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Abstract

In recent years, the amount of data available on biological systems such as genetic regu-
latory networks and neural networks has increased exponentially, thanks to improvements
in experimental methods such as drop-seq [1], which enables biologists to simultaneously
analyze RNA expression in thousands of cells. To keep pace with the available data, modern
machine learning requires efficient methods for using this data to develop predictive models
about the natural world. Using a canonical statistical physics example, the Inverse Ising
problem, we ask how physical factors such as temperature affect the learning efficiency. In a
network governed by a Hamiltonian with spin-spin interactions, we construct a linear system
of equations based on equilibrium observations of spin states, and use linear algebra to solve
for the underlying spin-spin couplings. We show that there exists an optimal temperature
Topt for which learning is most efficient. Furthermore, we discuss several physical correlates
for the scaling of Topt with network size for a simple uniform-coupling network and discuss
the extension to more general distributions of couplings. The Fisher information, which
depends strongly on the variance of the spin-spin alignment, is shown to predict this scaling
most accurately.
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Chapter 1

Introduction - a simple model for
biological systems

In this chapter, we will outline some of the general concepts and goals related to modeling
biological networks, using a simplified model of reality. Biological systems are complicated.
In classical physics we are used to studying deterministic systems—such as a ball falling
under the influence of gravity—where outcomes can be predicted accurately using kine-
matic equations developed in the classical framework. The picture becomes vastly more
complicated when many-body interactions are introduced. For example, genetic regulatory
networks, synapses in the brain, and many other biological systems are complex due to
the nature of system size and number of complex interactions. The data available to biolo-
gists on these systems have increased exponentially in recent years with techniques such as
drop-seq which have allowed researchers to profile thousands of individual cells via RNA-
seq [1]. However, the large amount of corresponding data produced by these cell profiling
techniques requires new computational methods in order to process the information and
develop predictive models in real time.

In this work, we develop a method to estimate network parameters as a linear inverse
problem. We explain the model used to describe biological systems, its connections to a sim-
ple magnetic spin system, well known in statistical physics, and explore how environmental
factors such as temperature effect the efficiency of learning.

1.1 Goals in modeling biological networks

Some of the biggest medically related questions in biophysics today involve genetic regula-
tory networks. For example, in the past few decades research has shown that stem cells have
the ability to transform into other cell types [2], making them a desired tool in medical re-
search for the possibility of growing organs. However, further questions can be asked about
cells in general. Knowing that a cell identity is determined by protein levels, and genetic
regulatory networks (GRNs) are responsible for protein production, we can ask whether it
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is possible to ‘reprogram’ GRNs in order to turn skin cells into liver cells, or whether it
possible to turn off cancer cells. All of this requires that connections between the genes and
proteins in the body are known so that we can influence them ourselves. In general these
networks of cells will be extremely complicated but the main processes can be summarized
in two key points. First, cell identity is determined by protein levels. Shifting these protein
levels can influence cell identity. Also, production of one protein can suppress production
of another or promote production of another. In general therefore, genes will be described
by a continuous variable that exists between an ‘off’ state where no protein production
occurs, and an ‘on’ state with a maximum that will depend on the absolute scale of protein
production.

1.2 Our network Hamiltonian and its properties

In order to study these networks, we introduce a simplification from the continuous variable
of gene expression to a binary ‘on’ or ‘off’ variable, representing high and low expression
levels. Furthermore, we represent the influence of one gene on the expression of another with
a linear coupling term, negative for repression and positive for activation. The resulting
Hamiltonian describing the energy of such a network is [3],

H(σ,h) = −
∑
i,j

Ji,jσiσj −
∑
i

hiσi , (1.1)

where Jij is a matrix consisting of the linear interaction terms, σi are the states of each node,
and hi is the field at that location in the network. i and j run from 1 to m, the number of
nodes in the network. A microstate of the network is specified by the ‘spin’ state (up [+1] or
down [-1]) of each node. Both the field and coupling term are real parameters Jij ,hi ∈ R.
The applied external field can be continuous or discrete and of different magnitude at
different locations i. In a genetic regulatory network, the influence of spin i on spin j need
not be identical to the influence of j on i, but we restrict our attention to equilibrium systems
that obey detailed balance [4], hence requiring symmetric effects and hence symmetric
coupling coefficients Ji,j = Jj,i. Future work could consider the possibility of relaxing the
constraint that Jij = Jji, in which case the ensemble would not be governed by Boltzmann
statistics. The magnitude of a self-interaction term Jii merely shifts the energy scale of the
system, so without loss of generality we set all self-interaction coefficients to zero. Thus the
distribution of states is governed by the Boltzmann distribution [4],

P (σk) = exp[−βE(σk)]
Z

, (1.2)

for partition function Z ≡
∑
i exp[−βEi] summed over all configurations, and inverse ther-

mal energy β ≡ (kBT )−1 In all numerical simulations we set kB = 1. Figure 1.1 depicts the
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complexities exhibited in real biological systems, modeled with (1.1), with varying magni-
tudes and numbers of connections between nodes.

Figure 1.1: Biological network complexity. In general, biological networks will vary in
numbers of connections, magnitude and sign, representedhere by varying colors of connec-
tions. Each generalized ‘spin’ state is expressed by a continuous variable represented by an
angle between 0 and π with respect to the vertical.

1.3 Comparison with magnetic systems

With the introduction of the above simplifications, the network Hamiltonian is now iden-
tical to the form used in the Ising model [5]. The Ising model was originally developed to
model phase transitions in magnetic material where the microscopic interactions involve
the interactions of atomic spins, which are quantized as we know from quantum mechanics.
However, the main difference is that interactions terms are usually only considered between
nearest neighbors,

H(σ,h) = −
∑
〈i,j〉

Ji,jσiσj −
∑
i

hiσi , (1.3)

and the network structure (chain, lattice, etc.) determines the number of couplings. Ferro-
magnetic material is modeled with Jij > 0, anti-ferromagnetic material with Jij < 0, and
non-interacting material with Jij = 0. In general, biological networks models should allow
for all three cases to be present in a mixture.

Using this analogy between genetic regulatory networks (and other types of networks
such as neurons, ecosystems, economies, etc.) and magnetism, we use statistical physics to
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infer the microscopic interactions in our system from observations of the system behavior.
This is known as the Inverse Ising problem, the problem of estimating coupling parameters
Jij from equilibrium samples of the system. In statistical physics, for a magnetic system we
would predict the total magnetization using the Ising model,

M =
〈
N↑ −N↓

N

〉
, (1.4)

where N is the total number of particles and the arrows correspond to spin up or down
states and measure this. In a magnetic spin system, the two energy scales are that of the
magnetic dipole (to leading order), (s)µ ·B, and thermal energy, kBT . Henceforth, we will
continue to refer to the two energy scales of the spin network as the internal spin energy
and thermal energy. In real biological systems, the thermal energy scale would quantify the
size of the general stochastic fluctuations in the system. In genetic regulatory networks,
stochastic fluctuations would come from interactions with other proteins and biological
material that is not specifically modeled in the genetic network as well as small-number
fluctuations in the explicitly modeled degrees of freedom.
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Chapter 2

Inference as a Linear Inverse
problem

There are currently a number of methods used to solve the Inverse Ising problem and esti-
mate the coupling parameters. One example is the Monte Carlo procedure [6], which takes
an initial guess for the system parameters, uses this estimate to calculate the magnetization
Mi = 〈σi〉 and the spin-spin correlations 〈σiσj〉−MiMj , compares with the true values, and
updates the estimates accordingly. The main drawback of this method is simply the long
computational time required. Another example is that of pseudo-likelihood [7]. This is done
using the same principles of maximizing the log-likelihood function. Mean field theory and
small correlation expansion are useful tools as maximizing the likelihood depends on the
partition function, and the number of states scale exponentially with network size. In this
analysis we use the same principles of maximizing the likelihood function and estimate the
energy of the system using multinomial counting and Boltzmann statistics. By estimating
the energy of the system and observing the equilibrium configurations of the system spin
states we are able to solve for the coupling parameters. In this chapter we set up the linear
system of equations, introduce our measure of efficiency, and discuss how to calculate error
on the parameters inferred in simulations.

2.1 Linear system of equations

There are several steps to constructing a system of equations. By taking the logarithm of
the Boltzmann distribution (1.2) we can construct an estimate for the energy of the system,

〈∆̂Ek〉 = −T (lnnk + lnZ) , (2.1)

where the probability is represented by counting states and normalized by the partition
function. Setting the original system Hamiltonian (with unknown parameters) equal to the
energy estimate obtained with the frequency of states observed ln(nk) thus leads to a system
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of equations,
− T ln(nk) = −

∑
i,j

Ji,jσki σkj + T lnZ , (2.2)

which permits solving for the coupling parameters. Constructing a vectorized version

(J1,1, J1,2, ..., Jm,m,− lnZ) (2.3)

of the coupling matrix Jij turns the problem of inference into a linear inverse problem,

− T ln n = SJv , (2.4)

which can be solved using linear algebra methods.
There are several important notes about the system. First, in this analysis we constrain

the external fields to be zero, hi = 0 ∀ i. However, it would be straightforward to add
this term into the energy estimate of the system. As will be discussed later, the field has
an important effect on the variance of pair-wise alignment which underlines the physical
learning in this type of system. Second, the coefficient matrix S is constructed using the
observed pairwise spins of the system at equilibrium, with an additional column of ones
for the unknown partition function. In the following section we discuss the specifics of the
mathematics of this system and introduce initial arguments for the existence of a region of
optimal temperature for learning.

2.1.1 Mathematical form of the system

Based on the earlier constraints on the coupling matrix, we havem(m−1)/2 free parameters
to estimate with an additional unknown, the partition function to normalize the energy
levels. This is schematically shown in the following matrix.


σ1

1σ
1
2 σ1

1σ
1
3 . . . σ1

2σ
1
3 . . . σ1

m−1σ
1
m 1

σ2
1σ

2
2 σ2

1σ
2
3 . . . σ2

2σ
2
3 . . . σ2

m−1σ
2
m 1

...
...

...
... . . . ... 1

σk1σ
k
2 σk1σ

k
3 . . . σk2σ

k
3 . . . σkm−1σ

k
m 1





J12

J13
...

Jm−1,m

Z


=


∆̂E1

∆̂E2
...

∆̂Ek


Based on the number of unknowns, we can specify three possible scenarios for this

system of equations. When rank(S) < m(m−1)
2 + 1, the system is under-constrained and as a

result one cannot estimate all coupling parameters. The second case, rank(S) = m(m−1)
2 +1,

results in a uniquely determined system of equations. Finally, when rank(S) > m(m−1)
2 + 1

the system is over-constrained, which can reduce the solution space, or limit inference if
the energy estimates are poor. The number of linearly independent rows arises from the
number of accessible microstates of the system. Fully connected binary spin systems have
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a maximum of 2m possible configurations. For any system of greater than 2 spins, the
exponential growth dominates compared to the quadratic requirement for system inference.
Figure 2.1 shows that the required number of samples for inference is exponentially smaller
than the total number of configurations possible for the system in a fully connected network.

2 4 6 8 10 12 14 16 18 20

Network size, [m]

100

102

104

106

Figure 2.1: Network configurational space and required states for inference as a
function of network size. Total possible network configurations, 2m, is plotted in blue
and the number of linearly independent states, m(m− 1)/2, is plotted in red as a function
of network size, m.

2.1.2 Asymptotic arguments for inference

Based on the Hamiltonian of the system (1.1), flipping a single spin results in an energy
difference of

∆E = −2
∑
i

Jijσiσj , (2.5)

and as a result one can estimate coupling parameters only when there is sufficient energy
to flip the necessary spins to estimate the resulting energy difference.

Asymptotic arguments point to the existence of an optimal temperature region for in-
ference. At T = 0, the only accessible state of the system is the lowest energy level, known
as the ground state. As T increases the system remains locked in a small number of low-
energy states as governed by the Boltzmann distribution (1.2). In this case, even for a large
number of samples of the system at equilibrium, there is not sufficient linearly independent
observations of differing states to constrain Jv. Linearly independent observations corre-
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spond to observations of the system in different microstates that result in an additional
linearly independent row being added to the coefficient matrix of pairwise observed spin
states. In this limit, unless there is additional a priori knowledge about the network, in-
ference is extremely poor. At the high-temperature limit, there are 2m states available in
a binary spin system, with equal probability Pi = 1

2m for each state. In this limit, there is
no problem observing enough states, but the observations are no longer influenced by the
couplings. Overwhelming thermal energy causes states to be maximally randomized and in
the high-entropy limit, we expect poor inference of energy differences between states and
hence of coupling parameters. Using simulations to generate network spin states at equi-
librium, preliminary results, shown in Fig. 2.2, agreed with our asymptotic arguments that
there is an intermediate temperature that requires substantially fewer observations in order
to precisely estimate the coupling parameters.

100 101 102

Temperature, [T]
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N
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w
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k 
O
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, [

N
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0

0.5
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Figure 2.2: Error on the inferred coupling matrix as a function of temperature and
number of equilibrium samples taken for a 10-spin network. Error is normalized
by the number of free parameters m(m− 1)/2 and displayed on a log10 scale. The number
of samples required for inference on the 45 free coupling parameters increases above and
below the optimal (lowest-error) temperature region which is depicted in blue.

Here we seek to understand the properties of the optimal temperature region, the physics
behind efficient learning at this location, and how the location and size of this region scales
with network size. For modeling biological systems we expect that network size will be much
greater than 10 nodes, so predicting the optimal temperature scaling with network size will
be important for experimental work.
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2.2 Inference error

Any increase in network observations should (on average) lead to a decrease in error. From
statistical physics, we know that at any finite temperature T > 0, there is a non-zero
probability of sampling any excited state. These states are suppressed exponentially with
their energy above the ground state, but in the many-observation limit (limN→∞[Error]→
0), as multinomial counting statistics and hence energy estimates improve, the number of
required states are eventually observed. We calculate the error in inferring the couplings as,

Err =

√∑
i,j(J2

ij − J′2ij )
m(m− 1)/2 , (2.6)

where Jij are the set of true couplings used to produce the network spin states in simulations
and J′ij are the set of inferred couplings.

The error depends on the estimates obtained from the system of equations, and in the
case of an under-constrained system of equations, initial guesses will have a large impact
on the reported error. We estimate the couplings as,

J ′ij =
{
J0 rank(S) = 1
Ĵij rank(S) > 1 ,

(2.7)

where J0 is some large initial guess that indicates no knowledge about the coupling param-
eters and will lead to large error, and Ĵij are the set of estimates from solving the system of
equations. However, this method only introduces a large error for the case when only a sin-
gle microstate is accessed and there are infinite solutions to the system of equations. For an
under-constrained system of equations, 1 < rank(S) < m(m− 1)/2, setting free parameters
to 0 when lacking sufficient samples to estimate them (a reasonable value given no knowl-
edge about the network a priori) leads to error changing non-monotonically with increasing
samples, because estimates of coupling parameters with just barely sufficient samples will
be quite noisy. This is seen in Fig. 3.1 D.

Future work could implement a more principled Bayesian inference procedure such as,

J′′ij = 0 + wij · J′ij , (2.8)

where the couplings are inferred to be zero until there have been enough state observations
to implement a reasonable guess based on solving the linear system. The weighting wij of
the parameter inferred from data would be a function of the number of samples, smoothly
interpolating between 0 when that coupling is not being estimated and 1 when some thresh-
old number N0 of state observations have been made, giving high confidence in the output
of the linear system solution.
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2.3 Definition of inference efficiency

As in many physical scenarios, an important concept is efficiency. How much time, energy,
or some other important quantity, is required in order to complete a task? For inferring the
model parameters in the Inverse Ising problem, efficiency can be thought of both in terms of
computational time and the number of equilibrium samples collected by experimentalists.
These are practically equivalent, as the number of equilibrium samples required means more
cell profiling and experimental observation time, which also corresponds to more data and
pure computational time in solving these systems of equations. We define inference efficiency
as the inverse of the number of samples N0 required for a desired error threshold,

ε ∝ 1
N0(T,h) . (2.9)

N0 will depend on temperature, as seen and argued previously, as well as the external field.
Efficiency is naturally important for real networks which may have hundreds, thousands,
or greater numbers m of network spins, where computational time becomes of paramount
importance.
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Chapter 3

Understanding optimal
temperature for inference

Initially, we introduced asymptotic arguments 2.1.2, for the existence of an optimal temper-
ature region and used physical arguments involving the number of states accessed based on
the thermal energy available to the system. The mathematical justification is that we con-
struct a linear system of equations to solve for the coupling parameters, which is sensitive to
fluctuations in the products of spin pairs σiσj throughout the network. In this chapter, we
will describe elements of the physics behind learning parameters in Ising model networks,
in an attempt to physically understand the temperature of optimal inference. We focus on
the simpler (and hence easier to analyze) case of uniform coupling constants Jij = J and
briefly discuss extensions to a more realistic case with random couping constants drawn
from a Gaussian distribution Jij ∼ N (µ, κ2).

3.1 Generating simulation data and studying linear system
results

In this research we worked exclusively with simulated data. An important step, therefore, is
the computational process used to generate network spin samples. As described earlier, for
simplicity we constrained our network coupling parameters to be uniform. The distribution
of states is governed by the Boltzmann distribution (1.2). In Table 3.1 we outline the
Metropolis Monte Carlo [8] data generation process for our simulations.

Our earlier asymptotic arguments regarding temperature and increasing number of ob-
served microstates, 2.1.2, suggest that the temperature where rank(S) = m(m − 1)/2 + 1
should correlate with the optimal temperature region. Figure 3.1 shows that the tempera-
ture where S becomes full rank is approximately a lower bound on the optimal temperature
region. In order to predict the temperature where this condition on the rank of the coeffi-
cient matrix occurs, we discuss the phase transition in the configurational space explored
by the network and its properties for two types of networks.
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Table 3.1: Algorithm for generating Metropolis Data

Algorithm Steps

1. Create specific parameters: coupling matrix Jij , field hi, temperature T , and number
N of samples to generate
2. Initialize the system in a random spin state using a random number generator
3. Iterate through each spin in the randomly generated network, calculating the energy
and flipping spins until the lowest energy configuration is achieved, and use this as the
ground state
4. For T 6= 0, use the temperature input and Boltzmann distribution to calculate a
probability for a specific spin state to occur
5. For each spin in the network, consider the current energy and the energy if the
spin is flipped, compare e−∆E/T with a random number in the interval (0, 1) and if the
random number is smaller, flip the spin
Note: As T → 0, the Boltzmann probability (1.2) of all excited states goes to zero
and spin alignment is unperturbed. As T increases, the probability of excited states
increases and the spins are increasingly randomized
6. Repeat steps 2 through 5 for the number of required network observations

To place a lower bound on the optimal temperature region, we know mathematically
that we must observe m(m− 1)/2 linearly independent microstates of the system to obtain
a full-rank coefficient matrix. We can predict the temperature where this occurs by looking
at the phase transition in configurational space as a function of temperature. Physically,
at low temperatures where only a small subset of configurations are explored, one cannot
estimate the excited energy levels and therefore cannot determine many of the coupling
coefficients. The corresponding linear algebra situation is a rank-deficient matrix and hence
under-constrained system of equations. As will be introduced later, 3.2, this transition is
described by the critical temperature for the phase transition. At this critical temperature,
the system begins to explore all 2m possible states with non-trivial probability. As a result,
the critical temperature will be shown to bound the optimal temperature region.

In summary, the critical temperature describing the phase transition allows one to esti-
mate the temperature at which rank(S) = m(m − 1)/2 + 1 and lower bound the region of
optimal temperature. In 3.2, we will discuss the mathematical form of the critical temper-
ature and its dependence on network size. Using results from further simulations, we will
determine the empirical optimal temperature as a function of network size and compare
with the critical temperature. Furthermore, we will test predictions about the scaling of the
optimal temperature by studying the entropy and Fisher information of the system.
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Figure 3.1: Comparing inference error with rank of the coefficient matrix for
networks of 10 and 20 spins. The transition from empty to full rank occurs where
inference error begins to decrease.
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Figure 3.2: Comparing inference error with rank of the coefficient matrix for a
network of 30 spins. The transition from empty to full rank occurs where inference error
begins to decrease.

3.2 Critical temperature for phase transition

The critical temperature defines the transition from the system being locked in a small
number of low-energy microstates to exploring a greater range of the 2m configurational
space. In the uniform-coupling network, the largest energy difference is between the ground
state and fist excited state, and we can write down an approximate form for the critical
temperature considering only these two states.

We first derive the partition function for the uniform-coupling network with Jij = J :

Z =
m∑
n

m!
n!(m− n)! exp

[
− Jm(m− 1)

T
− 4Jn(m− n)

T

]
. (3.1)

The energy difference between successive states is,

∆Ek,k+1 = 4J(m− 1− 2k) , (3.2)

and the largest energy gap occurs for k = 1. This energy difference grows as the size of the
network increases. This can be visualized by examining the spin state of the network,x

i

x
i+1

x
i+2
· · ·
x
m
. (3.3)
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For a fully connected network, flipping a single spin (m choices) breaks the largest number
(m) of connections. Additionally, from the energy gap relation (3.2), successive excited states
are closer in energy, requiring smaller shifts in temperature to populate these additional
states.

Motivated by this largest energy gap, we derive an expression for the critical temperature
considering only the ground state and first excited state. For an effective two-state system
the partition function is trivial, giving the probability of sampling the ground state,

PGS = Ω1e
−βE1

Ω1e−βE1 + Ω2e−βE2
(3.4)

= 1
1 + Ω2

Ω1
e−β(E2−E1) (3.5)

= 1
1 + e(1/T−1/Tc)wc

. (3.6)

Using the partition function, the critical temperature and critical temperature width are,

Tc = 4J(m− 1)
ln(m) ; wc = 4Jm , (3.7)

where each depend explicitly on the coupling magnitude J and the network size m.
We fit this predicted sigmoidal form of the ground state probability as a function of tem-

perature to numerical simulations of ground state probability as a function of temperature,
for several network sizes. Figure 3.4 shows that the simple model works reasonably well for
describing the sigmoidal nature of the phase transition, though it misses some features at
the edges of the transition. The critical temperature and transition width fit using (3.7)
are,

Tc = (4.8± 0.3)J[(0.380± 0.003)m− 1]
lnm , wc = (3.12± 0.06)Jm , (3.8)

Despite the difference in actual coefficients, the functional form works quite well.
With a functional form describing the critical temperature and both mathematical rea-

soning and physical intuition for the existence of the optimal temperature region and its
lower bound, we examine how the optimal temperature scales with network size. This is
of interest because biological systems such as a genetic regulatory network will typically
have many more nodes than the networks simulated in Fig. 3.1 and 3.2, though small size
reduces computational time and thus facilitates debugging and analysis. Figure 3.3 shows
that the optimal temperature for inference increases with network size by comparing error
analysis on systems of 20 and 30 spins. We next turn to predicting the scaling of the optimal
temperature with network size.
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Figure 3.3: Inference error is minimized at intermediate temperature. Error plotted
as a function of N and T to showcase the optimal temperature region shifting for networks
of 20 (A) and 30 (B) spins. Non-monotonic scaling of error with increasing N is discussed
in Section 2.2.
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Figure 3.4: The probability of sampling the ground state as a function of temper-
ature for networks of m = 10, 20, 30, 40, 60 and 90 nodes. Dots indicate empirical
data from simulation and smooth curves represent best fits of (3.4) to extract the critical
temperature and transition width.
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Figure 3.5: Observed critical temperature and transition width extracted from
sigmoidal fits of (3.4) for uniform-coupling network. The form predicted in (3.7) fits
well the scaling of critical temperature (A) and transition width (B) with network size m.

3.3 Optimal temperature as a function of network size – Sim-
ulation results

We present the initial results for empirical observations of optimal temperature as a function
of network size for both network cases, uniform and randomly distributed couplings, in
Figs. 3.6, 3.7 and 3.8.

In order to build a predictive model for optimal temperature, the next method of choice
was to look at the entropy. Entropy has the general form [9],

S = kB ln Ω , (3.9)

where Ω is the number of possible configurations of the system. By relating the temperature
at which the minimum number of states were observed we wanted to test whether this
tracked optimal temperature. Furthermore, by investigating the Fisher information which
has a closed form for this simple system, we found that it depended on the variance of
pairwise alignment and provided another method for tracking the optimal temperature.

3.4 Methods for understanding optimal temperature

3.4.1 Entropy

We began by inspecting the entropy of the network as a function of temperature. This was
another motivation for using uniform coupling constants since the partition function can be
written down in closed form. Using the usual statistical mechanics identity relating entropy
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Figure 3.6: Empirical optimal temperature as a function of network size for uni-
form coupling constants. Optimal temperature is highlighted in red. Each error is cal-
culated from 107 network observations.

5 10 15 20 25 30

Network size, [m]

100

101

102

Te
m

pe
ra

tu
re

, [
 T

 ]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.7: Empirical optimal temperature as a function of network size for
Gaussian-distributed coupling constants. Optimal temperature is highlighted in red.
Each error is calculated from 107 network observations.
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Figure 3.8: Empirical optimal temperature as a function of increased network size
for Gaussian-distributed coupling constants. Optimal temperature is highlighted in
red. Each error is calculated from 105 network observations.

to the partition function [10],
S = lnZ + T

∂ lnZ
∂T

, (3.10)

where kB has been set to 1. This in general takes the form S = ln(Σiexp(−βEi))−ΣiEi/T,
which is sigmoidal with temperature, similar to the form that was observed in the ground
state probabilities in the previous chapter. This is shown in Fig. 3.9.

First we examine when the entropy equals the logarithm of m(m− 1)/2, the minimum
number of states required to uniquely determine (fully constrain) the solution to the system
of equations,

S|Ts = ln
[m(m− 1)

2
]
. (3.11)

However, at finite T there is not uniform sampling across the observed states, so in
general (3.11) is satisfied when less than m(m − 1)/2 states are observed. Moreover, the
m(m− 1)/2 lowest-energy states will in general not be all linearly independent, preventing
full solution of the linear system of equations. These considerations suggest that the en-
tropy should be higher than (3.11) when the linear system of equations first becomes fully
constrained, limiting the utility of (3.11).

For Gaussian-distributed coupling constants, we do not know of a simple functional form
for the entropy’s dependence on temperature, thus the above reasoning (already fraught for
an analytic entropy) would have to proceed using the numerically calculated empirical
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Figure 3.9: Entropy as a function of temperature for 10-spin network. Minimum
and maximum entropy are ln 2 and m ln 2 for, respectively, equal probability of ground
states only or equal probability of all states.

entropy,
Ĥ = −ΣiP̂ilog(P̂i) , (3.12)

for empirical state probabilities P̂ .

3.4.2 Fisher information

Fisher information provides an alternate route to estimate the optimal temperature. Fisher
information specifically deals with the information carried by a random observable, the
empirical state distribution, about an unknown parameter, the network couplings. The
definition of Fisher information is [11],

I(Jij , T ) =
〈
∂2lnL(Jij, sk)

∂J2
ij

〉
, (3.13)

which depends on the second derivative of the log-likelihood function with respect to the
unknown parameter. For our binary spin system, the Fisher information takes the simple
closed form,

I(Jij , T ) = 〈(σiσj)
2〉 − 〈σiσj〉2

T 2 , (3.14)
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which depends directly on the variance of the spin-spin alignment σiσj and is inversely pro-
portional to temperature. Since we are considering a binary system, where the product σiσj
of two spin states can only be ±1, the first term in the numerator is always one. However,
it will be instructive to leave the Fisher information in this form to compare with other
physical quantities which take on similar form. Again, we use asymptotic arguments to
explain the form of the Fisher information. At low temperature, the small thermal energy
scale does not introduce many fluctuations and the variance of the pairwise alignment goes
to 0 as T → 0. At high temperature, the 1/T 2 dependence dominates, sending the Fisher
information to 0. Therefore, there should be a maximal Fisher information at some inter-
mediate temperature. Figure 3.10 shows Fisher information as a function of temperature
for several network sizes, showing a maximum as predicted.
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Figure 3.10: Fisher information for networks of 10, 20 and 30 spins as a function of
temperature. For each network case, Fisher information asymptotes to zero as temperature
goes to 0 and ∞.

3.5 Optimal temperature comparisons

To compare with the optimal temperature as estimated using entropy, the phase transition,
and Fisher information, we ran simulations to estimate error as a function of temperature for
a large number (N = 107) of network observations, and used the location of the minimum
error as the observed optimal temperature. Figure 3.11 shows empirical observations for
optimal temperature as a function of network size, compared to the critical temperature Tc,
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the temperature Ts producing a certain entropy, and the temperature Tf that maximizes
Fisher Information.

The optimal temperature is higher than the critical temperature of the phase transition.
This characteristic may be specific to this uniform-coupling network, as the phase transition
describes the transition from a single ground state to excited states. In networks with
randomly distributed coupling constants, the optimal temperature could occur below this
phase transition, provided that there are sufficient low-energy states to uniquely determine
the couplings. Our simple entropy calculation overestimates the optimal temperature. This is
possibly due to the fact that a single energy level can have multiple spin states which produce
linearly independent rows for constraints in the system of equations, and the degeneracy
in this network changes the requirements for inference. Empirically, we find that Fisher
information is the most accurate at predicting the temperature of most efficient learning,
and another magnetic system analogy gives some idea of why.
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Figure 3.11: Empirical optimal temperature compared with predictions, using
critical temperature for phase transition, intermediate entropy, and maximal
Fisher information. Optimal temperature was calculated by averaging over five data
sets. Error bars show the standard error of the mean. Critical temperature was extracted
from fits to (3.4), and intermediate entropy and maximal Fisher information were solved
numerically using (3.11) and (3.14), respectively.
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3.6 Magnetic susceptibility and connection to learning

In systems described by the canonical ensemble in statistical mechanics, a useful ther-
modynamic quantity is the free energy [12] F = −kBT lnZ, as useful quantities like the
magnetization in magnetic materials can be related to derivatives of the free energy [10],
M = ∂F

∂B , where B is the applied field. It is well known that the resulting magnetization
in certain materials depends on the previous magnetic field history, a phenomena called
hysteresis. This hysteresis effect can be calculated by taking the second derivative of the
free energy to derive the magnetic susceptibility, a response function [13],

χ = ∂M

∂H
(3.15a)

≈ µ0
∂2F

∂B2 (3.15b)

= µ0kBT

[ 1
Z

∂2Z

∂B2 −
( 1
Z

∂Z

∂B

)2]
(3.15c)

= µ0
kBT

(M2 −M2) (3.15d)

∝ var(M) . (3.15e)

The susceptibility depends on the variance of the magnetization, and thus the response
of the material to applied fields can depend on previous magnetizations. This was derived
by taking derivatives with respect to the applied field. For the Fisher information, the
only term that survives the second derivative of the log-likelihood function is the partition
function,

I = −
〈
∂2lnZ
∂J2

ij

〉
= −

〈 1
Z

∂2Z

∂J2
ij

−
( 1
Z

∂Z

∂Jij

)2〉
, (3.16)

which is the analogous to the magnetic susceptibility, up to an overall multiplicative factor.
In this case, the Fisher information can be thought of as a response function which also
depends on a variance,

I ∝ 〈(σiσj)2〉 − 〈σiσj〉2 ∝ var(σiσj) , (3.17)

indicating that the response, the learning process, depends on the equilibrium correlations
of the pairwise alignment in the system. This is directly related to our initial assumptions re-
garding temperature and rank arguments for the coefficient matrix. If there is no variance in
the pairwise spin-spin alignment, Fisher information tends to zero as 〈(σiσj)2〉 = 〈σiσj〉2 = 1
and the same network spin state is observed repeatedly, leading to an under-constrained
system of equations, and hence no information about the Hamiltonian parameters. In the
high-temperature limit there are sufficient linearly independent spin states observed to make
the coefficient matrix full rank, however, the pairwise spin statistics are not measurably in-
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fluenced by the coupling parameters as thermal energy randomizes the spins. To conclude,
the physics of learning information about this simple Ising model system depends on the
equilibrium correlations in pairwise spin alignment, and this directly leads to sensitivity in
learning the system coupling parameters.
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Chapter 4

Concluding remarks and future
work

Learning the properties of biological systems such as genetic regulatory networks promises
long-term therapeutic benefits such as reprogramming cell fate. Since cell identity is deter-
mined by protein levels, and genes are responsible for protein production and suppression,
we developed a simple binary spin-state model to represent genes being ‘on’ and ‘off’. This
leads to a Hamiltonian representation of the network, the Ising Model, familiar from statis-
tical physics and previously modeled phase transitions in magnetic materials. In order to
reprogram this network, we needed to develop a method to solve for the unknown coupling
parameters in the system. In this way, we could perturb a system to suppress or produce
desired proteins. We developed an approach that constructed a linear system of equations
based on equilibrium network spin observations.

However, despite the wealth of biological data, many environmental factors make this
learning an exponentially costly process both in experimental research and computational
time. Here we examined how to tune these environmental factors, specifically temperature,
in order to efficiently learn about the network. We used asymptotic arguments to predict
poor learning efficiency at low temperature, due to few states of the system being observed,
and at high temperature, being unable to resolve the different energy levels at these high
thermal energy scales. Using simulation results (Fig. 2.2), we verified the existence of the
optimal temperature region and developed physical understanding for its dependence on
network size, in order to predict optimal temperature for larger networks for experimen-
tal work. We tested several methods, to predict optimal temperature scaling, including
the critical temperature for phase transition, entropy, and Fisher information. We found
that Fisher information predicted this scaling most accurately, and this can be understood
in the context of another magnetic statistical mechanics process. Magnetic hysteresis, the
dependence of magnetization of a material on past history of magnetic fields, can be de-
scribed by a response function, the magnetic susceptibility, that is proportional to the second
derivative of the Helmholtz free energy. In the same way, Fisher information is the second
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derivative of the log-likelihood with respect to coupling parameters, and depends on the
variance of the pairwise spin-spin alignment. Maximally efficient learning occurs when the
Fisher information—which depends on the equilibrium correlations of pairwise alignment—
is maximal, in agreement with our original asymptotic arguments in 2.1.2. These insights
point the way to tackling more complicated networks.

In a real biological system, we expect that spin couplings will vary in sign and magni-
tude. Now that we have a more thorough understanding of the emergence of the optimal
temperature region, and a method for predicting its scaling with network size, we intend to
continue the analysis for more complicated networks, with Gaussian-distributed coupling
coefficients. Furthermore, many biological networks (such as synaptic networks in the brain)
are sparse [14]. Preliminary data shows that the optimal temperature for sparse networks
scales in the same way with density as it does with network size in fully connected net-
works. One can imagine combining these results to describe networks where there are fully
connected sub-networks which in turn weakly couple to other sub-networks. Furthermore,
our physical insight that equilibrium correlations in pairwise alignment influence learning
points the way to using field perturbations to improve learning. If it possible to control the
environment in which learning occurs, we can compare whether it is optimal to introduce
field effects or if shifting temperature is more efficient.
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