wk = λk/
∑K
k=1 λk, and ψ̂P

k (t) and ψ̂NP
k (t) are the estimated k-th FPC using

the parametric FPCA method and the nonparametric FPCA method, respectively. A plot of
J(p) for a variety of p values shows the influence of degree of polynomials. In our experience,
we recommend to choose the point at which J(p) levels off from a practical perspective. We
adopt this strategy to choose p in the following applications and simulation studies. Another
way to compare the spaces spanned by eigenfunctions obtained from the parametric and
nonparametric FPCA methods is to redefine the eigenfunctions with the parametric method
to minimize the distance between them and counterparts with the nonparametric method.

2.3 Applications

In this section, we compare the proposed parametric FPCA method with the nonparametric
FPCA method using three application examples. Subsection 2.3.2 is an application on sparse
functional data, and the rest are applications on dense functional data. The advantage of
the parametric FPCA method is that the estimated parametric FPCs have closed-form
expressions, which helps to understand and interpret the FPCs. The main risk in using
parametric FPCA is that the estimated FPCs may be significantly different from those
obtained using nonparametric FPCA, and the estimated parametric FPCs may not explain
enough variability of the functional data. We will show that this risk is insignificant in six
application examples. When functional data are very bumpy, the risk is still relatively small,
which is demonstrated in the last application.

2.3.1 Analysis of Medfly Data

The medfly data is fairly popular among researchers interested in functional data analysis
([39]). This dataset catalogs the number of eggs laid by 50 Mediterranean fruit flies over 25
days, which is assumed to be related to the smooth process that controls fertility. We are
interested in exploring modes of variability in eggs laid at each stage, which can reflect the
variability of the underlying process governing fertility. Figure 2.1 displays the profiles of
the number of eggs laid by 50 medflies in 25 days, in which substantial wiggles and spikes
are observable. First we use the smoothing spline method to smooth the original data. Using
cubic B-splines, we put one knot at each day and choose a value of 100 for the smoothing
parameter since it minimizes generalized cross-validation (GCV). We then estimate FPCs
with both the parametric and nonparametric FPCA methods from the smoothed functional
data. Nonparametric FPCA suggests that the first two FPCs can explain over 92% of the
total variability. So we choose to estimate two FPCs for the medfly data. Figure 2.3 shows

11



that the weighted distance of the FPCs estimated using parametric FPCA and nonparamet-
ric FPCA levels off at p = 3. So the parametric FPCA method chooses cubic polynomials
to estimate FPCs. The top two FPCs estimated using parametric FPCA are:

ψ̂1(t) = 0.122 + 0.030t− 2.0× 10−3t2 + 2.5× 10−5t3,

ψ̂2(t) = −0.561 + 0.110t− 6.1× 10−3t2 + 1.2× 10−4t3.
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Figure 2.3: The weighted distance J(p) of the FPCs estimated using parametric FPCA and
nonparametric FPCA when the degree of polynomials p varies for the medfly data .

Method FPC 1 FPC 2 Total
Medfly Parametric FPCA 62.20% 29.44% 91.64%

Nonparametric FPCA 62.21% 29.49% 91.70%
Method FPC 1 Total

CD4 Parametric FPCA 84.71% 84.71%
Nonparametric FPCA 85.11% 85.11%

Method FPC 1 FPC 2 FPC 3 Total
DTI Parametric FPCA 58.80% 16.00% 6.00% 80.70%

Nonparametric FPCA 60.42% 17.64% 7.48% 85.27%

Table 2.1: Comparison of variations explained by the leading FPCs estimated using para-
metric FPCA and nonparametric FPCA for all three application cases.
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Table 2.1 summarizes the comparison of variations explained by the top two FPCs
estimated using the parametric and nonparametric FPCA methods. Their performances are
very close in terms of the proportions of total variations explained by the top two FPCs.
Figure 2.4 displays the shapes of the top two FPCs. Both of them are almost identical when
estimated using these two methods.
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Figure 2.4: The top two FPCs estimated using nonparametric FPCA and parametric FPCA
for the medfly data. P-FPCA stands for parametric FPCA; while NP-FPCA stands for
nonparametric FPCA.

Using the parametric FPCA method, the first FPC explains around 62.2% of total
variability in the medfly egg data. It is positive over the whole time interval and can be
interpreted as a weighted average of all values of each curve in the whole time interval. The
second FPC explains around 29.4% of total variability in the medfly egg data. It is negative
in [1, 8] and positive in [8, 25], which may be interpreted as the change of egg numbers laid
after the eighth day.

2.3.2 Analysis of longitudinal CD4 Counts

The dataset has CD4 cell counts of 283 homosexual men who became HIV-positive between
1984 and 1991 from the Multicenter AIDS Cohort Study. A more detailed description of
this study can be found in [52]. Figure 2.5 displays the trajectories of CD4 percentage of
the 283 homosexual men. For each subject, the measurements are sparsely taken and irreg-
ularly spaced, but the measurement time points pooled across all subjects are dense. We
have chosen this example to illustrate how parametric FPCA is applied to sparse functional
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data, and how its performance compares with the nonparametric FPCA. For convenience,
we first normalize the range of the sampling time points to [0, 1] and then fit a local linear
regression model to smooth the mean and covariance functions of CD4 cell counts. Next we
estimate FPCs for the smoothed covariance function using the nonparametric and paramet-
ric methods. We estimate the nonparametric FPCs with the PACE method proposed by
[115], and the parametric FPCs with the parametric FPCA method introduced in Section
2.3. The nonparametric method suggests that the first FPC can explain around 85% of total
variability in the data. So we choose to estimate one FPC for the CD4 data. The weighted
distance of the FPC estimated using parametric FPCA and nonparametric FPCA levels
off at p = 2. So the parametric FPCA method chooses quadratic polynomials to estimate
FPCs. The top FPC estimated using the parametric FPCA method is:

ψ̂1(t) = 0.521 + 1.288t− 0.563t2.
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Figure 2.5: The CD4 percentage trajectories of 283 homosexual men.

Table 2.1 summarizes the comparison between the nonparametric and parametric FPCA
methods in terms of the proportions of the variability of the longitudinal CD4 cell counts
explained by the first FPC. It turns out that the FPC obtained using the parametric FPCA
method has captured the variations of the functional data almost as well as the nonpara-
metric FPCA method. Figure 2.6 presents the shapes of the first FPC obtained from these
different FPCA methods. Looking at the result we see that there is little disagreement
between the nonparametric and parametric methods, with respect to the first FPC.
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Figure 2.6: The first FPC estimated using nonparametric FPCA and parametric FPCA
for CD4 cell counts. P-FPCA stands for parametric FPCA; while NP-FPCA stands for
nonparametric FPCA.

The estimated first FPC using parametric FPCA can be interpreted as follows. It plays
a dominating role in explaining variability in the CD4 counts data. Since the first FPC is
positively valued over the whole time interval, it can reflect the “average" of all (smoothed)
profiles in the CD4 sample.

2.3.3 Analysis of Diffusion Tensor Imagining (DTI) data

DTI reveals microscopic details about the architecture of the white matter tracts by mea-
suring the three-dimensional directions of water diffusion in the brain [5]. An R package
“Refund" provides fractional anisotropy (FA) tract profiles for the corpus callosum (CCA)
and the right corticospinal tract of 42 healthy controls and 340 patients with multiple
sclerosis.

Figure 2.7 displays the profiles of the CCA sampled at 93 locations in 42 controls. A
few fast oscillations can be observed within each of the 42 controls. Cubic B-spline basis
functions with one knot at each measurement location were adopted to fit a nonparametric
regression to smooth individual profiles. The value of smoothing parameter λ is set to 31,
and both parametric and nonparametric FPCA methods are carried out on the smoothed
DTI data for comparison. Nonparametric FPCA suggests that the first three FPCs can
explain over 85% of total variability in the smoothed CCA profiles. So we choose to estimate
three FPC for the DTI data. Since we find that the weighted distance of the FPC estimated
using parametric FPCA and nonparametric FPCA levels off at p = 4, the parametric FPCA
method chooses quartic polynomials to estimate FPCs. The parametric FPCA estimates of

15



the top three FPCs are given by:

ψ̂1(t) = 0.060 + 9.7× 10−3t− 4.8× 10−4t2 + 7.9× 10−6t3 − 4.2× 10−8t4,

ψ̂2(t) = 0.225− 0.032t+ 1.7× 10−3t2 − 3.3× 1056t3 + 2.0× 10−7t4,

ψ̂3(t) = 0.353− 0.028t+ 4.6× 10−4t2 − 6.7× 10−7t3 − 1.6× 10−8t4.
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Figure 2.7: Profiles of the corpus callosum across 42 healthy controls.

Since a great amount of variability exists both within and between subjects, we expect
that the nonparametric FPCA may slightly outperform the parametric FPCA since the
nonparametric basis functions offer greater flexibility. Table 2.1 confirms this. This is the
price paid to utilize the simpler representations provided by the parametric FPCA. Figure
2.8 displays the shapes of the FPCs estimated from both nonparametric and parametric
FPCA. Not surprisingly, more wiggles are observed in the FPCs obtained from nonpara-
metric FPCA, even though regularization has been imposed to control the roughness of
FPCs. The FPCs obtained from parametric FPCA can be treated as smoothed versions of
the counterparts from nonparametric FPCA.

Due to the existence of substantial fluctuations, the first FPC estimated using parametric
FPCA cannot explain the variance of the sample as well as those in previous examples. The
shape of it, however, is still quite stable: positive over the whole time interval. Therefore
it can still be regarded as a weighted average of all values of each curve in the sample. A
considerable decrease in explaining the variance of the DTI data does not occur for the
second FPC, which still accounts for about 16.0% of total variability in the DTI data.
As expected, there is one change in sign: positive in [0, 53.5] and negative in [53.5, 86.1].
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Accordingly, the second FPC reveals the change of CCA after the time 53.5 if we neglect
the fact that it is positive in [86.1, 92]. This will not make an evident difference since the
neglected time interval is very short and thus makes minor contribution to the whole process.
Not surprisingly, the third FPC is inferior in explaining total variability in the DTI data
and less unvarying in terms of shape. It is negative in [17.3, 65.9], and positive elsewhere;
it can therefore be interpreted as the difference in CCA during the interval [17.3, 65.9] and
other time periods.
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Figure 2.8: The first three FPCs estimated from NP-FPCA and P-FPCA for DTI data.
NP-FPCA stands for nonparametric FPCA; while P-FPCA stands for parametric FPCA.

2.4 Simulation Study

To compare the parametric FPCA method and the nonparametric FPCA method, we con-
duct a simulation study. Since the true FPCs are known prior to simulation, we compare
the bias, standard error and the squared root of the mean squared error (RMSE) of the
estimated FPCs using each method.

We choose the top three FPCs estimated from the medfly data using the nonparametric
FPCA method, which are shown in Figure 2.2, and the corresponding eigenvalues together
with the mean curve of the smoothed functional data to generate random curves in the
simulation. More specifically, the random curves are generated as

Xi(t) = µ(t) + ξi1ψ1(t) + ξi2ψ2(t) + ξi3ψ3(t), i = 1, . . . , n

where µ(t) denotes the mean curve, ξij ∼ N(0, λj), j = 1, 2, 3, with λ1, λ2 and λ3 denoting
the largest three eigenvalues, respectively, and ψ1(t), ψ2(t) and ψ3(t) denote the top three
FPCs estimated from the medfly data using nonparametric FPCA. Since the data are
generated from the FPCs estimated using nonparametric FPCA, the nonparametric FPCA
method should outperform the parametric FPCA method. On the other hand, parametric
FPCA turns out to be more robust in comparison with nonparametric FPCA when the
functional data are contaminated by outlier curves.
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Figure 2.9: The trajectories of 21 true curves and 9 contaminated curves randomly selected
from 1 of the 200 simulations. The solid (—–) and dashed (− − −) lines represent the true
curves and contaminated curves, respectively.

We generate n = 200 curves in total; each curve is sampled from m = 100 regular
grid points on [0, 25]. Then we compare the performances of nonparametric and parametric
FPCA in two scenarios: outlier curves are absent and present. In the first scenario, all
200 curves have no outlier curves. In the second scenario, 30% of these 200 curves are
selected randomly to be outlier curves. More specifically, the outlier curves are assumed to
be generated from the linear combination of the fourth and fifth FPCs estimated from the
medfly data using the nonparametric FPCA method with corresponding eigenvalues scaled
to make the variabilities of the outliers comparable with the variabilities of X(t). Figure 2.9
presents the trajectories of 21 true curves and 9 contaminated cures randomly selected from
one simulated dataset in the second scenario. Both parametric FPCA and nonparametric
FPCA are conducted on the sample of 200 curves. To assess the performance of these two
FPCA approaches in both scenarios, 100 simulation replicates are conducted to estimate
the bias, standard error and RMSE of the FPCs estimated using both methods.
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Figure 2.10: The estimated bias, standard error and RMSE of the top three FPCs estimated
from parametric FPCA and nonparametric FPCA when there is no outlier curve. In each
panel, the solid (—–) and dashed (− − −) lines represent the FPC estimated from para-
metric FPCA and nonparametric FPCA, respectively. The first, second and third columns
correspond to the first, second and third FPCs, respectively.

Figures 2.10 and 2.11 summarize the estimated bias, standard error and root mean
squared error (RMSE) of the top three FPCs estimated from both nonparametric FPCA
and parametric FPCA in these two scenarios, respectively. When the 200 curves have no
outlier curves, nonparametric FPCA has smaller bias and RMSE than parametric FPCA
for all three FPCs. This is not surprising since nonparametric FPCA, compared with para-
metric FPCA, is more flexible, thus more effective in capturing some local features such as
rapid fluctuations of true FPCs. On the other hand, when curves are contaminated with
outlier curves in the second scenario, Figure 2.11 shows that parametric FPCA compares
favourably with nonparametric FPCA. In the presence of outlier curves, the two approaches
have a similar performance in terms of bias. But parametric FPCA leads to a much more
stable estimate of the three FPCs in comparison with nonparametric FPCA. Although non-
parametric FPCA is able to capture features from both contaminated and non-contaminated
curves with a large number of basis functions, the flexibility of nonparametric FPCA re-
sults in more unrobust estimates of FPCs. In summary, the parametric FPCA estimates are
more robust than their nonparametric counterparts in the presence of outlier curves. Fur-
thermore, when RMSE is used as the criterion to assess the performance of the estimated
FPCs, parametric FPCA yields more accurate FPC estimates when the functional data are
contaminated with outlier curves.
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Figure 2.11: The estimated bias, standard error and RMSE of the top three FPCs estimated
from parametric FPCA and nonparametric FPCA when 30% of curves are contaminated
with outliers. In each panel, the solid (—–) and dashed (− − −) lines represent the FPC
estimated from parametric FPCA and nonparametric FPCA, respectively. The first, second
and third columns correspond to the first, second and third FPCs, respectively.

2.5 Conclusions

FPCA is a powerful tool to detect major sources of variation in functional data. Even
when the functional data displays great variability and is highly oscillatory, the top FPCs
often still have simple trends and may be approximated by simple parametric functions.
We propose a parametric FPCA method which is able to estimate the top FPCs with some
parametric functions for either dense or sparse functional data.

Our parametric FPCA method is demonstrated with three applications in a variety of
fields. The performance of the parametric FPCA method is satisfactory in terms of ex-
plaining similar variations of functional data in comparison with the more complicated
nonparametric FPCA method. In addition, the estimated FPCs using these two FPCA ap-
proaches are very similar as well. An advantage of parametric FPCA is that compared with
FPCs estimated from nonparametric FPCA, the ones from parametric FPCA are simple
parametric functions; thus they are considerably easier to understand and interpret. Last
but not least, as shown in the simulation study in Section 2.4, the FPCs estimated from the
parametric FPCA are more robust compared with the nonparametric FPCA counterparts,
when a small proportion of curves are contaminated with outlier curves.

Although in many applications the performance of parametric FPCA is comparable with
that of the nonparametric FPCA, it should also be noted that there exist cases when non-
parametric FPCA may outperform parametric FPCA, particularly when great variability
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is presented within and between curves. Take for instance the DTI data in Section 2.3.3,
where the nonparametric FPCA might be more appealing since the basis functions have
greater flexibility, which can better capture the local variability of the FPCs.
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Chapter 3

Weighted Empirical Likelihood
Inference for Dynamical
Correlations

3.1 Introduction

With the development of techniques in collecting data, analysis of data with complex struc-
tures has become increasingly popular in statistical research. Functional data analysis has
attracted extensive attention in fields like image analysis, disease diagnostic and gene regu-
lation ([85], [57], [3]). Particularly, analysis of univariate functional data analysis has been
focused on for a long time. Among them, functional regression and functional principal
component analysis are two particularly important problems for researchers. For a more
comprehensive view of them, refer to monographs like [86], [34], [31] and [47]. In contrast,
multivariate functional data have not been studied popularly.

Dependence modeling plays a significant role in multivariate data analysis. Dependence
structure among stochastic processes likewise is worth studying for its own merit in func-
tional data analysis. [45] proposed the rank correlation coefficient between two random
functions in cluster analysis. [25] considered the dynamical correlation of two random func-
tions, which can be regarded as an extension of the correlation coefficient in multivariate
data. [113] developed singular valued decomposition for pairs of functional data.

In this chapter, we focus on the dynamical correlation, which summarizes the correlation
of two functional variables over their domain. There have been substantial applications
related to this concept in literature. For instance, a graphical Gaussian model for functional
data was developed by [75] based on the dynamical correlation. [63] applied the dynamical
correlation in a psychological study. The dynamical correlation was employed in [6] to study
the mechanism when CD8+ T cells are activated in HIV-infected individuals.

[25] proposed a sample average estimator for dynamical correlation. However, the asymp-
totical variance of this estimator is not tractable. Thus they recommended a bootstrap
procedure to construct a confidence interval for dynamical correlation based on the av-
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erage estimator. Since a local linear regression is used to smooth functional data in the
pre-processing step, both fitted values and residuals must be resampled in their proposed
bootstrap procedure. This leads to a computationally intensive procedure for inferring dy-
namical correlation, which may restrict its applications in practice. Another concern of this
estimator is that each subject makes an equal contribution to the final estimator. This may
not be an optimal treatment in practice since subjects with dense observations may pro-
vide a more accurate estimate of dynamical correlation in comparison with subjects with
less dense observations. An estimator which can adjust weights on each subject is, there-
fore, more appealing than a simple average of the estimate from each subject. Actually
[25] also considered such an estimator in applications under the bootstrap-based inference
framework, even though this estimator was not thoroughly investigated in the paper. Fur-
thermore, we find in simulation studies that this bootstrap procedure is unstable and cannot
provide a reliable confidence interval for dynamical correlation when the functional data are
irregularly spaced.

Motivated by these observations, we propose a weighted average estimator for the dy-
namical correlation which can adaptively adjust weights on each subject. The weights are
chosen via the weighted empirical likelihood. This new estimator can be regarded as an
alternative to that mentioned in applications of [25]. The statistical inference framework,
however, is different from the bootstrap-based analysis proposed by [25]. The main advan-
tage of this method is that we do not need to estimate the standard error of the estimator
for statistical inference since the test statistic itself is self-normalized under some regularity
conditions. This improves computational efficiency substantially for constructing confidence
intervals, in comparison with the bootstrap-based method proposed by [25]. This improve-
ment will be demonstrated in our simulation studies presented in Section 3.4. The second
advantage of our method is that our proposed weighted empirical likelihood is possible
to yield a confidence interval with a more accurate coverage probability than its counter-
part by the bootstrap method when functional data are irregularly spaced. Our simulation
studies show that the coverage probability of the proposed confidence interval is still close
to the nominal level even when the functional data are irregularly designed. In summary,
the main advantage of our method in statistical inference is well reflected when there exist
great variations in the number of observations across subjects. Note that our method cannot
accommodate the case when functional data have sparse observations for every subject.

The chapter is organized as follows. The definition of dynamical correlation is reviewed
in Section 3.2. Then a new method of constructing confidence intervals for dynamical corre-
lation based on the weighted empirical likelihood is proposed. For comparison, we introduce
the bootstrap method for constructing confidence intervals for dynamical correlation pro-
posed by [25] later. Some theoretical properties of the proposed inference tool are given in
Section 3.3. The proofs are deferred to Appendix B. Section 3.4 compares the performances
of the weighted empirical likelihood-based method and the bootstrap method in associated
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confidence intervals for dynamical correlation via simulation studies. The proposed method
is illustrated with three applications in Section 3.5. Section 3.6 concludes the chapter.

3.2 Confidence Intervals for Dynamical Correlation

We propose the weighted empirical likelihood method to estimate confidence intervals for
the dynamical correlation of two random functions. First, we introduce the definition of the
dynamical correlation of two random functions. We then introduce our method. Last, the
point estimator and the bootstrap confidence interval for dynamical correlation proposed
by [25] are reviewed.

3.2.1 Dynamical Correlation

The dynamical correlation was firstly proposed by [25] to use a single measure to describe
the correlation between two longitudinal curves. As noted by them, it is simpler and more
efficient, compared with functional canonical correlation ([43], [86]), which is well defined
provided restrictive assumptions.

Let fj , j = 1, . . . , p, be p random functions defined over a compact interval I. Suppose
they belong to L2(dw), the collection of all square integrable functions with respect to a
measure dw = wdt. That is, E {

∫
I f

2
j (t)w(t)dt} <∞, j = 1, . . . , p, where the weight function

w(t) defined over I satisfies (i) w(t) ≥ 0, t ∈ I, (ii)
∫
I w(t)dt = 1, (iii)

∫
I w

2(t)dt < ∞.
For any two functions f, g ∈ L2(dw), the inner product of them is defined by 〈f, g〉 =∫
I f(t)g(t)dw.

These random functions can be expressed as

fj(t) = µ0,j + µj(t) + ξ0,j +
∞∑
l=1

ξl,jφl(t), j = 1, . . . , p, (3.1)

where the fixed intercept µ0,j = E (〈fj , 1〉), µj(t) is the fixed mean function with µj(t) ∈
L2(dw) and 〈µj(t), 1〉 = 0, and ξ0,j serves as a random intercept. Let φ0(t) ≡ 1 and we
assume that the fixed functions, {φl(t)}∞l=0, constitute a complete orthonormal basis of the
space L2(dw); that is, 〈φi, φi′〉 = 0 if i 6= i′ and 1 otherwise. The other random components,
ξl,j ’s, are the coefficients when the random function fj is represented in terms of this or-
thonormal basis. We assume that ξl,j ’s are uncorrelated with ξ0,j for l ≥ 1, and they satisfy
E (ξl,j) = 0, Var(ξl,j) = σ2

l,j < ∞, l ≥ 0 and 0 <
∑∞
l=0 σ

2
l,j < ∞. Note that the expan-

sion given in (3.1) is not the Karhunen-Loève expansion of fj(t). The random coefficients,
ξl,j ’s (l ≥ 1), are not required to be uncorrelated with each other. Furthermore, the fixed
functions µj(t) and φl(t)’s are assumed to be twice continuously differentiable over I.
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Let Mj = 〈fj , 1〉. Then Mj = µ0,j + ξ0,j and fj(t) −Mj = µj(t) +
∑∞
l=1 ξl,jφl(t). The

standardized fj ’s are defined as

f?j (t) = fj(t)−Mj − µj(t)
[
∫
I{fj(t)−Mj − µj(t)}2dw]

1
2
. (3.2)

The dynamical correlation between fj1 and fj2 , 1 ≤ j1, j2 ≤ p, is defined as the expected
inner product of f?j1 and f?j2 ,

ρj1j2 = E 〈f?j1 , f
?
j2〉.

As argued by [25], the dynamical correlation satisfies |ρj1j2 | ≤ 1 for any two random func-
tions which are square integrable with respect to dw.

3.2.2 Confidence Interval via the Weighted Empirical Likelihood

As mentioned in Section 3.1, [25] proposed an estimator which averages the point estimate
for each subject to estimate dynamical correlation. They demonstrated that the perfor-
mance of this estimator is satisfactory when random functions are densely and regularly
observed. However, they did not explore its performance when random functions are irreg-
ularly observed.

Random functions are more often observed at different time points for different subjects,
which is called the irregular design in this chapter. For simplicity, we assume that for the
same subject, p random functions are observed at the same time points, though the method
presented in the following can be extended to deal with more general cases as well. More
specifically, we have observations {(f1(ti1), . . . , fp(ti1)), . . . , (f1(tini), . . . ,
fp(tini))} for the i-th subject, i = 1, . . . , n, where n denotes the number of subjects. Fur-
thermore, we assume that these observations may also have measurement errors.

Now we introduce a novel approach to construct confidence intervals for dynamical
correlation of two random functions under the irregular design. Inspired by the idea of [25],
we first employ local linear regression to smooth each random function for all subjects.
For i = 1, . . . , n, 1 ≤ j1 6= j2 ≤ p, let fSi,j1(t) and fSi,j2(t) denote smoothed fi,j1(t) and
fi,j2(t) with local linear smoothing, respectively. To define a sample version of (3.2), we
introduce f̃Si,j(t) = fSi,j(t) − 1/n

∑n
i=1 f

S
i,j(t) and M̃S

i,j = 〈f̃Si,j , 1〉, i = 1, . . . , n, j = j1, j2.
Hence f̃Si,j(t) − M̃S

i,j = fSi,j(t) −MS
i,j − 1/n

∑n
i=1(fSi,j(t) −MS

i,j). The standardized random
function in the ith subject, defined by

f̂S?i,j (t) =
f̃Si,j(t)− M̃S

i,j{∫
I(f̃Si,j(t)− M̃S

i,j)2dw
} 1

2
, (3.3)

therefore provides a reasonable estimate of f?j (t) defined in (3.2). As a result, the point
estimate of dynamical correlation of random functions fj1 and fj2 provided by the ith
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subject can be defined as
ρ̂Si,j1j2 = 〈f̂S?i,j1 , f̂

S?
i,j2〉. (3.4)

Using (3.4), we are able to obtain a point estimate of dynamical correlation of each pair
of random functions for each subject. In the Estimation section, [25] estimated dynamical
correlation by averaging these point estimates. However, this may not be an optimal strategy
to make use of all ρ̂Si,j1j2 ’s. Since different subjects have different numbers of measurements,
their contributions to the final estimate of dynamical correlation may not be equally impor-
tant. As a result, a simple average of ρ̂Si,j1j2 ’s may not be an optimal choice. [25] pointed out
and addressed this issue in applications by using weighted averages to estimate dynamical
correlation.

A natural problem about choosing appropriate weights arises. Another interesting prob-
lem is to construct a valid confidence interval for dynamical correlation based on ρ̂Si,j1j2 ’s. To
solve these problems, we borrow the idea of the weighted empirical likelihood proposed by
[110]. The log weighted empirical likelihood is defined as l(F ) = Tn

∑n
i=1 ci{log(pi)− npi},

where ci is the weight put on the ith subject, Tn = n/
∑n
i=1 ci and pi is probability put on

ρ̂Si,j1j2 satisfying
∑n
i=1 pi = 1. Obviously l(F ) achieves its maximum when p1 = p2 = · · · =

pn = 1/n. The log likelihood ratio is then as

l(F )−max
F

l(F ) = Tn

n∑
i=1

ci{log(pi)− npi} − Tn
n∑
i=1

ci{− log(n)− 1}

= Tn

n∑
i=1

ci{log(npi)− npi + 1}.

Given the additional constraint that E (ρ̂Si,j1j2) ≈ ρj1j2 under some regularity conditions
provided in Theorem 2 in [25], the profile log weighted empirical likelihood ratio is defined
as

R̃(ρ) = Tn

n∑
i=1

ci{log(npi)− npi + 1}, (3.5)

where pi’s maximize l(F ) subject to pi ≥ 0, i = 1, . . . , n,
∑n
i=1 pi = 1 and

∑n
i=1 piρ̂

S
i,j1j2 = ρ.

To account for the effect of different numbers of observations for different subjects, we
choose

ci = 1
ni

(3.6)

in (3.5) when applying the weighted empirical likelihood. This specific choice actually follows
[110], who suggested that ci should be proportional to the variance of the estimate from ith
subjection. [110] suggested χ2

1 to calibrate the asymptotic distribution of the log weighted
empirical likelihood ratio for this choice. Likewise, we propose a 1 − α confidence interval
for the true dynamical correlation ρj1j2 : {ρ : −2R̃(ρ) < χ2

1(1−α)}, where χ2
1(1−α) denotes

the 1− α quantile of χ2 distribution of one degree of freedom. Numerical studies presented
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in Section 3.4 show that χ2
1 approximates −2R̃(ρj1j2) reasonably well. As shown in [76]

and [110], the logarithms of both the unweighted and weighted empirical likelihood ratio
converge to a chi-squared distribution under some regularity conditions. But as argued in
[110], these two methods have different performances in statistical inference for samples
with a small size. The superiority of the weighted method is demonstrated via a simulation
study in [110], which shows that even though the lengths are similar, the confidence interval
generated from the weighted empirical likelihood has a coverage probability closer to the
nominal level than its counterpart, especially when the sample size is small.

Next we consider another scenario in which random functions are observed over a com-
mon grid of time points across all subjects. This scenario is called the regular design in this
chapter. We assume that observations consist of {(fi,1(tk), . . . , fi,p(tk)), i = 1, . . . , n, k =
1, . . . ,m}, where t1, t2, . . . , tm are m distinct points of I. Without loss of generality, we
assume that t1 < t2 . . . < tm. Using the same idea as in irregular design, the corresponding
log weighted empirical likelihood ratio becomes

R̃(ρ) =
n∑
i=1

log(npi), (3.7)

where pi’s maximize
∏n
i=1 pi subjects to pi ≥ 0, i = 1, . . . n,

∑n
i=1 pi = 1 and

∑n
i=1 piρ̂

S
i,j1j2 =

ρ. If ρ̂Si ’s were identically and independently distributed, R̃(ρ) is actually the same as the
log empirical likelihood ratio defined by [76]. We employ χ2

1 to calibrate the asymptotic
distribution of −2R̃(ρj1j2) as well. This chi-square calibration will be investigated both
theoretically and numerically later. Numerical studies show that {ρ : −2R̃(ρ) < χ2

1(1− α)}
is a reasonable 1− α confidence interval for ρj1j2 .

3.2.3 Confidence Intervals for Dynamical Correlation via Bootstrap

The point estimator for dynamical correlation between fj1(t) and fj2(t) proposed by [25] is
given by:

ρ̂j1j2 = 1
n

n∑
i=1

ρ̂Si,j1j2 . (3.8)

They considered confidence intervals for dynamical correlation based on ρ̂Si,j1j2 ’s as well.
Provided some regularity conditions and assuming µj(t) is known, j = j1, j2, they proved
that the estimator in (3.8) is asymptotically normal if 0 < |ρj1j2 | < 1. Based on this the-
oretical result, a confidence interval for the dynamical correlation would be immediately
available if we are able to find a plausible estimate of the variance of the estimator. How-
ever, they argued that the variance of ρ̂j1j2 is rather involved and there’s no straightforward
estimate of it. They hence suggested employing the bootstrap to obtain a confidence inter-
val. To account for the uncertainty introduced by the pre-smoothing step via a local linear
smoother, they proposed to sample the fitted values and residuals from the pre-smoothing
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step separately. Additionally, a relatively large number, B = 500 of bootstrap samples were
recommended to obtain a plausible confidence interval. To implement the above proce-
dure to compute the point estimator and the bootstrap confidence interval for dynamical
correalation, a package called dynCorr was developed by [24].

There are several issues associated with the estimator ρ̂j1j2 and the bootstrap strat-
egy, which may flaw their applications. First of all, each ρ̂Si,j1j2 makes equal contribution
to ρ̂j1j2 in (3.8), the final estimator of ρj1j2 . As pointed out in Section 3.2.2, this may not
be an optimal treatment under irregular design. Noting this fact, [25] suggested using a
weighted average of ρ̂Si,j1j2 ’s to estimate ρj1j2 to accommodate the irregular design in ap-
plications. Second, the bootstrap procedure was proposed to account for the uncertainty in
the pre-smoothing step and to estimate the variance of the average point estimator. But the
proposed bootstrap procedure is computationally intensive when the pre-smoothing step is
included and data are resampled B = 500 times. Last but not least, the performance of the
bootstrap method is not satisfactory under irregular design. The last issue will be demon-
strated in numerical studies presented in Section 3.4. The weighted empirical likelihood,
however, can circumvent estimating the variance since the log weighted likelihood ratio
statistics itself is self-normalized with the chi-square as the limiting distribution. Unlike
the bootstrap method, this chi-square calibration based on the weighted empirical likeli-
hood results in a confidence interval with an appealing coverage probability even under the
irregular design.

3.3 Theoretical Properties

Let ρj1j2 denote the true dynamical correlation between fj1(t) and fj2 , 1 ≤ j1, j2 ≤ p, and
j1 6= j2. Then we have

Theorem 1 Under the assumptions listed in Appendix A, if 0 < |ρj1j2 | < 1, and both
E (fj1(t)) and E (fj2(t)) are known, then −2R̃(ρj1j2)→ χ2(1) in distribution, where R̃(·) is
defined in (3.7).

The proof is deferred to Appendix B.

3.4 Simulation Studies

In this section, several simulation scenarios are considered to compare the confidence inter-
vals for dynamical correlation of two random functions based on the bootstrap method and
the weighted empirical likelihood. Our main concern consists of computational time and
coverage probabilities of these types of confidence intervals.

We generate n identically and independently copies of two random functions, f1 and f2,
on [0, 1]. Here n = 50 or 100. Let Yij(t) denote the measurement of fj of ith copy at time
t. More specifically, Yij(t) = fij(t) + eij(t), i = 1, . . . , n, j = 1, 2, where
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1. The random function is defined as fij(t) = 1+
∑2
l=0 ξl,jφl(t). In other words, µj(t) ≡ 0

and µ0,j = 1 for j = 1, 2. In addition, there are only three random components in
both random functions.

2. The fixed orthogonal functions φl’s take the following form: φ0(t) = 1, φ1(t) = 2
√

3(t−
1/2) and φ2(t) = 6

√
5(t− 1/2)2 −

√
5/2.

3. The random components are generated from a centered multivariate Gaussian dis-

tribution with a covariance matrix as follows: Σ =
(

Σ11 Σ12

Σ21 Σ22

)
, where each block

submatrix is defined as Σ11 = diag(1, 1/2, 1/3), Σ12 = diag(1/3, 1/4, 1/6) and Σ22 =
diag(1/2, 1/3, 1/4).

4. eij(t) ∼ N(0, 1/4) denotes the measurement error of the observation of fj from the ith
copy evaluated at time t. These measurement errors are assumed to be independent
of each other.

Under this setup, the true dynamical correlation between f1 and f2 is 0.5. The above
simulation setups are the same as in [25].

To compare the performances of the bootstrap method and the weighted empirical
likelihood method in associated confidence intervals for dynamical correlation, both irregular
and regular designs are considered. In both designs, a grid of equally-spaced bandwidths
{.01, .035, . . . , .36} is chosen in the local linear smoother in the pre-smoothing step. The
weight function w(t) is taken to be 1 over [0, 1]. To evaluate the real coverage probabilities
of the 1 - α confidence intervals for dynamical correlation generated from both the bootstrap
method and the weighted empirical likelihood, K = 100 simulation trials are run. Here we
focus on α = 0.05, namely 95% confidence intervals for dynamical correlation.

Irregular Design: In the first scenario, the ith copy of random functions are observed
on ni of these 100 time points, where ni is uniformly sampled from {25, 26, . . . , 100}. Table
3.1 summarizes the coverage probabilities of these two types of confidence intervals for
α = 0.05 across the 15 bandwidth choices under the irregular design. It can be observed
that there’s a remarkable gap between these two methods in terms of coverage probability.
The weighted empirical likelihood method is robust to the choice of bandwidths and the
coverage probabilities of the confidence intervals obtained from most bandwidth choices
are close to the nominal level. In contrast, the performance of the bootstrap method is not
satisfactory at all, no matter from the perspective of robustness or from coverage probability.
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Data n Method
h

.01 .035 .06 .085 .11 .135 .16 .185 .21 .235 .26 .285 .31 .335 .36

irregular
50

B .90 .79 .70 .67 .63 .63 .60 .62 .59 .66 .63 .57 .67 .63 .59
E .33 .88 .91 .96 .93 .91 .94 .96 .91 .94 .97 .91 .95 .95 .96

100
B .47 .58 .49 .43 .41 .38 .40 .39 .42 .35 .44 .33 .46 .35 .43
E .12 .87 .97 .96 .93 .94 .92 .93 .96 .94 .91 .98 .91 .95 .96

Table 3.1: Summary of coverage probabilities of two confidence intervals under the irregular
design: “B" and “E" stand for the bootstrap and the weighted empirical likelihood based
confidences, respectively. The bandwidth used in the local linear smoother is denoted by h
and the coverage probabilities are calculated from the 100 Monte Carlo simulations.

Regular Design: In the second scenario, the observational time points for both random
functions are chosen to be m = 100 equidistant points on [0, 1]. Under the regular design,
Table 3.2 indicates that both the bootstrap confidence interval and the empirical likelihood-
based confidence interval are robust to the choice of the bandwidth in the local linear
smoother. Furthermore, the coverage probabilities of both of these two confidence intervals
are quite close to the nominal level, even though the bootstrap method is slightly better in
some exceptional choices of bandwidth.

Data n Method
h

.01 .035 .06 .085 .11 .135 .16 .185 .21 .235 .26 .285 .31 .335 .36

regular
50

B .92 .98 .94 .98 .99 .95 .96 .98 .94 .94 .98 .94 .95 .96 .94
E .79 .95 .96 .88 .95 .91 .98 .96 .97 .99 .95 .94 .94 .92 .91

100
B .83 .94 .97 .96 .97 .96 .94 .96 .95 .95 .94 .94 .94 .94 .94
E .63 .94 .97 .95 .94 .90 .97 .93 .97 .96 .94 .99 .93 .89 .93

Table 3.2: Summary of coverage probabilities of two confidence intervals under the regular
design. “B" and “E" stand for the bootstrap and the weighted empirical likelihood based
confidences, respectively. The bandwidth used in the local linear smoother is denoted by h
and the coverage probabilities are calculated from the 100 Monte Carlo simulations.

A further comparison between these two methods is made in terms of computational
time. According to Table 3.3, the weighted empirical likelihood method is considerably more
efficient than the bootstrap method in computation. The bootstrap method spends substan-
tial time on estimating the variability of the average estimator of dynamical correlation by
resampling both the smoothed random functions and residuals when a local linear smoother
is involved. Nevertheless, this step can be circumvented in the weighted empirical likelihood
method. As pointed out by one referee, it should be noted that the bootstrap method is
able to account for the uncertainty in the pre-smoothing step, while the weighted empirical
likelihood method ignores this source of uncertainty in constructing confidence intervals for
dynamical correlation.
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Data n Method Time (s)

irregular
50

B 205
E 0.44

100
B 387
E 0.85

regular
50

B 214
E 0.55

100
B 450
E 1

Table 3.3: Summary of average computation time of two confidence intervals: “B" and “E"
stand for the bootstrap and the weighted empirical likelihood based confidences, respec-
tively. The average computation times are calculated from the 100 Monte Carlo simulations
and all bandwidths considered in Table 3.1 and Table 3.2.
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Figure 3.1: Q-Q plots of the weighted empirical likelihood ratio statistics. The upper and
bottom panels are for the irregular and regular designs, respectively. The left and right
panels correspond to n = 50 and n = 100, respectively.

To demonstrate that χ2
1 provides a reasonable calibration when constructing confidence

intervals for dynamical correlation based on the weighted empirical likelihood method, Fig-
ure 3.1 compares the empirical distribution of the weighted empirical likelihood ratio test
statistics with χ2

1 in the four different cases. For all four panels in Figure 3.1, h = 0.21 is
used in the local linear smoothing. Due to the robustness of the weighted empirical like-
lihood method, this specific choice should not play a critical role in determining shapes
of these four panels. It turns out that χ2

1 can provide a satisfactory approximation to the
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distribution of the empirical likelihood ratio test statistic even for a moderate number of
subjects for both irregular and regular designs. In the top right panel, five points with a
theoretical quantile greater than 4 deviate slightly from the straight line. This might seem
to be a serious issue when compared with the top left panel, in which only 50 independent
copies of random functions are generated. However, quantiles greater than 4 for the χ2

1
distribution correspond to quantiles greater than 2 for the N(0, 1) distribution; thus they
are greater than 95% quantile of N(0, 1). Usually an extreme quantile cannot be estimated
accurately due to data sparsity near the extreme quantile.

3.5 Applications

In this section, we apply the proposed empirical likelihood-based method to analyze the
dynamical correlation between random functions in three applications.

3.5.1 Dynamical Correlation of Air Pollutants

Dynamical correlation between air pollutants is treated in the first example. The dataset
is obtained from the NMMAPSdata package ([79]), which contains daily mortality, air
pollution, and weather data for the study of national morbidity, mortality, and air pollu-
tion. Six air pollutants, including PM10, PM2.5, SO2, O3, NO2, and CO, are measured in
108 cities of America from 1987 to 2000. There has been extensive research on the adverse
effect of PM2.5 and NO2 on health of human beings (see [2], [49] and [19]). [91] argued that
PM2.5 is one of the most concerning air pollutants which have an adverse impact on human
health. Actually limited recordings of PM2.5 were available before the 2000s in many regions
([79], [56], [93]). Thus it is crucial to understand the relationships between PM2.5 and other
regularly monitored air pollutants like PM10 and NO2 ([56]). According to [17], there is
a statistically significant association between the concentrations of PM2.5 and NO2 after
removing autocorrelation. Furthermore, they also claim that this association varies from
season to season. [56] showed that, for both ambient and kerbsite locations in Mumbai,
there’s a strong positive correlation between PM2.5 and NO2. It indicates that NO2 and
PM2.5 share a common origin. A two-step method was proposed in [17]: a time series filter
was employed to account for the temporal correlation within both NO2 and PM2.5 measure-
ments, and then the Pearson correlation analysis was carried out on the residuals to estimate
their associations. [56], however, conducted a regression analysis directly to estimate the
correlations between these air pollutants. Neither methods treated repeated measurements
of NO2 and/or PM2.5 as a sample of a smooth random function and considered the correla-
tion between two random functions, even though the former one can allow for the temporal
correlations. In this study, we are interested in investigating the association between these
two air pollutants from a novel perspective: dynamical correlation, which is directly based

32



on the repeated measurements of them while accounting the temporal correlation within
each of them.

Since from 1999 daily measurements for PM2.5 are available in most cities ([79]), we
choose measurements in 2000 for analysis for the consideration of fewer missing data. Cities
without any measurement of PM2.5 or NO2 are excluded; then in total, we have measure-
ments from 66 cities in the year of 2000. The left panel in Figure 3.2 displays the standardized
profiles of PM2.5 or NO2 from one randomly selected city. These two air pollutants show a
strong positive correlation in fall and winter and somewhat weak correlation in spring and
summer according to this single city. Statistical inference based on the weighted empirical
likelihood suggests that there’s a moderate positive dynamical correlation between these
two air pollutants if we aggregate the association in each season. In particular, the 95%
confidence interval for the dynamical correlation is (0.38, 0.44). This conclusion does not
contradict the mechanism how PM2.5 is generated. On the one hand, gases like NO2 and
PM2.5 may be emitted from the same source ([56]) and the former may serve as precursors
to secondary PM2.5 formation ([17]). On the other hand, correlations among these air pol-
lutants exhibit strong seasonality. These may explain why there exists a moderate positive
dynamical correlation between PM2.5 and NO2.
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Figure 3.2: Left: Standardized profiles of PM2.5 or NO2 in 2000 from one randomly selected
city. Right: Standardized profiles of three electrodes from one randomly selected subject.

3.5.2 Dynamical Correlation of EEG Signals

[120] studied the object recognition process by measuring electroencephalogram (EEG)
signals using pictures of objects. In their experiment, 64 electrodes are placed on subject’s
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scalps to investigate EEG correlates of genetic predisposition to alcoholism. There are 122
subjects in this study, 77 of them in the alcoholic group and the remaining in the control
group. Every subject is measured in 120 trials. In each trial, 256 observations were taken at
each scalp in one second when a stimulus was shown for a subject. Each subject was exposed
to a single stimulus or two stimuli. The two stimuli can be in a matched or non-matched
condition. This dataset is available at the following link: https://archive.ics.uci.edu/

ml/datasets/eeg+database.
In neuroimaging studies, there has been extensive research on functional connectivity,

which refers to the statistical association or interactions between different brain regions
([74]). For instance, when studying a EEG dataset, [66] found that significant functional
connectivity is identified between short-range sites (neighboring electrodes) considerably
more often than between electrodes in long distances, when an individual is not perform-
ing an explicit task. Though using different measures to quantify functional connectivity,
[83] drew a similar conclusion when applying the partial-correlation based framework to
analyze the EEG data mentioned in the last paragraph. We’re interested in studying func-
tional connectivity from the perspective of dynamical correlation. To examine whether the
dynamical correlation between short-range electrodes is stronger than that between long-
range electrodes, we choose three electrodes: C5, C3, and P8. The first two electrodes are
neighboring sites located in the central region, while the last electrode is in the temporal
region and situated a long distance away from the first two. According to [68], the central
region is in charge of functional integration of the tactile task while the temporal region is
the integration centre for auditory attention.

To alleviate the effect of an individual’s status (alcoholic or non-alcoholic) on functional
connectivity between two electrodes, our study is focused on the alcoholic group. For each
subject in the alcoholic group, we average recordings under the single stimulus condition
across 120 trials at each observational time point. Our primary interest here is to explore
dynamical correlation among the recordings of these three electrodes, which can serve as
another measure of functional connectivity. Since P8 is situated a long distance away from
both C5 and C3, which are neighboring electrodes, we suspect that the dynamical correla-
tion between C5 and C3 are the most significant, compared with the other two counterparts.
The right panel in Figure 3.2 depicts the standardized profile, defined in (3.3), of these three
electrodes from one randomly selected subject. It can be observed that C5 and C3 maintain
synchronization almost across the whole time course while disagreement appears between
P8 and C5 or C3. With the empirical likelihood method, we find that the 95% confidence
intervals for ρ12, ρ13 and ρ23 are (0.77, 0.86), (0.36, 0.51) and (0.29, 0.44), where ρ12, ρ13 and
ρ23 denote the dynamical correlation of C5 and C3, C5 and P8, C3 and P8, respectively. This
conclusion is not surprising to us since electrodes must maintain synchronization to govern
our brain to make a response to a stimulus. The electrodes closer to each other may be
more consistent compared with electrodes far apart. Additionally, this result demonstrates
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the hypothesis that functional connectivity between short-range electrodes is stronger than
that between long-range electrodes from the perspective of dynamical correlation of ran-
dom functions. A similar result is obtained from using the bootstrap method to compute
confidence intervals: (0.77, 0.86), (0.35, 0.51) and (0.28, 0.44) for ρ12, ρ13 and ρ23, respec-
tively. The consistency between these methods suggests that in the regular design, ignoring
the uncertainty in the pre-smoothing step does not impose a notable impact on confidence
intervals obtained from the weighted empirical likelihood method.

3.5.3 Dynamical Correlation of Gene Expressions

According to [111], the activation of T lymphocytes (T-cells) plays a key role in generation
of an immune response. Two experiments regarding the response of a human T-cell line
to phorbol myristyl acetate and ionomicin treatment were conducted by [88] to model the
gene regulation network during T-cell activation. They collected the expression of 88 genes
across 10 times points (0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hr) and 34 replicates were obtained
for each gene. This is a considerably less dense design compared with the EEG example.
Only 58 genes were retained for final analysis after removing those genes whose expressions
were lack of reproducibility between these two experiments.

[111] applied sparse additive ordinary differential equation models to identify a dynamic
network among these genes. Both [88] and [111] found that FYB (gene 45) is one of the
genes which regulate expressions of many other genes. Furthermore, [111] found that the
gene FYB always has a positive regulation on gene 9 regardless of the expression level of
gene 9. Dynamical correlation provides another perspective to look at the association of gene
expressions during T-cell activation. We apply both the empirical likelihood method and
the bootstrap method to compute the 95% confidence interval for the dynamical correlation
of gene 9 and gene 45. The confidence interval given by the empirical likelihood method
is (0.16, 0.52), while its counterpart is (0.10, 0.51). This finding is consistent with that in
[111]. In this example, the random functions are considerably less densely observed, the
confidence interval obtained from the bootstrap method is slightly wider than the that
from the empirical likelihood method. The primary reason might be that the bootstrap
method accounts for the uncertainty in smoothing each curve from only a few observations;
this uncertainty has a non-negligible impact on the interval estimate of the dynamical
correlation.

3.6 Conclusions and Discussion

This chapter proposes a new method based on the weighted empirical likelihood to infer the
dynamical correlation between random functions. Compared with the bootstrap method by
[25], the proposed method is considerably more efficient in computation due to the self-
normalized property of the weighted empirical likelihood ratio statistic. Another reason

35



is that the bootstrap method spends substantial time on sampling both fitted values and
residuals to account for uncertainty in the pre-smoothing step. Even though this source
of uncertainty is ignored in the weighted empirical likelihood method, simulation studies
demonstrate that the weighted empirical likelihood method is possible to yield a confidence
interval with a more accurate coverage probability than that from the bootstrap method
when the random functions of interest are irregularly spaced. But whether it is crucial to
incorporate this source in the weighted empirical likelihood method in real datasets needs
to carefully investigated in future, especially when functional data are irregularly observed.
Furthermore, the proposed method accounts for the differing effect of each pair of random
functions on the final estimator of dynamical correlation, rather than simply averaging these
effects. Hence it compares favorably with the bootstrap method in statistical inference of
dynamical correlation when there’s a remarkable variation in the number of observations
of functional data across subjects. In light of these advantages, it is worthwhile to explore
applications of this methodology in other similar scenarios. But it should be noted that the
proposed method cannot be directly applied to sparse functional data, in which only a few
observations are available for every subject. For sparse functional data, we suggest to first
recover the trajectory of each functional data from sparse observations. We will investigate
this problem in our future work.

At first glance, dynamical correlation is not a powerful tool to reveal the dynamical
feature of associations between random functions, since it summarizes correlations of two
random functions over the domain of these functions with a single quantity. However, as
pointed out by one referee, the dynamical feature can be discovered by adaptively choosing
the weight function w(t). In addition, to better reveal dynamical features of random func-
tions and accommodate lagged relationships, the definition of dynamical correlation was
extended to incorporate lag terms in [25]. Dynamical functional connectivity has attracted
attention from numerous researchers in neuroimaging studies. It would be interesting work
to compare dynamical correlation with varying weight functions with the framework of
dynamical functional connectivity. Additionally, a closer look at time-varying correlations
between random functions is also worthy of study, especially from the perspective of dy-
namical functional connectivity.

3.7 Appendix: Theoretical Proofs

3.7.1 Appendix A: Technical Assumptions

In this section, we lay out regularity conditions which can guarantee that the difference
between the smoothed random function fSi,j and the true underlying random function fi,j
is negligible. Suppose the observations satisfy Yi,j(tk) = fi,j(tk) + ei,j(tk), i = 1, . . . , n,
j = 1, . . . , p and k = 1, . . . ,m. We assume that the random errors ei,j(tk) are identically
and independently distributed with E {ei,j(tk)} = 0 and E {e2

i,j(tk)} = σ2. Let h denote the
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bandwidth used in the local linear smoother in the pre-smoothing step. All limits below are
taken given the number of subjects, n diverges.

Condition 1.Observational time points {tk}mk=1 follow a density g, which is equi-continuous
and bounded away from 0. Furthermore, the support of g is I, which is compact.

Condition 2. The random errors satisfy E {|ei,j(tk)|s} <∞ for some s > 2.
Condition 3. The bandwidth h and the number of observations satisfy limmh2 > 0 and

lim
(
mh

logm

) 1
2 m
− 2
s−η > 0 for any η with 0 < η < 2.

Condition 4. The random functions fi,j are twice differentiable. Furthermore, the second
derivatives are equi-continuous satisfying sup |f ′′i,j(t)| = Op(1), where the supremum is taken
over i = 1, . . . , n, j = 1, . . . , p and t ∈ I.

Condition 5. The number of observations for each random function satisfies

m→∞, n

( logm
m

) 4
5
→ 0.

Condition 6. The bandwidth h satisfies

√
nh2 → 0, n

( logm
mh

) 1
2
→ 0.

3.7.2 Appendix B: Proofs

When µj1(t) and µj2(t) are known or unknown but a constant, let f̃?i,j1 and f̃?i,j2 be the
standardized curve for fj1(t) and fj2(t), respectively, for subject i. Then define

ρi,j1j2 =
∫
f̃∗i,j1(t)f̃∗i,j2(t)w(t) dt.

Thus ρ1,j1j2 , . . . , ρn,j1j2 , are identically and independently distributed with E(ρi,j1j2) = ρj1j2 .
Var(ρi,j1j2) = δ2 < ∞. Furthermore, [25] showed 0 < Var(ρi,j1j2) < 1 given 0 < |ρj1j2 | < 1.
In [77], the profile empirical likelihood function of θ based on ρi,j1j2 ’s is defined as

L̃(θ) = sup{
n∏
i=1

(npi) : pi ≥ 0, i = 1, . . . , n;
n∑
i=1

pi = 1;
n∑
i=1

piρi,j1j2 = θ} (3.9)

As shown in Theorem 2.2 in [77], −2 log L̃(ρj1j2) converges in distribution to χ2(1) as n
diverges, if 0 < |ρj1j2 | < 1. We list some important steps to verify this result; for details,
see [77].

The weights which maximize L̃(ρj1j2) can be written as

w̃i = 1
n

1
1 + λ̃(ρi,j1j2 − ρj1j2)

,
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where λ̃ satisfies the equation

1
n

n∑
i=1

ρi,j1j2 − ρj1j2
1 + λ(ρi,j1j2 − ρj1j2) = 0

Hence,

|λ̃| = Op(n−1/2); max
1≤i≤n

|ρi,j1j2 − ρj1j2 | = op(n1/2); |ρ̄j1j2 − ρj1j2 | = Op(n−1/2),
(3.10)

where ρ̄j1j2 = 1
n

∑n
i=1 ρi,j1j2 .

With (3.2), for the smoothed random functions via a local linear smoother we can
obtain the corresponding standardized curves, denoted by f̃Si,j1(t) and f̃Si,j2(t). Our main
result concerns the asymptotic distribution of log-empirical likelihood function constructed
based on the smoothed version of ρi,j1j2 , denoted by ρSi,j1j2 , which is defined as

ρSi,j1j2 =
∫
f̃Si,j1(t)f̃Si,j2(t)w(t) dt, i = 1, . . . , n.

Specifically, the corresponding profile empirical likelihood function of θ is

L(θ) = sup{
n∏
i=1

(npi) : pi ≥ 0, i = 1, . . . , n;
n∑
i=1

pi = 1;
n∑
i=1

piρ
S
i,j1j2 = θ} (3.11)

and
Let ρ̄Sj1j2 = 1

n

∑n
i=1 ρ

S
i,j1j2 , V

S
j1j2 = 1

n

∑n
i=1(ρSi,j1j2 − ρj1j2)2 and Vj1j2 = 1

n

∑n
i=1(ρi,j1j2 −

ρj1j2)2. When µj(t) is constant or known for j = j1, j2, under the assumptions in Appendix
A, from the proof of Theorem 2 in [25], we have

|ρ̄Sj1j2 − ρ̄j1j2 | = op(n−
1
2 ), max

1≤i≤n
|ρSi,j1j2 − ρi,j1j2 | = op(n−1/2) (3.12)

The weights maximizing L(ρj1j2) can be written as

wi = 1
n

1
1 + λ(ρSi,j1j2 − ρj1j2)

,

where λ = λ(ρj1j2) satisfies the equation

1
n

n∑
i=1

ρSi,j1j2 − ρj1j2
1 + λ(ρSi,j1j2 − ρj1j2)

= 0.

Let Mn = max1≤i≤n |ρSi,j1j2 − ρj1j2 |. Based on (3.10) and (3.12), we obtain

|ρ̄Sj1j2 − ρj1j2 | = Op(n−1/2), Mn = op(n1/2). (3.13)
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The next step is to verify that the order of λ is Op(n−1/2) as well. After some simple algebra,
it can shown that

|λ| · 1
n

n∑
i=1

(ρSi,j1j2 − ρj1j2)2

1 + λ(ρSi,j1j2 − ρj1j2)
= sgn(λ)(ρ̄Sj1j2 − ρj1j2).

Note that wi > 0, i.e., 1 + λ(ρSi,j1j2 − ρj1j2) > 0. Thus

|λ|V S
j1j2 ≤ |λ| ·

1
n

n∑
i=1

(ρSi,j1j2 − ρj1j2)2

1 + λ(ρSi,j1j2 − ρj1j2)
(1 + |λ|Mn)

= sgn(λ)(ρ̄Sj1j2 − ρj1j2)(1 + |λ|Mn).

Since Vj1j2 = δ2 + op(1), V S
j1j2 − Vj1j2 = op(1), and (3.13), it follows that

|λ|(δ2 + op(1)) = Op(n−1/2),

and hence,
|λ| = Op(n−1/2).

It follows that

0 = 1
n

n∑
i=1

ρSi,j1j2 − ρj1j2
1 + λ(ρSi,j1j2 − ρj1j2)

= ρ̄Sj1j2 − ρj1j2 − λV
S
j1j2 + op(n−1/2).

Thus, λ = (V S
j1j2)−1(ρ̄Sj1j2 − ρj1j2) + op(n−1/2).

Plugging in the expression of wi maximizing L(ρj1j2), we have

−2 logL(ρj1j2) = 2
n∑
i=1

log{1 + λ(ρSi,j1j2 − ρj1j2)}

= 2
{

n∑
i=1

λ(ρSi,j1j2 − ρj1j2)−
λ2(ρSi,j1j2 − ρj1j2)2

2

}
+ op(1)

= 2n(V S
j1j2)−1(ρ̄Sj1j2 − ρj1j2)2 − n(ρ̄Sj1j2 − ρj1j2)2(V S)−1

j1j2
+ op(1)

= n(ρ̄Sj1j2 − ρj1j2)2(V S
j1j2)−1 + op(1) (3.14)

As shown in [77],

− 2 log L̃(ρj1j2) = n(ρ̄j1j2 − ρj1j2)2

Vj1j2
+ op(1). (3.15)
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Based on (3.12), (3.14) and (3.15), it follows that

−2 logL(ρj1j2) = n(ρ̄Sj1j2 − ρj1j2)2(V S
j1j2)−1 + op(1)

= −2 log L̃(ρj1j2) + op(1)

→ χ2(1) in distribution.

�
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Chapter 4

Sparse Estimation for Functional
Semiparametric Additive Models

4.1 Introduction

High dimensional data sets of large volume and complex structure are rapidly emerging in
various fields. Functional data analysis, due to its great flexibility and wide applications
in dealing with high dimensional data, has received considerable attention. One important
problem in functional data analysis is functional linear regression (FLR). One type of FLR
models the relationship between a functional covariate and a univariate scalar response of
interest. Due to potential lack of fit with FLR models, [72] proposed functional additive
models (FAM), in which a scalar response depends on an additive form of the functional
principal component (FPC) scores of a functional covariate. A local linear smoother was
employed to estimate each component in the additive form and consistency was established
for this estimator.

However, in many cases, not only functional covariates but also some scalar covariates
may play a role in explaining the variation of response. For instance, the Tecator dataset (see
Section 4.4.1 for a more detailed description), which consists of three contents (fat, water,
and protein) and 100-channel spectral trajectories of absorbance, has been analyzed with
various models, where the response of interest is one of the three contents. Previous studies
have focused on regressing the response on the spectral trajectories, which can be viewed as
a functional covariate. [121], for example, employed a regularized functional additive model,
where scaled FPC scores are treated as covariates to predict the protein content. However,
pairwise scatter plots of the three contents suggest that the other two contents are highly
correlated with the protein content as well; thus it may be beneficial to add them into the
regression model. In light of this fact, we aim to build a model which can incorporate the
effects of both the spectral trajectories and the fat and water contents on the prediction of
the protein content.
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Motivated by the above example, we propose a functional semiparametric additive model
(FSAM) to describe the relationship between a functional covariate, a finite number of
scalar covariates and a response variable of interest. In this model, the effect of a functional
covariate is represented by its scaled leading FPC scores while scalar covariates are modeled
linearly. As a result, this model enables us to acquire flexibility in calibrating the effect of the
functional covariate while retaining easy interpretation of the effects of the scalar covariates.
There are two main difficulties associated with this new model: the first one is the model
estimation and the second concerns theoretical properties. Obviously, the estimation of
the effect of a functional covariate may affect that of scalar covariates and vice versa. To
address this issue, we propose an iterative updating algorithm, which is similar in spirit
to the EM algorithm, to account for the interdependence between these two estimated
effects. In addition, only the nonparametric effect of the functional covariate needs to be
regularized; this adds additional difficulties in estimation. In the theoretical aspect, we aim
to establish consistency for the parametric part and the nonparametric part, respectively.
Separating these two effects is more difficult than developing theoretical properties with
only a nonparametric part as in a FAM.

A semiparametric additive model (sometimes described under alternative names like
partially linear model) can be viewed as a special version of a generalized additive model in
which the mean response is assumed to have a linear relationship with one or more of the
covariates, but the relation with other covariates cannot be easily modelled in a parametric
form ([97]; [92]). Numerous methods have been proposed to fit such models. The method
of penalized least squares ([105]; [27]; [44]) has played a major role in this regard. [14]
employed a piecewise polynomial to approximate the nonparametric part and developed
asymptotic properties of the least squares estimator of the coefficients in the parametric
part. [28] estimated the nonparametric part using a local polynomial and derived asymptotic
properties of their estimators as well. A comprehensive review of different approaches to
fitting a semiparametric additive model can be seen in [41].

For the case when both a functional covariate and scalar covariates are involved to pre-
dict the mean response, [95] considered a functional partially linear model in which the
effect of a functional covariate is modeled via a finite-dimensional linear combination of
principal component scores. A similar model was proposed by [64] to model the quantile
function of the response variable. Even though both papers derived asymptotic properties
of their estimators, they did not consider selection of functional principal components for
the functional covariate. [55] extended the above work to the situation when multiple func-
tional covariates and high-dimensional scalar covariates are encountered. The effect of each
functional covariate is represented via a truncated linear combination of FPC scores, the
truncation level of which is allowed to increase as sample size increases. To identify im-
portant features, reduce variability and enhance interpretability, they proposed to combine
regularization of each functional covariate with a penalty on high-dimensional scalar covari-
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ates. [50] proposed a general regression framework which considered a functional response
and two functional covariates.

This chapter has three main contributions. First, in comparison with previous work
on functional partial linear regression, our model allows for a more general representation
in terms of the effect of a functional covariate. In addition, using a special regularization
scheme, our method can select the non-vanishing functional principal components for a
functional covariate. Last but not least, we derive asymptotic properties of the estimator.

The remainder of this chapter is organized as follows. Section 4.2 introduces FSAM
and our method to estimate FSAM using a special regularization scheme and implementing
an iterative updating algorithm. Section 4.3 evaluates the finite sample performance of
our proposed estimation method in comparison with three alternative methods using some
simulation studies. In Section 4.4, our method is demonstrated in two real examples. Some
asymptotic results for the proposed estimation method are provided in Section 4.5. Section
4.6 concludes this chapter. Theoretical proofs are given in the Appendix.

4.2 Model and Estimation Method

4.2.1 Functional semiparametric additive model

LetX(t) denote a square integrable stochastic process on a domain I = [0, T ] and Y denote a
scalar random variable. A functional regression model characterizes the relationship between
the scalar response Y and the random function X(t). A typical example is the functional
linear model: Y =

∫
I X(t)β(t) dt, where β(t) is a square integrable function on [0, T ] as

well.
To account for the effect of some scalar predictors in a functional regression model,

several functional partial linear models have been proposed (see [95]; [64]; and [55]). In
their work, the effect of the functional predictor is modelled nonparametrically while a
linear form is adopted to model the effect of scalar predictors. For instance, [95] considered
the following model:

E(Y |X,z) =
∫
I
X(t)β(t) dt+ z>α, (4.1)

where z = (z1, . . . , zp)> is a p-dimensional scalar covariate and α = (α1, . . . , αp)> ∈ Rp is
the corresponding coefficient vector.

Let m(t) and G(s, t) denote the mean function and covariance function of X(t), respec-
tively. The covariance function G(s, t) can be expressed as G(s, t) =

∑∞
k=1λkψk(s)ψk(t),

where {λk}∞k=1 are the eigenvalues of G, satisfying λ1 ≥ λ2 ≥ · · · ≥ 0, and {ψk(t)}∞k=1 are
the corresponding orthonormal eigenfunctions, which satisfy

∫
ψjψk dt = 1 if j = k and 0

otherwise. Then the process X(t) admits the Karhunen-Loève expansion:

X(t) = m(t) +
∞∑
k=1

ξkψk(t), (4.2)
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where ξk =
∫
I(X(t) − m(t))ψk(t)dt is the uncorrelated functional principal component

(FPC) score. In addition, E(ξkξk′) = λk if k = k′ and 0 otherwise. Replacing X(t) in (4.1)
with the expression given in (4.2), we have

E(Y |X,z) = b+
∞∑
k=1

ξkbk + z>α,

where b =
∫
I β(t)m(t) dt and bk =

∫
I β(t)ψk(t) dt.

To allow for greater flexibility, the additive components with respect to the FPC scores
{ξk}∞k=1 in the above equation can take a more general form. Motivated by the idea of a
generalized additive model ([42]), we consider

E(Y |X,z) = b+
∞∑
k=1

fk(ξk) + z>α.

This model without scalar predictors is previously studied in [72] and [121] to describe the
relationship between a scalar response and a functional predictor .

For convenience of regularization on each component fk, we first scale the FPC scores
to [0, 1]. One possible approach is to treat ξk as having a N(0, λk) distribution and apply
the cumulative distribution function (cdf) of N(0, λk) to ξk, i.e., ζk = Φ(ξk/

√
λk), where Φ

is the cdf of N(0, 1). Other cumulative distributions could be employed for scaling, but we
focus solely the Gaussian case here. The corresponding additive model becomes:

E(Y |X,z) = b+
∞∑
k=1

fk(ζk) + z>α. (4.3)

In addition to making the following regularization scheme easier to implement, there are
two main reasons why we consider transferring FPC scores to a compact domain. The first
reason concerns theoretical derivations. When each function in a functional space can be
represented in terms of spline basis functions like B-spline bases or reproducing kernel func-
tions, assuming the domain is compact can simplify theoretical derivations. Such examples
can found in [65] and [98], etc. The second reason explains why this treatment is reasonable.
Let hj denote the transformation: h(ξj) = ζj and gj denote the function with the argument
being ζj . Note that if hj is any strictly monotone, continuous map from R to (0, 1), we may
write fj = gj ◦ hj with gj = fj ◦ h−1

j .
We assume that there exists an integer, d, which is large enough that fk ≡ 0 when k > d.

This amounts to assuming that only some of the FPC scores of the functional predictor are
relevant to the response. Our truncated model is then given as:

E(Y |X,z) = b+
d∑
j=1

fj(ζj) + z>α. (4.4)
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In practice we choose d initials in such a way that at least 99.9% of variability in X(t) can
be explained by the first d FPCs. Let ζ = (ζ1, . . . , ζd)>.

We also assume that the effect of each transformed score, fj , j = 1, . . . , d, is a smooth
function. In this chapter, we call the effect of X(t), f(ζ) = b +

∑d
j=1fj(ζj), the nonpara-

metric part of the model and the linear combination z>α the parametric part of the model.
In addition, fj ’s are called nonparametric components. Model (4.4) is called a functional
semiparametric additive model (FSAM) in this chapter.

4.2.2 Estimation method

The objective is to propose an estimation method which can select and estimate nonpara-
metric components that are relevant to the response while estimating the effects of scalar
covariates in Model (4.4).

[121] considered a special case when α is known to be 0 in Model (4.4); to select and
smooth non-vanishing nonparametric components in the estimation of the nonparametric
part, they apply the COmponent Selection and Smoothing Operator (COSSO) proposed by
[60]. We provide a brief review of COSSO next. Let H be the lth-order Sobolev space on
[0, 1], defined by

H([0, 1]) = {h|h(ν) is absolutely continuous for ν = 0, 1, . . . , l − 1;h(l) ∈ L2}.

Then H is a reproducing kernel Hilbert space (RKHS) equipped with the squared norm

||h||2 =
l−1∑
ν=0

{∫ 1

0
h(ν)(t) dt

}2
+
∫ 1

0
{h(l)(t)}2 dt. (4.5)

For a more detailed introduction to this RKHS, one can refer to Chapter 2.3 in [40]. H can
be decomposed as H = {1}⊕H̄, where elements of H̄ have been centered. For example, take
h(t) = t. Then h(t) = 1/2 + t− 1/2 and t− 1/2 ∈ H̄. Assuming that fj ∈ H̄, j = 1, . . . , d,
then f(ζ) lies in the subspace F d = {1} ⊕

∑d
j=1H̄. This assumption addresses the issue

of identifiability for nonparametric components in Model (4.4). The COSSO regularization,
applied to functions in the RKHS, is used to select and smooth non-vanishing components
when estimating f . Suppose the data consists of n independent and identically distributed
triples {Xi, zi, yi}ni=1. When α in Model (4.4) are known to be 0, then the COSSO estimate
of f is defined by minimizing

Q(f) = 1
n

n∑
i=1
{yi − f(ζi)}2 + τ2J(f), (4.6)

where J(f) =
∑d
j=1||P jf || with each P jf denoting the projection of f onto H̄ with the

argument being the jth component of ζ, and τ denotes a tuning parameter which controls
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the trade-off between fidelity to the data and complexity of the model. Another way to look
at P jf is P jf = fj −

∫
fj .

If P jf is linear for 1 ≤ j ≤ d, then the minimizer of Q(f) is the LASSO estimate.
However, the sum of the seminorms of P jf , that is J(f), rather than the L1 norm of the
coefficient vector, is penalized in Q(f) in general scenarios. More specifically, if we represent
each P jf with a linear combination of the reproducing kernel functions, ||P jf ||’s are not
differentiable with respect to the coefficients. This fact makes minimization of Q(f) an
intricate problem. [60] argued that introducing an ancillary parameter θ = (θ1, . . . , θd)>,
can ease the minimization task greatly. As shown in Lemma 2 of [60], minimization of (4.6)
is equivalent to minimizing

H(f,θ) = 1
n

n∑
i=1
{yi − f(ζi)}2 + λ0

d∑
j=1

θ−1
j ||P

jf ||2 + λ
d∑
j=1

θj (4.7)

with respect to f and θ, when f ∈ F d, θj ≥ 0, j = 1, . . . , d and λ = τ4/(4λ0). In (4.7), both
λ0 and λ are nonnegative tuning parameters, which control the smoothness and selection
of the estimated nonparametric part, respectively. If θj = 0, then the minimizer satisfies
||P jf || = 0, indicating that fj , the jth component in the nonparametric part, vanishes. The
outline of the algorithm is given as follows.

Generally speaking, the FPC scores cannot be observed directly; thus estimating the
first d FPC scores for each trajectory Xi is indispensable to estimate the nonparametric
part later. Trajectories are usually recorded at a grid of time points, which can be different
across subjects, and they are often observed with measurement errors. To address these
issues when estimating FPC scores, we can employ regularized FPCA, proposed by [86],
or PACE, proposed by [116]. Then the estimated scaled FPC scores, denoted as ζ̂i =
(ζ̂i1, . . . , ζ̂id), can be obtained by applying the CDF of a normal distribution with specific
variance to the estimated FPC scores. Now we can implement COSSO. Let Rj denote the
n× n matrix with the (s, t) entry R(ζ̂sj , ζ̂tj), where R(·, ·) is the reproducing kernel of H̄,
and Rθ for the matrix

∑d
j=1θjRj . For fixed λ0 and λ, the minimizer of (4.7) has the form

f(ζ) = b +
∑n
i=1 ci

∑d
j=1θjR(ζj , ζ̂ij). Thus f = (f(ζ̂1), . . . , f(ζ̂n))> = 1nb + Rθc, where

c = (c1, . . . , cn)> and 1n is the vector of ones of length n. Then the penalty term has∑d
j=1θ

−1
j ||P jf ||2 =

∑d
j=1θjc

>Rjc = c>Rθc. Now (4.7) becomes

min
b,c,θ≥0d

1
n

(y − 1nb−Rθc)>(y − 1nb−Rθc) + λ0c
TRθc+ λ1>d θ, (4.8)

where y = (y1, . . . , yn)> and 0d denotes the vector consisting of d zeros.
To solve (4.8), we alternatively solve for the pair (b, c) with θ fixed and then solve for

θ with (b, c) fixed. More specifically,
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1. When θ is fixed, solving (4.8) is equivalent to solving the standard smoothing spline

min
b,c
||y − 1nb−Rθc||2 + nλ0c

TRθc. (4.9)

The solution of (4.9) is similar to a smoothing spline estimate and can be found in
[106].

2. With (b, c) fixed, (4.8) becomes

min
θ≥0

(v −Gθ)T (v −Gθ) + nλ1Sθ, (4.10)

where v = y− (1/2)nλ0c− 1nb and G is the n× d matrix with the jth column being
Rjc. [60] suggested considering an equivalent optimization problem: for some M ≥ 0,
find

min
θ
||v −Gθ||2, subject to 1Tθ ≤M,θ ≥ 0d. (4.11)

The tuning parameter M in (4.11) is equivalent to λ in (4.10). Alternatively, the
optimization problem (4.10) can be addressed directly using glmnet in R with the
lower bound of the parameters to be estimated set as 0.

Only when the effect of the scalar covariates z can be removed or is known, can the
above algorithm be implemented. Now we take the unknown effect of z into consideration
as well. The estimate of g = f(ζ) +α>z is defined as

ĝn ∈ arg min
g(ζ,z)=b+

∑d

j=1fj(ζj)+α
>z

[
1
n

n∑
i=1
{yi − g(ζi, zi)}

2 + τ2J(g)
]
,

where fj ∈ H̄ and J(g) is set to be J(f) =
∑d
j=1||P jf ||. Note that the regularization

suggested above penalizes only the nonparametric part, while neglecting the effect of the
parametric part α>z. Difficulties arise when we apply COSSO directly to estimate the
nonparametric part f in (4.4) since the effect of scalar predictor z needs to be accounted
for as well. If the coefficient, α, of z were known, then a slight modification of COSSO
would suffice to deal with the estimation problem: replace y in (4.9) with y−Zα and v in
(4.10) with y−Zα− (1/2)nλ0c−1nb, where Z = (z1, . . . ,zn)>. However, α is unknown as
well and the estimate of the nonparametric part f depends on the value of α, which poses a
bottleneck when implementing COSSO to estimate f . To deal with this problem, we propose
an iterative updating algorithm to estimate both the nonparametric and parametric parts
and to select and smooth the non-vanishing components in f .
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After estimating ζi’s via regularized FPCA or PACE, the target function to be mini-
mized can be written as:

Q?(f,α) = 1
n

n∑
i=1
{yi − f(ζ̂i)−α>zi}2 + τ2

d∑
j=1
||P jf ||,

where f(ζ̂i) = b+
∑d
j=1fj(ζ̂ij) denotes the the nonparametric part evaluated at the estimated

transformation ζ̂i. We aim to look for f̂ ∈ F d and α̂ ∈ Rp, which can minimize the target
function Q?. As illustrated above, minimizing Q? is equivalent to another minimization
problem:

min
α,b,c,θ≥0d

1
n

(y −Zα− 1nb−Rθc)>(y −Zα− 1nb−Rθc) + λ0c
TRθc+ λ1>d θ. (4.12)

Algorithm 3 outlines the steps to solve (4.12).

Algorithm 3 : Iterative updating for regularized functional semiparametric ad-
ditive model

Step 1: Start with an initial value of α, say α̂(0), and an initial value of θ, say θ̂(0).

Step 2: Use the current estimate α̂(m) and θ̂(m) to obtain estimates b̂(m+1) and ĉ(m+1) by
solving (4.9), in which y is replaced by y −Zα̂(m).

Step 3: Use the current estimate α̂(m), b̂(m+1) and ĉ(m+1) to obtain an updated estimate
θ̂

(m+1) by solving (4.11), in which v is replaced by y−Zα̂(m)−(1/2)nλ0ĉ
(m+1)−1nb̂(m+1).

Step 4: Use the estimate b̂(m+1), ĉ(m+1) and θ̂(m+1) to obtain an updated estimate α̂(m+1)

by solving a least squares problem.

Step 5: Repeat steps 2, 3 and 4 until ||α̂(m+1) − α̂(m)|| < ε, where ε is a pre-determined
tolerance value.

The fitting method presented above is called Functional Semiparametric Additive Model
via COmponent Selection and Smoothing Operator (FSAM-COSSO) in this chapter. Mini-
mization of (4.12) turns out to be a convex problem. Our numerical studies show that this
algorithm can converge in a few steps with reasonable initial estimates for both α and θ;
these are taken to be the ordinary least squares estimate and 0d, respectively.

4.2.3 Tuning Parameter Selection

Cross-validation (CV) or generalized cross-validation (GCV) can be employed to choose the
tuning parameters. The following adaptive tuning scheme is a slight modification of the
proposal by [60]:
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1. In step 1 of Algorithm 3, the initial value of θ, θ̂(0) is chosen as 1d. We employ GCV or
CV to choose the tuning parameter λ0 when addressing the smoothing spline problem.
In the following updating steps, λ0 is fixed to be the chosen value.

2. A grid of points in a reasonable range are chosen as candidates forM . CV is employed
to choose the “optimal" value of M . More specifically, the whole data set is randomly
split into G folds. The optimal M is chosen as the value which can minimize

CV (M) = 1
n

G∑
g=1

(ŷ(−g)
g − yg)>(ŷ(−g)

g − yg),

where ŷ(−g)
g denotes the predicted values for the gth fold of the data when it is removed

and the model is fitted using the other G− 1 folds of the data.

Remark: In this case, GCV may not be an appropriate approach for selecting M . The
primary reason is that we need a well-defined hat (smoothing) matrix to apply GCV to
select tuning parameters. However, when shrinkage methods such as LASSO are employed,
this matrix may not be well-defined, particularly in high-dimension problems.

4.3 Simulation Studies

In this section, two simulation studies are conducted to evaluate the finite sample perfor-
mance of our proposed approach and compare it with other alternative methods.

4.3.1 FSAM With Scalar Covariates

A functional covariate is generated from the first 20 Fourier basis functions with eigenvalues
λk = abk, k = 1, . . . , 20; we take a = 31.6 and b = 0.5. More specifically,

X(t) = µ(t) +
20∑
k=1

ξkψk(t) + e(t),

where µ(t) = t + sin(t) denotes the mean function of X(t), ξk ∼ N(0, λk), ψk’s denote the
Fourier basis functions and the measurement error e(t) follows N(0, 0.01), independently of
all ξk’s. We generate n = 1000 independent curves in total; each curve is sampled at 200
equally spaced points between 0 and 10. The corresponding scaled FPC scores, ζik’s, are
defined as ζik = Φ(ξik/

√
λk), i = 1, . . . , n, k = 1, . . . , 20. Then the response variable y is

generated from the following model

yi = 1.2 + f1(ζi1) + f2(ζi2) + f4(ζi4) + z>i α0 + εi, i = 1, . . . , n.

In this model,
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• f1(x) = xex − 1, f2(x) = cos(2πx) and f4(x) = 3(x− 1
4)2 − 7

16 . They have a common
domain [0, 1]. The nonparametric part is f(ζ) = 1.2 + f1(ζ1) + f2(ζ2) + f4(ζ4), where
ζ = (ζ1, . . . , ζ21)>; in other words, the non-vanishing nonparametric components are
f1, f2 and f4.

• zi = (zi1, zi2)> is independent of Xi(t); the two components of zi are independently
generated from Uniform[0, 1] distribution. α0 = (−1, 2)>;

• εi is independent of both Xi(t) and zi and is generated from N(0, 1).

The signal-to-noise ratio, defined as var(f(ζ))/var(ε), is around 1.75 under this setup.
Among the 1000 data points {Xi(t), zi, yi}1000

i=1 , 200 are randomly selected as the training
set and the remaining 800 data points are treated as the test set. We used PACE to estimate
FPC scores and then choose so that the first d fitted scores explain 99.9% of the variability
in sample curves of the variability of the training set. We find d is around 20 in all simulation
replicates. Let ζ̂i = (ζ̂i1, . . . , ζ̂id)> denote the estimate of ζi. Then different methods are
fitted to the triple (ζ̂i, zi, yi), where i ∈ training set. The proposed method in this chapter,
FSAM-COSSO, is implemented to fit Model (4.4) to estimate and select non-vanishing
nonparametric components as well as estimating the coefficient vector of the scalar covariate
z. In simulation studies and real data applications presented in Section 4.4, we take the
order of the Sobolev space to be l = 2. But the algorithm proposed below can be extended
to more general cases.

MARS ([36]) fits an additive model for (ζ̂i, yi − z>i α0), assuming that the coefficients
in the parametric part are known to be (−1, 2)> and yi − z>i α0 is the new response. As a
comparison, two types of extended FAMs are considered as well. The FSAM-GAMS model
denotes a saturated model in which (ζ̂i1, . . . , ζ̂id)> are fitted by a generalized additive model
(GAM) while zi1, zi2 are fitted in a linear form. FSAM-COSSO differs from FSAM-GAMS
in that the latter does not take component selection into consideration. In the second
extended FAM, assuming that ζ1, ζ2 and ζ4 are known to be the only non-vanishing features
and the expressions of f1, f2, f4 are known as well, a multiple linear regression is fitted
on {f1(ζ̂i1), f2(ζ̂i2), f4(ζ̂i4), zi, yi}, in which yi denotes the response and the explanatory
variables consist of f1(ζ̂i1), f2(ζ̂i2), f4(ζ̂i4), zi1, zi2; this model is called FSAM-GAM1 in this
chapter. The FSAM-PFLR model employs a linear combination of ζ̂i1, . . . , ζ̂im, where m
denotes the number of retained FPCs, to represent the effect of Xi(t) on yi. It is a modified
version of the partial functional linear regression proposed by [95], where the effect of a
functional predictor is represented by a linear combination of the original FPC scores. The
tuning parameter m is chosen based on AIC, as suggested in [95]. To investigate the effect
of using ζ̂i’s on estimation of each fj , we also implement the proposed method with true
scores, ζi’s, to fit the model. This method is denoted by FSAM-COSSO1 in the chapter.

To assess the performance of the above methods, 1000 simulation replicates are con-
ducted to estimate the mean squared predicted errors (MSPE) on the test set, which is
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defined as
∑
i(yi− ŷi)2/n0 with n0 equal to the size of the test set. Besides prediction accu-

racy, we can also compare the performance of the methods from the perspective of model
fitting; particularly, the number of selected nonparametric components, the frequency with
which each ζ̂k is selected, and the bias and standard error (SE) of the estimates of α are
reported for each method as well.

Model Counts with the model size
1 2 3 4 5 6 7 8 9 10 11 12 13

MARS 0 0 20 71 140 170 197 181 127 69 16 6 3
FSAM-GAMS 0 0 169 261 238 161 98 42 19 9 2 1 0
FSAM-PFLR 5 533 312 98 40 8 4 0 0 0 0 0 0
FSAM-COSSO 0 5 593 202 113 54 26 7 0 0 0 0 0
FSAM-COSSO1 0 1 709 149 73 39 22 6 1 0 0 0 0

Table 4.1: Summary of the number of selected nonparametric components over the 1000
simulations for each model. Model size indicates the number of nonparametric components
selected in the model. In FSAM-GAMS we only retain the significant nonparametric com-
ponents (p-value less than 0.05). Here we implement the function gam in the R package
mgcv to fit FSAM-GAMS. The corresponding p-values of nonparametric components are
available from the function summary.gam. This selection rule applies to FSAM-PFLR as
well, where the p-value is available from the function lm.

Table 4.1 and Table 4.2 summarize the number and frequency of nonparametric com-
ponents selected in each method over the 1000 simulations, respectively. FSAM-COSSO in
most cases selects the correct number of nonparametric components. In contrast, FSAM-
GAMS and MARS are prone to retain some irrelevant nonparametric components, which
results in more complex models and hence greater variance. Since AIC is employed to select
the number of retained FPCs, FSAM-PFLR tends to yield a model with a relatively small
size. As a result, even though it is less likely for irrelevant features to be selected, FSAM-
PFLR suffers from frequently ignoring relevant features. Furthermore, FSAM-COSSO not
only selects relevant factors (ζ1, ζ2, ζ4) in almost every simulation but also retains irrelevant
features considerably less often compared with MARS and FSAM-GAMS. The similarity
between FSAM-COSSO and FSAM-COSSO1 suggests that replacing the true scores with
estimates would make little difference in component selection. Table 4.1 and Table 4.2
therefore demonstrate that FSAM-COSSO enables us to better discover the nonparametric
relationship between the functional covariate X(t) and the response when a model is given
in the form of (4.4).
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Model Frequency of each nonparametric factor
f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 f̂9 f̂10

MARS 1000 1000 356 1000 274 226 233 235 211 244
FSAM-GAMS 1000 1000 232 997 155 100 120 106 103 114
FSAM-PFLR 1000 981 231 1000 154 100 121 98 92 83
FSAM-COSSO 1000 1000 100 993 59 30 36 22 30 31
FSAM-COSSO1 1000 1000 34 999 26 29 40 32 32 25

f̂11 f̂12 f̂13 f̂14 f̂15 f̂16 f̂17 f̂18 f̂19 f̂20

MARS 210 208 196 226 222 240 236 228 217 249
FSAM-GAMS 105 108 105 106 96 101 126 111 114 125
FSAM-PFLR 63 75 65 84 70 60 63 59 18 42
FSAM-COSSO 31 39 38 36 29 40 50 48 57 55
FSAM-COSSO1 31 25 29 50 26 33 32 29 31 32

Table 4.2: Summary of frequency of each nonparametric component selected over the 1000
simulations for each model. In FSAM-GAMS we only retain the significant nonparametric
components (p-value less than 0.05). This selection rule applies to FSAM-PFLR as well.

Table 4.3 compares the above methods in terms of the estimated bias and SE of the
estimates of α and of the prediction accuracy which is represented by MSPE. Since there are
two elements in α, each entry in Table 4.3 denotes estimated values for these two elements.
To be specific we estimate the bias of an estimate θ̂ of a parameter θ with true value θ0

by bias(θ̂) =
∑1000
i=1 (θ̂i − θ0)/1000 and SE(θ̂) =

√∑1000
i=1 (θ̂i − ¯̂

θ)2/999, in which θ̂i denotes
the estimated θ in the ith simulation and ¯̂

θ is average of θ̂ over the 1000 simulations.
FSAM-COSSO compares favorably with the other three competitors except FSAM-GAM1
and FSAM-COSSO1 in terms of prediction accuracy, even under the assumption that α
are known to be α0 in MARS. In addition, the point estimator of α obtained from FSAM-
COSSO is more stable than its counterparts from the other three competitors. Even though
FSAM-GAM1 outperforms FSAM-COSSO with respect to prediction accuracy and/or the
bias and SE of estimated α, in practice we usually have no sufficient evidence to point out
non-vanishing nonparametric components in advance, let alone the closed forms of these
components. The boxplot in Figure 4.1 provides a more detailed comparison of prediction
errors among the six methods over the 1000 simulations; it shows that FSAM-COSSO has
a substantial advantage in prediction when the underlying model is given in the form of
(4.4) but unknown. The fact that FSAM-COSSO1 outperforms FSAM-GAM1 in prediction
further indicates that the proposed algorithm is effective in discovering predictive features
of the response.
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Model Bias SE MSPE
MARS – – 1.33

FSAM-GAM1 (-0.025, -0.021) (0.255, 0.272) 1.15
FSAM-GAMS (0.032, -0.047) (0.282, 0.308) 1.41
FSAM-PFLR (0.034, -0.031 ) (0.303, 0.319) 1.67
FSAM-COSSO (-0.026, -0.028) (0.262, 0.283) 1.20
FSAM-COSSO1 (-0.022, -0.018) (0.249, 0.250) 1.11

Table 4.3: Summary of estimated bias and standard error (SE) of estimated α using each
method, and mean squared prediction errors (MSPE). The above statistics are calculated
over the 1000 simulations. Note that the column of MSPE corresponds to average of MSPE
over the 1000 simulations.
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Figure 4.1: Mean squared prediction errors of each method over 1000 simulations.

In a randomly selected trial, 20 FPCs are retained initially such that over 99.9% of
the variability in the curves can be captured. Figure 4.2 illustrates how cross-validation is
employed to choose the tuning parameter M . Choosing the value of M which can minimize
the cross-validation error, FSAM-COSSO correctly selects the three non-vanishing nonpara-
metric components. In addition, the other three panels in Figure 4.2 display the estimated
nonparametric components obtained from using the estimated scores and the true scores, as
well as the true nonparametric components. It shows that estimates from these two methods
are close to the true nonparametric functions and there is little disagreement between the
two. This observation demonstrates that replacing true scores with the estimates has little
impact on estimation of the nonparametric components.
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Figure 4.2: The top left panel shows how the cross validation errors change across a range
of plausible values for the tuning parameter M . The other 3 panels compare the estimated
nonparametric components and the true underlying nonparametric components (fk, k =
1, 2, 4). The blue lines denote the true nonparametric components, while the black and red
lines represent the estimated nonparametric components from FSAM-COSSO and FSAM-
COSSO1, respectively.

4.3.2 FSAM Without Scalar Covariates

We also generate data in the same set up as in Section 4.3.1, except that the coefficient vector
for the scalar covariate z, α0, is now set to (0, 0)>. This is essentially the model discussed
in [121]. Besides the methods employed in Section 4.3.1, we also apply a method which
regresses the scalar response y against ζ̂ with COSSO regularization. This method is called
FSAM-GAM2 in this chapter. We also fit the data using the FSAM-GAM1 method, which
estimates FSAM (4.4) by assuming that ζ1, ζ2 and ζ4 are known to be the only non-vanishing
features, the parametric expressions of f1, f2, f4 are known, and the coefficients of the scalar
covariate z are known to be 0. In other words, the FSAM-GAM1 method is essentially a a
multiple linear regression model with yi as the response and f1(ζ̂i1), f2(ζ̂i2), f4(ζ̂i4) as the
explanatory variables.

Table 4.4 summarizes the number of nonparametric components selected by each method
over the 1000 Monte Carlo runs. There is only a slight difference between FSAM-COSSO
and FSAM-GAM2 in terms of selecting relevant components, which suggests that our pro-
posed method can still perform well in component selection even if there is actually no effect
from scalar covariates. Table 4.5 further compares these methods in a more delicate way by
providing the frequency of each component selected across these 1000 Monte Carlo runs.
Likewise in the scenario when there are scalar covariates involved in the model, FSAM-
COSSO shows great advantages in retaining irrelevant components far less often compared
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with MARS and FSAM-PFLR. In addition, the reason why FSAM-PFLR compares favor-
ably with FSAM-COSSO in retaining irrelevant components is that AIC tends to select a
relatively small number of scaled FPC scores.

Model Counts with the model size
1 2 3 4 5 6 7 8 9 10 11 12 13

MARS 0 0 20 71 140 170 197 181 127 69 16 6 3
FSAM-GAMS 0 0 169 261 238 161 98 42 19 9 2 1 0
FSAM-PFLR 5 533 312 98 40 8 4 0 0 0 0 0 0
FSAM-COSSO 0 3 615 202 93 49 27 8 3 0 0 0 0
FSAM-GAM2 0 6 738 168 52 26 3 3 4 0 0 0 0

Table 4.4: Summary of the number of selected nonparametric components over the 1000
simulations for each model. Model size indicates the number of nonparametric components
selected in the model. In FSAM-GAMS we only retain the significant nonparametric com-
ponents (p-value less than 0.05). Here we implement the function gam in the R package
mgcv to fit FSAM-GAMS. The corresponding p-values of nonparametric components are
available from the function summary.gam. This selection rule applies to FSAM-PFLR as
well, where the p-value is available from the function lm.
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Figure 4.3: Mean squared prediction errors of each method over 1000 simulations.

More remarkable distinctions among these methods can be found in Figure 4.3, which
depicts the mean squared predictions on the test data over these 1000 Monte Carlo runs.
The performance of the proposed method, FSAM-COSSO is slightly inferior to those of
FSAM-GAM1 and FSAM-GAM2, but much better than the other methods in prediction
accuracy. FSAM-GAM1 and FSAM-GAM2 each know the model structure to some extent

55



in advance. That’s why they can achieve greater prediction accuracy. Our method, however,
does not assume that the linear part or the nonparametric part is known. Thus our proposed
method is highly competitive in prediction compared with other fitting methods.

Model Frequency of each nonparametric factor
f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 f̂9 f̂10

MARS 1000 1000 356 1000 274 226 233 235 211 244
FSAM-GAMS 1000 1000 232 997 155 100 120 106 103 114
FSAM-PFLR 1000 990 232 998 156 101 121 106 98 110
FSAM-COSSO 1000 1000 102 995 52 22 43 31 27 34
FSAM-GAM2 1000 999 79 992 34 13 28 17 16 20

f̂11 f̂12 f̂13 f̂14 f̂15 f̂16 f̂17 f̂18 f̂19 f̂20

MARS 210 208 196 226 222 240 236 228 217 249
FSAM-GAMS 105 108 105 106 96 101 126 111 114 125
FSAM-PFLR 96 105 104 95 91 78 105 104 91 58
FSAM-COSSO 31 38 39 33 34 41 43 39 47 47
FSAM-GAM2 16 18 14 23 18 14 27 16 21 30

Table 4.5: Summary of frequency of each nonparametric component selected over the 1000
simulations for each model. In FSAM-GAMS we only retain the significant nonparametric
components (p-value less than 0.05). This selection rule applies to FSAM-PFLR as well.

4.4 Real Data Applications

In this section, the proposed method (FSAM-COSSO) and several alternative methods are
applied to analyze two real datasets: the Tecator data and attention deficit hyperactivity
disorder (ADHD) data.

4.4.1 Tecator data

The Tecator data are recorded on a Tecator Infratec Food and Feed Analyzer working in
the wavelength range 850 - 1050 nm by the Near Infrared Transmission (NIT) principle.
The dataset consists of 240 meat samples; a 100-channel spectrum of absorbance (negative
base 10 logarithms of the transmittance measured by the spectrometer) is recorded for
each sample along with the percentages of three components of the meat: moisture (water),
fat and protein. The three contents are determined by analytic chemistry. There has been
extensive research on how to predict the contents using the spectrum of absorbance (see
[104]; [23]; [38]; [121]; etc.). The objective of this study is to examine the effect of the spectral
trajectories and the fat and water content of the meat sample on the protein contents by
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fitting Model (4.1). Compared with traditional methods, this serves as a nondestructive
method to carry out a quantitative determination of protein content.
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Figure 4.4: The top left panel: the spectral trajectories recorded on the Tecator Infratec
Food and Feed Analyzer. The other three panels depict the scatter plots among the three
contents.

In Model (4.1), the response of primary interest, Y , is the protein content; both the
spectral trajectories denoted as X(t), and the fat and water contents denoted as z, are
considered as explanatory variables for predicting the protein content, differing from the
method called the component selection and estimation for functional additive model (CSE-
FAM) in [121] where only spectral trajectories were taken into consideration for predicting
the protein content. After applying PACE to the spectral trajectories to obtain estimated
ζi’s, FSAM-COSSO is implemented to fit Model (4.4) to estimate and select non-vanishing
nonparametric components for the response as well as estimating the effect of scalar co-
variates on the response. The top left panel of Figure 4.4 presents the spectral trajectories
of the 240 meat samples. To assess the performance of each method, 185 out of the 240
meat samples are randomly selected from the training set and the remaining 55 samples
constitute the test set.

As suggested by [121], the first 20 FPCs, accounting for over 99.9% of the total variability
in the spectral trajectories, are initially retained to avoid neglecting some relevant FPCs. In
addition, pairwise scatter plots among the three contents, illustrated in Figure 4.4, suggest
a substantial multicollinearity between the fat and water contents and a linear relationship
between the protein content and the fat and/or water content. Therefore, only the fat
content is used in the parametric part when predicting the protein content. We then apply
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FSAM-COSSO to estimate and select nonparametric components while estimating the effect
of the fat content on the prediction of the protein content. The tuning parameter λ0 in
the iterative updating algorithm is selected by sixfold cross-validation, which gives λ0 =
2.57× 10−5. Fivefold cross-validation suggests that 13 is an optimal choice for M .

The estimated nonparametric components are displayed in Figure 4.5, which shows
the 15 nonparametric components {f̂1, . . . , f̂8, f̂11, f̂13, . . . , f̂18} are selected from the 20
components. The estimated coefficient of the fat content is -0.19, corresponding to the fact
that the protein content is negatively correlated with the fat content indicated in the bottom
right panel of Figure 4.4.
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Figure 4.5: Non-vanishing nonparametric components estimated for the functional semipara-
metric additive model (4) from the Tecator data. Out of total 20 nonparametric components,
15 nonparametric components are selected.

MSPE and quasi-R2 ([121]) are calculated on the test data set to compare various
methods; the latter is defined by

R2 = 1−
∑
i(yi − ŷi)2∑
i(yi − ȳ)2 .
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The last 10 FPCs actually explain less than 0.01% of the total variability in the spectral
curves. However, they play a critical role in predicting the protein content, justifying why
a sufficiently large number of principal components should be retained initially. To demon-
strate the importance of the last 10 FPCs, the same model (FSAM-COSSO) is fit where
only the first 10 FPCs are initially retained. The model neglecting the last 10 FPCs appears
to be considerably inferior to that model retaining 20 FPCs initially in terms of both MPSE
and R2.

We also fit several alternative methods such as MARS and FSAM-FAMS to discover
the relationship between the protein content and the explanatory variables and compare
these models with FSAM-COSSO in prediction accuracy and the ability to explain the
variability in the response. The effect of FPCs retained initially on the prediction of the
protein content is examined as well in the alternative methods. Furthermore, to investigate
how the prediction accuracy can be enhanced by incorporating the fat content in prediction
models, the models are fitted by regressing the protein content only on the initially retained
ζ̂i’s and then compared to the corresponding models where both ζ̂i’s and the fat content
are considered as explanatory variables.

d = 20
FSAM-COSSO CSEFAM FSAM-GAMS FAM MARS MARS0

MSPE 0.52 0.71 0.84 0.73 0.83 1.18
R2 0.97 0.96 0.95 0.96 0.95 0.93

d = 10
FSAM-COSSO CSEFAM FSAM-GAMS FAM MARS MARS0

MSPE 0.92 1.99 1.35 1.42 0.97 1.01
R2 0.95 0.88 0.92 0.92 0.94 0.94

Table 4.6: Summary of prediction error and proportion of variance explained on the test
set of each model. FAM represents the functional additive model ([72]) where only ζ̂i’s are
considered as explanatory variables. MARS0 denotes the MARS model considering only ζ̂i’s
as explanatory variables while neglecting the effect of the fat content. d = 10 and d = 20
indicate that 10 and 20 leading FPCs are initially retained, respectively.

Table 4.6 summarizes prediction errors and proportions of variance explained on the
test set of all methods. It can be observed from the table that retaining a sufficiently
large number of FPCs initially can ameliorate prediction accuracy to a great extent, even
though the last 10 FPCs only make a negligible contribution to capturing the variance of
the spectral curves. In addition, accounting for the effect of the fat content in each of the
above models outperforms its counterpart, which does not incorporate the effect of the fat
content, in terms of prediction accuracy and explaining variability in the response variable.

59



Last but not least, the proposed method demonstrates its far superior ability to predict the
response and explain its variance compared with other methods.

4.4.2 ADHD data

The attention deficit hyperactivity disorder (ADHD) is the most prevalent neurodevelop-
mental disorder in school-age children and adolescents ([29]). The key symptoms of ADHD
comprise inattention, hyperactivity and impulsivity. Due to lack of objective measurements
in diagnosis, there have been critical concerns for appropriate diagnosis of ADHD, which is
associated with substantial social and economic costs ([35]). The data were obtained from
the ADHD-200 Sample Initiative Project, which aimed to seek objective biological tools like
neuroimaging signals to aid diagnosis of ADHD. Our analysis is based on the data collected
from the New York University (NYU) Child Study Center, one of the eight sites in the
project. The dataset consists of two main parts. The first part is filtered preprocessed rest-
ing state data using anatomical automatic labelling atlas, which parcellates brain into 116
Regions of Interests (ROIs). In each region, the mean blood-oxygen-level dependent (BOLD)
signal was recorded at 172 equally spaced time points. The second part is composed of phe-
notypic features like gender, handedness, diagnosis of ADHD, medication status, ADHD
index and IQ measures. A more detailed description of the data can be found at [7]. Our
objective is to use the BOLD signals and phenotypic features to predict the ADHD index,
a measure which can reflect the overall level of ADHD symptoms ([18]).

We focus on 120 subjects in our analysis after removing measurements which failed in
quality control. The functional predictor is taken as the BOLD signals of 91st-108th regions,
because they are parcellations of the cerebellum region, which was found to play a role in
the development of ADHD ([8]). To compare the prediction performance of each method,
these 120 subjects are randomly divided into a training set with 100 subjects and a test set
with the other 20 subjects. Following this rule, we randomly split the data to the training
and test set for 100 times.

Table 4.7 summarizes the mean squared prediction error across the 100 splits for each
method. FSAM-COSSO turns out to be substantially superior to other methods in terms
of prediction accuracy. In addition, accounting for effects of phenotypic features is able to
improve prediction accuracy greatly for each method. Moreover, for methods other than
FSAM-COSSO, retaining a large number of FPC scores initially may impair prediction of
the ADHD index as may be seen by comparing the upper part with the lower part of Table
4.7. The primary reason for this might be that the BOLD signal is not a strong predictor of
the ADHD index; thus incorporating more FPC scores would add considerable prediction
variabilities while making little contribution to reducing bias. However, the negligible differ-
ence in prediction accuracy of FSAM-COSSO between these two scenarios suggests that the
proposed method manages to reduce variances via component selection and thus achieve
a better trade-off between bias and variance. As a result, the proposed method can still
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achieve a satisfactory performance in prediction even though a large number of irrelevant
FPC scores are retained initially.

99.9%
FSAM-COSSO CSEFAM FSAM-PFLR FLR MARS MARS0

MSPE 49.24 196.66 84.52 216.78 88.67 332.51
85%

FSAM-COSSO CSEFAM FSAM-PFLR FLR MARS MARS0

MSPE 49.27 194.07 84.52 216.78 67.44 247.48

Table 4.7: Summary of prediction error on the test set of each model. FLR represents
the functional linear model where only ζ̂i’s are considered as explanatory variables. For
both FSAM-PFLR and FLR, the number of retained FPCs is chosen via AIC. MARS0
denotes the MARS model considering only ζ̂i’s as explanatory variables while neglecting
other phenotypic features. 99.9% and 85% indicate that the first d FPCs initially retained
can explain 99.9% and 85% of variability of curves in the training set, respectively.

4.5 Asymptotic Properties

The following theorem is given only in the case when the true scaled FPC scores (ζ) are
known. It would be desirable to establish the corresponding theorem with the estimated
scaled FPC scores, when the functional data is densely observed and may even be contam-
inated with measurement errors. This problem was considered by [121], where there were
no scalar convariates. Thus it would be natural for us to follow their ideas to develop the
theorem. Unfortunately we are not able to follow the proof of their Lemma 2, where a dual
problem is used to show that the penalty term J(f) is bounded by a constant independent
of sample size. This statement is essential to show that the derivative of the estimated
function is uniformly bounded for each argument. We are thus not able to derive [121]’s
subsequent results without a bounded derivative. For this reason we present the following
theorem assuming the true scaled scores are known. We observe, however, that simulation
studies show that there would not be remarkable differences in performances when the true
scores are replaced by estimates. Thus, although we expect that our theorem should extend
to estimated scores, we have not succeeded in doing so.

We now set out conditions to establish Theorem 1 given that the true scaled FPC scores
are known. Suppose that n i.i.d samples are generated from the following model

yi = f0(ζi) +α>0 zi + εi,

where ζi ∈ [0, 1]d, α0 ∈ Rp, and f0 is assumed to be an element of F d = {1} ⊕
∑d
j=1H̄

with H = {1} ⊕ H̄ being the lth-order Sobolev space on [0, 1] with the norm defined in

61



(4.5). Note that the estimated nonparametric part f̂n and the estimated coefficient α̂ in the
parametric part are defined as the solution of the following minimization problem:

(f̂n, α̂) = arg min
f∈Fd,α∈Rp

[
1
n

n∑
i=1
{yi − f(ζi)−α>zi}2 + τ2

nJ(f)
]
.

Consequently, the estimate of the conditional expectation function of y, g0(ζ, z) = f0(ζ) +
α>0 z, is defined as ĝn = f̂n + α̂>z. The empirical norm of g is defined as
||g||n =

√
1
n

∑n
i=1g

2(ζi, zi) for g ∈ G = {g : g(ζ, z) = f(ζ) +α>z, f ∈ F d,α ∈ Rp}. Define
h(ζ) = E(z|ζ) and z? = z − h(ζ). Let Λmin(A) and Λmax(A) denote the minimal and
maximal eigenvalues of a matrix A, respectively.

The following assumptions are needed.
(A.1) Both ζ and z are statistically independent of ε. Furthermore, E(ε) = 0 and

max1≤j≤p E(|z(j)|) <∞, where z(j) denotes the jth component of z.
(A.2) Λmax[var{h(ζ)}] <∞ and 0 < Λmin{var(z?)} ≤ Λmax{var(z?)} <∞.
Obviously 0 < Λmin{var(z)} ≤ Λmax{var(z)} <∞ under (A.2).
(A.3) εi’s are (uniformly) sub-Gaussian, i.e., there exist some constant K and σ2

0, such
that

K2(Eeε2i /K2 − 1) ≤ σ2
0.

(A.4) The tuning parameter τn satisfies

τn = o(1)

as n→∞.
The main result is the following

Theorem 1 Provided that Assumptions (A.1)-(A.3) hold, then (i) if 0 < J(f0) < ∞,
and τ−1

n = n
l

2l+1 {J(f0)}
2l−1
4l+2 , we have ||ĝn − g0||n = OP (n−

l
2l+1 ){J(f0)}

1
2l+1 and J(f̂n) =

J(f0)OP (1); (ii) if f0 is a constant, i.e., J(f0) = 0, and τ−1
n = n1/4, then we have ||ĝn−g0||n =

OP (n−
1
2 ) and J(f̂n) = OP (n−

1
2 ).

(A.5) The support of z is compact in Rp.

Corollary 1 Besides Assumptions (A.1)-(A.3), if Assumption (A.5) is assumed to hold as
well, then in either (i) or (ii),

||f̂n − f0||n = OP (n−
l

2l+1 ), ||α̂−α0||E = OP (n−
l

2l+1 ),

where || · ||E denotes the Euclidean norm of a vector.

Proofs of Theorem 1 and Corollary 1 are given in the Appendix.
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4.6 Conclusions and Discussions

Semiparametric additive models are known to possess the flexibility of a nonparametric
model and the interpretability of a parametric model. In this chapter, we propose a func-
tional semiparametric additive model in which a scalar response is regressed on a functional
covariate and finite dimensional scalar covariates. To achieve flexibility and interpretability
simultaneously, the effect of the functional covariate on the mean response is modeled in
the framework of FAM, where the additive components are functions of scaled FPC scores,
and a linear relationship is assumed between the mean response and the scalar covariates.
We also develop an estimation method to estimate both the nonparametric and parametric
parts in the proposed model.

The estimation procedure consists of three important steps. First, FPCA or PACE
is employed to estimate FPC scores of the functional covariate which may be subject to
measurement errors. Second, we adopt a special regularization scheme (COSSO) to penalize
the additive components to smooth and select non-vanishing components. Third, to address
the issue of interdependence between the estimated nonparametric part and parametric part,
we propose an iterative updating algorithm, which is similar in spirit to the EM algorithm.

We show that choosing a sufficiently large number of FPCs is essential. On the one
hand, this can account for a great proportion of variability in the functional covariate. On
the other hand, retaining a sufficiently large number of FPCs can to a great extent cir-
cumvent neglecting predictive FPC scores with small variances, since there is no guarantee
that leading FPC scores are necessarily more relevant to the response. The importance of
retaining a sufficiently large number of FPCs is demonstrated via the application to the
Tecator data, where retaining a smaller number of FPCs results in substantially greater
prediction errors. The applications also show that incorporating the effect of scalar covari-
ates can enhance prediction accuracy compared with models that only account for the effect
of the functional covariate when the scalar covariates are predictive of the response variable.

The asymptotic theory is based on the assumption that the true scaled FPC scores
are known, but in practice these are unavailable. We provide an algorithm with respect to
estimating FPC scores from observed curves which may be subject to measurement errors
and then estimating both nonparametric and parametric parts in the model using estimated
FPC scores. It would be very nice to extend the theory to this case where true scaled FPC
scores are not observable. The simulation study suggests that the estimates are still quite
close to the true nonparametric and parametric parts when FPC scores are estimated. Even
though this work focuses on regressing a scalar response on a functional covariate and
another finite dimensional covariate, the methodology can be extended to accommodate
other scenarios. For example, the framework may be extended to fit a generalized functional
semiparametric additive model in which the distribution of the response variable of interest
belongs to an exponential family. In addition, more than one functional covariate can be
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investigated in future work, in which we are more concerned about choosing relevant ones
from multiple functional covariates. The model may be further extended to allow for high
dimensional scalar covariates. In the model proposed in this chapter, the dimension of
scalar covariates p is fixed. If p = pn is allowed to increase when sample size n increases, we
may also need to penalize the parametric part to choose relevant scalar covariates. In this
case, regularization of both the nonparametric part and the parametric part is necessary to
improve interpretability and reduce variability.

The proposed functional semiparametric additive model can be regarded as a natural
extension of the work by [95], which represented the effect of a functional covariate by
a linear combination of leading FPC scores. We, however, employ an additive structure of
FPC scores to model the effect of a functional covariate. As pointed out by one referee, there
might be concerns in both the additive structure and the method of dimension reduction
associated with this model. [107] considered a special case of functional generalized additive
models, which are easy to interpret since they do not impose the condition that a scalar
response depends on a functional covariate via an additive form of FPC scores. [94] extended
the idea to function-on-function regression models. Another additive model was proposed to
model the relationship between a functional response and high dimensional scalar covariates
in [4]. Concerning dimension reduction, we project a functional covariate onto the directions
of FPCs and then retain the leading FPC scores in the model. A possible concern is that
this procedure does not take into account the response information. To address this issue,
[58] proposed nonlinear sufficient dimension reduction based on the relationship between
the functional covariate and the scalar response. It would be worthwhile to explore both
the generalized functional additive model and sufficient dimension reduction in functional
regression models with scalar covariates.

4.7 Appendix: Proofs

Consider the regression model:

yi = f0(ζi) +α>0 zi + εi,

where f0(ζ) = b0 +
∑d
j=1f0j(ζj) with f0j ∈ H̄ and α0 ∈ Rp. Write g(ζ, z) = a + f̃(ζ) +

α>z̃ = a +
∑d
j=1f̃j(ζj) + α>z̃ such that

∑n
i=1f̃j(ζij) = 0, j = 1, . . . , d and z̃ = z − z̄

which satisfies
∑n
i=1z̃is = 0, s = 1, . . . , p, where z̄ denotes the sample mean of zi’s and

z̃i = (z̃i1, . . . , z̃ip)> is the evaluation of z̃ at the data point zi, i = 1, . . . , n. Similarly, write
g0(ζ) = a0+f̃0(ζ)+α>0 z̃ = a0+

∑d
j=1f̃0j(ζj)+α>0 z̃ such that

∑n
i=1f̃0j(ζij) = 0, j = 1, . . . , d,

and ĝ(ζ, z) = â+ f̂(ζ) + α̂>z̃ =
∑d
j=1f̂j(ζj) + α̂>z̃.

Remark 1 The above decomposition for f0 as sum of a0 and f̃0 is different from that as
an element of {1} ⊕

∑d
j=1H̄. This difference applies to the decomposition of f̂ as well. The
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latter representation is given for the sake of identifiability and useful for entropy calculation,
which will be illustrated in Lemma 2.

Let J(g) = J(f); that is, the penalty ignores the linear components. Then since ĝ
minimizes the target function

L(g) = 1
n

n∑
i=1
{g(ζi, zi)− yi}2 + τ2

nJ(g)

= 1
n

n∑
i=1

a+
d∑
j=1

f̃j(ζij) +α>z̃i − a0 −
d∑
j=1

f̃0j(ζij)−α>0 z̃i − εi


2

+ τ2
nJ(g)

= (a− a0)2 −
(

2
n

n∑
i=1
εi

)
(a− a0) + 1

n

n∑
i=1


d∑
j=1

f̃j(ζij) + z̃>i α−
d∑
j=1

f̃0j(ζij)− z̃>i α0 − εi


2

+ τ2
nJ(g),

the estimated intercept â in ĝ must satisfy â = a0 + 1
n

∑n
i=1εi, which implies â − a0 =

OP (n−
1
2 ). From now on, we consider the target function

L̃(f̃ ,α|ζi, z̃i) = 1
n

n∑
i=1

{
f̃(ζi) +α>z̃i − f̃0(ζi)−α>0 z̃i − εi

}2
+ τ2

nJ(f̃). (4.13)

The solution is denoted as ĝn = f̂n + α̂>z̃, which is an estimate of g0 = f̃0 +α>0 z̃.
Let F d = {f : f ∈ 1 ⊕

(⊕d
j=1 H̄

)
, J(f) < ∞}, where J(f) =

∑d
j=1||P jf || with P j

denoting the orthogonal projection from F onto H̄. Therefore, the conditional expectation,
g0 is an element of

G =

g : g(ζ, z) =
d∑
j=1

fj(ζj) +α>z̃,α ∈ Rp,
d∑
j=1

fj ∈ F d,
n∑
i=1
fj(ζij) = 0

 ,
under the assumption that J(f0) <∞. Following [65], for g(ζ, z) = f(ζ) +α>z̃ ∈ G , J(g)
is set to be J(f); thus J(g0) < ∞. Now consider two subsets of G , G1 = {g1 : g1(ζ, z) =∑d
j=1fj(ζj), f ′js satisfy

∑n
i=1fj(ζij) = 0, g1 ∈ F d} and G2 = {g2 : g2(ζ, z) = α>z̃,α ∈ Rp}.

Every element of G can be written as sum of two elements, one from each of G1 and G2.
Before stating a proposition that will be employed later, we first introduce some nota-

tion and the concept of entropy. Let Q be the joint distribution of ζ and z and Qn the
corresponding empirical distribution. Obviously the support of Q is X = [0, 1]d × Rp. For
any function g supported on X , if

∫
|g|2 dQ <∞, then define

||g||2,Q =
(∫
|g|2 dQ

) 1
2
.
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We refer to || · ||2,Q as the L2(Q) metric; similarly we can define the L2(Qn) metric or the
|| · ||n metric by replacing Q with Qn. We can now define the entropy of G with respect to
the || · ||n metric. For any δ > 0, we can find a collection of functions g1, . . . , gN , such that
for each g ∈ G , there is a j = j(g) ∈ {1, . . . , N} such that ||g− gj ||n ≤ δ. Let N(δ,G , || · ||n)
be the smallest value of N for which such a covering by balls with radius δ exists. Then
H(δ,G , || · ||n) = log{N(δ,G , || · ||n)} is called the δ-entropy of G (for the || · ||n metric).
Similarly, we can define the entropy of G for other metrics like the || · ||∞ metric. It is
trivial that H(δ,G , || · ||n) ≤ H(δ,G , || · ||∞). For distinction, we write || · ||∞ to denote the
supremum norm of a function, || · ||E to denote the Euclidean norm of a vector, || · || to
denote the Sobolev norm defined in the RKHS, || · ||2,Q to denote the L2(Q) metric and
|| · ||n to denote the L2(Qn) metric. Following the notation on page 167 from [102], for any
g ∈ G ,

||g||2n = 1
n

n∑
i=1
g2(ζi, zi), (ε, g)n = 1

n

n∑
i=1
εig(ζi, zi), ||y − g||2n = 1

n

n∑
i=1

(yi − g(ζi, zi))2.

For readability, we refer to the assumptions (A.1) - (A.4) as Assumption 1, Assumption
2, etc.

Assumption 1 Both ζ and z are statistically independent of ε. Furthermore, E (ε) = 0
and max1≤j≤p E (|z(j)|) <∞, where z(j) denotes the jth component of z.

Assumption 2 Λmax[Var{h(ζ)}] <∞ and 0 < Λmin{Var(z?)} ≤ Λmax{Var(z?)} <∞.

Assumption 3 εi’s are (uniformly) sub-Gaussian, i.e., there exist some constants K and
σ2

0, such that
K2(E eε2i /K2 − 1) ≤ σ2

0.

Assumption 4 The tuning parameter τn satisfies

τn = o(1)

as n→∞.

Assumption 2 implies that 0 < Λmin{Var(z)} ≤ Λmax{Var(z)} < ∞. The sample
variance-covariance matrix of z1, . . . ,zn is denoted as S2

z, i.e., S2
z = 1

n

∑n
i=1z̃iz̃

>
i .

Lemma 1 If ĝn is the minimizer of L(g) and Assumptions 3 and 4 are met, then there
exists a constant σ not depending on n, such that

||ĝn − g0||n ≤ σ
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almost surely for sufficiently large n. Furthermore, if Assumptions 1 and 2 are satisfied as
well, then almost surely

||ĝn||n ≤ R

for some positive constant R (independent of n) as long as n is sufficiently large.

Proof: Since ĝn minimizes L(g), then it must satisfy

||y − ĝn||2n + τ2
nJ(ĝn) ≤ ||y − g0||2n + τ2

nJ(g0);

thus
||ĝn − g0||2n + τ2

nJ(ĝn) ≤ 2(ε, ĝn − g0)n + τ2
nJ(g0). (4.14)

From Assumption 3, we have E (ε21) < ∞. Then 1
n

∑n
i=1ε

2
i = O(1) almost surely. By the

Cauchy-Schwarz inequality, it follows

||ĝn − g0||2n ≤ ||ĝn − g0||nO(1) + o(1).

Therefore, there exist positive constants σ and R such that, almost surely, for all large n,

||ĝn − g0||n ≤ σ.

Additionally, since f0 is a continuous function defined on [0, 1]d and Λmax{Var(z)} is finite,
we see that E {g0(ζ, z)}2 <∞. By the strong law of large numbers, we have almost surely,
for all large n,

||ĝn||n ≤ ||ĝn − g0||n + ||g0||n ≤ R.

�

Note that we incorporate the estimated intercept â in ĝ. Actually this will not make
a difference if we remove â from ĝ given the fact |â − a0| = OP (n−

1
2 ) as shown above.

Denote Bn(g0, σ) = {g ∈ G : ||g − g0||n ≤ σ}. Due to Lemma 1, we restrict our attention
to Bn(g0, σ) from now on. It follows that sup

g∈Bn(g0,σ)
||g||n ≤ R, with a similar argument to

that used in showing Lemma 1. Let G ′ denote Bn(g0, σ) ∩ {g ∈ G : J(g) ≤ C}, where C is
a positive constant. Correspondingly, let G ′1 = G ′ ∩ G1 and G ′2 = G ′ ∩ G2.

Proposition 1 Under Assumptions 1, 2 and 3, there exist constants T0 and C0, both of
which are independent of n, such that

P

 sup
g∈G>

| 1√
n

∑n
i=1εig(ζi, zi)|

||g||1−
1
2l

n

≥ T

 ≤ 2 exp
(
−T

2

C2
0

)
, (4.15)

for all T ≥ T0.
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To prove Proposition 1, we need the following lemmas.

Lemma 2 Assuming that Assumption 1 and 2 are met, then there exists a positive constant
A, which does not depend on n, such that the entropy of G ′ satisfies

H(δ,G ′, || · ||n) ≤ Aδ−
1
l , ∀δ > 0

for sufficiently large n.

Proof: First we study the entropy of G ′1. As shown in Lemma A.1 in [60],

H(δ, {g1 : g1(ζ) =
d∑
j=1

fj(ζj), f ,js satisfy
n∑
i=1
fj(ζij) = 0, J(g1) ≤ 1}, || · ||∞) ≤ A0d

(l+1)/lδ−
1
l ,

for all δ > 0, n ≥ 1 and some A0 > 0 not depending on δ, n or d. Therefore it can be claimed
that

H(δ,G ′1, || · ||∞) ≤ A1δ
− 1
l ∀δ > 0, (4.16)

where A1 is a positive constant not depending on n or δ.
For any g writing as g(ζ, z) =

∑d
j=1fj(ζj) + α>z̃ ∈ G ′, where g1(ζ, z) =

∑d
j=1fj(ζj)

satisfies J(g1) ≤ C, then we have ||g − g0||n ≤ σ and
∑d
j=1||fj − f̃0j ||∞ ≤ 2dC, based on

Lemma A.1 in [60]. α>z̃ therefore satisfies, for all large n,

||α>z̃ −α>0 z̃||n =

∥∥∥∥∥∥
g(ζ, z)−

d∑
j=1

fj

−
g0(ζ, z)−

d∑
j=1

f̃0j


∥∥∥∥∥∥
n

≤ ||g − g0||n +
d∑
j=1
||fj − f̃0j ||n

≤ 2σ + 2dC. (4.17)

As a result, for any q(ζ, z) = α>z̃ ∈ G ′2, ||q||n ≤ M holds for some constant M and
sufficiently large n, based on the triangular inequality and the fact that ||α0z̃||n is fi-
nite for sufficiently large n. It is from the fact that for sufficiently large n, ||α>0 z̃||2n ≤
(Λmax(Var(z))+ε)||α0||2E holds almost surely for any given ε > 0 and Λmax(Var(z)) is finite
if Assumption 2 is met. Additionally, ||α>z̃−α>0 z̃||2n > (Λmin(Var(z))− ε)||α−α0||2E holds
almost surely for any given ε > 0. Therefore, ||α − α0||E ≤ Ca for some constant Ca and
any g2(ζ, z) = α>z̃ ∈ G>2 . It follows that H(δ,G ′2, || · ||n) ≤ A2 log

(
1
δ

)
almost surely for

some constant A2 not dependent on n, when n is sufficiently large.
As pointed out earlier, every element in G ′ can be written as sum of two elements from G ′1

and G>2 , respectively. Consequently, H(δ,G ′, || · ||n) ≤ H(δ/2,G ′1, || · ||n)+H(δ/2,G ′2, || · ||n) ≤
Aδ−

1
l , for sufficiently large n and some positive A, which is independent of n. �
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Lemma 3 Assume that Assumption 3 is met. Then for all γ = (γ1, . . . , γn)> ∈ Rn and
a > 0,

P
(∣∣∣∣∣

n∑
i=1
εiγi

∣∣∣∣∣ ≥ a
)
≤ 2 exp

{
− a2

8(K2 + σ2
0)
∑n
i=1γ

2
i

}
.

Proof: See the proof of Lemma 8.2 of [102]. �

Lemma 4 Assuming that Assumptions 1, 2 and 3 are met, then for some constant B
depending only on K and σ0, and for any δ > 0, we have

P
{

sup
g∈G>

∣∣∣∣∣ 1n
n∑
i=1
εig(ζi, zi)

∣∣∣∣∣ ≥ δ
}
≤ 2 exp

(
− nδ2

B2R2

)
,

where sup
g∈Bn(g0,σ)

||g||n ≤ R, as long as n is sufficiently large.

Proof: Let for each i = 0, 1, . . . , Ti be a 2−iR-covering set of G ′ , i.e., for each g ∈ G ′ there
is a gi ∈ Ti such that ||g− gi||n ≤ 2−iR, i = 0, 1, . . .. Without loss of generality, we assume
that Ti ⊂ G ′, i = 0, 1, . . .. Note that∣∣∣∣∣ 1n

n∑
i=1
εi
{
g(ζi, zi)− gS(ζi, zi)

}∣∣∣∣∣ ≤
√

E (ε2i )||g − g
S ||n almost surely

for sufficiently large n, applying the strong law of large numbers. The inequality above
implies that, as long as a sufficiently large S is chosen, then almost surely, we have∣∣∣ 1
n

∑n
i=1εi

{
g(ζi, zi)− gS(ζi, zi)

}∣∣∣ ≤ δ/2 for sufficiently large n. Therefore, it suffices to
prove an exponential inequality for

P
{

sup
g∈T

∣∣∣∣∣ 1n
n∑
i=1
εig(ζi, zi)

∣∣∣∣∣ ≥ δ/2
}
,

where T = ∪∞i=1Ti.
Since sup

g∈Bn(g0,σ)
||g||n ≤ R, T0 can be chosen as {0}. For any j ∈ N+, gj =

∑j
i=1(gi −

g(i−1)). Let C2
2 = 8(K2+σ2

0). Since for any g ∈ T ,
∣∣∣ 1
n

∑n
i=1εig(ζi, zi)

∣∣∣ ≤∑∞j=1

∣∣∣ 1
n

∑n
i=1εi(gj − g(j−1))

∣∣∣,
we have that for any nonnegative sequence {ηj} satisfying

∑∞
j=1 ηj ≤ 1,

P = P
{

sup
g∈T

∣∣∣∣∣ 1n
n∑
i=1
εig(ζi, zi)

∣∣∣∣∣ ≥ δ/2
}

≤
∞∑
j=1

P
{

sup
g∈T

∣∣∣∣∣ 1n
n∑
i=1
εi(gj − g(j−1))

∣∣∣∣∣ ≥ ηjδ/2
}

≤ 2
∞∑
j=1

exp
{

2H(2−jR,G ′, || · ||n)−
nδ2η2

j

36C2
22−2jR2

}
.
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The last expression comes from the fact that

||gj − g(j−1)||n ≤ ||gj − g||n + ||g − g(j−1)||n ≤ 2−jR+ 2−j+1R = 3(2−jR)

and Lemma 3.
As shown in Lemma 2, H(δ,G ′, || · ||n) ≤ Aδ−

1
l ∀δ > 0, for some A > 0 independent of

n. We have
√
nδ ≥ 24C2

(∫ R

0
H

1
2 (x,G ′, || · ||n)dx ∨R

)
,

for sufficiently large n. We choose

ηj = 12C22−jRH
1
2 (2−jR,G ′, || · ||n)√
nδ

∨ 2−j
√
j

2E ,

where E =
∑∞
j=1 2−j

√
j. Then

∞∑
j=1

ηj ≤
∞∑
j=1

12C22−jRH
1
2 (2−jR,G ′, || · ||n)√
nδ

+
∞∑
j=1

2−j
√
j

2E ≤ 1
2 + 1

2 = 1.

Note that ηj ≥ 12C22−jRH1/2(2−jR,G ′,||·||n)√
nδ

. Plugging this into the expression of P, it follows

P ≤ 2
∞∑
j=1

exp
{

2H(2−jR,G ′, || · ||n)−
nδ2η2

j

36C2
22−2jR2

}

≤ 2
∞∑
j=1

exp
(

nδ2η2
j

72C2
22−2jR2 −

nδ2η2
j

36C2
22−2jR2

)

= 2
∞∑
j=1

exp
(
−

nδ2η2
j

72C2
22−2jR2

)

≤ 2
∞∑
j=1

exp
(
− nδ2

72C2
22−2jR2

2−2jj

4E2

)
(since ηj ≥

2−j
√
j

2E )

= 2
∞∑
j=1

exp
(
− nδ2j

288C2
2E

2R2

)

≤ 2 exp
(
− nδ2

B2R2

)
for some B > 0.

�
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Proof of Proposition 1: T0 is defined as sup
{
(2−jR)

1
2l−1×24C2

(
2l

2l−1A(2−j+1R)
2l−1

2l ∨ 2−j+1R
)
, j =

1, 2 . . . ,
}
. Then for T ≥ T0,

P

 sup
g∈G>

| 1√
n

∑n
i=1εig(ζi, zi)|

||g||1−
1
2l

n

≥ T


≤
∞∑
j=1

P
{

sup
g∈G>,2−jR<||g||n≤2−j+1R

| 1√
n

n∑
i=1
εig(ζi, zi)| ≥ T (2−jR)1− 1

2l

}

≤ 2
∞∑
j=1

exp
{
−T

2(2−jR)2− 1
l

B2R2

}
(using Lemma 4)

≤ 2 exp
(
−T

2

C2
0

)
,

for some constant C0 > 0. �

Proof of Theorem 1: By Lemma 2, for sufficiently large n, we have

H

(
δ,

{
g − g0

J(g0) + J(g) : g ∈ Bn(g0, σ)
}
, || · ||n

)
< Aδ−

1
l , ∀δ > 0

for some constant A not depending on n. Now we can apply Proposition 1 to the class{
g−g0

J(g0)+J(g) : g ∈ Bn(g0, σ)
}
. Consequently,

(ε, ĝn − g0)n
||ĝn − g0||

1− 1
2l

n (J(g0) + J(ĝn))
1
2l

= OP (n−
1
2 ). (4.18)

Incorporating (4.18) in (4.14), we have

||ĝn − g0||2n + τ2
nJ(ĝn) ≤ OP (n−

1
2 )||ĝn − g0||

1− 1
2l

n {J(g0) + J(ĝn)}
1
2l + τ2

nJ(g0).

If OP (n−
1
2 )||ĝn − g0||

1− 1
2l

n {J(g0) + J(ĝn)}
1
2l < τ2

nJ(g0), it follows that

||ĝn − g0||2n + τ2
nJ(ĝn) ≤ 2τ2

nJ(g0); (4.19)

otherwise,

||ĝn − g0||2n + τ2
nJ(ĝn) ≤ OP (n−

1
2 )||ĝn − g0||

1− 1
2l

n {J(g0) + J(ĝn)}
1
2l . (4.20)

Next we will verify the result for separated cases. For the case of inequality (4.19), it is
trivial that

||ĝn − g0||n = OP (τn), J(ĝn) = OP (1)J(g0). (4.21)

For the case of inequality (4.20), there are two possibilities.
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(i) If J(ĝn) ≥ J(g0), it follows that ||ĝn−g0||2n+τ2
nJ(ĝn) ≤ OP (n−

1
2 )||ĝn−g0||

1− 1
2l

n {J(ĝn)}
1
2l .

Then {J(ĝn)}
1
2l ≤ OP (n−

1
4l−2 )||ĝn − g0||

1
2l
n τ
− 2

2l−1
n . Thus

||ĝn − g0||2n ≤ OP (n−
1
2 )||ĝn − g0||

1− 1
2l

n {J(ĝn)}
1
2l ≤ OP (n−

l
2l−1 )||ĝn − g0||nτ

− 2
2l−1

n .

In other words,

||ĝn − g0||n = OP (n−
l

2l−1 )τ
− 2

2l−1
n , J(ĝn) = OP (n−

2l
2l−1 )τ

− 4l+2
2l−1

n . (4.22)

(ii) If J(ĝn) < J(g0), it follows that ||ĝn−g0||2n+τ2
nJ(ĝn) ≤ OP (n−

1
2 )||ĝn−g0||

1− 1
2l

n {J(g0)}
1
2l .

After some simple algebra, we have

||ĝn − g0||n = OP (n−
l

2l+1 ) {J(g0)}
1

2l+1 , J(ĝn) = J(g0)OP (1). (4.23)

When J(g0) = J(f0) > 0 and τ−1
n = n

l
2l+1 {J(f0)}

2l−1
4l+2 , then we obtain the same result

from (4.21), (4.22) and (4.23). To be more specific, ||ĝn − g0||n = OP (n−
l

2l+1 ) {J(f0)}
1

2l+1

and J(f̂n) = J(f0)OP (1). When J(g0) = J(f0) = 0, then both
OP (n−

1
2 )||ĝn − g0||

1− 1
2l

n {J(g0) + J(ĝn)}
1
2l < τ2

nJ(g0) and J(ĝn) < J(g0) are impossible,
which indicate that we only need to consider (4.22) under this circumstance. When τ−1

n =
n1/4, ||ĝn − g0||n = OP (n−

1
2 ) and J(f̂n) = OP (n−

1
2 ). �

In Corollary 1, we only need to show that f̂n and α̂ defined above satisfy Corollary 1 as
well since the estimated intercept â converges to a0 with a rate of OP (n−

1
2 ), as indicated

at the very beginning. To prove Corollary 1, we need to quantify the ratio of || · ||n and
|| · ||2,Q norm for both f̂n and ĝn. Entropy with bracketing is an important tool in studying
magnitude of the ratio. Let NB(δ,G , || · ||2,Q) be the smallest value of N for which there
exist pairs of functions {[gLj , gUj ]}Nj=1 such that ||gUj − gLj ||2,Q ≤ δ for all j = 1, . . . , N , and
such that for each g ∈ G , there exists j = j(g) ∈ {1, . . . , N} such that gLj ≤ g ≤ gUj . Then
HB(δ,G , || · ||2,Q) = logNB(δ,G , || · ||2,Q) is called the δ-entropy with bracketing of G (for
the L2(Q) metric). Following lemmas are needed to compute the ratio of ||g||n and ||g||2,Q
for any g ∈ G .

Lemma 5 For all δ > 0, HB(δ,G , || · ||2,Q) ≤ H(δ/2,G , || · ||∞)

Proof: See Lemma 2.1 of [102]. �

Lemma 6 Let A denote a collection of functions defined on X . Suppose that A is uni-
formly bounded, i.e., sup

a∈A
||a||∞ ≤ M for some constant M , and that for some 0 < ν < 2,
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sup
δ>0

δνHB(δ,A , || · ||2,Q) <∞. Then for all η > 0 there exists a constant C such that

lim sup
n→∞

P

 sup
a∈A ,||a||2,Q>Cn−1/(2+ν)

∣∣∣∣∣ ||a||n||a||2,Q
− 1

∣∣∣∣∣ > η

 = 0.

See Theorem 2.3 of [65] or [101], Lemma 6.3.4.

Before proving the corollary, we restate the extra assumption.

Assumption 5 The support of z is compact in Rp.

Proof of Corollary 1 We first need to show that ĝn is bounded. As shown above,
|| f̂n

1+J(f̂n) ||∞ ≤ C for some constant C and J(f̂n) = OP (1) with an suitable τn. There-

fore, ||f̂n||∞ = Op(1). Additionally, provided that Assumption (5) holds, then ||α̂>z̃||∞ is
bounded in probability as well, since it has been shown that α̂ = OP (1). Thus ||ĝn||∞ ≤
||f̂n||∞ + ||α̂>z̃||∞ = OP (1) in Lemma 2. We henceforth consider a subset of G , {g :
g ∈ G , ||g||∞ ≤ C, J(g) ≤ C}, which is still denoted as G ′. Similarly, let G ′1 denote
{g1 : g1(ζ, z) =

∑d
j=1fj(ζj),

∑n
i=1fj(ζij) = 0, j = 1, . . . , d, ||g1||∞ ≤ Cf , J(g1) ≤ C}, where

Cf is a positive constant, and G ′2 for {g2 : g2(ζ, z) = α>z̃, ||α||E ≤ Cα} with Cα being a
positive constant that does not depend on α.

Next, we shall provide a uniform bound for both ||g1||n/||g1||2,Q, g1 ∈ G ′1 and ||g||n/||g||2,Q,
g ∈ G ′. For the former one, Lemma 5.6 of [102] is employed. As shown in Lemma 2,
H(δ,G ′1, || · ||n) ≤ Aδ−

1
l for some constant A. Take δn = (2A)l/(2l+1)n−l/(2l+1) and H(δ) =

δ−
1
l . Then nδ2

n →∞, and nδ2
n = 2Aδ−

1
l

n = 2AH(δn) for all n. Thus we have

lim sup
n→∞

P
(

sup
g1∈G ′1

||g1||n
||g1||2,Q ∨ δn

> 14
)
≤ lim sup

n→∞
4P

{
sup
u>0

H(u,G ′1, || · ||n)
H(u) > A

}
= 0 (4.24)

Inequality (4.24) implies that with probability arbitrarily close to 1,

||f̂n − f̃0||2n ≤ max
{

196||f̂n − f̃0||22,Q, O(n−2l/(2l+1))
}
, (4.25)

for sufficiently large n. We use Lemma 6 to derive a uniform bound on ||g||n/||g||2,Q for
g ∈ G ′. Based on Lemma 5 and combining (4.16), HB(δ,G ′1, || · ||2,Q) ≤ H(δ/2,G ′1, || · ||∞)
≤ A1δ

− 1
l for some constant A1. Since the support of z is compact, it is straightforward

that HB(δ,G ′2, || · ||2,Q) ≤ H(δ/2,G ′2, || · ||∞) ≤ A2 log(1/δ) for some constant A2. Therefore,
HB(δ,G ′, || · ||2,Q) ≤ Aδ−

1
l for some constant A. Taking A = G ′ and ν = 1

l , then the
condition sup

δ>0
δνHB(δ,A , || · ||2,Q) <∞ is satisfied in Lemma 6. We can derive from Lemma

6, that with probability arbitrarily close to 1,

||ĝn − g0||22,Q ≤ max(η1||ĝn − g0||2n, O(n−2l/(2l+1))) = OP (n−2l/(2l+1)), (4.26)
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for some constant η1 and sufficiently large n.
Note that

||ĝn − g0||22,Q = ||f̂n(ζ)− f̃0(ζ) + (α̂−α0)>(z − z̄)||22,Q
= ||f̂n(ζ)− f̃0(ζ) + (α̂−α0)>{z? + h(ζ)− z̄}||22,Q
= ||f̂n(ζ)− f̃0(ζ) + (α̂−α0)>{h(ζ)− z̄}||22,Q + ||(α̂−α0)>z?||22,Q
= OP (n−2l/(2l+1)). (4.27)

The last equation holds according to (4.26). Since ||(α̂−α0)>z?||22,Q ≥ Λmin {Var(z?)} ||α̂−
α0||2E , ||α̂−α0||E = OP (n−l/(2l+1)) based on (4.27) when Assumption (2) is met.

Now we can verify the consistency of f̂n. Take C? = max1≤j≤p |zj |. Then C? <∞ when
Assumption (5) is satisfied. Given that ||α̂−α0||E = OP (n−l/(2l+1)) and

||ĝn − g0||2n = ||f̂n − f̃0 + (α̂−α0)>z̃||2n

≥ ||f̂n − f̃0||2n + 2
n

n∑
i=1

{
f̂n(ζi)− f̃0(ζi)

}
(α̂−α0)>(zi − z̄)

≥ ||f̂n − f̃0||2n − 4C?||f̂n − f̃0||n||α̂−α0||E

we have
||f̂n − f̃0||2n ≤ 4C?||f̂n − f̃0||nOP (n−l/(2l+1)) + ||ĝn − g0||2n

Therefore, in either Case (i), 0 < J(f0) < ∞ and τ−1
n = n

l
2l+1 {J(f0)}

2l−1
4l+2 , or Case (ii),

J(f0) = 0, and τ−1
n = n1/4,

||f̂n − f̃0||n = OP (n−l/(2l+1))

�
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Chapter 5

Sparse Functional Additive Models

5.1 Introduction

Functional data analysis has become an important tool for dealing with data collected
over multiple time points, spatial locations, or other continua. A fundamental problem
in functional data analysis is how to model the relationship between a scalar response
of interest and a functional predictor. For instance, the Tecator data (see Section 5.5.2)
consists of 240 meat samples; each of them comprises the spectrum of absorbance, and
three contents: water, fat and protein. Researchers have been concerned about how to use
the spectrum of absorbance, which can be treated as a functional predictor, to predict one
of the three contents. Functional linear regression (FLR) is a conventional and interpretable
model for predicting a scalar response from a functional predictor.

In FLR, the relationship between a scalar response and a functional predictor is mod-
elled in a linear form. Hence the key problem in fitting FLR is to estimate the coefficient
function of the functional predictor. There has been extensive research to address this prob-
lem. For example, [70] considered representing the coefficient function in terms of Fourier
basis functions or the eigenfunctions of the estimated covariance function of the functional
predictor. The coefficients of the Fourier basis functions were then obtained from solving a
functional estimating equation. [86] suggested using spline basis functions to represent the
coefficient function and then solving a regularized regression problem, in which the rough-
ness of the spline representation is penalized to obtain a smooth estimate of the coefficient
function. [61] proposed a local sparse estimator for the coefficient function to enhance the
interpretability of FLR. A comprehensive introduction to FLR can be found in [47] and
[69].

Although the studies aforementioned have proposed various estimating methods to fit
a FLR model and established some appealing properties of the corresponding estimators,
in practice, applications of FLR are sometimes restricted due to its simple linear form.
Similar to the multiple linear model, which in some cases may not adequately describe the
relationship between a scalar response and scalar covariates, FLR can also suffer from an
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inadequate flexibility for modelling the relationship between a scalar response and a func-
tional predictor. This phenomenon has been noted by many researchers. For instance, [114]
extended the FLR model to the case when the scalar response depends on a polynomial
of the functional predictor and they mainly focused on the quadratic case. [13] considered
using a nonparametric link to connect the scalar response and the functional linear form. A
class of flexible functional nonlinear regression models were proposed by [71] by using con-
tinuously additive models to characterize the relationship between a functional predictor
and a scalar response. Nonlinear and/or nonparametric functional regression models can
somewhat address the issue of inadequate fit caused by FLR (see [13], [71], [72]). However,
they can lead to other issues such as over-flexibility and a lack of stability ([121]). [89]
summarized some of main approaches of regressing a scalar response on a functional pre-
dictor. In this chapter, we aim to propose a functional regression model which can achieve
a satisfactory trade-off between flexibility and simplicity.

[121] proposed an extended functional additive model, in which the scalar response of
interest depends on a transformation of the leading functional principal component (FPC)
scores. They assumed that some additive components were vanishing and the nonvanish-
ing components were smooth functions for the sake of simplicity and interpretability while
retaining flexibility. To achieve this goal, they adopted the regularization scheme of com-
ponent selection and smoothing operator (COSSO) proposed by [60], which can select and
smooth components simultaneously. While this model turns out to achieve a better trade-off
between flexibility and simplicity compared with many other functional regression models,
the estimation procedure seems to suffer from several drawbacks. First, only estimation
consistency is guaranteed for the proposed estimator. Whether selection consistency holds
for this estimator remains an open problem. Another drawback is associated with compu-
tational complexity. As noted by [119], when a full basis is employed, the complexity of
the algorithm is O(n3), where n is the sample size. To reduce the computational burden,
[119] suggested using a subset basis algorithm instead, which was computationally much
more efficient than the full basis algorithm. [121] seemed to ignore this computational issue
when implementing COSSO to fit the proposed model. The computational complexity is
demonstrated in simulation studies.

To overcome the drawbacks of the method proposed by [121], we propose a method to
estimate the extended functional additive model. In contrast to representing nonparametric
additive components in the framework of RKHS ([121]), we use B-spline basis functions to
represent these components, which are easier to understand and implement. Then select-
ing nonzero components is equivalent to selecting nonzero coefficients of the B-spline basis
functions. The group LASSO method ([118]) has been shown to perform well when select-
ing grouped variables for accurate prediction in both theory and application. Because an
additive component corresponds to a vector of coefficients, which can be treated as a group
of variables, we employ the group LASSO method to select nonzero vectors of coefficients.
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The adaptive group LASSO method is then applied to allow for different shrinkages for
different vectors of coefficients. This modification can yield a more accurate estimate of the
coefficient vectors, which then leads to a better estimate for the additive components. This
method enables us to attain our goal of obtaining a parsimonious model via component
selection.

Nevertheless, the estimated nonzero components can be wiggly due to the representa-
tion of the additive components using a large number of B-spline basis functions. It may
impair predictive performance, which will be demonstrated in simulation studies in Section
5.4. Thus we suggest refining the selected components via smoothing splines. This extra
smoothing step can improve the prediction accuracy of the estimator obtained from the
adaptive group LASSO, which will be demonstrated in our simulation studies.

This chapter makes three main contributions. First, compared with traditional FLR
models, our proposed model provides a better trade-off between flexibility and simplicity
in modelling the effect of a functional predictor. By selecting and smoothing nonzero com-
ponents, our proposed method obtains an estimator which has better prediction accuracy.
Second, unlike the COSSO regularization scheme adopted in [121], we employ group LASSO
to select components and use the smoothing spline method to smooth nonzero components.
As a result, our proposed estimation method is easy to understand and implement. Last
but not least, we give both theoretical and empirical demonstrations of the selection con-
sistency and estimation consistency of our proposed estimator, while [121] only provided a
theoretical proof of the estimation consistency of their estimator.

The remainder of this chapter is organized as follows. Section 5.2 introduces a sparse
functional additive model and our method to estimate the additive components in the
model. Section 5.3 establishes the selection consistency and the estimation consistency of
our proposed estimator. The finite-sample performance of the estimator is investigated
empirically in Section 5.4, where we conduct simulation studies to compare our proposed
estimator and other conventional methods. In Section 5.5, our method is demonstrated
by analyzing two real data examples. In Section 5.6, we give some conclusions about our
method. The procedures to estimate the FPC scores and proofs of the main results in
Section 5.3 are provided in the Appendix.

5.2 Model and Estimation Method

5.2.1 Sparse Functional Additive Model

Suppose that {Xi(t), yi}ni=1 are independent and identically distributed (iid) observations
from {X(t), Y }, where X(t) is a random function and Y is a scalar random variable. We
assume X(t) to be a square integrable stochastic process over a compact interval I = [0, T ],
i.e., E {

∫
I X

2(t)dt} < ∞. Let m(t) and G(s, t) denote the mean function and covariance
function of X(t), respectively. According to Mercer’s theorem, G(s, t) can be represented
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as G(s, t) =
∑∞
k=1 λkφk(s)φk(t), where λk is a nonnegative eigenvalue and φk(t) is the

corresponding eigenfunction. For the sake of identifiability, we postulate that λ1 ≥ λ2 ≥
· · · ≥ 0. Additionally, {φk}∞k=1 is assumed to be a complete orthonormal basis of the space
L2(I), the collection of all square integrable functions on I. Then the stochastic process
X(t) admits the Karhunen-Loève expansion:

X(t) = m(t) +
∞∑
k=1

ξkφk(t), (5.1)

where ξk =
∫
I(X(t)−m(t))φk(t)dt, k = 1, . . ., is called the k-th FPC score. The FPC score

satisfies E (ξkξk′) = λk if k = k′ and 0 otherwise.
In FLR, Y is treated as the response and X(t) is the functional predictor. Furthermore,

the relationship between Y and X(t) is modelled in a linear form:

yi =
∫
I
Xi(t)b(t)dt+ εi,

where εi’s denote random errors with mean 0 and variance σ2
ε . Given the representation of

X(t) in (5.1), we have yi = a+
∑∞
k=1 bkξik+εi, where a =

∫
Im(t)b(t)dt, ξik denotes the k-th

FPC score of Xi(t), and bk =
∫
I φk(t)b(t)dt, k ≥ 1. To address the curse of dimensionality,

a truncated model is usually adopted such that Y only depends on the first d FPC scores. In
other words, we get a truncated linear model: yi = a+

∑d
j=1bjξij+εi. In practice, d is chosen

as the smallest number of FPCs which can explain over 99.9% of the total variability of the
functional predictor X(t). As noted by [121], this choice can, to some extent, circumvent
neglecting those FPC scores which play a negligible role in capturing the variability of the
functional predictor but are relevant in predicting the response. This truncated model is
slightly restrictive since an explicit parametric form is assumed between the response and
the leading FPC scores. The linearity assumption is likely to be violated in substantial
practical scenarios.

In light of the idea proposed by [42], and the fact that ξj ’s are mutually uncorrelated, a
nonparametric functional additive model was proposed by [72] to describe the relationship
between the response and the first d FPC scores

yi = a+
d∑
j=1

fj(ξij) + εi, (5.2)

where we call fj the j-th component in the nonparametric functional additive model.
FPC scores usually cannot be observed directly. Therefore we need firstly to estimate

FPC scores from the observed functional data which may be subject to measurement errors.
We assume that Wij = Xi(tij)+eij , where Wij denotes the observation of the process Xi(t)
made at time point tij , j = 1, . . . , Ni, i = 1, . . . , n and eij denotes the measurement error
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and is assumed to be independent ofXi(t). Functional principal component analysis (FPCA)
is implemented to estimate FPC scores, denoted by ξ̂ij ’s. The details of this procedure can
be found in the Appendix.

We first scale the FPC scores to [0, 1] via a transformation function F . One possible
strategy is to apply the cumulative distribution function (cdf) F (z|λj) of the Normal(0, λj)
on ξj , where λj is the eigenvalue of the covariance function G(s, t), and λj = V ar(ξj). We
define ζj to be the j-th scaled FPC score: ζj = F (ξj |λj), j = 1, . . . , d. Then the estimated
scaled FPC scores are given as ζ̂ij = F (ξ̂ij |λ̂j), j = 1, . . . , d, i = 1, . . . , n. Assumption B in
Section 5.3 gives more general conditions on the transformation function, F . We still use
fj for the j-th component in the nonparametric functional additive model when ξj ’s are
replaced by ζj ’s.

The nonparametric functional additive model (5.2) can now be expressed as

yi = a+
d∑
j=1

fj(ζij) + εi. (5.3)

To make the model identifiable, we assume that E {fj(ζj)} = 0, j = 1, . . . , d. Models with a
parsimonious structure are preferable in practice. Thus we assume that some components,
fj ’s are vanishing and the rest of the components are nonzero and smooth. Model (5.3) is
called a sparse functional additive model in this chapter.

B-spline functions, due to their nice properties ([21]), have been widely used in estimat-
ing unknown functions (see [98], [99], [48], etc). In this chapter we also employ B-spline func-
tions to estimate the additive components in Model (5.3). We present here a brief overview
of B-splines. For more information, see [21]. Let 0 = τ0 < τ1 < · · · < τLn < τLn+1 = 1 be
the breakpoints which separate the interval [0, 1] into Ln + 1 subintervals. We assume that
Ln = O(nα), where 0 < α < 0.5, and define δn = max0≤m≤Ln |τm+1 − τm| = O(n−α). Let
c1 be a constant, independent of n, such that δn < c1 min0≤m≤Ln |τm+1 − τm|. Let Sn be
the space of polynomial splines of order l, which is one more than the degree of polyno-
mials, on [0, 1] consisting of functions s satisfying: (i) s is a polynomial of order l at each
subinterval [τm, τm+1],m = 0, . . . , Ln; (ii) for 0 ≤ l? ≤ l − 2, the l?-th order derivative of s
is continuous on [0, 1]. Then there exist mn = Ln + l normalized B-spline basis functions
{Bk, 1 ≤ k ≤ mn} bounded by 0 and 1 on [0, 1], such that any f ∈ Sn can be written as

fj(x) =
mn∑
k=1

βjkBk(x), j = 1, 2, . . . , d, (5.4)

where βj = (βj1, . . . , βjmn)> is the spline coefficient vector. Now selecting nonzero compo-
nents fj(·) for Model (5.3) amounts to selecting nonzero βj .
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5.2.2 Group LASSO

Accounting for the fact that E {fj(ζj)} = 0, j = 1, . . . , d, we define ψjk(x) = Bk(x) −
1
n

∑n
i=1Bk(ζ̂ij), k = 1, . . . ,mn, j = 1, . . . , d. For brevity, ψjk(x) is denoted by ψk(x)

without causing any confusion. Thus
∑n
i=1ψk(ζ̂ij) = 0, j = 1, . . . , d. The estimated in-

tercept in Model (5.3) is given as ȳ = 1
n

∑n
i=1yi. Let Zij = (ψ1(ζ̂ij), . . . , ψmn(ζ̂ij))T , Zj =

(Z1j , . . . ,Znj)T and Z = (Z1, . . . ,Zd). Similarly, define β = (βT1 , . . . ,βTd )T , where βj =
(βj1, . . . , βjmn)T , and y = (y1 − ȳ, . . . , yn − ȳ)T . Nonzero βj ’s in Model (5.3) can be se-
lected and estimated using the group LASSO ([118]), in which the corresponding estimate
β̃ minimizes

D1(β) = (y −Zβ)T (y −Zβ) + λ1

d∑
j=1
||βj ||2. (5.5)

In (5.5), the positive tuning parameter λ1 determines the magnitude of shrinkage and
|| · ||2 denotes the Euclidean norm of a vector in Rmn . If β̃j = (β̃j1, . . . , β̃jmn)T , then
the corresponding estimate of fj is denoted by f̃j , which equals to

∑mn
k=1 β̃jkψk(x). Cross

validation is employed to choose an “optimal" λ1, which is chosen to minimize the cross-
validation error.

5.2.3 Adaptive Group LASSO

The group LASSO method penalizes each βj equally in (5.5), which may not be an optimal
treatment. To account for different impact on the response of different ζj ’s, we propose an
adaptive group LASSO method, which is similar in spirit to the adaptive LASSO method
proposed by [122]. More explicitly, a weight vector (w1, . . . wd), which can produce different
shrinkages for different βj ’s, is introduced. Given β̃ estimated from group LASSO, for
j = 1, . . . , d, wj is set to be ||β̃j ||−1

2 if ||β̃j ||2 > 0 and ∞ otherwise. Then the adaptive
group LASSO estimate of β, denoted by β̂, is obtained by minimizing

D2(β) = (y −Zβ)T (y −Zβ) + λ2

d∑
j=1

wj ||βj ||2, (5.6)

where λ2 denotes a penalty parameter that can be determined by cross validation. Then
the corresponding estimate of fj(x), denoted by f̂j(x), can be represented in terms of
ψj(x) = (ψj1(x), . . . , ψjmn(x))T , i.e., f̂j(x) = β̂

T

j ψj(x), j = 1, . . . d. If β̂j = 0 for some j,
then the estimate, f̂j , is also zero.

5.2.4 Smoothing Spline Method

When a large number of B-spline basis functions are employed to estimate fj , then the
adaptive group LASSO estimate may be wiggly. Further smoothing for nonzero estimates
obtained from adaptive group LASSO is indispensable if it is the case. This concern was
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also discussed in [111]. To allow for different roughness penalties for different nonzero com-
ponents, we propose a smoothing spline method. The weight is defined as wj = ||β̂j ||−1

2 ,
where j ∈ S, and S = {j : β̂j 6= 0} is the set of nonzero components. In particular, the
updated estimate of βj is obtained from the smoothing spline method by minimizing

D3(β) = (y −
∑
j∈S

Zjβj)T (y −
∑
j∈S

Zjβj) + λ3
∑
j∈S

wj

∫ 1

0
{f ′′j (ζj)}2dζj , (5.7)

where λ3 denotes the smoothing parameter. The roughness penalty term
∫ 1

0 {f
′′
j (ζj)}2dζj =

βTj Qjβj , whereQj is anmn×mn penalty matrix with the pq-th elementQpq
j =

∫ 1
0 B

′′
p (ζj)B

′′
q (ζj)dζj .

When the second derivative of fj(ζj) does not exist, the penalty matrix Qj can be replaced
by the difference matrix introduced by [26]. Minimization of (5.7) is equivalent to a clas-
sical smoothing spline problem except that there is a weight vector in this problem. Let∑
j∈S Zjβj = ZSβ, where ZS = (Zi1 , . . . ,Zi|S|) ∈ Rn×mn|S|, i1, . . . , i|S| are all elements

of S and |S| denotes the cardinality of the set S. Let Q = diag(wi1Qi1 , . . . , wi|S|Qi|S|
).

Then the estimate of β, still denoted by β̂, is given as β̂ = (ZT
SZS + λ3Q)−1ZT

Sy. The
corresponding estimate of fj is f̂j = β̂

T

j ψj(x), j ∈ S.
The smoothing parameter λ3 can be determined by the generalized cross-validation

(GCV) measure. For a given λ3, the corresponding measure can be expressed as

GCV(λ3) = n · SSE
(n− df(λ3))2 ,

where SSE = (y−ZSβ̂)T (y−ZSβ̂) and df(λ3) = trace(ZS(ZT
SZS +λ3Q)−1ZT

S ). The op-
timal smoothing parameter is chosen to minimize the GCV measure. Our whole estimating
procedure is called Components Selection and Smoothing in a sparse Functional Additive
Model (CSS-FAM in short) in this chapter.

5.3 Theoretical Properties

To ensure that the estimated scaled FPC scores, ζ̂, are consistent estimators of the true
scaled FPC scores, we need to impose some regularity conditions on the design of the
functional predictor X(t). The following conditions follow [121]. As stated in Section 5.2.1,
{tij , j = 1, . . . , Ni; i = 1, . . . , n} ⊂ I denote the time points when the functional predictor
Xi(t) is observed. We assume that ti0 = 0 and tiNi = T for each Xi(t). Let Iτ = [−τ, T + τ ]
for some τ > 0, and let hi and K(·) denote the bandwidth and the kernel function used in
smoothing the i-th trajectory, respectively. Note that the same kernel function is employed
in the local linear smoother for each trajectory, when estimating FPC scores. Below is a list
of regularity conditions which can guarantee that the estimated FPC scores and eigenvalues
of the covariance function of X(t) converge in probability to the corresponding population
values.
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Assumption A
(A1) X(t) has a continuous second derivative on Id with probability 1 and for k = 0, 2,∫

E {X(k)(t)}4dt < ∞. The measurement errors eij ’s of Xi(t) satisfy E (e4
ij) < ∞ and they

are identically and independently distributed.
(A2) We define Tn to be the lower bound of the number of observations for each trajec-

tory Xi(t). As n→∞, Tn →∞. Let4i denote the largest time difference of two consecutive
observations for each trajectory Xi(t), i.e., 4i = max{tij− ti,j−1 : j = 1, . . . , Ni}. The max-
imal value of these satisfies maxi4i = O(T−1

n ).
(A3) There is a sequence bn → 0, such that c1bn ≤ mini hi ≤ maxi hi ≤ c2bn for some

constants c2 ≥ c1 > 0 as n→∞. In addition, bn and Tn satisfy that (Tnbn)−1 + b4
n +T−2

n =
O(n−1).

(A4) The kernel function K(·) has a compact support and satisfies |K(s) − K(t)| ≤
C|s− t| for s, t in its domain and some positive constant C.

For Model (5.3), let A1 and A0 denote the set of non-vanishing and vanishing compo-
nents, respectively; i.e., A1 = {j : fj 6= 0, j = 1, . . . , d} and A0 = {j : fj ≡ 0, 1 ≤ j ≤ d}.
Regarding the transformation function F (x|λ), a cdf with variance λ, we make the following
assumptions.

Assumption B
(B1) The transformation function F (x|λ) is differentiable at x and λ. Furthermore,

there exist a positive constant C and a negative constant γ, such that ∂F (x|λ)
∂x ≤ Cλγ and

∂F (x|λ)
∂λ ≤ Cλγ |x|.
(B2) The cdf of each scaled score ζj is absolutely continuous and there exist positive

constants C1 and C2 such that the probability density function of ζj , gj , satisfies C1 ≤
gj(x) ≤ C2 for x ∈ [0, 1] and j ∈ A1.

Assumption (B1) is from [121] as well. Together with Assumptions (A1)-(A4), it can
guarantee that the ζ̂j is a consistent estimator of ζj , 1 ≤ j ≤ d. Assumption (B2) is a
standard assumption in nonparametric additive models according to [98].

Define ||f ||2 = {
∫ 1

0 f
2(x)dx}1/2 whenever the integral is finite. Let L > 0, r be a non-

negative integer, and ν ∈ (0, 1] such that ρ = r + ν > 0.5. Let F be the class of functions
h on [0, 1] whose r-th derivative exists and satisfies the Hölder condition with exponent ν:
|h(r)(s)− h(r)(t)| ≤ L|s− t|ν for any 0 ≤ s, t ≤ 1. Other standard assumptions for additive
nonparametric models (see [48]) include:

Assumption C
(C1) minj∈A1 ||fj || ≥ cf for some cf > 0.
(C2) The random variables ε1, . . . εn are iid with mean 0 and variance σ2

ε . Furthermore,
the tail probability satisfies P (|ε1| > x) ≤ K exp(−Cx2), for ∀x ≥ 0 and some constants C
and K.

(C3) E {fj(ζj)} = 0 and fj ∈ F , j ∈ A1.
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The following proposition explains why it is reasonable to employ B-spline functions to
approximate each nonparametric component fj in Model (5.3). To guarantee that B-spline
functions in Sn can provide a satisfactory approximation of functions in F , throughout the
chapter we assume that l, the order of polynomial functions in Sn, satisfies l > max{r, 1}.
Write the centered version of Sn as

S 0
nj =

{
fnj : fnj(x) =

mn∑
k=1

βjkψk(x), (βj1, . . . , βjmn) ∈ Rmn
}
, j = 1, . . . , d,

where ψk’s are the centered spline basis functions defined in Section 5.2.2.

Proposition 2 Suppose that f ∈ F and E f(ζj) = 0. Then under Assumptions A and B,
there exists an fnj ∈ S 0

nj such that

1
n

n∑
i=1
{fnj(ζ̂ij)− f(ζ̂ij)}2 = Op(m−2ρ

n + n−1).

if mn = O(nα) with 0 < α < 0.5.

Let ψ(x) = (ψ1(x), . . . , ψmn(x))T for x ∈ [0, 1]. Proposition 2 implies that, uniformly
over j ∈ {1, . . . , d}, there exists βj ∈ Rmn , such that 1

n

∑n
i=1{βTj ψ(ζ̂ij) − f(ζ̂ij)}2 =

Op(m−2ρ
n + n−1) under Assumptions A and B, provided mn = O(nα). Furthermore, we

can take βj = 0 for j ∈ A0. Denote {j : β̃j 6= 0} and {j : β̃j = 0} as Ã1 and Ã0, respec-
tively. Theorem 2 establishes the selection consistency and estimation consistency of β̃j ’s
obtained from the group LASSO step.

Theorem 2 Suppose that Assumptions A, B and C hold and λ1 ≥
C
√
n log(mn) for some sufficiently large constant C. Then it follows that
(i) If mn → ∞ as n → ∞ with rate satisfying mn = o(n1/6) and (λ2

1m
2
n)/n2 → 0 as

n→∞, then all the nonzero βj , j ∈ A1, are selected with probability converging to 1.
(ii) If mn = o(n1/6), then

∑d
j=1||β̃j − βj ||22 = Op

(
m2
n logmn
n

)
+Op

(
m2
nλ

2
1

n2

)
+Op

(
mn
n + 1

m2ρ−1
n

)
.

Theorem 3 further illustrates that the estimated functions obtained from the group
LASSO step, f̃j ’s, also enjoy selection consistency and estimation consistency.

Theorem 3 Suppose that Assumptions A, B and C hold and λ1 ≥
C
√
n log(mn) for some sufficiently large constant C. Then we have
(i) If mn → ∞ as n → ∞ with rate satisfying mn = o(n1/6) and (λ2

1mn)/n2 → 0 as
n → ∞, then in the group LASSO step, all the nonzero additive components fj ’s, j ∈ A1,
are selected with probability converging to 1.

(ii) Ifmn = o(n1/6), then ||f̃j−fj ||22 = Op
(
mn logmn

n

)
+Op

(
mn
n + 1

m2ρ
n

)
+Op

(
mnλ2

1
n2 + mn

n

)
,

j ∈ A1 ∪ Ã1.
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For two (positive) sequences {an} and {bn}, if anbn is bounded away from 0 and ∞, then
denote an ∼ bn. The following corollary can be directly derived from Theorem 3.

Corollary 2 Suppose that Assumptions A, B and C hold. If mn ∼ n1/(2ρ+1) and λ1 ∼√
n log(mn), then
(i) If ρ > 5

2 , then in the group LASSO step, all the nonzero additive components fj ,
j ∈ A1, are selected with probability converging to 1.

(ii) If ρ > 5
2 , then ||f̃j − fj ||

2
2 = Op(n−2ρ/(2ρ+1) logmn), j ∈ A1 ∪ Ã1.

Theorem 4 states that the adaptive group LASSO yields an estimate which is also consis-
tent in both selection and estimation. Furthermore, it illustrates that this estimate compares
favorably with that given by the group LASSO with respect to estimation accuracy.

Theorem 4 Suppose that Assumptions A, B and C hold and mn ∼ n1/(2ρ+1), where ρ >
5/2. If the tuning parameters satisfy λ1 ∼

√
n log(mn), λ2 ≤ O(n

1
2 ), λ2

n(8ρ+3)/(8ρ+4) = o(1)

and n1/(4ρ+2)
√

log(mn)
λ2

= o(1), then we have
(i) With probability approaching 1, the nonzero components, i.e.,

{fj , j ∈ A1} are selected and ||f̂j ||2 = 0, j ∈ A0.
(ii)

∑
j∈A1 ||f̂j − fj ||

2
2 = Op(n−2ρ/(2ρ+1)).

5.4 Simulation Studies

In this section we use simulated examples to illustrate several properties of our proposed
estimator, and compare our method with several conventional methods commonly used in
practice.

We simulate data as follows. In each simulation replicate, we generate n curves and
the observations are made at m = 200 equally spaced points in [0, 10]. In our simulation
studies, we set n = 100 or 500. To accommodate measurement errors, the observation at
tj (j = 1, . . . ,m) is generated as Wij = Xi(tj) + eij , where {Xi(t)}ni=1 are i.i.d samples
of a stochastic process X(t) and eij are i.i.d normals with mean 0 and variance 0.1. For
k = 1, . . . , 20, let λk = 31.5 × 0.6k denote the k-th eigenvalue of the covariance function
of X(t). The corresponding k-th eigenfunction is the k-th Fourier basis function, denoted
by φk(t). Then Xi(t) = m(t) +

∑20
k=1 ξikφk(t), where m(t) = t + sin t denotes the mean

function of X(t) and {ξik}20
k=1 are independently sampled from N(0, λk). The scaled score

ζik is defined as the uniform score of ξik, i.e., ζik = Φ(ξik/
√
λk), k = 1, . . . , 20, i = 1, . . . , n,

where Φ denotes the cdf of a standard normal distribution. The response variable is gener-
ated from Model (5.3): yi = a + f1(ζi1) + f2(ζi2) + f4(ζi4) + εi. We set the true intercept
to a = 1.2, and the true components to f1(x) = x exp(x) − 1, f2(x) = cos(2πx) and
f4(x) = 3

(
x− 1

4

)2
− 7

16 , x ∈ [0, 1]. The random errors εi’s are independently sampled from
a normal distribution with mean 0 and variance 0.67. The signal-to-noise ratio is defined
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as Var{f1(ζ1) + f2(ζ2) + f4(ζ4)}/Var(ε), and we set the signal-to-noise ratio to be approx-
imately 2. We estimate the model by fitting n randomly generated training observations,
and evaluate its performance on 200 randomly generated test observations. The simulation
is implemented for 100 simulation replicates.

Besides our proposed method CSS-FAM, we also fit the data with three conventional
models including MARS ([36]), two extended functional additive models (FAM) proposed
by [72] and the component selection and estimation for the functional additive model (CSE-
FAM) in [121]. More specifically, MARS is fitted using the function earth in the R package
earth and the variables which enter the final model are examined by the function evimp.
In the first extended FAM, denoted by FAM, the response variable y is fitted with a multiple
linear regression where the covariates are f1(ζ̂1), f2(ζ̂2) and f4(ζ̂4). In other words, FAM
assumes to know the true model structure with three true covariates f1(ζ̂1), f2(ζ̂2) and
f4(ζ̂4). The second extended FAM, denoted by S-FAM, considers a saturated model to
incorporate the first d FPC scores such that they can explain over 99.9% of the total
variability in the smoothed sample curves. The value of d is 15, 16 or 17 in all simulation
replicates. We employ the function gam in the R packagemgcv to fit such a model in which
the arguments of additive components are ζ̂j , j = 1, . . . , d. Then p-values of all terms in the
model are available from the function summary.gam. Only the significant nonparametric
components (p-value < 0.05) are retained in computing the true positive (TP) rate and the
false positive (FP) rate. We also consider an alternative method for estimating Model (5.3)
by only using the two steps of group LASSO and adaptive group LASSO, which is denoted
by AGL-FAM.

Table 5.1 summarizes the comparison between these six methods in 1000 simulation
replicates. It suggests that compared with CSE-FAM, CSS-FAM has similar performance in
prediction when the sample size n = 100 and 500. Both of them outperform the other three
methods except FAM in prediction accuracy, and are slightly inferior compared with FAM,
which assumes the true components are known. These arguments are further demonstrated
in Figure 5.1. This suggests that the extra adaptive smoothing spline step can increase the
prediction accuracy when adaptive group LASSO yields a wiggly estimate. Concerning the
quality of estimating nonparametric components, CSS-FAM can rival CSE-FAM as well,
since both of them yield estimates which are reasonably close to the true nonparametric
components. In addition, the residual sum of squares (RSS) for each component estimated
using CSS-FAM is much smaller than that using AGL-FAM, indicating that smoothing
spline enables us to obtain a smoother and more accurate estimate of nonparametric com-
ponents. Therefore, we suggest employ CSS-FAM considering its good performance in both
estimating components and prediction of the response.
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Statistics n Methods
MARS FAM S-FAM CSE-FAM AGL-FAM CSS-FAM

MSPE 100 1.15 (.25) .92 (.17) 1.15 (.21) 1.00 (.19) 1.25 (0.23) 1.01 (0.20)
500 .78 (.09) .73 (.08) .77 (.09) .74 (.08) .80 (.09) .74 (.08)

RSS(f̂1) 100 - 2.6 (4.9) 3.6 (4.7) 2.6 (4.1) 13.4 (6.9) 3.8 (5.7)
(×10−2) 500 - 0.4 (0.5) 0.6 (0.6) 0.5 (0.4) 2.5 (0.9) 0.6 (0.4)
RSS(f̂2) 100 - 6.8 (10.5)11.2 (10.0) 18.1 (13.6) 12.8 (6.8) 8.1 (13.8)
(×10−2) 500 - 0.5 (0.7) 1.9 (1.3) 2.9 (1.5) 3.1 (1.4) 1.9 (1.3)
RSS(f̂4) 100 - 6.7 (10.3) 4.0 (3.3) 4.6 (5.7) 14.3 (7.2) 5.9 (11.2)
(×10−2) 500 - 0.7 (1.1) 0.7 (0.5) 0.5 (0.4) 2.3 (1.0) 0.5 (0.7)
TP% 100 99.1 (.05) - 98.2 (.08) 95.7 (.12) 94.7 (.17) 94.7 (.10)

500 100 (.00) - 100 (.0) 100 (.0) 100 (.0) 100 (.0)
FP% 100 20.4 (.12) - 13.7 (.11) 3.8 (.07) 0.9 (.03) 0.9 (.03)

500 29.0 (.14) - 8.9 (.08) 3.0 (.07) < 0.01 (.003)<0.01 (.003)
Time 100 .01 (.03) < 0.01 .39 (.21) 2.87 (.23) 0.48 (.04) 2.40 (.10)

(seconds)500 .02 (.06) < 0.01 2.88 (2.28)117.2 (5.91) 3.57 (0.27) 11.4 (2.77)

Table 5.1: Summary statistics for evaluating six methods. MSPE refers to the mean squared
prediction error on the test data; the residual sum of squares (RSS) for each estimated
component f̂j is defined as: RSS(f̂j) =

∫ 1
0 (f̂j(x)− fj(x))2dx; TP% and FP% stand for the

true positive and false positive rates in percentage, respectively. The point estimate for
each measure is averaged over 100 simulation replicates, and the corresponding estimated
standard error is given in parenthesis.

Table 5.1 also compares these methods from the perspective of variable selection, where
the true positive (TP) rate and the false positive (FP) rate are employed for assessment.
We find that although CSS-FAM and AGL-FAM perform slightly worse than the other
models in correctly selecting nonzero variables for a relatively small sample, this tiny gap
vanishes when the sample size increases. Furthermore, CSS-FAM and AGL-FAM dominate
the other methods in not selecting irrelevant components, regardless of how large or small
the sample size is. The other methods mistakenly select irrelevant variables substantially
more often than CSS-FAM or AGL-FAM, especially when the sample size is relatively small.
The computational time for each method is recorded in Table 5.1 as well. Obviously CSE-
FAM is the most computationally intensive method if a full basis is employed. This is a
serious issue in implementations particularly when the sample size is large, as mentioned
in Section 5.1. In comparison, the proposed method, CSS-FAM, can still be implemented
within around 11 seconds even when the training data set consists of 500 curves.
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Figure 5.1: Boxplots of prediction errors across the 1000 replications for different approaches.
The top figure is for n = 100 while the bottom is for n = 500.

Figure 5.2 illustrates the estimation details for one randomly selected simulation repli-
cate of n = 500. After estimating the scaled FPC score, we fit group LASSO on the training
data, as shown in (5.5). The top left panel in Figure 5.2 describes how the 5-fold cross-
validation error changes with λ1. The optimal λ1 is chosen to minimize the 5-fold cross-
validation error. Like the top left one, the top middle panel explains how to choose the
optimal λ2 for the adaptive group LASSO step in (5.6) based on 5-fold cross validation.
The top right panel shows how to choose the optimal smoothing parameter (λ3) by mini-
mizing GCV in the smoothing spline step. The bottom three panels in Figure 5.2 illustrates
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the effects of the extra smoothing spline step on the estimation of the nonparametric com-
ponents after using adaptive group LASSO. The adaptive group LASSO method may lead
to an excessively wiggly estimate for each nonzero nonparametric component. Smoothing
spline can control the roughness appropriately and hence yield a smoother and more accu-
rate estimate.
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Figure 5.2: The top three panels illustrate how the cross-validation errors and GCV change
with the tuning parameter λ1, λ2 and λ3 in group LASSO, adaptive group LASSO and
smoothing spline, respectively. The bottom three panels compare the estimated nonpara-
metric components and the true underlying nonparametric components (fk, k = 1, 2, 4).
Dashed lines (- - -) and dotted lines (· · · ) represent the estimated nonparametric components
with and without smoothing spline after the adaptive group LASSO fitting, respectively;
while solid lines (—) represent the true underlying nonparametric components.

5.5 Applications

In this section, we fit the sparse functional additive model (5.3) using our proposed method
(CSS-FAM), together with several conventional models considered in the simulation stud-
ies, to analyze two real data sets. Besides the models considered in the simulation, we fit a
multiple linear model to investigate whether a functional linear model can adequately char-
acterize the relationship between the scalar response and the functional predictor in these
two examples. The covariates in the multiple linear model are the first d FPC scores. We
choose the truncation level d in the same way as for Model (5.2). This multiple linear model
is actually a special case of Model (5.2): each additive component taking a linear form.
LASSO ([100]) is implemented when fitting the mulitple linear model in these two exam-
ples to obtain a more parsimonious model and reduce variability. This estimating method
is called LAF in this chapter. In the air pollution data, the trajectories of the functional
predictor for some subjects are sparsely observed. In contrast, in the Tecator data, the
functional predictor is regularly spaced and densely observed across all subjects. In each
example, we randomly divide the whole data set into a training set and a test set, and the
training set is used to fit each model while the test set is used for evaluation. All these
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models are compared with respect to the mean squared prediction errors calculated on the
test set.

5.5.1 Air Pollution Data

It is of great interest to study the association between air pollution and respiratory system
diseases ([112]). In this example we investigate this association using the sparse functional
additive model (5.3). More specifically, in this chapter we study the effect of fine particulate
matter (PM 2.5) on the rate of death caused by respiratory diseases (RESP).

The data consists of the median of the daily observations of PM 2.5 measured in micro-
grams per cubic meter (µg/m3) from 1987 to 2000 across 108 cities of the United States.
Some negative values appear due to detrending the time series in order to make them
centered around 0 (see Page 42 in [78]). This data is obtained from the NMMAPSdata
package ([79]), which was originally assembled for the national morbidity, mortality, and
air pollution study. In this chapter we focus on exploring the relationship between the daily
observations of PM 2.5 and the RESP death rate in the year 2000, since considerably fewer
missing values are present during that year. There are 7 cities that have no data for PM 2.5
in that year, so we remove these 7 cities from the data set. Among the 101 remaining cites,
we randomly select 80 cities as the training set. The test set consists of the trajectories of
PM 2.5 in the remaining 21 cities.

Six methods are used to predict the RESP death rate using the trajectories of PM
2.5. The first row of Table 5.2 displays the mean squared prediction errors (MSPEs) of
these six methods. Our proposed CSS-FAM method has the lowest prediction error among
the six methods. Compared with MARS and S-FAM, LAF achieves better performance in
prediction. A possible reason is that even though MARS and S-FAM models the relationship
between the functional predictor PM 2.5 and the response in a more flexible way than the
linear model, variabilities in these models are not well-controlled. LAF, however, reduces
the variability to a great extent by variable selection. Furthermore, since CSS-FAM and
CSE-FAM combine nonparametric modelling and selection of components, they can not
only provide a more adequate characterization of the relationship between the functional
predictor and the response than FLR, but also result in a model with less variability and
better prediction. In addition, the obvious distinction between CSS-FAM and AGL-FAM
suggests that the further smoothing of the estimate from the adaptive group LASSO method
via smoothing splines can improve the prediction accuracy.

We use 15 cubic B-spline basis functions to represent the additive components in Model
(5.3) when applying our proposed CSS-FAM method. In the group LASSO step, the optimal
value of the tuning parameter λ1 is 3 × 10−6, which is determined by a 5-fold cross vali-
dation. Another 5-fold cross-validation suggests that λ2 = 1.5× 10−10 is an optimal choice
of the tuning parameter in the adaptive LASSO step. As a result, 3 non-vanishing compo-
nents, {f̂5, f̂8, f̂11}, are selected. These raw estimates turn out to be excessively wiggly. We
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therefore refine these raw estimates via smoothing splines, in which the optimal choice of
the smoothing parameter λ3 determined by GCV is 1.2× 10−5.

5.5.2 Tecator Data

The Tecator data are recorded for 240 meat samples on a Tecator Infratec Food and Feed
Analyzer working in the wavelength range 850 - 1050 nm by the Near Infrared Transmis-
sion (NIT) principle. Each of them consists of a 100-channel spectrum of absorbance, and
the percentages of three components of the meat: moisture (water), fat and protein. The
spectrum records the negative base 10 logarithm of the transmittance measured by the
spectrometer. The percentage of three meat components are determined by analytic chem-
istry. As demonstrated by a large body of research (see [104], [38], [121]), the spectrum of
absorbance is highly predictive of the percentage of these three meat components. We aim
to study the effect of the spectral trajectories of the meat sample on the protein content by
using the sparse functional additive model (5.3).

The protein content, denoted by Y , is the response variable of primary interest; the
functional predictor X(t) denotes the spectrum of absorbance. FPCA is implemented to
estimate FPC scores and then to obtain the scaled FPC scores, denoted by ζ̂ = (ζ̂1, . . . , ζ̂d).
[121] suggested that the first d = 20 should be retained in order to achieve satisfac-
tory prediction accuracy, even though the first 10 FPCs explain more than 99.9% of to-
tal variability in the smoothed sample curves. To compare the performance of various
methods with respect to the prediction accuracy, the 240 meat samples are divided into
a training sample and a test sample. According to the dataset’s original description (http:

//lib.stat.cmu.edu/datasets/tecator), the 240 meat samples have been divided into
three parts: the training sample consists of the 172 meat samples, the following 43 meat
samples form the test samples and the last 25 meat samples are for extrapolation use and
should be ignored. We, however, randomly choose 187 meat samples to train the model; the
test set comprises the remaining 53 meat samples.

The comparison among the six models with respect to prediction accuracy is shown in
Table 5.2. Obviously CSS-FAM outperforms the other methods in terms of prediction. In
particular, the difference between CSS-FAM and LAF implies that a linear model cannot
adequately characterize the relationship between the protein content and the spectrum
of absorbance of the meat samples. CSS-FAM can nevertheless achieve a better trade-off
between flexibility and simplicity compared with other methods. Additionally, the poor
performance of AGL-CSS, especially when compared with CSS-FAM, suggests that the
extra smoothing spline step in the proposed algorithm considerably enhances prediction
accuracy.
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Methods
MARSLAFS-FAMCSE-FAMAGL-FAMCSS-FAM

Air Pollution (×10−8) 1.68 1.68 1.77 1.61 1.68 1.49
Tecator 0.99 0.66 0.56 0.55 0.92 0.51

Table 5.2: Mean squared prediction errors on the test data for six methods for the two data
sets.

In AGL-FAM, 10 cubic B-spline basis functions are employed to represent the nonpara-
metric components in the sparse functional additive model (5.3). A 5-fold cross validation
suggests that λ1 = 0.002 is an optimal choice of the penalty parameter in the group LASSO
step and λ2 = 0.011 minimizes the 5-fold cross-validation error in the adaptive LASSO step.
As a result, 14 non-vanishing components, {f̂1, . . . , f̂9, f̂11, f̂16, f̂17, f̂19, f̂20}, are selected
from the 20 components. This finding is slightly inconsistent with the conclusion drawn in
[121], where they argued that {f̂1, . . . , f̂8, f̂10, f̂13, f̂16, f̂17} are non-vanishing components.
To refine these estimated components, smoothing spline is employed and the optimal choice
of smoothing parameter, λ3 = 0.001, is chosen to minimize the GCV measure.

5.6 Conclusions and Discussion

Compared with traditional FLR, the sparse functional additive model (5.3) proposed in this
chapter provides a more flexible description of the relationship between a scalar response
and a functional predictor. To achieve sparseness, we employ the group LASSO penalty
to select and estimate nonzero components in the nonparametric additive model, thereby
reducing variability and enhancing interpretability.

The estimation procedure consists of several important techniques. FPCA is employed to
estimate FPC scores and eigenvalues of the covariance function of the functional predictor.
Then we use B-spline basis functions to represent the nonparametric additive components
in the sparse functional additive model (5.3). The use of the group LASSO penalty enables
us to achieve the goal of selecting and estimating nonzero components. To obtain a better
estimate of the coefficient vectors, we adopt the idea of the adaptive group LASSO to pro-
vide different shrinkages for different components. Considering the fact that the estimated
components given by the adaptive LASSO may not be smooth, since a large number of
B-spline basis functions are used to represent them, we propose using smoothing splines
to further refine the estimated nonzero components obtained from the group LASSO step.
Simulation studies demonstrate that this smoothing step can improve both estimation of
the additive components and prediction of the response.

In contrast to other methods, we theoretically justify that our proposed estimator enjoys
both selection consistency and estimation consistency. These consistency results are also
demonstrated by simulation studies. Two real data applications show that the proposed
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model together with the estimating method provides an appealing tool in predicting a
scalar response from a functional predictor, compared with other conventional methods.

Even though this chapter discusses only regressing a scalar response on a functional
covariate, the methodology can be extended to accommodate other scenarios. For example,
this framework can be extended to explore the relationship between a scalar response, whose
distribution belongs to the exponential family, and a functional predictor. In addition, in
this work the truncation level d, such that the first d FPCs can explain over 99.9% of
total variability in the functional predictor, is assumed to be fixed. From the theoretical
perspective, it is worthwhile to investigate the properties of the corresponding estimator
when d is allowed to increase with the sample size in future work. Lastly, compared with
the result of the application to the meat sample in last chapter, we find that the prediction
accuracy becomes worse when the fat content is ignored in the prediction of the protein
content. This implies that we should extend the current framework to allow for scalar
covariates which might be predictive of a scalar response. As to the computational aspect, we
can borrow the idea of iteratively updating to address the issue of interdependence between
the estimation of the nonparametric part and that of the parametric part. Issues such as
whether the algorithm can converge and multiple minimum demand further investigation.

5.7 Appendix

5.7.1 Appendix A: Estimation of FPC scores

When the functional predictor Xi(t) has sparse observations, we employ the principal com-
ponent analysis by conditional expectation (PACE) algorithm proposed by [116] to obtain
estimated FPC scores denoted by ξ̂ij , j = 1, . . . , d, i = 1, . . . , n. PACE first estimates the
mean function of X(t) via local linear regression and the corresponding estimator is de-
noted by m̂(t). Then the raw estimate of covariance evaluated at (tij , til), Gi(tij , tij) =
(Wij − m̂(tij))(Wil − m̂(til)) is pooled. To account for the fact that Cov (Wij ,Wil) =
Cov (Xi(tij), Xi(til)) + δ(tij = til) where δ(t = s) = 1 if t = s and 0 otherwise, a lo-
cal linear regression is employed to smooth the non-diagonal estimates, {Gi(tij , tij), tij 6=
til, i = 1, . . . , n}. Let Ĝ(s, t) denote the smoothed covariance function and let λ̂j ’s and
φ̂j(t)’s denote the corresponding eigenvalues and eigenfunctions, respectively. They satisfy∫
I Ĝ(s, t)φ̂j(t)dt = λ̂jφ̂j(s). The estimated FPC scores, ξ̂ij ’s, are estimated via conditional
expectation.

When the functional predictor Xi(t) has dense observations, we smooth each trajec-
tory Xi(t) via the local linear regression rather than smoothing the mean function, and
denote the smoothed trajectory by X̂i(t), i = 1, . . . , n. The estimated mean function and
covariance function are then given by m̂(t) = 1

n

∑n
i=1X̂i(t) and Ĝ(s, t) = 1

n

∑n
i=1(X̂i(s) −

m̂(s))(X̂i(t)− m̂(t)), respectively. The estimated eigenvalues λ̂j and eigenfunctions φ̂j(t) of
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Ĝ satisfy
∫
I Ĝ(s, t)φ̂j(t)dt = λ̂jφ̂j(s) as well. Unlike PACE, the FPC scores in the scenario

are calculated as ξ̂ij =
∫
I(X̂i(s)− m̂(s))φ̂j(s)ds, j = 1, . . . , d, i = 1, . . . , n.

5.7.2 Appendix B: Proofs

We follow the main ideas of [48] to prove Theorems 1-3, but great effort needs to be taken
to tackle the difficulties caused by using the estimated scaled FPC scores (rather than
the true scaled FPC scores), to estimate the unknown parameters and functions. Before
proving Proposition 1, we first present the following result which establishes consistency of
the estimated scaled FPC scores.

Lemma 7 Suppose that Assumptions A and B1 hold. We have

1
n

n∑
i=1


d∑
j=1
|ζ̂ij − ζij |


2

= Op(n−1).

Proof: See Lemma 2 in [121]. �

B.1. Proof of Proposition 1:
For any function f on [0, 1], let ||f ||∞ = supx∈[0,1] |f(x)|. For f ∈ F and E {f(ζj)} =
0, there exists f ′j ∈ Sn, such that ||f − f ′j ||∞ = O(m−ρn ); see [22] or Lemma 5 of [98].
Let fnj = f ′j − n−1∑n

i=1f
′
j(ζ̂ij). Then fnj ∈ S 0

nj and we next prove that fnj satisfies
1
n

∑n
i=1{fnj(ζ̂ij) − f(ζ̂ij)}2 = Op(m−2ρ

n + n−1). Since (x + y)2 ≤ 2(x2 + y2) ∀x, y ∈ R, we
have

1
n

n∑
i=1
{fnj(ζ̂ij)− f(ζ̂ij)}2 = 1

n

n∑
i=1
{fnj(ζ̂ij)− f ′j(ζ̂ij) + f ′j(ζ̂ij)− f(ζ̂ij)}2

≤ 2n−1
n∑
i=1
{fnj(ζ̂ij)− f ′j(ζ̂ij)}2 + {f ′j(ζ̂ij)− f(ζ̂ij)}2

= 2
{

1
n

n∑
i=1
f ′j(ζ̂ij)

}2

+O(m−2ρ
n )

= 2
[

1
n

n∑
i=1
{f ′j(ζ̂ij)− f(ζ̂ij) + f(ζ̂ij)− f(ζij) + f(ζij)}

]2

+O(m−2ρ
n )

≤ 6E1 + 6E2 + 6E3 +O(m−2ρ
n ), (5.8)

where E1 =
[∑n

i=1{f ′j(ζ̂ij)− f(ζ̂ij)}/n
]2
, E2 =

[∑n
i=1{f(ζ̂ij)− f(ζij)}/n

]2
and

E3 = {
∑n
i=1f(ζij)/n}2. Obviously, E1 = O(m−2ρ

n ) and E3 = Op(n−1) by Chebyshev’s
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inequality. As for E2, there are two different cases. (i) If r = 0, then

E2 ≤
{
n−1

n∑
i=1
|f(ζ̂ij)− f(ζij)|

}2

≤
{
Ln−1

n∑
i=1
|ζ̂ij − ζij |ν

}2

≤

Ln−1
{

n∑
i=1
|ζ̂ij − ζij |2

}ν/2

n1−ν/2

2

= Op(n−ν).

The second inequality holds due to f ∈ F and the third inequality is obtained by Hölder’s
inequality. In this case 0.5 < ρ = ν ≤ 1, we have E2 = Op(n−ν) = Op(n−ρ) = Op(m−2ρ

n ).
Therefore,

∑n
i=1{fnj(ζ̂ij)−f(ζ̂ij)}2/n = Op(m−2ρ

n ) according to (5.8). (ii) In the second case,
r ≥ 1, so f is continuously differentiable over [0, 1], which implies that the first derivative
of f is bounded some positive constant M . By Lemma 7,

E2 ≤
{
n−1

n∑
i=1
|f(ζ̂ij)− f(ζij)|

}2

≤M2n−2
{

n∑
i=1
|ζ̂ij − ζij |

}2

≤M2n−1
{

n∑
i=1
|ζ̂ij − ζij |2

}
= Op(n−1).

It follows that
∑n
i=1{fnj(ζ̂ij)− f(ζ̂ij)}2/n = Op(m−2ρ

n +n−1) by (5.8). Hence in both cases,∑n
i=1{fnj(ζ̂ij)− f(ζ̂ij)}2/n = Op(m−2ρ

n + n−1).

B.2. Some useful lemmas:
To establish estimation and selection consistency of the proposed estimator, we need the
following lemmas.

Lemma 8 Let Tjk = n−
1
2m

1
2
n
∑n
i=1ψk(ζ̂ij)εi, j = 1, . . . , d, k = 1, . . . ,mn and

Tn = max1≤j≤d,1≤k≤mn |Tjk|. Under Assumptions A, B and C2 in Section 5.3, then Tn =
Op(
√

logmn), if mn = o(n1/4).

Proof: Let Ŝ2
njk =

∑n
i=1ψ

2
k(ζ̂ij) and S2

njk =
∑n
i=1ψ

2
k(ζij). Conditional on ζ̂ij ’s, then Tjk’s are

sub-gaussian. Let Ŝ2
n = max1≤j≤d,1≤k≤mn Ŝ

2
njk and S2

n = max1≤j≤d,1≤k≤mn S
2
njk. Based on

maximal inequalities on sub-gaussian random variables ([103]), we have

E {Tn|(ζ̂ij , i = 1, . . . , n, j = 1, . . . , d)} ≤ C1n
− 1

2m
1
2
n

√
logmnŜn
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for some constant C1 > 0. It follows

Tn = Op(n−
1
2m

1
2
n

√
logmnŜn). (5.9)

Now we study the properties of Ŝn, from which the order of Tn is immediately available.
Since Ŝ2

njk = (Ŝ2
njk − S2

njk) + S2
njk, Ŝ2

n ≤ S2
n + max1≤j≤d,1≤k≤mn(Ŝ2

njk − S2
njk). On the one

hand,

E (S2
n) ≤

√
2C2m

−1
n n logmn + C2 logmn + C2nm

−1
n

holds for a sufficiently large constant C2 according to the proof of Lemma 2 in [48]. Since
mn = O(nα) with α < 0.5,

S2
n = Op(nm−1

n ). (5.10)

On the other hand, from (5) of [82], we have ||dBk(x)
dx ||∞ = O(mn) when the order of the

B-spline basis functions, l, satisfies l ≥ 2 and ||Bk||∞ ≤ 1. Both of them hold uniformly for
1 ≤ k ≤ mn. It follows that

Ŝ2
njk − S2

njk =
n∑
i=1

{
Bk(ζ̂ij)− n−1

n∑
i=1
Bk(ζ̂ij)

}2

−
{
Bk(ζij)− n−1

n∑
i=1
Bk(ζij)

}2

=
n∑
i=1
B2
k(ζ̂ij)−B2

k(ζij) + n−1
{

n∑
i=1
Bk(ζij)

}2

− n−1
{

n∑
i=1
Bk(ζ̂ij)

}2

=
n∑
i=1
{Bk(ζ̂ij) +Bk(ζij)}{Bk(ζ̂ij)−Bk(ζij)}

+ n−1
[
n∑
i=1
{Bk(ζ̂ij) +Bk(ζij)}

] [
n∑
i=1
{Bk(ζ̂ij)−Bk(ζij)}

]

≤ 4
n∑
i=1
|Bk(ζ̂ij)−Bk(ζij)|

= O

(
mn

n∑
i=1
|ζ̂ij − ζij |

)

= O

mn

√
n

√√√√ n∑
i=1
|ζ̂ij − ζij |2


= Op(mn

√
n) (5.11)

uniformly over 1 ≤ j ≤ d and 1 ≤ k ≤ mn. The first inequality is obtained using the Cauchy-
Schwarz inequality and the last equation is a direct application of Lemma 7. Combining
(5.10) and (5.11), we have Ŝ2

n = Op(mn
√
n+nm−1

n ). Ŝn = Op(n
1
2m
− 1

2
n ) if mn = o(n1/4). As

a result, Tn = Op(
√

logmn). �
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Given a matrix Σ, let Λmin(Σ) and Λmax(Σ) denote the smallest and largest eigenvalues
of Σ, respectively. Let Z̃ij = {ψ1(ζij), . . . , ψmn(ζij)}T and Z̃j = (Z̃1j , . . . , Z̃nj)T . For a
subset of {1, . . . , d}, A, QA = ZTAZA

n ∈ R|A|mn×|A|mn and Q̃A = Z̃
T
AZ̃A
n ∈ R|A|mn×|A|mn ,

where ZA (or Z̃A) represents the matrix by stacking Zj (or Z̃j), j ∈ A by column. For any
x = (x1, . . . , xp)T ∈ Rp, ||x||2 =

√∑p
i=1 x

2
i .

Lemma 9 Suppose mn = o(n1/6). Under Assumptions A, B and C3 in Section 5.3, then
given a nonempty subset of {1, . . . , d}, A, with probability converging to 1,

C3m
−1
n ≤ Λmin(QA) ≤ Λmax(QA) ≤ C4m

−1
n

for some positive constants C3 and C4.

Proof: We first lay out some facts about matrix theory, which are useful in determining the
magnitude of eigenvalues. For an m× n matrix G,

||G||2 = sup
x∈Rn

||Gx||2
||x||2

and ||G||1 = max
1≤j≤n

n∑
i=1
|gij |,

where gij is the (i, j)th entry of G. For a symmetric matrix G, Λmax(G) ≤ ||G||2. The
following inequalities will be used later to prove the lemma. Let G1 and G2 be two n × n
symmetric matrices.

1. Weyl’s inequality ([108]):

Λmin(G1)− Λmax(G2 −G1) ≤ Λmin(G2),

Λmax(G2) ≤ Λmax(G1) + Λmax(G2 −G1).

Thus |Λmin(G1)− Λmin(G2) ≤ ||G1 −G2||2 and |Λmax(G1)− Λmax(G2)|
≤ ||G1 −G2||2.

2. The Gershgorin circle theorem ([37]):

||G1 −G2||2 ≤ ||G1 −G2||1.

We are ready to prove Lemma 9 now. Denote γ(j1,j2)
k1k2

=
∑n
i=1{ψk1(ζ̂ij1)

ψk2(ζ̂ij2)− ψk1(ζij1)ψk2(ζij2)}/n, 1 ≤ k1, k2 ≤ mn, 1 ≤ j1, j2 ≤ d. Based on the definition
of ψk’s, it’s obvious that uniformly over 1 ≤ k ≤ mn, ||dψk(x)

dx ||∞ = O(mn) and ||ψk||∞ ≤
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||Bk||∞ + |n−1∑n
i=1Bk(ζ̂ij)| ≤ 2. Then according to Lemma 7, we have

|γ(j1,j2)
k1k2

| = 1
n
|
n∑
i=1
{ψk1(ζ̂ij1)ψk2(ζ̂ij2)− ψk1(ζ̂ij1)ψk2(ζij2)

+ ψk1(ζ̂ij1)ψk2(ζij2)− ψk1(ζij1)ψk2(ζij2)}|

= O(mnn
−1)

n∑
i=1

(|ζ̂ij1 − ζij1 |+ |ζ̂ij2 − ζij2 |)

= O(mnn
− 1

2 )

√√√√ n∑
i=1

(|ζ̂ij1 − ζij1 |+ |ζ̂ij2 − ζij2 |)2

= Op(mnn
− 1

2 ).

The third equation follows directly from the Cauchy-Schwarz inequality. Note that γ(j1,j2)
k1k2

=
Op(mnn

− 1
2 ) holds uniformly over 1 ≤ j1, j2 ≤ d and 1 ≤ k1, k2 ≤ mn. For a nonempty

subset of {1, . . . , d}, A, without loss of generality, we can assume that A = {1, . . . , q}, where
q ≤ d. Then we have

|Λmin(QA)− Λmin(Q̃A)| ≤ ||QA − Q̃A||2
≤ ||QA − Q̃A||1

= Op

 q∑
j1=1

mn∑
k1=1
|γ(j1,j2)
k1k2

|


= Op(m2

nn
− 1

2 ).

This leads to |Λmin(QA)− Λmin(Q̃A)| = op(m−1
n ) if mn = o(n1/6).

On the other hand, by Lemma 3 of [48], there exists positive constants C5 and C6 such
that C5m

−1
n ≤ Λmin(Q̃A) ≤ Λmax(Q̃A) ≤ C6m

−1
n with probability converging to 1. There-

fore, we can find a positive constant C3, satisfying Λmin(QA) ≥ C3m
−1
n with probability

converging to 1. Similarly, we can prove that, with probability tending to 1, there exists a
constant C4 such that Λmax(QA) ≤ C4m

−1
n . �

B.3. Proof of Theorem 1:
Since β̃ = (β̃T1 , . . . , β̃

T
d )T minimizes (2.5), it follows that

(y −Zβ̃)T (y −Zβ̃) + λ1

d∑
j=1
||β̃j ||2 ≤ (y −Zβ)T (y −Zβ) + λ1

d∑
j=1
||βj ||2. (5.12)

For any set A ⊂ {1, . . . , d}, βA denotes the long vector obtained by stacking vectors βj , j ∈
A. Let A2 = A1 ∪ Ã1. Then (5.12) can be written as

||(y −ZA2β̃A2)||22 + λ1
∑
j∈A2

||β̃j ||2 ≤ ||(y −ZA2βA2)||22 + λ1
∑
j∈A2

||βj ||2. (5.13)
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Let un = y−ZA2βA2 and vn = ZA2(β̃A2 −βA2). After some simple algebra, we can write
(5.13) as vTnvn − 2unvn ≤ λ1

∑
j∈A2(||βj ||2 − ||β̃j ||). Note that

∑
j∈A2

(||βj ||2 − ||β̃j ||2) ≤
∑
j∈A1

(||βj ||2 − ||β̃j ||2)

≤
∑
j∈A1

||βj − β̃j ||2

≤
√
|A1|||βA1 − β̃A1 ||2

≤
√
|A1|||βA2 − β̃A2 ||2.

Hence (5.13) can be simplified as

vTnvn − 2uTnvn ≤ λ1

√
|A1|||βA2 − β̃A2 ||2. (5.14)

Let u?n = ZA2(ZT
A2ZA2)−1ZT

A2un. In other words, u?n represents the projection of un onto
the space spanned by the columns of ZA2 . The matrix inverse of ZT

A2ZA2 exists due to
Lemma 9, which indicates that the Λmin(ZT

A2ZA2) is positive with probability approaching
to 1. Applying the Cauchy-Schwarz inequality, we have

2|uTnvn| = 2|(u?n)Tvn| ≤ 2||u?n||2||vn||2 ≤ 2||u?n||22 + 1
2 ||vn||

2
2, (5.15)

where the last inequality is from the fact that ab ≤ a2 + b2/4 for ∀a, b ∈ R. Plugging (5.15)
into (5.14), we have

vTnvn ≤ 4||u?n||22 + 2λ1

√
|A1|||βA2 − β̃A2 ||2. (5.16)

By Lemma 9, vTnvn ≥ nC3m
−1
n ||βA2−β̃A2 ||

2
2 for some positive constant C3, with probability

approaching 1. Since 2ab ≤ a2 + b2 ∀a, b ∈ R, it can be derived from (5.16) that with
probability approaching 1,

nC3m
−1
n ||βA2 − β̃A2 ||

2
2 ≤ 4||u?n||22 + 2λ1

√
|A1|||βA2 − β̃A2 ||2

≤ 4||u?n||22 + (2λ1
√
|A1|)2

2nC3m
−1
n

+ n

2C3m
−1
n ||βA2 − β̃A2 ||

2
2.

Therefore,

||βA2 − β̃A2 ||
2
2 ≤

8||u?n||22
nC3m

−1
n

+ 4λ2
1|A1|

n2C2
3m
−2
n
, (5.17)

with probability approaching 1.
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Next we study the magnitude of ||u?n||22. Denote the ith component in un as ui, i =
1, . . . , n. Then ui can be expressed as

ui = yi − ȳ −
∑
j∈A2

Zijβj

= yi − a−
d∑
j=1

fj(ζij) + a− ȳ +
d∑
j=1

fj(ζij)−
d∑
j=1

fj(ζ̂ij)

+
d∑
j=1

fj(ζ̂ij)−
∑
j∈A2

Zijβj

= E1i + E2i + E3i + E4i,

where E1i = εi, E2i = a−ȳ, E3i =
∑d
j=1{fj(ζij)−fj(ζ̂ij)} and E4i =

∑
j∈A2{fj(ζ̂ij)−Zijβj}.

Let Ej = (Ej1, . . . , Ejn)T , 1 ≤ j ≤ 4 and PA2 = ZA2(ZT
A2ZA2)−1ZT

A2 . Then we have

||u?n||2 = ||PA2un||22 ≤ 4||ε?||22 + 4||E2||22 + 4||E3||22 + 4||E4||22, (5.18)

where ε? is the projection of E1 onto the space spanned by columns in ZA2 . Obviously
||E2||22 = Op(1) and ||E4||22 = Op(1 + nm−2ρ

n ) by Proposition 1. For ||E3||22, there are two
different cases. (i) If r = 0, by Hölder’s inequality, it follows that

||E3||22 =
n∑
i=1

 d∑
j=1

{
fj(ζij)− fj(ζ̂ij)

}2

≤ L2
n∑
i=1

 d∑
j=1
|ζij − ζ̂ij |ρ

2

≤ L2d2−2ρ
n∑
i=1

 d∑
j=1
|ζij − ζ̂ij |

2ρ

≤ L2d2−2ρn1−ρ


n∑
i=1

 d∑
j=1
|ζij − ζ̂ij |

2

ρ

= Op(n1−ρ). (5.19)

The last equation is based on Lemma 7. (ii) If r ≥ 1, then fj ’s are continuously differentiable
on [0,1]. Then there exists a positive constantM such that max1≤j≤d |fj(s)−fj(t)| ≤M |s−t|
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∀s, t ∈ [0, 1]. Therefore,

||E3||22 =
n∑
i=1

 d∑
j=1
{fj(ζij)− fj(ζ̂ij)}

2

≤M2
n∑
i=1

 d∑
j=1
|ζij − ζ̂ij |

2

= Op(1), (5.20)

where the last equation is obtained from Lemma 7. For ||ε?||22, we have
||ε?||22 ≤ ||(ZT

A2ZA2)−
1
2ZT

A2ε||
2
2 ≤ mn

C3n
||ZT

A2ε||
2
2 with probability approaching 1. By Lemma

8, we have

max
A:|A|≤d

||ZT
Aε||22 = max

A:|A|≤d

∑
j∈A
||ZT

j ε||22

≤ dmn max
1≤j≤d,1≤k≤mn

∣∣∣∣∣
n∑
i=1
ψk(ζ̂ij)εi

∣∣∣∣∣
2

= Op(n logmn).

Hence,
||ε?||22 = Op(mn logmn). (5.21)

In both cases (r = 0 or r ≥ 1), combining (5.17), (5.18), (5.19) (or (5.20)) and (5.21),
we have

||βA2 − β̃A2 ||
2
2 = Op

(
m2
n logmn

n

)
+Op

(
mn

n
+ 1
m2ρ−1
n

)
+Op

(
λ2

1m
2
n

n2

)
. (5.22)

This completes the proof of (ii) of Theorem 1.
Now we go back to prove part (i). For j ∈ A1, ||fj ||2 ≥ cf under Assumption C1. If

βj = (βj1, . . . , βjmn), then from the proof of Proposition 1, we have ||fj − f ′j ||2 = O(m−ρn ),
where f ′j(x) =

∑mn
k=1Bk(x)βjk. Therefore, ||f ′j ||2 ≥ ||fj ||2 − ||fj − f ′j ||2 by the triangle

inequality, which leads to ||f ′j ||2 ≥ 0.5cf when n is sufficiently large. On the other hand,
based on (12) of [99], C7m

−1
n ||βj ||22 ≤ ||f ′j ||22 ≤ C8m

−1
n ||βj ||22 for some positive constants

C7 and C8. Combining the above facts, we have ||βj ||22 ≥ C−1
8 mn||f ′j ||22 ≥ 0.25C−1

8 mnc
2
f ,

j ∈ A1. If β̃j = 0 for some j ∈ A1, then for such j, we have ||βj ||22 = ||βj − β̃j ||22 ≥
0.25C−1

8 mnc
2
f . However, by part (ii), we have ||βj − β̃j ||22 = op(1) since m2

n log(mn)/n→ 0
and (λ2

1m
2
n)/n2 → 0. Therefore, ||β̃j ||2 > 0 ∀j ∈ A1 with probability approaching 1. This

completes the proof of part (i). �

B.4. Proof of Theorem 2:
Part (i) is immediately available from the definition of f̃j and β̃j and part (i) of Theorem 1.
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Based on properties of B-spline functions ([22]), there exists f ′j ∈ Sn such that ||fj−f ′j ||∞ =
O(m−ρn ). Let fnj(x) = f ′j(x) − n−1∑n

i=1f
′
j(ζ̂ij), As shown in Proposition 1, fnj(x) satisfies

∀x ∈ [0, 1]

|fnj(x)− f ′j(x)|2 =
∣∣∣∣∣n−1

n∑
i=1
f ′j(ζ̂ij)

∣∣∣∣∣
2

= Op(m−2ρ
n + n−1).

Then it follows that
||fj − fnj ||22 = Op(m−2ρ

n + n−1). (5.23)

Let βj = (βj1, . . . , βjmn) and β̃j = (β̃j1, . . . , β̃jmn). Then fnj(x) =
∑mn
k=1 βjkBk(x) −

n−1∑n
i=1

∑mn
k=1 βjkBk(ζ̂ij) and f̃j(x) =

∑mn
k=1 β̃jkBk(x) − n−1∑n

i=1
∑mn
k=1 β̃jkBk(ζ̂ij). There-

fore,

||fnj − f̃j ||22 =
∫ 1

0
{fnj(x)− f̃j(x)}2dx

≤ 2E1 + 2E2, (5.24)

where E1 =
∫ 1

0

{∑mn
k=1(βjk − β̃jk)Bk(x)

}2
dx and E2 =

{∑mn
k=1(βjk − β̃jk)n−1∑n

i=1Bk(ζ̂ij)
}2

.
By (12) of [99], we have

E1 ≤ C9m
−1
n ||βj − β̃j ||22 (5.25)

for some positive constant C9. The second term E2 can be written as

E2 =
[
mn∑
k=1

(βjk − β̃jk)n−1
n∑
i=1
{Bk(ζ̂ij)−Bk(ζij)}+

mn∑
k=1

(βjk − β̃jk)n−1
n∑
i=1
Bk(ζij)

]2

≤ 2E3 + 2E4, (5.26)

where E3 =
[∑mn

k=1(βjk − β̃jk)n−1∑n
i=1{Bk(ζ̂ij)−Bk(ζij)}

]2
and

E4 =
{∑mn

k=1(βjk − β̃jk)n−1∑n
i=1Bk(ζij)

}2
. Applying the Cauchy-Schwarz inequality, we

have

E3 ≤ ||βj − β̃j ||22
mn∑
k=1

{
n−1

n∑
i=1
|Bk(ζ̂ij)−Bk(ζij)|

}2

≤ O(m3
n)n−2

(
n∑
i=1
|ζ̂ij − ζij |

)2

||βj − β̃j ||22

≤ O(m3
n)n−1

(
n∑
i=1
|ζ̂ij − ζij |2

)
||βj − β̃j ||22

= Op(m−1
n )||βj − β̃j ||22, (5.27)

where the second inequality holds since the derivative of B-spline basis functions satisfies
||B′k||∞ = O(mn) uniformly over 1 ≤ k ≤ mn, and the third inequality follows from Lemma
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7. Next we deal with E4. Let h(x) =
∑mn
k=1(βjk − β̃jk)Bk(x) for x ∈ [0, 1]. Thus h(x) ∈ Sn.

As shown in Lemma 1 of [48], h satisfies n−1∑n
i=1h(ζij)− Eh(ζij) = Op(n−

1
2m

1
2
n ). Hence

E4 =
{
n−1

n∑
i=1
h(ζij)

}2

=
[
n−1

n∑
i=1
{h(ζij)− Eh(ζij)}+ Eh(ζij)

]2

≤ Op(n−1mn) + 2{Eh(ζij)}2

= Op(n−1mn) + 2
{∫ 1

0
h(x)gj(x)dx

}2

≤ Op(n−1mn) + 2C2
2

∫ 1

0
h2(x)dx

≤ Op(n−1mn) + 2C2
2C9m

−1
n ||βj − β̃j ||22, (5.28)

where the second inequality is by the Cauchy-Schwarz inequality and the last one is based
on (5.25). Combining (5.24)- (5.28), we have

||fnj − f̃j ||22 = Op(m−1
n ||βj − β̃j ||22 + n−1mn). (5.29)

Since ||f̃j − fj ||22 ≤ 2||fj − fnj ||22 + 2||f̃j − fnj ||22, (5.23) and (5.29) lead to

||f̃j − fj ||22 = Op(m−2ρ
n + n−1) +Op(m−1

n ||βj − β̃j ||22 + n−1mn).

Additionally, by part (ii) of Theorem 1, it follows that for j ∈ A1 ∪ Ã1,

||f̃j − fj ||22 = Op

(
mn logmn

n

)
+Op

(
mn

n
+ 1
m2ρ
n

)
+Op

(
mnλ

2
1

n2 + mn

n

)
.

This completes the proof of part (ii). �

The proof of Theorem 3 follows the proof of Corollary 2 in [48] with a similar change
made to prove the part (ii) of Theorem 1, and is omitted here.
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Chapter 6

Functional Single-index Quantile
Regression Models

6.1 Introduction

With the development of technology, data of complex structures like growth curves, medical
images and spectral data are becoming more and more popular in practice. Functional data
is one important type of them. Methods for dealing with functional data have been rapidly
developed and applied in fields such as agriculture, medical research and astronomy. Among
them, using functional covariates to predict a scalar response plays an important role. In
this chapter, we are interested in prediction of the maximal concentration of an atmospheric
particulate matter called PM10 given the intraday PM10 profile of last day. More details
about the data can be found in Section 6.4.

In recent years regression models with functional covariates and a scalar response has
attracted substantial attention. They are referred to as scalar-on-function regression mod-
els. One can refer to [89] for more details. The most tractable one within the family is the
functional linear model, which assumes that a scalar response depends linearly on a func-
tional covariate in the sense of linear operators. But this linear assumption is susceptible
to model misspecification, and thus applications of this model are restricted in practice.
This concern has been raised by numerous researchers (see [13]; [71]; [72], etc.). Fully non-
parametric models associated with a functional Nadayara-Watson estimator ([34]) and a
functional local linear estimator ([32]) were proposed to address this issue. One concern of
the fully nonparametric models is that it is onerous to interpret the effect of a functional
covariate after fitting. Moreover, [13] argued that their convergence rates are quite slow and
thus seeking methods that make better use of data structures is indispensable from both
theoretical and practical viewpoints.

A critical idea for progress in this direction is to link a response with a linear functional
of a functional covariate with some functions; it is in a similar spirit to the generalized linear
model. [51] assumed that the link function was known while [70] considered a monotone but
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unkonwn link function. However, as pointed out by [13], these link-function models are lack
of adequate flexibility due to restrictive assumptions imposed on the link function. They,
therefore, proposed extensions of these models to allow for nonparametric adaptive link
functions. A faster convergence rate than that of fully nonparametric models was established
in [13]. Moreover, they found that the proposed adaptive link-function model enjoyed better
prediction accuracy than the models with restricted link functions in a real example.

The models introduced above mainly focus on the conditional mean structure. Thus
they may not be effective tools if the conditional distribution of a response given a func-
tional covariate is of primary interest. Conditional quantile regression models, however, have
been justified to be useful in this regard. For instance, [16] considered using a monotone
link function to connect the conditional distribution with a linear functional of a functional
covariate; this is an indirect way to model the conditional quantile function ([53]). The
proposed model was applied to a growth data set to obtain detailed knowledge of the con-
ditional distribution of girls’ heights at age 18 given their growth history between ages 1
and 12. Several methods, though not many, were proposed in literature to directly model
the conditional quantile function. [53] introduced a functional principal component based
approach to fit a functional linear quantile regression model, which in his opinion is a bench-
mark model in estimating conditional quantiles given functional covariates. In contrast, this
model was fitted with smoothing splines in [12]. [33] modelled the conditional quantile in a
fully nonparametric manner.

In light of the issues of linear models and full nonparametric models in estimation of the
conditional mean function, we aim to seek appropriate models when the target becomes the
conditional quantile function. Since the link-function regression for modeling the conditional
mean function achieves good performances in both theories and applications, as shown in
[13], we propose to connect the conditional quantile function with a linear functional of a
functional covariate using a nonparametric adaptive link function. To our best knowledge,
this is the first nonparametric link-function based framework to directly model the condi-
tional quantile function when a functional covariate is given. To fit this model, we adopt a
generalized profiling method, where two nested levels of optimization with different target
functions are implemented to estimate the linear functional and the link function, respec-
tively. Simulation studies show that the proposed estimator, compared with its counterpart
of the conditional mean function, is more robust to extremely large outcomes. Furthermore,
when applying these two models to predict the maximal value of PM10 concentrations in
the real example, we find that the estimator of the conditional median outperforms its
counterpart in prediction accuracy.

The remainder of the chapter is organized as follows. In Section 6.2 we introduce the
functional single index quantile regression model and the generalized profiling method to
fit the model. Simulation results for evaluating finite sample performances of the proposed
estimator are reported in Section 6.3. We apply the new model to the PM10 data and
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compare its prediction accuracy with that of the functional single index mean regression
model proposed by [13] in Section 6.4. Section 6.5 concludes the chapter.

6.2 Model and Estimation

6.2.1 Model

Suppose that (X1, Y1), (X2, Y2), . . . (Xn, Yn) are identical and independent copies of (X,Y ),
where the covariate X is a random function defined on a compact interval I = [0, T ] and the
response Y is a scalar variable. We further postulate that X belongs to L2[0, T ], a collection
of all square integrable functions defined over [0, T ]. A general model for characterizing the
relationship between X and Y can be expressed as follows:

Y = m(X) + error, (6.1)

where m is a functional defined on L2[0, T ]. In the literature of Scalar-on-Function regres-
sion, the most commonly used model assumes that m is linear. In other words, m(X) =
a +

∫
I X(t)β(t)dt for some a ∈ R and β ∈ L2[0, T ]. As with multiple linear models, func-

tional linear models may suffer from inadequate fit and misspecification. These drawbacks
of the linear assumption restrict its applications in practice.

Numerous approaches have been proposed to address the issues of functional linear
models. For instance, [34] considered a functional Nadayara-Watson estimator of m and
[32] proposed a functional local linear estimator. These fully nonparametric models and
estimators can avoid model misspecifications and thus can be widely applied to predict the
responses using the functional covariate. However, on the one hand, an interpretation of
such models is onerous in practice. On the other hand, their performances in prediction are
not satisfactory since convergence rates of them are slow ([13]). To enhance interpretability
and prediction accuracy of nonparametric models, [1] and [13] proposed functional single
index models:

Y = f

{∫
I
X(t)β(t)dt

}
+ error,

where f is an unknown link function and β is an unknown index function satisfying∫
I β

2
τ (t)dt <∞.
The conditional mean structure of Y is the target of the models mentioned above.

Therefore, they are not effective tools to characterize the entire conditional distribution of
Y given the functional covariate X. To achieve this goal, we propose a functional single
index model for the conditional quantile of Y . More specifically, the conditional quantile of
Y given X is can be expressed as follows:

Y = fτ

{∫
I
X(t)βτ (t)dt

}
+ ε, (6.2)
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where the random error satisfies P (ε ≤ 0|X(t)) = τ for every τ ∈ (0, 1). Namely, we
assume that fτ {

∫
I X(t)βτ (t)dt} is the τth conditional quantile of Y given X. This quantile

regression model is able to accommodate both nonlinearity in the functional covariate and
heteroscedasticity in the error term. For instance, assuming that Y = {

∫
I X(t)β(t)dt}2 ε,

where ε ∼ N(0, 1), the conditional τth quantile of Y given X is {
∫
I X(t)β(t)dt}2 Φ−1(τ),

where Φ−1 denotes the quantile function of the standard normal distribution.
To address the issue of model identifiability, we assume that βτ (0) = 1. As is known

to us, quantile regression models enjoy robustness when the response variable is skewed or
heavy-tailed distributed, in contrast to mean regression models. This robust property will
be investigated in both simulation studies and a real data illustration.

6.2.2 Estimation

Fitting the model (6.2) requires estimating both the index function βτ and the link function
fτ . We first treat estimation of βτ ; the B-spline basis functions are employed for this purpose.
A brief review of B-spline functions is presented as follows. Let 0 = t0 < t1 < · · · < tN = T

be the breakpoints which separate the interval [0, T] into N subintervals. Let Sn denote
the space of polynomial splines of degree l on [0, T ]; it consists of functions s satisfying:
(i) s is a polynomial of degree l in each subinterval [τm, τm+1],m = 0, . . . , N − 1; (ii) for
0 ≤ l? ≤ l − 1, the l?-th order derivative of s is continuous in [0, T ]. Then there exist
M = N + l normalized B-spline basis functions {Bk, 1 ≤ k ≤ M} bounded by 0 and 1 in
[0, T], such that any g ∈ Sn can be written as

g(t) =
M∑
j=1

bjBk(t)

for t ∈ [0, T ]. According to [21], the index function βτ (t) can be approximated by functions in
Sn reasonably well under some mild conditions. In particular, there exists a vector θτ ∈ RM

such that βτ (t) ≈ θ>τ B(t), where B(t) = (B1(t), . . . , BM (t))>. To ensure that βτ (0) = 1,
we just need to take the first component of θτ to be 1.

Now we move to estimate the link function fτ ; the quantile spline ([73]) is consid-
ered. Let a = supX

∫ T
0 X(t)βτ (t)dt and b = infX

∫ T
0 X(t)βτ (t)dt. In empirical applica-

tions, we take the maximal and minimal values of {θ>τ
∫ T

0 Xi(t)B(t)dt, 1 ≤ i ≤ n} as
the definition of a and b for each given θτ . Suppose that fτ belongs to the Sobolev space
F = {h | h(ν) is absolutely continuous for ν = 0, 1; J(h) <∞}, where

J2(h) =
∫ b

a
{h(2)(t)}2dt.

Let ρτ (s) = τs − sI(s < 0) be the quantile loss function. The estimators of the spline
coefficient vector θτ and the unknown function fτ are obtained by minimizing the following
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regularized empirical risk function:

Lτ (fτ ,θτ ) = n−1
n∑
i=1

ρτ{Yi − fτ (θ>τ ui)}+ λJ2(fτ ), (6.3)

where ui =
{∫ T

0 Xi(t)B1(t)dt, . . . ,
∫ T

0 Xi(t)BM (t)dt
}>

and λ > 0 denotes a smoothing
parameter.

Remark: If Xi’s are not fully observed, we suggest using smoothing techniques such as
local smoothers to obtain a full trajectory for each Xi.

A generalized profiling approach is adopted to combine these two estimation tasks.
Estimation of θτ and estimation of fτ are two nested levels of optimization with different
target functions. In the inner level, we estimate the spline coefficient vector θτ given an
estimate of fτ by minimizing

L̃τ (θτ |fτ ) = n−1
n∑
i=1

ρτ{Yi − fτ (θ>τ ui)}. (6.4)

This implies that the estimate of θτ is an implicit function of fτ ; it is denoted by θ̂τ (fτ ).
We implement the nlm function to minimize L̃τ with respect to θτ to obtain this function.
In the outer level, we minimize the target function Lτ in (6.3) with respect to fτ , since
the estimate of the spline coefficient vector θτ is an implicit function of fτ . To address this
minimization problem, we resort to the representer theorem ([54]). The link function fτ is an
element of F , which is a reproducing kernel Hilbert space when equipped with appropriate
inner products (see Chapter 2.3 in [40]). Without loss of generality, we assume that a = 1
and b = 0. Consider transforming the argument of fτ , x, to [0, 1] first by (x − b)/(a − b)
in general cases. By the representer theorem, given θτ , the minimizer of (6.3) admits the
following representation:

f̂τ (x) = c+ dx+
n∑
i=1

ciR1(x,θ>τ ui),

where c, d, ci ∈ R and R1(x, y) =
∫ 1

0 (x−u)+(y−u)+du with (x)+ = max(0, x). Then solving
the minimization problem becomes looking for c, d and ci’s which minimize Lτ in (6.3). This
procedure can be implemented with the qsreg function in the R package fields.

6.2.3 Tuning Parameter Selection

There are two tuning parameters in estimation of βτ and fτ : the number of B-spline basis
functions, M , and the smoothing parameter λ in (6.3). A small M may not be able to
provide an adequate approximation of βτ , while a large M may lead to an excessively
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wiggly estimate of βτ . The smoothing parameter λ controls the trade off between fidelity
to the data and complexity of the link function fτ .

We employ the generalized approximate cross-validation (GACV) proposed by [117] to
choose these two tuning parameters. For each pair (M,λ), the GACV is defined by

GACV(M,λ) =
∑n
i=1 ρτ{Yi − f̂τ (θ̂τ

>
ui)}

n− tr(H) , (6.5)

where f̂τ and θ̂τ denote the point estimator of fτ and θτ by minimizing (6.3) with the gener-
alized profiling approach, andH denotes a hat matrix with the (i, j)th entry ∂f̂τ (θ̂τ

>
ui)/∂Yj .

We select the pair of M and λ which can minimize the GACV as the “optimal" tuning pa-
rameters.

6.3 Simulation Studies

In this section we aim to study the finite sample performance of the functional single index
quantile regression model (6.2).

The functional covariates are identically and independently generated as:

Xi(t) = t+
4∑

k=1
φk(t)ξik(t), i = 1, . . . , n,

where φ1(t) = sin(2πt)/
√

2, φ2(t) = cos(2πt)/
√

2, φ3(t) = sin(4πt)/
√

2, φ4(t) = sin(4πt)/
√

2
and ξik ∼ N(0, λk) are independent with λk = 0.5k−1, k = 1, 2, 3, 4. These covariates are
sampled at 100 equally spaced points between 0 and 1. The responses are generated as
follows:

Yi = f

{∫ 1

0
Xi(t)β(t)dt

}
+ εi, i = 1, . . . , n, (6.6)

where β(t) = 2t2 +0.25t+1 and f(x) = 0.66 exp(x2). The random errors, εi’s, are generated
in three ways: (i) εi ∼ Laplace(µ = 0, b = 1), (ii) εi ∼ N(0, 1), (iii) εi ∼ 0.85 · tν=3, for
better assessment of the finite sample performance of the proposed estimator in different
scenarios. The signal-to-noise ratios are all around 2 in these designs,.

To assess the performance of the proposed estimator in prediction, we compare it with
the estimator for the functional single index model proposed in [13]. Our estimator models
the conditional quantiles of Yi’s, while the estimator by [13] concerns the conditional mean.
Therefore, we denote our estimator by FSiQ and their estimator by FSiM throughout the
chapter. In each simulation replicate we randomly generate n = 600 independent copies
of (Xi, Yi), of which 500 are used for training and the rest are for testing. We repeat the
procedure 100 times for evaluating variations in predictions across simulation replicates.
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In these three designs, the conditional median of Yi is f
{∫ 1

0 Xi(t)β(t)dt
}
, which is also

the conditional mean of Yi. We compare these two estimators in terms of prediction accuracy.
More specifically, after estimating both the index function and the link function using the
training data, we will then compute the root mean squared errors on the test data:

RMSE =

√√√√∑i∈test

[
f
{∫ 1

0 Xi(t)β(t)dt
}
− f̂

{∫ 1
0 Xi(t)β̂(t)dt

}]2
100 .

In addition, performances in estimation of the index function β are compared as well. In
each simulation replicate, the root integrated squared error for β is computed:

RISE =

√∫ 1

0
{β(t)− β̂(t)}2dt.

Distribution RMSE RISE
FSiQ FSiM FSiQ FSiM

Laplace .197 (.071) .304 (.147) .123 (.049) .125 (.029)
Normal .288 (.087) .300 (.136) .118 (.049) .138 (.045)
Student t .203 (.051) .311 (.136) 0.122 (.056) .132 (.040)

Table 6.1: Summary of the averages and the standard errors (in brackets) of RMSEs and
RISEs across the 100 replicates in the three designs.
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Figure 6.1: Boxplots of RMSEs across the 100 replicats. In each panel, the left side denotes
results from FSiM while the right side is for FSiQ.

Table 6.1 summarizes the comparison of the averages and the standard errors of RMSEs
and RIMSEs of these two estimators in the three designs. We find that the conditional
distribution of the response has a negligible effect on estimation of the index function.
However, there exist remarkable differences in the comparison of predictions between these
two methods for different designs. When the conditional distribution is light tailed, there’s
little difference in predictions between these two estimators, as can be seen from the row
corresponding to “Normal" in Table 6.1 and Figure 6.1. But obvious distinctions can be seen
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when the conditional distribution becomes heavy tailed. These distinctions imply that when
extremely large values occur frequently in the response, the estimator from the functional
single index mean regression model is less accurate than its counterpart from the quantile
regression model. In other words, the functional single index quantile regression model is
more robust to extremely large outcomes.
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Figure 6.2: Estimators of the link function for τ = 0.25, 0.5, 0.75 in the three designs,
respectively. In each panel, the black line denotes the true link function while the blue line
represents the estimator from FsiQ. In the middle row, the red lines denote the estimated
link function from FSiM.

In addition to the robust property of the quantile regression model, we are also inter-
ested in whether the proposed estimation scheme is able to provide a reasonable estimate
of conditional quantiles. Figure 6.2 displays the estimated conditional quantiles from one
randomly selected simulation replicate. Three quantile levels (τ = 0.25, 0.5, 0.75) are con-
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sidered in Figure 6.2; the estimated conditional quantile functions are reasonably close to
the true ones in all three designs. To provide a direct comparison of the two models, we
present the estimated conditional mean functions in the middle row of Figure 6.2. Fitting
these two models yields consistent estimators when the conditional distribution is light
tailed. The estimator of FSiQ, however, is considerably closer to the true conditional me-
dian (mean) function in the Student t case. This suggests that the performance of FSiM
might be impaired when extremely large values are frequently observed in the response.

6.4 Real Data Illustration

PM10 is defined to be subtypes of atmospheric particles, such as suspended particulate
matter, thoracic and respirable particles and inhalable coarse particles, with a diameter
greater than 2.5 and less than 10 micrometers. [80] argued that these subtypes are so small
that they are able to penetrate the respiratory tract of humans. As a result, the normal
functioning of the organism might be impaired by them. According to [80], if the maximal
value of 24 hour moving average of PM10 concentrations is above 240 µg/m3, humans’ health
may be in serious risk. There has been extensive research on modelling and forecasting
PM10 since its concentration is closely related to human healty. However, considerably less
attention has been focused on modelling the maximal value of daily PM10 concentrations.
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Figure 6.3: (a) Profiles of half-hourly square root of PM10 concentrations from October 1st,
2010 to March 31st, 2011. (b)Histogram of maximal values of square root of intraday PM10
concentrations.

[46] carried out a dynamic functional principal component analysis of PM10 data col-
lected in Graz, Austria. This data set consists of half-hourly measurements of PM10 concen-
trations (in µg/m3) from October 1st, 2010 to March 31st, 2011. They suggested performing
a square-root transformation to stabilize the variance and mitigate heavy-tailed observa-
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tions. The profiles of half-hourly measurements of PM10 concentrations after the square-root
transformation are displayed in the left panel of Figure 6.3, where the time scale has been
transformed to [0, 1]. Heavy-tailed observations still exist after the transformation. This is
further justified by the right panel of Figure 6.3; it depicts the histogram of maximal values
of square root of intraday PM10 concentrations, sqrt(PM10) in short. We are interested in
using the current intraday profile to predict the maximal sqrt(PM10) of the next day. 15
Fourier basis functions are employed to transform the raw observations into functional data,
as suggested by [46]. This transformation can be implemented with the Data2fd function in
the fda package.
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Figure 6.4: The estimated index functions and link functions. Left two panels: the estimated
index functions for τ = 0.5 and τ = 0.75, respectively. Right two panels: the estimated link
functions for τ = 0.5 and τ = 0.75, respectively.

We use the GACV proposed in Section 6.2.3 to select both the number of B-spline
basis functions and the smoothing parameter λ to fit the functional single index quantile
regression. The estimators of the index function and the link function are obtained by
minimizing Lτ is (6.3) with the proposed generalized profiling method. The estimated index
functions and link functions are shown in Figure 6.4. We find that the shape of the index
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function for τ = 0.5 is different from that for τ = 0.75. This suggests that the functional
single index mean regression is inadequate to characterize the conditional distribution of
the maximal value of intraday sqrt(PM10) concentrations.

As shown in simulation studies, FSiQ compares favorably with FSiM in estimation of the
target function when the scalar response is heavy-tailed distributed. We further compare
these two methods in terms of prediction accuracy in this real example. Five-fold cross-
validation is adopted to compute the mean squared errors (MSPEs) defined by

MSPE =
∑
i∈test set

[
Yi − f̂

{∫ 1
0 Xi(t)β̂(t)dt

}]2
|test set| ,

where |test set| denotes the cardinal number of a test set and f̂ and β̂ are obtained by taking
τ = 0.5 in FSiQ. The whole data set is randomly splitted 100 times and the distributions
of the corresponding MSPEs obtained from FSiM and FSiQ are displayed in Figure 6.5.
Obviously FSiQ outperforms FSiM in predicting the maximal intraday sqrt(PM10) of the
next day with the profile of the current day. A possible reason for this remarkable gap in
prediction accuracy is that the distribution of the maximal intraday sqrt(PM10) is skewed
and some extremely large values exist in the response; these can be found in the right panel
of Figure 6.3.
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Figure 6.5: Boxplots of mean squared prediction errors (MSPE) of FSiM and FSiQ across
the 100 random splits. The left side and the right side represent MSPEs for FSiM and FSiQ,
respectively.
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6.5 Conclusion

Scalar-on-function regression models play a significant role in characterizing the relationship
between a scalar response and a functional covariate. There has been an extensive research
on modelling the conditional mean structure of a scalar response given a functional covariate.
These models such as functional single index regression models and fully nonparametric
functional models are widely applied in practice for prediction. However, they are not able
to provide an adequate characterization of the conditional distribution of the scalar response.
Moreover, their prediction accuracy might be impaired when the distribution of the scalar
response is skewed or heavy tailed.

In the chapter, we have proposed a functional single index quantile regression model
which concerns the conditional quantile of a scalar response. It, therefore, enables us to
investigate the conditional distribution of the response in details. A generalized profiling
method is proposed to fit this model. This method consists of two nested levels of optimiza-
tion with different target functions. In the inner level, we use B-spline basis functions to
approximate the index function and represent the estimated coefficient vector in terms of
the link function. In the outer level, we resort to the representer theorem to simplify the
minimization task that searchs a minimizer of a regularized empirical risk function from
an infinite dimensional functional space. Simulation studies are conducted to compare the
finite sample performances of the proposed estimator and that for the functional single in-
dex mean regression model. We find that the performance of the proposed estimator is less
susceptible to extremely large outcomes compared with its counterpart. Their performances
in prediction accuracy is further compared in an real example, which concerns using the
current intraday PM10 concentrations to predict the maximal value of the next day. The
comparison result demonstrates that the proposed estimator is superior to its counterpart
in terms of prediction accuracy when the scalar response is skewed distributed and contains
numerous extremely large values.
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Chapter 7

Conclusions and Future Work

A new approach to implement functional principal component analysis (FPCA) was pro-
posed in Chapter 2. With the aid of polynomial functions, the proposed approach, called
parametric FPCA, yields functional principal components that have closed forms and thus
are easier to interpret. Moreover, we found that the paramerric FPCA is more robust than
the traditional nonparametric FPCA when outlier curves exist. It is worthwhile to study
this new FPCA approach in terms of recovering trajectories from noisy functional data and
dimension reduction in regression models of functional data.

We proposed a new approach to calibrate dynamical correlations between random func-
tions in Chapter 3. The new framework for statistical inference for the dynamical correlation
relies on the weighted empirical likelihood. As a result, the test statistic, under the null hy-
pothesis, can be calibrated using χ2 distribution, which is self-normalized. Therefore the
procedure of estimating the variance of the test statistics with the bootstrap approach can
be avoided in the new approach; it is the main reason why our approach is considerably
more efficient in computation. Though the dynamical correlation can reflect the dynamical
feature of associations between random functions by adaptively choosing the weight func-
tion, developing a new framework to reveal this dynamical feature in a more explicit manner
is worthwhile to consider in quantifying dynamical functional connectivity of brain signals.
It also provides another tool to determine time-varying networks in gene regulations.

In Chapter 4, a semiparametric framework was proposed to model the effects of a func-
tional covariate and several scalar covariates on a scalar response. The effect of the functional
covariate is modelled in a nonparametric manner while the effect of scalar covariates is mod-
elled linearly. A regularization scheme was considered to achieve sparsity and smoothness
in estimation of the nonparametric part. Our asymptotic theory is established upon the
assumption the true FPC scores are known; it is impossible in practice. We, therefore, are
interested in establishing the theorems based on the estimated FPC scores, rather than the
true scores, in future work. Additionally, We are interested in extending the framework to
the scenarios where responses of interest are from the exponential family.
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To tackle the issue of inadequate fit of functional linear regression, we assume that the
conditional mean of a scalar response depends on an additive form of the leading FPC
scores of a functional covariate in Chapter 5. Some of the nonparametric components are
penalized to be vanishing in estimation to enhance prediction accuracy and interpretabil-
ity of the model. We propose using the adaptive group LASSO method to select relevant
components and smoothing splines to refine estimator of those relevant components. One
of the limitation is that we assume that the number of nonparametric components in the
model is independent of sample size. From theoretical viewpoints, it would be worthwhile to
allow for this number diverges as sample size increases. Additionally, even though the model
is considerably less restrictive than the functional linear regression, there’s no justification
why the scalar response depends on the leading FPC scores of the functional covariance in
an additive manner. A model which can accommodate more general forms in calibrating
the effects of leading FPC scores on the scalar response would be desirable.

We proposed a functional single index model to estimate the conditional quantile of a
scalar response. Compared with functional mean regression models, the proposed model
have two main advantages. The first advantage is that a full picture of the conditional
distribution would be available from the quantile regression model. The second advantage
is that the performance of the quantile regression model is more robust to skewness or
extremely large values in the response. In our framework, only one index function and one
link function are allowed. We are interested in developing algorithms to allow for multiple
indices to enhance flexibility and prediction accuracy of the current model in future work.
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