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Abstract

In this paper, we explore the use of Schwartz and Smith two-factor model in
copper pricing. We used both Copper future data from LME and Analyst Forecast data
from Bloomberg (LME) and World Bank as input to generate futures curve and spot
curve. The Schwartz- Smith model incorporates the long-term equilibrium prices that
commodity price will approach in the long-term and short-term mean reversion
characteristic of commodity prices. To estimate the state variables and model
parameters, Kalman filter technique was used to update the state variables through
iteration and Maximum likelihood approximation to compute the term structure, since
Kalman filter is able to estimate model's parameters when the model relies on non-
observable data. This model is able to explain the copper's term structure in an intuitive
way. We begin by describing the input data in section 2 and explaining the short-term and
long-term model in section 3. In section 4, we discuss the estimation process using the
Kalman filter and, in section 5 we describe the empirical result by applying the model to

Copper futures and forecast data. In section6, we offer the concluding remarks.

Keywords: Copper futures; Analysts' forecasts; Two-factor model; Kalman filter
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1: Introduction

In this paper, we use the Schwartz and Smith (2000) Model to fit the Copper prices and
examine how well the model fits the data.

For the reasons why we choose to analyze copper, first, its spot pricing is a good
indicator of worldwide capital construction and its futures prices are a good indicator of
expectations of future capital construction. Second, it is dense in terms of value per weight and is
easy to transport worldwide with little concern for environmental damage, as happens with crude
oil. Thus, it is not subject to regional supply bottlenecks, as we see with intercontinental natural
gas or the current Brent-WTI crude oil spread. Third, its consumption is not subject to seasonal
fluctuations, as occurs for natural gas or electricity. Last but not least, it has a liquid forward
market with deliveries well into the future, unlike iron ore or steel.

Before the Schwartz and Smith two factors model, studies on commodity stochastic
model assumed the commodity prices followed a "random walk" described by geometric
Brownian motion. However, this model allows mean-reversion in short-term prices and
uncertainty in the equilibrium level to which prices revert to be incorporate into the model,
making it more intuitive and easy to understand. Moreover, this model facilitates risk analysis,
because it provides volatility estimates of the mean-reverting and long-run mean factor. And the
model is useful for real options models that estimate the value of investment opportunities and
provide criteria for starting, delaying, expanding and abandoning projects.

We begin by describing the input data in section 2 and explaining the short-term and
long-term model in section 3. In section 4, we discuss the estimation process using the Kalman
filter and, in section 5 we describe the empirical result by applying the model to Copper futures

and forecast data. In section6, we offer the concluding remarks.



2: Data

2.1 Analyst’s Forecast Data

Analysts’ price forecast data are obtained from Bloomberg and World Bank. The
Bloomberg analyst forecast provides forecasts of Copper prices up to five years with 9
maturities. We were able to get quarterly forecast data and in each observation quarters there are
many forecasts provided by analysts from different banks, and we took the median of the
available forecasts. The analyst forecasts can be viewed as a proxy of real commodity prices so
in this paper it is used to construct the spot curve. However, the analyst forecast data is more
noisy, since the source of data is not very consistent, for example, the number of forecasts
available in each period is different, and analysts sometimes have huge disagreement on future
prices. But it is the best data we can obtain to analyze the market’s view on Copper.

The forecasts by World Bank and IMF (not included in this paper) have longer-term
forecast up to over 15 years. However, they don't have data in similar maturity in the future and
don't have data in every quarter. Since our code requires data to have all maturities in each
observation and need to have observations every quarter, we have a to make some assumptions
in the input data and fill the unavailable data. In the data table 4, cells in red are either calculated
using the average of t-1 and t+1 data or filled in by using forecast by World Bank. We then
obtain a matrix of the mix of forecast from different sources, the y-axis is date (quarterly data
starting from Jan. 2010 to Oct. 2018) the x-axis is maturity ( 3 months, 6 months, 9 months, 1
year, 1.25 years, 1.5 years, 2 years, 3 years and 4 years) and all our numbers is in unit of

USD/tonne, Shown in Figure 1.



Figure 1. Analysts’ Forecasts Observations
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2.2 Copper Futures Data

Copper Futures Data is obtained from the London Metal Exchange. We took quarterly
futures with maturities of 3 months, 6 months, 9 months and every year up to 10 years.

Futures data in more frequent than Forecast data and with data of different future
maturities available in every observation. So, we did not make any modification for the futures
contracts. Our data for Copper Futures is composed of 34 quarterly data from Jul. 2010 to Oct.

2018, with a unit of USD/tonne, shown in Figure 2.

Figure 2. LME Futures Observations
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3: The Schwartz and Smith Two-Factor Model

This section provides a description of the short-term/long-term model by Schwartz and
Smith (2000). We introduce the structure and properties of this model and the distribution for
future spot prices in Section 3.1. And then in Section 3.2, we describe the risk-neutral version of
this model, which was used to derive closed-form expressions for prices of futures and other

commodity-related derivatives

3.1 The Short-Term/Long-Term Model

In the previous stochastic models for commodity prices, prices are expected to grow at
some constant rate with the variance in future spot prices increasing in proportion to time. For
most commodities, however, it seems that there is a mean reversion in prices and uncertainty
about the equilibrium price to which prices revert. Considering these two effects, Schwartz and
Smith developed a simple two-factor model of commodity prices that allows mean-reversion in
short-term prices and uncertainty in the equilibrium level to which prices revert. Although
neither of these two factors is directly observable, they can be estimated from spot and futures
prices. The differences between the prices for the short-term and long-term contracts provide
information about short-term variations in prices. And movements in prices for long-term futures
contracts provide information about the equilibrium price level.

Specifically, the spot price of a commodity at time t (St) is constituted by two stochastic
factors, which are the short-term deviation from this equilibrium price (x;) and the long-term
equilibrium price (§;). And the sum of these two factors is the logarithm of the spot price.

In(St) = x: + & (2.1.1)
The short-term deviations are expected to revert to zero following an Ornstein-Uhlenbeck

process, reflecting short-term changes in prices resulting from unusual weather or a supply



disruption. The mean-reversion coefficient (k) represents the rate at which the short-term
deviations revert towards zero.

dy; = —kx.dt + o, dz, (2.1.2)
And the long-term equilibrium price is assumed to follow geometric Brownian motion with drift

(ug), reflecting expectations of the exhaustion of existing supply, improvement of the technology

for the production, inflation, and political effects.

d§, = pgdt + ogdz; (2.1.3)

The dz,, and dz; are correlated increments of standard Brownian motion processes with
dz,dz; = p,sdt. And Schwartz and Smith (2000) also pointed out that this model is equivalent

to the stochastic convenience yield model of Gibson and Schwartz (1990), but with the
difference that changes in short-term futures prices are interpreted as short-term price variations

rather than changes in the instantaneous convenience yield.

On the one hand, the process for short-term deviation allows for changes in the spot price
which are not expected to persist in the long run and specifies the way in which these short-run
deviations from the equilibrium price are expected to disappear. On the other hand, the process
for equilibrium price level separates the short-term/long-term model from the class of pure
mean-reversion models. And it also allows for the possibility that long-run changes in the spot
price. Therefore, this model allows for mean-reversion in short-term prices and uncertainty in,
and evolution of, the equilibrium price, a model structure that is in line with the inherent
uncertainty of equilibrium prices and the apparent mean-reversion in prices for most

commodities at the time (the year 2000).



Based on the structure of this model, Schwartz and Smith derived the distributions for
future spot prices. Given the initial values of the two factors (y, and &) and based the
Equations 2.1.2 and 2.1.3, y; and &; were found to be jointly normally distributed with mean
vector and covariance matrix:

E[(xe, €01 = [e7 X0, 0 + pet] (2.1.4)
and

(1 _ e—ZKt) ﬁ (1 _ e—rct) Pxg9x9%¢
2K

C , = K .
ov[(xe, €e)] | ety pr,:(af afzt (2.1.5)

And from on the Equations 2.1.4 and 2.1.5, the log of the future spot prices is then normally

distributed, and the spot price is then log-normally distributed, with which are:

E[In(S.)] = e~ xo + & + et (2.1.6)

Var[In(S,)] = (1 — e~2xt) g + oft + 2(1 — e7rt) PXEXE (2.1.7)
E[S.] = exp (E[In(s,)] + 3 Var[in(s,)]) (2.1.8)
or

In(E[S;]) = E[In(Sp)] + %Var[ln(St)]
=e My, +& + ugt

2
+2 (A —e ) Xy g2t +2(1 — e <) HEX  (21.9)

Table 1. Model Parameter Description



Short-Term/Long-Term Model Parameter

Symbol Description Definition in Terms of Stochastic Convenience Yield Mode!
K Short-term mean-reversion rate <
. Short-term volatility o,/k
0z, Short-term process increments az,
b Equilibrium drift rate (n—a-}0))
o, Equilibrium volatility (o] + ailk’ = 2pa,a,/K)"
az, Equilibrium process increments (o.02, = (0,/x)02,)(0? ~ o)k’ - 2po,o/k)” "
Pe Correlation in increments (po, = au/x)o! + ailk’ = 2po,a,/k) "
A, Short-term risk premium Nk
A Equilibrium risk premium mo= r - Ak

3.2 Risk-Neutral Processes and Valuation

To value future contracts and European options on these futures by using the two-factor

model, Schwartz and Smith developed a risk-neutral version shown by Equations 2.2.1 and 2.2.2

below.
dy: = (—kx: — A)dt + 0, dz, (2.2.1)
and
d$; = (ue — Ag)dt + odz; (2.2.2)

where the dz), and dz;f are correlated increments of standard Brownian motion processes with
dzydz; = pyedt.

Noticeably, there are three major differences between the short-term/long-term model
and the risk-neutral version. First, two risk premium parameters (4, and A¢) are introduced to

the risk-neutral paradigm, and they take the form of adjustments to the drift of the stochastic

processes. Second, the short-term deviations are assumed to follow an Ornstein-Uhlenbeck



. -1 . qep e ..
process reverting to TX’ rather than zero. Third, the long-term equilibrium price is assumed to

follow geometric Brownian motion with drift M; = (ug — A¢), instead of ;.

Therefore, Schwartz and Smith found that, under these risk-adjusted processes,

X¢ and &, were found to be jointly normally distributed with mean vector and covariance

matrix:
[t €] = [e ™00 — (1 — e ™) =X, & + pjt] (223)
and
Cov™[(x, €)1 = Cov[(x1, &) (2.2.4)

Then, the log of the future spot price under risk-adjusted valuation paradigm is normally

distributed with:
E*[In(S)] = e ™o + & — (1 — e ™) =X + pzt (2.2.5)
and
Var*[In(S,)] = Var[In(S,)] (2.2.6)

Comparing the Equation 2.1.6 and 2.2.5, it is easy to find that risk premiums reduce the log of
: -2
the expected spot price by (1 — e¥t) TX + At

And in the risk-neutral valuation framework, futures prices are equal to the expected
future spot prices. Thus, the relationship between futures prices and expected future spot prices

can be expressed as
* * 1 *
ln(FT,O) = In(E*[S;]) = E*[In(S7)] + EVar [In(S;)]

= e *y, + & + A(T) (2.2.7)

Where



2

-4, 1 o 0,0,
ACD) = T = (1= e 2 4 2 ((1 = e2T) X 4 7T+ 2(1 — =7y LT,

From the Equation 2.2.7, Fr o, denoting the current market price for a futures contract with
time T until maturity, depends on the model parameters, the short-term deviations (y;), the
equilibrium price level (&;) and the maturity T. Thus, one can value futures contracts for any
given T (including those that are no futures contracts trading) and generate the term structure
for the futures prices with the short-term/long-term model if a set of model parameters and
initial values of the two factors are given. However, the model's parameters are unknown.
Moreover, the short-term deviation and the equilibrium price level are not directly observable.
To deal with these two problems, the Kalman filter is introduced to do estimations for both

parameters and state variables, which will be described in Sections 4.

10



4: Kalman Filter in Finance

As mentioned in the previous section, a Kalman filter can be applied to the estimation of
a model's parameters, when the model relies on non-observable variables. In finance, for
examples, there are term structure models of interest rates, term structure models of commodity
prices, and the capital asset pricing model of market portfolios. Additionally, the Kalman filter
is also an effective method to problems with a large volume of information as it is very fast.
Lastly, the filter provides a set of optimal parameters when the model is associated with an
optimization procedure. In this section, we begin with briefly reviewing the Kalman filter in

Section 4.1 and then discuss its use in the Schwartz and Smith (2000) Model within Section 4.2.

4.1 Introduction to the Kalman Filter

Under this sub-section, we first introduce the basic principle of the Kalman filter and
problems that can be solved by it. Then we describe two forms of Kalman filter, which are
simple and extended filters. And lastly, we discuss how to estimate model parameters using this
tool.

The basic principle of the Kalman filter is the use of a temporal series of observable
variables to reconstitute the value of the non-observable variables. The requirement of this
method, first of all, is a state-space model, which is characterized by a transition equation and a
measurement equation. And then a three-step iteration process begins once a model expressed
on a state-space form.

Figure 3. represents the kind of problem a Kalman filter can resolve. The only

information for non-observable variables (&) that a model relies on is the transition equation,

11



describing their dynamic. This equation gives predicted values of @ at time t, conditionally to
their values at time (t-1). Based on the calculation of &, the measurement equation can
determine the measure (y) at time t. And the differences, at time t, between the measure y and
the observable data (y) refer to the innovation (v), which represents some new information.
Finally, this innovation is used to update the value of & at time t.

Figure 3. Basic Principle of Kalman Filter

State-space model Estimated data | Empirical data

Transition

ar:I-T(d-yt)

v

Mcasurement
'.' -1 " Z(Gr =1

N,

Kalman filter

a,

In a word, there is one iteration for each observation date t: the Kalman filter first
calculates values of @ given their values at time (t-1), and then updates when some new
information arrives. As shown in Figure 4, three phases are included in each iteration. During
the prediction phase, the first step, the transition equation, and measurement equation give the
estimated values of non-observables (&;/(;-1)) and measurement (J; ;1)) at time t. And the

second step, or innovation phase, calculates the innovation (v, = y; — J;/(t—1))- And finally,

conditionally to the information given by v;, the updating phase re-estimates the values of non-

12



observable variables that are computed in the prediction phase. Then the set of updated values
for non-observable variables (&;) is used in the next iteration.

Figure 4. Three Steps of Iteration

ITERATION 1: & .

Prediction :

Transition - Measurement o
G, | et Oy . V£ =]
Innovation:
v = )'.' - )lt f=-

Updating :

ITERATION2: & - vy,

Noticeably, there are two remarks in this figure. First, to estimate the values of &, in the
prediction phase, one must know the values of &;_;. Second, there are only two elements used
to reconstitute temporal series for non-observable variables (&), which are the transition
equation and the innovation. And because there is an updating phased at each iteration, the
volume of information used in very low, explaining the reason why the Kalman filter is a very
fast method.

Then comes to the two versions of Kalman filter. When the transition and measurement
equations are linear, the simple Kalman filter can be employed, which is the most frequently
used version of the Kalman filter. However, when the model is non-linear, the extended
Kalman filter can be used. As it is generally impossible to obtain an optimal estimator for the
non-observable variables in a non-linear condition, the extended Kalman filter introduces an

approximation in the estimation and leads to the linearization of the model.

13



For the parameter estimation, an initial vector of parameters is first used to compute all
innovations of the given time period and the logarithms of the likelihood function for the
innovations. Then the iterative procedure makes a search for the parameter’s vector that
maximizes the likelihood function and minimizes the innovations. And the optimal set of

parameters is used to reconstitute the non-observable variables.

4.2 Application in the Short-Term/Long-Term Model

As indicated in Section 2, the state variables (y; and ;) in the short-term/long-term
model cannot be observed directly and must be estimated from the spot and/or futures prices.
Meanwhile, Schwartz and Smith (2000) stated that there are two cases. First, if both short- and
long-maturity futures contracts are traded, changes in the long-maturity futures prices give
information about changes in the equilibrium price and changes in the differences in the short-
and long-term futures prices give information about the short-term deviations. Second, if there
are no traded long-maturity futures contracts, we may have to estimate the levels of the state
variables and treat them probabilistically. And estimates in both cases can be generated by
Kalman filter. Moreover, as mentioned in Section 3.1, the Kalman filter can also calculate the
likelihood of observing a particular data series given a particular set of model parameters. And
then find the optimal set of using maximum likelihood techniques.

Before discussing how the Kalman filter can be applied in the short-term/long-term
model for estimating the parameters and two non-observable variables, it is necessary to show
how this model can be transformed into a state-space form, which is a prerequisite for using
Kalman filter. As the two non-observable factors are assumed to be state, we can derive the

transition and measurement equations for the short-term/long-term model as:

14



xt =c+ Gxt_l + Wy, t= 1,2, ...,TlT (3.2.1)

yt = dt + Ft,xt + vt, t = 1,2, ...,TlT (3.2.2)
Where
Xe = [Xt] a 2 x 1 vector of state variables; c=| 0 ], a 2x1 vector;
Et ’ 5 MfAt ” 5
e—kAt 0 . .
G= 0 1], a 2 x 2 matrix; At =length of each time steps;
ny = number of time periods in the data set; n = number of future
contracts;

w; 1s a 2x1 vector of serially uncorrelated, normally distributed disturbances with

Elw.] = 0, and Var[w,] = W = Cov[(xae Eae)];

InFpy

ye = i ],anxl vector of observed log future prices with maturities Ty, T5, ..., Ty, ;
InFp,
A(T) e 1

ye=[ i ],anx1 vector; Fi=[ : :], anx2
A(Ty) e *n 1

matrix;

vy is an x 1 vector of serially uncorrelated, normally distributed disturbances with

E[v,] = 0, and Cov[v,] = V.

In the transition equation, the matrix G and vector ¢ specify how the ‘true’ and non-
observable state vector (x;) is expected to evolve from a one-time step to another. And in the
measurement equation, the matrix F; and vector d; map the state vector into the measurement
domain, which allows the estimated system states at time t to be transformed into a prediction

for the measurement observation at time t. The residuals from this measurement predictions,

15



denoted as v;, are measurement errors and can be interpreted as errors in the reporting of prices,
or errors in model's fit to observed prices. For simplicity, Schwartz and Smith (2000) assumed
that the covariance matrix of measurement errors (V) is diagonal. And v, and w; are assumed to
be independent of each other and uncorrelated with the initial state at all time periods.

To estimate model parameters, we suppose that non-observable variables and errors are
normally distributed and compute the logarithm of the likelihood function for the innovation v,

at each iteration and for a given vector of parameters:
logl(t) = — (g) x In(2m) — 2In(dV,) — v; XV, x v, (3.2.3)

And the iterative procedure makes a search for a vector of optimal parameters that

maximize the likelihood function and minimizes the innovations.

16



5: Empirical Results

This section presents the results from calibrating the two-factor Schwartz and Smith Model to
construct the futures curve (F-model) and Expected Spot curve (A-model).

Parameter values obtained using the Kalman filter for both models are reported in Appendix A,
Table 2. Futures contract errors for F-model and Analyst Forecasts errors for A-model are
computed and presented in Appendix A, Table 3. Figure 5, 6,7 and 8, from Appendix B, are
graphs of the term structure of Futures curve with maturities of three months, two years, four
years and ten years. Figure 9, 10 and 11 are graphs of the expected spot price term structure with
maturities of three months, two years and four years.

By analyzing the model fit (Table3), we can see that F-model can better fit the data than A-
model with a low mean absolute error. This is also shown in the model term structure figures in
Appendix B. Also we can see that the model fit gets worse as we go further to the longer
maturity. In figure 7(F-model with 4 years maturity), 8 (F-model with 10 years maturity) and
11(A-model with 4 years maturity), we can observe that the models were unable to fit the data
very well.

It is hard to draw any economic reason for the negative correlation parameter for the future
contract. This might be the model fails to filter out whether the change in price was due to
change in the equilibrium price to the short-term deviation. In the paper (Goodwin & Larsson),
the authors notice that as the periods for observation shorten, the correlation starts tends to be
estimated to minus 1, and in shorter time frame there are little different in the movements in the

long and short-term prices.
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6: Conclusion

In this article, we applied the Schwartz and Smith Two-Factor model in copper derivative
pricing. We were able to see that the Schwartz and Smith two-factor model was able to provide

an intuitive explanation of the movement in Copper pricing.

By examining both the F-model and the A-model, we see that F-model has a better fit to the

observation than the A-model since the Analyst forecast are more noisy than the F-model.
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Appendices

Appendix A

Table 2. Parameter Estimations

Maximum-Likelihood Parameter Estimates

Futures Data (F-Model) Iy Data (A
Parameter Descripton Estimation Standard Error £stimation Standard Error
X Shortterm meanTeversion rate 003 0.0029 01119
Ty Shortterm volatilny 035145 00163 01927 003se
,{x Shortterm risc premium OOMsR Q0108 o
wr Equilibrium drift rate 0.0059 0.0591 00323 01008
o Equilibrium volatilny 03878 00127 02003 00282
“r Equilibrium risk-neutral drift rate 00035 00058 o
Bt Correlation in increments 09264 o0iss 0628 0097
Standard deviationis) of error Comract Matunty Comract Matunrty
5, for measurement equation 3Imo 00142 0.0001 3Imo 00201 0.0002
5z & mo 00103 o & mo 0013 0.0001
Sz 9 mo 0.007 o S mo. 0014 00001
Se 1yr 00045 o 1yr 00194 00001
Sc Zyr 00025 o 125yr 00216 Q0002
5, 3yr 00024 o 1Syr 00255 0.0002
Sa Ly 0.0024 o 2yr 0.0296 0.0003
o Syr 0.0022 o 3yr 00818 00015
Sy Syr 0.0031 o 2yr 0.1094 0.0028
S0 Tyt 0008 o
5.4 Syr 0.007 ]
Sz Syr 0014 o
Syz 10y 0.0001
. .
Table 3. Model Fit: Mean Absolute Error for F-model and A-model for Each Maturity
Errors in the Model Fit to the Observations
Futures Data (F-Mode) Analysts’ Data (A-Model)
Contract maturity Mean Error $.0.for Error Mean Adsoiste Error Comract maturity Mean Error $.0.for Error Mean Absoite Error
Iima 0.0046 00137 0.0106 Iima 0008 00151 0012
&5 mo. 00032 00097 00076 &ma 00032 00l 00082
Imo 00018 00066 00053 Ima 00027 a2 00054
lyr 00005 0.0041 00033 lyr 00002 00178 00132
2yr 0.0009 0002 000ls 1235yr 00073 003 00144
3yr 00005 00022 00017 15yr. Q.00 00214 07
Lyr, 0.0001 00022 00017 Zyr 0008 0.0261 0.02m
Syr 0.0002 0002 0001s 3yr 00073 0S4 0054
byr 0.0006 00023 0006 Lyr 00164 01088 00826
Tyr 0.0007 00047 00011
Syr. 0.0007 00068 00053
Syr. 00015 00132 0.0097
10yr. 00067 00213 00146
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Table 4. Futures Prices Data
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Table 5. Analysts’ Forecasts Data (Bloomberg)
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Data (World Bank)

Table 6. Analysts’ Forecas
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Appendix B
Approximate for Different Maturities

Figure 5. Futures Price Observations for an Approximate Maturity of Three-Month and

the Corresponding F-Model Prices
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Figure 6. Futures Price Observations for an Approximate Maturity of Two-Year and the

Corresponding F-Model Prices
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Figure 7. Futures Price Observations for an Approximate Maturity of Four-Year and the

Corresponding F-Model Prices
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Figure 8. Futures Price Observations for an Approximate Maturity of Ten-Year and the

Corresponding F-Model Prices
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Figure 9. Analysts’ Forecast Observations for an Approximate Maturity of Three Month

and the Corresponding A-Model Prices
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Figure 10. Analysts’ Forecast Observations for an Approximate Maturity of Two-Year and

the Corresponding A-Model Prices
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Figure 11. Analysts’ Forecast Observations for an Approximate Maturity of Four-Year

and the Corresponding A-Model Prices
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Appendix C
Code for Futures Data

function log L = Kalman Estimation(y, psi, matur, dt, a0, PO, N, nobs,
locked_parameters)
5355553335553 3%%55%335%5%%%%%%5%%3%%%%5%%%%%%5%%33%%%%5%2%%%%%%%%%%%
% Extracting initial parameter values from initial psi
5355553355555 %3%%5%%33%%5%%%%%%5%%33%%%5%%%%%%5%%%3%%%%5%2%%%%5%%%%%%%
k = psi(1,1);
sigmax = psi(2,1);
lambdax = psi(3,1);
mu = psi(4,1);
sigmae = psi(5,1);
rnmu = psi(6,1);
pxe = psi(7,1);
if sum(locked parameters) == 0

k = psi(1,1);

sigmax = psi(2,1);

lambdax = psi(3,1);

mu = psi(4,1);

sigmae = psi(5,1);

rnmu = psi(6,1);

pxe = psi(7,1);

s = zeros(l, size(psi,l)-7);
for i = 1l:size(s,2)
s(l, i) = psi(i+7,1);

end
end
if sum(locked parameters) ~= 0
s = zeros(l, size(psi,l)-7+size(locked parameters,l));
j=1
for i = 1l:size(s,2)
if all(abs(i-(locked parameters))) == 1
?(1l‘i) = psi(7+3],1);
J = J+1;
end
end
end
% m = Number of state variables (number of rows in a0)
m = size(al,1);

5355553355555 8388553358553 3%%5%%3%%%%5%%%%%%5%5%33%%%%5%2%%%%5%%%%%%%
% THE TRANSITION EQUATION

3535555335555 33%%55%335%5%%33%%55%33%%%5%%%%%%%5%%%3%%%%5%2%%%%%%%%%%%
% S&S NOTATION: x(t)=c+G*x(t-1)+w(t) w~N(0,W) Equation (14)

% NEW NOTATION: a(t)=c+T*a(t-1)+R(t)*n(t) n~N(0,Q)

% c is a {m x 1} Vector

$ T is a {m x m} Matrix

c=[0;mu*dt];

T=[exp(-k*dt),0;0,1];

$ Defining Q = var[n(t)] and R

xx=(l-exp(-2*k*dt))*(sigmax) "2/ (2*k);
xy=(l-exp(-k*dt))*pxe*sigmax*sigmae/k;
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yx=(l-exp(-k*dt))*pxe*sigmax*sigmae/k;

yy=(sigmae)"2*dt;

O=[xX,Xy;yX,¥Y1i:

eye(size(Q,1));

353555533355 5%%83%%55%%35%5%%%%%%5%5%%3%%%%%%3%%%5%%%3%%%%5%%%%%%%%%%%

THE MEASUREMENT EQUATION

5355555355553 35%55%%3%55%%%3%%5%%5%%%%%5%%%3%%%5%%33%%%%5%%%%%%5%%%%%

S&S NOTATION: y(t)=d(t)+F(t) 'x(t)+v(t) v~N(0,V) Equation (15)

NEW NOTATION: y(t)=d(t)+Z(t)a(t)+e(t) e~N(0,H)

d is a {N x 1} Vector

Z is a {N x m} Matrix

for i=1:N
pl=(l-exp(-2*k*matur(i)))*(sigmax)”2/(2*k);
p2=(sigmae)"2*matur(i);
p3=2*(l-exp(-k*matur(i)))*pxe*sigmax*sigmae/k;
d(i,l)=rnmu*matur(i)-(l-exp(-k*matur(i)))*lambdax/k+.5*(pl+p2+p3);
Z(i,l)=exp(-k*matur(i));
Z(i,2)=1;
end
Measurment errors Var-Cov Matrix: Cov[e(t)]=H

%

t
t

o0 I

Q) o0 70 o0 Q.

R R R R b
NG THE KALMAN FILTER

R R R R R R R i
ing placeholder vectors/matrices for variables to be stored in
global save_vt save_att save dFtt_1 save_ vFv save vtt save Ptt 1 save Ftt 1
save Ptt

save_ytt 1 = zeros(nobs,N);

save_vtt = zeros(nobs,N);

save_vt = zeros(nobs,N);

save_att 1 = zeros(nobs,m);

o0 = o0

00 00 o0 of M o°
oo

B o0 C o0 p-

save_att = zeros(nobs,m);
save_Ptt 1 = zeros(nobs,m*m
save Ptt =

)i
zeros (nobs,m*m) ;
save_Ftt 1 = zeros(nobs,N*N);
save_dFtt 1 = zeros(nobs,1l);

save_VFv = zeros(nobs,1);
$save_log Lt = zeros(nobs,1);
Ptt = PO;
att = a0;
% Running the kalman filter for t = 1,...,nobs
for t = 1l:nobs
Ptt_1 = T*Ptt*T'+R*Q*R';
Ftt 1 = Z*Ptt_1*Z'+H;
dFtt 1 = det(Ftt_1);
att_1 = T*att + c;
yt = y(t,:)";
ytt_ 1 = Z*att_1+d;
vt = yt-ytt 1;

att = att_1 + Ptt 1*2Z'*inv(Ftt_1)*(vt);
Ptt = Ptt 1 - Ptt 1*Z'*inv(Ftt_1)*Z*Ptt 1;

ytt Z*att+d;
vtt = yt-ytt;

save vtt(t,:) = vtt';
save_vt(t,:) = (vt)';
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att';
[Ptt_1(1,1), Ptt_1(1,2), Ptt_1(2,1), Ptt_1(2,2)];
[Ptt(1l,1), Ptt(1,2), Ptt(2,1), Ptt(2,2)];

save att(t,:)
save Ptt 1(t,:)
save Ptt(t,:)

save dFtt_1(t,:)= dFtt_1;

save_VFv(t,:) = vt'*inv(Ftt_1)*vt;
end
logL = —(N*nobs/2)*log(2*pi)-0.5*sum(log(save dFtt 1))-0.5*sum(save vFv);
log L = -logL;

5355553355555 335855033585 %%%%%%5%%3%%%%5%%%%%%5%5%%3%%%%5%2%%%%%%%%%%%

% This Matlab Script estimates the parameters of the model presented in

Schwartz-Smith

% (2000) paper(Short-Term Variations and Long-Term Dynamics in Commodity

Prices).

% NOTE: it can take up to 10 minutes for the estimation to complete.

%

% Code originally produced by Dominice Goodwin (May 2013) to conduct the

empirical study in

% master thesis D. Goodwin (2013), Xiaoyu Fu and stella modify the code to
for Final Project paper:

% (http://www.lunduniversity.lu.se/o0.0.i.s?id=24965&postid=3809118)

%

% Contact: xfal7@sfu.ca zpa9@sfu.ca

5355553355553 3%%55%335%5%%3%%%5%%33%%%5%%%%%%%5%5%%%%%%5%5%3%%%%%%%%%%%
format short; % Spot data in first column. All price in log.

which model = 1;

% [1 = Schwartz-Smith (2000) Model on the approximately the same Crude 0il
% data as used in this article.]

if which model == 1 % Schwartz-Smith (2000) on crude oil data

%%% INPUT SETTINGS %%%

data = LMEFuturesS1l{:,:}; % Specify which variable
that contains data for estimation (Columnl = Spot, Column2 = Future(Shortest
Maturity)...)

include_spot in estimation = 1 ; % [0 = No, 1 = Yes (Include the
first column of Spot data in estimation)]

Num_ Contracts = 13; % # of future contracts in data
to use

matur = [3/12,6/12,9/12,1,2,3,4,5,6,7,8,9,10]; % Maturities of included
contracts

frequency = 1; % [1 = all observations in data
variables are considered, 2 = every second observation is considered, ...]
(This data is weekly .. so frequency = 1 -> weekly frequency.
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dt = 90/360; % Time step size (Since weekly
data) to get parameters on per year basis.

start_obs = 1; % Start at first observation in
data.

end_obs = 34; % End at last observation in data.

% The standard errors are obtained from the hessian. However, since the model
estimates the parameters
% so that the one or a couple of futures contracts are matched with close to
zero measurement errors,
% leading to that the measurement error covariance matrix (usually) is
positive semi-defined.
% —--> Matlab error: Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate.
% To be able to invert the hessian and obtain standard errors the following
% ad hoc approach can be used:
% - Once it is known which of the future contracts is matched with close to
zero measurement errors
% the estimation can be redone with the corresponding elements in measurement
error covariance matrix
% restricted to zero and thus excluded from the estimation. In this way
measurement error covariance matrix
% is positive defined and invertible.

locked_parameters = 0; % [ 0 = No parameter locked, 1 to
... = Forces a measurement error parameter to be Zero]

% OBS: This data requiers

locked parameters = 0;

%%% SELECT INITIAL VALUES %%%

k = 1.49; % NOTE: These initial values
have to be changed manually in order to find a Global Maximum Log-Likelihood
Score

sigmax = 0.286;

lambdax = 0.157;

mu = -0.0125;

sigmae = 0.145;

rnmu = 0.0115;

pxe = 0.3;

s_guess = 0.005;

initial statevector = [0;3.1307]; % Initial state vector
m(t)=E[xt;et]

initial dist = [0.01,0.01;0.01,0.01]; % Initial covariance matrix for
the state variables C(t)=cov[xt,et]

end
2055855855035 %35%35%3%%%%%5%%5%35%3%%29%29%5%9%5%3%%3%%39%2%%%%%5%%%5%%%%%
%$%% ADJUSTING DATA ACCORDING TO INPUTS %%%
2855855555035 %35%35%35%%%%5%%5%35%3%%29%29%5%95%35%35%39%2%%2%%5%%%5%%%%%
data SelectedPeriod = data(start_obs:end obs,l:end);
num obs = size(data SelectedPeriod,l);
if frequency ~=1
new _num obs = floor((num obs-1)/frequency);
data SelectedPeriod SelectedFrequency =
zeros (new_num obs,size(data_SelectedPeriod,2));
data SelectedPeriod SelectedFrequency(l,:) = data SelectedPeriod(1,:);
for t = l:new _num obs
data SelectedPeriod SelectedFrequency(t+l,:) =
data SelectedPeriod((t*frequency)+l,:);
end
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else
data SelectedPeriod SelectedFrequency = data SelectedPeriod;
end
St = data_SelectedPeriod SelectedFrequency(l:end,l);
if include_spot_in estimation ==

y = data SelectedPeriod SelectedFrequency(l:end,1l:Num Contracts);
else

y = data SelectedPeriod SelectedFrequency(l:end,2:Num Contracts+l);
end
% y is a {nobs x N} Matrix, N = number of future contracts, nobs = number of
observations
nobs = size(y,1l);
N = size(y,2);
num_locked parameters = size(locked parameters,1l);
©9229299900000220990000222990000022299000002920990000022999000002299900000200
OCO0OO0OO0OO0OO0OO0OD0TD0ODO0ODO0OO0OD0ODOD0OO0OO0OO0OO0OD0OO0OO0OO0OD0OO0OO0OO0OO0OO0OO0OODODOOOOOOODODOOO0OOOOOOOOOOODOOOOOOOOOOO0O0O0O0O0O0O0O0©©O°
% Optimizing the parameters with the Kalman filter & MLE
©929292999000002290990000222990000022299000002299900000222990000022099000000200
OCO0OO0OO0OO0OO0OO0OD0TD0OD0ODOO0OD0ODOO0OO0OO0OO0OO0OO0OO0OO0OO0OD0OO0OO0OO0OO0OOO0ODODODOOOOOOODODOOO0OO0OO0OOOOOOOOODOOOOOOOOOOO0O0O0O0O0O0O0O0©©O°
% Placeholders & Variable def.

global save_att save vtt save vt save dFtt 1 save vFv save_ Ptt_ 1 save Ftt 1
save Ptt
InL._scores = zeros(3,1);
boundary = Inf;
% Running the estimation for The S&S 2 factor model and two benchmark
% models (The GBM model and the Ornstein-Uhlenbeck model).
for model = 1 & [1 = The S&S 2 factor model]

if model == 1 & The S&S 2 factor model

if sum(locked parameters) ==

psi = zeros(7+N,1);
psi(l1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]';
psi(8:end,l) = s_guess;

1lb = zeros(7+N,1);
1b(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]';
1b(8:end,1) = 0.0000001;

ub = zeros(7+N,1);

ub(1l:7,1) = [boundary, boundary, boundary, boundary, boundary,
boundary, 11';

ub(8:end, 1) = boundary;

else

psi = zeros(7+N-num_locked parameters,l);

psi(l1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]';

psi(8:end,1l) = s_guess;

lb = zeros(7+N-num_locked parameters,1l);
1b(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]';
lb(8:end,1) = 0.0000001;

ub = zeros(7+N-num_locked parameters,l);
ub(1l:7,1) = [boundary, boundary, boundary, boundary, boundary,
boundary, 11';

ub(8:end, 1) = boundary;

end

a0 = initial_ statevector;

PO = initial dist;

end
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%

Running estimation
options
¢interior-point active-set
MaxlnL_Kalman

nobs, locked parameters);

[psi_optimized, log L,exitflag,output,lambda,grad,hessian]

fmincon(MaxlnL_ Kalman, psi,

%

optimset('Algorithm', 'interior-point', 'Display’', 'off');

[1, (1,01, lb, ub, [], options);

(1,

Saving estimation output

InL_scores(model,1l) = -log L;
if model == 1
ss_att = save_att;
ss_vtt = save_vtt;
ss_vt = save_vt;
ss_dFtt_1 = save_dFtt_1;
ss_vFv = save_vFv;
ss_Ptt_1 = save_Ptt 1;
ss_Ftt_1 = save_Ftt 1;
ss_Ptt = save Ptt;

if sum(locked parameters)
ss_psi_estimate

0

[psi_optimized(1l:7,1);sqgrt(psi_optimized(8:end,1))];

ss_SE

else

prel_ SE
prel ss_psi estimate

sgrt(diag(inv(hessian)));

sgrt(diag(inv(hessian)));

zeros(size(psi,l)+size(locked parameters,1l),1);

ss_SE = zeros(size(psi,l)+size(locked parameters,l),1);
j=1
for i = l:size(prel_ss_psi estimate,l)

end

ss_psi_estimate

if all(abs(i-(locked parameters+7))) == 1
prel ss psi estimate(i,l) psi _optimized(j,1);
ss_SE(i,1) prel SE(j,1);
J j+1;

else
prel ss psi _estimate(i,l) = 0
ss SE(i,1) = 0;

end

4

[prel ss psi estimate(1l:7,1);sqgrt(prel ss psi estimate(8:end,l))];

end
end
end
5355553335555 835%55%%3%%55%83%%%%5%%%3%%%%%5%33%%%%3%33%%%5%5%%%%%%%%
% Calculating/outputing key statistics
5355553335555 33%%55%%3%%55%535%%%5%%3%%%%%5%33%%%%5%3%%%%5%%%%%%%%%
% Output

ss_psi_estimate
ss_SE

°

S&S Model fit
ss_Mean Error
ss_Std_of_ Error

ss_MAE

oo

0000000000000 0
0000000000000

%

mean(ss_vtt)'
std(ss_vtt)'

mean(abs(ss_vtt))'

000000000000000000000000000200000000000000000000000000920
0000000000000 000000000000000000000000000000000000000D0
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oo
oo
oo
oo

%

oo

@(psi) Kalman Estimation(y, psi, matur, dt, a0, PO, N,



% Outputing Graph

5355553355555 33%%55%335%5%%%%%%5%5%3%%%%%%%%%%5%%33%%%%5%2%%%%5%%%%%%%
figure(l);

set(figure(l), 'Position', [100 100 400 1000])

hold on

plot(exp(St), 'k', 'linewidth',1);
plot(exp(ss_att(:,1l)+ss_att(:,2)), 'r', 'linewidth',1);
plot(exp(ss_att(:,2)),'b', 'linewidth',1);

h = legend( 'Observed Price','Estimated Price', 'Equilibrium Price');
title('Schwartz-Smith 2-factor model')

hold off
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Code for Analysts’ Forecast Data

function log L = Kalman Estimation Real(y, psi, matur, dt, a0, PO, N, nobs,
locked_parameters)
353555533355 55%33%%5%%33%%5%%%3%%5%%%3%%%5%%5%3%%%5%%%33%%%5%%3%%%%%%%%
Extracting initial parameter values from initial psi
5355553338555 33%05%%3%%55%%3%%%5%%3%%%%%5%33%%%%5%%3%%%%5%%%%%%5%5%%%%
= psi(1l,1);
igmax = psi(2,1);
ambdax = psi(3,1);
mu = psi(4,1);
sigmae = psi(5,1);
rnmu = psi(6,1);
pxe = psi(7,1);
if sum(locked parameters) == 0

k = psi(1,1);

sigmax = psi(2,1);

lambdax = psi(3,1);

mu = psi(4,1);

sigmae = psi(5,1);

rnmu = psi(6,1);

pxe = psi(7,1);

°

H 0 R’ 00 o0 o

s = zeros(l, size(psi,l)-7);
for i = 1l:size(s,2)
s(l, i) = psi(i+7,1);

end
end
if sum(locked parameters) ~= 0
s = zeros(l, size(psi,l)-7+size(locked parameters,l));
j=1;
for i = 1l:size(s,2)
if all(abs(i-(locked parameters))) == 1
s(1l, i) = psi(7+3,1);
J = J+1;
end
end
end

% m = Number of state variables (number of rows in a0)
m = size(al,1);

o

%

B %%%%%%%%5%5%5%5%55555 5555550555555 0088338 88%88%%%%%%%%%%%%%%%%%%%%%%%%%%%
THE TRANSITION EQUATION
%%
S

oo

o

5355553355553 3%%55%%83%%5%%%3%%%%5%%3%%%%%%33%%%%%3%%%%5%%%%%%%%%
&S NOTATION: x(t)=c+G*x(t-1)+w(t) w~N(0,W) Equation (14)
NEW NOTATION: a(t)=c+T*a(t-1)+R(t)*n(t) n~N(0,Q)
c is a {m x 1} Vector
T is a {m x m} Matrix
c=[0;mu*dt];
T=[exp(-k*dt),0;0,1];
% Defining Q = var[n(t)] and R
xx=(l-exp(-2*k*dt))*(sigmax) "2/ (2*k);
xy=(l-exp(-k*dt))*pxe*sigmax*sigmae/k;
yx=(l-exp(-k*dt))*pxe*sigmax*sigmae/k;
yy=(sigmae)"2*dt;

%

o° o0 oo

oo
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O=[xXX,Xy;yX,YY]i
R=eye(size(Q,1)); %R is a (2*2) indentity matrix with rows and column equals
to the number of rows of Q
R R R R L ]
% THE MEASUREMENT EQUATION
R R ]
% S&S NOTATION: y(t)=d(t)+F(t) 'x(t)+v(t) v~N(0,V) Equation (15)
$ NEW NOTATION: y(t)=d(t)+Z(t)a(t)+e(t) e~N(0,H)
$ d is a {N x 1} Vector
% Z is a {N x m} Matrix
for i=1:N
pl=(l-exp(-2*k*matur(i)))*(sigmax)”2/(2*k);
p2=(sigmae)"2*matur(i);
p3=2*(l-exp(-k*matur(i)))*pxe*sigmax*sigmae/k;
d(i,l)=mu*matur(i)+.5*(pl+p2+p3);
Z(i,l)=exp(-k*matur(i));
Z(i,2)=1;
end
% Measurment errors Var-Cov Matrix: Cov[e(t)]=H
H=diag(s);
R R R R R ]
% RUNNING THE KALMAN FILTER
R R L ]
% Creating placeholder vectors/matrices for variables to be stored in
global save_vt save_att save dFtt_1 save_ vFv save vtt save Ptt 1 save Ftt 1
save Ptt
save_ytt 1 = zeros(nobs,N);
save_vtt = zeros(nobs,N);
save_vt = zeros(nobs,N);
save_att 1 = zeros(nobs,m);

save_att = zeros(nobs,m);
save_Ptt 1 = zeros(nobs,m*m);
save_Ptt = zeros(nobs,m*m);

save_ Ftt 1 zeros (nobs,N*N) ;
save_dFtt 1 = zeros(nobs,1l);

save_VFv = zeros(nobs,1);
$save_log Lt = zeros(nobs,1);
Ptt = PO;
att = a0;
% Running the kalman filter for t = 1,...,nobs
for t = 1l:nobs
Ptt_1 = T*Ptt*T'+R*Q*R';
Ftt 1 = Z*Ptt_1*Z'+H;
dFtt 1 = det(Ftt_1);
att_1 = T*att + c;
yt = y(t,:)";
ytt_ 1 = Z*att_1+d;
vt = yt-ytt 1;

att = att_1 + Ptt 1*2Z'*inv(Ftt_1)*(vt);

Ptt = Ptt 1 - Ptt_1+*Z'*inv(Ftt_1)*Z*Ptt 1;
ytt = Z*att+d;

vtt = yt-ytt;

% save ytt 1(t,:) = ytt 1';

save vtt(t,:) = vtt';
save_vt(t,:) = (vt)';
% save_att 1(t,:) = att 1';
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save att(t,:)
save Ptt 1(t,:)
save Ptt(t,:)

att';
[Ptt_1(1,1), Ptt_1(1,2), Ptt_1(2,1), Ptt_1(2,2)1;
[Ptt(1l,1), Ptt(1,2), Ptt(2,1), Ptt(2,2)];

save dFtt_1(t,:)= dFtt_1;

save_VFv(t,:) = vt'*inv(Ftt_1)*vt;
end
logL = —(N*nobs/2)*log(2*pi)-0.5*sum(log(save dFtt 1))-0.5*sum(save vFv);
log L = -logL;

5355553355553 3%%55%33%%5%%%%%%5%%3%%%%5%%%%%%5%%%3%%%%5%2%%%%5%%%%%%%
% This Matlab Script estimates the parameters of the model presented in
Schwartz-Smith

% (2000) paper(Short-Term Variations and Long-Term Dynamics in Commodity
Prices).

% NOTE: it can take up to 10 minutes for the estimation to complete, depend
% on amount of data you use for this code

%

%

% Originally produced by Dominice Goodwin (May 2013) to conduct the empirical
study in

% master thesis,modify by Xiaoyu Fu and Zheng Peng to conduct research on

% using Analyst forecast for real distribution of expected sopt price

%

35355553355 5%%33%%5%%33%%5%%33%%5%%%3%%%5%%%3%%5%%%3%%%%5%2%%%%%%%%%%%
format short; % Spot data in first column. All prices in log.

which model = 1;

% [1 = Schwartz-Smith (2000) Model on the approximately the same Crude 0Oil

% data as used in this article is extracted from the file AnalystForecast,

% we first imported the data in Commend window as table, then we run this

% code.

if which model == 1 % Schwartz-Smith (2000) on crude oil data

%%% INPUT SETTINGS %%%

data = AnalystForecast{:,:}; % Specify which variable that
contains data for estimation (Columnl = Future(Shortest
Maturity)...Future(Longest Maturity))

include_spot in_estimation = 1; % [0 = No, 1 = Yes (Include the
first column of Spot data in estimation)]

Num_ Contracts = 9; % # of future contracts of

different maturity
matur = [3/12,6/12,9/12,1,1.25,1.5,2,3,4]; % Maturities of included
contracts

frequency = 1; % [1 = all observations in data
variables are considered, 2 = every second observation is considered, ...]
(This data is weekly .. so frequency = 1 -> weekly frequency.

dt = 90/360; % Time step size (Since weekly
data) to get parameters on per year basis.

start_obs = 1; % Start at first observation in
data.

end_obs = 36; % End at last observation in data.

% The standard errors are obtained from the hessian. However, since the model
estimates the parameters
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% so that the one or a couple of futures contracts are matched with close to
zero measurement errors,
% leading to that the measurement error covariance matrix (usually) is
positive semi-defined.
% —--> Matlab error: Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate.
% To be able to invert the hessian and obtain standard errors the following
% ad hoc approach can be used:
% - Once it is known which of the future contracts is matched with close to
zero measurement errors
% the estimation can be redone with the corresponding elements in measurement
error covariance matrix
% restricted to zero and thus excluded from the estimation. In this way
measurement error covariance matrix
% is positive defined and invertible.

locked_parameters = 0; % [ 0 = No parameter locked, 1 to

= Forces a measurement error parameter to be Zero]

% OBS: This data requiers

locked parameters = 4;

%%% SELECT INITIAL VALUES %%%

k = 1.48; % NOTE: These initial values
have to be changed manually in order to find a Global Maximum Log-Likelihood
Score

sigmax = 0.286; % NOTE: For this paper we used
the parameter from the Schwartz-Smith (2000) Model

lambdax = 0;

mu = -0.0125;

sigmae = 0.145;

rnmu = 0;

pxe = 0.3;

s_guess = 0.005;

initial statevector = [0;3.1307]; % Initial state vector
m(t)=E[xt;et]

initial dist = [0.01,0.01;0.01,0.017]; % Initial covariance matrix for
the state variables C(t)=cov[xt,et]

end
5355553355555 338855033555 %%%%%%5%%%3%%%5%%%3%%5%5%33%%%5%5%2%%%%5%%%%%%%
%$%% ADJUSTING DATA ACCORDING TO INPUTS %%%
5355553355555 %3%%5%%33%%5%%%%%%5%%33%%%5%%%%%%5%%%3%%%%5%2%%%%5%%%%%%%
data SelectedPeriod = data(start_obs:end obs,l:end);
num obs = size(data SelectedPeriod,l);
if frequency ~=1
new _num obs = floor((num obs-1)/frequency);
data SelectedPeriod SelectedFrequency =
zeros (new_num obs,size(data_SelectedPeriod,2));
data SelectedPeriod SelectedFrequency(l,:) = data SelectedPeriod(1,:);
for t = l:new _num obs
data SelectedPeriod SelectedFrequency(t+l,:) =
data SelectedPeriod((t*frequency)+l,:);
end
else
data SelectedPeriod SelectedFrequency = data_ SelectedPeriod;
end
St = data_SelectedPeriod SelectedFrequency(l:end,l);
if include_spot_in estimation ==
y = data SelectedPeriod SelectedFrequency(l:end,1l:Num Contracts);
else
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y = data SelectedPeriod SelectedFrequency(l:end,2:Num Contracts+l);
end

% y is a {nobs x N} Matrix, N = number of future contracts, nobs = number of
observations

nobs = size(y,l); %nobs is the number of rows of y

N = size(y,2); %N is the number of column of y

num_locked parameters = size(locked parameters,l); S%number of parameters that

5355553355553 3%%55%33%55%%33%%5%%3%%%%%%%%%%%5%5%%3%%%%5%2%%%%%%%%%%%
% Optimizing the parameters with the Kalman filter & MLE
5355553355553 3%%55%%3%%5%%%%%%5%5%33%%%5%%%3%%5%5%%3%%%%5%2%%%%5%%%%%%%
% Placeholders & Variable def.

global save_att save vtt save vt save dFtt 1 save vFv save Ptt_ 1 save Ftt 1
save Ptt
InL._scores = zeros(3,1);
boundary = Inf;
% Running the estimation for The S&S 2 factor model and two benchmark
% models (The GBM model and the Ornstein-Uhlenbeck model).
for model = 1 ¢ [1 = The S&S 2 factor model, 2 = The GBM modell, 3 = The
Ornstein-Uhlenbeck model. ]

if model == % The S&S 2 factor model

if sum(locked parameters) == 0

psi = zeros(7+N,1);
psi(1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]';
psi(8:end,l) = s_guess;

1lb = zeros(7+N,1);
1b(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]';
1b(8:end,1l) = 0.0000001;

ub = zeros(7+N,1);

ub(1l:7,1) = [boundary, boundary, boundary, boundary, boundary,
boundary, 11';

ub(8:end, 1) = boundary;

else

psi = zeros(7+N-num_locked parameters,l);

psi(1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]';

psi(8:end,l) = s_guess;

lb = zeros(7+N-num_locked parameters,1l);
1b(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]';
1b(8:end,1) = 0.0000001;

ub = zeros(7+N-num_locked parameters,l);

ub(1l:7,1) = [boundary, boundary, boundary, boundary, boundary,
boundary, 11';

ub(8:end, 1) = boundary;

end
a0 = initial_ statevector;
PO = initial dist;

end

% Running estimation

options = optimset('Algorithm','interior-point', 'Display', 'off');
¢interior-point active-set

Maxlnl. Kalman = @(psi) Kalman Estimation Real(y, psi, matur, dt, a0, PO,
N, nobs, locked parameters);
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[psi_optimized, log L,exitflag,output,lambda,grad,hessian]
[1, options);

fmincon(MaxlnL Kalman, psi, [],
% Saving estimation output
InL_scores(model,1l) = -log L;

(1,01, 01, 1b,

if model == 1
ss_att save_att;
ss_vtt = save_vtt;
ss_vt = save_vt;
ss_dFtt_1 = save_dFtt_1;
ss_vFv = save_vFv;
ss_Ptt_1 save Ptt_1;
ss_Ftt_1 = save_Ftt 1;
ss_Ptt = save Ptt;
if sum(locked parameters) == 0

ss_psi_estimate =

ub,

[psi_optimized(1l:7,1);sqrt(psi_optimized(8:end,1))];

ss_SE = sqrt(diag(inv(hessian)));
else
prel SE = sqgrt(diag(inv(hessian)))
prel ss psi estimate =
zeros(size(psi,l)+size(locked parameters,1l),1)

.
4

.
4

1

psi _optimized(j,1);

ss_SE = zeros(size(psi,l)+size(locked parameters,l),1);
j=1;
for i = l:size(prel_ss_psi estimate,l)
if all(abs(i-(locked parameters+7)))
prel ss psi estimate(i,l) =
ss SE(i,1) = prel SE(j,1);
Jj = 3tL;
else
prel ss psi estimate(i,l) 0;
ss SE(i,1) = 0;
end
end

ss_psi_estimate =

[prel ss psi estimate(1l:7,1);sqrt(prel ss psi estimate(8:end,l))];

end

end
end
B R A i
% Calculating/outputing key statistics
B R A L e i
% Output
ss_psi_estimate
ss_SE

% S&S Model fit

ss_Mean Error = mean(ss_vtt)'
ss_Std_of Error = std(ss_vtt)'
ss_MAE = mean(abs(ss_vtt))'

000000000000 0000000000000000000000000000000000
0000000000000 00000000000000000000000000000000
o .

% Outputing Graph

0000000000000 000000000000000000000000000000000
0000000000000 00000000000000000000000000000000

figure(1l);
set(figure(l),
hold on
plot(exp(St), 'k', 'linewidth',1);

'Position', [100 100 400 1000])
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plot(exp(ss_att(:,1l)+ss_att(:,2)), 'r', 'linewidth',1);
$plot(exp(ss_att(:,2)),'b"', 'linewidth',1);

h = legend( 'Observed Price','Estimated Price');
title('Schwartz-Smith 2-factor model')

hold off
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