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Abstract 

In this paper, we explore the use of Schwartz and Smith two-factor model in 

copper pricing. We used both Copper future data from LME and Analyst Forecast data 

from Bloomberg (LME) and World Bank as input to generate futures curve and spot 

curve. The Schwartz- Smith model incorporates the long-term equilibrium prices that 

commodity price will approach in the long-term and short-term mean reversion 

characteristic of commodity prices.  To estimate the state variables and model 

parameters, Kalman filter technique was used to update the state variables through 

iteration and Maximum likelihood approximation to compute the term structure, since 

Kalman filter is able to estimate model's parameters when the model relies on non-

observable data. This model is able to explain the copper's term structure in an intuitive 

way. We begin by describing the input data in section 2 and explaining the short-term and 

long-term model in section 3. In section 4, we discuss the estimation process using the 

Kalman filter and, in section 5 we describe the empirical result by applying the model to 

Copper futures and forecast data. In section6, we offer the concluding remarks. 
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1:   Introduction 

In this paper, we use the Schwartz and Smith (2000) Model to fit the Copper prices and 

examine how well the model fits the data.   

For the reasons why we choose to analyze copper, first, its spot pricing is a good 

indicator of worldwide capital construction and its futures prices are a good indicator of 

expectations of future capital construction. Second, it is dense in terms of value per weight and is 

easy to transport worldwide with little concern for environmental damage, as happens with crude 

oil. Thus, it is not subject to regional supply bottlenecks, as we see with intercontinental natural 

gas or the current Brent-WTI crude oil spread. Third, its consumption is not subject to seasonal 

fluctuations, as occurs for natural gas or electricity. Last but not least, it has a liquid forward 

market with deliveries well into the future, unlike iron ore or steel.  

Before the Schwartz and Smith two factors model, studies on commodity stochastic 

model assumed the commodity prices followed a "random walk" described by geometric 

Brownian motion. However, this model allows mean-reversion in short-term prices and 

uncertainty in the equilibrium level to which prices revert to be incorporate into the model, 

making it more intuitive and easy to understand. Moreover, this model facilitates risk analysis, 

because it provides volatility estimates of the mean-reverting and long-run mean factor. And the 

model is useful for real options models that estimate the value of investment opportunities and 

provide criteria for starting, delaying, expanding and abandoning projects.  

We begin by describing the input data in section 2 and explaining the short-term and 

long-term model in section 3. In section 4, we discuss the estimation process using the Kalman 

filter and, in section 5 we describe the empirical result by applying the model to Copper futures 

and forecast data. In section6, we offer the concluding remarks. 
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2:  Data 

2.1   Analyst’s Forecast Data 

 
Analysts’ price forecast data are obtained from Bloomberg and World Bank. The 

Bloomberg analyst forecast provides forecasts of Copper prices up to five years with 9 

maturities. We were able to get quarterly forecast data and in each observation quarters there are 

many forecasts provided by analysts from different banks, and we took the median of the 

available forecasts. The analyst forecasts can be viewed as a proxy of real commodity prices so 

in this paper it is used to construct the spot curve. However, the analyst forecast data is more 

noisy, since the source of data is not very consistent, for example, the number of forecasts 

available in each period is different, and analysts sometimes have huge disagreement on future 

prices.  But it is the best data we can obtain to analyze the market’s view on Copper.   

The forecasts by World Bank and IMF (not included in this paper) have longer-term 

forecast up to over 15 years. However, they don't have data in similar maturity in the future and 

don't have data in every quarter. Since our code requires data to have all maturities in each 

observation and need to have observations every quarter, we have a to make some assumptions 

in the input data and fill the unavailable data. In the data table 4, cells in red are either calculated 

using the average of t-1 and t+1 data or filled in by using forecast by World Bank. We then 

obtain a matrix of the mix of forecast from different sources, the y-axis is date (quarterly data 

starting from Jan. 2010 to Oct. 2018) the x-axis is maturity ( 3 months, 6 months, 9 months, 1 

year, 1.25 years, 1.5 years, 2 years, 3 years and 4 years) and all our numbers is in unit of 

USD/tonne, Shown in Figure 1. 
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Figure 1. Analysts’ Forecasts Observations 
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2.2   Copper Futures Data 

Copper Futures Data is obtained from the London Metal Exchange. We took quarterly 

futures with maturities of 3 months, 6 months, 9 months and every year up to 10 years. 

Futures data in more frequent than Forecast data and with data of different future 

maturities available in every observation.  So, we did not make any modification for the futures 

contracts. Our data for Copper Futures is composed of 34 quarterly data from Jul. 2010 to Oct. 

2018, with a unit of USD/tonne, shown in Figure 2. 

 

Figure 2. LME Futures Observations 
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3:  The Schwartz and Smith Two-Factor Model 

This section provides a description of the short-term/long-term model by Schwartz and 

Smith (2000). We introduce the structure and properties of this model and the distribution for 

future spot prices in Section 3.1. And then in Section 3.2, we describe the risk-neutral version of 

this model, which was used to derive closed-form expressions for prices of futures and other 

commodity-related derivatives 

 

3.1   The Short-Term/Long-Term Model 

In the previous stochastic models for commodity prices, prices are expected to grow at 

some constant rate with the variance in future spot prices increasing in proportion to time. For 

most commodities, however, it seems that there is a mean reversion in prices and uncertainty 

about the equilibrium price to which prices revert. Considering these two effects, Schwartz and 

Smith developed a simple two-factor model of commodity prices that allows mean-reversion in 

short-term prices and uncertainty in the equilibrium level to which prices revert. Although 

neither of these two factors is directly observable, they can be estimated from spot and futures 

prices. The differences between the prices for the short-term and long-term contracts provide 

information about short-term variations in prices. And movements in prices for long-term futures 

contracts provide information about the equilibrium price level. 

Specifically, the spot price of a commodity at time t (St) is constituted by two stochastic 

factors, which are the short-term deviation from this equilibrium price (𝜒") and the long-term 

equilibrium price (𝜉"). And the sum of these two factors is the logarithm of the spot price. 

 ln(St) = 𝜒" +	  𝜉"                                                        (2.1.1) 

The short-term deviations are expected to revert to zero following an Ornstein-Uhlenbeck 

process, reflecting short-term changes in prices resulting from unusual weather or a supply 



 

 6 

disruption. The mean-reversion coefficient (κ) represents the rate at which the short-term 

deviations revert towards zero.  

 d𝜒" = −𝜅𝜒"𝑑𝑡 + 𝜎4𝑑𝑧4                                                (2.1.2) 

And the long-term equilibrium price is assumed to follow geometric Brownian motion with drift 

(𝜇7), reflecting expectations of the exhaustion of existing supply, improvement of the technology 

for the production, inflation, and political effects. 

d𝜉" = 𝜇7𝑑𝑡 + 𝜎7𝑑𝑧7                                                        (2.1.3) 

The d𝑧4 and d𝑧7 are correlated increments of standard Brownian motion processes with 

𝑑𝑧4𝑑𝑧7 = 𝜌47𝑑𝑡. And Schwartz and Smith (2000) also pointed out that this model is equivalent 

to the stochastic convenience yield model of Gibson and Schwartz (1990), but with the 

difference that changes in short-term futures prices are interpreted as short-term price variations 

rather than changes in the instantaneous convenience yield.  

On the one hand, the process for short-term deviation allows for changes in the spot price 

which are not expected to persist in the long run and specifies the way in which these short-run 

deviations from the equilibrium price are expected to disappear. On the other hand, the process 

for equilibrium price level separates the short-term/long-term model from the class of pure 

mean-reversion models. And it also allows for the possibility that long-run changes in the spot 

price. Therefore, this model allows for mean-reversion in short-term prices and uncertainty in, 

and evolution of, the equilibrium price, a model structure that is in line with the inherent 

uncertainty of equilibrium prices and the apparent mean-reversion in prices for most 

commodities at the time (the year 2000). 



 

 7 

Based on the structure of this model, Schwartz and Smith derived the distributions for 

future spot prices. Given the initial values of the two factors (𝜒9	  𝑎𝑛𝑑	  𝜉9) and based the 

Equations 2.1.2 and 2.1.3, 𝜒"	  𝑎𝑛𝑑	  𝜉"  were found to be jointly normally distributed with mean 

vector and covariance matrix: 

𝐸[(𝜒", 𝜉")] = [𝑒AB"𝜒9, 𝜉9 + 𝜇7𝑡]                                        (2.1.4) 

    and 

𝐶𝑜𝑣[(𝜒", 𝜉")] = F
(1 − 𝑒AHB") IJ

K

HB
(1 − 𝑒AB")

LJMIJIM
B

(1 − 𝑒AB")
LJMIJIM

B
𝜎7H𝑡

N                        (2.1.5) 

And from on the Equations 2.1.4 and 2.1.5, the log of the future spot prices is then normally 

distributed, and the spot price is then log-normally distributed, with which are: 

E[ln(𝑆")] = 𝑒AB"𝜒9 + 𝜉9 + 𝜇7𝑡                                        (2.1.6) 

Var[ln(𝑆")] = (1 − 𝑒AHB") IJ
K

HB
+ 𝜎7H𝑡 + 2(1 − 𝑒AB")

LJMIJIM
B

               (2.1.7) 

E[𝑆"] = exp XE[ln(𝑆")] +
Y
H
Var[ln(𝑆")]Z	  	  	  	  	                          (2.1.8) 

   or 

ln(E[𝑆"]) = 	  E[ln(𝑆")] +
1
2Var

[ln(𝑆")] 

	  	  	  	  	  	  = 𝑒AB"𝜒9 + 𝜉9 + 𝜇7𝑡 

+ Y
H
((1 − 𝑒AHB") IJ

K

HB
+ 𝜎7H𝑡 + 2(1 − 𝑒AB")

LJMIJIM
B

)      (2.1.9) 

 

 

Table 1. Model Parameter Description 
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3.2   Risk-Neutral Processes and Valuation  

To value future contracts and European options on these futures by using the two-factor 

model, Schwartz and Smith developed a risk-neutral version shown by Equations 2.2.1 and 2.2.2 

below. 

d𝜒" = (−𝜅𝜒" − 𝜆4)𝑑𝑡 + 𝜎4𝑑𝑧4∗                                         (2.2.1) 

and 

d𝜉" = (𝜇7 − 𝜆7)𝑑𝑡 + 𝜎7𝑑𝑧7∗                                            (2.2.2) 

where the 𝑑𝑧4∗  and 𝑑𝑧7∗ are correlated increments of standard Brownian motion processes with 

𝑑𝑧4∗𝑑𝑧7∗ = 𝜌47𝑑𝑡.  

Noticeably, there are three major differences between the short-term/long-term model 

and the risk-neutral version. First, two risk premium parameters (𝜆4	  𝑎𝑛𝑑	  𝜆7) are introduced to 

the risk-neutral paradigm, and they take the form of adjustments to the drift of the stochastic 

processes. Second, the short-term deviations are assumed to follow an Ornstein-Uhlenbeck 
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process reverting to 
A]J
B

, rather than zero. Third, the long-term equilibrium price is assumed to 

follow geometric Brownian motion with drift  𝜇7∗ = (𝜇7 − 𝜆7), instead of 𝜇7 . 

Therefore, Schwartz and Smith found that, under these risk-adjusted processes, 

𝜒"	  𝑎𝑛𝑑	  𝜉" were found to be jointly normally distributed with mean vector and covariance 

matrix: 

𝐸∗[(𝜒", 𝜉")] = [𝑒AB"𝜒9 − (1 − 𝑒AB")
A]J
B
, 𝜉9 + 𝜇7∗𝑡]                   (2.2.3) 

and 

𝐶𝑜𝑣∗[(𝜒", 𝜉")] = 𝐶𝑜𝑣[(𝜒", 𝜉")]                                       (2.2.4) 

Then, the log of the future spot price under risk-adjusted valuation paradigm is normally 

distributed with: 

𝐸∗[ln(𝑆")] = 𝑒AB"𝜒9 + 𝜉9 − (1 − 𝑒AB")
A]J
B
+ 𝜇7∗𝑡                   (2.2.5) 

and 

𝑉𝑎𝑟∗[ln(𝑆")] = Var[ln(𝑆")]                                       (2.2.6) 

Comparing the Equation 2.1.6 and 2.2.5, it is easy to find that risk premiums reduce the log of 

the expected spot price by (1 − 𝑒AB") A]J
B
+ 𝜆7t. 

And in the risk-neutral valuation framework, futures prices are equal to the expected 

future spot prices. Thus, the relationship between futures prices and expected future spot prices 

can be expressed as 

lna𝐹c,9d = ln(𝐸∗[𝑆c]) = 𝐸∗[ln(𝑆c)] +
1
2𝑉𝑎𝑟

∗[ln(𝑆c)] 

= 𝑒AB"𝜒9 + 𝜉9 + 𝐴(𝑇)                                    (2.2.7) 

Where 
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A(T) = 𝜇7∗𝑇 − (1 − 𝑒ABc)
−𝜆4
𝜅 +

1
2 (
(1 − 𝑒AHBc)

𝜎4H

2𝜅 + 𝜎7
H𝑇 + 2(1 − 𝑒ABc)

𝜌47𝜎4𝜎7
𝜅 ) 

 

From the Equation 2.2.7, 𝐹c,9, denoting the current market price for a futures contract with 

time T until maturity, depends on the model parameters, the short-term deviations (𝜒"), the 

equilibrium price level (𝜉") and the maturity T. Thus, one can value futures contracts for any 

given T (including those that are no futures contracts trading) and generate the term structure 

for the futures prices with the short-term/long-term model if a set of model parameters and 

initial values of the two factors are given. However, the model's parameters are unknown. 

Moreover, the short-term deviation and the equilibrium price level are not directly observable. 

To deal with these two problems, the Kalman filter is introduced to do estimations for both 

parameters and state variables, which will be described in Sections 4.  
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4:  Kalman Filter in Finance 

As mentioned in the previous section, a Kalman filter can be applied to the estimation of 

a model's parameters, when the model relies on non-observable variables. In finance, for 

examples, there are term structure models of interest rates, term structure models of commodity 

prices, and the capital asset pricing model of market portfolios. Additionally, the Kalman filter 

is also an effective method to problems with a large volume of information as it is very fast. 

Lastly, the filter provides a set of optimal parameters when the model is associated with an 

optimization procedure. In this section, we begin with briefly reviewing the Kalman filter in 

Section 4.1 and then discuss its use in the Schwartz and Smith (2000) Model within Section 4.2. 

 

4.1   Introduction to the Kalman Filter 

Under this sub-section, we first introduce the basic principle of the Kalman filter and 

problems that can be solved by it. Then we describe two forms of Kalman filter, which are 

simple and extended filters. And lastly, we discuss how to estimate model parameters using this 

tool. 

The basic principle of the Kalman filter is the use of a temporal series of observable 

variables to reconstitute the value of the non-observable variables. The requirement of this 

method, first of all, is a state-space model, which is characterized by a transition equation and a 

measurement equation. And then a three-step iteration process begins once a model expressed 

on a state-space form. 

Figure 3. represents the kind of problem a Kalman filter can resolve. The only 

information for non-observable variables (𝛼j) that a model relies on is the transition equation, 
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describing their dynamic. This equation gives predicted values of 𝛼j at time t, conditionally to 

their values at time (t-1). Based on the calculation of 𝛼j, the measurement equation can 

determine the measure (𝑦j) at time t. And the differences, at time t, between the measure 𝑦j and 

the observable data (y) refer to the innovation (v), which represents some new information. 

Finally, this innovation is used to update the value of 𝛼j at time t.  

Figure 3. Basic Principle of Kalman Filter 

 

In a word, there is one iteration for each observation date t: the Kalman filter first 

calculates values of 𝛼j given their values at time (t-1), and then updates when some new 

information arrives. As shown in Figure 4, three phases are included in each iteration. During 

the prediction phase, the first step, the transition equation, and measurement equation give the 

estimated values of non-observables (𝛼j"/("AY)) and measurement (𝑦j"/("AY)) at time t. And the 

second step, or innovation phase, calculates the innovation (𝑣" = 𝑦" − 𝑦j"/("AY)). And finally, 

conditionally to the information given by 𝑣", the updating phase re-estimates the values of non-
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observable variables that are computed in the prediction phase. Then the set of updated values 

for non-observable variables (𝛼j") is used in the next iteration. 

Figure 4. Three Steps of Iteration 

 

Noticeably, there are two remarks in this figure. First, to estimate the values of 𝛼j" in the 

prediction phase, one must know the values of 𝛼j"AY. Second, there are only two elements used 

to reconstitute temporal series for non-observable variables (𝛼j), which are the transition 

equation and the innovation. And because there is an updating phased at each iteration, the 

volume of information used in very low, explaining the reason why the Kalman filter is a very 

fast method.  

Then comes to the two versions of Kalman filter. When the transition and measurement 

equations are linear, the simple Kalman filter can be employed, which is the most frequently 

used version of the Kalman filter. However, when the model is non-linear, the extended 

Kalman filter can be used. As it is generally impossible to obtain an optimal estimator for the 

non-observable variables in a non-linear condition, the extended Kalman filter introduces an 

approximation in the estimation and leads to the linearization of the model.  



 

 14 

For the parameter estimation, an initial vector of parameters is first used to compute all 

innovations of the given time period and the logarithms of the likelihood function for the 

innovations. Then the iterative procedure makes a search for the parameter’s vector that 

maximizes the likelihood function and minimizes the innovations. And the optimal set of 

parameters is used to reconstitute the non-observable variables. 

 

4.2   Application in the Short-Term/Long-Term Model 

As indicated in Section 2, the state variables (𝜒"	  𝑎𝑛𝑑	  𝜉") in the short-term/long-term 

model cannot be observed directly and must be estimated from the spot and/or futures prices. 

Meanwhile, Schwartz and Smith (2000) stated that there are two cases. First, if both short- and 

long-maturity futures contracts are traded, changes in the long-maturity futures prices give 

information about changes in the equilibrium price and changes in the differences in the short- 

and long-term futures prices give information about the short-term deviations. Second, if there 

are no traded long-maturity futures contracts, we may have to estimate the levels of the state 

variables and treat them probabilistically. And estimates in both cases can be generated by 

Kalman filter. Moreover, as mentioned in Section 3.1, the Kalman filter can also calculate the 

likelihood of observing a particular data series given a particular set of model parameters. And 

then find the optimal set of using maximum likelihood techniques. 

Before discussing how the Kalman filter can be applied in the short-term/long-term 

model for estimating the parameters and two non-observable variables, it is necessary to show 

how this model can be transformed into a state-space form, which is a prerequisite for using 

Kalman filter. As the two non-observable factors are assumed to be state, we can derive the 

transition and measurement equations for the short-term/long-term model as: 
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𝑥" = 𝑐 + 𝐺𝑥"AY + 𝜔", t = 1,2,… , 𝑛c                               (3.2.1) 

𝑦" = 𝑑" + 𝐹"r𝑥" + 𝑣", 𝑡 = 1,2,… , 𝑛c                                (3.2.2) 

Where 

𝑥" = s
𝜒"
𝜉"
t, a 2 x 1 vector of state variables;                        c = [

0
𝜇7Δ𝑡], a 2x1 vector; 

G = y𝑒
Az{" 0
0 1

|, a 2 x 2 matrix;                                         Δt =length of each time steps; 

𝑛c = number of time periods in the data set;                      n = number of future 

contracts; 

𝜔" is a 2x1 vector of serially uncorrelated, normally distributed disturbances with 

E[𝜔"] = 0, and Var[𝜔"] = W = Cov[(𝜒{", 𝜉{")]; 

𝑦" = [
𝑙𝑛𝐹cY
⋮

𝑙𝑛𝐹c�
], a n x1 vector of observed log future prices with maturities 𝑇Y, 𝑇H, … , 𝑇�	  ; 

 

𝑦" = [
𝐴(𝑇Y)
⋮

𝐴(𝑇�)
], a n x 1 vector;                                                𝐹"r = [

𝑒ABc� 1
⋮ ⋮

𝑒ABc� 1
],  a n x 2 

matrix; 

𝑣" is a n x 1 vector of serially uncorrelated, normally distributed disturbances with 

E[𝑣"] = 0, and Cov[𝑣"] = V. 

In the transition equation, the matrix G and vector c specify how the ‘true’ and non-

observable state vector (𝑥") is expected to evolve from a one-time step to another. And in the 

measurement equation, the matrix 𝐹" and vector 𝑑" map the state vector into the measurement 

domain, which allows the estimated system states at time t to be transformed into a prediction 

for the measurement observation at time t. The residuals from this measurement predictions, 
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denoted as 𝑣", are measurement errors and can be interpreted as errors in the reporting of prices, 

or errors in model's fit to observed prices. For simplicity, Schwartz and Smith (2000) assumed 

that the covariance matrix of measurement errors (V) is diagonal. And 𝑣" and 𝑤" are assumed to 

be independent of each other and uncorrelated with the initial state at all time periods.  

To estimate model parameters, we suppose that non-observable variables and errors are 

normally distributed and compute the logarithm of the likelihood function for the innovation 𝑣" 

at each iteration and for a given vector of parameters: 

log 𝑙 (t) = − X�
H
Z × ln(2π) − Y

H
ln(𝑑𝑉") −

Y
H
𝑣"r × 𝑉"AY × 𝑣"                   (3.2.3) 

And the iterative procedure makes a search for a vector of optimal parameters that 

maximize the likelihood function and minimizes the innovations. 
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5:  Empirical Results 

This section presents the results from calibrating the two-factor Schwartz and Smith Model to 

construct the futures curve (F-model) and Expected Spot curve (A-model).   

Parameter values obtained using the Kalman filter for both models are reported in Appendix A, 

Table 2. Futures contract errors for F-model and Analyst Forecasts errors for A-model are 

computed and presented in Appendix A,  Table 3. Figure 5, 6,7 and 8, from Appendix B,  are 

graphs of the term structure of Futures curve with maturities of three months, two years,  four 

years and ten years. Figure 9, 10 and 11 are graphs of the expected spot price term structure with 

maturities of three months, two years and four years.  

By analyzing the model fit (Table3), we can see that F-model can better fit the data than A-

model with a low mean absolute error. This is also shown in the model term structure figures in 

Appendix B. Also we can see that the model fit gets worse as we go further to the longer 

maturity. In figure 7(F-model with 4 years maturity), 8 (F-model with 10 years maturity) and 

11(A-model with 4 years maturity), we can observe that the models were unable to fit the data 

very well.  

It is hard to draw any economic reason for the negative correlation parameter for the future 

contract. This might be the model fails to filter out whether the change in price was due to 

change in the equilibrium price to the short-term deviation. In the paper (Goodwin & Larsson), 

the authors notice that as the periods for observation shorten, the correlation starts tends to be 

estimated to minus 1, and in shorter time frame there are little different in the movements in the 

long and short-term prices.   
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6:  Conclusion 

In this article, we applied the Schwartz and Smith Two-Factor model in copper derivative 

pricing. We were able to see that the Schwartz and Smith two-factor model was able to provide 

an intuitive explanation of the movement in Copper pricing.  

By examining both the F-model and the A-model, we see that F-model has a better fit to the 

observation than the A-model since the Analyst forecast are more noisy than the F-model.  
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Appendices 

Appendix A  

 
Table 2. Parameter Estimations 
 

 
 
 
Table 3. Model Fit: Mean Absolute Error for F-model and A-model for Each Maturity 
 

 



 

 20 

Table 4. Futures Prices Data  
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Table 5. Analysts’ Forecasts Data (Bloomberg) 
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Table 6. Analysts’ Forecasts Data (World Bank) 
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Appendix B    

Approximate for Different Maturities 

Figure 5. Futures Price Observations for an Approximate Maturity of Three-Month and 

the Corresponding F-Model Prices 

 
Figure 6. Futures Price Observations for an Approximate Maturity of Two-Year and the 

Corresponding F-Model Prices 
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Figure 7. Futures Price Observations for an Approximate Maturity of Four-Year and the 

Corresponding F-Model Prices 

 
 

Figure 8. Futures Price Observations for an Approximate Maturity of Ten-Year and the 

Corresponding F-Model Prices 
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Figure 9. Analysts’ Forecast Observations for an Approximate Maturity of Three Month 

and the Corresponding A-Model Prices 

 
 

Figure 10. Analysts’ Forecast Observations for an Approximate Maturity of Two-Year and 

the Corresponding A-Model Prices 

 



 

 26 

Figure 11. Analysts’ Forecast Observations for an Approximate Maturity of Four-Year 

and the Corresponding A-Model Prices 

 

  



 

 27 

Appendix C    

Code for Futures Data 

function log_L = Kalman_Estimation(y, psi, matur, dt, a0, P0, N, nobs, 
locked_parameters) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Extracting initial parameter values from initial psi  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k = psi(1,1); 
sigmax = psi(2,1); 
lambdax = psi(3,1); 
mu = psi(4,1); 
sigmae = psi(5,1); 
rnmu = psi(6,1); 
pxe = psi(7,1); 
if sum(locked_parameters) == 0 
    k = psi(1,1); 
    sigmax = psi(2,1); 
    lambdax = psi(3,1); 
    mu = psi(4,1); 
    sigmae = psi(5,1); 
    rnmu = psi(6,1); 
    pxe = psi(7,1); 
     
    s = zeros(1, size(psi,1)-7); 
    for i = 1:size(s,2) 
        s(1, i) = psi(i+7,1); 
    end 
end 
     
if sum(locked_parameters) ~= 0  
    s = zeros(1, size(psi,1)-7+size(locked_parameters,1)); 
    j = 1; 
    for i = 1:size(s,2) 
        if all(abs(i-(locked_parameters))) == 1 
             s(1, i) = psi(7+j,1); 
             j = j+1; 
        end 
    end 
end 
     
% m = Number of state variables (number of rows in a0) 
m = size(a0,1); 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% THE TRANSITION EQUATION  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% S&S NOTATION: x(t)=c+G*x(t-1)+w(t)        w~N(0,W)    Equation (14) 
% NEW NOTATION: a(t)=c+T*a(t-1)+R(t)*n(t)   n~N(0,Q) 
% c is a {m x 1} Vector 
% T is a {m x m} Matrix 
c=[0;mu*dt]; 
T=[exp(-k*dt),0;0,1]; 
% Defining Q = var[n(t)] and R 
xx=(1-exp(-2*k*dt))*(sigmax)^2/(2*k); 
xy=(1-exp(-k*dt))*pxe*sigmax*sigmae/k; 
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yx=(1-exp(-k*dt))*pxe*sigmax*sigmae/k; 
yy=(sigmae)^2*dt; 
Q=[xx,xy;yx,yy]; 
R=eye(size(Q,1)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% THE MEASUREMENT EQUATION  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% S&S NOTATION: y(t)=d(t)+F(t)'x(t)+v(t)    v~N(0,V) Equation (15) 
% NEW NOTATION: y(t)=d(t)+Z(t)a(t)+e(t)     e~N(0,H) 
% d is a {N x 1} Vector 
% Z is a {N x m} Matrix 
    for i=1:N 
        p1=(1-exp(-2*k*matur(i)))*(sigmax)^2/(2*k); 
        p2=(sigmae)^2*matur(i); 
        p3=2*(1-exp(-k*matur(i)))*pxe*sigmax*sigmae/k; 
        d(i,1)=rnmu*matur(i)-(1-exp(-k*matur(i)))*lambdax/k+.5*(p1+p2+p3); 
        Z(i,1)=exp(-k*matur(i)); 
        Z(i,2)=1; 
    end 
% Measurment errors Var-Cov Matrix: Cov[e(t)]=H 
H=diag(s); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% RUNNING THE KALMAN FILTER 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Creating placeholder vectors/matrices for variables to be stored in 
global save_vt save_att save_dFtt_1 save_vFv save_vtt save_Ptt_1 save_Ftt_1 
save_Ptt 
save_ytt_1 = zeros(nobs,N); 
save_vtt = zeros(nobs,N); 
save_vt    = zeros(nobs,N); 
save_att_1 = zeros(nobs,m); 
save_att   = zeros(nobs,m);  
save_Ptt_1 = zeros(nobs,m*m);  
save_Ptt   = zeros(nobs,m*m); 
save_Ftt_1 = zeros(nobs,N*N); 
save_dFtt_1 = zeros(nobs,1); 
save_vFv    = zeros(nobs,1); 
%save_log_Lt   = zeros(nobs,1); 
Ptt = P0; 
att = a0;  
% Running the kalman filter for t = 1,...,nobs 
    for t = 1:nobs 
        Ptt_1   = T*Ptt*T'+R*Q*R'; 
        Ftt_1   = Z*Ptt_1*Z'+H; 
        dFtt_1  = det(Ftt_1); 
         
        att_1   = T*att + c; 
        yt      = y(t,:)'; 
        ytt_1   = Z*att_1+d; 
        vt      = yt-ytt_1; 
        att = att_1 + Ptt_1*Z'*inv(Ftt_1)*(vt); 
        Ptt = Ptt_1 - Ptt_1*Z'*inv(Ftt_1)*Z*Ptt_1; 
         
        ytt = Z*att+d; 
        vtt  = yt-ytt; 
         
        save_vtt(t,:) = vtt'; 
        save_vt(t,:)    = (vt)'; 
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        save_att(t,:)   = att'; 
        save_Ptt_1(t,:) = [Ptt_1(1,1), Ptt_1(1,2), Ptt_1(2,1), Ptt_1(2,2)];  
        save_Ptt(t,:)   = [Ptt(1,1), Ptt(1,2), Ptt(2,1), Ptt(2,2)]; 
        
        save_dFtt_1(t,:)= dFtt_1; 
        save_vFv(t,:)   = vt'*inv(Ftt_1)*vt; 
         
    end 
     
logL = -(N*nobs/2)*log(2*pi)-0.5*sum(log(save_dFtt_1))-0.5*sum(save_vFv); 
  
log_L = -logL; 
 
 
 
 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This Matlab Script estimates the parameters of the model presented in 
Schwartz-Smith  
% (2000) paper(Short-Term Variations and Long-Term Dynamics in Commodity 
Prices). 
% NOTE: it can take up to 10 minutes for the estimation to complete. 
%  
% Code originally produced by Dominice Goodwin (May 2013) to conduct the 
empirical study in 
% master thesis D. Goodwin (2013), Xiaoyu Fu and stella modify the code to 
for Final Project paper: 
% (http://www.lunduniversity.lu.se/o.o.i.s?id=24965&postid=3809118) 
%  
% Contact: xfa17@sfu.ca zpa9@sfu.ca 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 format short; % Spot data in first column. All price in log. 
which_model = 1; 
% [1 = Schwartz-Smith (2000) Model on the approximately the same Crude Oil 
% data as used in this article.] 
if which_model == 1 % Schwartz-Smith (2000) on crude oil data 
     
    %%% INPUT SETTINGS %%% 
    data = LMEFuturesS1{:,:};                        % Specify which variable 
that contains data for estimation (Column1 = Spot, Column2 = Future(Shortest 
Maturity)...)  
    include_spot_in_estimation = 1 ;         % [0 = No, 1 = Yes (Include the 
first column of Spot data in estimation)] 
    Num_Contracts = 13;                      % # of future contracts in data 
to use 
    matur = [3/12,6/12,9/12,1,2,3,4,5,6,7,8,9,10];   % Maturities of included 
contracts 
    frequency = 1;                          % [1 = all observations in data 
variables are considered, 2 = every second observation is considered, ...] 
(This data is weekly .. so frequency = 1 -> weekly frequency.  
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    dt = 90/360;                             % Time step size (Since weekly 
data) to get parameters on per year basis. 
    start_obs = 1;                          % Start at first observation in 
data. 
    end_obs = 34;                          % End at last observation in data. 
     
% The standard errors are obtained from the hessian. However, since the model 
estimates the parameters  
% so that the one or a couple of futures contracts are matched with close to 
zero measurement errors,  
% leading to that the measurement error covariance matrix (usually) is 
positive semi-defined. 
% --> Matlab error: Warning: Matrix is close to singular or badly scaled. 
Results may be inaccurate. 
% To be able to invert the hessian and obtain standard errors the following 
% ad hoc approach can be used: 
%  - Once it is known which of the future contracts is matched with close to 
zero measurement errors  
% the estimation can be redone with the corresponding elements in measurement 
error covariance matrix  
% restricted to zero and thus excluded from the estimation. In this way 
measurement error covariance matrix  
% is positive defined and invertible. 
    locked_parameters = 0;                  % [ 0 = No parameter locked, 1 to 
... = Forces a measurement error parameter to be Zero]  
                                            % OBS: This data requiers 
locked_parameters = 0;  
                                             
    %%% SELECT INITIAL VALUES %%% 
    k       = 1.49;                            % NOTE: These initial values 
have to be changed manually in order to find a Global Maximum Log-Likelihood 
Score 
    sigmax  = 0.286; 
    lambdax = 0.157; 
    mu      = -0.0125; 
    sigmae  = 0.145; 
    rnmu    = 0.0115; 
    pxe     = 0.3; 
    s_guess = 0.005; 
    initial_statevector = [0;3.1307];       % Initial state vector 
m(t)=E[xt;et]  
    initial_dist = [0.01,0.01;0.01,0.01];   % Initial covariance matrix for 
the state variables C(t)=cov[xt,et] 
end   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% ADJUSTING DATA ACCORDING TO INPUTS %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
data_SelectedPeriod = data(start_obs:end_obs,1:end); 
num_obs = size(data_SelectedPeriod,1); 
if frequency ~= 1 
    new_num_obs = floor((num_obs-1)/frequency); 
    data_SelectedPeriod_SelectedFrequency = 
zeros(new_num_obs,size(data_SelectedPeriod,2)); 
    data_SelectedPeriod_SelectedFrequency(1,:) = data_SelectedPeriod(1,:); 
    for t = 1:new_num_obs 
        data_SelectedPeriod_SelectedFrequency(t+1,:) = 
data_SelectedPeriod((t*frequency)+1,:); 
    end 
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else 
    data_SelectedPeriod_SelectedFrequency = data_SelectedPeriod; 
end 
St = data_SelectedPeriod_SelectedFrequency(1:end,1); 
if include_spot_in_estimation == 1 
    y  = data_SelectedPeriod_SelectedFrequency(1:end,1:Num_Contracts);                  
else 
    y  = data_SelectedPeriod_SelectedFrequency(1:end,2:Num_Contracts+1);  
end 
% y is a {nobs x N} Matrix, N = number of future contracts, nobs = number of 
observations 
nobs = size(y,1); 
N    = size(y,2); 
num_locked_parameters = size(locked_parameters,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Optimizing the parameters with the Kalman filter & MLE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Placeholders & Variable def. 
global save_att save_vtt save_vt  save_dFtt_1 save_vFv save_Ptt_1 save_Ftt_1 
save_Ptt 
lnL_scores = zeros(3,1); 
boundary = Inf; 
% Running the estimation for The S&S 2 factor model and two benchmark 
% models (The GBM model and the Ornstein-Uhlenbeck model). 
for model = 1 % [1 = The S&S 2 factor model] 
    if model == 1 % The S&S 2 factor model 
        if sum(locked_parameters) == 0 
      
            psi = zeros(7+N,1); 
            psi(1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]'; 
            psi(8:end,1) = s_guess; 
             
            lb = zeros(7+N,1); 
            lb(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]'; 
            lb(8:end,1) = 0.0000001; 
             
            ub = zeros(7+N,1); 
            ub(1:7,1) = [boundary, boundary, boundary, boundary, boundary, 
boundary, 1]'; 
            ub(8:end,1) = boundary; 
        else 
            psi = zeros(7+N-num_locked_parameters,1); 
            psi(1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]'; 
            psi(8:end,1) = s_guess; 
             
            lb = zeros(7+N-num_locked_parameters,1); 
            lb(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]'; 
            lb(8:end,1) = 0.0000001; 
             
            ub = zeros(7+N-num_locked_parameters,1); 
            ub(1:7,1) = [boundary, boundary, boundary, boundary, boundary, 
boundary, 1]'; 
            ub(8:end,1) = boundary;          
        end 
        a0 = initial_statevector; 
        P0 = initial_dist; 
    end 
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    % Running estimation 
    options = optimset('Algorithm','interior-point','Display','off'); 
%interior-point active-set 
    MaxlnL_Kalman = @(psi) Kalman_Estimation(y, psi, matur, dt, a0, P0, N, 
nobs, locked_parameters); 
    [psi_optimized, log_L,exitflag,output,lambda,grad,hessian] = 
fmincon(MaxlnL_Kalman, psi, [], [],[], [], lb, ub, [], options); 
    % Saving estimation output 
    lnL_scores(model,1) = -log_L; 
    if model == 1 
        ss_att = save_att; 
        ss_vtt = save_vtt; 
        ss_vt = save_vt; 
        ss_dFtt_1 = save_dFtt_1; 
        ss_vFv = save_vFv; 
        ss_Ptt_1 = save_Ptt_1; 
        ss_Ftt_1 = save_Ftt_1; 
        ss_Ptt = save_Ptt; 
         
        if sum(locked_parameters) == 0 
             ss_psi_estimate = 
[psi_optimized(1:7,1);sqrt(psi_optimized(8:end,1))]; 
             ss_SE = sqrt(diag(inv(hessian))); 
        else       
            prel_SE = sqrt(diag(inv(hessian))); 
            prel_ss_psi_estimate = 
zeros(size(psi,1)+size(locked_parameters,1),1); 
            ss_SE = zeros(size(psi,1)+size(locked_parameters,1),1); 
            j = 1; 
            for i = 1:size(prel_ss_psi_estimate,1) 
                 if all(abs(i-(locked_parameters+7))) == 1 
                     prel_ss_psi_estimate(i,1) = psi_optimized(j,1); 
                     ss_SE(i,1) = prel_SE(j,1); 
                     j = j+1; 
                 else 
                     prel_ss_psi_estimate(i,1) = 0; 
                     ss_SE(i,1) = 0; 
                 end 
            end 
            ss_psi_estimate = 
[prel_ss_psi_estimate(1:7,1);sqrt(prel_ss_psi_estimate(8:end,1))]; 
         end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculating/outputing key statistics 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output 
ss_psi_estimate 
ss_SE 
  
% S&S Model fit  
ss_Mean_Error = mean(ss_vtt)' 
ss_Std_of_Error = std(ss_vtt)' 
ss_MAE = mean(abs(ss_vtt))' 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Outputing Graph 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(1); 
set(figure(1), 'Position', [100 100 400 1000]) 
hold on 
plot(exp(St),'k','linewidth',1); 
plot(exp(ss_att(:,1)+ss_att(:,2)),'r','linewidth',1);  
plot(exp(ss_att(:,2)),'b','linewidth',1); 
h = legend('Observed Price','Estimated Price','Equilibrium Price'); 
title('Schwartz-Smith 2-factor model') 
hold off 
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Code for Analysts’ Forecast Data 

function log_L = Kalman_Estimation_Real(y, psi, matur, dt, a0, P0, N, nobs, 
locked_parameters) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Extracting initial parameter values from initial psi  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k = psi(1,1); 
sigmax = psi(2,1); 
lambdax = psi(3,1); 
mu = psi(4,1); 
sigmae = psi(5,1); 
rnmu = psi(6,1); 
pxe = psi(7,1); 
if sum(locked_parameters) == 0 
    k = psi(1,1); 
    sigmax = psi(2,1); 
    lambdax = psi(3,1); 
    mu = psi(4,1); 
    sigmae = psi(5,1); 
    rnmu = psi(6,1); 
    pxe = psi(7,1); 
     
    s = zeros(1, size(psi,1)-7); 
    for i = 1:size(s,2) 
        s(1, i) = psi(i+7,1); 
    end 
end 
     
if sum(locked_parameters) ~= 0  
    s = zeros(1, size(psi,1)-7+size(locked_parameters,1)); 
    j = 1; 
    for i = 1:size(s,2) 
        if all(abs(i-(locked_parameters))) == 1 
             s(1, i) = psi(7+j,1); 
             j = j+1; 
        end 
    end 
end 
     
% m = Number of state variables (number of rows in a0) 
m = size(a0,1); 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% THE TRANSITION EQUATION  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% S&S NOTATION: x(t)=c+G*x(t-1)+w(t)        w~N(0,W)    Equation (14) 
% NEW NOTATION: a(t)=c+T*a(t-1)+R(t)*n(t)   n~N(0,Q) 
% c is a {m x 1} Vector 
% T is a {m x m} Matrix 
c=[0;mu*dt]; 
T=[exp(-k*dt),0;0,1]; 
% Defining Q = var[n(t)] and R 
xx=(1-exp(-2*k*dt))*(sigmax)^2/(2*k); 
xy=(1-exp(-k*dt))*pxe*sigmax*sigmae/k; 
yx=(1-exp(-k*dt))*pxe*sigmax*sigmae/k; 
yy=(sigmae)^2*dt; 
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Q=[xx,xy;yx,yy]; 
R=eye(size(Q,1)); %R is a (2*2) indentity matrix with rows and column equals 
to the number of rows of Q 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% THE MEASUREMENT EQUATION  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% S&S NOTATION: y(t)=d(t)+F(t)'x(t)+v(t)    v~N(0,V) Equation (15) 
% NEW NOTATION: y(t)=d(t)+Z(t)a(t)+e(t)     e~N(0,H) 
% d is a {N x 1} Vector 
% Z is a {N x m} Matrix 
    for i=1:N 
        p1=(1-exp(-2*k*matur(i)))*(sigmax)^2/(2*k); 
        p2=(sigmae)^2*matur(i); 
        p3=2*(1-exp(-k*matur(i)))*pxe*sigmax*sigmae/k; 
        d(i,1)=mu*matur(i)+.5*(p1+p2+p3); 
        Z(i,1)=exp(-k*matur(i)); 
        Z(i,2)=1; 
    end 
% Measurment errors Var-Cov Matrix: Cov[e(t)]=H 
H=diag(s); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% RUNNING THE KALMAN FILTER 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Creating placeholder vectors/matrices for variables to be stored in 
global save_vt save_att save_dFtt_1 save_vFv save_vtt save_Ptt_1 save_Ftt_1 
save_Ptt 
save_ytt_1 = zeros(nobs,N); 
save_vtt = zeros(nobs,N); 
save_vt    = zeros(nobs,N); 
save_att_1 = zeros(nobs,m); 
save_att   = zeros(nobs,m);  
save_Ptt_1 = zeros(nobs,m*m);  
save_Ptt   = zeros(nobs,m*m); 
save_Ftt_1 = zeros(nobs,N*N); 
save_dFtt_1 = zeros(nobs,1); 
save_vFv    = zeros(nobs,1); 
%save_log_Lt   = zeros(nobs,1); 
Ptt = P0; 
att = a0;  
% Running the kalman filter for t = 1,...,nobs 
    for t = 1:nobs 
        Ptt_1   = T*Ptt*T'+R*Q*R'; 
        Ftt_1   = Z*Ptt_1*Z'+H; 
        dFtt_1  = det(Ftt_1); 
             
        att_1   = T*att + c; 
        yt      = y(t,:)'; 
        ytt_1   = Z*att_1+d; 
        vt      = yt-ytt_1; 
        att = att_1 + Ptt_1*Z'*inv(Ftt_1)*(vt); 
        Ptt = Ptt_1 - Ptt_1*Z'*inv(Ftt_1)*Z*Ptt_1; 
         
        ytt = Z*att+d; 
        vtt  = yt-ytt; 
        % save_ytt_1(t,:) = ytt_1'; 
        save_vtt(t,:) = vtt'; 
        save_vt(t,:)    = (vt)'; 
        % save_att_1(t,:) = att_1'; 



 

 36 

        save_att(t,:)   = att'; 
        save_Ptt_1(t,:) = [Ptt_1(1,1), Ptt_1(1,2), Ptt_1(2,1), Ptt_1(2,2)];  
        save_Ptt(t,:)   = [Ptt(1,1), Ptt(1,2), Ptt(2,1), Ptt(2,2)]; 
 
        save_dFtt_1(t,:)= dFtt_1; 
        save_vFv(t,:)   = vt'*inv(Ftt_1)*vt; 
         
    end 
     
logL = -(N*nobs/2)*log(2*pi)-0.5*sum(log(save_dFtt_1))-0.5*sum(save_vFv); 
 
log_L = -logL; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This Matlab Script estimates the parameters of the model presented in 
Schwartz-Smith  
% (2000) paper(Short-Term Variations and Long-Term Dynamics in Commodity 
Prices). 
% NOTE: it can take up to 10 minutes for the estimation to complete, depend 
% on amount of data you use for this code 
% 
%  
% Originally produced by Dominice Goodwin (May 2013) to conduct the empirical 
study in 
% master thesis,modify by Xiaoyu Fu and Zheng Peng to conduct research on 
% using Analyst forecast for real distribution of expected sopt price 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
format short; % Spot data in first column. All prices in log. 
which_model = 1; 
% [1 = Schwartz-Smith (2000) Model on the approximately the same Crude Oil 
% data as used in this article is extracted from the file AnalystForecast, 
% we first imported the data in Commend window as table, then we run this 
% code.  
if which_model == 1 % Schwartz-Smith (2000) on crude oil data 
     
    %%% INPUT SETTINGS %%% 
    data = AnalystForecast{:,:};            % Specify which variable that 
contains data for estimation (Column1 = Future(Shortest 
Maturity)...Future(Longest Maturity))  
    include_spot_in_estimation = 1;         % [0 = No, 1 = Yes (Include the 
first column of Spot data in estimation)] 
    Num_Contracts = 9;                      % # of future contracts of 
different maturity 
    matur = [3/12,6/12,9/12,1,1.25,1.5,2,3,4];   % Maturities of included 
contracts 
    frequency = 1;                          % [1 = all observations in data 
variables are considered, 2 = every second observation is considered, ...] 
(This data is weekly .. so frequency = 1 -> weekly frequency.  
    dt = 90/360;                             % Time step size (Since weekly 
data) to get parameters on per year basis. 
    start_obs = 1;                          % Start at first observation in 
data. 
    end_obs = 36;                          % End at last observation in data. 
     
% The standard errors are obtained from the hessian. However, since the model 
estimates the parameters  
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% so that the one or a couple of futures contracts are matched with close to 
zero measurement errors,  
% leading to that the measurement error covariance matrix (usually) is 
positive semi-defined. 
% --> Matlab error: Warning: Matrix is close to singular or badly scaled. 
Results may be inaccurate. 
% To be able to invert the hessian and obtain standard errors the following 
% ad hoc approach can be used: 
%  - Once it is known which of the future contracts is matched with close to 
zero measurement errors  
% the estimation can be redone with the corresponding elements in measurement 
error covariance matrix  
% restricted to zero and thus excluded from the estimation. In this way 
measurement error covariance matrix  
% is positive defined and invertible. 
    locked_parameters = 0;                  % [ 0 = No parameter locked, 1 to 
... = Forces a measurement error parameter to be Zero]  
                                            % OBS: This data requiers 
locked_parameters = 4;  
                                             
    %%% SELECT INITIAL VALUES %%% 
    k       = 1.48;                            % NOTE: These initial values 
have to be changed manually in order to find a Global Maximum Log-Likelihood 
Score 
    sigmax  = 0.286;                          % NOTE: For this paper we used 
the parameter from the Schwartz-Smith (2000) Model 
    lambdax = 0; 
    mu      = -0.0125; 
    sigmae  = 0.145; 
    rnmu    = 0; 
    pxe     = 0.3; 
    s_guess = 0.005; 
    initial_statevector = [0;3.1307];       % Initial state vector 
m(t)=E[xt;et]  
    initial_dist = [0.01,0.01;0.01,0.01];   % Initial covariance matrix for 
the state variables C(t)=cov[xt,et] 
end   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% ADJUSTING DATA ACCORDING TO INPUTS %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
data_SelectedPeriod = data(start_obs:end_obs,1:end); 
num_obs = size(data_SelectedPeriod,1); 
if frequency ~= 1 
    new_num_obs = floor((num_obs-1)/frequency); 
    data_SelectedPeriod_SelectedFrequency = 
zeros(new_num_obs,size(data_SelectedPeriod,2)); 
    data_SelectedPeriod_SelectedFrequency(1,:) = data_SelectedPeriod(1,:); 
    for t = 1:new_num_obs 
        data_SelectedPeriod_SelectedFrequency(t+1,:) = 
data_SelectedPeriod((t*frequency)+1,:); 
    end 
else 
    data_SelectedPeriod_SelectedFrequency = data_SelectedPeriod; 
end 
St = data_SelectedPeriod_SelectedFrequency(1:end,1); 
if include_spot_in_estimation == 1 
    y  = data_SelectedPeriod_SelectedFrequency(1:end,1:Num_Contracts);                  
else 
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    y  = data_SelectedPeriod_SelectedFrequency(1:end,2:Num_Contracts+1);  
end 
% y is a {nobs x N} Matrix, N = number of future contracts, nobs = number of 
observations 
nobs = size(y,1); %nobs is the number of rows of y 
N    = size(y,2); %N is the number of column of y 
num_locked_parameters = size(locked_parameters,1); %number of parameters that 
is locked 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Optimizing the parameters with the Kalman filter & MLE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Placeholders & Variable def. 
global save_att save_vtt save_vt  save_dFtt_1 save_vFv save_Ptt_1 save_Ftt_1 
save_Ptt 
lnL_scores = zeros(3,1); 
boundary = Inf; 
% Running the estimation for The S&S 2 factor model and two benchmark 
% models (The GBM model and the Ornstein-Uhlenbeck model). 
for model = 1 % [1 = The S&S 2 factor model, 2 = The GBM modell, 3 = The 
Ornstein-Uhlenbeck model.] 
    if model == 1 % The S&S 2 factor model 
        if sum(locked_parameters) == 0 
      
            psi = zeros(7+N,1); 
            psi(1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]'; 
            psi(8:end,1) = s_guess; 
             
            lb = zeros(7+N,1); 
            lb(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]'; 
            lb(8:end,1) = 0.0000001;  
             
            ub = zeros(7+N,1); 
            ub(1:7,1) = [boundary, boundary, boundary, boundary, boundary, 
boundary, 1]'; 
            ub(8:end,1) = boundary; 
        else 
            psi = zeros(7+N-num_locked_parameters,1); 
            psi(1:7,1) = [k, sigmax, lambdax, mu, sigmae, rnmu, pxe]'; 
            psi(8:end,1) = s_guess; 
             
            lb = zeros(7+N-num_locked_parameters,1); 
            lb(1:7,1) = [0, 0, -boundary, -boundary, 0, -boundary, -1]'; 
            lb(8:end,1) = 0.0000001; 
             
            ub = zeros(7+N-num_locked_parameters,1); 
            ub(1:7,1) = [boundary, boundary, boundary, boundary, boundary, 
boundary, 1]'; 
            ub(8:end,1) = boundary;          
        end 
        a0 = initial_statevector; 
        P0 = initial_dist; 
    end 
     
    % Running estimation 
    options = optimset('Algorithm','interior-point','Display','off'); 
%interior-point active-set 
    MaxlnL_Kalman = @(psi) Kalman_Estimation_Real(y, psi, matur, dt, a0, P0, 
N, nobs, locked_parameters); 
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    [psi_optimized, log_L,exitflag,output,lambda,grad,hessian] = 
fmincon(MaxlnL_Kalman, psi, [], [],[], [], lb, ub, [], options); 
    % Saving estimation output 
    lnL_scores(model,1) = -log_L; 
    if model == 1 
        ss_att = save_att; 
        ss_vtt = save_vtt; 
        ss_vt = save_vt; 
        ss_dFtt_1 = save_dFtt_1; 
        ss_vFv = save_vFv; 
        ss_Ptt_1 = save_Ptt_1; 
        ss_Ftt_1 = save_Ftt_1; 
        ss_Ptt = save_Ptt; 
         
        if sum(locked_parameters) == 0 
             ss_psi_estimate = 
[psi_optimized(1:7,1);sqrt(psi_optimized(8:end,1))]; 
             ss_SE = sqrt(diag(inv(hessian))); 
        else       
            prel_SE = sqrt(diag(inv(hessian))); 
            prel_ss_psi_estimate = 
zeros(size(psi,1)+size(locked_parameters,1),1); 
            ss_SE = zeros(size(psi,1)+size(locked_parameters,1),1); 
            j = 1; 
            for i = 1:size(prel_ss_psi_estimate,1) 
                 if all(abs(i-(locked_parameters+7))) == 1 
                     prel_ss_psi_estimate(i,1) = psi_optimized(j,1); 
                     ss_SE(i,1) = prel_SE(j,1); 
                     j = j+1; 
                 else 
                     prel_ss_psi_estimate(i,1) = 0; 
                     ss_SE(i,1) = 0; 
                 end 
            end 
            ss_psi_estimate = 
[prel_ss_psi_estimate(1:7,1);sqrt(prel_ss_psi_estimate(8:end,1))]; 
         end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculating/outputing key statistics 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output 
ss_psi_estimate 
ss_SE 
  
% S&S Model fit  
ss_Mean_Error = mean(ss_vtt)' 
ss_Std_of_Error = std(ss_vtt)' 
ss_MAE = mean(abs(ss_vtt))' 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Outputing Graph 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(1); 
set(figure(1), 'Position', [100 100 400 1000]) 
hold on 
plot(exp(St),'k','linewidth',1); 
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plot(exp(ss_att(:,1)+ss_att(:,2)),'r','linewidth',1);  
%plot(exp(ss_att(:,2)),'b','linewidth',1); 
h = legend('Observed Price','Estimated Price'); 
title('Schwartz-Smith 2-factor model') 
hold off 
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