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Abstract

The data analysis of the metal markets has recently attracted a lot of attention, mainly
because the prices of precious metal are relatively more volatile than its historical trend.
A robust estimate of extreme loss is vital, especially for mining companies to mitigate
risk and uncertainty in metal price fluctuations. This paper examines the Value-at-Risk
and statistical properties in daily price return of precious metals, which include gold,
silver, platinum, and palladium, from January 3, 2008 to November 27, 2018. The
conditional variance is modeled by different univariate GARCH-type models (GARCH
and EGARCH). The estimated model suggests that the two models both worked
effectively with the metal price returns and volatility clustering in those metal returns

are very clear.

In the second part, backtesting approach is applied to evaluate the effectiveness of the
models. In comparison of VaRs for the four precious metals return, gold has the highest
and most steady VaR, then is platinum and silver, while palladium has the lowest and
most volatile VaR. The backtesting result confirms that our approach is an adequate

method in improving risk management assessments.
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1. Introduction

Precious metal markets have been highly volatile in recent years not only due to supply
and demand issues, but also due to many other factors such as extreme weather
conditions, new financial innovations, and international inflation. In this study, we
replicate Z. Zhang & H-K Zhang’s study (2016) on the metal commodity markets. In
their study, they examined the VaR and statistical properties in daily price return of
precious metals, which include gold, silver, platinum and palladium from January 11,
2000 to September 9, 2016. We generally confirm the original results using the time
period used in the original study. However, we expected that using more recent data,
especially data from the financial crisis, would change many of those results as GARCH
generally does not perform particularly well during extreme events. We find that when
including data from Jan. 3, 2008 to Oct. 26, 2018, the GARCH model only performs
well on 95% confidence interval, while performs bad on 99% and 99.5% confidence
interval. EGARCH model, similar to the previous study, performs well on the data sets.
We offer a number of tests of the models, and show that their performance holds part

of the conclusions of the previous study.

The quantification of the potential size of losses and assessing risk levels for precious
metals and portfolios including them is fundamental in designing prudent risk
management and risk management strategies. Value-at-Risk (VaR for short) models is

an important instrument within the financial markets which estimate the maximum



expected loss of a portfolio can generate over a certain holding period. Regulators also
accept VaR as a basis for companies to set their capital requirements for market risk
exposure. GARCH-type models are a common approach to model VaR and estimate
volatility and correlations. Yet the standard GARCH model is unable to model
asymmetries of the volatility, which means in a standard GARCH model, bad news has
the same influence on the volatility as good news. To deal with this problem, there are
extension models in GARCH family such as a threshold GARCH (TGARCH) or
exponential GARCH (EGARCH). These two models have taken leverage effect into

consideration.

In this paper, similar to the previous study, we examine the volatility behavior of four
precious metal: gold, silver, platinum and palladium. We contained two models,
GARCH(1,1) and EGARCH(1,1), of GARCH family to calculate VaR at different level
of confidence interval and estimate 1-day-ahead VaR for both GARCH-type models,
and then use violation ratio to examine and compare the accuracy of fitting of the two
models. In the previous study, they contained AR(1)-GARCH model and EGARCH

model to test the data sets.

This paper is organized as follow. After this introduction, Section 2 provides a literature
review. Section 3 introduces the data exploration and statistical analysis. Section 4
presents the methodology implemented in this study. Section 5 provides the result of 1-

day-ahead VaR estimation and violation ratio for GARCH-type models. Section 6 is



our conclusion.

2. Literature Review

To offer a comparative view, we summarize the key findings of major studies in the
related literature in Table 1, which demonstrates that GARCH and GARCH related
models are widely used in the literature to analyze volatility performance and VaR in

precious metal markets.



Table 1. Literature Review

approximations of the reality.

Studies Purposes Data Methodology Main Findings
Daily time series for the
This study uses three “two closing future prices of oil, ) o
. . Risk hedging in the gold
factors” volatility models of the gold, silver and copper, = GARCH, . .
[Hammoudeh and ) ) and silver markets is more
GARCH family to examine the and for the US three- CGARCH, ) )
[Yuan (2008) » . . pressing than in the copper
volatility behavior of three month Treasury bill rates EGARCH ot
market.
strategic commodities from January 2, 1990 to
May 1, 2006
This paper utilizes the most The SGT distribution
flexible skewed generalizedt =~ West Texas Intermediate appears to be the most
(SGT) distribution for describing (WTTI) crude oil, gasoline, appropriate choice since it
Cheng and Hung  petroleum and metal volatilities heating oil, gold, silver, GARCH-SGT,  enables risk managers to
(2010) that are characterized by and copper for the period GARCH-GED  fulfill their purpose of
leptokurtosis and skewness in ~ January 2002 to March minimizing MRA
order to provide better 2009 regulatory capital

requirements

This paper uses VaR to analyze
the market downside risk
[Hammoudeh et al. associated with investments in
(2011) four precious metals, oil and the
S&P 500 index, and three

diversified portfolios.

Daily returns based on

closing spot prices for four

. RiskMetrics,
precious metals: gold, .
. . asymmetric
silver, platinum, and
. GARCH type
palladium from January 4,
models

1995 to November 12,
2009.

The RiskMetrics model is
the best performer under
the Basel rules in terms of
both the number of days in
the red zone and the
average capital

requirements

This paper use generalized
Pareto distribution (GPD) to
[Huang et al. (2015) .
model extreme returns in the

gold market

Monthly gold prices from Generalized
January 1969 to October

2012. (GPD model)

Pareto distribution

GPD was found to be an
appropriate model to
describe the conditional
excess distributions of a
heteroscedastic gold log
return series and provides
adequate estimations for
VaR and ES.

This paper proposed a new
Bivariate EMD copula-based
approach to analyze and model
He et al. (2016) .

the multiscale dependence
structure in the precious metal

markets

Copula GARCH,

Gold, Platinum, and o

. . . Bivariate
Palladium closing price
from 4 January 1993 to 4

April 2015

Empirical Mode

Decomposition
(BEMD) model

There exists multiscale
dependence structure,
corresponding to different
DGPs, in the precious
metal markets. The
proposed model can be
used to identify the
significant interdependent
relationship among
precious metal markets in

the multiscale domain
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3. Data Exploration and Statistical Analysis

In this study, we tend to estimate risk measures for precious metal market. For this aim,
we consider daily closing spot prices of four precious metal: gold, silver, platinum and
palladium, same as the previous study did. For the selected series, the data covers from
January in 2008 to October in 2018, which is totaling more than 2500 observations. In
our opinion, we think the high volatility in precious metal market after 2008 will be
typical for the future market, so we removed data before 2008 and extended it to
2018.We collect daily spot price of all four kinds of precious metal from Bloomberg.
All the four-precious metal price is based on U.S. dollars. The continuously

compounded daily returns are computed as follows:

r, = 100In(25)
Pt-1

In this formula, 7, and p; are the return in percentage and the precious metal daily

spot price on day t respectively.

We used the price and return of gold and silver to represent metal market historical
tendency since gold and silver are not only a financial indicator that can have impact
on other precious metal commodities, but also widely used as a financial instrument for
inclusion in portfolios. Fig. 1 provides the time series plots of gold and silver daily spot

prices and their log-returns.
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Figure 1. Gold and Silver price ans log-return plots

Figure 1 indicate that volatility clustering is manifestly apparent for precious metal
returns revealing the presence of heteroscedasticity. The number of isolated peaks in
both log-return figure is larger than what would be expected from Gaussian series. The

statistical results of the four kinds of precious metal returns are shown in Table 2.

As can be seen in Table 2, the mean of all data sets is extremely close to zero, while the

12



standard deviation is also at a low level. Among the four-precious metal, silver has the
highest standard deviation, while gold has the lowest. In the previous study, palladium
has the highest standard deviation while gold has the lowest, indicating that silver has
became more volatile during recent years. Comparing to the standard normal
distribution with skewness 0 together with kurtosis 3, it leads to a conclusion that each
data set has a leptokurtic distribution with fat tail. Meanwhile, the result of Jarque-
Bera(J-B for short) test supports that we can surely reject the null hypothesis of
Gaussian distribution for all returns. According to Augmented Dickey—Fuller (ADF for
short) test, the result undoubtedly rejects the hypothesis of unit root for the time series
studied. So, we can conclude that precious metal price sample returns all have short

memory.

Table 2. Statistical analysis

Mean (%)  Standard Deviation =~ Maximum  Minimum  Skewness  Kurtosis J-B test ADF test

Gold 0.0019 0.0042 2.0381 -3.8546 -0.6039 8.8557 1 1
Silver -0.0032 0.0076 2.7484 -6.0146 -0.9297 9.6886 1 1
Platinum -0.0144 0.0047 1.7815 -2.7228 -0.2254 5.1795 1 1
Palladium 0.0138 0.0069 3.7298 -3.5061 -0.2639 5.3379 1 1

Notes: J-B test results in 1 means reject the null hypothesis that the sample data have the skewness
and kurtosis matching a normal distribution. ADF test results in 1 means reject the null hypothesis

that a unit root is present in a time series sample.

In conclusion, the statistical analysis for precious metal price return data sets reveals

that these precious metal returns are stationary, non-normally distributed, and all have

13



short memory. This conclusion is same as the previous study.

4. Testing for data features

4.1 Test for Stationary

Similar to the previous research, in order to build an effective model, stationary test is
needed on the series to make sure the underlying assumption that all the series must be
stationary hold. Only when series is stationary, i.e. has statistical properties that do not

change with time, models can be adopted to process those series.

In this paper, we adopted a simple test based on the null hypothesis that the data in
vectors X and y comes from independent random samples from normal distributions
with equal means and equal but unknown variances. We divided each time series data
into equally two vectors x and y. Then we adopt the test on the two vectors to see if test

results will reject the null hypothesis.

Table 3. T-test results

Gold Silver Platinum Palladium
Test result 0 0 0 0
*result = O, fail to reject null hypothesis, stationary

The results for the four series are all 0, indicating that we cannot reject the null
hypothesis, and all the four data sets are stationary. And this conclusion is consistent

with the previous research.
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4.2 Test for Serial Correlation

In order to perform a detailed modeling on the log returns, we need to perform several
tests on the return and variance characteristics of the data sets. In the previous research,
AR(1) model is adopted to filter out the autocorrelations of considered metal log-returns.
And AR(1) is singled out according to the censored orders of autocorrelation and partial
autocorrelation functions graphs through numerous trails. In this paper, we tried to
conduct the same analysis and trying to figure out if serial correlation still holds. The
first test we performed was about whether the return datasets still exists serial
correlation. We adopted the autocorrelation function and partial autocorrelation

function in MATLAB.
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From the graph, it is evident that there is little influence of past return on today’s return.
Thus, we can reach the conclusion that no serial correlation exists, and that the use of

AR(1) model in the previous research would be not appropriate anymore.
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Figure 2. Autocorrelation and Partial autocorrelation

4.3 Test for Heteroscedasticity
After testing on the serial correlation, we conducted two tests on the heteroscedasticity.
The time-varying volatility would interfere the effectiveness of the forecasting process

and influence the quality of the data. The previous research has shown that the all the
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metal returns showed significant conditional variance feature.

The first test is the autocorrelation function on the variance of the metal prices returns.
Like the autocorrelation and partial autocorrelation function on the returns data, this

test showing the influence of past volatility (i.e. variance) on today’s volatility.
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Figure 3. Conditional variance for gold, silver, platinum and palladium

From the graph, we can see that today’s return for all the metal price returns data would
be influenced by the previous returns, meaning that conditional variance does exist.

This conclusion is consistent with the previous research. Moreover, for Gold and

17



Platinum, the last day’s variance has the strongest influence, while for Palladium and

Silver, other recent variance also has some influence on today’s volatility.

The second test is plotting the return against time to show whether the volatility changes
with time. According to the previous research, they found out that return for Palladium
has the highest standard deviation, while return for gold has the lowest during the period
2000~2016. Compared with the newest data that we adopt in this paper, we found out
that the return volatility for Silver became the highest one, indicating the Silver market
in recent years are more volatile than before. And the return for Gold still has the lowest
volatility, which means that the market volatility for Gold remained relatively stable

and unchanged during the years.
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Figure 4. Time series return

On the other hand, as the previous research point out, the return against time graph for
each metal showed strong mean-reverting trend, fluctuating around zero. They also
pointed out that the return against time figure indicates heteroscedasticity and volatility
clustering behavior. These conclusions still hold with the newest data we adopted based

on the following graph.

4.4 Test for Distribution
Due to the fat tail of the metal price returns, it is generally harder for normal distribution
to capture the extreme conditions in the metal future market. Thus, we conducted test

to modify if the student t distribution would be a better fit for the metal price returns.
19
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Figure 5. Q-Q plot

According to the qqplot function in MATLAB, we monitored the fitness of the four-
data series with 2 different distributions - t distribution and normal distribution. The test
result is that t-distribution have much stronger ability to capture the fat tail of the metal
price returns. More specifically, the t-distribution can capture most of the extreme
increases in metal prices and a considerable amount of extreme decrease in the metal
prices. As for the normal distribution, it only captures some of the increases and
decreases when the metal market has huge fluctuation. Thus overall, we decided to
adopt the t-distribution. Based on different method, the previous research adopted a

complicated EVT distribution to capture all extreme conditions. However, because t-
20



distribution has proven to be able to capture most of the extreme conditions between

2010 ~ 2018. Thus, we adopted t-distribution for this paper.

In conclusion, based on the tests we performed above, the metal price returns are all
stationary, meaning that models can be directly used. Then according to the
autocorrelation function and partial autocorrelation function, the returns between 2010
and 2018 have no serial correlation, thus ARMA models are not needed anymore.
Finally, according to the autocorrelation function on the return variance, the previous
variance would have impact on today’s variance, thus heteroscedasticity exists, and
GARCH-type models are still needed. The difference between our conclusion and
previous research are 1. The AR(1) Model is proven to be not necessary anymore; 2.
We adopted t-distribution instead of the EVT distribution in the previous research; 3.
The Silver return turned out to be more volatile than palladium and to be the most

volatile one in recent years.
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5. Model Estimation

To implement an estimation procedure for these measures we must choose a particular

model for the dynamics of the conditional volatility.

According to the previous research, the AR(1)-GARCH model was adopted because
they found out that historical returns of the metal historical prices are not independent,
and variance was not constant either. However, after the 2010, based on the previous
test we performed in part2, we found out that the newest returns for the four metals are
independent, which means that AR(1) model is no longer needed. And the time-vary

volatility still holds.

Thus, in this paper, we use the parsimonious but effective GARCH (1.1) process for the
volatility. Moreover, they also conducted EGARCH model to test whether leverage
effect exist in the metal returns. Our paper also introduced EGARCH model to forecast
VaR by capturing some volatility stylized facts such as asymmetry and leverage effect
in the metal price return innovations to see whether EGARCH model still provide good

VaR’s computations.

5.1 Defining Value-at-Risk
Exposure to risk can be defined as the worst expected loss over a great horizon within

a given confidence level, which VaR is this quantity. The VaR at a given confidence

22



level Indicates the amount that might be lost in a portfolio of assets over a specified
time period with a specified small failure probability a. In this paper, we still adopt time

period as one day.

Similar to the previous research, we suppose that a random variable X characterizes the
distribution of daily returns in some risky financial asset, the left-tail a-quantile of the
portfolio is then defined to be the VaR a such that
Pr(X<VaR)=a

The VaR is the smallest value for X such that the probability of a loss over a day is no
more than a. Although the parameter a is arbitrarily chosen, analysis in this study does
not refer to the process of choosing the parameter which is considered to be a € {0.005,
0.01, 0.05}. In the estimation, for each day we estimated 1000 possible returns, so the
VaR for that day would be absolute value the 5th smallest return, 10th smallest return
and 50th smallest return respectively. And this methodology is consistent with the

previous research.

5.2 Estimating ot+1 using GARCH-type Model

In 1986, Bollerslev developed the generalized ARCH, or GARCH, to capture the time-
vary volatility, which relies on modeling the conditional variance as a linear function
of the squared past innovations. By using the log-returns (x4, x5, X3 ... X;_1) as the input,
the conditional variance of the standard GARCH (1,1) is defined as:

of =c+nxes®+pxal,

23



Where the ¢ >0, n >0, >0, &_1 =x_1— Ui—1. U 1s the average return
during the observing period. The volatility today would be a combination of the mean-

adjusted return and variance

However, due to the drawback of standard GARCH that it fails to consider the leverage
effect in the volatility of metal price returns. In the GARCH model, the underlying
assumption is the volatility are symmetric to the change in return. However, in real
world, the increase and decrease in return may bring different volatility changes

(asymmetric impacts).

In order to verify whether leverage effect exist in the metal return, the EGARCH model

1s also included.

The E-GARCH(1,1) is defined as:

€1

2
Otq

Et-1

2
Ot1

Inof =c+nx +vy*Inok,

+ B *

where &._4 = x;_1 — H¢—1 and n depicts the leverage effect.
* The positive return and negative return with same absolute amount of change
will have different impact on the volatility prediction
* If i is positive and B is negative, meaning that negative change in return
would bring higher impact on the next day’s volatility

* In contrast to the GARCH model, no restrictions need to be imposed on the
24



model parameters since the logarithmic transformation ensures that the

forecasts of the variance are non-negative.

In conclusion, the previous research adopted AR(1)-GARCH(1,1) and AR(1)-
EGARCH(1,1). In our research, we found out that serial correlation do not exist

anymore, thus GARCH(1,1) and EGARCH(1,1) are still adopted.

5.3 Estimating Result and Discussion

By observing the autocorrelations in Section 2, we found the heteroscedasticity and
volatility clustering behavior in the considered precious metal returns. The four metal
returns have significant volatility clustering, so a GARCH-type model needs to be
adopted. Because of the fat tail of the return, we chose the t-distribution instead of the
normal distribution to better fit the data. GARCH(1,1), and EGARCH(1,1) models with
student t distributions are developed so as to further investigate the leverage effect of

the precious metal returns.
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As can be seen from Table 3, we performed GARCH(1,1) and EGARCH(1,1) to each

of the metal returns, and we also recorded the AIC value, DW-test value and adjusted

Table 4. Model estimation results

Garch(1,1)
Parameter Gold Silver Platinum Palladium
c 1.73*10A(-7) | 4.03*10N(-7) | 2.30«107(-7) | 5.68*10A(-7)
(5.22) (5.34) (4.23) (4.64)
n 0.03765 | 0.03863 0.02993 0.04876
(17.16) d (17.42) (8.39) (8.75)
B 0.95245 0.95405 0.96014 0.93991
(316.03) [ (325.12) (199.80) (139.87)
Adj. RA2 0.00003 0.00041 0.00051 0.00003
AIC -7.22251 -7.10189 -7.92918 -7.22251
DW-test 1.95743 1.97082 1.95219 1.95743
of =c+nre*+B*af,
E-Garch(1,1)
Parameter GOLD Silver Platinum Palladium
c -0.26056 -0.21584 -0.13088 0.23378
(-7.67) (-8.44) (-4.58) (-6.63)
n 0.11152 0.11887 0.06002 0.09794
(16.94) (14.48) (7.63) (8.29)
B -0.01267 -0.00511 -0.03259 -0.03596
(-2.59) (-0.98) (-7.43) (-5.77)
v 0.98383 0.98687 0.99206 0.98396
(338.74) (437.49) (404.16) (332.41)
Adj. Rh2 0.000407 0.00041 0.00051 0.00003
AIC -8.21977 -7.09919 -7.93044 -7.22082
DW-test 2.02598 1.970823 1.95219 1.95743

Ino=c+n=*

£t-1

Vo,

VOi-1

-
+ﬁ*r—21+y*incr£2,1

R-Square to compare the fitness of those models.

For the GARCH model estimation result:

2
O¢

=cH+nxg_ >+ *of,

The previous research indicates that the all the parameters are significant and parameter
B all exceed 0.86, indicating the strong volatility clustering. And we found out that all

26



the parameters are still significant while parameter f3 are all greater than 0.93, indicating

the volatility clustering in those metal returns is even clearer.

As for the EGARCH model estimation result:

-1

2
Ot_1

€t—1
Voi,

The precious research got four conclusions, (1) leverage effects coefficient y are all

Ino? =c+nx +yx*lno,

+ [ *

positive and significant at any significant level; (2) the asymmetric volatility behavior
is the most significant in palladium while the least significant in gold; (3) the coefficient
estimators y inthe EGARCH(1,1) conditional variance model are all greater than 0.95,
which indicates that over 95% of current variance shock can still be seen in the

following period.

As for the three conclusions, according to the parameter estimation result from the
conditional variance EGARCH(1,1) equation, we found that all the coefficient n are all

positive and significant at any significant level.

1. Unlike the previous research that Palladium has the most leverage effect. We found
out that the leverage effect coefficient n and Bfor Gold and Silver are bigger than
the other two metals, indicating that Gold and Silver may suffer more from bad
news and benefit less from good news than the other two metals.

2. Similar to the previous research, estimators vy is all greater than 0.98, showing that

the volatility clustering in those metal returns are still clear. This result is consistent
27



with the previous research on this topic.

DW-test results are all close to 2, indicating that there is little serial correlation exists

in the metal returns.

Overall, based on the minimum AIC value, the GARCH(1,1) and EGARCH(1,1) model
both have a relatively small AIC value, indicating that the fitness of the model is quite
good. And the value of the AIC for EGARCH model is the smallest, which is consistent
with the conclusion of the previous research. Moreover, we also conducted the DW-test.
Based on its assumption that the closer the DW-test statistic to 2, the less serial
correlation exist, we can also reach the conclusion that those metal price returns have
no serial correlation. Similar to the previous research, the volatility clustering in those
metal returns is clear, and the decay of the volatility shock is quite slow. Leverage effect

does have an impact on the metal price returns.

6. VaR Estimations and Backtesting

According to Basel Committee on Banking Supervision, a financial institution has
freedom to use their own model to compute Value-at-Risk (VaR). In this section, we
estimate the 1-day-ahead VaRs via the GARCH(1,1) model and E-GARCH(1,1) model
and implement backtesting to measure accuracy for each of the two approaches by using

violation ratio. As mentioned above in Section 5, we compute VaR by using:
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Pr(X<VaR) =«
To define and record the violations of VaR, we use:

1 if X <VaR
It(a) =
0 else

The recorded violations and 0.5% quantile VaRs using our E-GARCH approach are
showed in Fig. 6. Figure for violations and VaRs under 0.01% or 0.005% quantile and

using GARCH approach are available upon request.

Gold VaR and Violations 0.05% quantile using EGARCH

X

0.04

VaR

*x  Violation happend
003+ * .,

0.02

0.01°F

0 | | | 1 | 1 | 1 | |
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.08 Silver VaR and Violations 0.05% quantile using EGARCH
. T T T T T T T T T T
* VaR
X * Violation happend
0.06 |- X X B

0.04

0.02

1 | | |
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Platinum VaR and Violations 0.05% quantile using EGARCH
T T T T T I T I T

0.05 \

VaR
0.04 X Violation happend | 4

0.03

0.02

0.01

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

29



Palladium VaR and Violations 0.05% quantile using EGARCH
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Figure 6. VaR and Violation happened

6.1 One-Day-Ahead VaR Estimations

For the next step, we use the negative standardized residuals to estimate VaR for the
four data sets. From Table 4 we can see that at a quantile level of 99.5%, the estimated
VaR from our GARCH(1,1) approach is 0.0091 for losses, which means we are 99.5%
confidence that the expected market value of gold would not lose more than 0.91% for
the worst-case scenario within one-day duration. The reason we choose the
GARCH(1,1) model and EGARCH(1,1) model to VaR is that EGARCH model does
not have restrictions on nonnegativity constraints as linear GARCH model has.
Therefore, we identify EGARCH model as the most proper conditional variance model
for the four precious metal returns, and we want to compare its VaR estimations with
GARCH model. According to the estimation result for 1-day-ahead VaR. As shown in
Table 4, we note that EGARCH model produced lower VaR forecasts than the GARCH
model at any quantile levels for any metal price return series, which is same to the

previous study.
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Table 5. 1-day-ahead VaR estimations

Return Gold Silver Platinum Palladium
Estimates for 1-day ahead VaRs from the GARCH model

VaRr+10.005 0.0091 0.0160 0.0156 0.0185
VaRr+1 001 0.0073 0.0132 0.0113 0.0201
VaRr+10.05 0.0043 0.0072 0.0072 0.0105
Estimates for 1-day ahead VaRs from the E-GARCH model

VaRr+10.005 0.0072 0.0141 0.0119 0.0163
VaRr+10.01 0.0062 0.0104 0.0096 0.0156
VaRr+10.05 0.0041 0.0059 0.0059 0.0104

Then we use a moving window to estimate the 1-day-ahead 5% quantile VaRs using

our EGARCH approach to investigate further about the dynamics of VaR for the

precious metal return series as shown in Figure 7.
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Figure 7. Downside 0.05 quantile VaRs for gold, silver, platinum, and palladium

In comparison of VaRs for the four precious metals return, gold has the highest and
most steady VaR, then is platinum and silver, while palladium has the lowest and most
volatile VaR. It indicates that gold is the safest valuable asset for investment, while

palladium 1s most volatile since it is relatively rare comparing to other three precious
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metal. There are also other factors that contribute to the downtrend of VaR. For instance,
from 2012 to 2014, there is a long-term bull run in the U.S. stock market, which
encouraged investors to use their money in stock investing and lead to the sustained

low-level precious metal price.

6.2 Results of Violation Ratio

In the previous study, they used likelihood ratio test to do backtesting. Different from
the previous study, we used violation ratio to test the accuracy for fitting of GARCH
model together with EGARCH model. If the violation ratio is between 0.8 and 1.2, it
will be defined as close to 1 which means the model fits the data set at a good level.
Otherwise, the violation ratio will be defined as significantly different from 1 which

means the model fits the data series at a poor level.

Table 6. Violation ratio results

Return Gold Silver Platinum Palladium

Violation ratio result from GARCH model

VR=0.005 0.5944 0.5944 0.4458 0.5458
VRe=0.01 1.1174 1.3072 1.4006 1.3401
VRo-0.05 1.0401 1.0698 1.0253 1.2184
Violation ratio result from E-GARCH model

VRe=0.005 1.3373 1.4821 1.1887 1.4859
VRe=0.01 1.0401 1.3373 1.0401 1.0401
VRe-0.05 1.0847 1.1738 1.0996 1.1558
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Table 5 provides the backtesting results of violation ratio, where the level of confidence
interval ranging among 0.5%, 1% and 5%. EGARCH model performs well at 1% and
5% confidence interval, yet the performance for 0.5% confidence interval is poor.
GARCH model performs well only at 5% confidence interval. In the previous research,
GARCH and EGARCH model do very well in predicting critical loss for precious metal

markets. Our result is partly changed in comparison with the previous study.

7. Conclusion

In this paper, we introduce an extension of the original study by Zhang Z. and Zhang
H-K. (2016) by including data from the financial crisis to see if this would change many
of those results as GARCH generally does not perform particularly well during extreme

events.

As the volatility in the metal market increases, it's extremely important to implement
an effective risk management system against market risk. In this context, VaR has
become the most popular tool to measure risk for institutions and regulators and how
to correctly and effectively estimate VaR has become increasingly important. In
addition, leverage effect has been proved to be an important influence factor of future
prices. In this paper we introduce GARCH and EGARCH model to capture the

volatility clustering of metal price returns and conducted back testing to exam the
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effectiveness of the two models. Our findings reveal that the GARCH and EGARCH
models all worked effectively with the metal price returns and volatility clustering in
those metal returns are still clear. After we conduct the estimation for 1-day-ahead VaR,
results at any quantile levels for any metal price return series of GARCH are higher
than that of EGARCH, which indicate that EGARCH performs better than GARCH. It
reveals that taking leverage effect into consideration is more realistic and
comprehensive than using GARCH to VaR model. According to the backtesting result,
violation ratio for GARCH only performs well at 5% quantile which proves our
assumption that GARCH model is inadequate during extreme events. For EGARCH
model, at 5% and 1% quantile the model performs good, while at 0.5% quantile the
accuracy of fitting has a serious deterioration. We have not yet found out the reason for

this question. A detailed analysis of this question is left for future research.
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Dependent Variable: GOLD_RTN

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/28/18 Time: 19:28

Sample: 1/03/2008 10/28/2018

Included observations: 2842

Convergence achieved after 25 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

GARCH = C(1) + C(2)*RESID(-1)*2 + C(3)*GARCH(-1)

Dependent Variable: SILVER_RTN

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/28/18 Time: 19:30
Sample: 1/03/2008 10/28/2018
Included observations: 2842

Convergence achieved after 29 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

GARCH = C(1) + C(2)"RESID(-1)*2 + C(3)*"GARCH(-1)

Variable Coefficient Std. Error  z-Statistic Prob. Variable Coefficient ~ Std. Error  z-Statistic Prob.
Variance Equation Variance Equation
C 1.73E-07 3.31E-08 5.217308 0.0000 C 4.03E-07 7.54E-08 5.343490 0.0000
RESID(-1)*2 0.037650  0.002193  17.16828  0.0000 RESID(-1)"2 0.038630  0.002218  17.41679  0.0000
GARCH(-1) 0.952451 0.003014 316.0301 0.0000 GARCH(-1) 0.954051 0.002934 325.1244 0.0000
R-squared -0.000020 Mean dependent var 1.90E-05 R-squared -0.000018 Mean dependent var -3.17E-05
Adjusted R-squared 0.000410 S.D. dependent var 0.004242  Adjusted R-squared 0.000409 S.D. dependent var 0.007578
S.E. of regression 0.004241 Akaike info criterion -8.211978  S.E. of regression 0.007576  Akaike info criterion -7.101887
Sum squared resid 0.041788  Schwarz criterion -8.204551  Sum squared resid 0.134656  Schwarz criterion -7.094521
Log likelihood 9541.212  Hannan-Quinn criter. -8.209272  Log likelihood 8333.513  Hannan-Quinn criter. -7.099204
Durbin-Watson stat 2.025303 Durbin-Watson stat 1.970823
Dependent Variable: PLATINUM_RTN Dependent Variable: PALLADIUM_RTN
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/28/18 Time: 19:31 Date: 11/28/18 Time: 19:31
Sample: 1/03/2008 10/28/2018 Sample: 1/03/2008 10/28/2018
Included observations: 2842 Included observations: 2842
Convergence achieved after 36 iterations Convergence achieved after 29 iterations
Coefficient covariance computed using outer product of gradients Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7) Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*RESID(-1)*2 + C(3)*GARCH(-1) GARCH = C(1) + C(2)*RESID(-1)*2 + C(3)*GARCH(-1)
Variable Coefficient ~ Std. Error ~ z-Statistic Prob. Variable Coefficient ~ Std. Error  z-Statistic Prob.
Variance Equation Variance Equation
C 2.30E-07 542E-08  4.232050  0.0000 c 568E-07  1.23E-07 4.637682  0.0000
RESID(-1)"2 0.029925  0.003565  8.394128  0.0000 RESID(-1)"2 0.048761  0.005573  8.750113  0.0000
GARCH(-1) 0.960143  0.004805 199.8017  0.0000 GARCH(-1) 0.939908  0.006720  139.8709  0.0000
R-squared -0.000935 Mean dependent var -0.000144 R-squared -0.000401 Mean dependent var 0.000138
Adjusted R-squared -0.000508 S.D. dependent var 0.004708 Adjusted R-squared 0.000026 S.D. dependent var 0.006878
S.E. of regression 0.004709 Akaike info criterion -7.929182 S.E. of regression 0.006877  Akaike info criterion -7.222509
Sum squared resid 0.052022 Schwarz criterion -7.921816  Sum squared resid 0.110963 Schwarz criterion -7.215143
Log likelihood 9303.931  Hannan-Quinn criter. -7.926499 Log likelihood 8475.003 Hannan-Quinn criter. -7.219826
Durbin-Watson stat 1.952190 Durbin-Watson stat 1.957429
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Dependent Variable: GOLD_RTN

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/28/18 Time: 19:32
Sample: 1/03/2008 10/28/2018
Included observations: 2842

Convergence achieved after 54 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3)
*RESID(-1)/@SQRT(GARCH(-1)) + C(4)*LOG(GARCH(-1))

Dependent Variable: SILVER_RTN

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/28/18 Time: 19:33
Sample 1/03/2008 10/28/2018
Included observations: 2842

Convergence achieved after 50 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3)

*RESID(-1)/@SQRT(GARCH(-1)) + C(4)*LOG(GARCH(-1))

Variable Coefficient Std. Error 2-Statistic Prob. Variable Coefficient Std. Error  z-Statistic Prob.
Variance Equation Variance Equation

c(1) -0.260565  0.033943 -7.676627  0.0000 C(1) -0.215845  0.025571  -8.440848  0.0000

C(2) 0.111517  0.006582  16.94367  0.0000 C(2) 0.118866  0.008208  14.48223  0.0000

C(3) -0.012672  0.004887 -2.592992  0.0095 C(3) -0.005109  0.005172  -0.987698  0.3233

C(4) 0.983832  0.002904  338.7434  0.0000 C(4) 0.086872  0.002256  437.4890  0.0000
R-squared -0.000020 Mean dependent var 1.88E-05 R-squared -0.000018  Mean dependent var -3.17E-05
Adjusted R-squared 0.000407 S.D. dependent var 0.004227 Adjusted R-squared 0.000409 S.D. dependent var 0.007578
S.E. of regression 0.004227  Akaike info criterion -8.219767 S.E. of regression 0.007576  Akaike info criterion -7.099191
Sum squared resid 0.041909  Schwarz criterion -8.209945 Sum squared resid 0.134656  Schwarz criterion -7.089369
Log likelihood 9645.787  Hannan-Quinn criter. -8.216190 Log likelihood 8331.351  Hannan-Quinn criter. -7.095614
Durbin-Watson stat 2.025974 Durbin-Watson stat 1.970823

Dependent Variable: PLATINUM_RTN

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/28/18 Time: 19:34
Sample: 1/03/2008 10/28/2018
Included observations: 2842

Convergence achieved after 67 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3)
*RESID(-1)/@SQRT(GARCH(-1)) + C(4)*LOG(GARCH(-1))

Dependent Variable: PALLADIUM_RTN

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/28/18 Time: 19:34
Sample: 1/03/2008 10/28/2018
Included observations: 2842

Convergence achieved after 46 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(1) +C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3)
*RESID(-1)/@SQRT(GARCH(-1)) + C(4)*LOG(GARCH(-1))

Variable Coefficient ~ Std. Error ~ z-Statistic Prob. Variable Coefficient ~ Std. Error  z-Statistic Prob.
Variance Equation Variance Equation

Cc(1) -0.130877  0.028577 -4.579809  0.0000 Cc(1) -0.233780  0.035272  -6.627988  0.0000

C(2) 0.060023  0.007868  7.629011 0.0000 C(2) 0.097942  0.011805  8.296389  0.0000

C(3) -0.032591 0.004388  -7.427681 0.0000 C(3) -0.035959  0.006229 -5.773258  0.0000

C(4) 0.992064  0.002455  404.1598  0.0000 C(4) 0.983956  0.002960  332.4076  0.0000
R-squared -0.000935 Mean dependent var -0.000144 R-squared -0.000401 Mean dependent var 0.000138
Adjusted R-squared -0.000508 S.D. dependent var 0.004708 Adjusted R-squared 0.000026 S.D. dependent var 0.006878
S.E. of regression 0.004709 Akaike info criterion -7.930438 S.E. of regression 0.006877  Akaike info criterion -7.230637
Sum squared resid 0.052022 Schwarz criterion -7.920616 Sum squared resid 0.110963  Schwarz criterion -7.220816
Log likelihood 9306.404 Hannan-Quinn criter. -7.926861 Log likelihood 8485.538  Hannan-Quinn criter. -7.227060
Durbin-Watson stat 1.952190 Durbin-Watson stat 1.957429
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Gold VaR and Return 0.01% quantile
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