
Improving Inference via Perturbations
by

Ying-Ying (Brittany) Lu

Undergraduate Thesis Supervised by
Dr. David Sivak

Department of Physics
Faculty of Science

c• Ying-Ying (Brittany) Lu 2019

SIMON FRASER UNIVERSITY Spring 2019

Template modified from the sfuthesis.cls class.



Abstract

Cellular networks in biological systems are complex and as such, identifying the molecular
interactions that give rise to the complex behavior observed can require an immense amount
of data. Often, statistical and machine learning techniques are used to analyze this data and
extract a global picture of network dynamics. One of the challenges of network analysis in
systems biology is finding the connections between genes, proteins, or both, and predicting
additional ones that have not yet been detected experimentally.

This problem is easily mappable to the inverse problem of statistical physics: inferring the
microscopic particle-particle interactions given macroscopic observations of a system. In
particular, the focus of this work is to investigate whether perturbations can be introduced
into the system so as to improve the output data quality. Specifically, we explore how per-
turbations in the form of magnetic field can be used to improve the inference of interactions
for a three-spin Ising system. Utilizing a maximum likelihood approach, we empirically
show that there exists an optimal field where learning is most e�cient. Such a field seems
to counteract the individual interactions between spins, allowing for optimal inference.
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Chapter 1

Introduction

Stem cells have the potential to develop into di�erent types of cells. Under certain conditions,
they can be induced to become tissue or organ-specific cells with specialized functions [1].
In 2006, researchers at Kyoto University demonstrated that mature, specialized cells could
be reprogrammed into stem cell-like states, by introducing genetic perturbations to the cell
cultures [2]. The ability to reprogram cells gives potential to treat illnesses such as diabetes,
cancer and heart diseases. However, to successfully design a stem cell requires an under-
standing of the regulatory networks that interact to control the level of gene expression.
Today, there exists high-throughput techniques such as Drop-seq to simultaneously analyze
mRNA expression in thousands of cells [3]. Nevertheless, cellular networks are complex,
and identifying molecular interactions that causes this complex behavior, either through
experimental or computational methods, may require extensive quantitative information,
which is not always available [4].

Statistical physics seeks to study the behavior and interactions of microscopic particles in
a macroscopic system. In the inverse problem, given a set of observations of a system whose
microscopic parameters are unknown to us, we want to infer the parameters describing the
system. In this work, we aim to understand how a biological network can be perturbed so
as to better infer the interactions within the network. We use a modeling framework from
statistical physics, and represent a biological network as a Ising spin system, which will be
discussed next. The ultimate goal is to e�ciently reconstruct the network of interactions
within biological systems by improving data quality.

1.1 Ising model

The Ising model was originally introduced to study magnetic materials, but its application
was quickly extended as a model for studying interacting, many-body systems [5]. In the
Ising model, each microscopic degree of freedom in a system is represented by a spin ‡i. In
our model, spins assume discrete binary values. Each spin may point either “up” (‡i = 1)
or “down” (‡i = ≠1) relative to a local magnetic field hi that pushes a spin ‡i to either
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point up or down. The interaction strength between spins ‡i and ‡j is represented by the
pairwise coupling Jij . The interactions within a network can be represented by a matrix J.
When Jij < 0, the spins prefer to be anti-aligned, and when Jij > 0, the spins prefer to
be aligned. The case where Jij = 0 means that the spins do not interact. We impose the
condition that there are no self interactions (Jii = 0).

Since each spin can be in one of two states, a spin network with m spins can be in one
of 2m possible configurations. The Hamiltonian that specifies the energy of the spin system
having particular configurations {sk}, k ‘ 1, .., 2m, and coupling parameters J is

H(sk|J) = ≠

ÿ

i

hi‡i ≠

ÿ

i,j

Ji,j‡i‡j . (1.1)

For an Ising system in equilibrium, probability distribution is

p(sk|J) = 1
Z

exp

S

U 1
T

Q

a
ÿ

i,j

Ji,j‡i‡j +
ÿ

i

hi‡i

R

b

T

V . (1.2)

where
Z =

ÿ

i

e≠—H(sk|J), (1.3)

is the partition function (sums over all configurations), and — = (kBT )≠1. Equation 1.2
gives the probability of observing state sk in a spin system with interactions described by
the matrix J. We may view the temperature T as a temperature that controls the thermal
fluctuations [6]. Throughout, we set T and Boltzmann’s constant to unity, kBT = 1.

For a non-equilibrium system, there does not exist a Boltzmann distribution with a
known Hamiltonian to describe the steady state [5].

In the context of reconstructing genetic networks, each spin can be thought of as the
expression of a particular gene. Gene expression can be on or o�, similar to how spins can
point up or down. Expression is controlled by transcription factors, proteins that bind near
the regulatory region of a gene. A gene targeted by a transcription factor may encode yet
another transcription factor, leading to a chain of regulatory interactions [5].

The inverse Ising problem is the determination of interactions within the spin network.
We allow the network to fluctuate between configurations, and from these observations we
estimate the coupling parameters J. However, we would like to understand how inference
can be improved. Perturbing a biological system, such as by knocking out, silencing, or over-
expressing a gene, o�ers the possibility of improving data quality. Here, our perturbation
is represented by the field hi. Fields that align or anti-align two spins reinforce either the
positive or negative interactions that exist between the spins, analogous to silencing and
over-expressing a gene.
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Chapter 2

Information and motivation

2.1 Maximum likelihood

The Boltzmann distribution for our Ising spin system given by Eq. 1.2 describes the proba-
bility distribution of the states sk for a given coupling matrix J. When the coupling matrix
J’ is inferred from the observation data {x2m} = x1,2 , . . . , xn (where m is the number of
spins in the system), the likelihood function L(J’|{sk}) describes the probability of observ-
ing the given data {sk} as a function of the unknown parameters J’ [7]:

L(J’|{sk}) = p(s1|J’) p(s2|J’) . . . p(s2m |J’) (2.1a)

=
2mŸ

k=1
p(sk|J’). (2.1b)

Suppose we make N observations such that each of the states {sk} = s1, s2, . . . , sn occurs
{xk} times, where {xk} = x1, x2, . . . , xn, the xk’s are not independent. The multinomial
likelihood function is then,

L(J’|s1, . . . , s2m) = N !
x1! x2! . . . x2m ! p(s1|J’)x1 p(s2|J’)x2 . . . p(sn|J’)x2m , (2.2)

Values of J’ that are plausible should have a relatively high likelihood. The maximum
likelihood estimate Ĵ of a parameter J is the value that maximizes the likelihood.

Maximizing the likelihood function can be quite tedious. Since the logarithm is an
increasing function, maximizing the likelihood is equivalent to maximizing the log-likelihood
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function. Taking the logarithm on both sides of Eq. 2.2, we get,

log L = log N ! ≠ log x1! ≠ . . . ≠ log x2m ! + x1 log p(s1|J’) + . . . + x2m log p(s2m |J’)

(2.3a)

= C +
2mÿ

k

xk log p(sk|J’) (2.3b)

= C ≠ —
2mÿ

k

xkH(sk|J’) +
2mÿ

k

xk log Z , (2.3c)

where C = log N ! ≠ log x1! ≠ . . . ≠ log x2m !, and we have used the definition of p(sk|J) in
Eq. 1.2.

To illustrate the idea of maximizing likelihood, shown in Fig. 2.1a is a spin system with
the following coupling matrix,

J =

S

WWWWWWWWWWU

J11 J12 J13 J14 J15 J16

J21 J22 J23 J24 J25 J26

J31 J32 J33 J34 J35 J36

J41 J42 J43 J44 J45 J46

J51 J52 J53 J54 J55 J56

J61 J62 J63 J64 J65 J66

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

0 1 ≠1 0 0 0
1 0 0 1 0 0

≠1 0 0 ≠1 1 1
0 1 ≠1 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0

T

XXXXXXXXXXV

. (2.4)

We impose the conditions that the matrix is symmetric, Jij = Jji, and that there is no self
interaction, Jii = 0. The coupling matrix was specifically chosen to show two examples, one
where Jmn is easy to learn, and the other where Jmn is hard to learn.

Suppose we do not know the value of Jmn, the interaction between spins ‡m and ‡n, but
we know all other coupling parameters Jij , i, j ”= m, n. Ignoring the term C = N !

x1!x2!...xn! in
Eq. 2.3a that is independent of J, we get

log L(J Õ

mn|{sk}) =
nÿ

k=1
xk · log P (sk|J Õ

mn) . (2.5)

Here, P (sk|J Õ
mn) is the probability of observing the system in state sk as a function of J Õ

mn.
Rather than observing the system N times and then tallying the number of occurrences

for each of the states in {sk}, we will assume that xk in Eq. 2.2 is proportional to the true
probability distribution of the system with coupling matrix given by Eq. 2.4,

xk Ã P (sk|J), (2.6)

where P (sk|J) is the actual probability of the system found in state sk.
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Figure 2.1: Example likelihood function of an arbitrary six-spin network. a) A six-spin
network with positive (solid black line) and negative (dotted red line) unit interactions.
b) Likelihood as a function of coupling coe�cient J13. The function peaks at J13 = ≠1.
c) Likelihood as a function of coupling coe�cient J35. The function levels o� at J35 ¥ 0.
In (b) and (c), the dotted blue line indicates the value of the true coupling coe�cient,
corresponding to the diagram above.

Doing so, we normalize the likelihood function by fixing
q

k xk = 1. It follows that

log L(J Õ

mn|{sk}) Ã

nÿ

k=1
P (sk|J) · log P (sk|J Õ

mn). (2.7)

The overall shape of the actual value of the function will be the same as what is plotted.
We choose not to sample because each time we do so, the distribution for the count changes,
which a�ects our estimate. In Fig. 2.1b, all of the values of Jij are fixed, except for J13.
The function peaks at J13 = ≠1, meaning that this is the value that best fits with the
observations {xk}. Indeed, the actual value is J13 = ≠1. In contrast, when all values but
J35 are fixed, the function in Fig. 2.1c does not peak at the actual value of J35 = 1; instead,
the function begins to level o� at around J35 = 0. Given this data, it is not possible to say
which of the values where J35 > 0 is the most plausible one, as they are all equally likely
to describe that parameter of the system. Moreover, in real systems, we likely do not have
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prior knowledge of any of the parameters. Hence, the likelihood function depends on more
than one parameter, and may peak at di�erent combinations of {Jij}, leading to a di�cult
inference problem.

2.2 Kullback-Leibler divergence

In the inverse problem, we aim to infer a coupling matrix Ĵ giving a distribution p(sk|Ĵ) that
is as close as possible to the true distribution p(sk|J) of our system. To assess the quality
of our inference, we require a way of measuring the dissimilarity between two di�erent
distributions. The “distance” between the two distributions is given by the Kullback-Leibler
divergence (relative entropy) DKL, [8],

DKL
1
p({sk}|J) || p({sk}|Ĵ)

2
=

ÿ

k

p({sk}|J) log p({sk}|J)
p({sk}|Ĵ)

. (2.8)

Note that the Kullback-Leibler divergence is not a distance measure in the usual sense as
is it not generally symmetric, i.e. DKL(p||q) ”= DKL(q||p).

Expanding Eq. 2.8 gives

nÿ

k

p(sk|J) log p(sk|J)
p(sk|Ĵ)

=
nÿ

k

p(sk|J) · log p(sk|J) ≠

nÿ

k

p(sk|J) · log p(sk|Ĵ). (2.9)

When two distributions are identical, Ĵ = J, and it follows that DKL = 0. Thus, we look
for a matrix Ĵ such that the Kullback-Leibler divergence is minimized.

The two summation terms appear to be log-likelihood functions. In fact, we can show
that maximizing the likelihood function is equivalent to minimizing the Kullback-Leibler
divergence. Since we want DKL to be as small as possible, this amounts to maximizing the
second term (the first term is independent of Ĵ), which is also the expectation value of
log p({sk}|Ĵ),

argmax
nÿ

k

p(sk|J) · log p(sk|Ĵ) = argmax E
Ë
log p({sk}|Ĵ)

È
. (2.10)

If n is very large, then E
Ë
log p({sk}|Ĵ)

È
¥

1
n

qn
k log p(sk|Ĵ). Therefore,

argmax E
Ë
log p({sk}|Ĵ)

È
= argmax 1

n

nÿ

k

log p({sk}|Ĵ)

= argmax
nÿ

k

log p({sk}|Ĵ)

= argmax log L(J|{sk}) .

(2.11)
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Thus minimizing the Kullback-Leibler divergence is equivalent to maximizing the likelihood
function as a function of the parameter Ĵ.

2.3 Fisher information

The sharpness of the peak in the likelihood function provides information on the goodness
of the estimate. We want to quantify the amount of information that an observed variable
sk carries about an unknown parameter J with the Fisher information I [8]:

I(J) = E
C

ˆ

ˆJij
log L(J|sk)

D2
. (2.12)

The derivative ˆ
ˆJij

log L(J|{sk}) is known as the score function, describing how sensitive
the likelihood is to changes in J at a particular value of J. The Fisher information is also
the variance of ˆ log L

ˆJij
,

I(J) = Var
C

ˆ

ˆJij
log L(J|sk)

D

. (2.13)

If the likelihood function is twice di�erentiable as a function of Jij , and the integral
s

L dx can be di�erentiated twice under the integral sign as a function of Jij , then it can
be shown that the (ij, mn) element of the Fisher information for a system in a particular
state sk is [9]

Iij,mn(J) = ≠E
C

ˆ2 log L(J|sk)
ˆJijˆJmn

D

. (2.14)

Viewed this way, the Fisher information can be interpreted as the curvature of the likelihood
function at a particular value of J. The more negative the Fisher information, the sharper
the curve, and the more information sk contains about the estimate of J. The less negative
the Fisher information is, the shallower the curve, and the less information sk contains about
the estimate of J. The (ij, mn) entry gives the mixed partial derivative of the log-likelihood
with respect to the coupling coe�cient Jij between spins i and j and the coupling coe�cient
Jmn between spins m and n [10].

To calculate an analytical form of the (ij, mn) element of the Fisher information at the
true parameter value J, Iij,mn, recall Eq. 2.3a:

ˆ

ˆJij
log L(J|sk) Ã ≠

ˆ

ˆJij
(H(sk|J) ≠ log Z) (2.15)
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where the term C has been omitted, since it is independent of Jij . With H given by Eq.
1.1,

ˆ

ˆJij
H(sk|J) = ˆ

ˆJij

Q

a
ÿ

i,j

Jij‡i‡j +
ÿ

i

hi‡i

R

b (2.16)

= ‡i‡j . (2.17)

And since

log Z = log

S

U
ÿ

‡1=±1
· · ·

ÿ

‡m=±1
exp

Q

a
ÿ

i,j

Jij‡i‡j +
ÿ

i

hi‡i

R

b

T

V , (2.18)

the derivative of log Z with respect to Jij is

≠
ˆ

ˆJij
log Z = ≠

ˆ

ˆJij
log

S

U
nÿ

k=1
exp

Q

a
ÿ

i,j

Jij‡i‡j +
ÿ

i

hi‡i

R

b

T

V (2.19a)

=
≠

qn
k=1

ˆ
ˆJij

exp
1q

i,j Jij‡i‡j +
q

i hi‡i

2

qn
k=1 exp

1q
i,j Jij‡i‡j +

q
i hi‡i

2 (2.19b)

=
≠

qn
k=1 exp

1q
i,j Jij‡i‡j +

q
i hi‡i

2

qn
k=1 exp

1q
i,j Jij‡i‡j +

q
i hi‡i

2 ◊ (‡i‡j) (2.19c)

= ≠

nÿ

k=1

exp
1q

i,j Jij‡i‡j +
q

i hi‡i

2

qn
k=1 exp

1q
i,j Jij‡i‡j +

q
i hi‡i

2 ◊ ‡i‡j (2.19d)

= ≠

nÿ

k=1
P (sk|J) ◊ ‡i‡j (2.19e)

= ≠È‡i‡jÍ , (2.19f)

where È·Í denotes an average over the number of samples, and
q

‡1=±1 · · ·
q

‡m=±1 as
qn

k=1
denotes summation over all possible spin configurations. Note that the exponential terms
in the third line (Eq. 2.22c) do not cancel out because the second term is multiplied by ‡i‡j

then summed over all possible states (the values of ‡i and ‡j depend on the subscript k).
With these results, we now return to the definition of the Fisher information, Eq. 2.12:

E
C

ˆ

ˆJij
log L(J|sk)

D2
Ã E [(‡i‡j ≠ È‡i‡jÍ) (‡m‡n ≠ È‡m‡nÍ)] . (2.20)

Therefore, at the true parameters, the (ij, mn) element of the Fisher information is

Iij,mn(J) Ã È‡i‡j‡m‡nÍ ≠ È‡i‡jÍÈ‡m‡nÍ. (2.21)
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Because the spins hold binary values of ±1, along the diagonal ‡i‡i is always equal to 1,
and it follows that È‡i‡jÍ = 1 and È‡i‡j‡i‡jÍ = 1. Thus,

Iij,ij(J) Ã Var [‡i‡j ] = 1 ≠ È‡i‡jÍ
2. (2.22)

If the interactions in a spin network are symmetric and there are no self-coupling terms,
then the Fisher information matrix has dimensions m(m≠1)

2 by m(m≠1)
2 , where m is the

number of spins in the system.

2.3.1 Eigenvectors

For a spin network comprised of more than two spins, the likelihood function depends on
more than one parameter. For example, in a three-spin network, the likelihood function
depends on J = (J12, J13, J23). As such, there exist many combinations of J12, J13 and
J23 that give rise to di�erent likelihood “surfaces”. We want to estimate the best set of
combinations to explain our observations. For a three-spin case, we look for a peak in four-
dimensional space. However, in general, for any given point (J12, J13, J23), there will be
directions that correspond to either “sti�” modes (sharp peaks) or “sloppy” modes (broad
peaks).

The normal curvatures of a surface help characterize the behavior of the likelihood func-
tion as a function of the parameters of interest. These directions of the normal curvatures
are given by the eigenvectors of the Fisher information matrix. The eigenvector v

ú corre-
sponding to the largest eigenvalue ⁄ú gives the direction that is most sensitive to changes
in J. In other words, v

ú can be used to study the the likelihood surface in the direction
corresponding to the most extreme curvature (sharpest peak).

As an example, we examine three di�erent three-spin networks shown in Fig. 2.2. The
magnitude of the coupling strengths are all set to unity. In one of the networks, the strength
coupling coe�cients are uniform. In the second network, two of the coupling coe�cients are
positive while the other is negative, and in the third network, two of the coupling coe�cients
are negative while the other is positive. Given that the true network coupling parameters
are uniform in the first network (Fig. 2.2a), we expect that the eigenvector for the first
network with the largest eigenvalue has all of its elements equal: v

ú = (0.57, 0.57, 0.57),
meaning that the direction where J12, J13, J23 are changed by the same amount has highest
curvature. Similarly, in Figs. 2.2b and c, the directions of highest curvature occur where
J13 = J23.

The higher the eigenvalues are, the easier it is to learn the parameters of the network
using the maximum-likelihood approach, whereas the lower the eigenvalues are, the harder
it is to learn. Higher eigenvalues correspond to lower inference error, as we will see in the
next section. When the eigenvalue is zero, the observations carry no information about the
parameter.
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Figure 2.2: Eigenvectors (bottom row) corresponding to the largest eigenvalue of the Fisher
information matrix of three di�erent spin networks (top row) with a) uniform, positive
couplings; b) one negative (J12 = ≠1) and two positive couplings (J13 = J23 = 1); and c)
one positive (J12 = 1) and two negative couplings (J13 = J23 = ≠1).

2.3.2 Cramér-Rao Bound

Increasing the Fisher information of a system tends to increase the maximum precision (the
amount of relevant information) that can be obtained from an estimation algorithm. Ac-
cording to the Cramér-Rao inequality [8], the mean-squared error of any unbiased estimator
is lower bounded by the reciprocal of the Fisher information:

Var(Ĵ) Ø I(Ĵ)≠1 =
A

≠E
C

ˆ2 log L(J|sk)
ˆJijˆJmn

DB
≠1

. (2.23)

The bias of an estimator Ĵ for the parameter J is the expected value of the error of the
estimator (the error of the estimator is the di�erence between the true parameter and the
estimator), taken with respect to the probability distribution of the true parameter:

E
Ë
Ĵ ≠ J

È
. (2.24)
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The estimator is unbiased if the expected value of the estimator is equal to the parameter.
When the bound is achieved, the estimator is said to be e�cient.

From Eq. 2.23, the lower bound for the variance of the maximum-likelihood estimator
is inversely proportional to the curvature of the log-likelihood function. If the curvature
is low, then there will be a wider spread of values of J Õ that are closer to the maximum
likelihood estimator Ĵ , whereas if the curvature is high, there will be a smaller number of
values that are closer to Ĵ . For this reason, in Ch. 3 we will assess the learning e�ciency by
the harmonic mean of the eigenvalues of the Fisher information matrix, which is the inverse
of the sum of the the inverse of the eigenvalues.

11



Chapter 3

Three-Spin Network

We now return to the three-spin network introduced in Sec. 2.3.1. Each of the spins can
point either up or down, giving a total of 23 = 8 possible network configurations. The three-
spin network is interesting in that the number of spin states is small enough for calculations
and analysis, yet it allows us to study frustration in a network, which occurs when a spin
cannot satisfy all interactions, regardless of the direction it is pointing. Figure 3.1 shows
all of the possible states that a three-spin system can assume, with each state having a
di�erent probability of occurring, depending on the coupling strengths of the network.

Figure 3.1: The eight di�erent states that a three-spin network can assume, when each spin
is restricted to point either up (‡i = 1) or down (‡j = ≠1).

3.1 Unit, Uniform Coupling Strengths

If the coupling parameters Jij , Jmn between spins ‡i and ‡j , ‡m and ‡n, respectively, are
restricted to be uniform in magnitude, i.e. Jij = ±Jmn, then there are ten possible spin
networks each with di�erent coupling matrices, as shown in Fig. 3.2. Note that this number
accounts for permutations: for example, we would get the same set of networks if the labels
of ‡1 and ‡2 were flipped.

Each of these ten networks have di�erent coupling matrices. As before, we will restrict
ourselves to symmetric interactions with no self-interaction. For simplicity, we will refer
to each network by its coupling matrix, denoted as J l. So J0 refers to the network with

12



Figure 3.2: The ten di�erent networks a spin network can assume if the interaction terms are
restricted to be uniform in magnitude, Jij = ±Jmn. Each of these networks has a di�erent
coupling matrix, labeled as J l. A dashed red line indicates negative coupling, and a blue
solid line indicates positive coupling.

J12 = J13 = J23 = 1 (Fig. 3.2a), J1 refers to the network with J12 = ≠1, J12 = J13 = 1
(Fig. 3.2b), etc.

3.1.1 Probability distribution

As a check, in Fig. 3.3, the probability distributions of each of the ten networks in Fig. 3.2 are
plotted as a function of the eight states shown in Fig. 3.1. Figure 3.3a shows that two states,
where all spins are aligned, exist with equal probability when the interactions between the
spins are positive: the positive interactions induce the spins to align themselves. For spin
networks J2, J3, J4 and J6, there are also two states that occur with equal probabilities,
close to 1/2.

From these diagrams, we can see that J1 corresponds to a frustrated system. The positive
couplings between ‡1 and ‡3, as well as ‡2 and ‡3, tend to align both ‡1 and ‡2 with ‡3.
However, the negative interaction between ‡1 and ‡2 causes these two spins to prefer to be
anti-aligned. For that reason, there is no single state that the system prefers to assume, as
shown in Fig. 3.3b. States 1, 3–6, 8 occur with the highest probability; these are the ones
in which spin ‡3 is aligned with spins ‡1 or ‡2. Conversely, states 2 and 7 occur with the
lowest probability, as these states align spins ‡1 and ‡2.

In Fig. 3.3, spin network J5 has all negative coupling coe�cients, hence the probabilities
of states 1 and 8, where the spins are all aligned, are near zero. Since spin networks J7 and
J8 are opposite images of each other, their probability distributions complement, with the
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Figure 3.3: Probability distribution of the ten networks over the eight states shown in Fig.
3.2 with no applied field h = 0 (black circles), or with the optimal field h = (hú

1, h
ú
2, h

ú
3)

(magenta triangles).

highest probabilities occurring in the states where the spins ‡1 and ‡3 are anti-aligned and
aligned, respectively.

The last spin network, J9 has no coupling between spins; thus all states occur with equal
probability (Fig. 3.3j) as the exponential term in Eq. 1.2 is zero.

3.1.2 Harmonic mean

Figure 3.4 plots the inverse of the trace of the inverse of the Fisher information for each of
the ten networks. The trace of the Fisher information matrix is the sum of its eigenvalues. It
follows that the inverse of the trace of the inverse of the Fisher information can be written
in terms of the sum of the eigenvalues ⁄i of the Fisher information matrix,

Tr
Ë
I

≠1
È

≠1
= 1

qn
i=1

1
⁄i

, (3.1)

where the (ij, lm)-element of the Fisher information is given by Eq. 2.21.
Equation 3.1 is the harmonic mean of the eigenvalues of the Fisher information. The

lower the value of the harmonic mean, the harder it is to estimate the true coupling param-
eters, while the higher the value, the easier it is, since the harmonic mean is the weighted
sum of the variances along the eigen-directions. We will refer to the harmonic mean as
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Figure 3.4: Inverse precision bound of the ten three-spin networks with zero field, h = 0

(black circles) and with optimal field, h = h
ú (magenta triangles).

the “inverse precision bound”, as it is related to how precisely a model parameter can be
measured (refer to Sec. 2.3.2).

Figure 3.4 shows that the easiest spin network to learn is spin network J9, where there
are no interactions between the spins, and where the probabilities are equal across all states.
By contrast, the hardest networks to learn are J0 and J3. These two networks have two
states with high probabilities while the remaining six states have equally low probabilities. It
appears that networks that are easier to learn have a more uniform probability distribution,
with fewer excited states and less energy in the ground states, as in networks J1, J5 and
J9 (see Fig. 3.5 for plots of the energy distributions.).

Networks J0 and J3 may be harder to learn because two out of the eight states occur
with probabilities close to 50%, while the other states occur with essentially zero probability.
While networks J2, J4 and J6 also have two states with high probabilities, some of the
other states have significantly non-zero probabilities.
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Figure 3.5: Energy distribution of the ten three-spin networks across the eight states shown
in Fig. 3.2, with no field h = 0 (black circles) and the optimal fields h

ú = (hú
1, hú

2, hú
3)

(magenta triangles).

3.2 Optimal perturbation

We now return to our original question: does there exist a perturbation field in which
learning e�ciency is improved? To answer this, for each of the ten networks a range of fields
hi in Eq. 1.1 are individually applied to each of the spins ‡1, ‡2, and ‡3. We then search for
a combination of fields h

ú = (hú
1, hú

2, hú
3) that maximizes the harmonic mean of the Fisher

information eigenvalues (Eq. 3.1).
Figure 3.6 shows contour plots of the inverse precision bound as a function of the fields

h1 and h2, with h3 set to the optimal value. Note that only the relative signs between the
fields matter: the inverse precision bound is identical for applied fields (h1, ≠h2, h3) or for
applied fields ≠(h1, ≠h2, h3) = (≠h1, +h2, ≠h3).

Fig. 3.4 shows the maximal values of inverse precision bound (triangles) attained for the
optimal fields. J9 is still the easiest network to learn.

Figure 3.7 shows the directions of the optimal fields for each of the ten networks, for the
couplings given in Fig. 3.6. In all of these cases, the fields seem to counteract the interactions
between spins. Where there is positive coupling between spins ‡i and ‡j , the optimal fields
hi and hj are opposite in direction, and where there is negative coupling between spins, the
optimal fields hi and hj are in the same direction. For example, in the frustrated network
J1 (Fig. 3.7b), the optimal fields push ‡1 and ‡2 to align (against the negative coupling
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Figure 3.6: Contour plot showing the inverse precision bound (Eq. 3.1) as a function of
fields h1 and h2, at the optimal field hú

3. The optimal fields h
ú = (hú

1, hú
2, hú

3) that maximize
the inverse precision bound are given on the top of each subplot.

between them), ‡1 and ‡3 to anti-align (against the positive coupling), and ‡2 and ‡3 to
anti-align (again, against the positive coupling).

Although we have shown that the optimal fields h
ú = (0, ≠4.3, ≠4.3) counteract the

negative coupling between spins ‡2 and ‡3 in Fig. 3.7d, the Fisher information is equally
maximized when fields of the same magnitude are applied to spins ‡1 and ‡2, but in opposite
directions: h

ú = ±(4.3, ≠4.3, 0). In this case, the field counteracts the positive coupling
between ‡1 and ‡2.

In Fig. 3.8 the variance terms È‡i‡j‡m‡nÍ and È‡i‡jÍÈ‡m‡nÍ that make up the analytical
form of the Fisher information (Eqs. 2.21, 2.22) are plotted. Since the Fisher information
matrix is symmetric, only four terms are shown: Iij,ij , I12,13, I12,23, and I13,23.

Focusing on the black and magenta circles that represent the value of the first term in
Eq. 2.21, È‡i‡j‡m‡nÍ, with and without the field, respectively, we see that the field brings
this value closer to zero. Similarly, application of the optimal field reduces the magnitude of
the second term, È‡i‡jÍÈ‡m‡nÍ (black triangles for h = 0 and magenta triangles for h = h

ú,
respectively).

After the application of the field, the inverse precision bound for all the networks have
approximately the same order of magnitude, because the elements of the Fisher information
have all been reduced. Not only is the inverse precision bound larger when the trace is
maximized, but also when the o�-diagonal entries approach zero, i.e. when È‡i‡j‡m‡nÍ
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Figure 3.7: The relative directions of the optimal fields on the ten networks of a three-spin
network with unit couplings. The arrows are not drawn to scale. Note that the directions
of the fields can be simultaneously reversed to give the same maximal value of Tr

#
I

≠1$≠1.

is close to È‡i‡jÍÈ‡m‡nÍ (recall Eq. 2.21), as in network J9 (Fig. 3.8j). The optimal field
seems to reduce correlations between the spins in the system, thereby increasing Iij,ij (since
È‡i‡jÍÈ‡m‡nÍ becomes closer to zero) and decreasing Iij,mn (since both the magnitudes of
È‡i‡j‡m‡nÍ and È‡i‡jÍÈ‡m‡nÍ are smaller). In network J9, where the inverse precision bound
has the highest value, the o�-diagonal terms are equal to zero, while the diagonal element
È‡i‡jÍÈ‡m‡nÍ is small (È‡i‡jÍÈ‡m‡nÍ = 0.125). For this network, spins fluctuate depending
on their thermal environment and do not interact.

3.2.1 Probability distribution

Referring back to the triangles in Fig. 3.3, we can see that when the optimal field is applied
to any given network, certain states increase in probability, while others decrease. In general,
application of the field seems to reduce the probability di�erence between states for all ten
networks, and increases the probability of otherwise unlikely states. For example, states 2
and 4 in spin network J0 increase in probability while states 1 and 8, which initially have
probabilities of ≥50%, decrease in probability. States 2 and 4 correspond to states with
spins ‡1 and ‡3 aligned with the direction of the optimal field shown in Fig. 3.7a, while
states 3, 5, 6, and 7 have spins ‡1 and ‡3 anti-aligned with the direction of the optimal field
or both anti-aligned with spin ‡2 (‡2 still experiences positive interactions with ‡1 and ‡3).

In the frustrated network in Fig. 3.7b, the optimal field shown is h
ú = (4.0, 4.0, ≠4.0).

States 1, 2, 4, and 6, which correspond to the network having two or more spins anti-aligned
with the applied field, have the lowest probabilities. Conversely, states 3, 5, 7 and 8 have
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Figure 3.8: Components of the Fisher information for each of the ten networks: È‡i‡j‡m‡nÍ

(circles) and È‡i‡jÍÈ‡m‡nÍ (triangles), with h = 0 (black) and h = hú (magenta).
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the highest probabilities – these correspond to states that have two or more spins aligned
with the applied field.

Learning occurs best for network J9 when there is no field applied. This is reasonable
because the lack of interactions between the spins allows the spins to fluctuate indepen-
dently. Applying a field does not provide information on how tightly coupled the spins are
and destroys the uniformity of the probability distribution. Moreover, application of an
incorrect field can result in erroneous predictions, because the probability distributions of
systems (and hence the likelihood function) at incorrect fields may resemble each other.
For example, in Fig. 3.9, the likelihood functions and the probability distributions for spin
networks J8 and J9, which have an improperly applied field of h = (≠5, 5, ≠5), appear
identical. Given this data and assuming that the range of parameter values were unknown,
the observer would be unable to infer the couplings, despite knowing the strength of the
applied field.

Figure 3.9: Likelihood function (a) and probability distribution (b) of networks J8 (magenta
triangles) and J9 (blue circles) with h = (≠5, 5, ≠5).

3.2.2 Energy distribution

We can also look at the energy distribution of the networks before and after the application
of the optimal field (Fig. 3.5). At equilibrium, a system prefers to be in the lowest energy
state(s). For an Ising spin network, the optimal field seems to generally reduce the energy
of excited states. With the field applied, certain states that are unfavorable due to the
positive/negative interactions between the spins as well as states that are aligned with the
field have a reduction in energy, while states that have two or more spins anti-aligned with
the direction the field are excited.

But how much does the Fisher information increase after the application of the field?
The purple triangles in Fig. 3.4 show the values of the harmonic mean after the optimal
field is applied. Networks (such as J0 and J3) that have greater increases in the harmonic
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mean have fewer states that increase in energy. Excluding network J9, networks J1 and
J5 show the smallest increase in the harmonic mean. The two networks each have 4 states
that increase in energy, and 4 states that are reduced in energy. The di�erence in energy
between the most excited states and the ground states is largest in these two networks.

Even with the optimal field, as in the absence of any applied field, networks J0 and J3

are still the hardest networks to learn. The next two easiest networks to learn after network
J9 are networks J7 and J8 (which only have spins ‡1 and ‡3 coupled). Excluding network
J9, these two networks have the smallest energy di�erence between the ground states and
the highest excited states, and as mentioned previously in Sec. 3.1.2, have higher energy
ground states. Networks J0 and J3 have the lowest energy ground states. While network
J5, which is easier to learn than network J0 and J3 (but slightly harder to learn that J7

and J8) also has the same low energy ground states, the energy di�erence between most of
its states is smaller, with one high energy state that occurs with essentially zero probability.

The energy di�erence between the original states with no applied field and the states
with the applied field provides a way to measure how much energy is required to decouple
the interactions between spins, to better learn the strength of the couplings within the
networks.

3.2.3 Likelihood function

Figure 3.10 shows the likelihood functions (on a log scale) with and without the application
of the optimal field for the two networks J0 and J3 that are hardest to learn.

The likelihoods are marginal likelihoods as a function of unknown parameter Jij , with
all the other parameters set to their true values.

For both networks, when the field is zero, the likelihood function is flat around the true
parameters. This shows why spin network J0 is di�cult to learn: although spins prefer to be
aligned most of the time, it is di�cult to estimate how strong the couplings are. Values of
the coupling constants that are positive are equally likely to explain why we observe states
1 and 8 the majority of the time. Similarly, for network J3, there are two states that occur
with probabilities close to 50%. Since the network is overwhelmingly likely to occupy one
of those two states, it is also di�cult to estimate the strength of the interaction. However,
applying h = h

ú reveals how tightly bound the spins originally were, and the curvature
of the likelihood functions increase near the true parameters. Clearly, inference has been
improved, as indicated by the thousand-fold increase in harmonic mean (refer back to Fig.
3.4). We have Tr

#
I

≠1$≠1 = 6.7 ◊ 10≠3 when h = 0 and Tr
#
I

≠1$≠1 = 1.6 ◊ 10≠1 when
h = h

ú, for both networks.
Without the field, the likelihood function for network J0 (Fig. 3.10a) is the same for

J12, J13 and J23 because of the symmetry in the network: all coupling parameters are equal
to zero. With the field on, the likelihood function for J13 di�ers from the likelihood functions
for J12 and J23, because the field is only applied to spins ‡1 and ‡3.
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a)

b)

Figure 3.10: Likelihood function for networks a) J0 and b) J3, with h = 0 (solid black line)
and h = h

ú (dashed-dot magenta line). The true coupling coe�cient is given by the dashed
blue line.

Figure 3.11 shows the likelihood functions of J1 and J5, the networks that, upon appli-
cation of their optimal field, show the smallest increases in the harmonic mean of the Fisher
information eigenvalues (from 0.19 when h = 0 to 0.25 when h = h

ú). The increase is much
smaller compared to networks J0 and J3.

Upon application of the optimal field, the likelihood functions appears to rotate slightly,
with not much di�erence between the curvatures of the likelihood function of the networks
with and without the optimal fields.

As a comparison, Fig. 3.12 shows the likelihood function for spin network J9, which has
the best learning e�ciency out of all networks, with the optimal field and at zero field. The
likelihood functions are symmetric about zero, and have the sharpest curvature out of all
ten networks.

Also shown in Fig. 3.12 is the likelihood function at very large fields; the likelihood is
flat everywhere (dashed magenta line), indicating that inference is poor. In general, for all
spin networks, the learning e�ciency is worst at when

q
hi‡i ∫

q
Jij‡i‡j , i.e. at high field

strengths.
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a)

b)

Figure 3.11: Likelihood function for networks a) J1 and b) J5, with h = 0 (solid black line)
and h = h

ú (dashed-dot magenta line). The true coupling coe�cient is given by the dashed
blue line. The likelihoods have been scaled so that the largest value is 1.

3.3 Non-unit, uniform coupling strengths

Section 3.1 presented results for unit coupling strengths, Jij = ±1. In this section, we
examine networks that have non-unit, but still uniform, coupling strengths of magnitude
c = 0.1 to c = 2.0. For each of these values, we find the fields that maximize the inverse
precision bound.

Fig. 3.13 shows the field h
ú = (hú

1, hú
2, hú

3) as a function of the coupling strength. To
save computational time, the values of (hú

1, hú
2, hú

3) were incremented in steps of 0.05 for
coupling strengths greater than 0.5, or in steps of 0.01 for coupling strengths less than 0.5.
For network J5 however, the fields were searched in steps of 0.01 at all coupling strengths,
because this network was analyzed separately.

Since there is more than one possible combination of (hú
1, hú

2, hú
3) for certain networks

(because only the relative directions are important), the directions of the fields were chosen
to match the directions shown in Fig. 3.7. For all networks the field increases linearly with
the coupling strengths.
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Figure 3.12: Likelihood function for network J9, where the interactions between spins are
all zero, Jij = 0 without the field h = 0 (black solid line) and with a very large field
h = (20, 20, 20) (magenta dashed line). The true coupling parameters are given by the
dashed blue lines. The likelihood has been scaled so that the largest value is 1.

Figure 3.14 shows the inverse precision bound for both the perturbed (magenta triangles)
and the unperturbed (black circles) cases at di�erent couplings strengths, for each of the ten
networks shown in Fig. 3.2. Without the field, the Fisher information decreases dramatically
for most of the networks. In particular, for networks J0, J2, J3, J4, J6, J7 and J8. the
Fisher information tends to zero when Jij > 1.5. The Fisher information approaches zero for
these networks because there are fewer low energy states. As the coupling strength increases,
so do the energies of the excited states. From the analysis in the previous sections, it seems
that systems that are easier to learn have a more uniform probability distribution; thus
when coupling strengths increase, the systems are more likely to stay in their ground states,
increasing the di�erences in energies between the ground and the excited states.

With the optimal field applied, the Fisher information decreases much less as the cou-
pling strength is increased. At around Jij = 0.75, the Fisher information begins to level o�.
Networks J0 and J3 have the largest decrease – these are the networks that are hardest to
learn, as noted in the previous section (Fig. 3.4 shows the unit coupling case). The harmonic
mean for network J9 (the network that is easiest to learn) is 0.292, whereas the smallest
value of the Fisher information is 0.159 for network J0 with c > 0.75.

When the coupling strengths increase, inference becomes more di�cult, since the cur-
vature of the log-likelihood decreases. Past a certain value, inference is almost impossible
since the harmonic mean of the Fisher information eigenvalues is near zero. The e�ect of the
optimal field seems to minimize the change in the curvature of the log-likelihood function
near the true coupling parameter, i.e. minimize the overall change in the Fisher information.
Hence, as the coupling strength increases, inference is possible with the application of the
optimal field.

In Fig. 3.15, the energy and the probability distributions for networks J5, J1 and J0 are
shown for four di�erent coupling strengths, c = 0.5, 1.0, 1.5, 2.0. To compare the di�erence
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Figure 3.13: Values of the optimal field h
ú for networks J0 through J8, (network J9 is

omitted, because the optimal fields are zero for all values of c shown on this figure), as a
function of coupling strength c. The directions of the fields are chosen to match the directions
shown in Fig. 3.7. The field applied onto spin hú

1 is shown in blue; on hú
2 in orange; and on

hú
3 in green.
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Figure 3.14: Inverse precision bound as a function of coupling strength for network J0

though J8 in Fig. 3.2. Black circles show the inverse precision bound for the unperturbed
case, while magenta triangles show the maximized Fisher information for the optimal field.

in energies before and after the application of the optimal field, we also plot the distributions
for coupling strength c = 2.0, but with zero field. Changes in the coupling strength does
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not appear to change the probability distribution of the networks that are perturbed with
the optimal field.

Figure 3.15: Energy (top row) and probability distribution (bottom row) for various coupling
strengths c (circles) for a) network J5, b) network J1 and c) network J0. For reference,
analogous results for c = 2.0 and no field, h = 0, are also plotted (light blue triangles).
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Chapter 4

Conclusion and Future Work

One of the main challenges in computational biology is the reconstruction of biological
networks from high-throughput data. Understanding the interconnections within biological
networks, such as genetic or signaling pathways, allows the potential for scientists to repro-
gram or design cells that can proliferate into specialized cells. In this work, we sought to
understand how to better predict the interactions within biological networks by modeling
them with a binary Ising spin system. Using the maximum-likelihood approach, we intro-
duce perturbations in the form of fields to various three-spin networks so as to optimize
inference. The optimal perturbations maximize the Fisher information (the curvature of
the likelihood function) near the true parameters. We show that inference is improved with
the application of particular fields, as judged by the increase in curvature of the likelihood
function. By reducing their energies, such fields increase the probability of certain states
that would otherwise not be observed. This optimal field seems to decouple and de-correlate
the interactions between the spins, allowing us to see how tightly bound the spins are.

For networks with uniform couplings, we show that optimal field strength depends on the
coupling strength between spins, increasing linearly with coupling strengths. We find that
at higher coupling strengths, with the optimal field, the quality of inference is not reduced
significantly, and perhaps stabilizes beyond a given coupling strength. At the optimal fields,
the probability distribution does not change much when the coupling strength is varied.

Questions arise, however, when finding the optimal fields for large systems, as well as for
large coupling strengths. As the number of spins in the network increases, so do the number
of fields that need to be optimized. With the addition of each field comes an extra dimension
when calculating the Fisher information for a particular value of the field. It would be time
consuming to precisely search through all combinations of the fields for the best Fisher
information in a very large system. In real biological systems, the number of “spins" is very
large, as there are many compounds, some undiscovered, that a�ect DNA transcription
and protein production. Enhancement or suppression of gene expressions, represented by
the magnetic field, depend on many factors. Moreover, the magnitude of interactions (spin
couplings) will vary for di�erent compounds. In a cellular setting, we can imagine finding the
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optimal field by introducing or eliminating specialized proteins or other genes that changes
how the expression of (or lack of) one gene a�ects the expression another.

To tackle this issue, we require methods to predict optimal fields, which begins with
understanding how field a�ects simple networks such as the ones studied in this work.
Future work could include the study of non-uniform systems that have various coupling
strengths between di�erent spins, as well as system that have non-symmetric interactions.
It would also be interesting to see how the optimal field scales with coupling strength for
systems that exhibit self-coupling.
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