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Online Appendix A: Relation between Candidate Play

and Equilibrium Play in Coordination-Free Equilibrium

First, consider the following example illustrating two ways in which candidate play can fail

to be equilibrium play.

Example 6: Consider candidate play with two senders whose biases satisfy b1(.) < 0

and b2(.) > 0, and three cells where the equilibrium message vectors are, from left to right,

(L,L), (H,L) and (H,H) (so that (L,H) is out-of-equilibrium). It is easy to think of two

cases where any location of aΓ(L,H) induces a deviation:

a) Sender 1 has a small leftward bias while sender 2 has a large rightward bias, such that

the middle interval (H,L) is very small, and the rightmost interval (H,H) is very big (see

Figure A.1). Then choosing aΓ(L,H) < aΓ(H,H) induces sender 1 to deviate from H to

L near the left end of the (H,H) interval, choosing aΓ(L,H) > aΓ(H,H) induces sender 1

to deviate near the right end of the (H,H) interval, while choosing aΓ(L,H) = aΓ(H,H)

induces sender 2 to deviate from L to H near the right end of the (L,L) interval.

Figure A.1: Case a

b) Sender 2 dislikes aΓ(L,L) so much that, at the boundary θ1 between (L,L) and (H,L),

u2(a, θ1) > u2(aΓ(L,L), θ1) for all a > θ1. Similarly, sender 1 dislikes aΓ(H,H) so much

that u1(a, θ2) > u1(aΓ(H,H), θ2) for all a < θ2. Since aΓ(H,H) > aΓ(L,L), it is impossible

for aΓ(L,H) to be simultaneously less than aΓ(L,L) and greater than aΓ(H,H), so once

again a deviation is always desired.

The following derives a condition under which candidate play is guaranteed to constitute

equilibrium play.

Let Ui(θ) = {u : ∃a1 6= a2 ∈ Θ s.t. ui(a1, θ) = ui(a2, θ) = u} be the set of utilities
achieved for sender i at state θ by two distinct actions. By the single-peakedness of ui, these

actions must be on opposite sides of sender i’s ideal action θ+ bi(θ). Let a−i (u, θ) < a+
i (u, θ)

be these actions. Then let Ai = maxθ∈Θ maxu∈Ui(θ) max{ θ+bi(θ)−a−i (u,θ)

a+i (u,θ)−(θ+bi(θ))
,
a+i (u,θ)−(θ+bi(θ))

θ+bi(θ)−a−i (u,θ)
} be a

measure of how asymmetric sender i’s utility function can get around its peak θ + bi(θ): if

ui is perfectly symmetric, as in the quadratic case, then Ai = 1, and the more asymmetric

it is, the higher Ai.
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Given candidate play, call an i-block a maximal interval of states where each sender other

than i sends a single message. Clearly, every block is a union of cells, and an i-block with

more than one cell is formed when sender i’s message changes at a boundary. For example,

with two senders and three cells numbered 1, 2 and 3 from left to right, if the message

pairs are (m1,m2), (m1,m
′
2) and (m′1,m

′
2) in cells 1, 2 and 3 respectively, then there are two

1-blocks (cell 1; cells 2 and 3) and two 2-blocks (cells 1 and 2; cell 3). Note that a given

i-block and a given j-block can overlap for at most one cell because each boundary can be

crossed by only one block.

Proposition 7: Given candidate play Γ, let kΓ
i denote the size of the largest i-block, and

let xΓ
i = (1+Ai)(k

Γ
i +maxθ∈Θ |bi(θ)|) for each i whose message changes at some boundary. If

the sum of the two largest xΓ
i is less than λ(Θ) = 1, then there exists a strictly coordination-

free equilibrium where:

• play is described by Γ; and

• each player i’s messages can be ordered so that mi(θ) is non-decreasing.

Proof of Proposition 7: Given candidate play Γ, assign messages as follows: in the

leftmost cell, all senders send 1, and at every boundary where a sender’s message changes,

that sender’s message increases by 1. This message assignment rules out the following

scenario: in a cell where the assigned message vector is m = (m1, ...,mn), a sender (without

loss of generality, sender 1) wants to deviate to m′1, and m
′ = (m′1,m2, ...,mn) occurs on the

equilibrium path. To see this, assume without loss of generality that aΓ(m′) > aΓ(m). Then

it must be that in the cell immediately to the right of the one where m is sent, the message

vector is m′′ = (m′′1,m2, ...,mn) for some m′′1 possibly equal to m
′
1, so a

Γ(m′) ≥ aΓ(m′′).

Since within the cell where m is sent, sender 1 prefers aΓ(m) to aΓ(m′′), by single-crossing,

she also prefers aΓ(m) to aΓ(m′) and cannot desire a deviation.

Therefore, the only concern is to place the receiver’s actions after off-path message vectors

without inducing a deviation. For any off-path message vector m, there are at most two

senders whose deviation can induce m. To see this, normalize messages by subtracting a

constant to each sender’s messages such that m = (0, ..., 0). If a sender i can induce m by

deviating from a negative message when all others send 0, then when i sends 0, all other

senders’messages must be nonnegative. Thus only one other sender can deviate to m, and

must do so from a positive message. The symmetric argument holds as well, so at most one

sender can deviate to m from a positive message, and at most one sender can deviate to m

from a negative message.
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Now suppose sender i can deviate to induce m. The set of states from which she can

do this must constitute an i-block, which has size at most kΓ
i . Denote the left and right

endpoints of the i-block by θL and θR, the leftmost and rightmost inducible actions within

the i-block by aL and aR, and assume without loss of generality that bi(.) > 0. Then a

deviation by i will not be induced if either:

- a(m) > θR + maxθ∈Θ |bi(θ)|+ Ai(θR + maxθ∈Θ |bi(θ)| − aR); or

- a(m) < min{aL, θL + minθ∈Θ |bi(θ)| − Ai(aL − (θL + minθ∈Θ |bi(θ)|))}.
Therefore, letting Di = maxθ∈Θ |bi(θ)| − minθ∈Θ |bi(θ)|, the maximum range where a

deviation can be induced is:

max{(Ai + 1) max
θ∈Θ
|bi(θ)|+ Ai(θR − aR) + (θR − aL), (Ai + 1)(kΓ

i +Di)− Ai(aR − aL)}

< (Ai + 1)(kΓ
i + max

θ∈Θ
|bi(θ)|) = xΓ

i ,

where the inequality follows from θR−aR, θR−aL < kΓ
i , Di < maxθ∈Θ |bi(θ)|, and aR−aL ≥ 0.

If the ranges for the two potential deviators do not cover Θ, then it is possible to place

aΓ(m) without inducing a deviation. The result follows. �

The proof of Proposition 7 shows that if messages are assigned as stated, then no deviation

to an on-path message vector is ever desired, and at most two senders, each from one block,

can deviate to an out-of-equilibriummessage vector. An i-block of size k is associated with an

interval of size at most (1+Ai)(k+maxθ∈Θ |bi(θ)|) where placing an out-of-equilibrium action
would cause a deviation by sender i. Therefore, the total area where an out-of-equilibrium

vector cannot be placed is at most the sum of the two largest xΓ
i .

In the uniform-quadratic specification, as shown in the first paragraph of the proof of

Proposition 5, cell size changes by 4bi (from left to right) at a boundary where sender i’s

message changes. Thus, if bi > 0, cells grow from left to right, and vice versa. It follows

that:

- cells can be kept small if, in each direction, there is a sender with a small bias; and

- large i-blocks must contain large cells (relative to |bi|) at one end.
Thus, the most informative candidate play must only have small i-blocks if, in each

direction, there is a sender with a small bias. In this situation, any suffi ciently informative

candidate play Γ will have small kΓ
i , and therefore small x

Γ
i = 2(kΓ

i + |bi|), for all i ∈
N . Proposition 7 implies that such Γ corresponds to play in a strictly coordination-free

equilibrium where messages are assigned so that each is used on a connected set of states.

As a result, for each i ∈ N , there exists an order on MΓ
i such that sender i’s strategy is
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monotonic.1

A similar reasoning can be applied whenever the receiver’s preferred action in each cell

is not far from its center2, and Ai is close to 1 for each sender. Therefore, in such settings,

Proposition 7 (combined with Theorem 2 motivating strictly coordination-free equilibria)

provides a justification for focusing on monotonic strategies when studying the most infor-

mative equilibria, if a sender with small bias is available in each direction.

Online Appendix B: Analysis Without Assumption A

This section dispenses with Assumption A, and allows for noise where players have hetero-

geneous prior, as long as there is common knowledge that noise is small. Then, if there

is no state θ and pair of actions between which two senders are both indifferent at θ,3 the

implications of Theorems 1 and 2 about the function aΓ ◦mΓ mapping state to action in a

(strongly) robust equilibrium Γ still hold: it must generically correspond to candidate play

computed by forward solution (and, for strong robustness, be complete).

Definition: Given a pure-strategy profile Γ, let a supercell in Γ be a maximal interval

of states throughout which aΓ ◦mΓ remains constant.

Definition: A proper supercell in Γ is natural* if, denoting its endpoints as θ1 < θ2 and

its induced action as a:

• (right-natural*) whenever θ1 6= 0, ∃θ′ such that aΓ(mΓ(θ′)) = a and that, for some

i ∈ N , ∃m′i ∈MΓ
i such that:

(m′i,m
Γ
−i(θ

′)) = mΓ(θ) for some θ ∈ Θ, and

ui(a
Γ(m′i,m

Γ
−i(θ

′)), θ1) = ui(a, θ1) and aΓ(m′i,m
Γ
−i(θ

′)) < a; and

• (left-natural*) whenever θ2 6= 1, ∃θ′′ such that aΓ(mΓ(θ′′)) = a and that, for some

1Given a strictly coordination-free equilibrium Γ, it is not always possible to obtain a monotonic strictly
coordination-free equilibrium through a reassignment of messages. Consider Example 3, and change m1 in
(0.51, 1] to z 6= x, y so that sender 1’s strategy becomes monotonic. Message vector (x, y) is now out-of-
equilibrium. If aΓ(x, y) is placed anywhere other than 0.285 and 0.755, then sender 1 would have a profitable
deviation to x at some θ ∈ (0.06, 1]. But placing aΓ(x, y) at 0.285 or 0.755 violates point 3 of the definition
of strictly coordination-free equilibrium.

2This happens whenever F is not too far from being uniform and uR is not too asymmetric.
3This assumption holds for generic biases (i.e. whenever no two biases are exactly equal) within the class

of quadratic loss preferences from Section 3.
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j ∈ N , ∃m′′j ∈MΓ
i such that:

(m′′j ,m
Γ
−j(θ

′′)) = mΓ(θ) for some θ ∈ Θ, and

uj(a
Γ(m′′j ,m

Γ
−j(θ

′′)), θ2) = uj(a, θ2) and aΓ(m′′j ,m
Γ
−j(θ

′′)) > a.

Definition: An equilibrium is natural* if its strategy profile has interval structure, and

all of its proper supercells are natural*.

The definition of natural* proper supercell implies that, in Γ, mΓ(θ′) can be sent only at

and to the right of θ1. Since aΓ(mΓ(θ′)) = a, we have θ1 ≤ a and, by a similar argument,

a ≤ θ2. It follows that there is at most one proper supercell inducing a. As a result, a

left-structure and a right-structure can be defined for a natural* equilibrium Γ in the same

way as for natural equilibria, but using supercells rather than cells. The argument in the

proof of Proposition 4(b) carries through: if aΓ ◦mΓ does not correspond to candidate play,

then the conditions imposed by the structures would be too numerous and thus, generically,

would not be satisfied. In this context, that argument implies the following result:

Proposition 4*: Generically, if Γ is natural*, then the endpoints and induced action

for all proper supercells in Γ can be computed by forward solution.

The results corresponding to Theorems 1 and 2 in the main text are as follows.

Theorem 1*: Suppose that whenever ui(a, θ) = ui(a
′, θ), we have uj(a, θ) 6= uj(a

′, θ)

for all j 6= i ("no simultaneous indifference," henceforth abbreviated NSI). Then:

(a) Generically, if Γ is strongly robust, then it is complete and corresponds to a forward

solution (i.e. it has interval structure, and the endpoints and induced action for all proper

supercells in Γ can be computed by forward solution.).

(b) If Γ is coordination-free and complete and has finitely many cells, and no cell in Γ is

{0} or {1}, then it is strongly robust.

Theorem 2*: Assume NSI. Then:
(a) Generically, if Γ is robust, then it corresponds to a forward solution.

(b) If Γ is strictly coordination-free and has finitely many cells, then it is robust.

The proofs of Theorems 1(b) and 2(b) remain valid for Theorems 1*(b) and 2*(b).

These arguments rely on the number of cells being finite, which needs to be assumed here:

while coordination-freeness still guarantees a finite number of supercells, within a given

supercell, there could now be infinitely many cells. (For example, if aΓ(mi,mj,m−ij) =
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aΓ(m′i,mj,m−ij) = aΓ(mi,m
′
j,m−ij), then there could be a supercell where the message vec-

tor sent switches infinitely many times between (mi,mj,m−ij), (m′i,mj,m−ij) and (mi,m
′
j,m−ij).

This can pose problems if aΓ(mi,mj,m−ij) 6= aΓ(m′i,m
′
j,m−ij).)

By Proposition 4*, to prove Theorem 1*(a), it suffi ces to show the following lemmata.

Lemma 1*: If Γ is strongly robust, then it is complete, has interval structure, and

{m : mΓ(θ) = m for some θ ∈ Θ} is finite.
Lemma 2*: If Γ is strongly robust and NSI holds, then Γ is natural*.

Proof of Lemma 1*: The proof of Lemma 1, which shows λ(θΓ(m)) > 0 for all m ∈
×ni=1M

Γ
i and interval structure, carries over.

Fix any δ ∈ (0, 1
4
), and suppose instead that {m : mΓ(θ) = m for some θ ∈ Θ} is

infinite. Then, for any ε > 0, ∃m0 such that λ(θΓ(m0)) ∈ (0, ε). Fix such m0, and let

Θ0 = θΓ(m0) and Θi = {θ ∈ Θ\Θ0 : mΓ
i (θ) = m0

i }. Let Θ′ ⊂ Θ\Θ0 be a nontrivial set of

states such that the receiver’s best response conditional on θ ∈ Θ′, denoted a′, is outside

(aΓ(m0)−2δ, aΓ(m0)+2δ). (Θ′ exists for ε suffi ciently small.) Denote the ex ante probability

that θ ∈ S by F (S).

Since λ(Θ0) < ε, for any θ ∈ Θ0, ∃θ0(θ) ∈ (θ − ε, θ + ε) such that for some i ∈ N ,

mΓ
i (θ) 6= mΓ

i (θ0(θ)). Let iΓε (θ) be some such i.

Consider noise Ξ where:

(i) at states θ ∈ Θ′, for each i ∈ N , with probability εmin{ 1
n
, F (Θi)
F (Θ′)}, sender i observes

si ∈ Θi according to density proportional to the prior, and with the remaining probability,

si = θ; observations are independent across senders;

(ii) at states θ ∈ Θ0, consider a random variable X distributed according to a continuous

density g, where g(0) > 0; if the realization of X is 0, sender iΓε (θ) observes si = θ, while if

not, sender iΓε (θ) observes si = θ0(θ);

(iii) if neither (i) or (ii) applies, the true state is observed.

It is straightforward to check that, by construction, Ξ has size at most ε. With ex ante

probability F (Θ′)εn
∏n

j=1 min{ 1
n
,
F (Θj)

F (Θ′) }, the receiver observes m
0 and the state is in Θ′; with

ex ante probability 0, the receiver observesm0 and the state is in Θ0; and with the remainder

probability, the receiver does not observe m0. Therefore, for ε suffi ciently small, aΞ(m0) = a′

is more than δ away from aΓ(m0). By step 1 of the proof of Lemma 1, Γ is then not strongly

robust. �

Proof of Lemma 2*: Like for Lemma 2, we proceed by contradiction. Suppose instead,
without loss of generality, that a proper supercell C in Γ with right endpoint θb is not left-

natural*. Consider the following classes of noise:
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Noise (ε,N1, ..., Nn,−)

- Each sender i believes that sj = max{θ− ε, 0} for j ∈ Ni ⊆ N\{i}, and that sj = θ for

j /∈ Ni.

- The receiver believes that all senders observe the true state.

- These beliefs are common knowledge.

Noise (ε,N1, ..., Nn,+)

- Each sender i believes that sj = min{θ + ε, 1} for j ∈ Ni ⊆ N\{i}, and that sj = θ for

j /∈ Ni.

- The receiver believes that all senders observe the true state.

- These beliefs are common knowledge.

Case A: θb ∈ C
Fix an arbitrary ε > 0, and denote mΓ(θb) = m and mΓ(θb + ε) = mε. Since θb ∈ C, we

have aΓ(m) = a.

Since Γ is strongly robust, for any δ > 0, there exists ε suffi ciently small so that sender

i’s δ-optimality at si = θb under noise (ε,Ni, N−i,+) implies

ui(a
Γ(mi,m

∗
−i), θb) ≥ ui(a

Γ(mε
i ,m

∗
−i), θb)− δ,

where m∗j = mj if j /∈ Ni and m∗j = mε
j if j ∈ Ni. Moreover, sender i’s δ-optimality at

si = θb + ε under noise (ε,N\(Ni ∪ {i}), N−i,−) implies

ui(a
Γ(mε

i ,m
∗
−i), θb + ε) ≥ ui(a

Γ(mi,m
∗
−i), θb + ε)− δ.

Therefore, we must have

ui(a
Γ(mε

i ,m
∗
−i), θb)→ ui(a

Γ(mi,m
∗
−i), θb) as ε→ 0. (1)

By Lemma 1*, |MΓ
i | is finite for all i ∈ N , so (1) implies that for any ε suffi ciently small,

ui(a
Γ(mε

i ,m
∗
−i), θb) = ui(a

Γ(mi,m
∗
−i), θb). (2)

Fix ε > 0 such that aΓ(mε) 6= a and (2) hold; such ε must exist, or else θb would not be

an endpoint of C.

Observation 1:
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(i) Suppose (2) holds, mi 6= mε
i , mj 6= mε

j, and a
Γ(mi,mj,m

∗
−ij) = a for some m∗−ij ∈

×k 6=i,j{mk,m
ε
k}. Then either aΓ(mε

i ,mj,m
∗
−ij) = aΓ(mi,m

ε
j ,m

∗
−ij) = aΓ(mε

i ,m
ε
j ,m

∗
−ij) 6= a,

or at least one of these three actions is equal to a.

(ii) If NSI additionally holds, then we have aΓ(mε
i ,mj,m

∗
−ij) = a, aΓ(mi,m

ε
j ,m

∗
−ij) = a,

or both.

Proof of Observation 1: (i) Suppose aΓ(mε
i ,mj,m

∗
−ij) > a. Then ui(aΓ(mi,mj,m

∗
−ij), θb) =

ui(a
Γ(mε

i ,mj,m
∗
−ij), θb) implies θb + bi(θb) ∈ (aΓ(mi,mj,m

∗
−ij), a

Γ(mε
i ,mj,m

∗
−ij)). We also

have uj(aΓ(mε
i ,mj,m

∗
−ij), θb) = uj(a

Γ(mε
i ,m

ε
j ,m

∗
−ij), θb). If a

Γ(mε
i ,m

ε
j ,m

∗
−ij) 6= a, then ei-

ther:

a) aΓ(mε
i ,m

ε
j ,m

∗
−ij) > aΓ(mε

i ,mj,m
∗
−ij), so that θb + bj(θb) > aΓ(mε

i ,mj,m
∗
−ij). In this

case, since aΓ(mε
i ,mj,m

∗
−ij) > aΓ(mi,mj,m

∗
−ij) and uj(a

Γ(mi,mj,m
∗
−ij), θb) = uj(a

Γ(mi,m
ε
j ,m

∗
−ij), θb),

we have either aΓ(mi,m
ε
j ,m

∗
−ij) = aΓ(mi,mj,m

∗
−ij), or a

Γ(mi,m
ε
j ,m

∗
−ij) > aΓ(mε

i ,m
ε
j ,m

∗
−ij).

The latter is not possible since both aΓ(mi,m
ε
j ,m

∗
−ij) and a

Γ(mε
i ,m

ε
j ,m

∗
−ij) would be to the

right of θb + bi(θb), and sender i must be indifferent between these actions at θb. Therefore,

aΓ(mi,m
ε
j ,m

∗
−ij) = aΓ(mi,mj,m

∗
−ij) = a.

b) aΓ(mε
i ,m

ε
j ,m

∗
−ij) ∈ (a, aΓ(mε

i ,mj,m
∗
−ij)), so that θb+bj(θb) ∈ (aΓ(mε

i ,m
ε
j ,m

∗
−ij), a

Γ(mε
i ,mj,m

∗
−ij)).

It follows that either aΓ(mi,m
ε
j ,m

∗
−ij) = a, or aΓ(mi,m

ε
j ,m

∗
−ij) > aΓ(mε

i ,mj,m
∗
−ij). The lat-

ter is ruled out since sender i cannot be simultaneously indifferent between a and aΓ(mε
i ,mj,m

∗
−ij),

as well as between aΓ(mε
i ,m

ε
j ,m

∗
−ij) > a and aΓ(mi,m

ε
j ,m

∗
−ij) > aΓ(mε

i ,mj,m
∗
−ij).

c) aΓ(mε
i ,m

ε
j ,m

∗
−ij) < a, so that θb + bj(θb) ∈ (aΓ(mε

i ,m
ε
j ,m

∗
−ij), a

Γ(mε
i ,mj,m

∗
−ij)). It

follows that aΓ(mi,m
ε
j ,m

∗
−ij) < aΓ(mε

i ,mj,m
∗
−ij). Then, a

Γ(mi,m
ε
j ,m

∗
−ij) 6= a is not possible

since sender i cannot be simultaneously indifferent between a and aΓ(mε
i ,mj,m

∗
−ij), as well

as between aΓ(mε
i ,m

ε
j ,m

∗
−ij) < a and aΓ(mi,m

ε
j ,m

∗
−ij) < aΓ(mε

i ,mj,m
∗
−ij).

d) aΓ(mε
i ,m

ε
j ,m

∗
−ij) = aΓ(mε

i ,mj,m
∗
−ij). Since sender i must be simultaneously indif-

ferent between a and aΓ(mε
i ,mj,m

∗
−ij), as well as a

Γ(mε
i ,m

ε
j ,m

∗
−ij) = aΓ(mε

i ,mj,m
∗
−ij) and

aΓ(mi,m
ε
j ,m

∗
−ij), we have either a

Γ(mi,m
ε
j ,m

∗
−ij) = aΓ(mε

i ,m
ε
j ,m

∗
−ij), or a

Γ(mi,m
ε
j ,m

∗
−ij) =

a.

A symmetric argument applies if aΓ(mε
i ,mj,m

∗
−ij) < a.

(ii) By NSI, i and j cannot be indifferent between aΓ(mi,mj,m
∗
−ij) = a and the same

other action at θb, so by (2), we cannot have aΓ(mε
i ,mj,m

∗
−ij) = aΓ(mi,m

ε
j ,m

∗
−ij) 6= a. Thus,

if aΓ(mε
i ,mj,m

∗
−ij), a

Γ(mi,m
ε
j ,m

∗
−ij) 6= a, by part (i), we have aΓ(mε

i ,m
ε
j ,m

∗
−ij) = a. But

then, at θb, i is indifferent between aΓ(mi,mj,m
∗
−ij) = a and aΓ(mε

i ,mj,m
∗
−ij), while j is

indifferent between aΓ(mε
i ,m

ε
j ,m

∗
−ij) = a and aΓ(mε

i ,mj,m
∗
−ij). This again cannot occur by

NSI. �

Therefore, if mi 6= mε
i , mj 6= mε

j, and a
Γ(mi,mj,m

∗
−ij) = a, then it is possible to change

a component of (mi,mj,m
∗
−ij) from its value in m to its value in mε without changing the

9



induced action. Doing so and iterating the process yields aΓ(mi,m
ε
−i) = a for some i ∈ N .

Substituting this into (2) with m∗−i = mε
−i gives

ui(a, θb) = ui(a
Γ(mε), θb). (3)

Moreover, by i’s optimality at θb + ε in the noiseless game and single-crossing, we cannot

have a > aΓ(mε). It follows that a < aΓ(mε), which, together with (3), implies that θb is

left-natural* after all.

Case B: θb /∈ C
Now denote mΓ(θb) = m′ and mΓ(θb − ε) = mε. Since θb /∈ C, we have aΓ(m′) 6= a.

Since Γ is strongly robust, for any δ > 0, there exists ε suffi ciently small so that sender

i’s δ-optimality at si = θb under noise (ε,Ni, N−i,−) implies

ui(a
Γ(m′i,m

∗
−i), θb) ≥ ui(a

Γ(mε
i ,m

∗
−i), θb)− δ,

where m∗j = m′j if j /∈ Ni and m∗j = mε
j if j ∈ Ni. Moreover, sender i’s δ-optimality at

si = θb − ε under noise (ε,N\(Ni ∪ {i}), N−i,+) implies

ui(a
Γ(mε

i ,m
∗
−i), θb − ε) ≥ ui(a

Γ(m′i,m
∗
−i), θb − ε)− δ.

By a similar reasoning as in Case A, we have that for any ε suffi ciently small,

ui(a
Γ(mε

i ,m
∗
−i), θb) = ui(a

Γ(m′i,m
∗
−i), θb). (4)

Fix ε > 0 such that (4) holds, and note that aΓ(mε) = a 6= aΓ(m′). The remainder of the

proof is symmetric to the argument in Case A. �

Similarly, by Proposition 4*, to prove Theorem 2*(a), it suffi ces to prove the following

Lemma.

Lemma 3*: If Γ is robust and NSI holds, then Γ is natural*.

Proof of Lemma 3*: Steps 1 to 4 of the proof of Lemma 3 carry over to show interval
structure. The following observation can be obtained by strengthening step 2 of the proof

of Lemma 3:

Observation 2: For any δ > 0, there exists ε(δ) > 0 such that if θΓ(m) 6= ∅ and

λ(θΓ(m)) < ε(δ), then sup θΓ(m)− inf θΓ(m) < 3δ.

10



Proof of Observation 2: Suppose not, so that for any ε > 0, ∃ε ∈ (0, ε) such that

θΓ(m) 6= ∅, λ(θΓ(m)) < ε, and sup θΓ(m) − inf θΓ(m) ≥ 3δ. For such m, there exists

θ∗ ∈ θΓ(m) such that |θ∗ − aΓ(m)| > δ.

Since λ(θΓ(m)) < ε, for any θ where mΓ(θ) = m, ∃θ0(θ) ∈ [θ − ε, θ + ε] such that for

some i ∈ N , mΓ
i (θ0(θ)) 6= mi. Let iΓε (θ) be any such i, and consider the following noise Ξ:

(i) at states θ ∈ θΓ(m)\{θ∗}, consider a random variable X ∼ U [0, 1]; if the realization

of X is θ, sender iΓε (θ) observes si = θ, while if not, sender iΓε (θ) observes si = θ′ for some

θ′ ∈ [θ − ε, θ + ε] where mΓ
i (θ′) 6= mi;

(ii) for all other senders, and for iΓε (θ) at all other states, the true state is observed.

Clearly, Ξ has size at most ε, and aΞ(m) = θ∗. By step 1 of the proof of Lemma 3, Γ is

not robust. �

In the remainder of this proof, adopt the notation from the proof of Lemma 2*.

Case A: θb ∈ C, a 6= θb

Note that (1) still holds. If (2) still holds for ε suffi ciently small, then the argument in

Lemma 2* carries through. For (2) not to hold for ε suffi ciently small, it must be that for

any ε > 0, there are infinitely many distinct mε for ε ∈ (0, ε). Observation 2 implies that

this can only be the case if there exists a sequence {εk}∞k=1 converging to 0 as k → ∞ such

that aΓ(mεk)→ θb as k →∞.
An approximate version of Observation 1(i) that converges to Observation 1(i) as ε→ 0

can be obtained by making a similar argument and using (1). If at θb, i (resp. j) is

indifferent between a and some action ai (resp. aj), then by NSI and the finiteness of N ,

minj 6=i |ai− aj| > 0. A similar argument as in the proof of Observation 1(ii) thus shows that

if NSI holds, then as ε→ 0, we have aΓ(mε
i ,mj,m

∗
−ij)→ a, aΓ(mi,m

ε
j ,m

∗
−ij)→ a, or both.

Now consider aΓ(mε
i ,m−i). By point 2 in the definition of robustness, if (mε

i ,m−i) were

off-path, we could not have ui(a′, θb) = ui(a, θb) whenever |a′ − aΓ(mε
i ,m−i)| < γ. This

implies, by (1), that (mε
i ,m−i) must occur on path for all suffi ciently small ε. Because any

two distinct on-path actions induced by message vectors differing in only one component are

separated by at least η (see the second-to-last paragraph of the proof of Theorem 1a), we have

that for all i and suffi ciently small ε, ui(aΓ(mε
i ,m−i), θb) = ui(a, θb). Taking m∗−ij = m−ij in

the previous paragraph implies that for at least n − 1 senders i, we have aΓ(mε
i ,m−i) = a

for suffi ciently small ε.

(i) If aΓ(mε
i ,m−i) = a for suffi ciently small ε for all i, then as ε → 0, we must have

aΓ(mε
i ,m

ε
j ,m−i)→ a for all pairs (i, j). To see this, note that, at θb, i (resp. j) must be nearly

indifferent between aΓ(mε
i ,m

ε
j ,m−i) and a

Γ(mi,m
ε
j ,m−i) = a (resp. aΓ(mε

i ,mj,m−i) = a),

which, by NSI and the finiteness of N , can occur only if aΓ(mε
i ,m

ε
j ,m−i) is near a. Iterating
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this reasoning (which also applies when aΓ(mε
i ,m−i)→ a as ε→ 0) yields aΓ(mε)→ a 6= θb,

which contradicts the existence of {εk}∞k=1 noted earlier.

(ii) If instead there exist arbitrarily small ε such that aΓ(mε
1,m−1) 6= a, the above iterative

reasoning can still be used with senders 2, ..., n, so that aΓ(m1,m
ε
−1) → a as ε → 0. Since

u1(aΓ(m1,m
ε
−1), θb)− u1(aΓ(mε), θb)→ 0 as ε→ 0, for small ε, aΓ(mε) must be near either

a or a′ 6= a, where u1(a′, θb) = u1(a, θb). The existence of {εk}∞k=1, combined with a 6= θb,

implies that we must have a′ = θb. Since u1(aΓ(mε
1,m−1), θb) = u1(a, θb) for suffi ciently small

ε, and there exist arbitrarily small ε such that aΓ(mε
1,m−1) 6= a, there also exist arbitrarily

small ε such that aΓ(mε
1,m−1) = a′ = θb. Because, for suffi ciently small ε, (mε

1,m−1) occurs

on path, if aΓ(mε
1,m−1) = θb 6= a, (mε

1,m−1) must occur both to the left and to the right of

θb. This is not possible: because u1(aΓ(mε
1,m−1), θb) = u1(a, θb), in one of the two cases, by

single-crossing, sender 1 strictly prefers inducing aΓ(m1,m−1) = a to aΓ(mε
1,m−1) 6= a.

Case B: θb /∈ C
Adopt the notation of case B of the proof of Lemma 2*. Like in case A of this proof, if

(4) holds for suffi ciently small ε, then we are done. Once again, by Observation 2, if there is

no ε suffi ciently small such that (4) holds, there must exist a sequence {εk}∞k=1 converging to

0 as k → ∞ such that aΓ(mεk) → θb as k → ∞. Here, since mε are sent inside C for small

ε, we have aΓ(mε) = a for small ε. Thus, a = θb.

Proceeding like in case A (with mΓ(θb) and aΓ(mΓ(θb)) taking the place of m and a, re-

spectively), in subcase (i), we have aΓ(mε)→ aΓ(mΓ(θb)). Here, this implies a = aΓ(mΓ(θb)),

which contradicts θb /∈ C.
In subcase (ii), we have that a must be equal to either aΓ(mΓ(θb)) or a′ 6= aΓ(mΓ(θb)),

where u1(a′, θb) = u1(aΓ(mΓ(θb)), θb). Since a 6= aΓ(mΓ(θb)) (because θb /∈ C), we have

a′ = a = θb. The remainder of the argument is analogous to case A.

Case C: θb ∈ C, a = θb

Because C is proper with right endpoint θb, the receiver’s optimality implies that there

exists another proper supercell C ′ with left endpoint θ′b > θb where the induced action is also

θb. Moreover, θ
′
b cannot be right-natural: otherwise, some message vector inducing action θb

would be sent only to the right of θ′b, which cannot be the case.

If θ′b ∈ C ′, then the situation is symmetric to case A (now the endpoint θ′b and induced
action θb cannot be equal), so we are done. Moreover, we cannot have θ

′
b /∈ C ′: by the first

paragraph of case B, this is possible only if θ′b is the action induced in C
′, which is not the

case here. �
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Online Appendix C: Near Robustness

This section introduces weaker robustness concepts, near robustness and strong near robust-

ness, that require a "nearby" strategy profile, rather than the exact original strategy profile,

to be approximately optimal under noise. As stated in the main paper, Theorems 1 and 2

remain true provided that heterogeneous priors about the noise are allowed.

The closeness of strategy profiles is defined as follows.

Definition: Given a profile Γ, messages mi and m′i are (Γ, δ)-close if for any m−i ∈
×j 6=iMΓ

j , |aΓ(mi,m−i)− aΓ(m′i,m−i)| < δ.

Definition: Given a profile Γ, profile Γ′ is δ-close to Γ if:

1. MΓ′
i = MΓ

i ;

2. for any proper cell C in Γ or Γ′, mΓ′
i (si) and mΓ

i (si) are (Γ, δ)-close for all si ∈ [inf C+

δ, supC − δ];

3. letting aΞ and aΞ′ be the receiver’s best responses given noise Ξ to the senders’strategies

in Γ and Γ′ respectively, ∃ε > 0 such that, for all m ∈ ×ni=1M
Γ
i , |aΞ(m)− aΞ′(m)| < δ

whenever the size of Ξ is less than ε, and aΞ(m) and aΞ′(m) exist; and

4. |aΓ(m)− aΓ′(m)| < δ for all m ∈ ×ni=1M
Γ
i .

Points 1 and 4 in the definition of δ-closeness simply require that the senders use the

same messages in Γ′ as in Γ, and that the receiver takes a nearby action after every message

vector. Point 2 restricts the senders’strategies by requiring the use of the similar messages

in Γ and Γ′ in proper cells at least δ away from boundaries.4 However, this condition has

no power when dealing with sender strategies that do not feature intervals: it is diffi cult

to directly determine whether two sender profiles with complicated structures are "close."5

Point 3 addresses this issue by using the receiver’s best response to evaluate how close sender

profiles are to each other. Noise is used because, in some cases, two sender profiles could

generate the same receiver actions without noise while generating far apart actions with

small noise; such profiles ought to be considered distant.

4The requirement can be weakened to allow a small probability of deviation and/or deviation on a small
set of states.

5For example, suppose that within some interval, strategy mΓ
i assigns mi within the set of irrational

numbers and m′i elsewhere. Strategy m
Γ′

i is identical to mΓ
i everywhere except on the said interval, where

it assigns mi within the set of transcendental numbers and m′i elsewhere. It is unclear by simple inspection
how "close" mΓ

i and m
Γ′

i should be considered.

13



For instance, consider Example 2, and shift all cell boundaries and receiver actions by

less than δ. The resulting profile is δ-close to the original one: points 1, 2 and 4 are clearly

satisfied, and point 3 is as well because as ε → 0, we must have aΞ(m) → aΓ(m) and

aΞ′(m)→ aΓ′(m).

The definitions for strong near robustness and near robustness parallel the ones for strong

robustness and robustness.

Definition: An equilibrium Γ in the noiseless game is strongly near-robust if, for every

δ > 0, there exists ε > 0 such that whenever there is common knowledge that noise has

size less than ε, there exists a δ-close strategy profile Γ′ where each player’s strategy rΓ′
i is a

δ-best response to rΓ′
−i evaluated under sender i’s belief about the noise.

Definition: An equilibrium Γ in the noiseless game is near-robust if:

1. for every δ > 0, there exists ε > 0 such that whenever there is common knowledge

that noise has local size less than ε, there exists a δ-close strategy profile Γ′ where each

player’s strategy rΓ′
i is an on-path δ-best response to rΓ′

−i evaluated under sender i’s

belief about the noise, and

2. in the noiseless game, there exists γ > 0 such that whenever the perturbation on the

receiver’s off-path beliefs has size less than γ, every sender’s strategy mΓ
i is a best

response to mΓ
−i and a

Γ∗, where aΓ∗ denotes the receiver’s best-response to mΓ and her

perturbed off-path beliefs.6

A profile with the characteristics of Γ′ will be called a δ-supporting profile. Γ′ is interim

δ-optimal, where each player’s payoffs are evaluated under her own beliefs.

With these definitions, Theorems 1 and 2 hold with no change. The proofs of Theorems

1b and 2b still apply: they allow for heterogeneous priors, and Γ is δ-close to itself for all

δ > 0. The proofs of Lemmata 1 to 3, which imply Theorems 1a and 2a, are modified as

follows.

Modified proof of Lemma 1: Suppose Γ is strongly near-robust. Given Γ and Γ′, let

aΞ and aΞ′ denote the receiver’s best response to {mΓ
j }nj=1 and {mΓ′

j }nj=1, respectively, given

noise Ξ.
6Point 2 is the same as in the definition of robustness.
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Step 1: For any δ > 0, ∃ε > 0 such that for all noise Ξ with size less than ε, |aΓ(m)−
aΞ(m)| < δ for all m ∈ ×ni=1M

Γ
i .

By the definitions of strong near robustness and δ-closeness, we know that for any δ > 0,

∃ε > 0 such that for all noise Ξ with size less than ε, ∃Γ′ such that:

• aΓ′ is a δ-best response to {mΓ′
j }nj=1 under Ξ;

• |aΓ(m)− aΓ′(m)| < δ for all m ∈ ×ni=1M
Γ
i ; and

• |aΞ(m)− aΞ′(m)| < δ for all m ∈ ×ni=1M
Γ
i .

Because uR is continuous and strictly concave in a, and Θ is compact, the first point im-

plies that ∃γ(δ) such that, for all m ∈ ×ni=1M
Γ
i , |aΓ′(m)−aΞ′(m)| < γ(δ), with limδ→0 γ(δ) =

0. Therefore, |aΓ(m)− aΞ(m)| < 2δ + γ(δ) for all m ∈MΓ
i and Ξ with size less than ε.

Rewriting δ in lieu of 2δ + γ(δ) yields the result. ♦

The remainder of the proof (steps 2 to 4) is unchanged. �

Lemma 2 is now proved in two steps, numbered 5 and 6 (numbering continued from the

proof of Lemma 1). Suppose a boundary θb in Γ is not left-natural, such as the boundary

between the first two cells in Example 2, and consider the following beliefs about noise:

each sender believes that she observes the true state while all other senders observe si =

max{θ − ε, 0}, the receiver believes that all senders observe si = θ, and these beliefs are

common knowledge. Let m be the message vector sent to the left of the boundary - (1, 1) in

our example. The proof applies the definition of δ-closeness to show that in a δ-supporting

profile Γ′, for δ small enough, m must be sent in a neighborhood to the left of θb− δ. Then,
for ε small enough, m must also be sent between θb − δ and θb − δ + ε: upon observing a

signal in that range, each sender believes opponents will sendm−i, and in turn must sendmi,

which gives i expected payoff at least δ higher than any other message, for δ small enough.

Because θb is not left-natural, this argument can be iterated past θb+δ, which means that no

δ-supporting profile can exist. Therefore, Γ must be natural. This intuition bears parallels

to the global games contagion argument (except for the heterogeneous prior).

Like for steps 2 to 4, the noise distribution used for steps 5 and 6 does not have to be

atomic. For example, the argument carries through if each sender instead believes that other

senders’signals are distributed according to U [max{θ−ε, 0}, θ].7 Unlike for steps 2 to 4, the
argument uses noise where the prior is heterogeneous.

7Point 2 of the definition of closeness can also be relaxed: if a message vector close to m must be sent in
Γ′ with probability near 1 in some interval Im to the left of θb − δ, then the unraveling reasoning remains
valid for suffi ciently small ε (in particular, ε < |Im|).
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Modified proof of Lemma 2: We proceed by contradiction. Suppose instead, with-
out loss of generality, that the right endpoint θb 6= 1 of a proper cell C in Γ where

m = (m1, ...,mn) is sent is not left-natural. Denote the measure of this proper cell by

λ.

Step 5: ∃δ > 0 such that for all i ∈ N and m′i ∈ MΓ
i \{mi}, ui(a′, θ) + δ < ui(a, θ)

for all θ ∈ [θb − δ, θb + δ], a′ ∈ [aΓ(m′i,m−i) − δ, aΓ(m′i,m−i) + δ], and a ∈ [aΓ(mi,m−i) −
δ, aΓ(mi,m−i) + δ].

By the definition of "left-natural," for any i and any m′i ∈MΓ
i \{mi}, either:

(i) ui(aΓ(m′i,m−i), θb) < ui(a
Γ(mi,m−i), θb),

(ii) (m′i,m−i) is sent on path in Γ and aΓ(mi,m−i) = aΓ(m′i,m−i), or

(iii) (m′i,m−i) is not sent at any state in Γ and ui(aΓ(m′i,m−i), θb) = ui(a
Γ(mi,m−i), θb).

Because ui is continuous, if (i) holds, then ui(a′, θ) < ui(a, θ) for all θ in a non-degenerate

interval around θb, and all a′ and a suffi ciently near aΓ(m′i,m−i) and a
Γ(mi,m−i) respectively.

Therefore, it suffi ces to show that for any m−i, there are finitely many aΓ(m′i,m−i) occurring

on the equilibrium path. This must be true since any two such actions must be separated

by at least η (see the second-to-last paragraph of the proof of Theorem 1a).

Case (ii) cannot arise by Assumption A.

Case (iii) cannot arise by step 2. ♦

Step 6: Let δ < min{δ, λ
2
, η}. Then, for any ε ∈ (0, λ − 2δ), there is no δ-supporting

profile for Γ under the following beliefs about the noise:

- Each sender believes that they observe the true state and that other senders observe

max{θ − ε, 0}.
- The receiver believes that all senders observe the true state. (For the sake of complete-

ness - this will not matter.)

- These beliefs are common knowledge.

By the definition of δ-closeness, in any δ-supporting profile Γ′, it must be that for suf-

ficiently small ε, for all i, and for all si ∈ [θb − δ − ε, θb − δ), mΓ′
i (si) is (Γ, δ)-close to mi.

Now suppose mΓ′
i (si) 6= mi. Then, for some m′−i, a

Γ(mΓ′
i (si),m

′
−i) 6= aΓ(mi,m

′
−i). By com-

pleteness, both (mΓ′
i (si),m

′
−i) and (mi,m

′
−i) occur on path in Γ, so by the same reasoning

used at the end of case (i) of step 5, we must have |aΓ(mΓ′
i (si),m

′
−i) − aΓ(mi,m

′
−i)| > η.

This contradicts mΓ′
i (si) being (Γ, δ)-close to mi since δ < η. Thus mΓ′

i (si) = mi for all

si ∈ [θb − δ − ε, θb − δ).
Now suppose sender j observes sj ∈ [θb − δ, θb − δ + ε). She believes that all senders

i 6= j observed si ∈ [θb − δ − ε, θb − δ), and therefore will send mi. By step 5, her unique
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δ-best response is mj. Since this holds for all senders, we have that for all i and for all

si ∈ [θb − δ, θb − δ + ε), mΓ′
i (si) = mi.

Iterating the above argument, it follows by step 5 that for all i and for all si ∈ [θb−δ, θb+δ],
mΓ′
i (si) = mi. By definition, Γ′ can be δ-close to Γ only if, for all i, mΓ

i (si) = mi for all

si ∈ [θb, θb + δ − δ], which contradicts θb being the right endpoint of C. Therefore, Γ′ is not

a δ-supporting profile of Γ. ♦

Under the beliefs about noise in step 6, there is common knowledge that noise is less

than ε. We therefore conclude that Γ is, in fact, not strongly near-robust. �

Modified proof of Lemma 3: Modify step 1 as in the proof of Lemma 1. Steps 2 to
4 are unchanged. Step 5 and 6 follow the modified proof of Lemma 2, as adjusted below.

Step 5: Same statement as step 5 in the proof of Lemma 2, and same argument in cases

(i) and (ii).

Case (iii) is ruled out by point 2 in the definition of near robustness and the continuity

of ui. ♦

Step 6: Same statement as step 6 in the proof of Lemma 2, except that δ is chosen to be

also less than γ from the point 2 in the definition of near robustness. Then, to show that, for

small enough ε, mΓ′
i (si) = mi for all si ∈ [θb− δ− ε, θb− δ), proceed again by contradiction.

The argument is the same if, for some m′−i, both (mΓ′
i (si),m

′
−i) and (mi,m

′
−i) occur on path

but induce different actions in Γ. If not, then (mΓ′
i (si),m−i) is off path in Γ, and point 2 in

the definition of near robustness implies |aΓ(mΓ′
i (si),m−i) − aΓ(mi,m−i)| ≥ γ. This again

contradicts mΓ′
i (si) being (Γ, δ)-close to mi since δ < γ.

The remainder of the proof is identical to the analogous part of the modified proof of

Lemma 2. �
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