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Abstract

The standard cosmological model, known as the ΛCDM model, is the simplest model that
accurately describes a variety of aspects of the Universe, including the cosmic microwave
background (CMB), large scale structure, and accelerated expansion. Independent observa-
tional data, including data from the CMB, baryon acoustic oscillations (BAO), and super-
novae type Ia (SNe Ia) provide significant statistical support for the ΛCDM model. Despite
this support the Hubble expansion rate determined from these observations is inconsistent
with direct measurements, presenting a tension of over 4σ. In this examination we attempt
to alleviate this tension by looking at an important assumption of the ΛCDM model, the
assumption that the energy densities of the different cosmic fluid components evolve inde-
pendently. To test this we consider pairwise interactions between dark sector cosmic fluid
components by introducing terms which allow for energy exchange between components to
the right hand side of the Friedmann fluid equations. Making use of Markov Chain Monte
Carlo methods we find that energy exchange between cold dark matter (CDM) and dark
energy can correct for the discrepancy between CMB measurements of the Hubble expan-
sion rate and direct measurements, but that adding the BAO measurements to the analysis
prevents this tension from being fully alleviated. Our findings suggest dark sector cosmic
fluid interactions are a strong candidate for physics beyond ΛCDM and warrant additional
research.

Keywords: cosmology, Hubble expansion rate, Friedmann equations, cosmic fluid interac-
tions
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Chapter 1

Introduction

In the past two decades significant observational evidence has led to the ΛCDM model be-
coming the standard cosmological model [17]. Under the ΛCDM model universal expansion
is powered by a cosmological constant vacuum energy (Λ), often referred to as dark energy,
with the energy density of matter dominated by cold dark matter (CDM). The Universe is
considered to be spatially flat, and obeys the cosmological principle, which says that at the
largest scales the Universe should be homogeneous, meaning the same at every point, and
isotropic, meaning the same in every direction [27]. Independent sources of observational
evidence provides significant statistical support for the ΛCDM model, including evidence
from baryon acoustic oscillations (BAO), supernovae type Ia (SNe Ia), and the CMB. De-
spite this support, model independent direct measurements of the Hubble expansion rate
taken by Riess et al. find a Hubble expansion rate that is 4.4σ away from measurements
taken from CMB and BAO data, outside the plausible range of reasonable agreement [24].
Due to the model dependent nature of the measurements found from early universe datasets
this tension suggests physics beyond ΛCDM.

In this examination we attempt to correct for this tension by looking at an important
assumption of the ΛCDM model, the assumption that the energy densities of the different
components that make up the matter content of the Universe evolve independently. To exam-
ine this we introduce interaction terms that allow for energy exchange between components
to the Friedmann fluid equations. Using Markov Chain Monte Carlo (MCMC) methods we
test the agreement of these introduced interaction terms with observational data. From this
examination we look to shed light on the potential for dark sector interactions as a viable
correct to the ΛCDM model.
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Chapter 2

Background, Theory, and
Motivation

2.1 Big Bang Cosmology

Cosmology attempts to understand the Universe on the grandest of scales. How did the
Universe come to be? How does it evolve over time? With nearly 14 billion years of evolution
and a nearly unfathomable extent answering these questions is no simple task. It was not
until the early 20th century that our modern understanding of the Universe and its evolution
started to take form. In 1927, twelve years after Einstein first published his theory of general
relativity, Georges Lemaître theorized that if we trace back the evolution of the observable
universe that it can mathematically shrink to a single point, and thus, the Big Bang theory
was born. Throughout the decades more and more support came in for this once outlandish
theory, to the point where it has been accepted as the prevailing cosmological model for our
Universe.

Big Bang cosmology is built upon the framework of two primary ideas; general relativity,
and the cosmological principle. The cosmological principle says that, when viewed at an
appropriately large scale, the Universe should be both homogeneous and isotropic [27].
Without the cosmological principle we would be unable to say that we are not in a special
place in the Universe, and if we are in a special place we cannot hope to develop a theory
that consistently describes the evolution of the Universe throughout. Invoking this principle
allows us to use general relativity to describe the gravitational effects of matter clustering,
which we can use to build up an understanding of the evolution of our Universe.

2.2 General Relativity

Quantifying distances between astrophysical objects is not a simple task as evaluation de-
pends on the coordinate system used, observers calculating distances in two different co-
ordinate systems may not agree on the distance to a given object. To determine the true
physical distance we must convert coordinate dependent measurements into those indepen-
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dent of coordinate system. We do this by making use of a metric, which is a mathematical
construct that converts coordinate dependent distances into invariants, the metric is the fun-
damental object in general relativity [7]. To describe the geometry of spacetime we invoke
four-dimensional spacetime metrics, described by

ds2 = gµνdx
µdxν , (2.1)

relating the yet to be specified metric tensor, gµν , to the coordinate invariant proper time,
ds, where the indices µ and ν go from 0 to 3, with the timelike component corresponding
to dx0 = dt and the remaining indices for the three spatial components [10].

Consider the propagation of free particles through spacetime, as the particles propagate
they travel along paths called geodesics, which are paths that minimize the distance between
two points [7]. In the simplest flat spacetime, known as Minkowski space, these geodesics
are simply straight lines, but we want to determine their paths in a general spacetime. By
considering the path of a test particle in a general spacetime and parameterizing each point
on the curve it follows by λ, we can use the Euler-Legrange equation to minimize the path,
leading to the geodesic equation

d2xµ

dλ2 + Γµβα
dxα

dλ

dxβ

dλ
= 0, (2.2)

where we define the Christoffel symbol as

Γµβα ≡
gµν
2 (∂αgβν + ∂βgαν − ∂νgαβ), (2.3)

where once again each of the indices goes from 0 to 3 [10].
The preceding steps required no knowledge of the gravitational theory of the geometry

of spacetime, best understood through the theory of general relativity. To describe the
evolution of the Universe, we want to find a relationship between the curvature of spacetime
and the energy density of its components. The metric tensor, gµν , contains information about
the curvature of spacetime, but how are we to access this information? It can be shown1

that the information about curvature can be found from the Ricci tensor, which is defined
as

Rµν ≡ ∂αΓαµν − ∂νΓαµα + ΓααβΓβµν − ΓβµαΓανβ , (2.4)

taking the trace of this leads to the Ricci scalar

R = gµνRµν (2.5)

1See Carroll chapter 4 [7].
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[10]. Combining the Ricci tensor, Ricci scalar, and metric tensor leads to the important
Einstein tensor, defined as

Gµν ≡ Rµν −
1
2Rgµν , (2.6)

giving a measure of curvature [10].
Einstein was able to relate this measure of curvature to the energy density by using the

energy-momentum tensor, Tµν , leading to the famous Einstein equation

Gµν = 8πGTµν , (2.7)

where G is Newton’s constant [7]. Without considering perturbations, for a perfect isotropic
fluid the energy-momentum tensor is given by

Tµν =


−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (2.8)

where ρ and P are the energy density and pressure of the fluid, respectively [10]. If we
considered perturbations the off-diagonal terms in Tµν would be non-zero, for reasons that
will be discussed later we have chosen not to include perturbations in this examination.
We nearly have all the tools necessary to develop the equations that describe an expanding
universe, we just have to specify the form of gµν .

2.3 The ΛCDM Model

To develop the form of gµν in an expanding universe it is necessary to first understand the
concept of comoving distance. As the Universe expands so does the space between objects,
if we imagine a grid of points we want to be able to describe positions on the grid in a
way such that the distance between objects on the grid remains constant as the Universe
expands. To do so we introduce a scale factor, which we call a, which for simplicity is set
to one at the current time; looking back in the past the Universe was smaller, so too was
the scale factor. Using this scale factor we are able to define a comoving distance measure
which maintains constant distance between objects as the Universe expands. Using this
formulation, and invoking natural units2, in a time dt light travels a comoving distance
dχ = dt/a, by integrating over the interval [t(a), to] we find that the distance light travels
in time dt is

χ(t) =
∫ to

t(a)

dt′

a(t′) , (2.9)

2Setting the speed of light c = 1, we will use this convention throughout.
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giving the comoving distance, χ, between an object at a = 1 and an object at some scale
factor a [10].

We now have the necessary tools to consider the form of the metric tensor, in Minkowski
spacetime gµν takes the form

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.10)

as can be seen by looking at the form of Eq. 2.1 [10]. Using comoving distance we relate this
form of the metric to an expanding, but still spatially flat3, universe. The first component
of Eq. 2.10, g00, is a timelike component and is unchanged when considering an expanding
universe. As the universe expands, if the current distance to an object is given by x, then in
the past the distance was χ = a(t)x, so to generalize Eq. 2.10 for an expanding universe we
only have to multiply the remaining diagonal components by a2(t), leading to the desired
form of the metric tensor

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 , (2.11)

known as the Friedmann-Robertson-Walker (FRW) metric [10].
Using the FRW metric we are able to find solutions to the Einstein equation (Eq. 2.7),

allowing us to relate the evolution of matter in the Universe to the evolution of the scale
factor. Using this form we find that the only non-zero components of the Einstein tensor in
Eq. 2.6 are

G00 = 3
(
ȧ

a

)2
, (2.12)

and
Gii = 2 ä

a
+
(
ȧ

a

)2
, (2.13)

where the index i 6= 0. Using these expressions along with the form of the energy-momentum
tensor, given by Eq. 2.8, in the Einstein equation leads to

(
ȧ

a

)2
= 8πG

3 ρ, (2.14)

3Curvature can be introduced here, but our examination focuses on a flat universe, consistent with
observations [10].
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and
ä

a
= −4πG

3 (ρ+ 3P ), (2.15)

where ρ and P give the total energy density and pressure of the Universe, these equations
are colloquially known as the Friedmann equations4 [10]. Eq. 2.14 is typically written in
terms of the Hubble parameter H ≡ ȧ/a, giving

H2 = 8πG
3 ρ. (2.16)

From these two Friedmann equations we can derive a third Friedmann equation for the evo-
lution of energy density. Noting that the energy density of the Universe must be conserved,
this leads us to the ΛCDM continuity equation

ρ̇i + 3H(ρi + Pi) = 0, (2.17)

where ρ and P are the energy density and pressure of each component of the matter makeup
of the Universe [10]. Throughout the rest of this work we will refer to this equation, and its
alternate forms, as fluid equations.

To specify the matter content of the Universe we classify components by looking at how
their energy density and pressure relate by defining an equation of state (EoS) Pi = wiρi,
for some constant w. Replacing Pi in Eq. 2.17 and integrating leads to solutions that scale as
ρ ∝ a−3(1+w). For all forms of matter where ρ >> P , we set P ' 0, giving a constant w = 0,
and an energy density that scales as ρ ∝ a−3, this applies for any non-relativistic gas where
the mass dominates the energy density [10]. We will refer to all types of matter with this EoS
as simply matter5, we further separate matter into two different components that have the
same EoS; baryonic matter, which refers to all matter that interacts with electromagnetic
radiation, and cold dark matter (CDM), a poorly understood invisible form of matter that
is thought to make up approximately 85% of all matter[27]6. We use the term radiation
to refer to any form of matter with an EoS P = ρ/3, giving an energy density that scales
as ρ ∝ a−4, this applies for any relativistic gas particles where the kinetic energy term
dominates the energy density [10]. In the past few decades observational evidence make
it clear that radiation and matter are not enough to describe the matter content of the
Universe, instead the current energy makeup seems to be dominated by a mysterious form
of vacuum energy with an EoS P = −ρ, accounting for approximately 75% of the Universe’s

4We will differentiate between these equations by referring to Eq. 2.15 as the Friedmann acceleration
equation.

5Though seemingly confusing, referring to all of the content of the Universe as matter, and separately
referring to the pressureless components as matter is the standard in cosmology.

6The cold in cold dark matter refers to the non-relativistic nature of the component.
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current energy budget [1]. Though very poorly understood its presence is necessary to
explain the accelerated expansion of the Universe [22, 25]. As this EoS leads to an energy
density scaling of ρ ∝ a0 this is referred to as a cosmological constant vacuum energy,
represented by Λ, more commonly refereed to as dark energy.

Bringing together these components leads to a set of four independently evolving fluid
equations

ρ̇b + 3Hρb = 0, (2.18)

ρ̇c + 3Hρc = 0, (2.19)

ρ̇r + 4Hρr = 0, (2.20)

and
ρ̇Λ = 0, (2.21)

where the indices b, c, r, and Λ represent baryonic matter, CDM, radiation, and dark energy,
respectively. For convenience we introduce the dimensionless density parameter Ωi = ρi/ρc,
where ρc is the critical density, which is the total density required for a flat universe at
a = 1, given by

ρc = 3H2
o

8πG, (2.22)

where Ho is the value of the Hubble parameter at a = 1, giving the current value of the
Hubble expansion rate. Using these density parameters introduces a normalization factor
to satisfy the critical density, we find that we must have

Ωbo + Ωco + Ωro + ΩΛo = 1, (2.23)

where the o indicates the values of the density parameters at a = 1. In cosmology it is
typically easier to work with the scale factor instead of time as the independent variable,
using the chain rule on the derivative term in the fluid equations, recalling that H = ȧ/a,
and re-expressing our fluid equations in terms of the density parameters leads to

Ω′b + 3Ωb

a
= 0, (2.24)

Ω′c + 3Ωc

a
= 0, (2.25)

Ω′r + 4Ωr

a
= 0, (2.26)

Ω′Λ = 0, (2.27)

where the ′ indicates differentiation with respect to a. These equations form a set of four
independently evolving differential equations, that are coupled by the algebraic Friedmann
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equation (Eq. 2.16), which when rewritten in terms of Ω takes the form

H2 = H2
o

(Ωbo
a3 + Ωco

a3 + Ωro
a4 + ΩΛo

)
. (2.28)

This set of differential equations gives us all we need to determine the evolution of the
energy density of the Universe, we only have to specify the initial conditions.

2.4 Support for ΛCDM as the Standard Cosmological Model

In the late 20th century the discovery of the accelerating expansion of the Universe from
observations of supernovae type Ia (SNe Ia) provided the fuel for the ΛCDM model to
become the standard cosmological model [22, 25]. In the decades that followed significant
observational evidence came in to support this model, but in recent years tensions have
arose leading to questions about the completeness of ΛCDM. To consider the support and
tensions in the model we will first look at how distances are measured in cosmology.

2.4.1 Distance Measures in Cosmology

Measuring distances to distant astrophysical objects is not so simple, as, due to the travel
time of light, when we view distance objects we are not seeing them now, we are seeing them
in the past. Recalling the concept of comoving distance introduced in Eq. 2.9, its convenient
to re-express this into an integral over a, giving

χ(a) =
∫ 1

a

da′

a2′H(a′) , (2.29)

where the additional factor of 1/aH appears as a result of changing the integration variable
[10]. From here their are two important ways to determine distances in cosmology. the first
being the angular diameter distance

da = l

θ
, (2.30)

where l is the known physical extent of the object, and θ is the angle it subtends on the
sky7 [10]. We then relate this expression to the comoving distance χ(a) by noting that the
angle subtended is θ = l/aχ(a), allowing us to re-express the angular diameter distance as

da(a) = aχ(a). (2.31)

From the form of this expression we see that the angular diameter distance is equal to
the comoving distance at a = 1, but decreases as we look at objects further in the past.
Another important distance measure in cosmology is the luminosity distance, which is found

7This expression holds for small angles.
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by measuring the flux of an object of known luminosity, where the flux is given by

F = Ls
4πx2 , (2.32)

where Ls is the intrinsic luminosity at the source, and x is the distance to the object [10].
We can generalize this expression to an expanding universe by using the comoving distance,
leading to the expression

F = Lsa
2

4πχ(a)2 , (2.33)

allowing us to define the luminosity distance dl as

dl(a) ≡ χ(a)
a

, (2.34)

given an object of known luminosity l, if we measure the flux of the source, we can then
determine the luminosity distance [10].

Cosmological measurements to distance objects are typically done by measuring the
cosmological redshift (z) of the object. Redshift is the effect where the light from a distance
object experiences a wavelength shift to the red side of the visible spectrum, this occurs as
a result of an object moving away from us, giving a measure of the recessional velocity of
an object with respect to the earth8 [10]. Mathematically redshift can be found from

z = λobs − λemit
λemit

, (2.35)

where λemit and λobs are the wavelengths of the emitted, and observed light, respectively
[10]. Redshift is related to the scale factor through the relationship

z = 1
a
− 1, (2.36)

allowing us to interchange between the two variables easily [10]. This relationship allows us
to repress our distance measures in terms of z, giving

χ(z) = −
∫ 0

z

dz′

H(z′) , (2.37)

da(z) = χ(z)
1 + z

, (2.38)

and
dl(z) = (1 + z)χ(z). (2.39)

8Similarly, objects moving towards us have their wavelengths blueshifted.
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By measuring the redshift of a distance object for different luminosity and angular diameter
distances, we can determine the comoving distance and thus the cosmological parameters
in the Hubble parameter. Collectively, comoving distance, luminosity distance, and angular
diameter distance give us all we need to determine cosmological distances and to develop
support for the ΛCDM model.

2.4.2 Observational Evidence

To measure the flux of an object, and thus determine the luminosity distance, we have to
have an object of known luminosity. Astronomers make use of objects known as standard
candles, which are objects that are known to give out a specific amount of light, one useful
standard candle are supernovae type Ia (SNe Ia). SNe Ia are a specific type of supernovae
that occur in binary star systems where one of the two is a carbon-oxygen white dwarf [12].
These stars are special in that their rotation rate results in a limiting mass known as the
Chandrasekhar mass. When in a binary systems these white dwarfs can accrete mass from
their companion star, once they reach the Chandrasekhar mass the star goes supernova [12].
Because these stars are exploding at a known mass, and in a known way, they also have a
luminosity that is the same for each of these objects [12].

From luminosity distance measurements of SNe Ia, Riess et al. and Perlmutter et al.
were able to find evidence for accelerated expansion [22, 25]. To understand how this is
done recall that we have defined the luminosity distance in terms of the comoving distance.
Then, recalling the form of the comoving distance as in Eq. 2.37, we see that this has been
related to the Hubble expansion rate. Using luminosity distance measurements to determine
the comoving distance, and then fitting the curve of comoving distance to a cosmological
model allowed them to find Ho. What they found was that the Universe must have a
cosmological constant vacuum energy contributing to the expansion, therefore ΩΛ must be
present, from this evidence of accelerated expansion the ΛCDM model became the standard
cosmological model. In the past two decades, since the discovery of cosmic acceleration,
additional SNe Ia data provided significant statistical support for the ΛCDM model, and
provided significant constraints on the energy density of dark energy [3, 14, 18]. In addition
to measurements from SNe Ia, measurements of the cosmic microwave background (CMB)
and baryon acoustic oscillations (BAO) furthered the support for the ΛCDM model as the
standard cosmological model.

To understand where this additional support comes from its useful to take a step back
to the early universe. After the inflationary period of the early universe, the Universe went
through a process called reheating, where particles from inflation decayed into a primordial
plasma of particles, starting the period of radiation domination [10]. At this stage the pri-
mordial plasma was so hot that any baryonic matter that formed was ionized, as the energy
of photons exceeded the binding energy of hydrogen such that any electron that tried to
bind to the hydrogen nucleus and form a neutral atom was quickly knocked out by these

10



energetic photons. During this time photons and baryons formed this primordial plasma,
overdensities of matter acted to compress the fluid, which in turn brought along with it an
increase in the pressure of the photons, pushing them into higher energy levels [11]. The
increased radiation pressure acted to oppose this compression effect, as the Universe contin-
ued to expand these opposing effects produced lower density regions which were compressed
by the surrounding fluid [11]. Collectively the counteracting effects of gravity and the radia-
tion pressure produced oscillations analogous to sound waves. These oscillations propagated
through the universe at a remarkable speed of approximately 60% of the speed of light, due
to the significant difference between the pressure and density of radiation compared with
baryonic matter at this stage of cosmic history [11].

These acoustic density waves continued to propagate throughout the Universe until
universal expansion cooled the primordial plasma enough such that the energy of photons
fell below the binding energy of hydrogen [21]. At this point electrons were able to bind with
ionized hydrogen, forming the first stable neutral hydrogen. This period of the Universe’s
history is known as recombination, and occurred approximately 375, 000 years after the big
bang [21]. Because the baryonic matter is no longer charged, radiation then decoupled from
matter and instead began to propagate relatively freely throughout the Universe for the
rest of cosmic history [8].

Today the remnants of that radiation are visible as the cosmic microwave background
(CMB), thermal black body radiation with a consistent temperature of ' 2.7 kelvin. Despite
this consistent temperature minor anisotropies in the temperature of different parts of the
sky have been observed, as we see in Fig. 2.1. The root cause of these anisotropies can
be traced back to the aforementioned acoustic density waves, when radiation and matter
decoupled the acoustic density waves no longer felt the force of the radiation pressure instead
becoming effectively frozen in place [11]. Figure 2.2 shows the intensity of CMB temperature
fluctuations as a function of angular size and multipole moments, where the primary peak at
' 1.2◦ gives a sense of the preferred angular scale present in the CMB power spectrum. The
angular preference to this peak comes as a direct result of the acoustic density fluctuations
on a spherical surface as viewed from our location on Earth [11]. The specific position of
the first peak is heavily dependent on the density of matter, while the ratio of the heights
of the first and the third peak gives a measure of the value of Ho, allowing us to measure
the temperature anisotropies of the CMB and constrain these cosmological parameters [15].

Often referred to as the acoustic length scale, the peak at ' 1.2◦ corresponds to a
comoving separation of ' 150 Mpc [4], the acoustic length scale is related to the angular
separation using

rA = (1 + z)da(z)∆θ, (2.40)

9https://www.cosmos.esa.int/web/planck

10https://map.gsfc.nasa.gov/
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Figure 2.1 Cosmic microwave background radiation map, showing minor fluctuations in
temperature of the black body radiation in different parts of the sky. Credit: ESA, Planck
satellite, 20159.

where da is the angular diameter distance at redshift z, as in Eq. 2.38. As a result of
this acoustic length scale, in addition to the temperature anisotropies of the CMB the
impact of the early universe acoustic density waves can be seen by looking at the large scale
distribution of galaxies. At the time of decoupling, when the acoustic density waves were
suddenly frozen in place, it left regions of greater density in spherical shells out from where
the waves expanded. As dark matter does not interact with electromagnetic radiation, it
was not impacted by these acoustic oscillations, resulting in an overdensity region at the
center of the spherical shells as well. Figure 2.3 shows an illustration of a series of these rings
with radius corresponding to the comoving acoustic length scale, where the spherical shells
consist of overdensity regions of baryonic matter, while the dark matter remains clustered at
the center of the ring [21]. Over time these denser regions of matter would cluster more and
more matter together, forming denser regions of stars and galaxies at both the center and
the outside of the spherical shells [11]. Referred to as baryon acoustic oscillations (BAO),
this preferred length scale can be used as a standard ruler, or an object of known length,
enabling us to calculate the angular diameter distance and constrain the value of Ωb, and
as such, look at the evolution of the Hubble expansion rate [8].

11http://www.sdss3.org/surveys/boss.php
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Figure 2.2 Angular power spectrum of CMB temperature fluctuations. Credit:
NASA/WMAP Science Team10.

2.5 Tensions

SNe Ia, CMB temperature anisotropies, and BAO measurements give us a variety of ways
to determine the current Hubble expansion rate Ho, but what level of agreement do these
different quantities find? In the past decades advancements in technology have enabled
research teams to use large sky surveys to vastly improve the quality of data, and to allow
for strong estimates of the Hubble expansion rate without extreme uncertainty. In the past
three years alone, different calculations of the Hubble expansion rate have found values as
follows:

• CMB temperature anisotropy measurements taken by the Planck satellite give an
estimate of (67.66± 0.42) km s−1 Mpc [2].

• The first results from the Dark Energy Survery (DES) using both SNe Ia and BAO
measurements estimate the value as (67.77± 1.30) km s−1 Mpc [19].

• Measurements from the Baryonic Oscillation Spectroscopic Survery (BOSS) BAO re-
turned a best estimate of (67.6± 0.7) km s−1 Mpc [13].

These different values each agree within uncertainty, providing strong support for the
ΛCDM model, however, using precision measurements taken with the Hubble Space Tele-
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Figure 2.3 Illustration of the distribution of matter from acoustic oscillations. Credit: Z.
Rostomian, LBNL11.

scope (HST), Riess et al. were able to measure the current value of the Hubble expansion
rate as (74.03 ± 1.42) km s−1 Mpc [24]. This measurements of the Hubble expansion rate
presents a tension between measurements from the CMB and BAO of around 4.4σ, which
for a Gaussian is beyond the plausible level of agreement. A clear tension exists between
these different measurements, but why value one over the other? The key to understanding
this question is to realize that CMB and BAO measurements are looking at the signature of
these early acoustic density waves, as such they are effectively determining the Hubble ex-
pansion rate at the point of decoupling, and then using the ΛCDM model to evolve forward
and determine the current Hubble expansion rate, meaning these measurements rely on the
ΛCDM model accurately describing our Universe. Measurements of the Hubble expansion
rate from the HST, however, are direct measurements of the expansion rate, the estimate
of (74.03 ± 1.42) km s−1 Mpc is a model independent determination that knows nothing of
ΛCDM.

Could it simply be that the direct HST measurement is suffering from unconsidered
uncertainty? To consider this, it is important to understand the concept of the cosmological
distance ladder. Angular diameter and luminosity distance measurements require knowing
the true length or source luminosity of the object, this is where we rely on the cosmological
distance ladder. The cosmological distance ladder is a successive method to determine the
distance to distant objects by first looking at closer objects. Using parallax, which is the
effect where the apparent position of a star changes relative to other nearby stars as the
star moves in the sky, to measure the angular change in the stars position in the sky we can
determine the distance to the star [6]. This method only works for stars within around 1
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Kpc, which on cosmological scales is not very far at all [6]. We can use this measurement of
the distance to a nearby star to determine the stars luminosity, by then using a specific type
of star that has the same luminosity in all cases, a standard candle, we can use it to calibrate
the distance to further stars of the same type using the determined source luminosity.

A commonly used star type to calibrate cosmological distances is a Cepheid variable,
which is a type of rapidly rotating star whose luminosity pulses in a consistent way [6].
By measuring the distance to a nearby Cepheid variables we can use them to calibrate
distances to Cepheid variables in more distance galaxies. At large astronomical distances
the Cepheid variables luminosity is not bright enough to be measured, in which case we
then make use of SNe Ia. By determining the distance to a Cepheid variable in a nearby
galaxy that also has SNe Ia data available, we can determine the distance to the SNe Ia,
and from this find its source luminosity [6]. SNe Ia explode in a consistent way, so have a
consistent luminosity, allowing us to use these objects as standard candles. We can then
use the distance determination of this first SNe Ia to calibrate the distances to SNe Ia in
much more distant galaxies, as the luminosity of these SNe explosions is strong enough to
measure at much larger astronomical distances. The accuracy of these luminosities relies on
the initial distance determination to the Cepheid variable, so while there is some uncertainty,
the high quality nature of modern data suggests it is not likely to throw off the results too
significantly.

Pietrzynski et al. were able to use another type of star, known as an Detached Eclipsing
Binary (DEB), a type of binary star system with well defined light curves, to determine the
distance to the Large Magellanic Cloud, one of our nearest galactic neighbors, with uncer-
tainty of only 1.3% [23]. From this distance, Riess et al. were able to use the HST to measure
the periods of 70 Cepheid variables in the Large Magellanic Cloud to accurately determine
their source luminosity [24]. As a check on the distance calculation, they also used indepen-
dent distance determinations from milky way parallax measurements, and masers in NGC
4258, a source of spectral line emission [24]. The HST has additionally observed Cepheid
variables in more distance galaxies that host SNe Ia [26]. Combining their knowledge of
Cepheid variable luminosity with HST data from galaxies with both Cepheid variables and
SNe Ia they were able to measure the current Hubble expansion rate to the aforementioned
value of (74.03±1.42) km s−1 Mpc, which takes into account each of the three distance mea-
sures to the Large Magellanic Cloud, individual estimates from each distance measure do
not cause this value to vary significantly [24]. While some uncertainty exists in this mea-
sured expansion rate, it is unlikely to account for the 4.4σ discrepancy between their HST
measurements and calculated values from BAO and CMB measurements.
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2.6 Physics Beyond ΛCDM

Though the ΛCDM model has been the able to accurately describe many aspects of the
Universe, the discrepancy between the model dependant and model independent values of
the Hubble expansion rate point to something beyond ΛCDM. Due to our lack of fundamen-
tal understanding of dark energy and dark matter, it is reasonable to approach this model
with caution. Many possibilities have been theorized to explain this discrepancy, including
introducing some curvature, neutrino interactions, a new exotic particle, exotic dark energy
with an EoS that is not w = −1, amongst others. One particular notable assumption of
the ΛCDM model is that it assumes that each of the components energy densities evolve
independently of one another, but does this agree with observations? Wang et al. used ob-
servational data, including data from BAO, CMB, and SNe Ia to examine the evolution of
dark energy density [28]. They found that the data suggests that dark energy density likely
changes over time [28], which is at odds with the ΛCDM model, which expects that the
energy density of dark energy remains constant throughout cosmic time, as we see from
Eq. 2.27.

One possible explanation for this discrepancy is that the assumption that the energy
densities of the different components evolve independently is wrong, and that we should
consider interactions between various components that result in energy exchange. This pos-
sibility is what we want to consider in this research, the question is, how would these poten-
tial pairwise interactions impact the mathematical expressions that describe the expansion
of the Universe, and how to go about testing potential modifications?
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Chapter 3

Examination Methods

3.1 Interactions

We want to develop a method to test pairwise interactions between cosmic fluid components.
To do this we introduce interaction terms, which we call Qij , where i and j are for each
component and i 6= j, to the right hand side of the individual fluid equations (Eqs. 2.24,
2.25, 2.26, and 2.27). To maintain energy conservation we must have that the right hand
side of the sum of the fluid equations remain zero, so if we add Qij to the right hand side of
one of our fluid equations we must have −Qij in another equation to balance. In principle
we could consider pairwise interactions between any of the components, but in this work we
have chosen to focus on interactions between the dark sector components, dark energy and
CDM. The primary reasons for this are that the radiation density, Ωr, is dominated by the
energy from the CMB, so that by determining the temperature of the CMB we can directly
measure Ωr [20]. The temperature of the CMB has been measured to extreme accuracy,
allowing us to simply fix the value of Ωr in our calculations. Additionally, BAO in the early
universe heavily constrain the value of Ωb, so that we choose not to focus on it either. More
specifically, due to the dependence of CMB and BAO measurements on the value of the
Hubble expansion rate, the directly determined radiation term is Ωrh

2, and the constrained
baryon term is Ωbh

2, where in these expressions h is a scaled dimensionless version of Ho,
given by

Ho = 100h km s−1 Mpc, (3.1)

throughout the remainder of this work we will typical use the dimensionless h as opposed to
the dimensionfullHo, but will refer to both interchangeably as the current Hubble expansion
rate [10]. In general both radiation and baryonic matter are reasonably well understood,
while the dark sector components remain a mystery, so the parameters of these weakly
understood dark sector components allow for more wiggle room in a cosmological model.
As a result of the focus on dark sector interactions, our modified fluid equations take the
form

Ω′b + 3Ωb

a
= 0, (3.2)
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Ω′c + 3Ωc

a
= Q, (3.3)

Ω′r + 4Ωr

a
= 0, (3.4)

and
Ω′Λ = −Q, (3.5)

where Q is an interaction between CDM and dark energy. As a result of this modification,
we now have a coupling between the energy density evolution of CDM and dark energy.

We still need to specify the form of these interaction terms, we chose to focus on three
specific forms of interaction terms, one that is proportional to Ωc, a second that is pro-
portional to ΩΛ, and finally one that is proportional to both. To do this we introduce an
interaction parameter γ, leading to the following set of testable interaction terms

Q = QcΛ = 3γcΛΩc

a
, (3.6)

Q = QΛc = 3γΛcΩΛ
a

, (3.7)

and
Q = QcΛ +QΛc = 3γcΛΩc

a
+ 3γΛcΩΛ

a
, (3.8)

where cΛ indicates an interaction between dark sector components that is proportional to
Ωc, and Λc indicates one that is proportional to ΩΛ. We chose to include the constant 3
in these terms to allow the term that is proportional to CDM to have the same form as
the 2nd term on the left hand side of Eq. 3.3, making it a strict proportionality, absorbing
this constant into the γ parameter would shift the value of the parameter but would have
no impact on the physics. With our interaction terms defined we next implement and test
them.

3.2 Implementation

To implement and test these interaction terms we make use of Markov Chain Monte Carlo
(MCMC) methods, which are methods to sample N-dimensional parameter space by varying
parameters over a large number of iterations, building up a probability distribution over a
large number of samples. What follows is a guide to the process used to test the validity of
these interaction terms.

• We start by expression our model as a system of differential equations as given by
Eqs. 3.2, 3.3, 3.4, and 3.5, for the desired interaction term Q.

• We then define our parameters, both free and fixed. For our free parameters, we use
Ωbo, Ωco, h, and any γ interaction parameters for the desired model. For each of these
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parameters we have to define both an initial value and bounds for a range of variation.
As the variation in the ranges of Ωbo and Ωco depends heavily on the value of h, we
first define its variation range. To account for the large difference between calculated
values of Ho from CMB and BAO observations (∼ 67 km s−1 Mpc), and measured
values from HST data (∼ 74 km s−1 Mpc) we opt to allow h to vary between 0.60 and
0.80, at various stages of this work we experimented with both larger and smaller
variation ranges. For larger ranges we found that the code had too much trouble
finding agreement with the data, and that this resulted in significantly increased
computation time and inconsistent results, while for smaller ranges we found that
the code would often converge to a small region of parameter space without properly
sampling the full range. For Ωco we want to allow for a large amount of freedom as we
are specifically allowing for interactions involving this quantity, so we set the bounds
from 0.1500 to 0.4000, giving a variation range of ∼ 30% from the value determined by
the final release of Planck data [2]. Similarly to h, we tested both larger and smaller
variation ranges before settling on this as it returned the most reasonable results
while also considering the necessary computation time. For Ωbo, the quantity Ωboh

2 is
heavily constrained from BAO in the early universe, measurements of the primordial
abundance of deuterium constrain this quantity to around Ωboh

2 = 0.0220 ± 0.0005
[9], scaling this by our range of h gives us a variation range for Ωbo between 0.0330 and
0.0630. For our interaction parameters, γ, we expect a small energy exchange, so we
initially allow these parameters to vary between −1 and 1. After initial tests this range
was typically lowered to focus in results, pending the specific model results for the
given interaction term. In terms of fixed parameters, we keep Ωroh

2 fixed, for reasons
previously discussed. The final density parameter, ΩΛ, does not have to be included
directly as a parameter as its value can always be determined from the normalization
condition given in Eq. 2.23. In terms of initial parameter values for Ωbo, Ωco, and h,
due to our desire to sample the entire parameter space between the bounds, the initial
value is not overly important. Typically we set this to a value towards the center of
the range, but as a test of convergence we also test initial values from other regions
of parameter space to verify that the results are generally independent of the initial
guess.

• Next, using an ODE solver included in the Python package SciPy [16], we numerically
integrate our model of differential equations for a randomly sampled series of scale
factors using our initial parameter values as the initial conditions, returning the values
of each of the four density parameters for every sampled scale factor.

• From these density parameters values, along with the value of Ho determined from
the input parameter h, we calculate the algebraic Friedmann equation. Noting that
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the code returns Ω(a), this reduces the Friedmann equation to the form

H2 = H2
o [Ωr(a) + Ωb(a) + Ωc(a) + ΩΛ(a)]. (3.9)

• Using the values of a along with the calculated values of H we find the comoving
distances, as in Eq. 2.29, and from this find the angular diameter, and luminosity
distances, as in Eqs. 2.31, and 2.34.

• The next step is to compare these calculated values to data and to find the probability
that that the calculated values describe the data, in the form of a likelihood function,
which for a Gaussian distribution takes the form

L =
∏
i

1√
2πσ2

e−
(yi−ỹi)

2

2σ2 ∝ e−χ2
, (3.10)

where σ is the standard deviation, yi are the observed data points, and ỹi are the
model results. As a result, by finding the maximum of the negative log likelihood we
can determine the value of χ2

min. Individual likelihoods from each data set are then
combined into a composite likelihood. We make use of 4 different data measures in
our examination:

– BOSS BAO data taken by the Sloan Digital Sky Survey-III (SDSS-III) from
mapping of the distribution of quasars and luminous red galaxies1.

– SNe Ia data from the UnionSN Cosmology Project2, as well as data from the
mutual collaboration of the SDSS-II and Supernova Legacy Survey (SNLS) [5].
It is necessary to include SNe Ia data from multiple sources to have a distribution
of values for a large range of redshifts, as individual surveys typically focus on
ranges that are too narrow to build a proper distribution.

– HST direct measurements of Ho [24].

– Cosmological parameters calculated from measurements of the CMB temperature
anisotropies taken from the Planck satellite3.

• We then use MCMC methods to vary the initial parameter values and explore pa-
rameter space, over a large enough number of samples this allows us to build up a
distribution of likelihoods for the full parameter space between the bounds, which by
finding the maximum of the negative log likelihood allows us to return the value of χ2

min

1http://www.sdss3.org/surveys/boss.php

2http://supernova.lbl.gov/union/

3https://www.cosmos.esa.int/web/planck
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for a given model. To achieve this we make use of a widely used suite of code known as
Cosmological MonteCarlo (CosmoMC)4. CosmoMC is a suite of code designed for use
primarily in Fortran, as we are not including perturbations in our analysis this suite
was overly complicated for our needs, so we make use of a Python implementation of
this code which only depends on the background equations without consideration for
perturbations, referred to as SimpleMC5. In early stages of the project we considered
whether to include perturbations, but decided they were unnecessary. Including per-
turbations allows for more data to be included in the analysis, and helps to lower the
uncertainty of results, but as we were looking to explore the possibility of interaction
terms accounting for the tension in the model dependent and model independent mea-
surements of Ho, as opposed to trying to statistically constraint the value of Ho, this
decrease in uncertainty was not necessary and we decided against including perturba-
tions in this work. Merging our model with the SimpleMC code package allows us to
explore this parameter space and build up the desired probability distribution. The
information returned by each iteration of the MCMC code are referred to as chains,
and include parameter values, likelihoods, χ2 calculations, and weights, which give an
additional measure of the probability of that specific result explaining the data.

• To ensure that we run our MCMC chains long enough we have to consider convergence
of our results, which we do in two ways. First off, after each iteration the code checks
the maximum value of the negative log likelihood function, any time an iteration re-
sults in a new maximum it returns the adjusted maximum. To verify convergence
using this criteria we ensure that the sampling has gone a minimum of 3000 iterations
between finding a new maximum before stopping the MCMC chains. As a second ver-
ification of convergence we restart the chain using very differential initial conditions,
if after enough iterations the code converges to results that are very similar to the
results of the earlier chains we consider the result to be convergent. The second test is
used to verify that the samples have truly explored all of parameter space, as if their
were any bias in the initial parameter values this could result in inconsistent results
between chains.

• Finally, to visualize the results of the MCMC chains we make use of an MCMC sample
analysis Python package known as GetDist6. GetDist is a suite of MCMC analysis
tools specifically designed for use with CosmoMC chains, using this package we are
able to analyze the results of our MCMC chains. For our analysis we make use of three

4https://cosmologist.info/cosmomc/

5https://github.com/slosar/april

6https://github.com/cmbant/getdist
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types of plots, 1D probability distributions, 2D contour plots showing the 1σ and 2σ
distribution of pairwise parameters, and finally triangle plots, which combine these
two features to compare any number of parameters by making a triangular grid of 2D
contour plots between each desired parameter, along with 1D probability distributions
which are shown along the top right diagonal.
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Chapter 4

Results and Discussion

We now present the results of our MCMC chains for the ΛCDM model without interac-
tions, and our three interaction models (Eqs. 3.6, 3.7, and 3.8). We perform an analysis
using four different data combinations for each model; Planck+Ho, Planck+Ho+BBAO,
Planck+Ho+SNe, and Planck+Ho+BBAO+SNe. The main results of this statistical anal-
ysis are summarized in Table 4.1, including the 1σ error range (68% confidence level) for
the primary parameters.

4.1 ΛCDM

We start by preforming an analysis of chain results for the ΛCDMmodel, this model provides
a quality check to verify that our MCMC chains are returning results that are reasonable
when compared with the estimated values ofHo, while additionally allowing for comparisons
to the results of our interaction models. Figure 4.1 shows the triangle plot results for this
model, with the most probably values of the parameters along with their 1σ errors included
in Table 4.1.

Focusing on the probability distribution for h in the top left of the triangle plot, we
see that when we include only the Planck+Ho data sets the chains return a most probably
value of h = 0.691 ± 0.018, shifted slightly from the estimated value of Ho given by the
Planck collaboration of (67.66 ± 0.42) km s−1 Mpc [2]. Though the inclusion of the direct
measure of Ho from the HST does shift the expected value of the Hubble expansion rate,
the value is still more than 3σ away from the measured value. If we include SNe data the
distribution becomes narrower, but the shift in peak value is minimal. If we include BBAO
data, however, we see the value is shifted much closer to the value determined by the BOSS
BAO (BBAO) collaboration of (67.6± 0.7) km s−1 Mpc [13]. Throughout our examination,
the BBAO data consistently shifted the results close to the ΛCDM best fit value, this
result is not entirely unexpected as the baryonic acoustic oscillation measurements are very
sensitive to shifts in the values of the matter density parameters, by including this data, the
MCMC chains tended to funnel towards these expected values. Looking closely at Fig. 4.1
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Table 4.1. Statistical results of MCMC chains with 68% CL errors.

Model Data h Ωco γcΛ γΛc

ΛCDM
Planck+Ho 0.691 ± 0.018 0.234 ± 0.018 . . . . . .
Planck+Ho+BBAO 0.677 ± 0.008 0.258 ± 0.009 . . . . . .
Planck+Ho+SNe 0.696 ± 0.013 0.239 ± 0.014 . . . . . .
Planck+Ho+BBAO+SNe 0.678 ± 0.007 0.257 ± 0.009 . . . . . .

QcΛ

Planck+Ho 0.735 ± 0.023 0.217 ± 0.017 0.069 ± 0.032 . . .
Planck+Ho+BBAO 0.679 ± 0.007 0.260 ± 0.011 0.013 ± 0.024 . . .
Planck+Ho+SNe 0.716 ± 0.019 0.229 ± 0.014 0.046 ± 0.027 . . .
Planck+Ho+BBAO+SNe 0.679 ± 0.007 0.258 ± 0.010 0.007 ± 0.021 . . .

QΛc

Planck+Ho 0.733 ± 0.025 0.218 ± 0.019 . . . 0.020 ± 0.009
Planck+Ho+BBAO 0.678 ± 0.008 0.261 ± 0.011 . . . 0.006 ± 0.009
Planck+Ho+SNe 0.712 ± 0.018 0.232 ± 0.015 . . . 0.013 ± 0.081
Planck+Ho+BBAO+SNe 0.679 ± 0.007 0.257 ± 0.010 . . . 0.002 ± 0.008

QcΛ +QΛc

Planck+Ho 0.735 ± 0.023 0.217 ± 0.018 0.66 ± 0.20 −0.18 ± 0.06
Planck+Ho+BBAO 0.677 ± 0.008 0.262 ± 0.011 0.55 ± 0.23 −0.20 ± 0.09
Planck+Ho+SNe 0.711 ± 0.017 0.233 ± 0.014 0.60 ± 0.22 −0.18 ± 0.07
Planck+Ho+BBAO+SNe 0.678 ± 0.007 0.260 ± 0.010 0.64 ± 0.21 −0.24 ± 0.08

we can see this trend clearly, the red and green curves in the probability distribution show
the results for the two data sets without including BBAO, comparing these to the blue and
orange curves we see that the width of the probability distribution is significantly narrower,
shifting the peak of the curve to a lower value. We can see the same narrowing effect from
the inclusion of the SNe data when comparing the red and green curves, but the effect is
much more minor. In all cases the peak of the distribution remains > 3σ away from the
directly measured value of (74.03 ± 1.42) km s−1 Mpc, which is shown with a dotted grey
line, with the yellow band showing the 1σ region for this direct measurement.

In the bottom left of Fig. 4.1 we see the 2D contour plot showing the 1σ (darker shades)
and 2σ (lighter) regions. We see that the edge of the 2σ region for only Planck+Ho data falls
inside the 1σ region of the direct measurement of Ho, while the rest of the data falls outside
the 1σ range. The bottom right plot shows the probability distribution for Ωco, indicating a
shift to higher expected CDM density when including BBAO data. Collectively, these results
are consistent with our expectations for the ΛCDM model, illustrating the tension between
the model dependent and model independent values of Ho. Having found reasonable results
for our model without interactions, we can compare and quantify the impact of adding dark
sector interactions.

4.2 Interaction terms

We now compare and contrast these results with the results of our MCMC chains with
interaction terms. In each of the three interaction model cases we make use of the same four
data sets, presenting the statistical results in Table 4.1.
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Figure 4.1 Triangle plot for ΛCDM model with four different data combinations showing
1D probability distributions for h and Ωco along the diagonal, with the bottom left showing
a 2D contour plot displaying the 1σ and 2σ regions for the given parameters. The yellow
band shows the 1σ range for the direct measurement of Ho from Riess et al. [24], with the
dashed grey line showing the central value.
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4.2.1 QcΛ

First considering Q = QcΛ = (3γcΛΩc)/a, the results of the chains are shown in Fig. 4.2,
noting that we make use of the same type of triangle plot but now also include γcΛ in our
comparisons. Similarly to the ΛCDM case, when we include BBAO data the peak value of
the probability distribution for h converges towards a value near the value determined by
the BBAO collaboration of (67.6 ± 0.7) km s−1 Mpc [13], resulting in a peak value of the
probability distribution of the interaction parameter γcΛ that fluctuates close to zero. The
model dependent nature of these BAO measurements is not conducive to significant changes
in the model. If we look at the data sets where BAO is left off, however, we see a significant
shift to a higher expected value of h. In particular, when using Planck+Ho data we find a
most probable value of h = 0.735, which is within the 1σ range of the direct measured value
of Ho. This presents a shift of approximately 2σ from the results for this same data set
for the ΛCDM model, clearly showing that an interaction of this form can correct for the
tension between direct measurements of Ho from the HST and Planck CMB measurements.
If we include SNe data, the distribution shifts a bit to a peak value of h = 0.712, but the 1σ
range of the contour plots for h remains well within the 1σ range of the direct measurement
of Ho, and its notably shifted by approximately 1σ from the value returned for this same
data set with the ΛCDM model.

Focusing on the probability distribution for γcΛ in the center right of Fig. 4.2, we see
that in each case the interaction parameter favors a positive value. Recalling that we allowed
this parameter to vary between −1 and 1, and nothing the form of the interaction term
in Eq. 3.6, we see that the preference for positive γcΛ indicates an interaction that leads
to energy transfer from CDM into dark energy, shifting the current value of Ωc down to a
lower range of values. In general we find that these results are encouraging and suggest that
an interaction between dark sector components that is ∝ Ωc presents a strong potential
correction to the ΛCDM model, but, due to the sensitive model dependence of BAO data
this interaction form is unable to alleviate the tension between BAO measurements and
direct measurements of the Hubble expansion rate.

4.2.2 QΛc

Next, consider the interaction Q = QΛc = (3γΛcΩΛ)/a, where we now have an interaction
that is ∝ ΩΛ, we present the results of these MCMC chains in Fig. 4.3. We quickly see
that the form of the probability distributions and contour plots is extremely similar to the
results from the QcΛ interaction. Again when including the BAO data the peak value of
the distribution of h converges to a value very close to that of the expected value from
the BBAO collaboration, but when we remove this data the results shift to within 1σ of
the direct measured value of Ho. Looking at the distribution of γΛc we see that it takes
on positive values, again indicating a energy exchange between CDM and dark energy that
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Figure 4.2 Triangle plot as in Fig. 4.1, instead showing results for interaction of form QcΛ
(Eq. 3.6).
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results in a reduction of the current energy density of CDM when compared to ΛCDM. In
general the results for this interaction form are extremely similar to the preceding case and
provide additional support for dark sector interactions as a strong candidate to alleviate the
tensions between the direct measurements of Ho and those from Planck CMB temperature
anisotropy measurements.

4.2.3 QcΛ + QΛc

Finally, we look at the interaction form that combines both of these interactions, as given
by Q = QcΛ + QΛc = (3γcΛΩc + 3γΛcΩΛ)/a, where the results of these chains are given by
Fig. 4.4. At first look we see a lot of similarities in these results when compared with the
the results for the two individual interaction terms in the preceding sections. The contour
plot between Ωco and h presents a very similar form, with chains where BAO was included
converging to results similar to ΛCDM, and chains without BAO data shifting to values
within 1σ of the direct measured value of Ho.

Looking at the probability distribution of Ωco we again see a lower range of values when
compared to ΛCDM, similar to the results for each of the individual interaction terms.
Looking at the distribution of γcΛ and γΛc values we see that these distributions have wider
peaks than other parameters, this is unsurprising as the nature of these combined interaction
terms allows for some degeneracy of solutions, shifting the value of γcΛ one way allows for
γΛc to shift in the other direction to compensate, and vice versa. We do, however, notice
that our results favor the term that is ∝ Ωc as the stronger interaction, suggesting that
energy conversion favors this interaction form. We see that this results in a range of values
for γcΛ that is notably larger in this two interaction term case as opposed to the case of
purely a QcΛ interaction, favoring larger positive values than in the preceding case. This
shift has resulted in the value of γΛc typically shifting to negative values, furthering this
support for the strength of the QcΛ interaction. Here we importantly have to note that the
variation range of γ values was shifted after initial tests. In the case where each interaction
parameter was allowed to vary between −1 and 1 we found probability distributions for each
γ value that were double peaked Gaussians. In these cases one Gaussian peaked at values
similar to what is given in this figure, while the second Gaussian favored lower values of
γcΛ, allowing γΛc to once again take on positive values. In the case of the second Gaussian
peak we still found that the γcΛ interaction term took on larger values and in general
was the dominant interaction term. The height of the two peaks was not similar, with the
distribution comparable to Fig. 4.4 presenting a significantly higher peak, leading to our
decision to constraint the range further and focus on the range of values associated with
the higher peak. Due to the preference for higher values of γcΛ we allowed that parameter
to have a range that extended beyond 1, though found that solutions rarely took on values
above this, as we see from the tail of distribution of γcΛ values. Even focusing in the range
of each γ value we still have some degeneracy of solutions, which we can see from looking at

28



0.18 0.21 0.24 0.27 0.30

co

0

0.04

c

0.68 0.72 0.76
h

0.18

0.21

0.24

0.27

0.3

co

0.00 0.04

c

Planck+Ho
Planck+Ho+BBAO
Planck+Ho+SNe
Planck+Ho+BBAO+SNe

Figure 4.3 Triangle plot as in Fig. 4.1, instead showing results for interaction of form QΛc
(Eq. 3.7).
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the blue and orange curves for the probability distributions of the γ parameters. In the case
of γcΛ the blue curve favors a peak value closer to 0.3, while the orange curve favors one
closer to 0.8, whereas when looking at the γΛc distribution we see the opposite trend. In each
case, however, the distribution of both h and Ωco is extremely similar, supporting the notion
that the degeneracy of solutions of the γ parameters does not impact our primary results.
All in all we find that this multiple interaction term returns results similar to our single
interaction terms, providing additional support for dark sector interactions as a potential
remedy for the tension between direct measurement of the Hubble expansion rate and those
from CMB temperature anisotropy measurements, without being able to account for the
discrepancy from the parameter sensitive BAO measurements.
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Figure 4.4 Triangle plot as in Fig. 4.1, instead showing results for interaction of form QcΛ +
QΛc (Eq. 3.8).
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Chapter 5

Conclusion

Over the past two decades significant observational evidence has come to support the ΛCDM
model as the standard cosmological model. Despite this support significant tensions in mea-
surements of the Hubble expansion rate point to physics beyond ΛCDM. In this work we
have demonstrated that introducing interactions that allow for energy exchange between
dark sector components to the ΛCDM model alleviates the tension between HST measure-
ments of the Hubble expansion rate and those from Planck CMB data. While these tensions
were corrected for, the significant sensitivity of BAO measurements to changes in model pa-
rameters prevented a full alleviation with all available data. All in all we find that dark
sector interactions are a strong candidate as an extension to the ΛCDM model and warrant
additional research. Future continuations of this work would include testing more exotic
functional forms of these interactions, as well as potentially introducing perturbations.
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