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ABSTRACT

In this paper we consider the probability of connectedness
of a random graph. All of the graphs we examine are labelled
~graphs with a finite or countable number of vertices.

We will mention the work of various authors on the
probability of connectedness of a random graph where various
probability spaces have been assumed. We intend to summarize
in detail what is known on the probability of connectedness of
a ranaom_graph with N vertices and the asymptotic behaviour of
this probability as N+«, when the probability space is the
triple (9,5(,9) where: Q is the set of graphs which may be
obtained from the symmetric graph with N vertices or a countable
numbef of vertices by removihg some (possibly all or none) of
the edges; é?,is an appropriate o-field of subsets of Q;
the probability P is not time dependent and the probability
assigned to a graph as a member of 3('depends only on the
number of edges appearing.in the graph. Wherevthese results
apply to other sample spaceé Q and probabilities P we make
the appropriate observations.

Further, we present work on the probability of connectedness
of a random graph with M+N vertices and the asymptotic behaviour
of this probability as M and/or N+« when the probability space
is the triple (9,5739) where: the graphs of the sample space
Q are bipartite graphs with M+ﬁ vertices or a countable number
of vertices; 37 is an appropriate o-field of subsets of Qj
the probability P is not time dependent and the probability

iii



assigned to a graph depends only on the number of edges

appearing in the graph.
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Introduction

The problem we shall consider is most clearly stated
after introducing certain notation and definitions.

Our problem concerns labelled graphs. A labelled
graph may be described verbally as a number of distinguishable
vertices (or points), labelled 1, 2, ... and so on, together
with a number of lines joining some of the vertices.
Mathematically it may be described as follows. Let 1% denote
the set {1,2, ...}. A set of the form A", where ac 1tV {0},

BecI x 17 is called a class of labelled graphs. An element

of such a set AB is a labelled graph.

There are nine different classeé of graphs mentioned in
this paper; we shall name them here. If A={0,1l} and B is
{(i,3)] 1< i< j< N} or B2’N='{(i,j)| 1< i< j< N} or
{(4,3) ] 12 i< N, 1< 32 N, i#3) or By = {(i,3)]

By x°

B3, n"
1< i< N, 1< j< N} respectively, then elements of ABi,N are

called labelled graphs with N vertices of class I or class II

or class III or class IV respectively. If A= 1ho and B is

Bj,N
or B2,N or B3,N or B4,N’ then elements of A - are

B1,N
called labelled graphs with N vertices of class V or class VI

or class VII or class VIII respectively. If A= {0,1} and

B= Cy = {(i,3)]| 1< i< M, M+l< j< M+N} , then elements of
, > 2 A
A"~ are called bipartite graphs of type M,N.

We will use the symbol Q. to denote the set of all glass J

N

graphs with N vertices where J is one of I, I1, ...VIII, and



2.
the particular value of J will be made clear by the context.

We will use QM N to denote the set of all bipartite graphs of
14

type M,N with M+N vertices.

If = A i .
W '<@(113;>(l,3)€Bls a labelled graph, then ©(i,9)

is the number of edges joining vertex i to vertex j. These
edges are considered to be directed from i to j if the graph
is an element of N for J equals III, IV, VII, or VIII,
otherwise the edge is considered to be undirected.

Let i,j be vertices of a graph we AB. We say i and j
are connected if i=j or if i#j and there is a finite sequence

i.,1 i = j of vertices such that for each k,

i=d5,dy, o0 ip

0<k<n-1, Weyg >1 or w3 >1. A graph u is

krix+1) = k+17 1)
connected if any pair of its vertices are connected. For

any class of graphs AB we will denote by Qf the set of all
B

connected graphs w in A".
For each of class I through class IV graphs we will
define a probability function Py on the set of all subsets of

Q Also, we will define a probability function PM N ©on the

N*® ’
set of all subsets of QM,N'
FPor any structural property X (some condition on the

graphs w, normally specified on the w ) belonging to w),

(i,3
one could ask for the value of PN(X ) or PM N(x )}, where ¥
[
is the set of all graphs belonging to QN or Qy x respectively,
[

having property X.



The problem we shall consider is: Let the structural
property C be that w is connected. What is PN(éf) and
PM,N(C:)? We shall also examine the asymptotic behaviour
of PN (£ ) as N becomes unbounded and of PM’N(é) as M and/or N
become unbounded.

It is convenient to conceptualize PN(4:) as follows. We

shall consider an artificial object we name a random graph.

A random graph, we will assume, is a graph belonging to QN but
we do not specify exactly which graph; it has probability
PN({w'}) of being w for each graph w belonging to Q. We

can describe a random graph by: An edge, w(i,j)=l’ appears

in the graph with probability PN({wI w(i,j)=1 )= p and does
not appear with probability l-p. The probability that a

=1) =P (&) -

random graph is connected is P ({ w| “i,3)
(If we are considering § and P , a random graph has a
M,N M,N
similar meaning).
In chapter one we state a few basic definitions and results
of probability theory. After these preliminaries we define

a probability function PN for each of classes I, II, III, and IV

and a probability function PM,N for each QM,N.

In chapter two we discuss some methods of analysis which
are useful in examining labelled graphs.

Chapters three and five summarize what is currently known
on the probability of connectednéss PN(Zf) for any Py
defined on classes of graphs I, II, III or IV. Most of the

work done pertains to class I graphs. (Graphs of class one



are graphs obtained from the symmetric graph on N vertices

by removing some, possibly none or all, of the edges). We
have restricted the scope of the summary as follows: 1In
chapter three we summarize in detail, results on PN(&§) where

Q.. is one of classes I, II, III or IV and the respective PN

N
is not time dependent and assigns each edge of a random graph
the same probability of appearance. Results of this kind
were obtained by E. N. Gilbert[l]and[zl. In chapter five we
mention, but do not summarize the work in detail, results

obtained by P. Erdos and A. Renyil4]and[5]

on certain condi-
tional probabilities related to PN(éf) where QN is class I,
and PN may or may not be time dependent but still assigns
the same probability of appearance to each edge of a random
‘graph. We also mention some results of A. Renyi[3] on the
number of connected graphs of class I for a given N. We
summarize, but not in detail, results obtained by V. E.

Stepanov[G]and[7]

on the connectedness of a random graph ofi classI
chosen according to a Py which is time dependent and assigns
different probabilities of appearance to each possible edge

at each time t. We mention briefly the work of E. Wright[S]

on enumeration of connected graphs from classes I, to VIII

(no P,, defined), which is somewhat related to our topic.

N

In chapter four we present work which is an extension of

Gilbert's results. It is an extension in the sense that we

examine PM N(éf) for bipartite graphs, which he did not
4

-

consider, and we use reasoning and methods similar to Gilbert's.



The P we will define is not time dependent and assigns

the same probability of appearance to each edge of a random

graph.



Chapter I

In this chapter we mention a few basic results from
measure and probability theory. We refer the reader to the
basic texts of, P.R. Halmos[lO] for proof and details of measure
theoretic results, and L. Breiman[ll] for a modern development

of probability theory based on measure theoretic results.

§1 Notations, definitions and results

In a probability theory, the symbol Q is used to denote

a set called the sample space, whose elements w, are called

elementary events or sample points. An event is any subset

of Q. The elements of the set Q2 are considered to be the
possible outcomes from a given experiment, that is, the w are
minimal events, disjoint, and one is bound to occur in the

experiment.

Definition 1.1 A class of subsets 60 of a set Q is a

field if it is closed under finite unions, intersections,

and complementation. The complement of @ is the empty

set @.

Suppose we have a sample spéce Q and a field éZﬁ of

subsets of Q. Then we will say



Definition 1.2 The triple (Q,j{,P) is a finite

probability space if P is a non-negative, real valued

set function on satisfying
i) P(@) =1 ,
ii) for A, B ¢ Z and disjoint

P(A) + P(B).

P (AuB)

Definition 1.3 A class of subsets,é{ , of & is a 0-field

if it is closed under complementation, and under countable
intersections and unions. For any class © of subsets of

! denote by deD) the smallest 0-field containing O .

Given a sample space £ and a 0-field éz’of subsets of & ,

we will say

Definition 1.4 The triple (Q,ﬁf,P) is a probability

space if P is a non-negative set function defined on
satisfying

i) p() =1,

ii) for every finite or countable collection'{Bk}

of sets in 3rsuch that Bk is disjoint from

lej?‘kl

P(UB,) =% P(B,) .
xk K x kK

For a given probability space (Q,SF,P) we can define a

set function on jz’which is related to P and particularly



useful, called the conditional probability. To understand

the motivation for this conditional probability, suppose we

are conducting an experiment and we already have some infor-
mation about the sample space £, for example, that an event A
has occurred. This information will probably tell us something
about the possible occurence of another event B. We state

the following elementary definition of conditional probability,
which is all that we need in this paper. (See Breiman 11 '

chapter IV for a more sophisticated discussion.)

Definition 1.5 Let (Q,gf,P) be a probability space, then

for sets A, B ¢ g’such that P(A)> O, the conditional

probability of an event B given that A has already

occurred is the ratio P(Bn A) and is denoted by P(B/A).
P (A)

(The same definition can be made for a finite probability space).

In probability theory we often encounter a standard problem

of measure theory entitled "extension of measures". Halmos[lol
discusses extension in Chapter III. In probability theory
the question is (very briefly): suppose we have a given @ and

finite probability space (Q,sg,P) and suppose further that gf
is a g-field containing 3{; when is it possible to define a
unique P on 7 making (9,37,5) a probability space, with
Pand P agreeing on ?: ? Breiman[ll] (chapters I and II)

discusses the coin tossing experiment, how the extension pro%lem



arises in analysing coin tossing, and the extension of
probability measures in general.

The sample spaces and probabilities we are interested in
correspond closely to a biased coin tossing experiment. An
analysis of this extension problem gives information which
we can adapt easily to our probability spaces.

Let Q@ be the sample space consisting of infinite sequences
of O's and 1's, that is, @ ='{O,l}I+. Denote a point in Q

by w = (wl,wz, «es)+ Subsets of Q are denoted A, B, etc..

For each finite N, let Q ='{O,l}{l""N} . Let ;?:N be the

N
set of all sets AC Q@ of the following form: There is a B C Gy
such that A = {m = (wl,wz,...)l (wl,wz,.,.wN) € B}. §;N is

easily shown to be a field.. We define Py on 3£N’ by

N N
; L W N- I w
1 1
Pe(d) =% p (1-p)
weA
where A € £,

p is a fixed real number O <p <l.

It is easy to check that (Q,jZN,PN) is a finite probability
space. Let jf'be the smallest g-field containing all the Eibr
We would like to determine whether or not P can be defined

on ? in such a way that B agrees with P, on ?ON for each
finite N, and (Q,gf,F) is a probability space. The main

difficulty is the following. Let



lo.

A= {w= (w,0y,...)¢ Ql(wl,...wN)e B} ,

where B is a subset of for some N >1.

Nl

Another way to write A is
A= {uw =,(wl,w2,...)e Q| (wl,...wN+l)e cl ,
where
C={w = (wl,...wN+;)e QN+l| (wyre..mg)e B} .

So if P is to agree with P on each ?CN we must make sure that

N

PN and PN+l are consistent, that is we must make sure that

PN(B) = PN+1(C) for the sets B and C as above. We have

N N
X wj N- Ik wJ
Py(B) = I pt (1-p) * ’
weB
and
N+1 N+1
I w N+l- I w
_ 1 1 7
PN+1(C) =3I p (1-p)
weC
N N
I w N+1- 3 w5
_ 1 1 .
= I p (1-p)

-~
€
™
Q
=3
4
+
'—.I
o
—



11.

N N
(Sw.)+1 N+1-[(Zw.)+1]
1’ 173
+ I P (1-p)
{weCluwg, =1}
N N
% . N- I ,
13 13
=L p (1-p) (p+1-p)
weB
(where we have used'{wscle+l=O} ='{(wl,...wN,0)|
(wl,...wN)e B} and {we CIwN+l=l} ='{(wl,...wN,l)|

(wl,...wN)e B} )
= PN(B)

We can conclude that for all N, the PN's are consistent on any
representation of such a set A. Because of this, the
Kolmogorov Extension Theorem, (see Breiman[ll], chapter II and
appendix) applied to the spaces (Q,EZN,PN) ensures that a

unique P can be defined on ? so that P agrees with Py on ?o N

fbr each N.

§2 Some Probability Spaces referred to in this paper

In the introduction we classified the sample spaces QN

and § . We shall now define P, on the field S,., of all
M,N N N .

subsets of QN for each of the classes of graphs I,II,III and IV.



12.
We also define PM,N on the field SM,N of all subsets of QM,N'
We will still refer to the probability spaces as classes of

graphs (it will be clear when we mean (QN,SN,PN) or just QN,

from the context: similarly (QM,N’SM,N’PM,N) or just QM,N) .
. 4n-" Bi
Let us denote by Q, the sets A = where A = {0,1} and

B, I'xI*, By ={(i,3)| 1<i<i}; By={(,9]1zsis<il,

By = {(i,3)|1 <i, 1 <j, i#j } and B, = {(i,3)| 1 <i, 1 <3 }.

B.
i

Which set A &, Q is to be interpreted as, will be clear from

the context. Suppose X and Y are two countable index sets
(both equivalent to I+) and XaY = @ ; we also let Q denote
the set AB where A = {0,1} , and B = {(x,y)| x X, y €Y }.

Let be the set of all subsets, C, of © such that

°N
¢=fos= <”(i,j)> (i,3)eB;" 2| <"(i,j)> (1,3)eB;  eDE Sy }.

It is easy to see that ZQN is a field. We shall denote by

Z the smallest sigma ‘field containing for each N. Then

ONI
z is a o-field of subsets of Q. Similarly, let ‘;CM N be the
4

set of all subsets, C, of Q such that

Cc = 1{w e DC S }.

=<<§(ilj) (i,3)eCxD € QI <E(i’j) (i'j)ecM,N 'N

Again, it is easy to see, 3’0 M. N is a field. We shall use
14
K to denote the smallest sigma field containing 570 M. N for
14
each M and N. Which (j{o we mean will be clear from the

context. .
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We will define P, and P for each N or (M,N)
N M,N

respectively, so that they satisfy a consistency condition
ensuring a unique P can be defined on Jo, which is an

extension of each PN

for each N (or agrees with PM,N on SM,N for each M,N).

(or each P ) that is, P agrees with
M,N )

PN on SN

For any particular graph w belonging to Q, (or Q

N M,N)
we denote Zw(i 3) by A and call this the number of edges in
w ’

the graph. For each QN (or QM N) we can determine the
’

quantity max o3 5) (or max Lw(j, 4) ) which we denote X
wely rJ WEQy N W +J N
’

(or Xh N)+ again we will let the context make clear which
M, :
class of graphs is being referred to. We will use Xﬁ and Xﬁ N
. N ) 14

in defining P_ and PM N respectively. For class I graphs,
’

N

X, = N(N-1) |
Ty =N . (1.6)

To conclude this, count the elements (i,j) of Bl N° The
’

3 N(N-1) -
number is I (j-1) = —5 For graphs of class II,.AN is
j=2
Ay = RO . (1.7)

This is because B2 N allows N elements (i,i) in addition to
’ . -

the elements of Bl N° The set B3 N contains all the elements
4 4

(i,j) of B and in addition all the elements (j,1i). Thérefore

1,N
we have for ciass III
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Ay = N(N-1) . (1.8)

The set B contains all the elements (i,j) of B and, in
4,N 3,N

addition, N elements (i,i). So, for class IV graphs
- = N% (1.9)

For bipartite graphs of type M,N it is easy to see that

Am,y = MN . (1.10)

For class 1 graphs as Qyr We define P on S. for each N

N N
as follows. Let p be any fixed real number such that O <p <1.

Then we set

Pxllol weg,y =1 =P

and
PN'({wl w(i,j) =0}=1-p=4qg ,
for each fixed (i,3j) eBl.
and
Ilted )= n el e, T
(i,3)
I OPN({wI w(i,j)=0) . (1.11)

Wi, 5) T
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The last statement of definition 1.11 is equivalent to the

statement: events {w] w(i,j)=l}' {w] w(k,l)=l}' {w] w(m,n)=0}
... and so on are all independent of each other if
(i,3) # (k,1) # (m,n) ... and so on, and therefore an event w

which is an intersection of independent events of this type,
is assigned a probability which is the product of the
probabilities of each of the events in the intersection.

The last statement of definition 1.11 can be more compactly

written as

Py({w} ) = p* g

and A, = N(N-1) . (1.12)

where A = iw(i,j) N >

Of course, for all A C QN

P.(A) =L P.({w} ) .
N foea} MO

Instead of taking p a constant in the definition of PN, the p

appearing in (1.11) and (1.12) could be taken to be a function

of time, for example p(t) = 1-eflt. The resulting PN is then

time dependent. This kind of probability function is mentioned

in chapter V where we summarize the results of various authors.

We define PN for the classes of graphs II,III and IV

similarly; also we define PM N for bipartite graphs of type

4
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M,N similarly, keeping in mind that X, or A
- "N -"M,N

the class. We note that PN({w}) according to (1.11) and (1.12)

depends on

depends only on the number of edges appearing in w but not
on which edges appear.

For each class of graphs, (QN,ECN,PN) or (QM,N'§§M,N'PM,N)
is a finite probability space. As we have already noted, we
would like to ensure that there is a unique P defined on the
field Jo , of subsets of Q@ for each respective class, in such

a way that P agrees with P, on 9y for each N, (or P agrees

N
with P on § for each M and N) for each class respectively.

M,N M,N
The similarity between this problem and the extension problem
arising from an analysis of biased coin tossing is immediately
apparent.

We shall show that the necessary consistency condition
holds for class I graphs. It holds similarly for the other

classes.

Suppose Ac Q is a subset of the form: There is a B < QN
such that A ='hm5<é . -:7 . <y . .y . € B},
| (i,3) (l:J)€Bll (i,3) (1,3VeB) y }
(Recall that B, = {(i,j)] 1 <i <j and Bl,N = {(i,3)]|

1 <i <j <N}.) The set A is also defined by

A=t <"(i,j)> (,5re8, | <0s,9) (1,3)B; wuq < %
where C C Qg ., and C = {weQN+l| '<E(i,j;>'(i,j)€Bl y eB} .
. - 14

The consistency condition is: PN(B) must equal PN+1(C).
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Let X = X - Xy. Thus for wef A is the maximum

N+1 °N N+1'-

possible number of edges attached to the vertex N+l of the

graph w. For each j, O <j <X, let

8y = {we C|w has exactly j edges attached to the

vertex N+1 }.

Then C is the disjoint union

Let 1: Q +  be defined by:

N+1

_ N
for w <:é(i,jl//4i’j)€Bl,N+l !

Tlo) = 4’(i,n'>>ci,j>exal,N

- Now, for each we B, let

T(w,j) = {u eS.

JI T(u) = w} .

Then

IT((U'J)I (;> ,

where (X) is the binomial coefficient ':——ZL——
J A!(A j)'



and for each u €T(w,j)

So,

Also, S.
J

So,

Finally,

- I GA-3d
Puse1 (@) = Po(w) p° g .

Py (T(0,3)) = (;) Pg(w) pI g7 .

is the disjoint union

S. =U T(wlj) ’
J weB

_ s [X S TS
PN+1(Sj) = £€B (j) PN(w) P’ q

P+ (€)

n
™
g

Z
~
g

!
1o 2

b
~
T

18.
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The consistency condition is satisfied.

It is comforting to know that the desired P can be
defined on 3;, because we are now assured that it is wvalid
to look for any conclusions about the probabilities of events
contained in Q@ defined in terms of arbitrarily large N.
In particular: let Cf(N) denote the set of all connected
N° Since Py was defined for finite N we cannot

legitimately discuss lim PN(Cf(N)). However it makes sense
’ N~

~graphs in @

to discuss lim P(Z(N)), and we know that P agrees with P

N~

N

for each N. In subsequent chapters we shall discuss

lim P (Cf(N)) for graphs of class I to IV and bipartite graphs.

N+
Please note however, that we continue to use the not quite

legitimate notation, lim P (éf(N)) when we really mean

N~

N

lim P(£(N)). We also drop the notation (£ (N) and use just Cf .

N~
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Chapter II

We discuss here some mathematical methods which will be
used in subsequent chapters. Where further elaboration may

be desired by the reader, we mention a pertinent reference.

Transform techniques are familiar in many branches of
mathematics. We are interested in a technique usually called
the "method of generating functions", which is well known.

[12] contains an informative chapter on

A text by W. Feller
the use of generating functions in the theory of probability.

We will just briefly outline the method here.

Definition 2.1 Let a

O’al'a2"'° be a sequence of real

numbers. If

A(s) = aq +'als + a252 + ..
L] N
= 3 aisl (2.1)
i=0

converges in some interval ~Sq <8 <S4 then A(s) is

called the generating function of the sequence’{ai}.

The variable s is a formal variable, so s itself has no

significance. - .
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If a formula is known which gives a; for each i, then
'{ai} is known. If we can equate the generating function of
a sequence'{ai} to a known power series or to an analytic
function (either expanded or in closed form) then we consider
'{ai} to be completely known. The fact that in the latter case
the expansion coefficients corresponding to our'{ai} may
actually be difficult to calculate is not of concern.

The advantage to us of considering the generating function
of‘{ai} rather than the sequence itself is that equations
relating the elements of sequences when transformed to
eqﬁations relating power series, can be manipulated more easily.
The algebra of power series is well known. The purpose of our
manipulations would, of course, be to equate the generating
functions of given sequences (where a formula for the a; is
perhaps unknown) to known power éeries or closed analytic
expressions, and in this way extract previously unknown
information about the sequences.

For the‘algebra of sequences we are assuming addition is

termwise and multiplication is defined by

{an}n=o-{bn}n=o —,{cn}n=
n
where c ='§=Q a;b_; .

The transformation which transforms a sequence for which a

‘generating function can be defined, into the generating
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function, is then obviously a monomorphism from the algebra
onto the usual algebra of convergent power series. (Note: if
two power series A and B are convergent for (x| <r; and [x| <r,

respectively then A+B and AB are convergent for |[x] <min(r,,r,)).

§2 Formal Power Series

In chapters III and IV we shall perform calculations
involving power series which have zero radius of convergence.
To justify these calculations, we give briefly, the basic
"~ definitions of the algebra of formal (disregarding convergence)
power series. The use of formal power series can be justified
in detail as ‘in, for example, a paper by E.T. Bell[9]. A
very readable account of the algebra of formal power series is

~given in a text by H. Cartan[l3].

(After defining formal
power series operations, below, there is no need to restrict

“definition (2.1) to convergent power series.)

Definition 2.2 A formal power series A, is a series in

a formal variable ©, A =_§ aiel where the a, are from
i=0

a scalar field (we will ﬁse 12 ) and the sum may or may

not have zero radius of convergence.

Definition 2.3 Two formal power series A = I aiel and
i=0
© i . . _
B=2Z bie are equal if and only if a; = b. for all

i=0
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i= 'O’l’ooo 3

Operations of scalar multiplication, addition of formal
power series and multiplication of formal power series are
defined by:

(o]

. @ . .
Definition Let A = X aiel and B = I biel be formal
i=0 i=0

power series and let « be a scalar, then

[-+} )

«(I a®') =1 («ajel , (2.4)
i=0 i=0
;_ aie + ;_ bie = ; (ai+bi)e ’ (2.5)
1= 1=0 1=
© i © i © i i
(X a.9 )-( I b.6” = & (2 ab,__)e . (2.6)
i=o * i=0 * i=0 n=0 B 10

Addition can be performed any finite number, m, of times
in succession using (2.5) m times. It is easy to see that

addition is commutative, associative, has an identity ,
0] =_§ oo’ , and that additive inverses exist. Multiplication
i=0 :

can also be performed any finite number, m, of times in

succession. For m power series A,B,...X multiplied together

*

we obtain, by using (2.6) m times,
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[}
A*B. ... «X=I (I a, b, « ....Xi ) 8 ’
n=0

where the inside sum is over all partitions of n,

i +' + ...+. = *
i+, i, =n

Multiplication is commutative, associative, and has

o .
identity 1 = & a.0" where a, = |1 , 1=0 ; further
. l _ .
i=0 O otherwise

o .
A =1 aiel has an inverse under multiplication if and only
i=0

13]

if ao# 0, (this last is proved in the text by Cartan[ and

the other statements are easily checked).

Let A = aiel , the Order w(Ad), of this formal power

TASE:

=0

series is defined, only if A #¥ 0, to be the smallest number i
for which a; # O. A formal series A is of order >k if it is
O or if w(A) >k. Even though w(0) is not strictly speaking

defined we write w(O) >k since we can think of w(0) as being +=.

Definition 2.7 A family of formal power series (Ai)isI’

(=]

where each Ai is a formal series ¥ a_ .e" , and I is

-0 /i

a countable index set, is called summable if: - for every
k, w(Ai) >k except for a fiﬁite number of indices i.
We define the sum of a summable family of formal series

(Ai)isI to be
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The above definition is reasonable because the condition of

summability ensures that for a given n, the a, ; are all zero
’

except for a finite number of indices i. The operation .of
addition of a summable family of power series generalizes the
finite addition defined in (2.6). This generalized addition
can be readily seen to be commutative and associative in the

sense that, for each n the sum a_ = % a_ . may be
n ieI n,i

rearranged in any order or associated in any way since the
a ; are from a field and the sum is actually finite (only a

4

finite number of non-zero a, i's). This is the same as
4

saying that 3 Ai can be performed in any order over ig¢l, or
iel
with any grouping of terms.
) © .
It is convenient to name a formal series % aiel where
i=0

ai=0 for i # p; we shall call such a series a single term

series of degree p. The family of single term series

(anen)neN is obviously summable and its sum is the formal

0

power series I aiel . We note that the product of two
formal power series A = % aie ,and B = 1 bie , is the sum
i=0 i=0

of the summable family formed by all the products of sinhgle

: Py .. Py - p+q
er) <(b_o = (2] . If we let
term series (ap ) ( p ) _apbq |
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I be NxN (so the indexing set is a set of ordered pairs), then
the product of A and B may be written as the sum of the

summable family (A where A( = a_b ep+q o

(i))ieI P,9) pa

)

Proposition 2.8 Let (A be a summable family of

i'iel
formal power series, where A, = § a_ .e" , and let
i n=o Dnri
- m .
C be a formal series C = I ciel , then
i=0
(z A,).-C=72x (A, -C)
jer * jer T
by n
Proof: (g Ai)-C = (z ane )-C where a =1 an,i
ieI n=0 ieI
® n ® n
=( (x a ;)8)- L co .
n=0 iel ! n=0

This can be written as the sum of the summable

family
ptq
a_ .
(€ 2,17 % ) (p,q) enan
Now the sum % a_ . is actually a finite sum for
jer Pr?

each p, and we can write this as

ptq
¢ L 2.i% % 7 (p,q) eNaN

This we can again rewrite as the sum of the summable

*

family
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ptq
(aplicqe ) (p,g,1i) NxNxN
It is readily seen that this family is still

summable. Now consider

[+ [+
T [(Z a ien)(z cnen)] .
ieI n=0 ' n=0

X (A.C) =
ieI 1

The square bracket can be rewritten as the sum of

the summable family

ptq
(ap,icqe )(p,q)eNXN :

Now consider

5 (% a_ .c eP*q
ieI (p,q)eNxN Pr*t 4

4

since for each (p,q) the sum over iel is finite, it

is easy to see that we can also write this as the

sum of the summable family

ptq
(@5,i1%®" ) (p,q,i) eNxNxN °

We thereforehave (I Ai)-C = I (A.-C) since they
ieI iex 1t

are both the sum of the same summable family.

o .
Consider two formal power series A = % aiel and
i=0

*

@ .
p2 b.et . Suppose bO = 0 or, w(B) >1. For each i, the
i ,
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expression aiBl is defined and the order of aiBl is >i

(since by = 0). The family (a;B%) is easily

ie{0,1,...}
seen to be summable. Therefore it is reasonable to make

the following definition.

© . < N
Definition 2.9 Let A =% a.,0  and B=13I b.,o%,
' =0 1 i=0 1

be two formal power series and let bO = 0. Then we

define the composition of A and B, denoted A®B, by

m »
A°oB = % aiBl ,
i=0

which is a formal power series with the terms in ot

rearranged.

Various propositions can be proved regarding the composi-
tion of formal power series. We list a few below. For proofs
of these we refer the reader to the text by H. Cartan[lB]
If A and B are two formal power series as in (2.9) and 1 is

the multiplicative identity, and C is the formal power series

C = z ciel , then

leB =1 ’
(A+C)oeB = ReB + C°B ,

AGoB = (A B). (CoB) , .
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and if cO = 0, then

(RAoB)°C = Ae° (BoC) .

If (Ai) is a summable family as in (2.8) and B is again

iel
as in (2.9), then

(£ A.)°B = I (A.oB) .
jer T jer 1t

Definition 2.10 The derivative with respect to 6 of a
m .

formal power series A = aiel is given by:
i=0

Proposition 2.1l1 The derivative with respect to © of a

o0 . ] .
sum of two formal power series A = I aiel and B = L biel
i=0 i=0

o

is given by géA + a§B .

0 .
Proof: A + B =% (a.+b.)9l P
i=o * *

0

d (A+B) =3 (ntl)(a_ . +b_ ) 8"

) n=0 n+l "n+l

whereas

aan.,dB_° n. % n
c A =3y (n+tl)a_,.® + % (n+l)b_,.®

de de n=0 n+l n=0 n+l
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=1 (n+l) (a +b . .)e™ .
n=0 n+l n+1l

We apply definition (2.3) to get the desired result.

It is easy to extend proposition (2.11) to any number of

summands by induction. It is also easy to show d «A = «d A .

de de

Proposition 2.12 The derivative with respect to 6 of the

0

. _ n .

sum of a summable family (Ai)ieI ‘ Ai = §=0 an,ie , is

equal to the sum of the summable family {d A, .*
— l .
de iel

® n > n
Proof: d I L a 6 =d & (I a_ . )®
d6 ieI n=o0 "r? 36 n=0 ier 7't

by definition of the sum of a summable family.
Now we find the derivative on the right hand

side above and we obtain

pas n
§=o(n+l) ;Z':.eI fn+1,i%
On the other hand
> n
ieI ggAi = E=o ?81 an+l,i(n+l) e
> n
=_E=o(n+l) ESI an+l,i e .

Therefore
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z ’Q_Ai d_
ieI de de ieI n=0

Proposition 2.13 The derivative with respect to 6 of

a product of two formal power series A and B as in {(2.11),

is given by dAB=AdB+BdaAa .

de de de
L n
Proof: d AB=d I (& a.b__. n
as d6 n=0 =0 J 071 )@
© | n+l n
= I (n+l) (2 a.b _s:)6 .
n=0 j=0 j n+l-j
Whereas
AdB+BdaAa-= ; a_e". ; (n+l)b_, . e"
(] 3d n=0 " =0 n+l
z n o n
+ X b6+ I (n+tl)a e
n=0 n n=0 n+l
© 0o n
=3 (£ (j*1)b,,,a__.)®
n=0 j=o = 7
© n

+3 (£ (n-j+l)b.a__., ,)6"
n=0 3=0 L

*
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© n ' n . n
=‘Z=Q( §=Q(J+l)bj+lan-j +§=Q(n_3+l)bjan—j+l)e
© n+l n
= §=0(§=o(n+l)bj an+1—j)e .

We apply definition (2.3) to get the desired

conclusion.

Proposition (2.13) can be extended to a product of N
power series for any N, by induction. A particularly useful

case is the derivative of AN.

Proposition 2.14 The derivative with respect to 6, of

[+ s -
AN where A = % aiel , 1s given by d AN = (NAN l)(d A)
i=0 de de

Proof: By proposition (2.13), (2.14) is true for N = 2.

Let us suppose that Q_AN =_NAN_1§_A . Then,
de Je
Al = ) aY)  so,
a A" = ag AN + aNaa
de de de
=,A(NAN'1) aa +a%aa
) de

la A) (¥ + alNy
ae
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= +1)aN aa .
dae

Proposition 2.15 The derivative with respect to ©, of

ot i ® i

AoB where A = L a.® and B = Ik b.e~ , b
. l ._ l
i=0 i=0

O=O 4 iS

(d (A-B))d B .
dB de

Proof: d (Ao.B) =d L aiB

&l
o
-
]

w [
= I d_ aiBl (where we have used (2.12))
i=0 de
w [
= X a; Q_Bl
i=0 2]
0 " _l
=L a;(i) B* d B (where we have
1=0 ae

used (2.14))

L .
= (I ai+l(i+l)Bl) d B (where we have
i=0 de
used (2.8))

=(d A*B)+ 4 B .
B a6




Higher order derivatives are found by successive
applications of the above rules.
We shall now define an operation we call integration of

formal power series.

Definition 2.16 J ( z tnen)de =3 tnen
o SR T
_ 3 tontl
- n
n=0 —7
z i
i=0 71— -
1
Then also, 6
[+
da_ J (z aeMde=3x aeo” ,
ae n=0 =0
0
and
(=] [+ ) © n
Jg_ (z ae')ad=: ae .
o’/de n=0 n=1

These are easily checked.

It is easy to apply the definition to special cases of

formal power series, for example, Je d (A°B)de = AoB
. N ; ’
0

de

and so on.

34.
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Certain compositions of formal power series have
properties formally analagous to well known scalar functions

and we name these power series accordingly. For example,

© i

if A =% %T 6’ and B is any appropriate formal power series,
i=0 ~°
> il
that is, w(B) >1, then A°B = I IT is named exponent (aB).

i=0
It is possible to check that exponent(aB) has the usual

properties d exp(aB) = a exp(aB) , and so on. One of these
dB

formal power series which we shall use later is named

nge(l+B).

Definition 2.17 We denote the formal power series

o0
5 (_l)n+l en

by loge(1+e). If A is any formal power
n=1 n

0

series I anen with w(A)> 1 (that is, at least, ao#O)

n=0
then log(A+l) = & (-1)B" a% |
n=1 n

Since we took w(A) >1, the family (An)neN is summable and

the above definition of log(A+l) makes sense.

Proposition 2.18 Let A, and log(A+l) be as in definition

(2.17). Then _d log(A+l) =1 'd A .,

de A+l dé

Proof: d log(a+l) =d I ‘(-l)n+l a®
n

&l
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| (_1)n+l a Al
n=1 n de

i
~

=7 (_l)n+l nAn—l aa

n=1 n de

(<]

(z
n=1

o]

A .
e

(_l)n+lAn—l)

Qu

The formal series A+l has first term = 1 # 0, and
therefore as we remarked previously, A+l has a

multiplicative inverse, 1 . We can calgulate 1
A+l A+l

easily by observing that,
(1-(-3)) (1+(-A)+(-A)%+...) = 1. so,

=]

n+l .n-1

1 =L (=-1) A . We conclude that
A+l n=1

d (log(a+l)) =1 d A .

de A+l de

Proposition 2.19 Let A be as in (2.17). Then

e
J ((_1)d A)de = log(A+l) .
0 A+l dé6

e (0 w
Proof J ((_1 dA)de = J z (-1)™1a" 4 a ae
0 AL o/ n=1 a6
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(O LN .
= J. Q~ (.Z"(—l)n+l An)de
0 Q n=1 n

IX (_l)n_ An

n=1 n

it

log (1+A)

The development of the theory of formal power series
we have given is, of course, not complete, but it is sufficient
to explain our use of formal power series in later chapters.
The algebra of double formal power series, A, where A

is a double sum in formal variables © and A,

n m .
A", where a  is from a scalar

field (we will use E{),

is defined similarly to the algebra of formal power series.
All the various definitions and propositions stated for formal
power series are similarly stated for double formal power
series. The extension of most of the definitions and
propositions is obvious. To clarify a few details of the
algebra of double formal power series we make the following

comments. *
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[+ o] [+ o]
Multiplication is defined by: letA=3% I a_ 6" A",
' m=0 n=0
B=1I z b " A , then
m=0 n=0 nm
AB =X I (I X agb o 0000 AT .

m=0 n=0  i=0 j=0

We defined a special composition of formal power series
named log(l#A) in definition (2.17). To make the corresponding
definition for double formal power series the formal power

series defined as log (1+6) in (2.17) is considered to be a

® n+l .n

double formal power series. That is, I (-1) 2] is the
' n=1
l 0 (o)
same as the double formal power series C = % z cnmen A" ’
n+l =0 n=0

(-1)
where Chm = n if m=0 . Then, for A a double formal

0 otherwise

power series with order 21, log(l+A) would be defined as

[ -]

h2 (—l)n+l Al ;, Where A" refers to the nth power
n=1. n

of A under the defined multiplica-

tion.
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Chapter III

In this chapter we will summarize what is currently
known about the probability of connectedness, and its
asymptotic behaviour, of a random graph from one of the

probability spaces ( QN,PN,SN) where P is not time dependent

N
and the sample space QN is the set of class I or II or III or
IV graphs.

In 1959, E.N. Gilbert published a paper entitled
"Random Graphs"[Z]. In this paper, the probability of connected-
ness of a random graph of class I was investigated. The method
used applies equally well to random graphs of classes II, III,
and IV and the results differ only slightly for each class so
we shall state the results for all four classes. This paper
by Gilbert is based largely on an earlier paper (1956) also
by Gilbert, entitled "Enumeration of Labelled Graphs"[l]a
The earlier paper is referred to by several other authors who
afford it some importance. We review both papers in detail

here, beginning with some introductory comments.

Consider the probability spaces of Chapter I. The

family (All of subsets of QN’ where AA = {w] 5 w(i,j) = A},
Ay

satisfies U A = Q. and, A.NA,, = ¢ , for A# .AI
x =0 .M N A r AF

We can therefore write PN(;Z) as v
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- N
P (Z) = P(fn D A0

o
> >

P (€0 ?‘A) . (3.1)

For the spéces we are discussing, PN(;fr\AA) is just the number

of connected graphs w, with Zw(i 1)
© ']

the probability of one particular graph with A edges. The

= X edges, multiplied by

number of connected graphs (of whatever class) having

i ®ei,5) = ) edges and belonging to § we will denote by CNA ;

the total number of graphs with N vertices and )\ edges we

will denote by TNA’° We can now rewrite (3.1) using (1.11) and

this notation, as

(2 w AN (3.2)
P ) =12 C p" q ' . 3.2

If CNA can be determined for all N and A then we have an

explicit expression for PN(;g) for all finite N. (This does
not necessarily aid in finding asymptotic behaviour.)
Gilbert's earlier paper presents the generating functions

for CNA for graphs of classes I through VIII. Recall that

the classes V to VIII are similar to I to IV, but allow any

-

number of multiple edges between vertices. For these graphs
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.AN
function on the sample spaces Q@ in the same way as we did

does not exist and therefore, we cannot define a probability

in (1.11). We state Gilbert's results on C for all eight

NA

classes of graphs but continue to restrict our summary of
results on connectedness of random graphs to the first four

classes of graphs.

For each of the eight classes of graphs, can be

T

determined. For classes I through IV, T is easily seen

NA
to be the binomial coefficient ‘XN> whereviﬁ is different for
A
each class, as determined in chapter I. For class V, notice
B

that @ = A” where B is the same as for class I, that is BlN

It follows that T for class V is just the number of

NA

combinations of A lines which can be drawn from}Xﬁ (for

classI) lines with repetitions allowed, that is

(N(N-—l)/2 + A- l> . Similarly, for class VI,
A

Ty (N(N+l)/2 +4A—.1> ; for class VIL, T, = (N(N-l) + A- l) ;

for class VIII, TN =_( N2 + A= l‘>.
A

Now we proceed to counting connected graphs with N

labelled vertices and A edges. First we define a subgraph of

a graph we g ~given any “)=‘<:}%i,j;>>(i,j)eB. N !

= Q) (1,3)ecCB \ 18 2 SUPITARR OF W RV 5 T00,5)

for all (i,j) eC.



42.

A recursion relation for,TNx can be obtained through the
following considerations: 1In aigraph with A edges, belonging
to QN+1’ the vertex labelled N+1 is connected to some number,b,
of other vertices (possibly b=0 ), forming a connected
subgraph with b+l labelled vertices and some number.ﬁiA of
edges. The remaining part of the graph has N-b vertices and
~A-u edges. The b vertices connected to N+l can be chosen in

(li) ways. For each of these choices there are Cb+l '
b ds

possible connected subgraphs and T, _, A-p possible remaining
I

parts. If we sum over all of these possible graphs by summing

over b and ﬁ, we obtain T

N A N
T =3 I C Y o, 3.3
N+1,% b=0 u=0<b) b+l,u "N-b,A=-u ( )
We must specify here, that To = (1 if A=0 .
2 - Y0 otherwise
We cannot allow T = 0 because in the above

00
sum we would lose the case when vertex N+l is

connected to N other vertices by A lines.

A compact derivation of a generating function for Cx . ar
r

can now be obtained using the generating functions, which we
define below, and formal power series manipulations. (See

chapter II).
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Let us introduce the generating functions

_ A
and
T ly) = I Ty, ¥y (3.5)
N A N,}\ °
Several comments can be made regarding C and T . First,
: N,A N,}\

for a given N, Ty, =0 if A>X,, for graphs of classes I to IV.
. , A A

N
We note that CN,Ai TN,A . Further, CN,A = 0 if A<N-1, for
all eight classés of_éraphs. Also, fof classes I to IV,
CN(y) and TN(y) are finite sums and hence converge for all y.
For classes V to VIII we can apply the ratio test to the
series TN(y) to find that CN(y) and TN(y) converge at least

for |y|<l. For classes V to VIII, with the appropriate Ay

respectively,

A+1
lim |Tn,a+1 Y
A+ A
' TN;A Y
= lim | (A= + A+1-1)! Al (A.-1)!

. A>oo

O+ 1 (R-1) 1 (Kg* A-1) !

lim | (X, +1 )

ly|
(A+1)

- 1yl . " (3.5)
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We can now simplify equation (3.3). Multiplying both

sides by yA and summing over A yields

A

A N |
o) (b)cb+l,uTN—b,A_uY . (3.7)

N .
Tyt aY = Lo

= tM >

=0

=0

>m™m 8
>™ 8

This becomes, using (3.4) and (3.5)

0

A

| N oo\ A
Tooq(y) = 2 ( )z (2 Cpoq o Fap o i)Y
N+1 p=0 \P A=0 p=0 b+l,u"N-b,A-u !

which becomes, according to the definition of a product of

two power series

N
_ N
b=0
Equation (3.8) relates CN+l(y) (the term b=N) to Cl(y),..
..CN(y) and the known Tv(y). We can, however, proceed to

solve (3.8) for C (y) explicitly in terms of Tv(y).

N+1

We will deviate from Gilbert's paper here, and solve (3.8)

for C (y) by using formal power series. Gilbert uses umbral

N+1
calculus to solve (3.8), a method which is just as concise as
the following but probably less familiar. In appendix A we will

'give the basic definitions of umbral calculus and then show



45.

Gilbert's solution of (3.8).

N

By multiplying both sides of (3.8) by x
N!

and summing over

N we obtain

o0 N o0
I T (y)x _ L
N=0 NTL1UURT < N=o

N
N N

Equation (3.9) is an equation in formal power series (see
chapter II). For convenience, we drop the y dependence in the
notation, writing just TN rather than TN(y) for example. We

can rewrite (3.9) as

; Th+1 511:; Nl(l% B:_'I%I_:]o_lCb+lTN-b)’—“E ! (3.10)
N=0 NY N=0 b=0 ¢ ' N
which, using definition (2.6), is the same as
©o o ©
I T Xe= (I Gy X0z T RN) L (3.11)
N=0 N1 N=0 N! N=0 N!
Let T and C be the formal power series:
©o
T = 3 TN }_il_q_ ’
N=1 N1
. (3.12)
c=31 cgx .
N=0 Nt

©o
(Note that since To(y) =1, 14T = % Ty X_ .).
. ' N
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We can find the derivatives of T and C with respect to x,
using definition (2.10):
> N-1 . 1
ar_z Ny =3 R
dx N=1 N? N=1 N-1)1
> N
=2 T X .
N=0 N+1 NT
and
Qo Qo
dc=: Negxl =1 ¢ K1
dx N=0 N1 N=1 N-1) !
-1 cpyy & (3.13)
N=O N+l N—T
We can now rewrite (3.11) as
dT=4dCcC (T+l) or
dx dx
1 dT=4dC¢ . (3.14)
T+1 dx dx

Proceeding to solve for C, we integrate both sides of (3.14)

from O to x.

. X . X
O!‘ dT 1 dx = oj"d C dx '
dx T+1 dx

using definition (2.16) and proposition (2.19) we perform
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the integration to get

log(T+l) = C . (3.15)

From (3.12) we can write (3.15) as

«x (<]
log(X T x'+1) =3 cgx' .
N=1 N! N=0 N!
Since T.(y) = 1 we could write this as
® N z N
log(Z TN X ) =1 CN’E_ . (3.16)
N=0 ! N=0 N!

In summary, we state the following theorem:

Theorem 3.17 Let TN(y) and CN(y) be as in (3.14).

Then CN(y) is N} times the coefficient of xN in the
formal power series expansion for log I T (y) x_
=o N!

where To(y) = 1 by convention. Also, (from (3.11)),

CN(y) is (N-1)! times the coefficientvof xN+l in

the formal power series expansion for the quotient

xQ
z (y) >_5__
N=0 N+l T
(2]
I Tyly) >_<___ )

N=0 N1



Recall that in paragraph five of this chapter we have

already determined TNA for the eight classes of graphs

mentioned. We can now use the expressions for T in the

NA
definition of TN(y), (3.5), and obtain TN(y) for each class

of graphs. For example, for class I graphs,

©o
Ty () = i T ¥

N(N-1)/2 [ v
0 , (N(N 1)/2) o

= (Ly) N1 /2

Determining TN(y) for classes II, III, and IV is similar.

For class V graphs,

(N(N—l)/2 + A= 1) o

TN(Y) =§ ‘A

=0

14

_F Wmmen/2), 0
A=0 AT

(where (a)n a- (a+l)-(a+2)--*(a+n)),

-N(N-1)/2

= (1-y)

48.
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We can determine TN(y) similarly for classes VI, VII, and VIII.

The results can be summarized as:

T (y) = (1 + xy)*B00

_]J=1 classes V to VIII
where « = {_l classes I to IV

g = [ N(N-1)/2 classes I,V
N(N+1l)/2 <classes II,VI

N(N-1) classes III,VII

N2 classes IV,VIII .

(3.18)

Equation (3.18) can be used in theorem (3.17) and we have
then determined CN(y) for each of the eight classes of graphs.

If we wish to obtain CNA'S then, we use (3.4), and substitute
C..(y) and T (y) as sumé § C A and ? T A
N N'Y NA Y

y
A=0 NA A=0

into

equation (3.16) and by equating coefficients of like powers

of x and y we obtain the C_, 's.

NA

We shall now summarize the results in Gilbert's later
paper entitled "Random Graphs"[z]. In this paper Gilbert
obtained a generating function for PN(é'), a recursion
relation for PN (;Z ), and also examined the asymptotic

behaviour of PN(;Z) as N,
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From the previous results on CNX we can easily obtain
an explicit expression for PN(;Z) in terms of a generating

function. Recall equation (3.2) which was

AN Ag— A

= A
Py (2) —.2_0 Con P @ .

We will let y = p/q and then we can rewrite the above as

AN A Xy
Pe(B) =3 Cavy g '
=0
or, using (3.4)
Pe(Z) = Cyly) @ .
X ©
N A A
(Where we have used I C y" = L C y because C =0
-~ NA —~ NX NA
A=0 ~A=0 -
-~ Ay N
if A>AN .) We now divide each side by q =, multiply by x_ ,
o Nt
and sum over N, to obtain
© - ©
I g NEyE) =1 cutn & .
N=0 | N=0 N1
Using equation (3.16) we can write
[. -} -—_ «
s oq ¥ P ) ¥ =1log I T (y) X' . (3.19)
N=0 N1 N=0 N1 .



51.
For each class of graphs I through IV (and corresponding
PN(;ﬁ)) we only need to substitute the appropriate TN(y) into

(3.19). We can further rewrite (3.19) as

—

[} —-}: @ )x )
I g Veg(Z) Xl =log (L+z (Lty) Nk
N=0 N N=1 N1
> N N
= log(l + & (l+p/q) x )
N=1 N1
> AN N
= log(l +: g x ) . (3.19)'
N=1 N1

Where we have used‘Xb = 0 and ptq = 1. Recall that_?ﬁ is
~given by equations (1.6), (1.7), (1.8), or (1.9) for graphs
of class I, II, III, or IV respectively.
As N increaseé, the difficulty of finding PN(;i) from
(3.19)"' increases rapidly.

We can also find a recursion relation for PN(;f).

The vertex labelled 1 must be connected (recall that
connected means not necessarily by a single edge) to>some
number 0,1, ... or N-1, of the other vertices with
probability 1. For class I and class II graphs, the
probability that vertex 1 is connected to a specified k~1
other vertices is the probability of the simultanequs and
independent events: 1) k vertices are connected, which has

probability Pk(;f), 2) each of these k vertices does not
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have an edge jqining to any of .the. N-k other wvertices.
There are (N-k)k independent events involved here and each
of them has probability gq. The probability that they all

(N-k)k.

occur simultaneously is g So, 1) and 2) give us,

P () q(N_k)k is the probability that a given k-1 points
are connected to 1. Further, there are (i:i\) ways of
choosing k-1 points to have connected to 1. So, the
probability that 1 is connected to exactly k-1 other points
is just (ﬁ:i) P () K for class I,II graphs.

A similar analysis gives for class III, and class IV graphs
the probability that 1 is connected to exactly k-1 other

. . N-1 2k (N-k .
vertlces is (k—l Pk(}ﬁ) q ( ) . Summing over k we get

| N-1 ,._ _
L= mg =5 () me) o0

where ¢ = }1 class I,II graphs,
2 class III,IV graphs . (3.20)

The same consideration for obtaining a recursion relation
applies to another probability, possibly of interest, that is,
the probability RN' that two specific vertices i and j are
connected. The probabil.i_ty that vertex i is connected to
exactly k-1 Qf N-2, other vertices, none of them vertex j, is
just (I]‘::i) Pk(;f) qu(N_k) , and if we sum from k-1 = O to
k-1 = N-2, we sum all the ways that vertex i may be not

A
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connected to vertex j. So,

N-2
1R = 7 (N—2) P (2) qck(N—k) '
T fl1eo Lk1) Pk =

where ¢ is as in (3.20) . (3.21)

We can rewrite the sum as
N-2 ck (N-k)
(k—l) Pr(g) a :

The equations (3.20) and (3.21) solve the problem of
connectedness for a random graph of class I to IV, chosen

according to the probability function P Theoretically

N.
PN(;f) can be calculated for any N. Now it is very interesting

to examine what happens to PN(;:) as N increases without bound.

As N increases the number of paths by which two given
points may be connected increases. It would, therefore, not
be surprising if RN approaches one as N increases without bound.
That PN(;Z) also goes to one, which is shown in the following,
is more surprising since increasing N increases the number
of vertices which_must be connected and the minimum number of
edges which must appear.

An upper bound on 1 - PN(;f) and on 1 - Ry is found by

noting that Pkg;f) <1 for all k, so from (3.20) and (3.21),



N-1 (N—l €K (k)

1-P(g) ST (0] ; (3.22)
k=1
N-1
_ N-2\ ck(N-k)

1-Ry<I (k—l> g . (3.23)

k=1
We shall use the inequality
k(N-k) > (N-2)k + N  for 1<k <N/2 (3.24)

2

which can be verified by noting that: The only zeroes of

k (N-k)

[(N—2)§ +'N] in the interval 1 <k <N/2 occur at

the endpoints, therefore the function cannot change sign in
the interval. It is easy to check that the sign of this

function is positive in the given interval. (For example,

2
We shall also use
k(n-k) > (N-2) (N~k) + N for N/2 £k< N-1, (3.25)

2

which can be proved from (3.24) by just interchanging k and
N-k in (3.24).

Using (3.24) and (3.25) we can write
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ck(N—,k)_< ch/2~{qc(N-2)k/2’+_qc(N-2)(N—k)/2}

9

for 1 <k <N-1 .

ck (N-k)

Substituting this bound on q into (3.22), we obtain

| N-1 ;o _
1- 2 (£) < 1Z<—1 (ﬂ_i) G2 (o (N-2)k/2

N-1
N-1 cN/2 c(N-2) (N~k)/2
+ z (_k 1_) q q '

which can be written as

eny2 N1 (N—l o€ (N-2)k/2

2 k-1

1 -P (Z) <q
n(Z) < .

N-1 _
+ N2 r (i:ﬂ o (N-2) (8-k) /2

(3.26)

The first sum on the right hand side of (3.26), we can rearrange

as follows,

N-1
cN/2 N-1 c(N-2)k/2
q . T ( k—l) q e

k=1
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-1
N2 (g

=dq ]

k-1

o2

. (N—l qc(N—2)(k—l)/21qc(N—2)/2

_ (g:i) g (N-21N/2

cN/2

= q (1 + ¢N-2)/2)N-1 c(N-2)/2 _ c(N-2)N/2 ,

- N2 c(N-2)/2 o© (N=2)/2)N-1 _ c (N-2) (N-1)/2

((1+ ) ).

The second sum on the right hand side of (3.26), we can

rearrange as follows,

N-1 |
cN/2 N-1 c(N-2) (N-1-(k-1))/2

N-1
cN/2 N-1 c(N-2) (N-1-(k-1))/2
=g (2 -1)4d

k-1=0 (k l)

_(2:3 G N-2)/2 - 0,

chN/2 c(N—2)/2)N-l

( (L +4q - 1)

We can now rewrite (3.26) using the above. §So,

1-Pu(g) < V201 4 CW-2)/2)N-1 _ 4,
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b V2 e-2)/2( (1 + g° W2/ 2)N-L

- S m-2) (N-1)/2, (3.27)

Using the same approximations (3.24) and (3.25) in (3.23), and
performing a similar rearrangement of sums and summation

eventually yields

1 - RN < 2qcN/2 qc(N-—2)/2(l + qc(N—2)/2)N—2 . (3.28)
We will now find lower bounds on (1 - Ry) and (1 - PN(é?)).
Let Ei denote the event that vertex i is connected to no other
point. Let EiEj denote the event that vertex is connected to
no other point and vertex j is connected to no other point, and
so on for EiEjEk etcetera. In general, suppose we have M
events Ei and we want to know the probability that at least
one of these events occurs (any number from 1 to M may occur
simultaneously and still satisfy this requirement), in symbols,

M
we want to find PN(kJ Ei ). This problem is solved in most
i=1

texts on probability and is not difficult; we refer to a text

by W. Feller[lzl, chapter IV to obtain

M M M
P. () E.) =3 P.(E.) - % P_(E.E,)
N i=1 i i=1 N1 i< NY1i7j
M *
+z PN(EiEjEk) = e e eoe

i<j<k
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M
+ X P_(E.E....E.) .
i<j...<1 N (3.29)
M of these

It is also shown in the text just referred to, that

M M
@ P.(BE.) - P,(E.E,) <P_({J E.) . (3.30)
i=1 N'T1 i<j N 17j° — N i=1 i

To obﬁain a lower bound on 1 - RN we Observe that, the
probability that two vertices i and j are not connected is
bounded below by the probability of any event wherein i and
j are not connected. One such event, is the event that at
least one of i1 and j 1is connected to no other vertex. Let
Ei be the event that vertex i is connected to no other
vertex. The probability PN(Ei) is easy to determine. 1In
order for i to be connected by some path tb another vertex,
it must be directly connected by one edge to at least one
vertex. S0, in order to have i not connected to any other
vertex, it is both necessary and sufficient that none of the
¢ (N-1) possible edges, that would directly connect i by one
edge to some other vertex, should appear. The probability
of this event is the product of the probabilities of the
c(N-1) simultaneous independent events that a possible direct

connecting edge does not appear. So,

_ Cc(N-1) . .
Pe(E;) = q . (3.31)
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And similarly, of course,

_ c(N-1) _c(N-2)

qc (2N-3) (3.31)"

Using (3.29), M=2, we obtain the probability that at least

one of i and j is connected to no other vertex which is

. CW-1) | c(2m-3)

RN

And so, (writing qc(2N—3) =.qC(N-l) qc(N—Z) »

(2 - qc(N‘z))qc(N'l) <1-Ry . (3.32)

A lower bound for 1 - PN(;i) is the probability of the
event T, that at least one of the vertices 1,2,...,N is

connected to no othervertex. This time, instead of (3.29) we

use the approximation (3.30) to obtain

N N
T P, (E.) - & P.(E.E.) <1 - P_(2) '
i=1 N1 i< N*™17 3" — Né

and using (3.31) and (3.31)' we obtain
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- ng® 0D g o ML o),

A

1 - P (Z) - (3.33)

For large N we can show that the upper and lower bounds
on 1l - RN and 1 - PN(;f) both become very close to zero. Let

us examine (3.27) and (3.33) together, we may write
c(N-1) _N-1 c(N-2), _
Ng (1 - d ) <1 PN(é)

qcN/2 c(N—2)/2)N—l

< ((L+gq - 1))

+ ch/2 qc(n—2)/2 ( (1 +qc(N—2)/2)N—l

SN2 (N-1)/2 (3.34)

Suppose A is a finite positive integer and O<g<l. It is

easy to verify, using L'Hospital's Rule, that lim MAqM = 0.
N>

Most of the terms in (3.34) are obviously dominated by quanti-

ties of the form MA qM, where M(N)»= as N»e~. The terms

qc(N—2)/2)N-l

involving (1 + . need closer inspection.

c(N-2)/2) N-1

However, if we expand 1ln(l + g we obtain:

*
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in(1 + ¢ (N-21/2)N-1

. 2 3
TG VS S V2 DR T VS R

For large N the first term in the expansion is clearly dominant
and, as N increases this term is approaching zero. So,

C(N-2)/2)N-l

(1 +qg approaches 1 as N becomes very large, how

quickly it does so will depend on the value of g. We can now

c(N-2)/2) N-1 .re also

see that the terms involving (1 + g
dominated by quantities of the form MAqM with M(N)+>e as N»ow,
By letting N become large enough we can make either side
of the inequality (3.34) as small as we wish (greater than
zero), and therefore, of course we can make both sides of
the inequality agree as closely as we wish. It follows that
we can (using the left hand side of the inequality (3.34) ),
make the statement, valid for large N:

PN(;f) -1 - Nqc(N-l) + O(N2qc3N/2)

where O(f(x)) = y(x) means that the ratio

y(x)/£f(x) remains bounded as x-+w.
' (3.35)

Similarly we can find that

R =1 - 2 N1 L omg?V2) (3.36)
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Gilbert has checked these approximations against
calculations of PN(g) and RN up to N=6 for certain gq values,

c(N-1) c(N-1) will represent

and concludes that Ngq and 2q
1 - PN(;Z) and 1 - Ry respectivély, to within three percent
accuracy when g<0.3 and N>6. For the same accuracy of

approximation, larger values of g will require larger values

of N. Equations (3.35) and (3.36), using lim MAqM = 0,
Moo

~give us the conclusion that as N increases without bound,

both PN ({:) and RN go to one.
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Chapter IV

In this chapter we shall examine bipartite graphs of
type M,N. 1In sections 4.2 and 4.3 we examine PM N(éf), where
4
é?is the set of all connected graphs belonging tOS?M N and
’ 4
the probability space (QM,N’Q?:M,N'PM,N) is the one we

discussed in chapter I, with P not time dependent.

M,N
g 4.1

We will use T to denote the number of bipartite

M,N,A
~graphs of type M,N and having A edges. Ty o ={1 if A=0 .
e 0 if A>0
Notice, that we have adopted the convention TO 0.0 = 1. We
! 7
will use Cu N X to denote the number of connected bipartite
! !

~graphs of type M,N having A edges. Of course,

CMINIIA f— TMIN_I}\ SO CM,O‘IA =0 lf. }‘>O; further, we know

CM,O,O = 0 if M>1, and we choose the convention Cl,O,O =1

and CO,O,O = 0. We may note here that CM,N,A must equal

Zero if4A<M+N—1, (this is easy to check). Finally, we note

that TM’N!A = 0 if A>MN .

Consider a graph belonging to Q and having A edges.

M,N+1
The vertex labelled M+N+l is connected (not necessarily by
a single edge) to some number of other vertices (possibly O).

Let us consider that M+N+l is connected to b other vertiqgs

belonging to the same part, (that is, chosen from M+l, ...
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M+N), and is connected to a other.ver@ices belonging to the
other part (that is, labelled between 1 and M), and there are
some number ﬁ of edges in this connected subgraph. The
remaining subgraph not connected to M+N+1l, has M-a+N-b vertices
and x-ﬁ edges. There are (1‘:) (g) ways of choosing the a+b
vertices of the connected subgraph involving M+N+l, and
ca,b+l,ﬁ different connected subgraphs with these vertices,

and there are T - distinct choices of the remaining

M-a 7 N—b, )\ -u

subgraph for each case. For each a, b and p then, there are
M\(N - :

possible graphs with M+N+l vertices and ) edges. We sum over

a, b, and ﬁ to get

Moy A M\
MN+L X T L 2 X (a\b Ca,b+1,pTM-a,N-b, A~y
’ ’ a=0 b=0 n=0 ’ 1 ’ TATH
(4.2)
ox
calb+lluTM_AalN_b'l)\-]J !

(4.2)°

To simplify (4.2) we introduce the generating functions

CM’N(y) and TM’N(y) defined by
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- ,
. : 2
Cy,n (¥) '§=o CM,N,2 ¥
and
. A
TM,N(Y) = §=0 TM,N,A y e (4'3)

We note that both the sums of (4.3) are actually finite and

so converge for any y. We now multiply both sides of (4.2)'

A

by y” and sum over A to get

A

Tv,ne1,0 Y

=0

> ™M 8

=-? (2) : (ﬁ) D1 b1, 1 Thea,N-by Ay ¥ -
s a=0_ b=0 A=0 u:O a, 3 7 ’ M

(4.4)

The right hand side of (4.4) is the product of two power series.

We can rewrite (4.4) as

A

(o]
§=o Tm,N+1,0 Y

SNHINY
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We use the definitions (4.3) to further simplify the above,

and obtain

T

M
M,N+1(Y) =2
a

We canvnow solve (4.6) for CM,N<Y) explicitly in terms
of TM,N(Y)' We will make our calculations in the algebra of
double formal power series. Umbral calculus could be used
as an alternative method of solution (see appendix).

We will let C and T be the double formal power series:

M=0 N=0O ! MT NT
and
T=3 oz Ty xzZ 43 T, () X .
M=0 N=1 °’ M1 N1 M=1 M1
(4.7)
We note that T as defined by (4.7) is just
. M N .
L Ty oyl Xz , with the term Ty oY)
M=0 N=O '’ Mt Ni. - : : - M

removed.
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We observe that

|
N
=
=
2
=g
zls

= X ) C (y) x° =z ’
M=0 N=o M/N*1" Hr {7
and
T _ o M _N-1
Y=x 3 N7 M 2+ 0
M=0 N=1 ' MT NI
= I z T (y) x 2z .
M=0 N=0 M/N*1T mT RT
(4.8)
Now we multiply equation (4.6) by §E gﬂ and sum over M and M
M! NI
to obtain
I 7 (y) x_ z
M=0 N=0 MMt HT §T
© o M _ N _
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The right hand side of (4.9) is the product of two series and

we can rewrite (4.9) as

ooz o1, (y) - ) \
(M=O Neo MNYMT NI . (4.9)

We now use the definitions of (4.7) and equations (4.8) to

rewrite (4.9)' as

a9 T _3C
5% - 3% (1+T) r
or
a T
% _ acC : (4.10)
1+T 9z

If we integrate both sides of (4.10) from O to z we obtain

We can now perform this integration (see chapter II) to obtain

*



loge(l+T) C .
Equation (4.11) can be written

form. Using (4.7) we obtain

log{ £ & T, ()
< =Q N=0O M'N
© © 'xM
=3 X c (v) &
M=0 N=0 M,N M!

69.

(4.11)

in double formal power series

=
"

|
z

[Nz

(4.12)

2

We could also obtain the following directly from

equation (4.9)'

© © _XM ZN

L Ty FTRT o M N

%0 N=0 =3 & ¢C (y) 5+ 2.
Neo Neo MN#LY) MT NT -

o o XM ZN ’

X z T (¥Y) 517 ®/T

=0 N=o MM MT NI

The conclusions regarding

theorem below.

(4.13)

C (y) are summarized in the
M,N

Theorem 4.14 From equation (4.12) we conclude that

CM,N(Y) is M! N!

times the coefficient of x 2z

M N in



the double formal power series expansion,

2

o @ ..M N
log | z T (y) x_ 2 ) . From equation (4.13)
: (M=O N=o M/N Mr NI

70.

we

conclude that also, CM N(y) equals M! (N-1l)! times the
4

coeffient of xM zN in the double formal power series for
@ @ xM .zN

5‘4:0 I§I=O_ T, N1 ) BT NT

@ o xM zN

M=0 M=o Tu,n ) W RT

Of course, if we wish to obtain C , we can write
M,N,A
CM N(y) using (4.3) and equate coefficients of like powers
!
of y in theorem (4.14).

It is useful to determine TM N(y) so that it can be
[

used in all these equations. From the defining equation (4.3),

T

M’N(y) =§ T

(a+ ™,

This is because the maximum number of edges allowed is MN,

*

we have previously noted.

(4.15)

as



Using the results of section 4.1, we can now obtain

a generating function for PM N(af). From equations (4.12)
14

and (4.3) we obtain

It
I
0
[Te}
Fe
™ 8
™M 8
=
+
2
5
s
2w,
~———

As before, with A as in equation (3.1l), we have

Py (@) = I_ By y (CNAY

A MN-)
- CuNa PO

71.

(4.16)

(4.17)

We shall let y = p/q, and then we multiply both sides of (4.17)

by EE EE and sum over M and N to .obtain
M! NI ‘
> 2 -MN M N
Tz PM,N(KS) q X z
M=0 N=0 NT M!
© © © . A
=3 I I Cy.. (P-') X 2N
M=0O N=0 =0 /! q Mt NT

+ (4.18)
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Using (4.16) we obtain from the above

-MN M N

r I P, () q  x_z

M=0 N=0 M/ MT NT

= log ( r L g™ §f_§§i> . (4.19)
M=0 N=0 MT N1

M _N

MN N! M! times the coefficient of x =z

So, PM,N(Qf) is g

in the power series expansion of log ( z z q-MN’ >_<_M_ _ZE) .
M=0 N=0 MT N1

We will now find a recursion relation for calculating
PM N(¢Z) and then use it in examining the behaviour of
, :

Py N(;:) as M and/or N become unbounded.
14

To obtain a recursion relation we consider the graph
in the following manner. The vertex labelled M+N must be
connected to some number of other vertices, in fact it
may be connected to O,1,...0r up to M+N-1 other vertices.
The probabilities of each of the cases (M+N is connected to
i other vertices) must add to give 1. The probability that
M+N is connected to some number b-1 of other vertices
labelled between M+1l and M+N-1, and to some number a of
vertices labelled between 1 and M is just: the number of

ways the b-1 vertices may be chosen, (g:i) , multiplied by
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the number of ways the a vertices may be chosen, ({:3,
multiplied by the probability.that these vertices form a
connected graph, Pa,b(C:)' multiplied by the probability
that M+N is not connected to any of the other vertices.

The event, M+N is not connected to any other vertices, is
the intersection of (M-a)b + (N-b)a indepenaent events

each having probability gq. These events are: Each of the

b vertices labelled between M+l and M+N and connected to
M+N is not joined by an edge to any of the M-a vertices
labelled between 1 and M and which are not in the connected
subgraph containing M+N. (This is a total of (M-a)b such
events). Each of the a vertices labelled between 1 and M
and connected to M+N is not joined by an edge to any of

the N-b vertices labelled between M+l and M+N and not in the
connected subgraph containing M+N. (This is a total of
(N-b)a such events). So, the probability that M+N is not
connected to any of the other vertices is q(M_a)b q(N—b)a.
Therefore, we find the probability that M+N is connected to b-1

other vertices labelled between M+l and M+N, and to a other

vertices labelled between 1 and M, is

M N-1 (M-a)b _(N-b)a
(a> (b-l) P,,plE) g q '

If we sum the probabilities over all possible a and b we

must obtain 1 as the sum. And so, .
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N-1 M
= N-1 M
1 —Z]:D 1=0 <b_1>2~ (a>Pa’b(Z§)q(N-b)aq(M_a)b .

(4.20)
We can rearrange (4.20) and write
N-1 M-1
= - M N-1 .
PM,N(Z:) =1 i—l=0 za=0(a> (b-l) Pa,b(é)
q(N—b)a q(M--a)b
N-2
N-1 (N-b)M
-z 2] Py n(Z) g .

b-1=0 (b 1) M,b

(4.21)

In (4.21) we have taken Py N(ci) out of the sum and set it
14

equal to 1 minus the remainder of the sum.

An explanation of how the recursion formula (4.21) must
be used is in order. The prqblem which may arise is the fqllqw-
ing. Suppose we know Pa'b(;f) for all a <M-1, and b <N,
and we try to determine PM,N(pi) from equation (4.21). Then
in (4.21), if M >N there are N-1 quantities PM'b(éf) which are
not yet known, or if M <N there are N-M quantities PM,b(¢:)
which are not yet known.

The way in which (4.21) must be used can be made clear

*

by writing the P (&f)'s in a matrix array and giving a

M,N
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simple example.

Example Scheme for calculating P4'3(¢f). Here P,

stands for P (;Z), and the arrows indicate what
M,N
to calculate next. Note that PMN = PNM and that
M
P = 1 M=1, . , and P = p for all M and
MO {O otherwise M1 :

calculations are simplified accordingly.

Poo Por Po2 Po3s Fosa Fos Foe - e
Pi1o P11 P12 P13 P14 P15 P16 - e
Pro P21 P2 Pa3 Py Pas Py - e
Pio P31 P3p P33 P3g P35 Pz - e
Pso Fa1 Fa2 Faz Pas Pus Fye -

We notice that the more closed formulas we know for the

entries of a row (or column), say P fixed M varying, the

Mx! X
shorter the calculations are, but these closed formulas become
complicated to obtain as x increases. Since these closed
formulas are of interest we include here a closed formula

for P2'N(¢f) and a closed formula for P3'N(¢f) , valid for
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all N. We have obtained these from elementary considerations.

Proposition 4.22

P, ¢(£) =0 L+ 20" - o1 .-

Proof: Let a graph meQz N be labelled 1,2,...N+2.
1
We can state a necessary condition for ¢ to be connected.
Consider the vertices labelled j, j €{3,...N+2}.
For :
weQle.

Let r be the number of vertices j, such that

“(1,3) T T

Let x be the number of vertices j, such that

w(llj) =1 and w(zlj) = O .

Let y be the number of vertices j, such that

Wea,g) =1 anduwg 5y =0

A necessary condition for w to be connected ( that is,
for we;) is:

y = N-r-x , and r #0 .

From equation (4.17) we know that

2N
A 2N-)
P (&) =1 c p” q '
2,8(F Nenel C2/NsA

*

where we have used Xy = 2N, and C, = 0 if A<N+1l.

,N‘,A
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However, for connectedness, we must have A = N+r, so
instead of summing over ), we could sum over r from 1

to N, that is, we can write

N
_ N+r _2N- (N+r)
Pan(E) =2 Conmer P9 :
And, we can determine CZ,N,N+r from the following
elementary considerations. For each r, there are (IE)

possible choices of the r vertices that will be joined

to both vertices 1 and 2, and there are
N-r N—-r

z ( % \) possible choices of the x vertices joined to
x=0
vertex 1 only. The graph is then completely determined

(because for connectedness y = N-r-x). So, we may

write

N N-r
_ N N-r N+r 2N-(N+r)

(4.23)
To the sum in (4.23) we can add and subtract the

term r = 0, and then (4.23) becomes

N N-x _ _
Py y(£) = (N) . (N r) N 2N- (W)

r=o x:Q X
_(N> o qug (N)
’
o x=0 X
which simplifies to
N /N\ N r N-r N-r N N N
P, nlG) =12 /P P g 2 -2 p q
4 .

r=0



=" [(p 2 - (29N

Proposition 4.24

Py g (E) = pq

+ P [(p? + 3pg + 3g2)N - 3(pg + 3¢H)N + 2(3¢ 4]

(3N

- 3 +3q)N + 230N

Proof: Let a graph we Q4 y be labelled 1,2,3,...N+3.
: 4
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We can state a necessary condition for w to be connected.

Consider the vertices labelled j, je {4,...N+3}.

weQ3,N:

Let ¢ be the number of

“(1,3)

T 2,9

+

Let r be the number of

Y1,

= %2,9)

vertices

“,9) 2

vertices

=93, T

Let s be the number of

(1,3

= 92,5

vertices

=1 , and

Let t be the number of

“(2,3)

- Y3,9)

vertices

=1 , and

Let u be the number of

“(3,3)

- YL

vertices

=1 , and

Je

“(3,3)

Je

1,5

Js

“(2,3)

such that

such that

such that

=.O

such that

=0

such that

=0

For

*
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Let x be the number of wvertices j, such that

=1 , and =0 .

w . w o= W, .
(1,3) (2,3) ~(3,3)
Let y be the number of vertices j, such that

=1 , and =0 .

w . w L= .
(2,3) (1,3 - “(3,3)
Let z be the number of vertices j, such that

=1 , and =0 .

“(3,3) 1,9 T “@,5)
A necessary condition for w to be connected (that is,

for we ) is:
u=£&-s-t , and z = N- g§-x-y , and either
l) r # O ’ or

2) r=0 and & > 2 and s and t > 1, or

3) r=0 and £ > 2 and s and g-s~t > 1, or
4) r=0 and £ > 2 and t and g-s-t > 1 .
From equation (4.17) we know that
3N
A _3N-A
P, (&) =12 C p’ g ", (4.25)
3,N A= N+ 4r 3,N,A

We can rewrite the sum in (4.25) in terms of the

numbers £,r,s,... and the necessary condition for
connectedness instead of as a sum over A. First we split
the sum into two parts corresponding to the two ways,
r=0o0rr #_O , to achieve connectedness. We shall
treat these sums separately then add the results at

*

the conclusion.
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Case 1, r # O

The contribution to the sum on the right hand side
of (4.25) may be rewritten as a sum in &,r,x,y,s and t.
Since r <g, we must have £€> 1. For each possible g,
(from 1 to N) there are (Ig) possible ways to choose the
g vertices from 4,5,...N+3. For each choice of the g
o "N'E(N—g>
vertices there are j} % ways to choose the x

x=0

vertices joined to 1 only, and for each of these ways

N=g-x N-g-x
there are 7 ("y ways to choose the y vertices
y=0 )

joined to 2 only. For each choice of f,x and y there

g

are gy (E) possible choices of r vertices joined to
r=1

g-r -
1,2 and 3, and for each of these there are } (Esr>
s=0

ways to choose the s vertices joined to 1 and 2 and for

each of these choices of s vertices there are

g-r-s

E-r-s . .
hX ( £ \) ways to choose the t vertices joined
t=0 ’ '

to 2 and 3. This completely determines the graph, and so
the total sum gives us the number of such connected graphs.
The probability of each such graph, for each g, is

pN+E&r q3N_(N+E+r) . The contribution to (4.25) from

case 1, r # O is

+°
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g-r (E-r> g-—r—s (g-r—s) pN+g+r q3N- (N+E+r) >

(4.26)

We can simplify (4.26) by performing the sums (from

the inside out) beginning with the sum over t.

L LB )T () £ BED (5)
E.—.—.l E %x=0 X Y=O Y r_..__l s=o

2£—r-s pN+£+r q3N-(N+g+r) )

N N-E [ .\ N=E=%X [y _, .\ & -
g=1 \\*/x=0 \ * / y=0 Y /=1 \F

N+g+r 3N- (N+E+r) >

P
N g N-E-x - -
. a) a (N ; x) g2 (N-E) Nt
=1 X= ‘
N
z

fl
v 2

-0 | y=0 y

(g) pr(3q) &7

r
=1

We add and subtract the term r = O to the inside sum and
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N N-& N-£-x
: (gj . (N;é> ] (N—E—x) G2 (N-E) N4
E=1 x=0 y=0 Y

[ + 305 - 3¢%1 | .
Performing the sums over y and over X we get

N — -
2—1 (g) G2 N=E) NHE JN=E [ 30 E 3 E

(g} 3a2)N°8 p% [(p + 300% - 3¢%1 .

We add and subtract the term £ = O and perform the sum

to get the contribution from case 1, r # O is

pN [(p(p + 3q) + 3q2)N - 3(pq + 3q2)N

- 365N + 339N

=.pN [(p(p +3q) +‘3q2)N - 3(pg + 3q2)N + 2(3q2)N]
(4.27)

Case 2, r =0

We wish to write the contribution to the sum in (4.25)

as a sum in §,x%,y,s and t. By considerations similar
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to those in the case r # 0 we obtain the contribution

N N-§ _ N-£-x e _
(B b
=2 x=0 y=0 Y

g—ll(g) :® (5;5) py (E) . (4.28)
= t=0 t=1

The last sums in s and t take the above form to.énsure
that one of the necessary conditions for connectedness

2), 3), or 4) is always satisfied, that is, we can

allow t = 0 if s> 1 and £-s-t> 1, we can allow s = 0O

if t >1 and &-s-t >1 , and we can allow g-s-t = O if

s >1 and t >1. We can simplify (4.28). First we

sum over t, to the sum in t we add and subtract the

terms t=0 and t= & ,

N-& - N-E-x o -
(g) N (§x£> . <N : x> e g
2 x=0 y=0 4
SRV (e L (6 ; ;
: ()z '(t i (J (£) - (0>
s=1 t=0 t=0 ‘.

N-& [ 7\ N=&=x [ __ -
E () 1 (s
2\\*>/ x=0 y=0 Y

N
=_z
3

- &-1 -
z (g)»zg S+ 28 -2

s=1 .
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To the sum in s we add and subtract the term s =0

and perform the sum:

(VD 0B e
£=2 x=0 X y=0 Yy
& [ &-s £ E\ LE ., .
7 (s 2 - (g) - ( j 25 + 285 - 2
s=0 ' o)
_ (N) y-e (N-E) Ymemx <N-£-x> NHE N-E B g
=2 \\8) x=0 \ ¥ / y=0 Y

Now we simplify the sums in y and x

N ) N-E [\ N-€-x [, ,_
5 ((g) pite o2N-E (38 | 3y 3 (Nf) 3 (N- 5 x)
=2 x=0 y=0 Y

N } N-E (_ .
_ 2_2((125 pNFE (2N-E (B 5yn (ngy N-E x)

x=0

N
=3 (N) pte g2N=8 (38 _ 3y 3N-E
£=2

N . N )
=p' g 1 (N) B B8 - 33 (g) pt (3N &
€=2 £=2 .

To each of the sums over £ we add and subtract the terms

g =0, and £ = 1, obtaining
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N .
Mz (¥) @ o - (¥) oot aa
£=0

N
- (N) N - 32 (N) % BV + 3 (N)p(sq)N‘l
0 £=o \ E 1

+3 (‘3) <3q)N>

P ( (3p + 3)Y - 3p BN L -3gY - 3(p + 3V

+ 3np (3q) V7L + 33V >

.PN qN ( (3p + 3q)N - 3(p +_3q)N + 2.(3q)N )

N

N A
=p q 3N

-3 + 3N + 239V . (4.29)

We now add the contributions from case 1, (4.27), and

from case 2, (4.29), to obtain finally,

N

Py () =0 @ (Y -3+ 3N + 200" )

+ pN ( (p2 + 3pq + 3q2)N - 3(pg + 3q2)N
+ 2(3¢4)NV )
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Comments

Multipartite graphs of 3, 4 or more parts can
be defined similarly to bipartite graphs. For a
similar probability function it is still possible to
obtain, by similar methods, an explicit generating
function for the number of connected graphs having
a given number of vertices and a given number of
edges. Also, a recursion relation for the probability
of connectedness P...(;ﬁ) can be obtained by similar
considerations. The extension is quite easy in
concept but the details are, of course, increasingly
lengthy as the number of parts in the multipartite

graph is increased.



87.

§ 4.3 Asymptotic behaviour of PM"N'(é)

Some qualitative information can be obtained directly

from (4.21). Equation (4.21) was

N-1 M-1
M N-1 (M-a)b_(N-b)a
l1-P () =% z ( ‘>( - j P ) g q
M,N ;: b-1=0 a=0 a b-1 a,b(éf

N-1
N-1 (N-b)M
v (b—l) Pu,b(£) a

Since PM,N(ﬁf) is a probability, we know that O_gl-PM,N(g:)i 1,
and so, certainly each term appearing on the right hand side

of (4.21) must be less that one, because they are each
positive. Let us suppose first, that N is held fixed. For
each M, a term b=N and M-l=a appears on the right hand side

of (4.21). This ternm is

N
M PM-l,N g 1 .

This term must be less than one. We have supposed N fixed
and so qN is a constant. Therefore as M increases, eventually

becoming larger than l/qN r P must, at least for M >l/qN,

M_l ,N.
be less than one and must also be decreasing as M increases.
Therefore, when N is held fixed and M allowed to increase

there is a finite number k, such that for M >k, we know that

PM N <1 and is decreasing as M increases. In fact, as Me
, :
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P if N is fixed. Equation (4.21) is symmetric in

M,N >°
M and N so a similar conclusion holds if M is fixed and N
allowed to increase.

To examine the behaviour of P, N(zf) when both M and

!

N increase without bound we obtain an upper bound on
l1-P (/) and examine its behaviour. For all M and N,

M,N
PM'N(;Z) il and so we can obtain an upper bound on 1 - PM'N(;:)
just by substituting one for Pa b(;j) in equation (4.21).

!

This is not necessarily a least upper bound. This gives us

N-1 M-1
M N-1 (M-a)b (N-b)a
0«1 -P (Z) < 3 % ( ) ( - > o q
= M,N 7 ~ b-1=0 a=0 |2 b-1

. (4.30)

To the last term on the right of (4.30) we add and subtract
the term b=N as follows:

N-1 /._ _ N-1 _ _ _
s (N 1\ q DM (N 1) gN-DIM  _ M(N-N)

- X -
by \b-1 p-10 \ P-1

@+ Nt

i

To the first term on the right of (4.30) we add and subtract

the term a=M, as follows:
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N=1 M m\ (-1 -a)b  (-b)a N1 [n-1)\ (n-b)M
Z z a/\b-1}4 d - I b-1/4
b-1=0 a=0 b-1=0

N-1 ) M ) ) )
: (N 1) ’ (M} qU-a)b  (N-b)ay _ (N-b)M,

So, equation (4.30) can now be rewritten

i (gzﬂ ((qb & DM _ q(N—b)M\)

+ 1+ Yo (4.31)

We can emphasize the symmetry in M and N by writing the

term b=N in the summation, separately. Then we have

4

N-2
1- Py N(;f) j_g oo <§:i> ((qb + qN—b)M _ q(N—b)M>

+ QA+ a1y e MY L a.32)

We note that if N is held fixed and M increased without bound
the term (1 +_qN)M in (4.32) approaches infinity so the right
hand side of (4.32) is certainly not a least upper bound on

1 -p (;f) in this case, and (4.32) gives us no additional
M,N L gi



information on the behaViQur of PM’N(;f) when N is fixed
and M+~ , Similarly if M is fixed and N increased without
bound (4.32) yields no additional information because
(1 + qM)N—l approaches infinity. Further, to obtain
information from (4.32) we will insist that M and N increase
at approximately the same rate, that is, M-N < K for some
constant K , as M and N are allowed to increase.

Now we suppose that M-N < K, K a constant, as M and
N are increased without bound and we examine the terms
appearing in (4.32).

To see how (1 + qN)M behaves, we examine

¢

lim 1n((1 +gHY = 1im Mm@ + g% .
M, N+ M,N~+e

Since we have supposed M~N < K, then

lim M In(l + qY) < 1im N 1n(l + V)
M, N-+eo —~ M,N»w

+ 1lim K 1n(l + Q)
M'N-H:n

< lim N In(l + V)
— M,Now®

(It is easy to see that lim K 1In(1 +.qN) =0 .)
© M,N+w

Now, we apply L'Hospital's rule to 1lim N 1ln(l1 + qN) as *
M, N~
follows:

90.
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lim M In(l + @) < lim N 1n(l + V)
M, Norco M, N+

A

= lim 1n(1 * )
M,N+o — I/N

lim ::—iﬂ—%-. lim qN N2

2

We can apply L'Hospital's rule twice to lim qN N® to find

M, N+
that this limit is 0. So, since the other limit is bounded

lim M In(l+q) =0 .
M,N->w

This implies that

1im (L +gyM =1 .
M,N—)oo

Similarly,

lim (L +HN¥ o1
M,N+>o

So,

N-2 (N-1) b, N-bM
lim 1 =Py, (Z) < lim [ 3 p-1) 4 T 4
M,N+w e ~ M,N»x b=1=0

b"l hd (4.33)

N-2 _
(N-l) o (N-DIM
b-1=0 \
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N-2
Now we examine the term Z N-1 (qb + N—b)M in (4.33).
7 p-1=0 AP7d -

N-b

For the range 1 < b < N-1, the maximum of (qb + q )

N-1, and is (q +.qN_l). And (ﬁ:i) has

_[(N—l)/Z] » where [x] means greatest

occurs at b =1 or b

"

its maximum when b-1
integer < x. To simplify slightly we can assume that (N-1)/2
is an integer for the N's we consider. So each term in

the sum is certainly less than'(q_+,qN"l)M ((N§I§/2 ,

and there are N-1 terms, so

N-1 ‘
b, N-bM (N-1
bX (@ + a 7} ( - »
b1 b-1
< (1) (q + SL)M ((NHI%/;\ ] (4.34)

Since we are assuming N is large and increasing without bound
we can use Stirling's approximation for Ni. We can then
say that

N-1 b, N-bM N-1

lim I (g + g 7 -
M,N+o b=l b-1

lim  (N-1) (g + ¢ M 2N'l//"§”‘

= 1im /AT (2q@ + @M M e
" M,Neo : ‘

N

Since we are assuming that M-N < K , we know that N-M-1
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remains bounded. We also know that /N -1 (2g(1 + qN 2-))

will approach 0 as M,N+= provided that 2g < 1. Therefore,

M

if 2q < 1
N-1 ) _
lim 3 (g0 + ) (2_%) =0
M,N+e b=l

N-2
The sum I (2:13 g (N-pIM

is always less than the sum
b-1 .

N-2
z (N -1 (q + qN_b)M . Referring to (4.33) we can now
p-1=0 ‘P71 ‘ |

make this qualified statement: At least if g < 1/2, when
M and N increase without bound in such a way that M-N < K,

x(Z) approaches 1.

We can also obtain a lower bound for 1 - P (;f) in

: M,N
'a way similar to the way we obtained a lower bound on 1 - PN(;f)
in chapter III. Again let E; be the event that vertex i is
connected to no other vertex, and let EiEj be the event

Ei(\ Ej' Equation (3.30) becomes for our probability function,

M+N M+N
I p, (E;) - 2T (EE)

i=1 M,NY1 i<j M N
A U -

< Py,n( By) S 1 - By o(F) . (4.35)

If we do not want vertex i to be connected to any other yertex

then at least we can allow no direct edge to appear between



the vertex labelled i and any of the other vertices. This
condition is both necessary and sufficient and so it is

easy to see that

E.) = )T LEMEL< i< MeN
N'Yi : N . R -
q if i< M .
And

2N i< j and i,j% M

M . e - .
(E E ) = q2 1< Jr 1,] < M+N, vl,j > M+1
N 7i%5 M+N . = . =

q 1< jand i< M, j> M+l,

" j < MHN T

Using the PM,N(Ei) and PM,N(EiEj) , (4.35) becomes,

M M+N
5 (E)+z P (E.) - 2 ¢ (EE)
i=1 M N oMl M,N“i <5 Py, N
i,3<M
-21Z P (E.E.) - 2% (EE)
i< M,N'"17] i< M N
M+1<i,j<M+N i<M
M+1< j<M+N
<1- PM,N(',f)

Or,

2N N+M

Ng" + Mg - -1 g® + N1 g+ v

94.

21 =Py () . | (4.36)
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When M and N are allowed tq.approach.infinity with
M-N < K ,‘theAleft hand side of (4.36) approaches zero.
(Recall that lim NA qN = O for finite A.) Since the upper

N *®

bound (4.32) and the lower bound of 1 - PM N(;;) are both
4

approaching zero (if g <1/2), we can make them agree as closely
as we like by taking M and N large enough. We can therefore

use either bound as an approximation to 1 — Py N(;f) for
. 14

large enough M and N, and g< 1/2. So,

‘ M N 2 _2M
Py n(£) =1-Ng -ng +om?a™ ,

when g < 1/2, and M-N <K, Ka constant.
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Chapter V

Thenintention of this chapter is to acquaint the
reader with work which has been done specifically pertaining
to the connectedness of a random graph (for various
probability functions). We have already reviewed in
detail the work of E.N. Gilbert. In chronolegical order,
here, we will mention the Qork of P. Erdos and A. Renyi, see
[31, [4], and [5], of V. E. Stepanov[s] and [7] , and of
E. M. Wright[s]. We are not attempting to explain any
details of the work but only to indicate what kind of

results have been obtained.
§ 5.1

P. Erdos and A. Renyi have written two joint papers on
the subject of random graphs. The first (chronologically)

of these contains the results of a separate paper by

(31

Renyi
We state first the results of Renyi's paperI3]. Let

N, and C,, be as before, and d =A -N+1. 1If a graph is

NA
connected then 4 > O and we call d the "degree of connectivity

of a graph". Although explicit formulae andrecursive relations

were previously known for C.,, no simple explicit formula

NA.
for CNA was known. Renyi attempted to find a simple .



97.

explicit formula for C at least for some restricted

NA

N and A and to determine the asymptotic behaviour of
CN,Nfd—l for d fixed and N approaching infinity.

Renyi was able to find a simple explicit formula for C

NA
when A = N, or d = 1, in other words for CN N’ and to
’ ’
determine the asymptotic behaviour of CN N @s N+», His
14
results are:
I A S VR S
SNn Tz I{k) ko0 (5-1)
! k=3 N A
or
NN.-l N k-1
C = z I (L - j/N) . (5.1)"
A
As N-w,
i N-1/2 .
Cyynvvw ¥ 7 - (5.2)

In the first joint paper[4], Erdos and Renyi consider
~graphs of class one. They pose the following four questions
(some of these we have rephrased in our notation and in terms

of our P, of chapter I) and attempt to answer them:

N

1) What is the asymptotic behaviour of CNA /TNA ?
(qu our prqbablllty function PN,.CNA / TNA; PN(;g/AA)°

Recall that A, =f{weQN|‘Zw = A}.)

S9(1,3)
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2)

3)

4)
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What is the asymptotic behaviour of: the
number of graphs (with N vertices and )X edges)
with greatest connected component having N-k

vertices, divided by T (k=0,1,...). Let

NA'
us denote this ratio by P(k,N,Ac).

What is the asymptotic behaviour of: the number
of graphs (with N vertices and A edges) consisting
of K+l distinct connected subgraphs, divided by

T (k=0,1,...). Let us denote this ratio by

-
N
H (k’N’A) 4

Let G be the subset of Q. consisting of all

N
connected graphs which can be made disconnected by

removing one edge. What is the asymptotic

" behaviour of P (A}\/G)'> (Where P (AA/G) is the

conditional probablllty of A glven G.)

A

As partial answers to 1) to 4), Erdos and Renyi prove

four theorems. 1In the following,.gc is used to denote

[1/2NlogN + cN] where c is an arbitrary fixed constant,

[.] denotes the greatest integer function, N is the number of

vertices.

Theorem 5.3

N+w T
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Theorem 5.4

-2c
lim P(k,N,A ) = (e 25k e
N> - ¢ k!

That is, the number of vertices outside the greatest
connected component of a graph with N vertices and
A edges, is distributed in the limit according to

c
. . . -2c
Poisson's law with mean value e .

Theorem 5.5

: -2c
Lim T(k,N,A) = (e72)* 7°
N> k!

That is, the number of connected components diminished

by one is in the limit distributed according to

. . -2c
Poisson's law with mean value e 2 .

2%
Theorem 5.6 24 N
. -ﬁ— - e
Py(A /G) ~ 2 e
N
where = [1/2NlogN + &] and [&] = O(N).
Also,
_e—2x
lim P ( U A, /G) = e .

N~ N‘A<Nx+l/2NlpgN :



100.

In their later paper [5], Erdos and Renyi give a
much more complete exposition of the probable structure of
a random graph of class I. As we mentioned in the
introduction, for any structural property X (some condition
on the graphs eQN), we could ask, assuming again our
probability function PN’ on class I‘graphs; what is PN(X)?

Here x is the set of all w in Q, with property X. For

N
various structural properties X, this paper examines
PN(X/AA) and examinés_the changes in PN(X/AA) as A is
increased. Also, if we assume that we are'interested in
graphs with N vertices and.A(N).edges where A(N) is some
function of N, then for certain restrictions on A(N) the
paper examines PN(X/AA(N)) as N+». This paper contains
many detailed specific results.

We are mainly interested in the probability of
connectedness of avgraph, so we mention only the results
referring to connectedness.

The paper proves that a graph of class I with N
labelled vertices and.A(N) edges (A(N) some function of N),
hés greatest connected component of size G(c)N, for

.A(N)& cN with ¢ > 1/2, with probability tending to 1 as

N+x, where

© k-1
5 EET_ (2ce 2C)k
G(c) =1 - k=1 : .

2C .
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Combining some of their other results in this paper,
the information obtained on connectedness is as follows:
The largest component of a graph with N vertices, and A(N)
edges is of order logN for A(N)/N ne < 1/2 , is of order

2/3 for A(N)/N ~1/2, and of order N for A(N)/N~c > 1/2.

N
The size of the largest component makes a startling
"double jump" as A(N)/N passes the value 1/2. Further,

when (N) - 1/2 N logN +~ the whole graph will, with
N

probablllty tending to 1, be connected. (PN(;?yal(N))+ 1l

as N+o if (N) - 1/2 N logN +e as N+w .)
N

§ 5.2

-In 1969, V.E. Stepanov published two papers concerned
with the probability of connectedness of a random graph. The
first of the two papers is entitled "Combinatorial Algebra
and Random Graphs"[G], and the second is entitled "On the

Probability of Connectedness of a Random Graph“[7]. We will

discuss them in chronological order.

Stepanov was the first author to consider a probability
function P defined on §, the sample space of class I graphs,
which did not assume equivalence of the vertices of the graphs.
(We will say that a probability P assumes equivalence of

vertices if the probability assigned to a subset of Q@ of the
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form {we@| w = 1} does not depend on i and j.)

(i,3)
The aim of Stepanov's first paper is to develop appropriate
mathematical tools and then study P(Z ) for the probability
function P he defines on class I graphs (and which does not
assume equivalence of vertices).
Recall that for class I graphs, Q =A{O,l}B where

B %f{(i,j)li < J i,j€I+}. Stepanov defines a measure on
the set of possible vertices of a graph, that is on I+, and
we denote this measure by L(I+). The measure L(I+) ié
defined by its values on vertices, the measure of a vertex
i, is L{{1}) = 24 > O and 25 is called the intensity of
vertex i. The probability function on @ is denoted PL(t)
and is a function of the measure L(I+) and of time. The
event, an edge appears between vertex i and vertex j, is
taken to be independent of all similar events including
those involving one of thé vertices i and j. Further, we
define |

PL(t)(w(i,j)=l) =1l-e '

and

“L:%s €
= =" 1]
PL(t) (w(llj)_O) = € .

The above definition together with the statement of indepen-
dence completely determines the probability of all possible
events.

*

The probability function P_(t) on Q is similar to P on Q
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defined in chapter I, with p time dependent; the major
difference is the measure L(I+) defined on the set of vertices
so that p is now time dependent and a function of the
vertices in question. |

Stepanov's paper is divided into three sections.

The first section develops formal tools useful in
the study of random graphs. These tools are essentially a
modification of the method of generating functions.
Stepanov defines an algebra,57; of numerical valued functions
on the set of all finite subsets of I+. The algebra 5?’is
defined so that it allows a homomorphism of the algebra
of power series in a formal variable with numerical coefficients,
into the algebra 571‘ Of course, the algebra(j,is carefully
designed so that probabilistic statements (which might
otherwise be made in complicated power series expressions)
can be made easily in 3{ and desired manipulations performed
easily in ?f.

A finite subset A of 1* will be called a skeleton. An
ordered sequence of skeletons (Al,...An) such that Aif\ Aj =@

and g A, =4, is an n-partition of the skeleton A. A
el . .

partition (Al’Az""Ah) for which all skeletons are non-empty
is a strict n—paftition. Strict n-partitions of a skeleton A
differing only in the order of their component skeletons are

identified as a single class and each such class is called an

v

unordered n-partition. The collection of all p¥partitions,
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strict n-partitions and unordered n-partitions of a skeleton A

are denoted, respectively by (A)n, [A]n and’{A}n .

The probability of connectedness of a graph with the set
of vertices A, would normally be denoted by PL(t)(é?/A). For
convenience we shorten the notation to just PL(A/t).

In the second section of his paper, Stepanov uses his

combinatorial algebra 3( in obtaining information about

PL(A/t). The main results he obtained are given below.

An explicit expression for PL(A/t) is given by

0

2 n-1 .
P (A/t) = e °F (A)/z(z (=)™ “tn=1h

n=1
n 2
L exp (tz L (Ai)/2) . (5.7)
ay,  i=l

Recursion relations for PL(A/t) can be obtained from

DL @apP(ay/e) e FRADER) Sy

(a),

where L' is any additive function on (5.8)

A measure is called simple if it assumes the value 1 on
exactly one vertex. If the vertex is i, we denote the
corresponding simple measure by L; . The next important

-®

general result is:
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3 2 ¢

2
et B2 b (ay))

t2.L

2
- ale iT L q) (etLE () /2

2
tLe(Aa) /2
PL(A/t) *a(e

1
L 3

PL(A/t)

where L' is any additive function,

(1) g0 Lo

L L 2, L,

* indicates the composition operation in z,

the differentiation is in 3f.

(5.9)
The final_general result is
d P.(a/t) =1 pX (L(A)L(A)P(A/t) .
L / 1 2" L1
ge 2 BpR)
-tL(Al)L(Az)
PL(AZ/t) e . (5.10)

From these four main general results interesting special
cases can bé obtained. Stepanov gives quite a few details
in this area.

Stepanov applies the general results to the special case,

*

previously considered by other authors, of L(i) = 1 for
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each vertex i. That is, PL(t) is now P as in chapter I, with
p time dependent and p = 1 - e ~. Since the probabilities
of various events now depend only on numbers of vertices
and numbers of edges PL(A/t) is the same for all skeletons
A of the same size and we can refer to it as PN(t)(ﬁf) as
previously, where N is the number of vertices in A. Stepanov
- applies his general results to this case and obtains explicit
expressions and recursion relations for PN(t)(;f). These
results agree with previously known results where any exist
for comparison.

In the third section of his paper, Stepanov examines

the asymptotic behaviour' of the probability PL(A/t). His

main result is the following theorem.

Theorem 5.11 Let L be a measure defining the intensity

of the vertices in the basic set (say I+ ) and let

skeleton A and time t vary in such a way that the

et L(A)  remains bounded.

quantityji(A/t) = I
, icA
If there exists an Lo varying along with A and t such

that

1 X e ~ 0 .,
tL(A5Lo ieA

—tZiL(A)
z e + 0
ieA"

uniformly for all subsets

A"c 1’ such that L(A")< L ,
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then

P, (B/t) M B/E)

Stepanov goes on to explain the implications of his theorem and
also shows that it yields previously known results for special

cases.

In the second paper by Stepanov[7], the probability
space consists of class I graphs with P as defined in
chapter I with p time dependent and p = 1 - e_t, As we
have already noted, this probability function is a restricted
case of the one considered in [6], where L(I+) is defined
by L(i) = 1 for each vertex i so fhat the vertices are
equivalent under P. The work in this paper is based on
the results of his earlier paper. (Recall that P agrees
with Py for all N, where N is the number of Vertices in
the skeleton to be considered and that by PN(;§) we really
"mean P (Z(N)).)

Stepanov notes that in his previous paper when he
~applied his general results to the special case now being

considered, he obtained the result that as N*® and

t = [logN + c + o(1)] /N varies with N, (c a constant), then

=-C
lim P (£) (£) = e ° .

Noroo

From this it follows that lim PN(t)(;j) = 1 when t = constant,

N>
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and lim P (t) (£) = 0 when t + O in such a way that
N0

Nt = o(log N). 1In this second paper, Stepanov examiﬁes

the probability PN(t)(;Z) and finds an asymptotic expression
for PN(t)(¢f) when N+~ and t is small satisfying Nt = O(1l).
He then uses the asymptotic expression to explain some
particularities in the construction of a random graph with

N vertices. The asymptotic expression is given by

Theorem 5.12 When N-w

N _ . _ Nt _ N
PN(t)(}f) = (1 ;ﬁE_“—”')(l

-1

e Nt (1 + o(1))

)
uniformly for all t such that Nt > Yo o .

The result pertaining to the structure of a random graph is

Theorem 5.13 When N-»» and t = y/N, y > 1, the

random graph on N vertices contains, with probability
tending to 1, one "large" subgraph the number of whose

vertices has a normal distribution with mean
N(L - ) (y e ¥)/y

and variance

N6 (y eY) (1 -8 (y e‘Y)) )
vy [l -e(ye¥)?
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Where ©(w) stands for the main branch of the inverse

. -2z
function of w = 2z e .

An investigation.by E.M. Wright[al is related to our
topic. Wright has found asymptotic expressions for CNA
in terms of binomial coefficients, for the eight clasées
of graphs I to VIII we have mentioned. The expansions

are valid as N approaches infinity if A is always larger

than N in such a way that as N approaches infinity,

Az l/ﬁ N _logN also approaches infinity. So the

necessary for validity of the expansion is dependent upon N.
For the range of ) for which Wright's results hold, we

have CNA oy TNA and we are interested in the further terms

in the asymptotic expansion of C,. which also give the

Nx

asymptotic expansion of T - C,,,» the number of disconnected

NA NA
graphs with N labelled vertices and A edges. (These

asymptotic expansions of C do not immediately give us

A M

Ay T

PN(;f) =z . CNA px qXN-A , for the classes one to four
}\:N— .

graphs. Because of the restrictions on ) for validity of
expansions, PN(;f) cannot be written as just a sum involving
asymptotic expansions.) However, CNA/ TNA is a quantity.

which may be of interest, (Erdos and Renyi considered this,
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T e .

see §5.1, also, CNA-p q = - might be of 1nterest and
the asymptotic expénsion for CN& might yield an asymptotic
expansion of this.) |

The proofs involved in obtaining the results are based
on properties of series, some of the proofs are lengthy.
We wiil_give just endugh detail here as is necessary to
state the results. Wright begins his development from the
equation (3.9) relating CN(y) and TN(y) found by Gilbert.
Recall that QN(y) and TN(y) are as defined by (3.4) and (3.5).

Equation (3.9) may be written as

TN(y) =

u- ™M

N-1

where N 3.1 and To(y) =1 .

= ! = ! i
Set TN N! GN and CN N - IN and this becomes
N
NG, = X s g -
N s=1 8 N-s
where N > 1 and GO =1 . _ (5.14)

By repeated use of (5.14) we find that
jl jN
Gy = Gn(97s9s:-:9y) =L wg; “+° 9y (5.15)

-

where the sum is over all partitions of N,
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that is, all terms for which zjii = N.

Every w = w(jl,...jN) > 0 and w(0,0,...,1) = 1.

Now introduce another series of polynomials N defined by

N

Ne, =2 s g

, for N > 1
N. <1

o
s N-s

i
=

and « {5.16)
This may be obtained from (5.14) by changing the sign of

every g and replacing Gsty <" Hence, as in (5.15)
N = GN('_'gll—gzl°--"gN) . (5.17)

In what follows, C denotes a positive number, not always
the same whenever it appears, but always independent of N.
The notations O(-) and o(+ ) refer to when N and each
implied constant is a C.

Two lemmas lead up to the first general result, which

is

Theorem 5.18

R-1 _R-1
Cy =% a. {Nn)+ O(Nr § {853}, )
N t=0 © t=0 T A

where _ .



a (N,2) = _(&-_1;1!!7 {e, TN_t(y)_}x,

(Ty (v) is as before)

and

[(N~t)/2]
z

s=R-t

S, =G

£ £ G, G '

s N-t-s

and

{*} q denotes the coefficient of y? in & .

There are five more theorems proved by Wright, which
apply oply to graphs of classes I to VIII (they are not
~general reéults).’ Firét we define a few more notations
and then we will state these results.

1) Let Oy be one of classes I to VIII. Suppose

wefly has £ w = A . Let M(N,A) be the number
w

(i,3)
of positions (i,j) which may possibly have

©(3,9) # O. For classes I to IV graphs, M(N,))
, _ _

is justliﬁ. For classes V to VIII, M(N,\) as

we have already shown in §3.1 is just

112.

N(N-1)/2 + » - 1 for class V graphs,

N(N+1)/2 + » - 1 for class VI graphs,

M(N_I)\) =

N(N-1) + ) - 1 for class VII graphs,

2

2) Q(M) refers to the binomial coefficient (?) for

N™ + ) -1 for class VIII graphs.

M any given number and ) the given number of edges.
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M_ = M(N,\) - 2<tN + 2«t” , where = depends on
“the class of graph and is the same « as in (3.17),

t is any positive number.

To evaluate at(N,x) in (5.18) we have the theorem

Theorem 5.19

N ;jt—l)/z
at(N,A) = (t) §=O Yt(r)Q(Mt - 2xr)
' (5.19a)
where the Yt(r) are coefficients in a
polynomial
t(t-1)/2 r
Bt = Bt(w) = _§=O Yt(r) w (5.19b)

defined successively by

| .
B =1, and 1 (S) wt(s"t)Bt(w) =0, s > 1.

o =0 t
(5.19¢)
In particular, if A < (l"— C)Mt ,”then
_ [N Mt) Mg - a\2« 1
ay (N,0) = (t) ( A {Bt (——_ﬁ? * Oln
(5.194)

and, if ) = o(M),

M
a, (N,A) = -nt <§>(At) {1+ o(%—B} . (5.19€)
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On the behaviour of the error term we have the

following theorem.

Theorem 5.20 If y = Y(N)+» as N+»», and A > N(1/2 logN + y)

then

N{ - {st‘})\ = o((R) Q(MR)> 0<t<R .
The final results are the following theorems:

Theorem 5.21  If (A - 1/2NlogN)/N +~ as N>, then

R-1 R
Cp = f;=o a, () + 0N Q(M)) .

Theorem 5.22 If N(1/2 logN + y)< A = o(M), and Y+

as N»», then

R-1
Cuy = I_ 2@+ 0@®a)) .

Theorem 5.23 For graphs of classes I to IV only, if

MR < A < M, then

R-1
Coy = L a_(N,A) .
N}‘ t:o t

Theorem (5.22) follows from (5.19e). Theorem (5.23) follows
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from theorem (5.21) if we observe that, when 2> MR ’
then Q(MR) = 0. ©So for this limited range of A> MR we have

an exact value for CNA
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AEEendix

In random graph theory, the idea of transforming
equations to another algebra for solution appears to be
very useful. We have used a transformation to formal
power series; Gilbert[z] used a transformation to umbral
calculus; Stepanov[s] defined a new combinatorial algebra
in which he writes and solves his equations.

We chose to solve equations (3.8) and (4.6) using
formal power series rather than to follow Gilbert's use
of umbral calculus because we felt the formal power series
method was more straightforward. We feel, however, that the
use of umbral calculus is an interesting method and it is
conceivable that in the study of graphs, equations may arise
which could be handled most conveniently using umbral calculus.
The use made of umbral calculus by Gilbert did not really
exploit the umbral calculus but was more a modification of
formal power series methods. In § A.l we give briefly the
basic definitions bf umbral algebra, and in § A.2 we mention
functions of umbrae which are isomorphic to certain power
series. In § A.3 we solve (3.8) and (4.6) using umbral

calculus.
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We shall follow the developmenﬁ of umbral calculus given
by E. T. Bell[9]. We give the definitions for an algebra of
umbrae arising from uni-suffixed scalars. Umbral algebras
may be similarly defined for umbrae arising from multi-
suffixed scalars. We shall make a few comments at the end

of § A.l.

In the following, the field of scalars we use will be
ﬂ{ . The sign = will be used to express both definitions
and identity as in algebra. Scalars are denoted by «, B8,...
or by small Latin letters with non-negative suffixes

denoted by Latin capitals, for example, X (N=0,1,...).

Definition A.1 1If Ry (M=0,1,...) are any scalars, the

ordered array <:XM>; is denoted by x and called an

umbra. The M+l th element of x is xM and , in our

system, xM X

M

Mo

We now proceed to defining operations on umbrae which

will make the set of all umbrae a vector space over ﬁz.

Definition A.2 Two umbrae, x and y are said to be equal

if and only if M M .
X' =Xy =TY¥Yy=Y for all M.
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Equality of umbrae is easily seen to be reflexive, symmetric

and transitive.

Definition A.3 The scalar product of « and an umbra x

is denoted by juxtaposition «x. We will use’{-'}M
to denote the Mth element of an umbra. We define «x by

{«x} M = <Xy E,axM for all M.

Definition A.4 The addition of umbrae, say of «a,...,tx,

is defined by

'{oca_ + ... +gx}M = xay + ... + EXy .

It is easy to see that the set of all umbrae is a vector space
over the scalar field %l. Further, it is easy to see that the
umbrae under the operations defined so far, are isomorphic to
the vector space of formal power series.

The following is our.motivation for the rest of the

definitions we make of operations on umbrae. Consider the
[+

power series I xN,QE where 6 is a formal variable, and
N=0 NI

the xy are scalars. If we could simply make a transformation

wherein x, - xN the new power series would just be exp(x8).

N
There is, however, no such scalar x which would allow the

transformation to -be an isomorphism, a necessity if calculations

are to be transformed, carried out and the answer transformed

back with validity. We can, however, arrange to have our .
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umbrae behave so that the scalars x

x to the NP

N..transform tq an umbra
power (x)N.'.The new power series we transformed
to would be a function of the umbra x, called exp x6 . We
would want the transformation to be an isomorphism and further-
more we would want exp x6 , as an umbral expression to behave
in complete formal analogy with exponents of scalars so
that calculations involving umbral exponents would be
correspondingly easy. The following definitions of umbral
operations are made so that umbrae will behave in the way we
want.

The next operation we define in the umbral algebra is
a special operation peculiar to umbral algebra which we
call taking the Nth power of a sum of umbrae. This operation
we will define is not related to a multiplication performed
N times. 1In fact we have not, as yet, defined a multiplication
for our algebra. The special operation is defined in formal

th power of a

analogy with the multinomial expansion of the N
sum of scalars.
If a, ...,x are umbrae such that no two are equal by (A.2),

they are said to be distinct.

Definition A.5 If a, ..., x are T distinct umbrae, then

(¢ca + ... + gx)N denotes the scalar Py 7

= (ea + ... + g#)N =IQ C Tl E Ta_ .e.X_

P
N sl...sT
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where Qs s is the multinomial coefficient
l...T

Nt , and the sum is over all sl+...+s =N .

T
] |
sl s @ o ST .

We note that {«a + ... +gx} N # (ca + ... +gx)N . We can

rewrite definition A.5 using , from A.1l, xN = Xy s

N
(cca+...+§X) =3 Q o«
sl...sT * & o

This expression appears exactly similar to the multinomial

expansion of a sum of scalars to the Nth power.

Definition A.6 If in A.5 we replace N by N+R the

resulting scalar («a + ... + gx)N+R is called the

product (denoted by a dot),

(xa + ... + Ex)N-(éa + ... + EX)R

= (xa + ... + éx)N+R .

It follows that this dot product is commutative, associative,
and has identity («a + ... + gx)o. Ordinary scalar multipli-
cation has no dot, so that («a + ... + gx)N (ca + ... + gx)R
# (ca + ... gx)Nf(ma + ... + gx)R. As a convenience of

notation we write
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(EX)N f[(oc.a)M + .((3b)R + ... + ‘(Yc),S]
= ,(Ex)N-(ma)M + (Ex)N-(Bb)R + ... + (gx)N-(fc)S .

If we have («<x + ... + ocx)N where the «x appears A times
we will use the notation (A-ccx)N = (ex + ... + «x)N, where
«x appears A times.

Definition A.5 required the T umbrae to be distinct. The
definition A.5 will be said to hold for any T umbrae if the
calculation is made as though the umbrae were distinct.

For example:

(ex + Ex)V

i
™
0

H
0
N

R
]
vy
»

i
e
0
[
0]
N
R
v
]
o]

We now proceed to define multiplication of umbrae. Many
different definitions are possible. We choose the following
definition which makes use of the operation of taking the

th

N~ power of a sum of umbrae. First, we note that any

umbra, x = (xo,xl,...) can be written as x = (§670!,§I/l!,...)

where EE Xy N! . Then X is used to mean the umbra

(§5 X.,...). The form x = (25701,§2711,...) we will call the
!

exponential form of the umbra x.

Definition A.7 - Let x and y be umbrae (written in

exponential form). The product of x and y denoted by

juxtaposition xy, is the umbra p such that
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That 1is, _ ,
’XYE ((;{_-‘-y)ol (§+Sf-)l, --o> -

Umbral multiplication is easily shown to be commutative
and associative. Powers under this multiplication can be
defined as usual, the Ath power of x, that is, xxx...x, A times,

a) to distinguish it from (x)A. Notice

will be denoted x(
that x and y behave under multiplication as though they were
sequences of coefficients of (for X and y scalars) exp x©

and exp y® respectively. We will make this connection more

precise by defining exponents of umbrae in 8§A.2 .

Comments on Umbral Algebras from multi-suffixed scalars

The algebra of umbra from doubly suffixed scalars can
be defined similarly to A.l through A.7. 1Instead of A.l we

have

Definition A.8 1If Xy !

any scalars, the ordered array < , is
M,N /M,N=0

(M=0,1,...), (N=0,1,...) are

denoted by x and called an umbra. The suffixes are treated

h

as ordered pairs. The M+1,N+1 t element of x is xM,N

and in the umbral algebra M.N
X' =x B
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Umbral equality and the operations of scalar multiplication
an umbral addition are extended in the obvious way. The
umbrae defined by A.8 are then a vector space over'ﬂ%. If
we follow the same development as for the uni-suffixed case,
we would define the M,Nth power of a sum of umbrae, similarly

to A.5.

Definition A.9 If a,...,x are T distinct umbrae, then

(ca + ... + Ex) denotes the scalar PM.N !
7

M,N
= + ... + !
Py,y = (<a £x)
S s R R
=330, o O R("‘ LoeT<t g7,
1°++Sp 1Ry
a o s e X 7
S1/Ry ST'RT\)
where QS cerg denotes the multinomial coefficient
1 T .
M! , and QR . e denotes the multinomial coeffi-~-
S.l..e S,! 1 RT
1 T
cient N! , and the double sum is over

We note that {«a + ... + gx}M N # (¢sa + ... + gx)M'N.
[

Definition A.6 and the comments following it are extended in

the obvious way.
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(o]
An umbra x =‘<:%M,N:>>M,N=QWill be wri;ten in exponential

form by writing, similarly to before, x = ‘xM'N‘;>? ’
L
\M!'N"! M,N=0
where xM,N =»XM,N MIN! . We define the product of x and y

similarly to definition A.8.

Definition A.10 Let x and y be umbrae written in

exponential form. The product of x and y denoted by

Xy, is the umbra p such that

Hply,y = G TN
! M! N!

That is,
0
-, — M,N
_ (x + y)' .
Xy = <M! NI >M,N=O

Umbral multiplication is again commutative and associative.
The Ath power of x will be denoted X(A).

These comments on the doubly-suffixéd case should be
sufficient to make it easy to see how umbral algebras of

umbra arising from 'higher' multi-suffixed scalars would be

defined.
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§ A.2 The exponential function (of umbrae)

Definition A.1ll Let x be an umbra, x = (xo,xl...). We

define the function,,gxponent of x and a formal scalar

variable © to be

2
2
N
@

(x)

exp X8 = =)
=0 N!

Z™ 8

where e has its usual meaning (2.7...).

We note that the function exp x© is just a formal power

series and so the usual operations in formal power series

apply.

Definition A.l12 For x and y umbrae,

X0 Y® N (xy)e

[0}
=z @+t
N N

=0

where (x + y)N is defined by A.5. Generally, for

any number of factors on the left

egxe._. enye =‘e(gx + ... + ny)e
oo .
=3 (Ex+ ...+nyN e .
N=0 N1
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Powers of exponent functions can be obtained from (A.12) or,

more conveniently from

=32 (A Ex)
=0

EXx©

[ A _ e(A-E;x)e

]

-
ZI(D

Exponent functions are added according to:

Definition A.13 Let x and y be umbrae,

=3I {x + y} N .
N

=O N!

exe e _ é{x+y}e

This definition extends to any number of summands in the

obvious way. From definitions (A.12) and (A.1l3)

oE%8 [emae oL+ eYce] - e(gx +{xa+...+ycl)e .
Definition A.14 The Nth derivative with respect to o,
denoted d_ , of 58 s

aeN
e S MM _M
a e =a 1 g%
deN deN M=0 M!
5 £M+N xM+N Qf
M=0 M1

z (E;X) (EX) 9_
=0

]

<
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=_(EX)N{ R

The above definition is just the definition of the Nth
derivative of a formal power series. The definitions of umbral
calculus are then used in‘rearranging the quantities appearing
until the final form shown above is obtained.

The exponential function of an umbra behaves under
differentiation in formal analogy with the ordinary exponential
function of a scalar. From (Al4) and previous comments we

also have

JEx8, A _ N _(A-Ex)e

(A-Ex) . (A.15)

[ ]

d_
ae™

£xO

We have already noted that e is a formal power series

expression. Expressions such as g_(exe)de , log(exe),
de
and so on can be considered as formal power series expressions
and have meanings analagous to the usual scalar expressions.
In practice, special notations such as { }, ( )~( ),

A+.c=x and so on are usually dropped as the meaning of expressions

is still clear enough.
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Comments on the exponential function (of umbrae from multi-

suffixed scalars

Again we make a few comments on umbra from doubly-
suffixed scalars and this should point out the way to extend

to other multi~-suffixed cases.

. (2]
Definition A.16 If x is an umbra, x = <<gm,§:>‘M,N=O '

we define the exponent of x and two formal scalar
variables © and A by
(2] 0

=3 Z (x)

RICHY

where e has its usual meaning (2.7...).

As before, the exponent function is a formal power series, in
this case a double formal power series. The properties of
ex(e’A) are similarly defined to A.l12 through A.15, for

example
ex(e’A) eY(eIA) = e(x + y) (e_lA) ,

and so on.
The definition of derivatives must be modified slightly

since we now have two scalar variables.
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Definition A.l17 The Ath derivative with respect to O,
denoted 3, of egx(e’A) is given by
a0
[+ [+
. SEX(8,h) _ I gM+N (x) MY 91_~4_ /ﬂ
aeA BGA M=0 N=0O M! NI
3 ¢ MYNHA (L MHAN M AN
M=0 N=0 MT NI
=1 1 (e ™ MY
M=0 N=0 M! N!
= (ex)®%z 1 ()N MY
M=0 N=0 MT NT
= (gx)A,O,eEX(QJA) .
The AP derivative with respect to A is defined similarly,
that 1is,
_3__ e X(e‘IA) = _(EX)O'A‘egx(e-'A)
an®

The comments following (A.15) apply here also (with appropriate

modifications).

§ A.3

*

It is easy to see that the transformation of power series t:
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©0

I Xy gﬂ‘-+ exp x0, where X is an umbra, is an onto
N=0 N

isomorphism. That it is one to one and onto is easy. The
homomorphism properties are guaranteed by definition (A.13) and

definition (A.1l2).

We shall now solve (3.8) using umbral calculus. Recall

that (3.8) was

® N > N N N
z T X =1 z ( ) C Ty X
Neo N+l - N=0 b=o ‘P b+l "N-b £

z N N

z CN+l X, 2 TN X .

N=0 N N=0 N

Under the transformation just mentioned this becomes the

umbral equation

Teexp Tx = Ceexp Cx +exp Tx , (A.18)

where x is the formal variable and C and T are

umbrae.
We can rearrange (A.18) as

T exp Tx = C exp Cx . (A.19)
exp Tx

Although we did not go into the formal details of the
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definitions of the integral of umbral expressions such
as exp X8, these details can be obtained by recalling
the definition of integration of formal power series and noting
that we want T to be homomorphic with respect to this
operation also. These formal details justify the usual
manipulations. We can rewrite (A.19) using (A.14) and

integrate both sides of the eguation with respect to x from

0 to x,
X x
d exp Tx
J ax ax =»J g_}?exP Cx ax . (a.20)
o) exp Tx 6)
Integrating (A.20) we obtain
X X
log( exp Tx) | = expcCcx| . (A.21)
o) 0]
We can then transform (A.21) using T_l to
> N
log{ Z Tyly) x_ )= log T,(y)
N= N!
> N
=@ Cyly) x= - Cyly) (A.22)
N=0 T

which is the same as equation (3.16) when we note that TO(Y) = ]
and Co(y) = 0 , and the conclusions are drawn by theorem (3.17) .

We can also solve (4.6) using umbral calculus. Recall

+°®
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equation (4.6) was

[+ [+

X L Ty N+1.§E EE

M=0 N=0 M/Nt1 §r R
[oo] o0 [+ [+

=1 )2 CM N+1 §E EE . L L M. N §§ EE '
M=0 N=0 b T 8T~ M=o N=0 MN ¥T &7

where x and z are formal variables.

This equation transformed to an umbral equation (the umbral
algebra is from doubly-suffixed scalars) becomes

0,1

T sexp T(x,2) = Co'logxp C(x,z)+exp T(x,2) , (A.23)

where x, z are formal variables, C and T are umbrae.

We can integrate both sides of (A.23) with respect to z from

O to z , and use definition A.17 to write

z P
%ngp T lx.2) 9z _ J 3_exp C(x,2) sz . (A.24)
9Z

(o] exp T(x,2) 0

By performing the integration we obtain

z
= exp C(x,z) | . (A.25)

log (exp T(X,Zﬂ
0

O—nN

The result (A.25) can be transformed using T-l to



z .
2

which is the same as (4.12) if we note that lpg(
= log | L 5__) =x , and I CM O(y)':_c_ =x ,
M=0 M1 M=0 ' M1

conclusions are drawn by theorem (4.14).

<«

z
M=0

M
TM,O(y) ﬁ—u

and the
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