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Abstract

To study how gene-gene interactions may be controlled, and driven toward particular gene
states, an Ising model has been proposed to model genes as binary interacting spins. To
determine the effect of ‘clamping’ the states of particular genes requires accounting for
the other interactions in the network through the renormalization scheme proposed in this
thesis.
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Chapter 1

Introduction

Stem cells are widely known for their ability to transform into different cell types—like
nerve and muscle cells, which serve very specialized functions in the body [8]. Their ability
to differentiate is attractive from a medical perspective because of the possibility for new
treatments to create and replace damaged cells, and by extension, tissues and organs. Thus,
research programs have been dedicated to determining how cellular transformations can be
controlled in pursuit of these goals. Awards have been given out for ground breaking
techniques in cell “reprogramming,” one of the most prominent being the 2012 Nobel Prize
in Physiology or Medicine to Shinya Yamanaka and Sir John B. Gurdon [1], for showing
how mature cells can be turned back into stem cells.

1.1 A Model of Gene-Gene Interactions

Though cells perform different functions, their core genetic code is identical. Their identity
is determined in large part by what genes are transcribed and then translated into pro-
teins. This expression or repression of genes is regulated by other genes in a complex web
of interactions. These interactions have been modelled as stochastic and dynamical sys-
tems [14, 6, 9] which have found cellular identities to be the steady states of gene expression
in a stochastic model or stable fixed points of gene expression in a system of differential
equations [11]. Experimental measurement of the expression levels of certain genes have
allowed these models to be tested.

The data used to study the expression of every gene in a set of cells has been improved
by recent developments in measuring techniques that can measure gene expressions in in-
dividual cells. In 2009, Tang et al measured the entire gene expression of a single cell [12],
and in 2015 the methods for measurement became enhanced significantly when Macosko et
al [3] profiled of the expression levels of ‘thousands of individual cells’ [3, 13]. By essentially
taking snapshots of the gene expression states for individual cells, the accumulated data
opens up studies in modelling the distribution of gene expression ‘states’ [13].
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Because of their ability to model interactions, Ising models have been adopted in ‘in-
teracting many-body systems’ [5]. In biology, Ising models have been used to model the
transmission of signals in networks of neurons in the brain [2], and they were used to model
gene-gene interactions [10].

A probabilistic model of the distribution of gene expression is a probability function
P (g) where g is a gene expression vector whose elements correspond to the level of gene
expression gi for the corresponding gene i. A simple way to apply the Ising model [13] is
to let each element of g be drawn from {−1, +1} where −1 represents a lower than average
expression of a gene and +1 higher than average. The genes are essentially treated as 2-state
spins. The hills and valleys of the probability function P reflect the gene-gene interactions
described earlier. The probability is described by the Boltzmann distribution

P (g) = exp(−H(g))
Z

, (1.1)

where Z is the normalization constant and the energy

H(g) = −
∑
i,j

giJijgj −
∑

i

higi, g = {gi}i=1,2,...,N , (1.2)

for a genome of N genes. The constants Jij and hi are coefficients that are to be determined
by fitting the function P (g) to the data. Physically, Jij represents an interaction between
genes gi and gj . If this coupling is positive, then the genes tend to be expressed or repressed
together. This is reflected in the lowering of the energy H. The coupling can also be negative
and represents an “anti-aligned” interaction where one gene tends to be expressed when the
other is repressed. The average expression level of each gene i are determined by hi.

Thus, this model of a gene system can be translated in terms of a spin system with
ferromagnetic and anti-ferromagnetic interactions and local fields at each spin, where spin
up (↑) and spin down (↓) states are represented by +1 and −1 respectively.

1.2 Problem of Control

Where the Ising model illuminated the understanding of the bulk behaviour of materials
under different temperatures and magnetic fields [7], this model (i.e. given Jij and hi for
a gene system) will hopefully reveal techniques for cell fate control. Sivak and Thomson
were among the first to explore strategies in controlling such Ising models, in this context,
to control stem cell fate [13].

To ‘drive’ a stem cell to become a certain differentiated cell requires specifying a partic-
ular gene expression profile gt,0 for a certain set of “target genes” {gt} (t are the indices of
the target) [13]. Currently, it is possible to set or “program” certain genes (called ‘control
genes’ {gc}, where c are the indices of the potential controls) in some desired configuration
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gc,0 [6]. Thus the problem of control is to (1) determine which control genes gc to clamp,
and (2) in what configuration gc,0 they must be set so that the marginal probability dis-
tribution P (gt = gt,0|gc = gc,0) of the target profile is maximized, compared to when the
cell is uncontrolled, P (gt = gt,0). The marginal probability of the target profile is expected
to determine the number of stem cells which differentiate into the desired cells, once the
control is set. Some current programming techniques provide very low yield [6], further
motivating this examination.

1.3 Model Properties

1.3.1 Structure of the Interactions

Any set of couplings J ′ij can be recast, without any change in the probability distribution
function, into a new set of couplings Jij so that Jij = 0 for i ≥ j. Since

H ′(g) = −
∑
i,j

giJ
′
ijgj −

∑
i

higi (1.3)

= −
∑

i

J ′ii −
∑
i<j

gi(J ′ij + J ′ji)gj −
∑

i

higi . (1.4)

The first sum is a constant and will be eliminated in the normalization of the Boltzmann
distribution. The new set of couplings is then

Jij =

0, i ≥ j

J ′ij + J ′ji, i < j
, (1.5)

so that H(g; J ′ij) = H(g; Jij) + const. The resulting matrix representation is upper tri-
angular. Moreover, each pair of gene variables gi and gj will now only have one coupling
coefficient between them that appears in the Hamiltonian.

1.3.2 Gauge Transformation

Any target state g′t can be changed to be all spin up with appropriate transformations of
Jij and hi. Suppose a target spin g′t is “desired” to be spin down, then the following gauge
transformation preserves the energy spectrum of the system:

gt → −g′t, Jti → −Jti ∀i and likewise for Jit, and ht → −ht, (1.6)

since the only terms which change in the Hamiltonian are:

H(g′)→ −
∑

i

(−Jti)(−gi)gt −
∑

i

(−hi)(−gi) = H(g) . (1.7)
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The control solution to the new problem (where all targets are spin up) with new couplings
and local fields, is the same as the control solution to the original problem.

1.4 Approach

To simplify the study, we first assume that hi = 0 for all i. This helps illuminate how
couplings alone should affect our choice and setting of gc’s. Then we examine a few very
simple gene systems to determine the relationships between the control and target genes,
and what this suggests for choice and setting of the control. Finally, we take into account
the various influences examined and combine them through a renormalization approach
between genes.
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Chapter 2

Elements of Control

2.1 Probability Calculations

Recall that c and t represent the indices of the control and the target genes respectively. Let
a represent the indices of the auxiliary genes—neither target nor control. If a target gene
is also a control, simply set the control to be spin up, otherwise the marginal conditional
probability of the target states is zero. So we assume that the control gene set does not
contain any target genes.

The marginal probability distribution of a specified target gene in the absence and
presence of control are,

P (gt) =

∑
· · ·
∑

g′c=±1,∀c

∑
· · ·
∑

g′a=±1, ∀a
exp(−H(g′c, gt, g′a))

∑
· · ·
∑

g′t=±1, ∀t

∑
· · ·
∑

g′c=±1, ∀c

∑
· · ·
∑

g′a=±1, ∀a
exp(−H(g′c, g′t, g′a))

(2.1)

and

P (gt|gc) = P (gc, gt)
P (gc)

=

∑
· · ·
∑

g′a=±1, ∀a
exp(−H(gc, gt, g′a))

∑
· · ·
∑

g′t=±1,∀t

∑
· · ·
∑

g′a=±1,∀a
exp(−H(gc, g′t, g′a))

, (2.2)

respectively, where the energy as a function of g is naturally a function of particular genes,
with the specified indices H(g) = H(gt, gc, ga). The form of H placed in an exponential
and summed over makes evaluating these probabilities analytically difficult except in a few
cases. Thus, the following simple cases permit easy calculation of these sums, and allow us
to quantify the effectiveness of control analytically.
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2.2 The Simple Cases

2.2.1 One Control, One Target Case

Consider a two-gene system with one target and one control gene. The target gene subprofile
is gt = +1 (by convention) and the single coupling is Jct = J between the target and control
gene. Then, using eq. (2.1) and eq. (2.2), the marginal probabilities are

P (gt| gc) = eJgcgt

eJgc + e−Jgc
(2.3)

= eJgcgt

2 cosh J
(2.4)

P (gt) = e−Jgt + eJgt

2eJ + 2e−J
(2.5)

= 1
2 . (2.6)

A plot of the probabilities are shown in fig. 2.1.
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Figure 2.1: Marginal probabilities of the target in the two-gene case.

The qualitative features of the plot are intuitive. If the genes are coupled, then it is
favourable to set the control to be spin up. If the genes are anti-coupled, the opposite is
true. The control effectiveness increases linearly with the magnitude of the coupling, when
the coupling is small. But when the magnitude is large, J & 2, the control effectiveness
levels off. Clearly and notably, if the coupling is small, then there is very little effective
control.

When more control genes are present under a single target gene, it is obvious that each
control should be set according to the sign of its coupling to the target. But less obvious
solutions occur when there are more than one target gene and auxiliary genes.
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2.2.2 One Control, Two Target Case

When the system is extended to one control gene gc with two target genes gt1 , gt2 , the anal-
ysis becomes significantly more difficult. We consider various combinations of interactions
Jct1 , Jct2 and Jt1t2 between all three genes. The sign of the target-target (t-t) interaction can
be positive and negative, so we consider both cases. The plots of the probability improve-
ment through control (normalized by the maximum possible improvement) as a function of
the control-target (c-t) interactions is shown in fig. 2.2.
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Figure 2.2: The normalized improvement in marginal probability of the target states, upon
control. The two target genes are either coupled (left) or anti-coupled (right).

Because we want both target genes in the spin up-configuration, a difference in sign
between the two c-t interactions will limit the probability of the desired target configuration,
since any setting of the control will tend to make them point in opposing directions.

Nevertheless, the best setting of the single control gene is determined by the stronger of
the two c-t interactions. This is concluded from the calculation of the conditional distribu-
tion P (gt1 , gt2 |gc). The results are stark (as illustrated in fig. 2.2): the t-t interactions have
a significant influence on the effectiveness of the control.

The control setting is mostly effective when the c-t interactions are of similar sign
(which is expected). However, as the red region of the plot shows, it is only guaranteed
to be effective if both c-t interactions are sufficiently larger than the t-t interaction. A
negative t-t interaction will decrease the probability that the target genes are both spin-up
even if both c-t interactions are the same sign. This is illustrated in region I and III of
fig. 2.2B. The conclusion from this simple case is that looking at direct c-t interactions are
not enough to determining the effectiveness of a control gene.
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Chapter 3

Renormalization

At the end of Chapter 2, we saw how interactions other than those directly between the
control and target gene can improve or degrade the effectiveness of control. Here, we will
examine ways to account for the effect of indirect interactions on the direct interaction
between two spins in general.

3.1 The Ising Chain

To aid with the analysis of indirect interactions—that is, interactions between two genes
over some chain of interactions—we consider yet another simple case: one target and control
gene, and a set of N auxiliary genes, as sketched in fig. 3.1.

𝐽𝑐,1 

𝐽1,2 

𝑔𝑐 𝑔𝑡 … … … … 

𝐽𝑁,𝑡 

𝐽𝑛,𝑛+1 

Figure 3.1: One control, one target, and N auxiliary genes, with only nearest-neighbour
interactions.

This case is simplified by the assumption that the only interactions in this system are
nearest-neighbour interactions along a chain, as shown in fig. 3.1. To determine the condi-
tional probability of the target state, we well-known calculation techniques [7] performed
on a another 1D Ising chain model, which, like the system in fig. 3.1, only has nearest-
neighbour interactions, but differs in having a boundary condition interaction coefficient
between the target and control genes.
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3.1.1 Original 1D Ising Chain

Ising-type models are typically used to study the behaviour of bulk systems through the
calculation of the partition function of the system. One such system—the 1D Ising chain—is
a special case where the function can be computed exactly [7].

The original model consists of N spins, where each spin interacts with its two nearest
neighbours through the coupling coefficient Ji,i+1. Traditionally, the first and last spin
of the chain are also interacting, which forms the boundary condition. There is also an
assumed global field h applied to each spin, and one can study changes to the partition
function as the field is varied (we shall assume this to be zero). The Hamiltonian is

H(g) =
N∑

i=1
Ji,i+1gigi+1 +

N∑
i=1

higi =
N∑

i=1
Ji,i+1gigi+1 , (3.1)

where the subscript is implicitly assumed to be mod N , for simplicity of notation.

3.1.2 Transfer Matrix Formulation

In the simple model above, transfer matrices are used to calculate the partition function
Z. While Z is usually calculated with temperature and magnetic field terms, we will ignore
these since the bulk properties of the system under these variables are not of interest to us.
What is of interest, however, is the technique used to calculate sums of spin configurations
of exp(−H(g)), in order to compute the various probabilities of interest in eq. (2.1) and
eq. (2.2).

These transfer matrices contain [4], for each interaction coefficient, every configuration
of the two spins that the interaction links. The transfer matrix Pij for the interaction term
Jij is defined as

Pij =
[

eJij e−Jij

e−Jij eJij

]
. (3.2)

The element of the transfer matrix in the a-th row and b-th column may be interpreted as

(Pij)ab = exp[(gi)aJij(gj)b] , (3.3)

where (gi)a denotes the a-th state of the spin (either spin up or down). The indexing of
spin states is the same for all spins (i.e. say for example, the b-th state might spin down,
but it must be spin down for every spin). The construction of the transfer matrix then
encodes all the configurations of the spins it links. The structure of matrix multiplication
of two transfer matrices Pij and Pjk that share a spin gj between them is

(PijPjk)ab =
∑

c

exp[(gi)aJij(gj)c] exp[(gj)cJjk(gk)b] . (3.4)

9



Observe that the states of the spin gj are summed over in each (a, b)-th element of matrix
product. The (a, b)-th element also contains the configuration (gi)a, (gk)b of the pair of spins
gi and gk.

Thus, the chain of transfer matrix multiplications linked by shared spins gj , gk . . . , gq,

PijPjk · · ·PpqPqr , (3.5)

will also sum over all the configurations of the shared spins in each element of the final
product. The elements of the final product also encode the configuration of the ‘first’ and
‘last’ spins in the chain, namely (gi), (gr).

The calculation of Z for the 1D Ising chain with boundary conditions can then come
from the transfer matrices for all the interactions in the chain. For the system represented
by the Hamiltonian in eq. (3.1) the transfer matrix product is

P12P23 · · ·PN−1 N PN1 . (3.6)

Since the index 1 appears on both ends of the chain of transfer matrices, the entries of the
final matrix holds the configurations of spin g1 with itself. Of course, the state of the spin
can only be either spin up or down, so the only valid sum of spin configurations in the
product in eq. (3.6) are those along the diagonal. Thus the trace of eq. (3.6) is the sum
over all spin configurations of the product

∏
i<j

exp(giJijgj) = exp(−H(g)) , (3.7)

which is simply the unnormalized Boltzmann distribution of the system. Therefore,

Z = Tr(P12P23 · · ·PN−1 N PN1). (3.8)

3.1.3 Clamping in the Original Ising Problem

The formulation used to evaluate Z for spins also allows us to evaluate sums involving fixed
or pinned genes. This is necessary to calculate conditional probabilities, which involve a
subset of the sums in the normalization sum Z. This means zeroing offending terms in the
sum Z.

For this simple model, the effects of fixing a gene are easily calculable. Since there
are only two interactions per gene, the effect of pinning a gene only (directly) affects two
other genes. So supposing gene j is fixed to be ‘spin up’ (biologically in a state of higher
than average expression), we must eliminate terms in the matrix where the gene is pointing
down. The transfer matrices that accomplish this (and the equivalent operation of pinning
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a gene down) are

P↑ =
[
1 0
0 0

]
and P↓ =

[
0 0
0 1

]
, (3.9)

respectively. To fix the gene expression, simply sandwich the appropriate pinning transfer
matrix between the transfer matrices that represent the interactions. For example, an
ensemble where gene j is pinned in a configuration q will have the pinning matrix in the
transfer matrix

(PijPqPjk)ab = exp[(gi)aJij(gj)q] exp[(gj)qJjk(gk)b] . (3.10)

Thus, when all the other matrices are multiplied and the trace is taken, the result is the
sum Z, except the terms, where gene j is in a configuration other than q, is zero. The
resulting sum is over every gene configuration where gene b is fixed to be q. This would be
useful in calculating the marginal probability that gene b is in state q.

These matrices are also special in the sense of pulling out particular elements of a matrix.
Thus,

Pq(M)abPq′ = Mqq′ , (3.11)

where Mqq′ is the element of M in the q-th row and q′-th column. If M was a chain
product of transfer matrices between genes gi and gj , the pinning matrices extract the sum
of all configurations for genes ‘sandwiched’ between the matrices, under the configuration
(gi)q, (gj)q′ . This property will be useful in computing the marginal probability of two
genes.

3.1.4 One Control, One Target in the Original 1D Ising Chain

We return to the earlier problem of a single target and a single control gene bridged by
a chain of length N auxiliary spins. We examine the effect of the auxiliary chain as an
indirect interaction between the control and the target.

Using the transfer matrix formalism with pinning matrices, the conditional probability
of the target gene state given a control gene state is.

P (gt|gc) = P (gt, gc)/P (gc) (3.12)

= Tr(Pc1P12 · · ·PNtPtPtcPc)/Z

Tr(Pc1P12 · · ·PNtPtcPc)/Z
. (3.13)

The pinning matrices Pc and Pt are determined by the variables gc and gt according to:

Pi =

P↑, gi = 1

P↓, gi = −1
. (3.14)
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Note how we have clamped both the target and control in the numerator but clamped
only the control in the denominator, in accordance with Bayes’ formula for the conditional
probability. Also note that the normalization Z cancels out.

Calculating the matrix products and traces is facilitated by the rather convenient fact
that each transfer matrix Pij has a eigenvalue matrix Dab and eigenvector matrix S. The
eigenvalue decomposition of the transfer matrix is Pij = V DijV −1 where

Dij =
[
2 sinh Jij 0

0 2 cosh Jij

]
, (3.15)

and

V =
[
−1 1
1 1

]
. (3.16)

The inverse of the eigenvector matrix V happens to be V −1 = 1
2V . The eigenvector matrices

for the transfer matrix Pij is independent of the interaction coefficient Jij , and therefore
constant for all transfer matrices. This conveniently allows us to calculate the product of
transfer matrices.

Thus, let
Pct = Pc1P12 · · ·PNt . (3.17)

This characterize the chain of interactions between the control and the target that pass
through other genes (auxiliary genes). Then eq. (3.13) becomes

P (gt|gc) = Tr(PctPtPtcPc)
Tr(PctPtcPc)

. (3.18)

Now,

Pct = V −1Dc1D12 . . . DNtV (3.19)

= 1
2V

[∏
i=c1,12,...,Nt(2 sinh Ji) 0

0
∏

i=c1,12,...,Nt(2 cosh Ji)

]
V (3.20)

= 1
2

[
KC + KS KC −KS

KC −KS KC + KS

]
, (3.21)

where

KC =
∏

i=c1,
12,...,Nt

(2 cosh Ji) (3.22)

KS =
∏

i=c1,
12,...,Nt

(2 sinh Ji) . (3.23)
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The few remaining matrices may be multiplied and traced out. The denominator of
eq. (3.18) becomes,

Tr(PPtcPc) = 1
2
(
K ′C + K ′S

)
, (3.24)

where K ′C and K ′S are the following ‘extensions’ of KC and KS respectively:

K ′C = (2 cosh Jct)KC (3.25)

K ′S = (2 sinh Jct)KS . (3.26)

Although there are two possible choices pinning matrices Pc for the pinning the control
gene in the denominator according to gc, the pinning matrix zeros out one out of the two
elements in the diagonal of PPtc. Since the two elements happen to be equal, the trace is
independent of the state of the control gene as eq. (3.24) shows.

The trace in the numerator of eq. (3.18) can be simplified to, and summarized as

Tr(PPtPtcPc) = eJtcgtgc

2 (KC + gcgtKS) . (3.27)

So, the the conditional probability can be calculated and simplified into

P (gt|gc) = egcJctgt(1 + gtgcKT )
(1 + KT tanh Jct)(2 cosh Jct)

, (3.28)

where

KT = KS

KC
(3.29)

=
∏

i=c1,
12,...,Nt

tanh Ji . (3.30)

In the absence of auxiliary genes, KT = 0, the probability reduces to the one-gene control
and one-gene target case (the two-gene case). In fact, if any one of the auxiliary interactions
Jc1, J12, . . . , JNt are severed, the conditional probability again reduces to the two-gene case.
Thus, the effectiveness of controlling the target gene is dependent on not only the interaction
coefficient Jct between them, but also on the indirect interaction coefficients through the
auxiliary genes. To make this point clearer, we recast eq. (3.28) in the equivalent form,

P (gt|gc) = 1
2

(1 + gtgc tanh Jct)(1 + gtgcKT )
1 + KT tanh Jct

. (3.31)

Observe that here, the term KT is treated on an equal footing with the interaction term
tanh Jct. This suggests that KT behaves as some effective interaction between the target
and control. Since KT is a product of tanhs of interaction couplings (that may be ±∞),
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|KT | ≤ 1 so the following effective ‘interaction coefficient’ would be defined

J̃ct = tanh−1 KT (3.32)

and may also be ±∞.

3.2 Multiple Independent Auxiliary Strings

3.2.1 Renormalization to One Control, One Target Case

Having established the some notion of an effective interaction along a chain of auxiliary
genes, we seek to clarify what this effective coupling means in not just the conditional
probability of a target gene state given a control, but on the marginal distribution of the
two genes. The interactions between a pair of genes is never just along a single path of
interactions through auxiliary genes, but along multiple ones. So to better understand
the effect of multiple interaction paths between two genes on the marginal probability
distribution of those two genes, we examine the following system illustrated in fig. 3.2.

Consider a control and target gene separated by independent chains of auxiliary genes.
The chains are independent: auxiliary genes can be assigned to a chain, and only interact
with its ‘nearest neighbours’ in forming a chain of interactions between the control and
the target. Thus, not only can auxiliary genes be assigned to a chain, every interaction
coefficient Jij in this system can also be assigned to a chain.

… 

𝑔𝑐 

… 

…
 𝑔𝑡 

… 

… 

… 

… 

… … 

Figure 3.2: A gene system with one control, one target, and multiple auxiliary genes. Each
auxiliary gene interacts with only two other genes.

Suppose the system has M independent chains, since each auxiliary gene is independent,
the sum over all auxiliary genes can be broken up by chains. Furthermore, since each
interaction coefficient Jij also belongs to a chain, the Hamiltonian can be broken up such
that each part of the exponential egiJijgj belongs only to one chain. Thus, the sum over the
auxiliaries can be factored out into different chains from 1 to M :

∑
· · ·
∑

g′a=±1, ∀a
e−H(gc,gt,g′a) =

∑ · · ·
∑

g′a1 =±1, ∀a1

e−H(gc,gt,g′a1 )

 · · ·
 ∑

· · ·
∑

g′aM
=±1,∀aM

e−H(gc,gt,g′aM
)

 .

(3.33)
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If we define Θm(gc, gt) to represent one of the above factors,

Θm(gc, gt) =
∑
· · ·
∑

g′am =±1, ∀am

e−H(gc,gt,g′am
) , (3.34)

then the sum over auxiliaries in eq. (3.33) becomes

∑
· · ·
∑

g′
a′=±1, ∀a′

e−H(gc,gt,ga′ ) =
M∏

m=1
Θm(gc, gt) . (3.35)

Through the transfer matrix formulation, we find that

Θm(gc, gt) = 1
2(1 + gcgtKT,m)KC,m , (3.36)

where KT,m and KC,m function similar to their analogues in the single-chain case, i.e. being
the products of hyperbolic tangents and cosines of interactions along chain m:

KT,m =
∏

i∈Am

tanh Ji (3.37)

KC,m =
∏

i∈Am

2 cosh Ji , (3.38)

where Am = {cam1, am1am2, . . . , amnmt} is the set of indices that denote all the interactions
between genes along the chain m.

Since eq. (3.33) is the traced-out portion of the auxiliary spins, the marginal distribution
for just the control and target gene is

P (gc, gt) =
∏M

i=1 Θm(gc, gt)∑
g′c=±1

∑
gt′=±1

∏M
i=1 Θm(g′c, g′t)

. (3.39)

Observe that any constant factors on Θm cancel each other out in the normalization. Thus,
P (gc, gt) remains invariant under multiplication of Θm(gc, gt) by a constant. This immedi-
ately suggests that we can renormalize Θm(gc, gt) in the following manner:

Θm(gc, gt) ∝
1
2(1 + gcgtKT,m) (3.40)

∝ 1
2(1 + gcgt tanh J̃ct,(m)) cosh J̃ct,(m) (3.41)

= exp(gcJ̃ct,(m)gt) , (3.42)

where we define J̃ct,(m) = tanh−1 KT,m. This is the effective interaction coefficient for the
mth auxiliary chain between the control and the target, since the marginal distribution
eq. (3.39) becomes is equal that of a reduced system with M direct J̃ct,(m) interactions be-
tween the target and control. In other words, the marginal probability eq. (3.39) distribution
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takes on the form
P (gc, gt) = exp(−H̃(gc, gt))

Z
, (3.43)

where

H̃ = −
∑
m

gcJ̃ct,(m)gt (3.44)

= −gc

(∑
m

J̃ct,(m)

)
gt . (3.45)

This immediately suggests a possible further renormalization by a new Hamiltonian with a
single interaction between the target and control gene:

˜̃H(gc, gt) = −gc
˜̃Jctgt, where ˜̃Jct =

∑
m

J̃ct,(m) . (3.46)

The probability distribution of the system which this final Hamiltonian represents has the
same marginal distribution as the original multi-chain system.

The significance of this renormalization of the system is profound. We can now determine
the overall influence of the control gene on the target gene—indeed, any two genes—provided
they are separated by these independent auxiliary chains. Since we have renormalized the
system into the marginal distribution between two genes, we can also calculate the reduced
conditional marginal probability using Bayes’ theorem as P (gt|gc) = P (gt, gc)/P (gc). In
the case of only one auxiliary chain, eq. (3.39) can be shown to produce the conditional
probability in the single-chain case eq. (3.31).

3.2.2 Properties of Renormalization of an Independent Chain

The reduced coupling along an independent chain takes on a special form:

KT =
∏
i∈A

tanh Ji , (3.47)

where A is the set of interaction indices in the chain. The reduced interaction J̃ =
tanh−1 KT consequently has some special properties.

To illustrate this, we define a chaining binary operation � between two interaction terms
that share a spin to be

Jab � Jbc = tanh−1 [tanh(Jab) tanh(Jbc)] . (3.48)

It is commutative and associative since multiplication is such. It is uniquely defined for any
combination of interaction coefficients in [−∞,∞].
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The operator computes the renormalized interaction J̃ij along a chain of interactions
provided they are independent:

J̃ij = Jik � Jkl � · · · � Jpj . (3.49)

The mathematical properties quantify the physical properties of the renormalized interac-
tion. First, the magnitude of the reduced interaction is no larger than the magnitude of the
weakest interaction along the chain. Mathematically, since | tanh(x)| ≤ 1,

| tanh Jab tanh Jbc| ≤ min{| tanh Jab|, | tanhbc |} , (3.50)

then
|Jab � Jbc| ≤ min{|Jab|, |Jbc|} . (3.51)

This quantifies the intuitive idea that information about the state of the control cannot
propagate along a link of interactions to the target along a chain in a better way than the
weakest interaction in that chain.

The sign of the renormalized interaction represents the type of interaction along the
chain. If the chain has an odd number of anti-couplings, the renormalized interaction will
also be an anti-coupling. Mathematically,

sign(Jab � Jbc) = sign Jab sign Jbc . (3.52)

The operator � can actually be defined between any two interaction coefficients J , but only
those that form a chain between spins has a physical interpretation.

3.3 General Renormalization

3.3.1 Scheme

The idea of a general renormalization between any two couplings in an Ising model with
general interactions between all spins will be useful in determining the expected effectiveness
of control.

The first step is to compute the summing up of all other gene configurations other than
two genes of interest: the control gc and the target gt. Let

Θ(gc, gt) =
∑
· · ·
∑

g′a=±1,∀a
exp(−H(gc, gt, g′a)) , (3.53)
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represent the sum of the unnormalized Boltzmann distribution over all the auxiliary genes.
The unnormalized Boltzmann distribution takes on the following form,

Zp(g) = exp(−H(gc, gt, ga′)) =
∏
i<j

exp(giJijgj) . (3.54)

The first trick comes from an earlier observation, writing each of the exponentials as

exp(giJijgj) = 1
2(1 + gigj tanh Jij) cosh Jij . (3.55)

Substituting into eq. (3.54) gives

Zp(g) =
∏
i<j

1
2(1 + gigj tanh Jij) cosh Jij (3.56)

The leading constants are not important, as they disappear under normalization of Θ in the
final probability calculation. To ease the discussion of the expansion of the product above
in eq. (3.56), define

Ψ =
∏
i<j

(1 + gigj tanh Jij) (3.57)

and the following sets of interactions

J = {Ji′i∗ : ∀unique pair of gene indices (i′, i∗)} , (3.58)

be the set1 of all interaction coefficients between pairs of genes in a Hamiltonian—where we
demand that there is only one interaction coefficient between genes gi and gj . The powerset
P (J ) contains every combination of interaction coefficients. For any such combination
Q ∈ P (J ), we may define a renormalization function R : P (J )→ [−∞,∞], according to

R(Q) = R
(
{Jq′iq

∗
i
}·i=1

)
(3.59)

= Jq′1q∗1
� Jq′2q∗2

� · · · � Jq.′q.∗ , (3.60)

where we have for convenience, denote the end of a list of interaction indices with a period.
Recall that the chaining operation has the following properties

tanh R(Q) = tanh(Jq′1q∗1
� Jq′2q∗2

� · · · � Jq.′q.∗) (3.61)

= tanh(Jq′1q∗1
) tanh(Jq′2q∗2

) · · · tanh(Jq.′q.∗) , (3.62)

which will become important in the computation of Ψ in eq. (3.57).
1We index the set of all interaction coefficients J by i, but to link it to a future discussions, we must

identify the gene indices that the interaction coefficient links to. So for example, if J12 is the i-th interaction
coefficient in the model, then i′ = 1 and i∗ = 2.
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Now, when the product Ψ is expanded, every combination of interaction coefficients will
exist in the expanded sum. This will be encoded by tanh R(Q), which will be multiplied
by each of the gene-pairs gq′

k
gq∗

k
since the gene-pairs accompany the coefficient Jq′

k
q∗

k
in

eq. (3.57). Explicitly,

Ψ = 1 +
∑

Q∈P (J )
gq′1

gq∗1
· · · gq.′gq.∗ tanh R(Q) , (3.63)

where the dots in the gene indices gq.′gq.∗ also indicate the pair of indices involved the last
interaction coefficient Jq.′q.∗ in the combination Q.

Now, every combination Q of interaction coefficients falls into one of the following cases.

1. The interaction coefficients link genes to form one or multiple loops. If each interaction
coefficient in Q belongs in a loop, then let Q ∈ L.

2. The interaction coefficients can form a path between the control gene and the target
gene or can form loops. If every interaction coefficient in Q belongs to a path or a
loop, let Q ∈ Pct. We indicate the indices in this set because it is dependent on the
selection of the target and control genes.

3. A wide range of interaction combinations will not belong to any of the above. Let the
Q that corresponds to such combinations be an element in Dct, also labeled by ct for
the same reason as Pct.

Since L,Pct, and Dct partitions P (J ). eq. (3.63) may be expanded as

Ψ = 1 +
∑
L∈L

gl′1
gl∗1
· · · gl.′gl.∗ tanh R(L) (3.64)

+
∑

P∈Pct

gp′1
gp∗1
· · · gp.′gp.∗ tanh R(P ) (3.65)

+
∑

D∈Dct

gd′1
gd∗1
· · · gd.′gd.∗ tanh R(D) . (3.66)

Along a loop of interactions, each gene index is repeated an even number of times. Since
each gene variable is either ±1, there will be no gene variables in the sum involving L.

Along a path from gc to gt, each gene index is repeated twice except for gc or gt which
occur an odd number of times. Loops are included in combinations corresponding to P ∈ Pct

and their corresponding gene variables disappear because they are form part a loop. Thus
the only gene variables that appear in the sum involving Pct are gcgt.

The gene variables that appear in the sum involving Dct must contain different combi-
nations of the auxiliary gene indices. Although some will cancel by through repetition as in
loops and paths, at least one auxiliary gene variable will not. If there are none, then either
the interaction combination corresponding to D forms loops or forms paths between gc and
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gt or both. If Ψ is summed over all auxiliary gene states, only one leading auxiliary gene
variable is sufficient to eliminate the sums involving Dct.

Therefore,

Ψ = 1 +
∑
L∈L

tanh R(L) + gcgt

∑
P∈Pct

tanh R(P ) +
∑

D∈Dct

gd1 gd′1
· · · gdv

gd′v tanh R(D) , (3.67)

and once a sum over all auxiliary genes is taken, eq. (3.53) becomes

Θm(gc, gt) =
∑
· · ·
∑

g′a=±1, ∀a
exp[−H(gc, gt, g′a)]

∝
∑
· · ·
∑

g′a=±1, ∀a
Ψ (3.68)

= C

1 +
∑
L∈L

tanh R(L) + gcgt

∑
P∈Pct

tanh R(P )

 , (3.69)

where C is some constant.
Thus, in summing the exponential over all the configurations of the auxiliary genes, we

have found an expression eq. (3.69) that involves renormalized interactions of loops L and
of paths P from the control to the target.

We demand that the renormalized coupling coefficient J̃ct quantifies all the interactions
between the control and the target by requiring that the marginal probability distribution
of the gene system be equal to that of the renormalized two-gene system with coupling J̃ct

The next trick requires the observation that in a two-gene system (with coupling J̃ct), the
probability of two genes being aligned P̃ (A) is related to the probability of being unaligned
P̃ (Ā) by

P̃ (A)− P̃ (Ā) = 2eJ̃ct

2eJ̃ct + 2e−J̃ct
− 2e−J̃ct

2eJ̃ct + 2e−J̃ct
(3.70)

= tanh J̃ct . (3.71)

Now, we compute P (A)− P (Ā) in the original (unnormalized) system to be

P (A)− P (Ā) = Θ(1, 1) + Θ(−1,−1)−Θ(−1, 1)−Θ(1,−1)
Θ(1, 1) + Θ(−1,−1) + Θ(−1, 1) + Θ(1,−1) , (3.72)

since Θ(gc, gt) is proportional to the unnormalized Boltzmann distribution. The denomina-
tor is clearly just Z. Using the expression for Θ derived in eq. (3.69), we find that

P (A)− P (Ā) =
∑

P∈P tanh P

1 +
∑

L∈L tanh L
. (3.73)
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Therefore, if

tanh J̃ct =
∑

P∈Pct
tanh R(P )

1 +
∑

L∈L tanh R(L) , (3.74)

then
P (A)− P (Ā) = P̃ (A)− P̃ (Ā) . (3.75)

Since
P (A) + P (Ā) = P̃ (A) + P̃ (Ā) = 1 , (3.76)

it follows that P (A) = P̃ (A) and P (Ā) = P̃ (Ā). Thus, if we demand that the normalized
system obey the renormalization condition eq. (3.74), then the probability of the control and
target being aligned in the unrenormalized system is the same as corresponding probability
in the normalized system. Then, the same result holds for the probability of being unaligned.

The following observation completes the renormalization: every gene microstate g will
have a corresponding microstate −g with the same energy. This is guaranteed by the
Hamiltonian:

H(g)→ H(−g) = −
∑
i<j

(−gi)Jij(−gj) (3.77)

= −
∑
i<j

giJijgj (3.78)

= H(g) . (3.79)

Hence, for each microstate where the control and target genes are both spin up, there is
a corresponding microstate of equal energy where they are both spin-down. Therefore the
two aligned configurations occur with equal probability, i.e. P (1, 1) = P (−1,−1), and the
same is true for the two unaligned configurations, i.e. P (−1, 1) = P (1,−1). This is true for
the unrenormalized system and the two-gene system.

Since the probability of being aligned (and being unaligned) are equal between the two
systems, it follows that

P (gc, gt) = P̃ (gc, gt) , (3.80)

which completes the proof for the renormalization. The marginal probability between the
control and target gene is then

P (gc, gt) = egcJ̃ctgt

Z
, (3.81)

where J̃ct is given by eq. (3.74). Since the target and controls may refer to any gene, this
renormalization works for all pairs of genes.

If J̃ij has been determined for every gene pair gi, gj , then for each target gene, we
can identify the one control gene which, when pinned, will maximize the probability that
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the target is in a particular state. Once the control gene is pinned, however, the new
system will likely have a new set of renormalization coefficients which reduce the marginal
probabilities to the two-gene case for the remaining genes. It may even be the case that the
renormalization coefficients will not exist.

3.3.2 Consistency Considerations

The renormalization coefficient in eq. (3.74) is only defined only if∣∣∣∣∣
∑

P∈Pct
tanh R(P )

1 +
∑

L∈L tanh R(L)

∣∣∣∣∣ ≤ 1 (3.82)

since the hyperbolic arctangent function is only defined in [−1, 1]. At the moment, this
condition is unproven if Pct and L are simply given. However, since the formula comes
from computation of the difference in the marginal probabilities of being aligned and being
unaligned (a number necessarily confined in [−1, 1]) in the unrenormalized system, it would
not be surprising that the condition holds.

The renormalization formula in eq. (3.74) produces the same result for the multiple,
independent auxiliary chain system examined in subsection 3.2.1. Recall that in this system
there are M paths of interaction coefficients between the control and target gene. Therefore,
the renormalization of the path, which is composed of a set of interactions P ∈ Pct is denoted
by R(Pm). The proof for showing that the renormalization formula produces the result relies
on a messy expansion of

tanh
[∑

m

R(Pm)
]

, (3.83)

by applying the formula

tanh(a + b) = tanh(a) + tanh(b)
1 + tanh a tanh b

, (3.84)

repeatedly. For two chains, the expansion gives the correct terms in the sum of paths and
loops, since

tanh(R(P1) + R(P2)) = tanh R(P1) + tanh R(P2)
1 + tanh R(P1) tanh R(P2) , (3.85)

and tanh R(P1) tanh R(P2) = tanh R(P1 ∪ P2), where P1 ∪ P2 is the loop through P1 and
P2. Subsequent addition of paths will produce the necessary paths and loops.

3.3.3 Aspects of Computation

The combinatorics needed to perform the renormalization (that is, finding unique, non-
repeating paths and loops) might be challenging.
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At the moment, my attempts to produce exact calculations of the renormalization co-
efficient have been spent on transfer matrices, the multiplication of which preserves paths.
To illustrate, let (J)ij represent the entries of a matrix J whose diagonals are zero and
whose ij-th element is tanh Jij . The matrix is symmetric to encode the information that
the interaction Jij is the same on a path from i to j and vice versa.

In an attempt to find the product of tangents required in the renormalization formula,
we note that the matrix products

(Jn+1)ij =
∑

k1,k2,...,kn

tanh Jik1 tanh Jk1k2 · · · tanh Jknj (3.86)

is a sum of chains of length n + 1 from gene i gene j. The diagonals of the matrix product
will contain paths that start and end at the same gene, i.e. loops. So the renormalization
coefficient J̃ij was hypothesized to have the form of

(J̃)ij = (M)ij

1 + Tr[(M)ij ] (3.87)

where

M =
N∑

n=1
(Jn)ij . (3.88)

where N is the total number of interactions in the system, and therefore, the maximum
path length allowed by the renormalization formula. The sum accounts for paths of lengths
n through Jn.

Unfortunately, the paths included in such a matrix M (1) have interaction terms that
repeat in the same path and (2) the loops that appear in the diagonal are repeated in other
places of the diagonal, since loops start and end on any spin it travels through and (3) loops
that count multiple times in the entry in the diagonal because the trace matrix multiplica-
tion considers different directions in a loop as distinct contributions. These are just a few
examples of how the transfer matrices produce paths that are not in the renormalization
scheme. Manipulations to avoid these problems have yielded other problems as well. For
example, attempting to correct for the appearance of repeated interaction coefficients along
a path will eliminate certain combinations of paths that are required in the renormalization.
Thus, at the moment, there does not seem to be a way to handle all the constraints required
for choosing which paths are added in the renormalization.

The problems in trying to making exact calculations have extended to finding approxi-
mations by transfer matrix methods. Because of the inclusion or exclusion of paths in the
sums of the matrix multiplication, the approximations have not been shown to converge to
the renormalization formula in eq. (3.74).
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3.4 Final Remarks on Renormalization

This study has started on trying to find the optimal control choice and setting to maximize
the probability of a target gene profile. In some ways this process was hindered by not
being able to take into account the effects of indirect interactions, which the renormaliza-
tion scheme attempts to resolve. By reducing the interaction between any two genes by
summing over paths, we showed that it is theoretically possible to account for the influence
of an interaction network between two genes through Ising model, under some simplify-
ing assumptions. The renormalization through a single chain showed how effective control
can be degraded by the weakest interaction in the chain. Examining the renormalization
of multiple, independent chains showed how the renormalized interactions added up and
therefore, how control can be enhanced or reduced. Finally, the general renormalization
showed how the addition of independent interactions changed when they become intercon-
nected, by incorporating the loops that are prevalent in an interconnected system like the
general Ising model.

An examination of computational barriers and of selection strategies will necessarily
follow from this renormalization formulation. The renormalization requires finding paths
to sum over, which is a combinatorics problem that becomes exaggerated when the gene
system has hundreds of thousands of genes. Transfer matrices seem to provide a lower
computation cost to summing over paths but from early examinations, these set of paths do
not reflect what is required in the renormalization and this hampers the ability to provide
approximations that can be shown to converge to the renormalization answer.

Finally, we have also spent little time examining the strategic consequences for the
renormalization. The renormalized interactions do not necessarily say something about
how a control affects a block of targets as a whole. And although we can identify the
largest effective interactions in the system, these will be expected to change when genes
start being pinned. This is anticipated to create mean fields and ‘block’ certain interaction
paths in the system. Whether this will require new renormalization techniques or more
clever analytical devices is a question for future study. A possible starting point for the
renormalization for an Ising model with a non-zero fields is the incorporation of such fields
at the start of the derivation of the renormalization scheme in this thesis.
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