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Abstract

A circadian clock (sometimes called a circadian oscillator or rhythm) oscillates roughly once
every 24 hours, enabling us to organize our physical and mental activities at the time that
is most optimal. The Nobel Prize in physiology or medicine in 2017 was awarded to the sci-
entists who discovered the molecular mechanisms controlling the circadian clock.[1] In this
thesis, we study the circadian clock in a physical and mathematical setting. The modified
Kuramoto model which describes the synchronization between coupled oscillators is chosen
as the equation of motion to study the circadian clock of living organisms. More specifically,
we picture our physical system as two individual oscillators, one the solar-cycle oscillator
and the other an internal-clock oscillator of a living organism. As in the real world, there is
always random noise that prevents living organisms from having perfect knowledge of the
outside world. Noise can either come from the environmental background or uncertainty in
the internal processing of the organism. The deterministic and stochastic versions of the
modified Kuramoto model are separately analyzed. The cost analysis based on the phase
synchronization between the two oscillators in both deterministic and stochastic environ-
ments can reflect the optimization problem of an organism’s circadian clock. Our approach
of analyzing the circadian clock can provide us an insight to regulate the operation of a
circadian clock within a noisy environment and with internal noise.
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Chapter 1

Introduction

The 24-hour sleep-wake cycle is definitely not an exclusively human trait. In fact, this is a
common physiological process called the circadian clock (or circadian rhythm) that can be
found among mammals, plants and even cyanobacteria.[2][3][4] Moreover, the definition of
the circadian clock is far more than just a sleep-wake 24 hour cycle that tracks the solar
time. Much research has shown that the circadian clock is linked to our optimal feeding
pattern, hormone production, cognitive ability and beyond. Recent research suggested that
obesity and metabolic syndrome were observed in mutant mice with no circadian clock
gene.[5]

The possession of the clock gene in our DNA is beneficial to us in terms of health and
capitalizing on environmental resources. However, there are other so-called free-running
organisms that are not entrained to the 24-hour solar time when they are in an environment
without external stimulus. Their sleep-wake cycle is out of phase with other circadian clocks
in their gene.[6] Therefore, it is not hard to imagine that there are cost-driven optimal
responses for a living organism to decide whether they should stay synchronized with the
external stimulus such as the sun. In this thesis, we will provide a general framework to
interpret the level of optimization of an organism’s circadian oscillator by performing cost
analysis, based on the phase mismatch between the solar cycle oscillator and an organism’s
own circadian oscillator.

In fact, there are many mathematical models that biologists currently use to model
the mammalian circadian clocks. One type of model relies on the mutual coupling between
multiple oscillators, similar to the Kuramoto model.[7] The other type of model relies on
computational biological simulations of interactions between different cells and genes. The
latter model type has its own disadvantage: computational inconvenience. In order to sim-
ulate a biological event, a large numbers of variables need to be introduced within a set of
equations to describe all the biological interactions.[8] As a result, they are computationally
heavy and overly complicated matters, unlike the one that we are proposing.

Actually, it is quite fascinating that a mammalian circadian clock is synchronized with
solar time so naturally. But such a phenomenon is not unique, as there are many similar ex-
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amples of stable phase synchronization in nature, like the synchronization of metronomes,
birds flying in a group, and flashing of fireflies.[9] These common phenomena of collec-
tive synchronization motivated the search for mathematical equations to describe them.
The most popular current model that describes these phenomena is called the Kuramoto
model.[9] This new mathematical approach was formulated by Winfree based on limit-cycle
oscillators with a shared coupling function. Kuramoto expanded upon Winfree’s work and
solved the model with the perturbation method and equally weighted sinusoidal coupling.[9]

The entrainability of a circadian clock suggests that it can be modeled by the Kuramoto
model. In other words, this property of circadian rhythm indicates that an organism’s
internal clock oscillator can be coupled to an external stimulus such as the sun. The value of
the coupling constant is directly proportional to the strength of influence. Another property
of a circadian oscillator is a particular organism can have a different preferred frequency of
oscillation. One example is the trashline orbweaver, which has a circadian clock of 18.5 hour
cycle, but can be entrained to a 24 hour solar cycle. [10] This implies different organisms can
have their own circadian oscillator with distinctive intrinsic frequency, but still be coupled
to the same solar-cycle oscillator.

Beyond the solar-cycle oscillator, numerous environmental factors can keep the sleep-
wake cycle of the organism out of phase with other circadian clocks embedded in other
biological constituents. The absence of accurately measured external cues can affect the
sleep-wake cycle of organisms. This leads to the use of a stochastic Kuramoto model. Noise
in the model can either come from the environment, uncertainty in the internal processing
of the organism, or both. An organism can be free-running when their access to the external
environment is partially or totally shielded.

To explore the optimal regulation of the circadian clock, we chose the deterministic
and stochastic versions of the modified Kuramoto model as equations of motion for an
organism’s circadian clock. To simplify the problem, we assume an organism just has one
circadian clock, even though that is generally not true: there are different circadian clocks
within an organism, responsible for the sleep-wake cycle, cell reproduction and brain-wave
activities, etc. However, these different circadian clocks have their own internal and external
cues of operations, and thus can be treated as totally independent oscillators.

In this thesis, we exclusively focus on the circadian clock that is tracking the solar
time cycle. By assuming that the circadian clock oscillator is operating in its most optimal
setting when its phase is perfectly in sync with the solar cycle oscillator, we can model that
the cost of operating a circadian clock is proportional to the phase mismatch between the
two oscillators. In addition, either an organism is within a noisy environment or has noisy
internal biological mechanisms, giving the organism a harder time to couple with the other
oscillator, hence we expect these conditions will increase the cost of operating the circadian
clock. In this thesis, we will explore the behavior of such a system under separate analysis
of these various cases.
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Chapter 2

Theoretical Background

2.1 Models of Synchronization of Circadian Clocks

The classical Kuramoto model describes frequency synchronization among a network of
limit-cycle oscillators.[9] By assuming each individual oscillator i has internal frequency ωi,
and a network of such oscillators are mutually coupled to a nearby oscillator j, the model
can be written as:

θ̇i = ωi +
N∑
j=1

Ki,j sin(θj − θi), i = 1, ..., N, Ki,j > 0. (2.1)

where θ is the phase of each oscillator, N is the number of oscillators within the network,
and Ki,j is the mutual coupling constant shared among each pair of coupled oscillators i and
j.[9] For a large network of oscillators, the mutual couplings produce a many-body problem,
that can be reduced to a single-body problem using the mean-field approximation.[9] Hence,
the model of Eq. 2.1 can be rewritten as:

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), i = 1, ..., N, K > 0. (2.2)

We modify the classical Kuramoto model to have a solar-cycle oscillator with dynamics
given by:

θs(t) = ωs × t, θ̇s = ωs, (2.3)

where θs is the phase of the solar-cycle oscillator with natural internal frequency of ωs.
The solar cycle oscillator is not entrained by any external source, therefore no coupling is
present in the equation. By contrast, the other oscillator in our model (which represents an
organism’s circadian clock) is coupled to the solar-cycle oscillator according to:

θ̇m = ωm +K sin(θs − θm), K > 0, (2.4)
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where θm is the phase of the circadian-clock oscillator of an organism with internal frequency
ωm and coupled to the solar-cycle oscillator θs via external entrainment. The time-courses
As and Am of the level of each oscillator are given by

As = Bs sin(θs), Am = Bm sin(θm), (2.5)

where Bs and Bm are the factors scaling As and Am to appropriate units.
In the real world, there is always random noise that can affect an organism’s response

to internal and external entrainment. For the case of internal noise, an additive noise is
introduced to Eq. 2.2. The stochastic modified Kuramoto model can be rewritten as a
Langevin equation if the noise is a Gaussian white noise:

θ̇∗m,int = ωm +K sin(θs − θm) + cintξint, (2.6)

where cint is a scaling factor of the internal noise level, and ∗ in θ̇∗m,int indicates that the
differential equation is stochastic with additive noise ξint that influences the organism’s
perception of internal frequency ωm. The additive noise ξint has zero expectation value:

〈ξint(t)〉 = 0. (2.7)

For noise from the external environment, we introduce it inside the sinusoidal coupling
function of Eq. 2.2, with the second subscript s in indicating that the noise affects the
organism’s measurement of external stimulus θs:

θ̇∗m,ext = ωm +K sin(θs − θm + cextξext), (2.8)

where cext is a scaling factor of the external noise level, and ξext is the noise affecting the
external entrainment of the circadian oscillator with zero expectation value

〈ξext(t)〉 = 0. (2.9)

It is useful to inspect Eq. 2.8 in more detail since the external noise is embedded inside
the coupling function. We can group cextξext together with θs:

θ∗s = θs + cextξext = ωs × t+ cextξext = ωs × (t+ cextξext
ωs

) (2.10)

where ∗ indicates that the current θ∗s is stochastic. Moreover, after some algebraic manip-
ulations as shown in Eq. 2.10, we can redefine the stochastic version of θs that has the
time-delay property:

τ∗ = cextξext
ωs

, θ∗s = ωs × (t+ τ∗) = θs(t+ τ∗), (2.11)
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where τ∗ denotes the time-delay stochastic constant. It is interesting to see that Eq. 2.8
also has time-delay property which can be overlooked at first. By combining Eq. 2.10 and
2.11, we can rewrite Eq. 2.8 as:

θ̇∗m,ext = ωm +K sin(θs(t+ τ∗)− θm). (2.12)

This is difficult to solve, since the noise can turn out to be a multiplicative noise, and
the time-delayed Kuramoto model is relatively unexplored. The stochastic version of our
modified Kuramoto model with both external and internal noise can be written as:

θ̇∗∗m = ωm +K sin(θs − θm + cextξext) + cintξint (2.13a)

θ̇∗∗m = ωm +K sin(θs(t+ τ∗)− θm) + cintξint (2.13b)

where ∗∗ in θ̇∗∗m indicates that the equation of motion includes two stochastic processes.

2.2 Methods of ODE and SDE Integrations

The most common numerical integration methods for the Kuramoto model is the fourth-
order Runge-Kutta method for the deterministic case, and the Euler-Maruyama method
for the stochastic case.[11] [12] However, these two commonly used methods are not time-
reversible, hence we develop our own integration methods. The deterministic and stochas-
tic version of our modified Kuramoto model can be numerically integrated by the time-
reversible deterministic and stochastic leapfrog integrator.

2.2.1 Deterministic Leapfrog Integrator

For our deterministic model, one iteration of numerical integration can be split into two frac-
tional steps, with each fractional step updating θm over half of a full time step. Such integra-
tion method is discussed in Sivak et. al.’s "Time Step Rescaling Recovers Continuous-Time
Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems".[13]
Following their integration method, we develop a new integration algorithm for our modified
Kuramoto model:

θm,n+ 1
2

= θm,n + 1
2
dθm,n
dt

∆t (2.14a)

= θm,n + 1
2[ωm +K sin(θs,n − θm,n)]∆t, (2.14b)

θm,n+1 = θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.14c)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θs,n+ 1

2
− θm,n+ 1

2
)]∆t (2.14d)

where ∆t is the step-size in time and n denotes the current step.
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2.2.2 Stochastic Leapfrog Integrator - Wiener Process

For the stochastic version of our modified Kuramoto model, we have to define the stochastic
process used in our modeling. The Wiener process is the most commonly applied stochastic
process in modeling of the stochastic Kuramoto model. [12] However, it is mathematically
challenging to solve its probability density function. Instead, we primarily use a differen-
tiable Gaussian process in our analysis. But we can still construct our numerical integration
method using a Wiener process, because it is a topic that may reward further study.

By definition, each increment of a Wiener process is independent and has a normal
distribution, N (0,∆t). The Wiener process can be defined by:

Wt+∆t −Wt = ∆Wt ∼ N (0,∆t) , (2.15)

where Wt is the Wiener process at time t and ∆Wt is an independent increment of the
Wiener process. A Gaussian white noise ξint in Eq. 2.6 can be replaced as an increment of
the Wiener process:

∆Wt ∼ N (0,∆t) = ξint(t), σ2
int = 〈δξ2

int(t)〉 = ∆t. (2.16)

Then the leapfrog integrator of Eq. 2.14 needs to take the new stochastic component into
consideration. From the above mentioned paper: "Time Step Rescaling Recovers Continuous-
Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Sys-
tems", the stochastic leapfrog integrator can be implemented with the stochastic and deter-
ministic component integrated separately.[13] Hence, we develop a new stochastic leapfrog
integrator for our model, according to the algorithm:

θm,n+ 1
4

= θm,n + 1
2c∆Wn, (2.17a)

θm,n+ 1
2

= θm,n+ 1
4

+ 1
2
dθm,n+ 1

4

dt
∆t (2.17b)

= θm,n+ 1
4

+ 1
2[ωm +K sin(θs,n+ 1

4
− θm,n+ 1

4
)]∆t, (2.17c)

θm,n+ 3
4

= θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.17d)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θs,n+ 1

2
− θm,n+ 1

2
)]∆t, (2.17e)

θm,n+1 = θm,n+ 3
4

+ 1
2c∆Wn+1. (2.17f)

The same stochastic process can be used to model the other Gaussian white noise we
introduced in Eq. 2.8, the noise ξext from the external environment:

∆Wt ∼ N (0,∆t) = ξext(t), σ2
ext = 〈δξ2

ext(t)〉 = ∆t. (2.18)
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Similar to Eq. 2.17, the stochastic leapfrog integrator for the SDE with Gaussian white
noise within the sinusoidal coupling function can be implemented as:

θ∗s,n = θs,n + 1
2b∆Wn, (2.19a)

θm,n+ 1
2

= θm,n + 1
2
dθm,n
dt

∆t (2.19b)

= θm,n + 1
2[ωm +K sin(θ∗s,n − θm,n)]∆t, (2.19c)

θ∗s,n+ 1
2

= θs,n+ 1
2

+ 1
2b∆Wn+1, (2.19d)

θm,n+1 = θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.19e)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θ∗s,n+ 1

2
− θm,n+ 1

2
)]∆t, (2.19f)

Note that the integration step of the stochastic component in Eq. 2.19 is different compare to
Eq. 2.17 because the external noise ξext affects the value of θs inside the sinusoidal function
for each fractional step of integration. By combining Eq. 2.17 and 2.19, we develop a
stochastic leapfrog integrator for Eq. 2.13:

θm,n+ 1
4

= θm,n + 1
2c∆Wm,n, (2.20a)

θ∗s,n+ 1
4

= θs,n+ 1
4

+ 1
2b∆Ws,n, (2.20b)

θm,n+ 1
2

= θm,n+ 1
4

+ 1
2
dθm,n+ 1

4

dt
∆t (2.20c)

= θm,n+ 1
4

+ 1
2[ωm +K sin(θ∗s,n+ 1

4
− θm,n+ 1

4
)]∆t, (2.20d)

θ∗s,n+ 1
2

= θs,n+ 1
2

+ 1
2b∆Ws,n+1, (2.20e)

θm,n+ 3
4

= θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.20f)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θ∗s,n+ 1

2
− θm,n+ 1

2
)]∆t, (2.20g)

θm,n+1 = θm,n+ 3
4

+ 1
2c∆Wm,n+1. (2.20h)

In the next section, we will begin to explore the stochastic Kuramoto model under the
noise driven by a differentiable Gaussian process.

2.2.3 Stochastic Differential Equation Integrator - Gaussian Process

To define a differentiable Gaussian process [14], we first predefine a normal distribution of
a set of random variables from time 0 −→ t as:

G(0) = 0, G(t) ∼ N (0,∆t), (2.21)
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where G represents the Gaussian process, with normal distribution N (0,∆t).[14] An incre-
ment ∆Gt of the Gaussian process is the difference between subsequent random variables
in time Gt+∆t −Gt, such that

∆Gt = Gt+∆t −Gt, Cov[∆Gt,∆Gt+∆t] = −|∆t|, (2.22)

where Cov is the covariance of a random dataset. The noise in Eq. 2.6 can be implemented
as an increment of the Gaussian process in the same way as the Wiener process in Eq. 2.15:

∆Gt = ξint(t), Cov[ξint(t), ξint(t+ ∆t)] = −|∆t|. (2.23)

The stochastic leapfrog integrator in this case is still similar to Eq. 2.17, but the Wiener
process W is replaced with the Gaussian process G, giving the new algorithm

θm,n+ 1
4

= θm,n + 1
2c∆Gn, (2.24a)

θm,n+ 1
2

= θm,n+ 1
4

+ 1
2
dθm,n+ 1

4

dt
∆t (2.24b)

= θm,n+ 1
4

+ 1
2[ωm +K sin(θs,n+ 1

4
− θm,n+ 1

4
)]∆t, (2.24c)

θm,n+ 3
4

= θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.24d)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θs,n+ 1

2
− θm,n+ 1

2
)]∆t, (2.24e)

θm,n+1 = θm,n+ 3
4

+ 1
2c∆Gn+1. (2.24f)

Also Eq. 2.19 can be rewritten as:

θ∗s,n+ 1
4

= θs,n+ 1
4

+ 1
2b∆Gs,n, (2.25a)

θm,n+ 1
2

= θm,n+ 1
4

+ 1
2
dθm,n+ 1

4

dt
∆t (2.25b)

= θm,n+ 1
4

+ 1
2[ωm +K sin(θ∗s,n+ 1

4
− θm,n+ 1

4
)]∆t, (2.25c)

θ∗s,n+ 1
2

= θs,n+ 1
2

+ 1
2b∆Gs,n+1, (2.25d)

θm,n+ 3
4

= θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.25e)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θ∗s,n+ 1

2
− θm,n+ 1

2
)]∆t. (2.25f)
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Finally, the complete algorithm of Eq. 2.20 becomes:

θm,n+ 1
4

= θm,n + 1
2c∆Gm,n, (2.26a)

θ∗s,n+ 1
4

= θs,n+ 1
4

+ 1
2b∆Gs,n, (2.26b)

θm,n+ 1
2

= θm,n+ 1
4

+ 1
2
dθm,n+ 1

4

dt
∆t (2.26c)

= θm,n+ 1
4

+ 1
2[ωm +K sin(θ∗s,n+ 1

4
− θm,n+ 1

4
)]∆t, (2.26d)

θ∗s,n+ 1
2

= θs,n+ 1
2

+ 1
2b∆Gs,n+1, (2.26e)

θm,n+ 3
4

= θm,n+ 1
2

+ 1
2
dθm,n+ 1

2

dt
∆t (2.26f)

= θm,n+ 1
2

+ 1
2[ωm +K sin(θ∗s,n+ 1

2
− θm,n+ 1

2
)]∆t, (2.26g)

θm,n+1 = θm,n+ 3
4

+ 1
2c∆Gm,n+1. (2.26h)

2.3 Critical Coupling

The frequency of a circadian clock oscillator ˙θm is expected to be synchronized with the
solar-cycle frequency ωs if the coupling constant K between oscillators is above a threshold
value, known as the critical coupling constant Kc.

2.3.1 Deterministic Model

For the deterministic version of our modified Kuramoto model Eq. 2.4, a circadian oscillator
is synchronized with the solar cycle oscillator when:

ωs = ωm +K sin(θs − θm), K ≥ Kc. (2.27)

The critical coupling constant Kc is the smallest value of K which can achieve the above
steady state condition Eq. 2.27. We minimize Kc in Eq. 2.27 by maximizing the sinusoidal
coupling function,

sin(θs − θm) = 1, θs − θm = π

2 . (2.28)

Substituting Eq.2.28 into 2.27, we obtain:

|ωs − ωm| = Kc, ∆ω = ωs − ωm, Kc = |∆ω|, (2.29)

where the absolute value of ∆ω emphasizes the coupling constant K is always positive as
define in Eq.2.4.
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2.3.2 Stochastic Model with Wiener Process

For any stochastic differential equation in the form of:

dθt = µ(θt, t)dt+ σ(θt, t)dWt, (2.30)

where dWt is an increment of the Wiener process, one can always write the Fokker-Planck
equation [15] with probability density function ρ(θ, t) of the random variables θ as follow:

∂

∂t
ρ(θ, t) = − ∂

∂θ
[µ(θ, t)ρ(θ, t)] + ∂2

∂θ2 [D(θ, t)ρ(θ, t)], (2.31)

where the diffusion coefficient D(θ, t) = σ2(θt, t)/2.[15] In our case, it is not difficult to
realize that Eq.2.6 is precisely in the form of Eq.2.30, so we substitute Eq.2.6 into 2.31,
giving

∂

∂t
ρ(θm, t) = − ∂

∂θm
[(ωm +K sin(θs − θm))ρ(θm, t)] + ∂2

∂θ2
m

[Dρ(θm, t)], (2.32)

where D = c2
int∆t/2 define by Eq. 2.15 and 2.6.[9] After some simplifications, we can rewrite

the above partial differential equation as:

∂ρ

∂t
= K cos(θs − θm)ρ− [ωm +K sin(θs − θm)] ∂ρ

∂θm
+D

∂2ρ

∂θ2
m
. (2.33)

To obtain the critical coupling constant Kc for the stochastic Kuramoto model with the
Wiener process, we have to solve ρ(θm, t) from the above Fokker Planck equation Eq. 2.33.
However, the exact analytic form of ρ(θm, t) is yet to be found. The current approach to
analyze such stochastic model is by using Fourier series to approximate ρ(θm, t) and the
mathematics involved in deriving Kc with approximated form of ρ(θm, t) is still under active
investigation by mathematicians and physicists.[9] It is beyond the scope of this thesis to
solve Kc from the stochastic model with the Wiener process. But this is not the case when
we define the stochastic process in our modified model by a differentiable Gaussian process,
since we have previously defined the probability distribution of the random variables in
Eq. 2.21, therefore we can calculate the expected value of the differential equation at steady
state to derive Kc.

2.3.3 Stochastic Model with Gaussian Process (Internal Noise)

A circadian clock can synchronize with the solar-cycle oscillator even when there is internal
noise inside the organism. We can rewrite Eq. 2.6 with the assumption that above statement
Eq. 2.27 holds, with K ≥ K∗c,int:

ωs = ωm +K∗c,int sin(θs − θm) + cintξint, ∆ω = K∗c,int sin(θs − θm) + cintξint, (2.34)

10



whereK∗c,int is the critical coupling constant for the case of an organism experiencing internal
noise. As discussed in the previous section, the benefit of working with the Gaussian process
is that the distribution of the random variable is known, and we can get the expected value
of Eq. 2.34 to derive the equation for K∗c,int. In other words, we can always calculate Eq. 2.6
in terms of the Itô integral:

∫ θ(t)

θ(0)
dθ =

∫ t

0
[ωm +K sin(θs − θm)]dt+ cint

∫ t

0
dGt (2.35a)

θm(t) = θm(0) +
∫ t

0
[ωm +K sin(θs − θm)]dt+ cint[G(t)−G(0)] (2.35b)

θm(t) = θm(0) +
∫ t

0
[ωm +K sin(θs − θm)]dt+ cintG(t), (2.35c)

where we know precisely how G(t) affects θm. For this reason, we take the expectation
value of Eq. 2.34 in this way:

E[∆ω] = E[K∗c,int sin(θs − θm)] + E[cintξint], 〈ξint(t)〉 = 0, E[cintξint] = 0, (2.36)

where E denotes the expectation value. We can simplify the above operation by noting that
∆ω is a constant:

E[∆ω] = ∆ω, ∆ω = K∗c,intE[sin(θs − θ∗m)], (2.37)

where ∗ indicates that the variable is stochastic. Therefore by applying the definition of
expected value, we are left with:

E[sin(θs − θ∗m)] =
∫ ∞
−∞

dθ∗mP (θ∗m) sin(θs − θ∗m), (2.38)

where P (θ∗m) is the normal distribution that we defined for the Gaussian process for random
variables θ∗m. And cint in Eq. 2.6 scales the standard deviation of the normally distributed
random variable θ∗m, and θ∗m has standard deviation of

√
∆t, as given by Eq. 2.21. The mean

value of θ∗m can be obtained from the deterministic case where θs−θm = π
2 , and then P (θ∗m)

is a normal distribution given by:

P (θ∗m) = 1√
2π(cintσint)2 exp

[−(θ∗m − θs + π
2 )2

2(cintσint)2

]
, σint =

√
∆t, (2.39)

We change variables, setting s = [2(cintσint)2]−1 and x = θ∗m−θs+ π
2 which Eq. 2.39 becomes:

P (x) =
√
s

π
exp[−sx2], (2.40)

11



then, we substitute the above equation back to the integral, so that Eq. 2.38 becomes:

E[sin(θs − θ∗m)] =
∫ ∞
−∞

dxP (x) sin
(
π

2 − x
)

(2.41a)

=
∫ ∞
−∞

dx

√
s

π
exp[−sx2] sin

(
π

2 − x
)
. (2.41b)

Using the trigonometric identity,

sin
(
π

2 − x
)

= sin
(
π

2

)
cos(x)− sin(x) cos

(
π

2

)
= cos(x), (2.42)

simplifies the integral to:

E[sin(θs − θ∗m)] =
∫ ∞
−∞

dx

√
s

π
exp[−sx2] cos(x), (2.43a)

= 1
2
[ ∫ ∞
−∞

dx

√
s

π
exp[−sx2 + ix] +

∫ ∞
−∞

dx

√
s

π
exp[−sx2 − ix]

]
(2.43b)

= 1
2[f(x) + g(x)], (2.43c)

f(x) =
∫ ∞
−∞

dx

√
s

π
exp[−sx2 + ix], g(x) =

∫ ∞
−∞

dx

√
s

π
exp[−sx2 − ix], (2.44)

The equations of Eq. 2.44 are in the form of Fourier transforms, with general solution:

∫ ∞
−∞

dx exp
[
−1

2ax
2 + iJx

]
=
√

2π
a

exp
[
− J2

2a

]
, (2.45)

Therefore, the solutions of f(x) and g(x) are:

f(x) = exp
[
− 1

4s

]
, g(x) = exp

[
− 1

4s

]
. (2.46)

Finally, substituting Eq. 2.46 into 2.43 gives

E[sin(θs − θ∗m)] = exp
[
− 1

4s

]
(2.47a)

= exp
[−(cintσint)2

2

]
. (2.47b)

After substituting Eq. 2.47 into 2.37, the expression of the critical coupling constant K∗c,int,
reflecting the change in Kc for the stochastic case, is proportional to the standard deviation
of the noise σint and the scaling factor cint:

|∆ω| = K∗c,int exp
[−(cintσint)2

2

]
, K∗c,int = |∆ω| exp

[(cintσint)2

2

]
. (2.48)
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2.3.4 Stochastic Model with Gaussian Process (External Noise)

As previously discussed, the stochastic Kuramoto model with noise inside the sinusoidal
coupling function of Eq. 2.8 is in fact a time-delay stochastic differential equation and it
can be challenging to solve. For our modified Kuramoto model with external noise, we can
still assume that the circadian clock can be synchronized with the solar cycle oscillator if
Eq. 2.8 reaches the following steady state:

ωs = ωm +K sin(θs − θm + cextξext), K ≥ K∗c,ext (2.49)

where K∗c,ext is the critical coupling constant when an organism experiences external noise.
We can apply the same analysis from the previous subsection to Eq.2.49, namely taking the
expectation value of Eq. 2.49:

E[∆ω] = E[K∗c,ext sin(θs − θm + cextξext)], (2.50)

with knowing that ∆ω is a constant, the above equation can be written as:

E[∆ω] = ∆ω, ∆ω = K∗c,extE[sin(θs − θm + cextξext)] . (2.51)

Using the trigonometric identity

sin
(
θs − θm + cextξext

)
= sin

(
θs − θm

)
cos(cextξext) + cos

(
θs − θm

)
sin(cextξext), (2.52)

and applying the definition of expected value, the integral form of Eq.2.49 reduces to

E[sin(θs − θm + cextξext)] = sin(θs − θm)
∫ ∞
−∞

dξextP (ξext) cos(cextξext) (2.53a)

+ cos(θs − θm)
∫ ∞
−∞

dξextP (ξext) sin(cextξext). (2.53b)

Note that the prior distribution P (ξext) is an even Gaussian function with 〈ξext(t)〉 = 0,
whereas sin(cextξext) is an odd function, hence their integral from −∞ to ∞ is zero:∫ ∞

−∞
dξextP (ξext) sin(cextξext) = 0. (2.54)

The predefined distribution of ξext is

P (ξext) = 1√
2πσ2

ext

exp
[−(ξext)2

2σ2
ext

]
, σext =

√
∆t . (2.55)
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Changing variables via y = ξext and u = [2σ2
ext]−1, simplifies Eq. 2.55 to:

P (y) =
√
u

π
exp[−uy2], (2.56)

and the integral of Eq. 2.53 becomes:

E[sin(θs − θm + cextξext)] = sin(θs − θm) b
∫ ∞
−∞

dyP (y) cos
(
y
)

(2.57a)

= sin(θs − θm) b
∫ ∞
−∞

dy

√
u

π
exp[−uy2] cos

(
y
)
. (2.57b)

The integral on the right hand side of Eq. 2.57 is in the same form as Eq. 2.43, so that it
evaluates to

E[sin(θs − θm + cextξext)] = cext exp
[
− (cextσext)2

2

]
. (2.58)

Substituting Eq. 2.58 into 2.49 gives an expression for K∗c,ext:

K∗c,ext = |∆ω|
cext

exp
[(cextσext)2

2

]
. (2.59)

In contrast to Eq. 2.48, K∗c,ext is also inversely proportional to the scaling factor cext.

2.3.5 Stochastic Model with Gaussian Process (Internal and External
Noise)

We now follow the same analysis from the previous subsections, so that circadian oscillator
in Eq. 2.13 is critically coupled to the solar-cycle oscillator when

ωs = ωm +K sin(θs − θm + cextξext) + cintξint, K ≥ K∗∗c . (2.60)

Here K∗∗c is the critical coupling constant of the system with both external and internal
noise. We take the expectation value of Eq. 2.60:

E[∆ω] = K∗∗c E[sin(θs − θm + cextξext)] + E[cintξint]. (2.61)

We know that E[cintξint] = 0 from Eq. 2.36. To show that θm is randomly distributed, we
change its notation to θ∗m. Also, we know that ∆ω is a constant, so Eq. 2.60 becomes:

∆ω = K∗∗c E[sin(θs − θ∗m + cextξext)] . (2.62)
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Applying the definition of expected value, Eq. 2.61 has an integral form of:

E[sin(θs − θ∗m + cextξext)] (2.63a)

=
∫ ∞
−∞

dθ∗mP (θ∗m) sin(θs − θ∗m) (2.63b)

×
∫ ∞
−∞

dξextP (ξext) cos(cextξext) (2.63c)

+
∫ ∞
−∞

dθ∗mP (θ∗m) cos(θs − θ∗m) (2.63d)

×
∫ ∞
−∞

dξextP (ξext) sin(cextξext). (2.63e)

Following the derivation of similar integrals in Eq. 2.47 and 2.53, the above equation
Eq. 2.63 becomes:

E[sin(θs − θ∗m + cextξext)] (2.64a)

=
∫ ∞
−∞

dθ∗mP (θ∗m) sin(θs − θ∗m) (2.64b)

×
∫ ∞
−∞

dξextP (ξext) cos(cextξext) (2.64c)

= E[sin(θs − θ∗m)]×E[sin(θs − θm + cextξext)] (2.64d)

= cext exp
[
− (cextσext)2 + (cintσint)2

2

]
. (2.64e)

Finally, we substitute Eq. 2.64 into 2.62, to find the critical coupling constant K∗∗c with
both external and internal noise:

K∗∗c = |∆ω|
cext

exp
[

(cextσext)2 + (cintσint)2

2

]
. (2.65)

2.4 Cost Analysis

We assume that the cost of operating a circadian clock results from the (absolute) phase
mismatch between the circadian oscillator and the solar cycle oscillator. We define the cost
function as 1− cosine of the phase mismatch, averaged over all integration steps:

C = 1
Ni

Ni∑
i

[1− cos (θs,i − θm,i)] , (2.66)

where Ni is the total number of integration steps. For a strongly coupled system (large K),
the phase mismatch between the two oscillators can become very small, and as a result, we
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can expand the sine function in Eq. 2.4:

sin(θs − θm) ≈ θs − θm = ∆θ, ∆θ � 1 . (2.67)

Similarly, a strongly coupled system is synchronized in frequency as well, so Eq. 2.4 becomes:

ωs = ωm +K sin(θs − θm) ≈ ωm +K∆θ, ∆ω = ωs − ωm, ∆θ = ∆ω
K

. (2.68)

Thus the cost function Eq.2.66 can be written as:

Capprox ≈
1
Ni

Ni∑
i

[1− cos (∆ω/K)] , K � Kc. (2.69)

If the model is stochastic, each computation will produce a different trajectory of the
circadian oscillator. We take the expectation value of the 1 − cosine of phase mismatch
for multiple phase trajectories at each time step, which is 〈(1 − cos (θs,i − θm,i)〉. Then we
calculate the cost in terms of the expectation value:

C∗ = 1
Ni

Ni∑
i
〈(1− cos (θs,i − θm,i)〉. (2.70)

Finally, we also want to know the cost of an organism having no circadian clock as well,
which can be defined by:

C0 = 1
Ni

Ni∑
i

[1− cos(θs,i)]. (2.71)
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Chapter 3

Result and Discussion

Throughout this entire chapter, we will perform all of our analysis with the intrinsic fre-
quency of the solar-cycle oscillator set at ωs = 2π

24
rad

hours . This setting guarantees the solar-
cycle oscillator makes 1 complete revolution for every 24 hours. Any integration of an
ordinary differential equation or stochastic differential equation is discretized with a time
step of ∆t = 0.01 hour.

3.1 Deterministic Model

3.1.1 Deterministic Time-courses

We compute the phase of the solar-cycle oscillator in Eq. 2.3 and the phase of the circadian
clock in Eq. 2.4 under three different coupling conditions. This computation is done by using
the deterministic leapfrog integrator in Eq. 2.14. Later we take the result of integration to
compute the time-courses of each oscillator in Eq. 2.5. The time-courses of deterministic
circadian clocks as a result of the computation are shown in Fig. 3.1.

We categorize the sample circadian clocks shown in Fig. 3.1 into three groups based on
their time-courses. Firstly, we categorize the circadian clock in Fig. 3.1a as a ‘bad’ circadian
clock because its oscillation frequency is not synchronized with the solar-cycle oscillator.
Research has shown that a human with 24-hour circadian clock experiences deepest sleep
from 2:00am to 4:00am [16]. We can imagine if a person has a similar high-frequency cir-
cadian clock as shown in Fig. 3.1a, his time frame to achieve deep sleep will be shortened
and this might affect his health. Hence, we will expect that the operational cost of a ‘bad’
circadian clock is higher than the other examples in Fig. 3.1.

The other two circadian clocks in Fig. 3.1 are frequency synchronized with the solar-
cycle oscillator; one is shown in Fig. 3.1b with K = 1.0 ∆ω and the other one is shown
in Fig. 3.1c with K = 3.0 ∆ω. The circadian clock from Fig. 3.1b is categorized as a
‘good’ circadian clock because its frequency is synchronized with the solar-cycle oscillator.
An organism with possession of such internal circadian clock can fully utilize the 24-hour
solar cycle to organize its physiological and mental activities. However, this clock has larger
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Figure 3.1: Time-courses of deterministic circadian clock computed via Eq. 2.4 and 2.5 with
coupling constants: a) K = 0.5 ∆ω, b) K = 1.0 ∆ω and c) K = 3.0 ∆ω. We set parameters
to ωs = 2π

24 , ωm = −3.0 ωs, Bm = 1 and Bs = 1.
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phase mismatch compares to the ’great’ clock in Fig. 3.1c. The ‘great’ circadian clock in
Fig. 3.1c closely tracks the solar-cycle oscillator. An organism with such circadian clock not
only can utilize the 24-hour solar time but also can capitalize environmental resource such
as sunlight. We expect that the operating cost of the ’great’ clock will be lower than the
’good’ clock.

3.1.2 Critical Coupling

We derive the critical coupling constant Kc in Eq. 2.29 as the coupling constant beyond
which (K ≥ Kc) a circadian clock achieves frequency synchronization with the solar-cycle
oscillator, as defined in Eq. 2.27. This can be tested by simulating multiple circadian clocks
with different intrinsic frequencies ωm and subsequently increasing coupling constant K to
observe whether the oscillation frequency ˙θm of a circadian clock reaches steady state after
K surpasses a threshold value. The result of this computation is shown in Fig. 3.2. Five
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Figure 3.2: Oscillating frequencies θ̇m of circadian clocks with different intrinsic frequency
ωm as a function of coupling constant K. The oscillation frequency ˙θm of circadian clock is
calculated with Eq. 2.4. N marks the value of K when ˙θm reaches steady state.

circadian clocks are simulated and their oscillation frequency reaches steady state after K
surpasses Kc, which Kc is marked on the plot with N. We can simulate more circadian
clocks in this way to extract data of Kc as a function of ωm to test the validity of Eq. 2.29.

The critical coupling constants Kc are extracted based on the above method. Figure 3.3
showsKc as a function of intrinsic frequency ωm. The data in Fig. 3.3 is fitted to Eq. 2.29 and
the fitting shows agreement between extracted data and theoretical prediction in Eq. 2.29.
We observe there is a proportionality between intrinsic frequency ωm and critical coupling
constant Kc. Intuitively, we can understand that if a circadian clock has an intrinsic fre-
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Figure 3.3: Critical coupling constant Kc as a function of intrinsic frequency of circadian
clock ωm. The computation result is fitted toKc = |ωs−ωm| (Eq. 2.29) with fitting coefficient
ωs = 0.2618 ≈ 2π

24 (rad/hour).

quency ωm further apart from the solar cycle frequency ωs, such circadian clock requires
larger coupling constant to reach frequency synchronization with the solar-cycle oscillator.

3.1.3 Cost Analysis

Figure 3.4 shows the operational cost of a circadian clock (2.66) as a function of coupling
constant K. The operational costs of the three circadian clocks in Fig. 3.1 are labeled with
their name in Fig. 3.4. As expected, the bad clock has highest cost of operation among the
three and the great clock has the least operational cost.

The colored dashed lines signify the start of significant drop in the operational cost
of the circadian clock with the corresponding color. Coincidentally, each dashed line also
marks the location of theoretical critical coupling constant Kc calculated using Eq. 2.29
for each circadian clock. As the circadian clock shifts to achieve phase synchronization, its
operational cost is significantly reduced. The significant drop in cost is more evident on the
log-scale plot in Fig. 3.4b, where the cost of operation decreases in a straight line, showing
an exponential drop in cost.

The cost of operating no circadian clock (2.71) (an organism performs tasks whenever
it likes) is the horizontal black line in Fig.3.4. The cost of operating no circadian clock is
maximal, but also equal to the cost of operating a clock that cannot frequency-synchronize
with the solar-cycle oscillator. Fig. 2.66 shows that the cost of operating no circadian clock
is about the same as operating a bad clock. The operational cost of a circadian clock is
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low only when the clock is able to reach frequency synchronization, otherwise it is just as
optimal as operating no circadian clock.

We can compare the cost of operating circadian clock with ωm = 6.0 ωs (purple line)
and ωm = −3.0 ωs (green line) in Fig. 3.4. A circadian clock with intrinsic frequency
closer to the solar cycle frequency (green line in this case) will have lower operating cost
when it is frequency-synchronized with the solar cycle oscillator under the same coupling
constant. That shows the operational cost of a circadian clock is also proportional to its
intrinsic frequency ωm. However this is only true when the circadian clock is at frequency
synchronization with the solar-cycle oscillator and only valid when we perform comparison
under the same coupling constant. If a circadian clock is already frequency-synchronized,
its cost of operation is lower if its intrinsic frequency is closer to the solar cycle frequency.

There are some small oscillations in the cost of operation when the circadian clock is
not frequency synchronized, stemming from the cosine function in Eq. 2.66. Further study
is needed to understand the physical reason for these.

3.2 Stochastic Model with Internal Noise

3.2.1 Stochastic Time-courses

The phase of a circadian clock with internal noise can be obtained by integrating the
stochastic differential equation in Eq. 2.6 with stochastic leapfrog integrator in Eq. 2.24.
The time-courses of a circadian clock with internal noise is computed by Eq. 2.5. Four
circadian clocks are shown in Fig. 3.5, each clock with a different coupling condition. Even
though the time-courses of each clock are noisy, their periodic motion is still intelligible.

Similar to the last subsection, we categorize the circadian clocks in Fig. 3.5 accord-
ing to their frequency synchronization with the solar-cycle oscillator. The circadian clock
Fig. 3.5a is a ‘bad’ circadian clock as previously discussed in § 3.1.1. In Fig. 3.5b, the cir-
cadian clock has K = 1.0 ∆ω equal to the critical coupling constant for the deterministic
model. However, such a clock is not synchronized with the solar-cycle oscillator due to in-
ternal noise. This circadian clock neared synchronization in the first 24 hours but failed
immediately afterward (Fig. 3.5b). We categorize this circadian clock as ‘good’ because it
has the same coupling constant as the good circadian clock in Fig. 3.1b. A ‘better’ circadian
clock (Fig. 3.5c) is frequency synchronized with the solar-cycle oscillator, but without phase
synchronization. Then we have a ‘great’ circadian clock (Fig. 3.5d) tracks the solar-cycle
oscillator closely. Comparing Fig. 3.5b with 3.1b, it is intuitive to expect that operating
a stochastic circadian clock will yield higher operational cost compared to a deterministic
clock if the circadian clock is frequency-synchronized with the solar cycle oscillator in a
deterministic environment.

22



-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32  36  40  44  48

Ti
m

e-
co

ur
se

s
Time (hours)

K = 0.5 Δω (Bad), ωm = -3ωs, cint = 2

so
la

r 
cy

cl
e 

os
ci

lla
to

r

circadian clock

(a) Bad Circadian Clock

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32  36  40  44  48

Ti
m

e-
co

ur
se

s

Time (hours)

K = 1.0 Δω (Good), ωm = -3ωs, cint = 2

solar cycle oscillator

circadian clock

(b) Good Circadian Clock

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32  36  40  44  48

Ti
m

e-
co

ur
se

s

Time (hours)

K = 1.0202 Δω (Better), ωm = -3ωs, cint = 2

solar cycle oscillator

circadian clock

(c) Better Circadian Clock

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32  36  40  44  48

Ti
m

e-
co

ur
se

s

Time (hours)

K = 3.0 Δω (Great), ωm = -3ωs, cint = 2

solar cycle oscillator
circadian clock

(d) Great Circadian Clock

Figure 3.5: Time-courses of stochastic circadian clock with internal noise computed via
Eq. 2.5 and 2.6 with coupling constants: a) K = 0.5 ∆ω, b) K = 1.0 ∆ω, c) K = 1.0202 ∆ω
and d) K = 3.0 ∆ω. In all panels, ωs = 2π

24 , cint = 2.0, ωm = −3.0 ωs, Bm = 1 and Bs = 1.
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3.2.2 Critical Coupling

The oscillation frequency of a circadian clock with internal noise is described by Eq. 2.6.
We assume that the oscillation frequency of a circadian clock with internal noise will reach
steady state when K ≥ K∗c,int. Based on this assumption we derive the equation of critical
coupling constant for the stochastic model with internal noise. Figure 3.6 shows tests of
multiple circadian clocks under different noise strengths cint with progressively increasing
coupling constants to determine when the clock’s oscillation frequency reaches steady state.
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Figure 3.6: Oscillating frequencies θ̇m of stochastic circadian clocks with internal noise
as a function of coupling constant K. The intrinsic frequency of the circadian clock is
ωm = −3.0 ωs. The oscillation frequency ˙θm of the circadian clock is calculated with Eq. 2.6.
N marks the critical K where ˙θm reaches steady state.

Figure 3.6 shows that the oscillation frequency of a circadian clock with internal noise
indeed reaches steady state after surpassing a threshold coupling constant K∗c,int.

The critical coupling constant increases with the noise strength cint. N mark the crit-
ical coupling constants K∗c,int of circadian clocks with internal noise of varying strengths.
Figure 3.7 shows empirical K∗c,int as a function of noise strength cint, fitted to Eq. 2.48,
with strong agreement between data and our theoretical prediction. We have set |∆ω| =
|2π24 − −

6π
24 | = π

3 (rad/hours) and σint =
√

∆t =
√

0.01 in our calculations. The fit pa-
rameters are |∆ω| = 1.047 and σint = 0.1005. The fit parameters agree with our theory,
where |∆ω| = 1.047 ≈ π

3 and σint = 0.1005 ≈
√

0.01. The critical coupling constant grows
exponentially with the noise strength, confirming that frequency synchronization is more
difficult when the system is more noisy.
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Figure 3.7: Critical coupling constant K∗c,int as a function of internal noise strength cint. The
numerical result (purple open circles) is fitted to Eq. 2.48 (teal curve). The fit parameters
are |∆ω| = 1.047 (rad/hour) and σint = 0.1005 (rad/hour).

3.2.3 Cost Analysis

Figure 3.8 shows the operational cost of a circadian clock with internal noise (Eq. 2.70),
averaged over many trajectories, as a function of the coupling constant. A major distinction
between stochastic and deterministic models is the increase in operational cost for circadian
clocks that reach frequency synchronization. The cost of operating no circadian clock is the
same for both models. From the deterministic model, the good circadian clock has the cost
of operation below the cost of operating no circadian clock. However, the good clock is not
frequency synchronized with the solar-cycle oscillator under the stochastic model, and its
cost of operation is about the same as operating a bad clock or no clock. Nevertheless, if a
deterministic circadian clock is not frequency synchronized with the solar-cycle oscillator,
there is no noticeable cost increase when the same clock is operated within stochastic
environment (Fig. 3.8a and 3.4a). By contrast, the operational cost of a circadian clock
increases with the internal noise strength when the clock is frequency synchronized. Fig. 3.5
shows some large-magnitude random jumps in the time-courses of a circadian clock with
internal noise. We also observe that as increasing noise strength, these jumps are larger
in magnitude and occur more often. From our observation based on the time course, we
believe these jumps are the source of high operational cost in a stochastic circadian clock
with internal noise.

Comparing Fig. 3.8b with 3.4b reveals another distinction between stochastic and de-
terministic models. For the stochastic model with internal noise, the drop in cost when a
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Figure 3.8: Operational cost (2.70) as a function of coupling constant for stochastic circadian
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a) linear scale and b) log scale. N mark the cost of operating circadian clocks shown in
Fig. 3.5.
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circadian clock shifts from frequency synchronization to phase synchronization is not ex-
ponential (a straight line on log scale). Moreover, the rate of cost decrease slows as the
coupling constant increases (e.g., orange line in Fig. 3.8b). This slow-down occurs when
the phase mismatch between the two oscillators is dominated by the added noise. We note
that as the coupling constant increases, the periodic motion of the circadian clock more
closely tracks the solar-cycle oscillator, but the noise strength remains the same. Thus the
operational cost of a circadian clock reaches an asymptotic value at high coupling constant,
as the result of internal noise.

Unlike in the deterministic model, the operational cost of a circadian clock with internal
noise depends on its intrinsic frequency, noise strength, and coupling constant. Fig. 3.8a
shows that the operational cost of a noisy oscillator can be higher than that of a noise-
less circadian clock with greater intrinsic frequency mismatch. (orange line and green line
crossing at high coupling constant). The presence of internal noise (in orange line) leads
to non-zero limiting asymptotic operational cost. This is not observed in the determinis-
tic model, where the operating cost is always higher for the circadian clock with greater
intrinsic frequency mismatch.

3.3 Stochastic Model with External Noise

3.3.1 Stochastic Time-courses

The phase of a stochastic circadian clock with external noise can be obtained by integrating
the SDE in Eq. 2.8 with stochastic integrator in Eq. 2.25. Figure 3.9 shows time-courses
of four circadian clocks, each with a different coupling constant. At first glance, the time-
courses of circadian clock with external noise look more similar to the deterministic model
than the stochastic model with internal noise.

The bad circadian clock (Fig. 3.9a) closely resembles the bad circadian clock from the
deterministic model in Fig. 3.1a. The good circadian clock (Fig. 3.9b) appears different
from the deterministic model due to external noise. The better circadian clock (Fig. 3.9c)
is frequency synchronized with the solar-cycle oscillator, similar to the good circadian clock
from the deterministic model but with a larger coupling constant. The great circadian clock
(Fig. 3.9c) appears similar to the great clock from the deterministic model.

The biggest difference between the circadian clock with internal noise and external
noise is the time-courses of circadian clock with external noise are not noisy. The external
noise is added inside the coupling function, affecting the circadian clock’s tracking ability
to the solar-cycle oscillator. The dynamics of the stochastic time-delay model in Eq. 2.12
requires further study to explain the smoothness of the time-courses even though noise is
implemented.
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Figure 3.9: Time-courses of stochastic circadian clocks with external noise computed via
Eq. 2.5 and 2.8, with coupling constants: a) K = 0.5 ∆ω, b) K = 1.0 ∆ω, c) K = 1.0227 ∆ω
and d) K = 3.0 ∆ω. In all sub-panels, ωs = 2π

24 , cext = 3.0, ωm = −3.0 ωs, Bm = 1 and
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3.3.2 Critical Coupling

To see whether the oscillation frequency θ̇∗m,ext of a circadian clock with external noise will
reach steady state after K surpasses K∗c,ext, we compute the oscillation frequency in Eq. 2.8
as a function of coupling constant K (Fig. 3.10).
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Figure 3.10: Oscillation frequencies θ̇m of stochastic circadian clocks with external noise,
as a function of coupling constant K. The intrinsic frequency of the circadian clock is
ωm = −3.0 ωs. The oscillation frequency θ̇m of the circadian clock is calculated with Eq. 2.8.
N mark the value of K when θ̇m reaches steady state.

In this case, the oscillation frequency of a circadian clock does reach to a steady state
value, but that limiting frequency is also influenced by the noise strength cext. The markers
N in Fig. 3.10 shows the location of K when the limit is reached, which is also the location of
the critical coupling constant K∗c,ext in Eq. 2.49. Figure 3.10 shows that a circadian clock has
a strong-coupling frequency that differs from the solar-cycle frequency ωs. This differs from
the time-courses of the great circadian clock in Fig. 3.9, which is clearly synchronized to the
solar-cycle frequency. This behavior may arise from the time-delay equation in Eq. 2.12.

Our derived theory in Eq. 2.49 and 2.59 do not agree with the above data, but we
can still examine the relationship between external noise strength and critical coupling
constant K∗c,ext. Figure 3.11 shows the critical coupling constant as a function of external
noise strength cext in Eq. 2.55.

Clearly the theoretical prediction disagrees with the numerical data. We use physical
intuition to guess a functional form,

K∗c,ext ∼ |∆ω| exp
[(cextσext)2

4

]
. (3.1)
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Figure 3.11: Critical coupling constant K∗c,ext as a function of external noise strength cext.
The numerical results are fitted to Eq. 2.59 and 3.1. The parameters obtained from fitting
to Eq. 3.1 are |∆ω| = 1.047 (rad/hour) and σext = 0.1008 (rad).

The data in Fig. 3.11 is fitted to Eq. 3.1. We have set |∆ω| = π
3 and σext =

√
∆t =

√
0.01

in the computation. The fit parameters are |∆ω| = 1.047 (rad/hour) and σext = 0.1008.
These fit parameters are very close to the parameters we have obtained from fitting to data
extracted for stochastic model with internal noise in Fig. 3.7 and close to the parameters
in our calculations. Comparing Eq. 2.48 and 3.1, the empirical fit implies that at the same
noise strength and frequency mismatch, internal noise has a larger influence on the critical
coupling constant than external noise does, by a factor of e2.

3.3.3 Cost Analysis

The operational cost of a circadian clock with external noise is given by Eq. 2.70. Following
similar computation from the previous section § 3.2.3, Fig. 3.12 shows the operational cost
of circadian clocks with external noise as a function of coupling constant K.

Interestingly, Fig. 3.12 looks very similar to Fig. 3.4. The operational cost of the four
circadian clocks in Fig.3.9 are marked by N and explicitly labeled. The bad and good
circadian clocks in Fig. 3.9 are not frequency synchronized with the solar-cycle oscillator,
hence their operational cost is higher than the better and great circadian clocks. This is
consistent with the stochastic model with internal noise. Again, there is no noticeable cost
increase upon adding external noise to deterministic circadian clocks that already failed
to achieve frequency synchronization with the solar-cycle oscillator. Comparing the cost of
operating a bad circadian clock across (Figs. 3.4a, 3.8a and 3.12a). However, a circadian
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clock that when deterministic is frequency synchronized will incur higher costs upon the
introduction of either internal or external noise.

The colored dashed lines in Fig. 3.12 represent the critical coupling constants K∗c,ext

(Eq. 3.1). The operational cost of circadian clocks with external noise is also plotted on log-
scale axes in Fig. 3.8b. The significant drop in operational cost of circadian clocks occurs
along the shift from frequency synchronization to phase synchronization with the solar-
cycle oscillator. And the significant drop is linear on the log plot, indicating exponential
decrease, again resembling the deterministic model and differing from the stochastic model
with internal noise.

Contrasting with the internal-noise case, there is no non-zero limiting asymptotic op-
erational cost because the time-courses of circadian clock with external noise is smooth.
As the external noise strength does affect the cost of operation as previously discussed,
overall Fig. 3.12 shows a mixture of properties from the deterministic model and from the
stochastic model with internal noise.

3.4 Stochastic Model with Internal and External Noise

3.4.1 Stochastic Time-courses

The phase of a circadian clock with internal and external noise is obtained by integrating
the SDE in Eq. 2.13 with stochastic leapfrog integrator in Eq. 2.26. Figure 3.13 shows the
time-courses of four circadian clocks with internal and external noise. The categorization of
circadian clocks with internal and external noise in Fig. 3.13 is similar to Fig. 3.5 in § 3.1.1.

There are many similarities between the time-courses of circadian clocks in Fig. 3.13 and
the time-courses of circadian clocks with internal noise in Fig. 3.5. However, the periodic
motion of a good circadian clock with internal and external noise is different than the good
clock with only internal noise. Figure 3.13b shows a small oscillation in time-courses between
t = 40 and 48. These kinds of small oscillations in time-courses are only observed from the
stochastic model with external noise, as shown in Fig. 3.9b. The time-courses of circadian
clocks with internal and external noise inherit the distinctive properties of the circadian
clock with internal noise and the circadian clock with external noise.

3.4.2 Critical Coupling

The oscillation frequency θ̇∗∗m of a circadian clock with internal and external noise in Eq. 2.13
is assumed to reach steady state when coupling constant K surpasses K∗∗c . There are two
adjustable strengths, one for the internal noise and the other for the external noise. Fig-
ure 3.14 shows oscillation frequency of stochastic circadian clock with varying internal and
external noise strengths, as a function of coupling constant.
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Figure 3.13: Time-courses of stochastic circadian clocks with internal and external noise
computed via Eq. 2.5 and 2.13 with coupling constants: a) K = 0.5 ∆ω, b) K = 1.0 ∆ω,
c) K = 1.0486 ∆ω and d) K = 3.0 ∆ω. In all sub-panels, ωs = 2π

24 , cint = 3.0, cext = 1.0,
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Figure 3.14: Oscillation frequencies ˙θm (calculated with Eq. 2.13) of stochastic circadian
clock with internal and external noise as a function of coupling constant K. The intrinsic
frequency of the circadian clock is set to ωm = −3.0 ωs. N mark the value of K when ˙θm
reaches steady state.
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A circadian clock with internal and external noise is influenced by the strength of both
noises. In the left column of Fig. 3.14, as internal noise strength cint increases (top to
bottom), the oscillation frequency reaches to the steady state at about the same magnitude
as the solar cycle frequency. Increasing the external noise strength (left to right) increases
the steady-state frequency. These properties are distinctive from the stochastic models with
either internal or external noise. Incorporating both types of noise. each noise type influences
the overall system behavior.

We derive the critical coupling constants (N in Fig. 3.14) for the stochastic model with
internal and external noise based on the assumption that oscillation frequency of a stochastic
circadian clock will relax to steady state about the solar cycle frequency.

Figure 3.15 shows the critical coupling constant K∗∗c extracted from plots similar to
Fig. 3.14, as a function of internal and external noise strength. As for the stochastic model
with only external noise, our theoretical derivation does not match the numerical results.
The above analysis leads us to conclude that the two types of noise influence the system
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Figure 3.15: Critical coupling constant K∗∗c as a function of internal and external noise
strengths. The numerical result is fit by Eq. 3.2. The fit parameters are |∆ω| = 1.047
(rad/hour), σint = 0.1002 (rad/hour) and σext = 0.1005 (rad).

additively. Hence, we write down the empirical equation to describe the critical coupling
constant of a circadian clock with internal and external noise as:

K∗∗c ∼ |∆ω| exp
[(cextσext)2

4 + (cintσint)2

2

]
, (3.2)
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a combination of Eq. 2.48 and 3.1. Fig. 3.15 shows that this hypothesized function fits
the numerical data well. The fit parameters in Fig. 3.15 are also similar to the parameters
obtained from fitting in Fig. 3.7 and 3.11.

3.4.3 Cost Analysis

Figure 3.16 shows the operational cost of circadian clocks with internal and external noise,
which is calculated using the same method as in the previous sections. The operational
cost of the four circadian clocks in Fig. 3.13 are explicitly labeled in Fig. 3.16. Figure 3.16
closely resembles Fig. 3.8. For example, both show a non-zero limiting asymptotic cost at
large coupling constant (see orange line in Fig. 3.16b), in contrast to the other models we
have examined.

Colored dashed lines in Fig. 3.16a represent the critical coupling constants K∗∗c . The
signature of external noise can be seen in the comparison of bright-green and pink lines in
Fig. 3.16a, where the pink line has external noise strength 6× the bright-green line. For
the case of internal noise, the orange line has internal noise strength 2× the gray line. The
critical coupling constant shifts with the internal and external noise strengths. Thus the
introduction of internal and external noise increases the operational cost of circadian clocks
that achieve frequency synchronization.

If a circadian clock with internal and external noise can achieve frequency synchroniza-
tion with the solar-cycle oscillator, its operational cost is proportional to the strengths of its
perceived internal and external noise, intrinsic frequency, and coupling constant. A circa-
dian clock that will not achieve frequency synchronization will have high operational cost,
similar to having no circadian clock regardless of noise strength.

We conclude that operating a circadian clock that doesn’t achieve frequency synchro-
nization with the solar-cycle oscillator has similar cost as operating no circadian clock. And
based on the result from cost analysis on the stochastic model with internal and external
noise, it might not be optimal for a stochastic circadian clock to achieve phase synchroniza-
tion as well. Since there is a non-zero asymptotic operational cost, the effort of increasing
coupling strength can be wasted. A system with larger noise strength will incur higher cost
in operating a circadian clock that is frequency synchronized with the solar-cycle oscillator.
However, the noise strength does not affect the cost of operating a circadian clock that does
not achieve any synchronization, where operating no circadian clock is just as optimal.
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Figure 3.16: Operational cost (Eq. 2.70), averaged over 10 trajectories, as a function of
coupling constant for stochastic circadian clocks with internal and external noise. a) Linear
scale and b) log scale. N mark the cost of operating circadian clocks shown in Fig. 3.13.
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Chapter 4

Conclusion

In this thesis, we have showed the novel possibility of using the Kuramoto model to de-
scribe the optimal regulation of a circadian clock. The preliminary results are intuitive.
The deterministic model shows that the circadian clock has lower cost of operation when
it is frequency- or phase-synchronized with the solar-cycle oscillator. The critical coupling
constant depends on the intrinsic frequency mismatch between the two oscillators. For the
stochastic model, there is a time-delay effect from the external noise and non-zero asymp-
totic operational cost from the internal noise. These both lead to higher operational cost for
a stochastic circadian clock that when deterministic is synchronized in frequency or phase.
The critical coupling constant also depends on the noise strength.

This journey has just begun. The time-delay property from the external noise indeed
needs further study. One can imagine there an additional cost associated with achieving
a particular coupling constant with the solar-cycle oscillator. Further analysis can be per-
formed on the stochastic model using the Wiener process, which implies solving the Fokker-
Planck Equation in Eq. 2.33. Also, we can introduce self-regulation to the model which
allows an organism to adjust the coupling status of its circadian clock based on perceived
information such as noise strength, cost of operation and cost of coupling, etc.
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