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ABSTRACT 

In this paper we consider the probability of connectedness 

of a random graph. All of the graphs we examine are labelled 

graphs with a finite or countable number of vertices. 

We will mention the work of various authors on the 

probability of connectedness of a random graph where various 

probability spaces have been assumed. We intend to summarize 

in detail what is known on the probability of connectedness of 

a random graph with N vertices and the asymptotic behaviour of 

this probability as N+w, when the probability space is the 

triple (R,$,P) where: R is the set of graphs which may be 

obtained from the symmetric graph with N vertices or a countable 

number of vertices by removing some (possibly all or none) of 

the edges: fis an appropriate o-field of subsets of R: 

the probability P is not time dependent and the probability 

assigned to a graph as a member of $ depends only on the 
number of edges appearing in the graph. Where these results 

apply to other sample spaces S l  and probabilities P we make 

the appropriate observations; 

Further, we present work on the probability of connectedness 

of a random graph with M+N vertices and the asymptotic behaviour 

of this probability as M and/or N- when the probability space 

is the triple (R,~,P) where: the graphs of the sample space 

R are bipartite graphs with M+N vertices or a countable number 

of vertices; f is an appropriate o-field of subsets of R: 

the probability P is not time dependent and the probability 

iii 



assigned to a graph depends only on the number of edges 

appearing in the graph. 
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Introduction 

The problem we shall consider is most clearly stated 

after introducing certain notation and definitions. 

Our problem concerns labelled graphs. A labelled 

graph may be described verbally as a number of distinguishable 

vertices (or points), labelled 1, 2, ... and so on, together 
with a number of lines joining some of the vertices. 

+ 
Mathematically it may be described as follows. Let I denote 

the set {1,2, ... 1. A set of the form A ~ ,  where A~I+u{o}, 

B CI' x I+ is called a class of - labelled graphs. An element 

B of such a set A is a labelled graph. 

There are nine different classes of graphs mentioned in 

this paper; we shall name them here. If A={0,1) and B is 

5,~' {(i,j) 1 1< - i< j< - N} or BZrN= { (i,j) 1 l< - - -  i< j< N} or 

'3 IN = {(i,j) 1 I< - i< - N, 1< - j< - N, i+jI or BqtN= {(i,j) 1 
1< - i< - N, 1< - j< - N} respectively, then elements of A ~ ~ I N  are 

called labelled graphs with N vertices of class I or class I1 
+ 

or class I11 or class IV respectively. If A= I u Q  and B is 

B l,N Or 2,N Or then elements of A  bit^ are 3,N Or B 4 , ~ r  

called labelled graphs with N vertices of class V or class VI 

or class VII or class VIII respectively. If A= {0,1} and 

'= 'M,N 1< i< M, M+1< j< M+N) r then elements of = {(i,j)l - - - - 
B A are called bipartite graphs of type M,N. 

We will use the symbol fiN to denote the set of all glass J 

graphs with N vertices where J is one of I, 11, ... VIII, and 



t h e  p a r t i c u l a r  va lue  of J w i l l  be made c l e a r  by t h e  con tex t .  

W e  w i l l  use  Ci 
M,N  

t o  denote t h e  set of a l l  b i p a r t i t e  graphs of 

type  M , N  wi th  M+N v e r t i c e s .  

If @ '  < ~ ( i , ~ > ( i , j ) ~ B  
i s  a l a b e l l e d  graph, then  w 

( i f ] )  
i s  t h e  number of edges jo in ing  v e r t e x  i t o  v e r t e x  j. These 

edges a r e  considered t o  be d i r e c t e d  from i t o  j i f  t h e  graph 

i s  an element of n N  for J equals  111, I V ,  V I I ,  or  V I I I ,  

o therwise  t h e  edge i s  considered t o  be undirected.  

B Let  i , j  be v e r t i c e s  of a graph we A . W e  say i and j 

a r e  connected i f  i = j  o r  i f  i # j  and t h e r e  i s  a f i n i t e  sequence 

i = iO,il, ... i = j  of v e r t i c e s  such t h a t  f o r  each k f  n 

Ockcn-1, w - -  >1 o r  w . >1. A graph w i s  
(.ik f ik+$ - (lk+l'ik) - 

connected i f  any p a i r  of i t s ' v e i t i c e s  a r e  connected. For 

any c l a s s  of graphs w e  w i l l  denote  by % t h e  s e t  of a l l  

B connected graphs w i n  A . 
For each of c l a s s  I through class I V  graphs w e  w i l l  

d e f i n e  a p r o b a b i l i t y  func t ion  PN on t h e  s e t  of a l l  s u b s e t s  of 

n~ . Also, we w i l l  d e f i n e  a p r o b a b i l i t y  func t ion  P 
M I  N 

on t h e  

set of a l l  s u b s e t s  of R M f N .  

For any s t r u c t u r a l  proper ty  X (some cond i t ion  on t h e  

graphs w ,  normally s p e c i f i e d  on t h e  w 
L j )  

belonging t o  w )  , 
one could ask f o r  t h e  va lue  of PN(x ) or P (X ) ,  where x 

M , N  

i s  t h e  set of a l l  graphs belonging t o  CiN o r  fl 
M , N  

r e s p e c t i v e l y ,  

having proper ty  X. 
* 
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The problem we shall consider is: Let the structural 

property C be that w is connected. What is pN(&) and 

P ( $ ) ?  We shall also examine the asymptotic behaviour 
M,N 
of PN(G) as N becomes unbounded and of P (&) as M and/or N 

MtN 
become unbounded. 

It is convenient to conceptualize PN(G) as follows. We 

shall consider an artificial object we name a random graph. 

A random graph, we will assume, is a graph belonging to aN but 

we do not specify exactly which graph; it has probability 

pN ( { w  1 )  of being w for each graph w belonging to nN. We 

can describe a random graph by: An edge, w 
(it j) 

=I, appears 

in the graph with probability PN(fw 1 w j)=l ) =  - p and does 

not appear with probability 1-p. The probability that a 

random graph is connected is PN(( w I w 
(1 , j) =I = pN(e). 

(If we are considering S1 
M, N and PM , t a random graph has a 

similar meaning) . 
In chapter one we state a few basic definitions and results 

of probability theory. After these preliminaries we define 

a probability function PN for each of classes I, 11, 111, and IV 

and a probability function P 
M,N 

for each S1 M,N. 

In chapter two we discuss some methods of analysis which 

are useful in examining labelled graphs. 

Chapters three and five summarize what is currently known 

on the probability of connectedness PN(&) for any PN 

defined on classes of graphs I, 11, I11 or IV. Most of the 

work done pertains to class I graphs. (Graphs of class one 



are graphs obtained from the symmetric graph on N vertices 

by removing some, possibly none or all, of the edges) . We 

have restricted the scope of the summary as follows: In 

chapter three we summarize in detail, results on PN(k) where 

SIN is one of classes I, 11, I11 or 1V and the respective PN 

is not time dependent and assigns each edge of a random graph 

the same probability of appearance. Results of this kind 

were obtained by E. N. Gilbert ['IandL2] . In chapter five we 

mention, but do not summarize the work in detail, results 

obtained by P. Erdos and A.  Renyi I*] and[51 on certain condi- 

tional probabilities related to PN(%) where QN is class I, 

and PN may or may not be time dependent but still assigns 

the same probability of appearance to each edge of a random 

graph. We also mention some results of A. Renyi 13] on the 

number of connected graphs of class I for a given N. We 

summarize, but not in detail, results obtained by V. E. 

Stepanov 16] and[710n the connectedness of a random graph OF. class1 

chosen according to a PN which is time dependent and assigns 

different probabilities of appearance to each possible edge 

at each time t. We mention briefly the work of E. Wright 181 

on enumeration of connected graphs from classes I, to VIII 

(no PN defined), which is somewhat related to our topic. 

In chapter four we present work which is an extension of 

Gilbert's results. It is an extension in the sense that we 

examine P (g) for bipartite graphs, which he did not 
M,N * 

consider, and we use reasoning and methods similar to Gilbert's. 
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The P we w i l l  d e f i n e  i s  n o t  t ime dependent and a s s i g n s  
M,N 

t h e  same p r o b a b i l i t y  of appearance t o  each edge of a random 

graph. 



Chapter I 

In this chapter we mention a few basic results from 

measure and probability theory. We refer the reader to the 

basic texts of, P.R. Halmos [lo] for proof and details of measure 

theoretic results, and L. ~reiman["] for a modern development 

of probability theory based on measure theoretic results. 

51 Notations, definitions and results 

In a probability theory, the symbol Q is used to denote 

a set called the sample space, whose elements W, are called 

elementary events or sample points. An event is any subset 

of . The elements of the set Q are considered to be the 

possible outcomes from a given experiment, that is, the w are 

minimal events, disjoint, and one is bound to occur in the 

experiment. 

Definition 1.1 A class of subsets of a set f2 is a 

field if it is closed under finite unions, intersections, 

and complementation. The complement of fl is the empty 

set 9. 

Suppose we have a sample space Q and a field 

subsets of a .  Then we will say * 



Definition 1.2 The triple (a , g , ~ )  is a finite 

probability space if P is a non-negative, real valued 

set function on satisfying 

i) P(Q) = 1 , 

ii) for A, B E and disjoint 

P (Au B) = P (A) + P (B) . 

Definition 1.3 A class of subsets, $ , of Q is a 0-field 
if it is closed under complementation, and under countable 

intersections and unions. For any class @ of subsets of 

denote by f ( ~ )  the smallest 0-field containing @ . 

Given a sample space a and a 0-field ,$ of subsets of Q , 
we will say 

Definition 1.4 The triple (a ,f , P) is a probability 
space if P is a non-negative set function defined on 

satisfying 

ii) for every finite or countable collection' { B ~ ]  

of sets in %such that Bk is disjoint from 

For a given probability space (a ,$ , P) we can define *a 
set function on f which is related to P and particularly 
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useful, called the conditional probability. To understand 

the motivation for this conditional probability, suppose we 

are conducting an experiment and we already have some infor- 

mation about the sample space a ,  for example, that an event A 

has occurred. This information will probably tell us something 

about the possible occurence of another event B. We state 

the following elementary definition of conditional probability, 

which is all that we need in this paper. (See Breiman 11 I 

chapter IV for a more sophisticated discussion.) 

Definition 1.5 Let (Q, f,~) be a probability space, then 

for sets A, B E $ such that P (A) > 0, the conditional 

probability of an event B given that A has already 

occurred is the ratio P (Bn A) and is denoted by P (B/A) . 
Po 

(The same definition can be made for a finite probability space). 

In probability theory we often encounter a standard problem 

of measure theory entitled "extension of measures". Halmos r 101 

discusses extension in Chapter 111. In probability theory 

the question is (very briefly): suppose we have a given Q and 

finite probability space ( a ,  %,P) and suppose further that f 
is a o-field containing $; when is it possible to define a 
unique on making (Q, Y,F) a -probability space, with 
P and P agreeing on ? Breiman (chapters I and II), 

discusses the coin tossing experiment, how the extension problem 



arises in analysing coin tossing, and the extension of 

probability measures in general. 

The sample spaces and probabilities we are interested in 

correspond closely to a biased coin tossing experiment. An 

analysis of this extension problem gives information which 

we can adapt easily to our probability spaces. 

Let Q be the sample space consisting of infinite sequences 
+ 

of 0's and lls, that is, Q = {0,11~ . Denote a point in Q 

by w = (w1,w2, ...). Subsets of Q are denoted A, B, etc.. 

For each finite N, let QN = {0,1} (1 ,...N) . Let AN be the 
set of all sets A C Q  of the following form: There is a B C QN 

such that A = {w = ( W ~ , W ~ ,  . . .) I (wl , wZ , .. .wN) E B). gN is 
easily shown to be a field.. We define PN on g N ,  by 

p is a fixed real number 0 <p <1. 

It is easy to check that (G!,$N,~N) is a finite probability 

space. Let g be the smalles; o-field containing all the N. 

We would like to determine whether or not can be defined 

on % in such a way that ii agrees with PN on for each 

finite N, and (Q, f ,F) is a probability space. The main . 
difficulty is the following. Let 



where B is a subset of SIN, for some N - >1. 

Another way to write A is 

A = {U = ( u ~ ~ u ~ ~ . . . ) E  a1 (U lf... u N + l ) ~  C} r 

where 

C = {U = (alr . . u ~ + ~ )  E QN+il (wlI . .wN) E B l  

So if P is to agree with PN on each gN we must make sure that 
P and PN+l N are consistent, that is we must make sure that 

PN(B) = PN+l (C) for the sets B and C as above. We have 

and 



(where we have used'   we^ 1 U ~ + ~ = O }  = { (wl, .. .wN, 0) I 

We can conclude that for all N, the PNfs are consistent on any 

representation of such a set A. Because of this, the 

Kolmogorov Extension Theorem, (see Breiman [I1] , chapter I1 and 
appendix) applied to the spaces (,Q,xN,PN) ensures that a 

unique P can be defined'on $ so that agrees with PN on 

for each N. 

52 Some Probability Spaces referred to in this paper 

In the introduction we classified the sample spaces ,QN 

and OM We shall now define PN on the field SN, of all 

subsets of ,QN for each of the classes of graphs I,II,III and IV. 



We also define P 
MtN 

on the field S 
MIN 

of all subsets of RMrN. 

We will still refer to the probability spaces as classes of 

graphs (it will be clear when we mean (PNtSNtPN) or just PNl 

from the context: similarly (SlMtNISMtNtPMtN) or just SIMtN). 

Bi Let us denote by Sl, the sets A where A = {0,1) and 

B3 = (  1 i t  1 - <j, i } and B4 ='{(i,j) 1 1 - <it 1 - <J 1. 

Bi Which set A , fl is to be interpreted as, will be clear from 

the context. Suppose X and Y are two countable index sets 

+ (both equivalent to I ) and X n Y  = 9 ; we also let Sl denote 

B the set A where A = (0,l) , and B ='{(x,y) 1 x EX, y EY 1. 
Let ZN be the set of all subsets, C, of Sl such that 

It is easy to see that gN is a field. We shall denote by 

the smallest sigma .field containing A N ,  for each N. Then 

is a o-field of subsets of Sl. Similarly, let gMrN be the 

set of all subsets, C, of Sl such that 

Again, it is easy to see, is a field. We shall use 

to denote the smallest sigma field containing go M,N for 
each M and N. which ,$ we mean kill be clear from the 
context. * 



We will define PN and P 
MfN 

for each N or (M,N) 

respectively, so that they satisfy a consistency condition 

ensuring a unique P can be defined on g, which is an 
extension of each PN (or each P ) that is, P agrees with 

MfN 
P on SN for each N (or agrees with P N MfN on S MfN 

for each M,N) . 
For any particular graph w belonging to Q (or QMfN) N 

we denote Cw 
(id) 

by A and call this the number of edges in 
w 

the graph. For each QN (or SI ) we can determine the 
MfN 

quantity max Cw 
(iJ) 

(or max Cw 
(if j) 

) which we denote 7 
w&Q* w w€Q M,N N 

(orxMfN), again we will let the context make clear which 

class of graphs is being referred to. We will use xN and 7 
MfN 

in defining PN and P 
MfN 

respectively. For class I graphs, 

To conclude this, count the elements (if j ) of B1 IN* 
The 

N N (N-1) - number is C ( - 1  = . For graphs of class 11, AN is 
j=2 

This is because B 
2,N 

allows N elements (i,i) in addition to 

the elements of BltN. The set B 
3 , N  

contains all the elements 

(i,j) of BlfN and in addition all the elements ( j ). Therefore 

we have for cLk8ss 111 



The set B 
4,N 

contains all the elements (i,j) of B 
3,N 

and, in 

addition, N elements (i,i). So, for class IV graphs 

For bipartite graphs of type M,N it is easy to see that 

For class I graphs as nN, we define PN on SN cor each N 

as follows. Let p be any fixed real number such that 0 <p <1. 

Then we set 

and 

' ~ ( { w l  o(i,j) = o } = l - p = q  1 

for each fixed (if j) EB1. 

and 



The last statement of definition 1.11 is equivalent to the 

statement: events'{wl w 
( i d  =lIp 1 ~ 1  U(k,l) =~,'{wl w (m, n) "1 

... and so on are all independent of each other if 
(it j) # (k,l) # (m,n) . . . and so on, and therefore an event w 
which is an intersection of independent events of this type, 

is assigned a probability which is the product of the 

probabilities of each of the events in the intersection. 

The last statement of definition 1.11 can be more compactly 

written as 

where X = Cw 
( i d  

and xN = N(N-1) . 
w 2 

Of course, for all A C nN 

PN (A) = C P~({wI 

Instead of taking p a constant in the definition of PN, the p 

appearing in (1.11) and (1.12) could be taken to be a function 

of time, for example p(t) = The resulting PN is then 

time dependent. This kind of probability function is mentioned 

in chapter V where we summarize the results of various authors. 

We define PN for the classes of graphs 11,111 and IV 

similarly; also we define P 
MtN 

for bipartite graphs of type 



M,N similarly, keeping in mind that XN or xMtN depends on 
the class. We note that pN({w}) according to (1.11) and (1.12) 

depends only on the number of edges appearing in w but not 

on which edges appear. 

is a finite probability space. As we have already noted, we 

would like to ensure that there is a unique defined on the 

field $ , of subsets of Q for each respective class, in such 
a way that P agrees with PN on QN for each N, (or P agrees 

with P 
MtN 

on Q 
MtN 

for each M and N) for each class respectively. 

The similarity between this problem and the extension problem 

arising from an analysis of biased coin tossing is immediately 

apparent. 

We shall show that the necessary consistency condition 

holds for class I graphs. It holds similarly for the other 

classes. 

Suppose A C Q  is a subset of the form: There is a B c QN 

The consistency condition is : PN (B) must equal PN+l (C) . 



17. 
- - - 

~ e t  X = AN+1 - AN. Thus for O E Q ~ + ~ , ,  A is the maximum 

possible number of edges attached to the vertex N+1 of the 

graph w. For each jl 0 - <j - <X, let 

S = '  {oe C 1 o has exactly j edges attached to the 
j 

vertex N+l 1 .  

Then C is the disjoint union 

Let r: QN+l + Q be defined by: 

Now, for each we B, let 

Then 

is the binomial coefficient 3'- - I 

A! (A-j) ! 



and for each u &T(W,]) 

Also, S. is the disjoint union 
3 

- 
(s.1 = 1 . (:) j  A-j 

PN+l 1 wsB pN(w) P q 

Finally, 



The consistency condition is satisfied. 

It is comforting to know that the desired can be 

defined on $, because we are now assured that it is valid 
to look for any conclusions about the probabilities of events 

contained in .Q defined in terms of arbitrarily large N. 

In particular: let & ( N )  denote the set of all connected 

graphs in .QN. Since PN was defined for finite N  we cannot 

legitimately discuss lim PN ( ($ ( N )  ) . However it makes sense 
N-' 

to discuss lim F ( % ( N ) ) ,  and we know that agrees with PN 
N-tm 

for each N .  In subsequent chapters we shall discuss 

lim ( & ( N ) )  for graphs of class I to IV and bipartite graphs. 
N+m 

Please note however, that we continue to use the not quite 

legitimate notation, lim P N ( &  ( N ) )  when we really mean 
N+Q) 

1 ( ( N )  ) . We also drop the notation 6 ( N )  and use just & . 
N+m 



Chapter I1 

We discuss here some mathematical methods which will be 

used in subsequent chapters. Where further elaboration may 

be desired by the reader, we mention a pertinent reference. 

Transform techniques are familiar in many branches of 

mathematics. We are interested in a technique usually called 

the "method of generating functions", which is well known. 

A text by W. Feller contains an informative chapter on 

the use of generating functions in the theory of probability. 

We will just briefly outline the method here. 

Definition 2.1 Let ag,al,a2, ... be a sequence of real 
numbers. If 

converges in some interval -s 
0 
<s <so , then A(s) is 

called the generating function of the sequence {a.}. 1 

The variable s is a formal variable, so s itself has no 

significance. * 



If a formula is known which gives ai for each i, then 

{ai} is known. If we can equate the generating function of 

a sequence {a.} to a known power series or to an analytic 
1 

function (either expanded or in closed form) then we consider 

{ai} to be completely known. The fact that in the latter case 

the expansion coefficients corresponding to our'(a.1 may 
1 

actually be difficult to calculate is not of concern. 

The advantage to us of considering the generating function 

of {ai} rather than the sequence itself is that equations 

relating the elements of sequences when transformed to 

equations relating power series, can be manipulated more easily. 

The algebra of power series is well known. The purpose of our 

manipulations would, of course, be to equate the generating 

functions of given sequences (where a formula for the ai is 

perhaps unknown) to known power series or closed analytic 

expressions, and in this way extract previously unknown 

information about the sequences. 

For the algebra of sequences we are assuming addition is 

termwise and multiplication is defined by 

where cn = X aibnei 
i=O 

The transformation which transforms a sequence for which a 

generating function can be defined, into the generating 



22. 

function, is then obviously a monomorphism from the algebra 

onto the usual algebra of convergent power series. (Note: if 

two power series A and B are convergent for 1x1 <r 1 and 1x1 <r2 

respectively then A+B and AB are convergent for 1x1 <min(rl,r2)). 

52 Formal Power Series 

In chapters I11 and IV we shall perform calculations 

involving power series which have zero radius of convergence. 

To justify these calculations, we give briefly, the basic 

definitions of the algebra of formal (disregarding convergence) 

power series. The use of formal power series can be justified 

in detail as in, for example, a paper by E.T.   ell[']. A 

very readable account of the algebra of formal power series is 

given in a text by H. Cartan [13] . (Af ter defining formal 

power series operations, below, there is no need to restrict 

definition (2.1) to convergent power series.) 

Definition 2.2 A formal power series A, is a series in 

i a formal variable 9, A = f are where the ai are from 
A i=O 

a scalar field (we will ;se ) and 

not have zero radius of convergence. 

the sum may or may 

03 

Definition 2.3 Two formal power series A = 1 aiei ,and 
i=O 

QO 

B = C bid are equal if and only if ai = bi for all 
i=O 



Operations of scalar multiplication, addition of formal 

power series and multiplication of formal power series are 

defined by: 

Definition Let A = Z aid and B = L big1 be formal 
i=O i=O 

power series and let a be a scalar, then 

Addition can be performed any finite number, m, of times 

in succession using (2.5) m times. It is easy to see that 

addition is commutative, associative, has an identity , 
w 

0 = L Oei , and that additive inverses exist. Multiplication 
i=O 

can also be performed any finite number, m, of times in 

succession. For m power series A , B , .  ..X multiplied together 

w e  obtain, by using (2.6) m times, 
* 



where the inside sum is over all partitions of n, 

i + i +  ...+ im = n . 1 2  

Multiplication is commutative, associative, and has 
00 

identity 1 = I: aiei where ai = ; further 
i=O 0 otherwise 

00 

A = I: aiei has an inverse under multiplication if and only 
i=O 

if a,# 0, (this last is proved in the text by Cartan [I3] and 

the other statements are easily checked). 

00 

Let A = Z a .ei , the Order w 
1 i=O 

r(A), of this formal power 

series is defined, only if A # 0, to be the smallest number i 

for which ai # 0. A formal series A is of order - >k if it is 

0 or if w (A) - >k. Even though w (0) is not strictly speaking 

Definition 2.7 A family of formal power series (Ai)icI, 

00 

where each A is a formal series Z anri 8" , and I is i n=O 

a countable index set, is called summable if: for every 

k, w(Ai) - >k except for a finite number of indices i. 
We define the sum of a summable family of formal series * 

(Ai) ic1 to be 



- where for each n, an - an,i . 

The above definition is reasonable because the condition of 

summability ensures that for a given n, the an are all zero 
f i 

except for a finite number of indices i. The operation,of 

addition of a summable family of power series generalizes the 

finite addition defined in (2.6) . This generalized addition 

can be readily seen to be commutative and associative in the 

sense that, for each n the sum an = C may be 
ieI 

rearranged in any order or associated in any way since the 

a n,i are from a field and 

finite number of non-zero 

saying that Z Ai can be 
ieI 

the sum is actually finite (only a 

a s . This is the same as n,i 

performed in any order over ~ E I ,  or 

with any grouping of terms, 
00 

It is convenient to name a formal series E aiei where 
i=O 

a,=O for i f p; we shall call such a series a single term 

series of - degree E. The family of single term series 

n 
(ane  EN is obviously summable and its sum is the formal 

03 i power series 1 aie . We note that the product of two 
i=O 

00 00 
i formal power series A = C ai8 .and B = Z bigi , is the sum 

i=O i=O 

of the summable family formed by all the products of sihgle 

term series (a eP) (b eP) = a b ep+q , If we let 
P P P q 



I be NxN (so the indexing set is a set of ordered pairs), then 

the product of A and B may be written as the sum of the 

sumable family (A (i) ) iEI where A = a b  eP+q  PI^ P q 

Proposition 2.8 Let (Ai) iEI be a summable family of 
00 

formal power series, where Ai = Z anti en , and let n=O 
w 

C be a formal series C = E ciei , then 
i=O 

CD 

proof: (E A ~ )  *C = ( anen) =C where an = b anti 
is I n=O is1 

This can be written as the sum of the summable 

family 

Now the sum b a is actually a finite sum for 
is1 pti 

each p, and we can write this as 

This we can again rewrite as the sum of the summable 

* 
family 



It is readily seen that this family is still 

summable. Now consider 

The square bracket can be rewritten as the sum of 

the summable family 

Now consider 

since for each (p,q) the sum over is1 is finite, it 

is easy to see that we can also write this as the 

sum of the summable family 

We thereforehave (1 A. ) *C = 1 (A~oC) since they 
is1 1 is1 

are both the sum of the same summable family. 

w 

Consider two formal power series A = 1 aiei and 
i=O 

00 
i * 

B = E bi8 . Suppose b = 0 or, w (B) >1. For each it the 
0 - i=O 



expression a . B ~  is defined and the order of a i ~ i  is >i 
1 - 

i 
(since bO = 0). The family (aiB ) ic{o,l,.. is easily 

seen to be summable. Therefore it is reasonable to make 

the following definition. 

00 00 
i Definition 2.9 Let A = Z aiO and B = 2 bigi , 

i=O i=O 

be two formal power series and let bo = 0. Then we 

define the composition of A and B, denoted AQB, by 

I 

- 
which is a formal power series with the terms in d 

rearranged. 

Various propositions can be proved regarding the composi- 

tion of formal power series. We list a few below. For proofs 

of these we refer the reader to the text by H. Cartan 1131 . 
If A and B are two formal power series as in (2.9) and 1 is 

the multiplicative identity, and C is the formal power series 
00 i 

C = C  c.8 , then 
1 i=O 

(A+C)oB = AoB + COB , 



and if co = 0, then 

If (AilieI is a summable family as in (2.8) and B is again 

as in (2.9), then 

Definition 2.10 The derivative with respect to 8 of a 
00 

formal power series A = 6 aiei is given by: 
i=O 

Proposition 2.11 The derivative with respect to 8 of a 
w w 

sum of two formal power series A = X aiei and B = 6 bigi 
i=O i=O 

is given by + d B d e *  

proof: A + B = x (ai+bi)eA t 

i=O 

whereas 



We apply definition (2.3) to get the desired result. 

It is easy to extend proposition (2.11) to any number of 

summands by induction. It is also easy to show d aA = ad A . 
de de 

Proposition 2.12 The derivative with respect to €3 of the 
w 

sum of a summable family (Ai)i,l A i = Z  anti en is 
n=O 

equal to the sum of the summable family 
&qicI 

00 03 

Proof: d Z Z anti e n = d  z ( Z  anti en 
de is1 n=O de n=O is1 

by definition of the sum of a summable family. 

Now we find the derivative on the right hand 

side above and we obtain 

On the other hand 

Therefore 



Propos i t ion  2.13 The d e r i v a t i v e  wi th  r e s p e c t  t o  8 of 

a product of two formal power s e r i e s  A and B a s  i n  4 2 . 1 1 ) ,  

i s  given by d AB = A d B + B d  A . 
de ae de 

Proof:  d  AB = d  5 (X aj)on-j )en 
de de n=O j = O  

Whereas 



We apply definition (2.3) to get the desired 

conclusion. 

Proposition (2.13) can be extended to a product of N 

power series for any N, by induction. A particularly useful 

N case is the derivative of A . 

Proposition 2.14 The derivative with respect to 8, of 

N m 

A where A = Z aiei , is given by d = ( N A ~ - ~ )  
i=O 

Proof: By proposition (2.13) , (2.14) is true for N = 2. 

Let us suppose that d AN = NAN-'d A . Then, 
de r e  

AN=l = (A) ( A ~ )  SO , 



P r o p o s i t i o n  2 . 1 5  T h e  der iva t ive  w i t h  respect t o  8, of 
00 i 03 

AoB w h e r e  A = L ai8 and B = Z bigi . bo=O, i s  
i=O i = O  

P r o o f  : d (AoB) = d E aiBA 
de de i = O  

00 

= C d a i ~ i  ( w h e r e  w e  have used ( 2 . 1 2 )  ) 
i=O de 

00 

= Z ai ( i )  Bi-' d B ( w h e r e  we  have 
i=o de 

used ( 2 . 1 4 ) )  

= .("i+l ( i + l ) ~ l )  d B ( w h e r e  we  have 
i = O  de 

used ( 2 . 8 ) )  



Higher o r d e r  d e r i v a t i v e s  a r e  found by success ive  

a p p l i c a t i o n s  of t h e  above r u l e s .  

W e  s h a l l  now d e f i n e  an opera t ion  w e  ca l l  i n t e g r a t i o n  of 

formal power series. 

00 00 

D e f i n i t i o n  2.16 I ( z t nen)de  = 1 tnen+' 
0 n=O n=o n + l  

Then a l s o ,  P 

and 
8 Q) 03 

I d  ( C  a n e n ) d e = C  anen . 
o de n=O n = l  

These a r e  e a s i l y  checked. 

It i s  easy t o  apply t h e  d e f i n i t i o n  t o  s p e c i a l  cases  of 

formal power series, f o r  example, e 01 k(AoB)df3 = AoB , 

and s o  on. 

. 



Certain compositions of formal power series have 

properties formally analagous to well known scalar functions 

and we name these power series accordingly. For example, 
03 

ai i if A = C - 9 and B is any appropriate formal power series, 
1 ! i=O 

03 ai Bi 
that is, w(B) - >1, then AoB = C - is named exponent (aB) . 

i=O i ! 

It is possible to check that exponent(aB) has the usual 

properties d exp(aB) = a exp(aB) , and so on. One of these 
aB 

formal power series which we shall use later is named 

Definition 2.17 We denote the formal power series 
00 

1 (-1) 
n+l @n by loge(l+8). If A is any formal power 

n=l n 
w 

series C anen with w(A) - > 1 (that is, at least, ao=O) 
n=O 

00 

then log(A+l) = C (-1) n+l An 

n=l n 

n Since we took w (A) - >1, the family (A is summable and 

Proposition 2.18 Let A, and log(A+l) be as in definition 

(2.17) . Then - d log (A+1) = 1 d A . 
de R i d e  

w 
n+l An Proof: d log(A+l) = d C (-1) 

de de n=l n 



The formal series A+1 has first term = 1 # 0, and 

therefore as we remarked previously, A+1 has a 

multiplicative inverse, 1 . We can caloulate 1 
Fi A+1 

easily by observing that, 

00 
n+l An-l 1 = C (-1) . We conclude that 

Proposition 2.19 Let A be as in (2.17). Then 

Proof : -- 
0 A+1 de de 



The development of the theory of formal power series 

we have given is, of course, not complete, but it is sufficient 

to explain our use of formal power series in later chapters. 

The algebra of double formal power series, A, where A 

is a double sum in formal variables 8 and A, 

03 w 

A = C  c a, en , where am is from a scalar 
m=O n=O 

field (we will use 1 , 

is defined similarly to the algebra of formal power series. 

All the various definitions and propositions stated for formal 

power series are similarly stated for double formal power 

series. The extension of most of the definitions and 

propositions is obvious. To clarify a few details of the 

algebra of double formal power series we make the following 

comments. * 



w w  

Multiplication is defined by: let A = C C anm en Am , 
m=O n=O 

w w  

B = C Z bnmen Am , then 
m=O n=O 

We defined a special composition of formal power series 

named log(l+~) in definition (2.17). To make the corresponding 

definition for double formal power series the formal power 

series defined as log (1+8) in (2.17) is considered to be a 
w 

double formal power series. That is, 1 (-1)"'l €3" is the 
n= 1, 

CO 00 

same as the double formal power series C = C C c, en hm , 
m=O n=O 

where cnm = if m=O . Then, for A a double formal 
otherwise 

power series with order 21, log(l+A) would be defined as 

w 

Z (-1)"'l A" , where A" refers to the nth power 
n=l. n 

of A under the defined multiplica- 

tion. 



Chapter I11 

In this chapter we will summarize what is currently 

known about the probability of connectedness, and its 

asymptotic behaviour, of a random graph from one of the 

probability spaces ( PN,PN,SN) where PN is not time dependent 

and the sample space QN is the set of class I or I1 or I11 or 

IV graphs. 

In 1959, E.N. Gilbert published a paper entitled 

"Random Graphs " [21.  In this paper, the probability of connected- 

ness of a random graph of class I was investigated. The method 

used applies equally well to random graphs of classes 11, 111, 

and IV and the results differ only slightly for each class so 

we shall state the results for all four classes. This paper 

by Gilbert is based largely on an earlier paper (1956) also 

by Gilbert, entitled "Enumeration of Labelled Graphs" [ll 

The earlier paper is referred to by several other authors who 

afford it some importance. We review both papers in detail 

here, beginning with some introductory comments. 

Consider the probability spaces of Chapter I. The 

family (AA) of subsets of QN, where Ah = { o l  L o 
(Lj) = A}, - W 

satisfies U AA = S'lN and, A n A A ,  = pl , for A# A' . A A =O 

We can therefore write PN ( F )  as 



For the spaces we are discussing, PN ($$n AX) is just the number 

of connected graphs w, with ZU(~,~) = X edges, multiplied by 
W 

the probability of one particular graph with h edges. The 

number of connected graphs (of whatever class) having 

C W  
( i d  

= A edges and belonging to% we will denote by CNh ; 
W 

the total number of graphs with N vertices and edges we 

will denote by T 
NA 

We can now rewrite (3.1) using (1.11) and 

this notation, as 

If CNX can be determined for all N and A then we have an 

explicit expression for PN(g) for all finite N. (This does 

not necessarily aid in finding asymptotic behaviour.) 

Gilbert's earlier paper presents the generating functions 

for C for graphs of classes I through VIII. Recall that 
N A 

the classes V to VIII are similar to I to IV, but allow any 
* 

number of multiple edges between vertices. For these graphs 



- 
AN does not exist and therefore, we cannot define a probability 

function on the sample spaces Q in the same way as we did 

in (1.11). We state Gilbert's results on CNA for all eight 

classes of graphs but continue to restrict our summary of 

results on connectedness of random graphs to the first four 

classes of graphs. 

For each of the eight classes of graphs, TNA can be 

determined. For classes I through IV, TNA is easily seen 

to be the binomial coefficient where XN is different for 

each class, as determined in chapter I. For class V, notice 

B that Q = A where B is the same as for class I, that is BIN . 
It follows that TNA for class V is just the number of 

combinations of A lines which can be drawn from XN (for 

classI) lines with repetitions allowed, that is 

. Similarly, for class VI, 
A 

TNA= (N(N+l)/2 + A- ; for class VII, TN 

1) ; A 

for class VIII, T~ = ( N ~  iih- 1). 

Now we proceed to counting connected graphs with N 

labelled vertices and A edges. First we define a subgraph of 



A recursion relation for T can be obtained through the 
Nh 

following considerations: In a graph with A edges, belonging 

to %?+1' the vertex labelled N+1 is connected to some number,b, 

of other vertices (possibly b=O ) ,  forming a connected 

subgraph with b+l labelled vertices and some number pdX - of 

edges. The remaining part of the graph has N-b vertices and 

A-p edges. The b vertices connected to N+1 can be chosen in 

ways. For each of these choices there are Cb+l 
t F1 

possible connected subgraphs and TN-b,h-F1 possible remaining 

parts. If we sum over all of these possible graphs by summing 

over b and p, we obtain TN+l,h 

We must specify here, that To ;A = ( 1 if X=O . 
0 otherwise 

We cannot allow Too = 0 because in the above 

sum we would lose the case when vertex N+1 is 

connected to N other vertices by X lines. 

A compact derivation of a generating function for CNtA, 

can now be obtained using the generating functions, which we 

define below, and formal power series manipulations. (See 

chapter 11). 



Let  us  in t roduce  t h e  genera t ing  func t ions  

and 

Severa l  comments can be made regarding  C 
N I A  

and T 
N I X  

. F i r s t ,  

f o r  a  given N ,  TNIA = 0 i f  X>rN f o r  graphs of c l a s s e s  I t o  I V .  

W e  no te  t h a t  C N I A i  T 
N 1 

. Fur the r ,  C N I A  = 0 i f  X < N - 1 ,  f o r  

a l l  e i g h t  c l a s s e s  of graphs.  Also, f o r  c l a s s e s  I t o  I V ,  

C (y)  and TN(y) a r e  f i n i t e  sums and hence converge f o r  a l l  y. N 

For c l a s s e s  V t o  V I I I  w e  can apply t h e  r a t i o  test  t o  t h e  

series T (y)  t o  f i n d  t h a t  CN (y) and TN (y) converge a t  l e a s t  N 
f o r  l y l  <l. For c l a s s e s  V t o  V I I I ,  w i th  t h e  appropr ia t e  xN 
r e s p e c t i v e l y ,  

= l i r n  1 ( A g  + h+l -1 )  ! A !  (xN-1) ! 
1 -%a 

X+1 
l i r n  
A+= 

T ~ , ~ + l  

T ~ ,  X yA 



4 4 .  

We can now simplify equation (3.3). Multiplying both 

sides by yA and summing over h yields 

This becomes, using (3.4) and (3.5) 

which becomes, according to the definition of a product of 

two power series 

Equation (3.8) relates CN+l (y) (the term b=N) to C1 (y) , .. 
. .CN (y) and the known Tv (y) . We can, however, proceed to 

solve (3.8) for CN+l (y) explicitly in terms of Tv (y) . 

We will deviate from Gilbert's paper here, and solve (3.8) 

for CN+l(y) by using formal power series. Gilbert uses umbral 

calculus to solve (3.81, a method which is just as concise as 

the following but probably less familiar. In appendix A we will 
* 

give the basic definitions of umbral calculus and then show 



Gilbert's solution of (3.8) . 
By multiplying both sides of (3.8) by xN and summing over 

N! 
N we obtain 

Equation (3.9) is an equation in formal power series (see 

chapter 11). For convenience, we drop the y dependence in the 

notation, writing just TN rather than TN(y) for example. We 

can rewrite (3.9) as 

which, using definition (2.6),is the same as 

Let T and C be the formal power series: 

00 

(Note that since TO(y) = 1, l+T = 1 N -1. 
N=O 



46. 

We can find the derivatives of T and C with respect to x, 

using definition (2.10) : 

and 

We can now rewrite (3.11) as 

Proceeding to solve for C, we integrate both sides of (3.14) 

from 0 to x. 

* 

using definition (2.16) and proposition (2.19) we perform 



the integration to get 

log (Ttl) = C . 

From (3.12) we can write (3.15) as 

Since TO(y) = 1 we could write this as 

In summary, we state the following theorem: 

Theorem 3.17 Let TN (y) and CN (y) be as in (3.14) . 
Then CN(y) is N! times the coefficient of xN in the 

00 
N formal power series expansion for log Z TN (y) x- , 

N=O N! 

where TO (y) = 1 by convention. Also, (from (3.11) ) , 
CN (y) is ( - 1  ! times the coefficient of x N+l in 

the formal power series expansion for the quotient 



Recall that in paragraph five of this chapter we have 

already determined TNA for the eight classes of graphs 

mentioned. We can now use the expressions for TNx in the 

definition of TN (y) , (3.5) , and obtain TN (y) for each class 
of graphs. For example, for class I graphs, 

Determining TN(y) for classes 11, 111, and IV is similar. 

For class V graphs, 

(where (a) = a- (a+l) (a+2) (a+n) ) , 



49. 

We can determine TN(y) similarly for classes VI, VII, and VIII. 

The results can be summarized as: 

classes V to VIII where a = 1 classes I to IV 

N (N+l) /2 classes I1 ,VI 

N (N-1) classes II1,VII 

classes IV,VIII . 

Equation (3 .l8) can be used in theorem (3 .l7) and we have 

then determined CN(y) for each of the eight classes of graphs. 

If we wish to obtain CNA1s then, we use ( 3 . 4 ) ,  and substitute 
03 

CN(y) and TN(y) as sums CNA yh and Z TNA Y' into 
X=O X=O 

equation (3.16) and by equating coefficients of like powers 

of x and y we obtain the CNA1s. 

We shall now summarize the results in Gilbert's later 

paper entitled "Random Graphs" 12]. In this paper Gilbert 

obtained a generating function for PN(%), a recursion 

relation for PN(F ) ,  and also examined the asymptotic 

behaviour of PN (d ) as N - w  . 



SO. 

From the previous results on CNA we can easily obtain 

an explicit expression for P N ( % )  in terms of a generating 

function. Recall equation (3.2) which was 

- 

We will let y = p/q and then we can rewrite the above as 

or, using (3.4) 

A 
N 

00 
h X (Where we have used Z CNh y = 1 CNX y because CNh = 0 

X=O A=O 'r 

A N 
if h'xN .) We now divide each side by q N, multiply by x , 

N! 
and sum over N ,  to obtain 

Using equation (3.16) we can write 



51. 

For each c l a s s  of graphs I through I V  (and corresponding 

p N ( G ) )  w e  only need t o  s u b s t i t u t e  the a p p r o p r i a t e  TN(y) i n t o  

(3 . l 9 )  . W e  can f u r t h e r  rewrite ( 3  . l 9 )  a s  

Where w e  have used To = 0 and p t q  = 1. Recal l  t h a t  IN i s  

given by equat ions  (1 .6) .  (1.71, (1 .8 ) ,  o r  (1.9) f o r  graphs 

of c l a s s  I ,  11, 111, o r  I V  r e s p e c t i v e l y .  

A s  N i n c r e a s e s ,  t h e  d i f f i c u l t y  of f i n d i n g  P N ( g )  from 

(3.19) i n c r e a s e s  r ap id ly .  

W e  can a l s o  f i n d  a recurs ion  r e l a t i o n  f o r  P N ( g ) .  

The v e r t e x  l a b e l l e d  1 must be connected ( r e c a l l  t h a t  

connected means n o t  n e c e s s a r i l y  by a s i n g l e  edge) t o  some 

number 0,1, ... o r  N - 1 ,  of t h e  o t h e r  v e r t i c e s  wi th  

p r o b a b i l i t y  1. For c l a s s  I and c l a s s  I1 graphs,  t h e  

p r o b a b i l i t y  t h a t  v e r t e x  1 is connected t o  a s p e c i f i e d  k-1 

o t h e r  v e r t i c e s  i s  t h e  p r o b a b i l i t y  of t h e  s imultanecus and 

independent events :  I) k v e r t i c e s  are connected, which has  

p r o b a b i l i t y  pk($) ,  2 )  each of t h e s e  k v e r t i c e s  does no t  



have an edge joining to any of the N-k other vertices. 

There are (N-k)k independent events involved here and each 

of them has probability q. The probability that they all 

occur simultaneously is q (N-k) k. So, 1) and 2) give us, 

P k ( p  q (N-k)k is the probability that a given k-1 points 

are connected to 1. Further, there are (:I:) ways of 
choosing k-1 points to have connected to 1. So, the 

probability that 1 is connected to exactly k-1 other points 

is just (:I:) ~ ~ ( 6 )  9 k(N-k) for class I ,I1 graphs. 

A similar analysis gives for class 111, and class IV graphs 

the probability that 1 is connected to exactly k-1 other 

vertices is 2k (N-k) . Summing over k we get 

where c = 1 class 1,II graphs, 
{1 class TI1 ,IV graphs . (3.20) 

The same consideration for obtaining a recursion relation 

applies to another probability, possibly of interest, that is, 

the probability %, that two specific vertices i and j are 
connected. The probability that vertex i is connected to 

exactly k-1 of N-2, other vertices, none of them vertex j, is 

k-1 = N-2, we sum all the ways that vertex i may be not * 



connected to vertex j. SO, 

where c is as in (3.20) . 

We can rewrite the sum as 

The equations (3.20) and (3.21) solve the problem of 

connectedness for a random graph of class I to IV, chosen 

according to the probability function PN. Theoretically 

PN(g) can be calculated for any N. Now it is very interesting 

to examine what happens to P ($) as N increases without bound. 
N 

As N increases the number of paths by which two given 

points may be connected increases. It would, therefore, not 

be surprising if % approaches one as N increases without bound. 
That pN($) also goes to one, which is shown in the following, 

is more surprising since increasing N increases the number 

of vertices which must be connected and the minimum number of 

edges which must appear. 

An upper bound on 1 - PN($) and on 1 - $ is found by 
* 

noting that Pk(F) < - 1 for all k, so from (3.20) and (3.21) , 



W e  s h a l l  use  t h e  i n e q u a l i t y  

which can be v e r i f i e d  by not ing  t h a t :  The only zeroes  of 

k(N-k) - [ (N-2 )k  + N] i n  t h e  i n t e r v a l  1 < k < N / 2  occur a t  
2 - - 

t h e  endpoints ,  t h e r e f o r e  t h e  func t ion  cannot change s i g n  i n  

t h e  i n t e r v a l .  I t  i s  easy t o  check t h a t  t h e  s i g n  of t h i s  

func t ion  i s  p o s i t i v e  i n  t h e  given 

when k  = 2 ,  2  (N-2) - (N-2) 2 + N 
2 I 

We s h a l l  a l s o  use  

i n t e r v a l .  (For example, 

> o  .) - 

f o r  N / 2  LkL- N - 1 ,  (3.25) 

which can be proved from (3.24) by j u s t  in terchanging k and 

N-k i n  (3.24) . 
Using (3.24) and (3.25) w e  can w r i t e  * 



for 1 < k  - - <N-1 . 

Substituting this bound on q Ck (N-k) into (3.22) , we obtain 

which can be written as 

The first sum on the right hand side of (3.26), we can rearrange 

as follows, 



The second sum on t h e  r i g h t  hand s i d e  of (3.261, w e  can 

rea r range  a s  fo l lows,  

W e  can now rewrite (3.26) using t h e  above. So, 

< qcNI2 ( (1  + q 1 - P N p  - c(N-2)/2)N-1 - * 

+ 



Using the same approximations (3.24) and (3.25) in (3.23) , and 

performing a similar rearrangement of sums and summation 

eventually yields 

We will now find lower bounds on (1 - %) and (1 - pN(g)). 
Let E. denote the event that vertex i is connected to no other 

1 

point. Let E.E. denote the event that vertex is connected to 
1 J 

no other point and vertex j is connected to no other point, and 

so on for EiEjEk etcetera. In general, suppose we have M 

events Ei and we want to know the probability that at least 

one of these events occurs (any number from 1 to M may occur 

simultaneously and still satisfy this requirement), in symbols, 
M 

we want to find P ( Ei ) .  This problem is solved in most 
N g1 

texts on probability and is not difficult; we refer to a text 

by W. Feller [I2] , chapter IV to obtain 



- 
M of t h e s e  

It i s  a l s o  shown i n  t h e  t e x t  j u s t  r e f e r r e d  t o ,  t h a t  

To o b t a i n  a  lower bound on 1 - % we observe t h a t ,  t h e  

p r o b a b i l i t y  t h a t  two v e r t i c e s  i and j are n o t  connected i s  

bounded below by t h e  p r o b a b i l i t y  of any event  wherein i and 

j are n o t  connected. One such event ,  i s  t h e  event  t h a t  a t  

l e a s t  one of i and j i s  connected t o  no - o t h e r  ve r t ex .  L e t  

Ei be t h e  event  t h a t  v e r t e x  i i s  connected t o  no o t h e r  

ve r t ex .  The p r o b a b i l i t y  PN(Ei)  is  easy t o  determine. I n  

o rde r  f o r  i t o  be connected by some pa th  t o  another  v e r t e x ,  

it must be d i r e c t l y  connected by one edge t o  a t  l e a s t  one 

ve r t ex .  So, i n  o rde r  t o  have i n o t  connected t o  any o t h e r  

v e r t e x ,  it is both  necessary and s u f f i c i e n t  t h a t  none of t h e  

c ( N - 1 )  p o s s i b l e  edges,  t h a t  would d i r e c t l y  connect i by one 

edge t o  some o t h e r  v e r t e x ,  should appear.  The p r o b a b i l i t y  

of t h i s  event  is  t h e  product of t h e  p r o b a b i l i t i e s  of t h e  

c ( N - 1 )  s imultaneous independent events  t h a t  a  p o s s i b l e  d i r e c t  

connecting edge does n o t  appear. So, 



And s i m i l a r l y ,  of course ,  

Using (3 .29) ,  M = 2 ,  we o b t a i n  t h e  p r o b a b i l i t y  t h a t  a t  l e a s t  

one of i and j i s  connected t o  no o t h e r  v e r t e x  which i s  

c(2N-3) = c  (N-1)  c  (N-2) And s o ,  ( w r i t i n g  q '2 1 

A lower bound f o r  1 - P N ( % )  i s  t h e  p r o b a b i l i t y  of t h e  

event  T I  t h a t  a t  least one of t h e  v e r t i c e s  1.2,  . . . I N  i s  

connected t o  no o t h e r v e r t e x .  This  t i m e ,  i n s t e a d  of (3.29) we 

use  t h e  approximation (3.30) t o  o b t a i n  

and us ing  (3.31) and (3.31) ' w e  o b t a i n  



For large N we can show that the upper and lower bounds 

on 1 - % and 1 - P N ( g )  both become very close to zero. Let 

us examine ( 3 . 2 7 )  and ( 3 . 3 3 )  together, we may write 

Suppose A is a finite positive integer and O<q<l. It is 

M 
easy to verify, using LIHospital's Rule, that lim 1 8 q  = 0. 

N+w 

Most of the terms in ( 3 . 3 4 )  are obviously dominated by quanti- 

A M ties of the form M q , where M ( N ) -  as N-m.  The terms 

involving (1 + q ( N - 2 ) / 2 )  N-l need closer inspection. 

However, if we expand h(l + q (N-2) / 2 )  N-l we obtain : * 



For large N the first term in the expansion is clearly dominant 

and, as N increases this term is approaching zero. So, 

(1 + q c(N-2)/2)N-1 approaches 1 as N becomes very large, how 

quickly it does so will depend on the value of q. We can now 

see that the terms involving (1 + q c (N-2)/2) N-1 are also 
dominated by quantities of the form 8qM with M (N)+- as N+-. 

By letting N become large enough we can make either side 

of the inequality (3.34) as small as we wish (greater than 

zero), and therefore, of course we can make both sides of 

the inequality agree as closely as we wish. It follows that 

we can (using the left hand side of the inequality (3.34) ) ,  

make the statement, valid for large N: 

where 0 (f (x) ) = y (x) means that the ratio 

y (x)/f (x) remains bounded as X-P-. 
(3.35) 

Similarly we can find that 

% = I - 2 q  c(N-l) + 0 (Nq 3 W )  



G i l b e r t  

c a l c u l a t i o n s  

has  checked t h e s e  approximations a g a i n s t  

of p N ( % )  and RN up t o  N=6 f o r  c e r t a i n  q va lues ,  

and concludes t h a t  Nq c(N-l) and 2q (N-l) w i l l  r e p r e s e n t  

1 - PN($)  and 1 - % r e s p e c t i v e l y ,  t o  wi th in  t h r e e  pe rcen t  

accuracy when q<0.3 and N>6. For t h e  same accuracy of - - 
approximation, l a r g e r  va lues  of q  w i l l  r e q u i r e  l a r g e r  va lues  

A M of N. Equations (3.35) and (3.36) , using l i m  M q = 0, 
M-m 

g ive  us  t h e  conclusion t h a t  a s  N i n c r e a s e s  without  bound, 

both PN (% ) and % go t o  one. 



Chapter I V  

I n  t h i s  chap te r  we s h a l l  examine b i p a r t i t e  graphs of 

type  M I N .  I n  s e c t i o n s  4 . 2  and 4 . 3  w e  examine P (&) , where 
M f N  

& i s  t h e  set of a l l  connected, graphs belonging t o  52 
M,N 

and 

t h e  p r o b a b i l i t y  space ( f i M r N  , gMIN ,PM,N) i s  t h e  one w e  

d iscussed  i n  chap te r  I ,  with P 
M I N  

n o t  t i m e  dependent. 

W e  w i l l  use  T t o  denote t h e  number of b i p a r t i t e  
M , N J  

graphs of type  M f N  and having h edges. T 

Notice,  t h a t  w e  have adopted t h e  convention T o,o,o = 1. We 

w i l l  use  C t o  denote t h e  number of connected b i p a r t i t e  
M,N,,A 

graphs of type  M I N  having A edges. Of course ,  

< T 
C ~ , ~ , , h  - M,N,h 

s o  C 
M I  0 t h  

= 0 if A>O; f u r t h e r ,  w e  know 

c ~ , o , o  = 0 i f  M > l I  and w e  choose t h e  convention C 
1 , O f O  

= 1 

and C = 0. 
0 , O I O  

We may no te  he re  t h a t  C 
M IN,, 

must equal  

zero  if X<M+N-lI ( t h i s  i s  easy t o  check) .  F i n a l l y ,  w e  no te  

Consider a graph belonging t o  Ry,N+l and having h edges. 
. . . . 

The v e r t e x  l a b e l l e d  M+N+l  is connected (not n e c e s s a r i l y  by 

a s i n g l e  edge) t o  some number of o t h e r  v e r t i c e s  (poss ib ly  0 ) .  

L e t  u s  cons ider  t h a t  Mi-N+1 i s  connected t o  b o t h e r  v e r t i c e s  * 

belonging t o  t h e  same p a r t ,  ( t h a t  i s ,  chosen from M + l I  ... 



M + N ) ,  and i s  connected t o  a other .  v e r t i c e s  belonging t o  t h e  

o t h e r  p a r t  ( t h a t  i s ,  l a b e l l e d  between 1 and M ) ,  and t h e r e  a r e  

some number p of edges i n  t h i s  connected subgraph. The 

remaining subgraph n o t  connected t o  M+N+l, has M-a+N-b v e r t i c e s  

and A-p edges. There a r e  (f)  (:I ways of choosing t h e  a+b 

v e r t i c e s  of t h e  connected subgraph involving M + N + l ,  and 

d i f f e r e n t  connected subgraphs wi th  t h e s e  v e r t i c e s ,  Ca,b+l ,v  

d i s t i n c t  choices  of t h e  remaining and there are TM-a,N-b,A-p 

subgraph f o r  each case .  For each a ,  b and p then ,  t h e r e  a r e  

p o s s i b l e  graphs wi th  M+N+1 v e r t i c e s  and A edges. W e  sum over 

a ,  b ,  and v t o g e t  

To s impl i fy  (4.2) w e  in t roduce  t h e  genera t ing  f u n c t i o n s  

'M,N (y)  and TMIN ( y )  def ined  by 
* 



and 

W e  note  t h a t  both t h e  sums of (4.3) a r e  a c t u a l l y  f i n i t e  and 

so  converge f o r  any y. We now mul t ip ly  both s i d e s  of (4.2)' 

by y h  and sum over h t o  g e t  

The r i g h t  hand s i d e  of (4.4) i s  t h e  product of two power s e r i e s .  

W e  can r e w r i t e  (4.4) a s  



W e  use  t h e  d e f i n i t i o n s  ( 4 . 3 )  t o  f u r t h e r  s impl i fy  t h e  above, 

and obta.in 

W e  can now s o l v e  '(4.6) f o r  C (y)  e x p l i c i t l y  i n  terms 
M , N  

of T ( y ) .  W e  w i l l  make our c a l c u l a t i o n s  i n  t h e  a lgebra  of 
M I N  

double formal power s e r i e s .  Umbra1 ca lcu lus  could be used 

as an a l t e r n a t i v e  method 

We w i l l  l e t  C and T 

of s o l u t i o n  ( see  appendix) . 
be t h e  double formal power s e r i e s :  

and 

W e  n o t e  t h a t  T a s  def ined  by (4.7) i s  j u s t  
. . 

w w 
M N 

C Z T ( y )  x - z  1 w i t h t h e t e r m T  (y) 
M=O, N=O M ~ N  M ! N !  010 

removed. 
* 



W e  observe t h a t  

and 

Now w e  mul t ip ly  equat ion (4 .6 )  by xM zN and sum over M and M 
M! N! 

t o  ob t a in  



68. 

The right hand side of (4.9) is the product of two series and 

we can rewrite (4.9) as 

We now use the definitions of (4.7) and equations (4.8) to 

rewrite (4.9) ' as 

If we integrate both sides of (4.10) from 0 to z we obtain 

We can now perform this integration (see chapter 11) to obtain . 



Equation (4.11) can be written in double formal power series 

form. Using (4.7) we obtain 

We could also obtain the following directly from 

equation 

The 

(4.13) 

conclusions regarding C (y) are summarized in the 
MrN 

theorem below. 

Theorem 4.14 From equation (4.12) we conclude that 

'M.N (y) is M! N !  times the coefficient of xM zN in 
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the double formal power series expansion, 

conclude that also, CMtN (y) equals M! (-1) ! times the 

coeffierit of xM zN in the double formal power series for 

Of course, if we wish to obtain C M,N,ht we can write 

'M.N (y) using (4.3) and equate coefficients of like powers 

of y in theorem (4 .l4) . 
It is useful to determine T (y) so that it can be 

M,N 
used in all these equations. From the defining equation ( 4 . 3 ) ,  

This is because the maximum number of edges allowed is MN, as 

we have ~reviously noted. 
* 



Using t h e  r e s u l t s  of s e c t i o n  4 . 1 ,  w e  can now o b t a i n  

a genera t ing  func t ion  f o r  P ( 1 .  From equat ions  (4.12) 
M I N  

and (4.3) w e  o b t a i n  

A s  before , .  w i th  A a s  i n  equat ion (3.1) , w e  have 

W e  s h a l l  l e t  y = p/q, and then  w e  mul t ip ly  both s i d e s  of (4.17) 

by xM zN and sum over  M and N t o  o b t a i n  
M!N1 



Using (4 .l6) we obtain from the above 

03 

= log E C q -MN xM ZN i :=a N=O M! N! ) 
So, P (k) is qm N! M! times the coefficient of xM zN 

MIN 
w 

in the power series expansion of log -MN xM ZN 
7- 

M! N! 

We will now find a recursion relation for calculating 

P (6) and then use it in examining the behaviour of M,N 
P (6) as M and/or N become unbounded. 
M,N 

To obtain a recursion relation we consider the graph 

in the following manner. The vertex labelled M+N must be 

connected to some number of other vertices, in fact it 

may be connected to O,l,...or up to M+N-1 other vertices. 

The probabilities of each of the cases (M+N is connected to 

i other vertices) must add to give 1. The probability that 

M+N is connected to some number b-1 of other vertices 

labelled between M+1 and Mi-N-1, and to some number a of 

vertices labelled between 1 and M is just: the number of 

ways the b-1 vertices may be chosen, ( , multiplied by 



the number of ways the a vertices may be chosen, 

multiplied by the probability that these vertices form a 

connected graph, Patb(6), multiplied by the probability 

that M+N is not connected to any of the other vertices. 

The event, M+N is not connected to any other vertices, is 

the intersection of (M-a) b + (N-b) a independent events 
each having probability q. These events are: Each of the 

b vertices labelled between M+1 and M+N and connected to 

M+N is not joined by an edge to any of the M-a vertices 

labelled between 1 and M and which are not in the connected 

subgraph containing M+N. (This is a total of (M-a)b such 

events). Each of the a vertices labelled between 1 and M 

and connected to M+N is not joined by an edge to any of 

the N-b vertices labelled between M+1 and M+N and not in the 

connected subgraph containing M+N. (This is a total of 

(N-b)a such events). So, the probability that M+N is not 

connected to any of the other vertices is q (M-a) b (N-b) a 
q 

Therefore, we find the probability that M+N is connected to b-1 

other vertices labelled between M+1 and M+N, and to a other 

vertices labelled between 1 and M, is 

If we sum the probabilities over all possible a and b we 

must obtain 1 as the sum. And so, * 



We can rea r range  (4.20) and w r i t e  

I n  (4.21) w e  have taken P (6)  o u t  of t h e  sum and set it 
M I N  

equal  t o  1 minus t h e  remainder of t h e  sum. 

An explanat ion  of how t h e  recurs ion  formula ( 4 . 2 1 )  must 

be used i s  i n  o rde r .  The problem which may a r i s e  is  t h e  follow- 

ing.  Supposewe knowP ($) f o r  a l l  a<M-1,  a n d b < N ,  
a , b  - - 

and w e  t r y  t o  determine P (g ) from equat ion  (4.21) . Then 
M I N  

i n  (4.21) , i f  M - > N  t h e r e  a r e  N - 1  q u a n t i t i e s  P G)  which a r e  
M,b 

no t  y e t  known, o r  i f  M cN t h e r e  a r e  N-M q u a n t i t i e s  P Mtb (,$) 

which a r e  no t  y e t  known. 

The way i n  which (4.21) must be used can be made c l e a r  * 

by w r i t i n g  t h e  P (g)'s i n  a matr ix  a r r a y  and g iv ing  a 
M I N  



simple example. 

Example Scheme for calculating P ( )  Here Pm 
4,3 

stands for P (p), and the arrows indicate what 
MfN 

to calculate next. Note that Pm = PNM and that 

'hi0 = { 1 M=l, . , and PM1 = pM for all M and 
0 otherwise 

calculations are simplified accordingly. 

We notice that the more closed formulas we know for the 

entries of a row (or column), say Pm, x fixed M varying, the 

shorter the calculations are, but these closed formulas become 

complicated to obtain as x increases. Since these closed 

formulas are of interest we include here a closed formula 

for P (g) and a closed formula for P (g) , valid for 
2 ,N 3 fN 
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all N. We have obtained these from elementary considerations. 

Proposition 4.22 

N PZIN(6) = P [(p + 2q)N - (2q) I 

Proof: Let a graph w&fi 
2 IN 

be labelled 1,2, ... N+2. 
We can state a necessary condition for w to be connected. 

Consider the vertices labelled jr j & {  3r...N+2}. 

For  WE^ 2 , ~ :  
Let r be the number of vertices j, such that 

Let x be the number of vertices jr such that 

Let y be the number of vertices jr such that 

(2, j) = 1 and w ( ~ , ~ )  = o  . 

A necessary condition for w to be connected ( that is, 

for we$) is: 

y = N-r-x , - and r # 0 . 

Prom equation (4.17) we know that 

where we have used xN = 2% and C2 = 0 if h<N+l. 



However, for connectedness, we must have A = N+r, so 

instead of summing over A ,  we could sum over r from 1 

to N, that is, we can write 

And, we can determine C2,N,N+r from the following 

elementary considerations. For each r, there are ( ) 
possible choices of the r vertices that will be joined 

to both vertices 1 and 2, and there are 

- ('ir) possible choices of the x vertices joined to 
x=o 

vertex 1 only. The graph is then completely determined 

(because for connectedness y = N-r-x). So, we may 

write 

To the sum in (4.23) we can add and subtract the 

term r = 0, and then (4.23) becomes 

which simplifies to 

. 
N r N-r 2N-r N N N  

P2 ,N P P q  - 2  P q 
r=O 



Proposition 4 . 2 4  

Proof: Let a graph UE fi3,N be labelled l,2,3, ... N+3. 
We can state a necessary condition for w to be connected. 

Consider the vertices labelled j, j~ { 4  ,... N+3}. For 

w€Q3 

Let 5 be the number of vertices jr such that 

(1.j) + w(2,j) 
+ w  > 2  . 

(3tj) - 

Let r be the number of vertices j r  such that 

w 
(Lj) = w(2tj) = ("(3,j) 

= 1  . 
Let s be the number of vertices jr such that 

w 
= %,j) 

= 1 , and w 
(3,j) 

= O  . 
(Lj) 

Let t be the number of vertices jr such that 

%,j) = w(3,j) 
= 1 , and w 

(Lj) 
= O  . 

Let u be the number of vertices jr such that 

w(3,j) = w(~, j) 
= 1 , and w 

(2,j) 
= O  . , 



Let x be the number of vertices j, such that 

w = 1 , and w 
( L j )  

= W  
(Lj) (3,~) 

= o  . 
Let y be the number of vertices j, such that 

W 
(2,j) 

= 1 , and w 
(l,j) = ("(3,j) 

= O  . 
Let z be the number of vertices j, such that 

W 
(3,j) 

= 1 , and w 
(Lj) 

= W  
(2,j) 

= O  . 
A necessary condition for w to be connected (that is, 

for  WE^) is: 

u = 6-s-t , and z = N- 6-x-y , - and either 

1) r # O  , or 

2) r = 0 and 6 - > 2 and s and t - > 1 , or 
3) r = 0 and 6 > 2 and s and c-s-t > 1 , or - - 
4) r = 0 and 6 - > 2 and t and 6-s-t - > 1 . 

From equation (4.17) we know that 

We can rewrite the sum in (4.25) in terms of the 

numbers 6,r,s,. .. and the necessary condition for 
connectedness instead of as a sum over A .  First we split 

the sum into two parts corresponding to the two ways, 

r = ,O or r # ,O , to achieve connectedness. We shall 

treat these sums separately then add the results at 
* 

the conclusion. 



Case 1. r # 0 

The contribution to the sum on the right hand side 

of (4.25) may be rewritten as a sum in ~,r,x,y,s and t. 

Since r <5, we must have 5> - 1. For each possible 6, 

(from 1 to N) there are ( ) possible ways to choose the 

6 vertices from 4,5,. ..N+3. For each choice of the 5 

vertices there are c "-' (Nd ways to choose the x 
x=o 

vertices joined to 1 only, and for each of these ways 

N-5-x 
there are 1 (N-:-x) ways to choose the y vertices 

y=O 

joined to 2 only. For each choice of 5,x and y there 

are c possible choices of r vertices joined to 
r=l 

1,2 and 3, and for each of these there are c 
s=o 

ways to choose the s vertices joined to 1 and 2 and for 

each of these choices of s vertices there are 

5-r-s 
C ways to choose the t vertices joined 
t=O 

to 2 and 3. This completely determines the graph, and so 

the total sum gives us the number of such connected graphs. 

The probability of each such graph, for each 6 ,  is 

The contribution from 

case 1, r # 0 is 



We can simplify (4.26) by performing the sums (from 

the inside out) beginning with the sum over t. 

We add and subtract the term r = 0 to the inside sum and 



obtain 

Performing the sums over y and over x we get 

We add and subtract the term 6 = 0 and perform the sum 

to get the contribution from case 1, r # 0 is 

Case 2, r = 0 

We wish to write the contribution to the sum in (4.25) 

as a sum in ~,x,y,s and t. By considerations similar 
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to those in the case r # , O  we obtain the contribution 

The last sums in s and t take the above form to ensure 

that one of the necessary conditions for connectedness 

21, 3 ) ,  or 4) is always satisfied, that is, we can 

allow t = 0 if s> - 1 and 6-s-t> - 1, we can allow s = 0 

if t - >1 and 6-s-t - >1 , and we can allow c-s-t = 0 if 

s - >1 and t - >1. We can simplify (4.28). First we 

sum over t, to the sum in t we add and subtract the 

terms t=O and t= 5 , 



To the sum in s we add and subtract the term s = 0 

and perform the sum: 

Now we simplify the sums in y and x 

To each of the sums over 5 we add and subtract the terms 

5 = .Or and 5 = I, obtaining . 



We now add the contributions from case 1, (4.27) , and 

from case 2, (4.29), to obtain finally, 



Comments 

Multipartite graphs of 3, 4 or more parts can 

be defined similarly to bipartite graphs. For a 

similar probability function it is still possible to 

obtain, by similar methods, an explicit generating 

function for the number of connected graphs having 

a given number of vertices and a given number of 

edges. Also, a recursion relation for the probability 

of connectedness P (,$) can be obtained by similar ... 
considerations. The extension is quite easy in 

concept-but the details are, of course, increasingly 

lengthy as the number of parts in the multipartite 

graph is increased. 



Some qualitative information can be obtained directly 

from (4.21) . Equation (4.21) was 

Since P ( 6) is a probability, we know that 0 < 1-P (g )I 1 , MIN - MrN 
and so, certainly each term appearing on the right hand side 

of (4.21) must be less that one, because they are each 

positive. Let us suppose first, that N is held fixed. For 

each MI a term b=N and M-l=a appears on the right hand side 

of (4.21) . This term is 

This term must be less than one. We have supposed N fixed 

and so qN is a constant. Therefore as M increases, eventually 

N becoming larger than l/q , PM-lrN 
N must, at least for M >l/q , 

be less than one and must also be decreasing as M increases. 

Therefore, when N is held fixed and M allowed to increase 

there is a finite number k, such that for M > k ,  we know that 

'M,N < 1  and is decreasing as M increases. In fact, as M+" 



P  ,O i f  N i s  f ixed .  Equation (4 .21)  i s  symmetric i n  
M,N . 

M and N so a s i m i l a r  conclusion holds i f  M i s  f i x e d  and N 

allowed t o  inc rease .  

To examine the behaviour of P (g) when both M and 
M I N  

N  i n c r e a s e  without  bound we o b t a i n  an upper bound on 

l - p ~ I ~ ( / f )  and examine i t s  behaviour. For a l l  M and N ,  

P  (g) < 1 and s o  w e  can o b t a i n  an upper bound on 1 - P (d ) M ,N - M,N 
j u s t  by s u b s t i t u t i n g  one f o r  P ( )  i n  equat ion  ( 4 . 2 1 ) .  

a,b 

This  i s  no t  n e c e s s a r i l y  a l e a s t  upper bound. This  g ives  us  

To t h e  l a s t  t e r m  on t h e  r i g h t  of ( 4 . 3 0 )  we a  

t h e  t e r m  b = N  as fol lows:  

dd and sub t rac  

N - 1  N-1 M (N-N) 
- 9 

b=l. b-1=0 

To t h e  f i r s t  t e r m  on t h e  r i g h t  of ( 4 . 3 0 )  w e  add and s u b t r a c t  

t h e  term a=M,  a s  fol lows:  
* 



So, equation (4.30) can now be rewritten 

We can emphasize the symmetry in M and N by writing the 

term b=N in the summation, separately. Then we have 

+ 

We note that if N is held fixed and M increased without bound 

the term (1 + qNIM in (4.32) approaches infinity so the right 
hand side of (4.32) is certainly not a least upper bound gn 

- 'M,N ) in this case, and (4.32) gives us no additional 



information on the behaviour of P ($) when N is fixed M,N . 

and M+w . Similarly if M is fixed and N increased without 

bound (4.32) yields no additional information because 

N-l approaches infinity. Further , to obtain ( l + q )  

information from (4.32) we will insist that M and N increase 

at approximately the same rate, that is, M-N - < K for some 

constant K , as M and N are allowed to increase. 
Now we suppose that M-N - < Kt K a constant, as M and 

N are increased without bound and we examine the terms 

appearing in (4.32) . 
To see how (1 + qNIM behaves, we examine 

Since we have supposed M-N - < K, then 

+ lim K ln(1 + qN) 
M I N+m 

N (It is easy to see that lim K lncl + q ) = 0 .) 
M I N+m 

Now, we apply L'Hospitalls rule to lim N ln(1 + qN) as 
MIN+w 

follows : 



W e  can apply L 'Hosp i ta l l s  r u l e  t w i c e  t o  l i m  qN N~ t o  f i n d  
M I N+w 

t h a t  t h i s  l i m i t  is 0. So, s i n c e  t h e  o the r  l i m i t  i s  bounded 

N l i m  M l n ( 1  + q  ) = 0 . 
M I N+w 

This implies  t h a t  

l i m  ( l + q N ) M = l  . 
M I N-tw 

S imi la r ly ,  

N - 1  N-b]M 
l i m  1 - p M I N  ($1 - < 1i -m 1 
M I  N+w M ,N+w b-l=O 



Now w e  examine t h e  t e r m '  Z b-1 N-b)M i n  ( 4 . 3 3 ) .  b-1=0 -. 

For t h e  range 1 - < b - < N - 1 ,  the maximum of (qb + qNmb) 

occurs  a t  b = 1 o r  b = N - 1 ,  and i s  (q + q'-l). And has 

i t s  maximum when b-1 = [(N-1)/2] where [x] means g r e a t e s t  

i n t ege r  - < x. To  s impl i fy  s l i g h t l y  w e  can assume t h a t  ( N - 1 ) / 2  

i s  an i n t ege r  f o r  t h e  N ' s  w e  consider .  So each term i n  

t h e  sum is  c e r t a i n l y  less than (q + q 

and t h e r e  a r e  N - 1  terms, so  

N-1  N-b)M N - 1  
l i m  1 (qb + 4 b-1 
M,N-J b= l  

N-2 M N-M-1 4 2/, 
= lim J N T  ( 2 q ( l + q  1 )  2 

N-M-1 
Since w e  a r e  assuming t h a t  M-N - < K , w e  know t h a t  2 . 



N-2 M remains bounded. W e  a l s o  know t h a t  h-1 ( 2 q ( l  + q ) )  

w i l l  approach 0 a s  MIN+m provided t h a t  2q < 1. Therefore,  

N-2 
The sum 1 q'N-b)M i s  always less than  t h e  sum 

b-1 

N-2 
N-b)M . Referr ing  t o  (4.33) w e  can now 

b-1=0 

make t h i s  q u a l i f i e d  s tatement:  A t  l e a s t  i f  q < 1 / 2 ,  when 

M and N i n c r e a s e  without  bound i n  such a way t h a t  M-N - < K I  

P ($ ) approaches 1. 
M I N  

W e  can a l s o  o b t a i n  a lower bound f o r  1 - P (6 )  i n  
M I N  

a way s i m i l a r  t o  t h e  way we obta ined  a lower bound on 1 - P N ( g )  

i n  chap te r  111. Again l e t  Ei be t h e  event  t h a t  v e r t e x  i is  

connected t o  no o t h e r  v e r t e x ,  and l e t  E . E .  be t h e  event  
1 I 

Ein E Equation (3.30) becomes f o r  our  p r o b a b i l i t y  func t ion ,  
j* 

z PMI,(Ei) - 22 P (E.E.) 
i=l, i< j M I N  1 3 

I f  we  do n o t  want v e r t e x  i t o  be connected t o  any o t h e r  y e r t e x  

then  a t  least we  can a l low no d i r e c t  edge t o  appear between 



t h e  vertex labe l led  i a n d  a n y  of the-other  vertices. T h i s  

c o n d i t i o n  is both n e c e s s a r y  and s u f f i c i e n t  a n d  so it i s  

e a s y  t o  see t h a t  

And 

- 
q2M i < j ,  i , j  < M+N, i , j  > M + l  P ( E . E . )  = - - 

M t N  1 3 q"+N 1 <  j and i <  M I  j > M+lt  - j < M+N 7 - 

U s i n g  t he  PMIN (Ei) and P  (E .E . ) , (4.35) becomes, 
M t N  1 3 

P ( E . E . )  - 2Z 
MIN 1 3 i< j 

P ( E . E . )  
MtN 1 3 



When M and N a r e  allowed t o  approach i n f i n i t y  wi th  

M-N - < K , t h e  l e f t  hand s i d e  of c4 .36 )  approaches zero.  

(Recal l  t h a t  l im  N~ qN = 0 f o r  f i n i t e  A. )  Since  t h e  upper 
N 

bound ( 4 . 3 2 )  and t h e  lower bound of 1 - P 
M I N  

( ) a r e  both 

approaching zero  ( i f  q <1/2), we can make them agree  as  c l o s e l y  

as  we l i k e  by t ak ing  M and N l a r g e  enough. W e  can t h e r e f o r e  

use  e i t h e r  bound a s  an approximation t o  1 - P ( g )  f o r  
M,N 

l a r g e  enough M and N ,  and q< 1/2. So, 

when q < 1/2,  and M-N - < K ,  K a cons tan t .  



Chapter V 

The i n t e n t i o n  of t h i s  chapter  is t o  acqua in t  t h e  

r eader  wi th  work which has been done s p e c i f i c a l l y  p e r t a i n i n g  

t o  t h e  connectedness of a random graph ( f o r  va r ious  

p r o b a b i l i t y  f u n c t i o n s ) .  W e  have a l r eady  reviewed i n  

d e t a i l  t h e  work of  E.N. G i l b e r t .  I n  chronologica l  o r d e r ,  

he re ,  w e  w i l l  mention t h e  work of P.  Erdos and A .  Renyi, s e e  

131, [ 4 ] ,  and [ S ] ,  of V. E .  Stepanov [61 and [71 , and of 

E. M. Wright [*I. W e  a r e  no t  a t tempting t o  exp la in  any 

d e t a i l s  of t h e  work bu t  only t o  i n d i c a t e  what kind of 

r e s u l t s  have been obtained.  

P. Erdos and A.  Renyi have w r i t t e n  two j o i n t  papers  on 

t h e  s u b j e c t  of random graphs.  The f i r s t  (chronologica l ly)  

of t h e s e  con ta ins  t h e  r e s u l t s  of a s e p a r a t e  paper by 

[3 1 Renyi . 
W e  s t a t e  f i r s t  t h e  r e s u l t s  of Renyi 's  paper L e t  

N,J and C be a s  be fo re ,  and d = A  -N+1. I f  a graph i s  
Nh 

connected then  d - > 0 and w e  c a l l  d t h e  "degree of connec t iv i ty  

of a graph". ~ l t h o u g h  e x p l i c i t  formulae andrecurs ive  r e l a t i o n s  

were previous ly  known f o r  CNA, no simple e x p l i c i t  formula 

f o r  C N h  was known. Renyi attempted t o  f i n d  a simple 



i 

explicit formula for CNA at least for some restricted 

N and A and to determine the asymptotic behaviour of 

'N ,N+~-I for d fixed and N approaching infinity. 

Renyi was able to find a simple explicit formula for CNA 

when A = N, or d = 1, in other words for CNtN, and to 

determine the asymptotic behaviour of C 
N,N 

as N+m. His 

results are: 

In the first joint paperL41, Erdos and Renyi consider 

graphs of class one. They pose the following four questions 

(some of these we have rephrased in our notation and in terms 

of our PN of chapter I) and attempt to answer them: 

1) What is the asymptotic behaviour of CNA /TNA ? 

(For our probability function P ~ ,  C ~ h  = P,(@/A~) lTNh + 

Recall that A,, = {wEQ~I 20 = A}.) 
W 



What is t h e  asymptotic behaviour o f :  t h e  

number of graphs (with N v e r t i c e s  and X edges) 

wi th  g r e a t e s t  connected component having N-k 

v e r t i c e s ,  d iv ided by TNA? ( k = O , l , . ) .  Let  

us  denote t h i s  r a t i o  by P (k,N,Ac) . 
What i s  t h e  asymptotic behaviour o f :  t h e  number 

of graphs (with N v e r t i c e s  and A edges) cons i s t i ng  

of K+1 d i s t i n c t  connected subgraphs, d iv ided by 

*N A? ( k = O , l , . . )  Let  us denote t h i s  r a t i o  by 

n(k,NrA) 

Le t  G be t h e  subse t  of SIN cons i s t i ng  of a l l  

connected graphs w h i ~ h  can be made disconnected by 

removing one edge. What i s  t h e  asymptotic 

behaviour of PN (AA/G) ? (Where PN (Ah /G) i s  t h e  

cond i t iona l  p robab i l i t y  of A A g iven G . )  

p a r t i a l  answers t o  1) t o  4 ) ,  Erdos and Renyi prove 

four  theorems. I n  t h e  fol lowing,  &, i s  used t o  denote 

[1/2NlogN + cN] where c i s  an a r b i t r a r y  f i xed  cons tan t ,  

[ . I  denotes  t h e  g r e a t e s t  i n t ege r  func t ion ,  N i s  t h e  number of 

v e r t i c e s .  

Theorem 5.3 



Theorem 5 .4  
-2c -2c)k .-e l i m  P (k,N, A,) = (e 

N-t- k! 

That i s ,  t h e  number of v e r t i c e s  o u t s i d e  t h e  g r e a t e s t  

connected component of a graph wi th  N v e r t i c e s  and 

hc edges,  i s  d i s t r i b u t e d  i n  t h e  l i m i t  according t o  

-2c Po i s son ' s  law wi th  mean va lue  e . 

Theorem 5.5 

That i s ,  t h e  number of connected components diminished 

by one i s  i n  t h e  l i m i t  d i s t r i b u t e d  according t o  

-2c Po i s son ' s  l a w  wi th  mean va lue  e . 

Theorem 5.6 

where = [1/2NlogN + II] and I kl = 0 (N)  . 

Also, 
-2x 

l i m  pN(  U -e 
AA/G) = .e 

N- ta  A<Nx+l/2NlogN 



In their later paper ['I , Erdos and Renyi give a 

much more complete exposition of the probable structure of 

a random graph of class I. As we mentioned in the 

introduction, for any structural property X (some condition 

on the graphs  EL?^)! we could ask, assuming again our 
probability function PN, on class I graphs, what is PN(x)? 

Here x is the set of all o in QN with property X. For 

various structural properties X I  this paper examines 

PN(x/AX) and examines the changes in PN (x/AA) as X is 

increased. Also, if we assume that we are interested in 

graphs with N vertices and X(N) edges where A(N) is some 

function of N, then for certain restrictions on X(N) the 

paper examines PN (x/A ) as N-. This paper contains A (N) 
many detailed specific results. 

We are mainly interested in the probability of 

connectedness of a graph, so we mention only the results 

referring to connectedness. 

The paper proves that a graph of class I with N 

labelled vertices and A (N) edges ( A  (N) some function of N) , 

has greatest connected component of size G(c)N, for 

h(N)$ cN with c > 1/2, with probability tending to 1 as 

N-tw , where 



Combining some of their other results in this paper, 

the information obtained on connectedness is as follows: 

The largest component of a graph with N vertices, and A(N) 

edges is of order logN for A(N)/N QC < 1/2 , is of order 
N2I3 for h (N) /N Q1/2, and of order N for X (N) /N Q c > 1/2. 

The size of the largest component makes a startling 

"double jump" as A(N)/N passes the value 1/2. Further, 

when (N) - 1/2 N logN +- the whole graph will, with 
N 

probability tending to 1, be connected. (PN (?f/~~ (Nl ) + 1 

as N- if (N) - 1/2 N logN -+a as N-t- .) 
N 

In 1969, V.E. Stepanov published two papers concerned 

with the probability of connectedness of a random graph. The 

first of the two papers is entitled "Combinatorial Algebra 

and Random Graphs" 16], and the second is entitled "On the 

Probability of Connectedness of a Random Graph" 17]. we will 

discuss them in chronological order. 

Stepanov was the first author to consider a probability 

function P defined on R ,  the sample space of class I graphs, 

which did not assume equivalence of the vertices of the graphs. 

(We will say that a probability P assumes equivalence of 

vertices if the probability assigned to a subset of Q of the 



form' {weal w j) = 1) does not depend on i and j.) 

The aim of Stepanov's first paper is to develop appropriate 

mathematical tools and then study P (g ) for the probability 
function P he defines on class I graphs (and which does not 

assume equivalence of vertices). 

B Recall that for class I graphs, 52 = {O,l) where 

+ B = { ( i j ) i  j i j  . Stepanov defines ameasure on 

the set of possible vertices of a graph, that is on I+, and 

+ + we denote this measure by L(I ) . The measure L(I ) is 

defined by its values on vertices, the measure of a vertex 

i, is L({ i) ) = xi > 0 and Qi is called the intensity of 

vertex i. The probability function on Q is denoted PL(t) 

+ 
and is a function of the measure L(I ) and of time. The 

event, an edge appears between vertex i and vertex j, is 

taken to be independent of all similar events including 

those involving one of the vertices i and j. Further, we 

The above definition together with the statement of indepen- 

dence completely determines the probability of all possible 

events. 
* 

The probability function PL(t) on is similar to on Q 



defined in chapter I, with p time dependent; the major 

+ difference is the measure L(I ) defined on the set of vertices 

so that p is now time dependent and a function of the 

vertices in question. 

Stepanov's paper is divided into three sections. 

The first section develops formal tools useful in 

the study of random graphs. These tools are essentially a 

modification of the method of generating functions. 

Stepanov defines an algebra, 9, of numerical valued functions 
on the set of all finite subsets of I+. The algebra 4 is 
defined so that it allows a homomorphism of the algebra 

of power series in a formal variable with numerical coefficients, 

into the algebra f. Of course, the algebra fis carefully 

designed so that probabilistic statements (which might 

otherwise be made in complicated power series expressions) 

can be made easily in 4 and desired manipulations performed 
easily in J .  

+ 
A finite subset A of I will be called a skeleton. An 

ordered sequence oi skeletons (A1,. . .An) such that n A = pl 
j 

and 8 Ai = A , is an ?-partition of the skeleton A. A 
i d  

partition (A1,A2,...An) for which all skeletons are non-empty 

is a strict n-partition. Strict n-partitions of a skeleton A 

differing only in the order of their component skeletons are 

identified as a single class and each such class is called an 
* 

unordered n-partition. The collection of all n-partitions, 



strict n-partitions and unordered n-partitions of a skeleton A 

are denoted, respectively by (A), , [ A 1, and { A} . 
The probability of connectedness of a graph with the set 

of vertices A, would normally be denoted by PL (t) (L~/A) . For 

convenience we shorten the notation to just PL(A/t). 

In the second section of his paper, Stepanov uses his 

combinatorial algebra f in obtaining information about 

PL(A/t). The main results he obtained are given below. 

An explicit expression for PL(A/t) is given by 

Recursion relations for PL(A/t) can be obtained from 

1 L'(A1)PL(Al/t) e -tL(A1)L(AZ) = L, (A) I 

(A) 2 

+ 
where L' is any additive function on I . (5.8) 

A measure is called simple if it assumes the value 1 on 

exactly one vertex. If the vertex is it we denote the 

corresponding simple measure by Li. The next important 

general result is: 



where L' is any additive function, 

L, (i) = Ll - ti' Li , 
* indicates the composition operation in 4, 
the differentiation is in f. 

The final general result is 

From these four main general results interesting special 

cases can be obtained. Stepanov gives quite a few details 

in this area. 

Stepanov applies the general results to the special case, 

previously considered by other authors, of L(i) = 1 for * 
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each vertex i. That is, PL(t) is now P as in chapter I, with 

p time dependent and p = 1 - e-t. Since the probabilities 

of various events now depend only on numbers of vertices 

and numbers of edges PL(A/t) is the same for all skeletons 

A of the same size and we can refer to it as PN(t) (e )  as 
previously, where N is the number of vertices in A. Stepanov 

applies his general results to this case and obtains explicit 

expressions and recursion relations for PN(t) (&). These 

results agree with previously known results where any exist 

for cpmparison. 

In the third section of his paper, Stepanov examines 

the asymptotic behaviour' of the probability PL(A/t). His 

main result is the following theorem. 

Theorem 5.11 Let L be a measure defining the intensity 

of the vertices in the basic set (say I' ) and let 

skeleton A and time t vary in such a way that the 

quantity p (A/t) = C e -tLi L(A) remains bounded. 
k A  

If there exists an Lo varying along with A and t such 

that 

-t aiL (A) 
C e + 0 

uniformly for all subse'ts 

i€A1' A" C 1' such that L (A" ) - < Lo , 



then 

Stepanov goes on t o  expla in  t h e  impl ica t ions  of h i s  theorem and 

a l s o  shows t h a t  it y i e l d s  previously known r e s u l t s  f o r  s p e c i a l  

cases .  

I n  t h e  second paper by stepanovt7] , t h e  p r o b a b i l i t y  

space c o n s i s t s  of c l a s s  I graphs wi th  P a s  def ined  i n  

chapter  I wi th  p t ime dependent and p = 1 - e-t. A s  w e  

have a l ready noted,  t h i s  p r o b a b i l i t y  func t ion  i s  a r e s t r i c t e d  

+ case  of t h e  one considered i n  [6], where L ( I  ) i s  def ined  

by L ( i )  = 1 f o r  each v e r t e x  i s o  t h a t  t h e  v e r t i c e s  a r e  

equiva lent  under F. The work i n  t h i s  paper i s  based on 

t h e  r e s u l t s  of h i s  e a r l i e r  paper. (Recal l  t h a t  agrees  

wi th  PN f o r  a l l  N ,  where N i s  t h e  number of v e r t i c e s  i n  

t h e  ske le ton  t o  be considered and t h a t  by p N ( Z )  we r e a l l y  

' mean P ( % ( N ) )  .) 

Stepanov no tes  t h a t  i n  h i s  previous paper when he 

app l i ed  h i s  genera l  r e s u l t s  t o  t h e  s p e c i a l  case  now being 

considered,  he obtained t h e  r e s u l t  t h a t  a s  N-tw and 

t = [logN + c + o ( l ) ]  /N v a r i e s  wi th  N ,  (c a c o n s t a n t ) ,  t hen  



and lim PN(t) (6 ) = 0 when t + 0 in such a way that 
N-tw 

Nt = o(1og N). In this second paper, Stepanov examines 

the probability PN(t)($) and finds an asymptotic expression 

for PN(t) (G) when N+w and t is small satisfying Nt = O(1). 

He then uses the asymptotic expression to explain some 

particularities in the construction of a random graph with 

N vertices. The asymptotic expression is given by 

uniformly for all t such that Nt - > yo > 0 . 

The result pertaining to the structure of a random graph is 

Theorem 5.13 When N+w and t = y/N, y > 1, the 

random graph on N vertices contains, with probability 

tending to 1, one "large" subgraph the number of whose 

vertices has a normal distribution with mean 

and variance 



Where 8(w) stands for the main branch of the inverse 

-2 function of w = z e . 

An investigation by E.M. wright[*] is related to our 

topic. Wright has found asymptotic expressions for CNA 

in terms of binomial coefficients, for the eight classes 

of graphs I to 

are valid as N 

than N in such 

), - 1/2 N logN 
N 

VIII we have mentioned. The expansions 

approaches infinity if A is always larger 

a way that as N approaches infinity, 

also approaches infinity. So the 

necessary for validity of the expansion is dependent upon N. 

For the range of A for which Wright's results hold, we 

have C Q, TNA 
N A and we are interested in the further terms 

in the asymptotic expansion of C which also give the 
N A 

asymptotic expansion of T - CNAr NA the number of disconnected 

graphs with N labelled vertices and A edges. (These 

asymptotic expansions of CNA do not immediately give us - 
pN(g) = Z A , for the classes one to four cNA P q 

X=N-1 

graphs. Because of the restrictions on A for validity of 

expansions, PN(%) cannot be written as just a sum involving 

asymptotic expansions.) However, CNA/ TNA is a quantity, 

which may be of interest, (Erdos and Renyi considered this, 



r - A  
might be of interest and see 55.1, also, CNA p q 

the asymptotic expansion for Cm might yield an asymptotic 

expansion of this.) 

The proofs involved in obtaining the results are based 

on properties of series, some of the proofs are lengthy. 

We will give just enough detail here as is necessary to 

state the results. Wright begins his development from the 

equation (3.9) relating CN (y) and TN (y) found by Gilbert. 

Recall that CN (y) and TN (y) are as defined by (3.4) and (3.5) . 
Equation (3.9) may be written as 

Set TN = N! GN and CN = N! gN and this becomes 

where N - > 1 and Go = 1 . 

By repeated use of (5.14) we find that 

* 

where the sum is over all partitions of N, 
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t h a t  i s ,  a l l  terms f o r  which r j i i  = N .  

Every w = w ( j  l,... jN)  - > 0 and w ( 0 , O  ,..., 1) = 1. 

Now in t roduce  another  s e r i e s  of polynomials a N  def ined  by 

N a N  ,= -Z  a gs N-s , f o r  N > 1 - 
s=l 

and a0  = 1 . 

This  may be obta ined  from (5.14) by changing t h e  s i g n  of 

every g and rep lac ing  Gs by as .  
S 

Hence, as i n  (5.15) 

I n  what fo l lows,  C denotes  a p o s i t i v e  number, n o t  always 

t h e  same whenever it appears ,  b u t  always independent of N. 

The n o t a t i o n s  O (  ) and o (  ) r e f e r  t o  when ES+m and each 

implied cons tan t  i s  a C. 

Two lemmas l ead  up t o  t h e  f i r s t  genera l  r e s u l t ,  which 

i s  

Theorem 5.18 

where 



(TN (y) is as be•’ ore) 

and 

and 

I *  3 denotes the coefficient of yq in + . 

There are five more theorems proved by Wright, which 

apply only to graphs of classes I to VIII (they are not 

general results). First we define a few more notations 

and then we will state these results. 

1) Let RN be one of classes I to VIII. Suppose 

has Z qiIj) = X . Let M(N,X) be the number 
W 

of positions (i,j) which may possibly have 

(if j) # 0. For classes I to IV graphs, M(N , A )  

is just rN. For classes V to VIII, M(NIh) as 

we have already shown in 53.1 is just 

N(N-1)/2 + A - 1 for class V graphs, 

N(N+1)/2 + A - 1 for class VI graphs, 

N(N-1) + A - 1 for class VII graphs, 

2 N + A - 1  for class VIII graphs. 
L 

2) Q ( M )  refers to the binomial coefficient 

M any given number and 1 the given number of edges. * 



3) Mt = M(N,X) - 2atN + 2at2 , where a depends on 
the class of graph and is the same a as in (3 .l7) , 

t is any positive number. 

To evaluate at (N ,A) in (5.18) we have the theorem 

Theorem 5.19 
t (t-1) /2 

yt (r)Q(Mt - Zar) 
r=O 

(5.19a) 

where the yt (r) are coefficients in a 

polynomial 

defined successively by 

s 

BO = 1, and t=O I (E) W~(~-~)B~(W) = 0, S - > 1. 
(5.1%) 

In particular, if h < (1 - C)Mt , then 



On t h e  behaviour of t h e  e r r o r  t e r m  w e  have t h e  

fol lowing theorem. 

Theorem 5.20 I f  $ = $ ( N ) + w  a s  N+w, and X > N (1 /2  logN + $) 

The f i n a l  r e s u l t s  a r e  t h e  fol lowing theorems: 

Theorem 5.22 I f  N (1/2 logN + $ ) <  A = o (M) , and $+a 

as N+w, t hen  

Theorem 5.23 For graphs of c l a s s e s  I t o  IV only ,  if 

Theorem (5.22) fo l lows from (5.19e) . Theorem (5.23) folfows 
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from theorem (5.21) i f  w e  observe t h a t ,  when A >  MR , 

then  Q (MR) = 0. So f o r  t h i s  l i m i t e d  range of A >  MR w e  have 

an exact  va lue  f o r  CNA . 



Appendix 

In random graph theory, the idea of transforming 

equations to another algebra for solution appears to be 

very useful. We have used a transformation to formal 

power series; Gilbert [21 used a transformation to umbra1 

calculus; Stepanov [61 defined a new combinatorial algebra 

in which he writes and solves his equations. 

We chose to solve equations (3.8) and (4.6) using 

formal power series rather than to follow Gilbert's use 

of umbral calculus because we felt the formal power series 

method was more straightforward. We feel, however, that the 

use of umbral calculus is an interesting method and it is 

conceivable that in the study of graphs, equations may arise 

which could be handled most conveniently using umbral calculus. 

The use made of umbral calculus by Gilbert did not really 

exploit the umbral calculus but was more a modification of 

formal power series methods. In •˜ A.l we give briefly the 

basic definitions of umbral algebra, and in •˜ A.2 we mention 

functions of umbrae which are isomorphic to certain power 

series. In •˜ A.3 we solve (3.8) and (4.6) using umbral 

cal culus . 



We shall follow the development of umbra1 calculus given 

by E. T. ~e11[']. We give the definitions for an algebra of 

umbrae arising from uni-suffixed scalars. Umbra1 algebras 

may be similarly defined for umbrae arising from multi- 

suffixed scalars. We shall make a few comments at the end 

In the following, the field of scalars we use will be 

. The sign r will be used to express both definitions 
and identity as in algebra. Scalars are denoted by a, B , . . .  

or by small Latin letters with non-negative suffixes 

denoted by Latin capitals, for example, xN, (N=O,l ,...). 

Definition A.l If xM (M=0,1, ...) are any scalars, the 

ordered array <xMX is denoted by x and called an 

umbra. The M+l th element of x is xM and , in our 
M system, x r x ~ *  

We now proceed to defining operations on umbrae which 

will make the set of all umbrae a vector space over R. 

Definition A.2 Two umbrae, x and y are said to be equal 

if and only if * 
- xM . xM - yM s yM for all M. 
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Equality of umbrae is easily seen to be reflexive, symmetric 

and transitive. 

Definition A.3 The scalar product of a and an umbra x 

is denoted by juxtaposition ax. We will use { lM 

to denote the Mth element of an umbra. We define ax by 

{ax} = axM 2 axM for all M. 

Definition A.4 The addition of umbrae, say of aa,...,~~, 

is defined by 

{aa + ... = =aM + ... + cxM . 

It is easy to see that the set of all umbrae is a vector space 

over the scalar field R. Further, it is easy to see that the 
umbrae under the operations defined so far, are isomorphic to 

the vector space of formal power series. 

The following is our motivation for the rest of the 

definitions we make of operations on umbrae. Consider the 
03 

power series C where 8 is a formal variable, and 
N=O 

the xN are scalars. If we could simply make a transformation 

N wherein x + x the new power series would just be exp(x8). N 

There is, however, no such scalar x which would allow the 

transformation to be an isomorphism, a necessity if calculations 

are to be transformed, carried out and the answer transformed 

back with validity. We can, however, arrange to have our . 
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umbrae behave so that the scalars xN transform to an umbra 

x to the N~~ power (xlN. The new power series we transformed 

to would be a function of the umbra x ,  called exp xe . We 
would want the transformation to be an isomorphism and further- 

more we would want exp xe , as an umbral expression to behave 
in complete formal analogy with exponents of scalars so 

that calculations involving umbral exponents would be 

correspondingly easy. The following definitions of umbral 

operations are made so that umbrae will behave in the way we 

want, 

The next operation we define in the umbral algebra is 

a special operation peculiar to umbral algebra which we 

call taking the Nth power of a sum of umbrae. This operation 

we will define is not related to a multiplication performed 

N times. In fact we have not, as yet, defined a multiplication 

for our algebra. The special operation is defined in formal 

analogy with the rnultinomial expansion of the Nth power of a 

sum of scalars. 

If a, ..., x are umbrae such that no two are equal by (A.2), 

they are said to be distinct. 

Definition A.5 If a, ..., x are T distinct umbrae, then 
(=a + . . . + CxlN denotes the scalar pN , 



where Q is the nultinomial coefficient 
Sl" .S 

T 

N ! , and the sum is over all sl+ ...+ sT = N . 
sl!. ..ST! 

We note that {aa + . .. +gx) # (ma + . .. +gxlN . We can 
N rewrite definition A.5 using , from A.1, x E xN , 

This expression appears exactly similar to the multinonial 

expansion of a sum of scalars to the Nth power. 

Definition A.6 If in A.5 we replace N by N+R the 

resulting scalar (aa + . . . + gx)N+R is called the 
product (denoted by a dot) , 

It follows that this dot product is commutative, associative, 

0 and has identity (aa + ... + gx) . Ordinary scalar multipli- 
cation has no dot, so that (aa + . .. + gxlN (aa + . .. + gx) R 

N R # (=a + . . . gx) ("a + . . . + EX) . AS a convenience of 
F 

notation we write 



If we have (ax + . . . + ax)N where the ax appears A times 
N we will use the notation ( A - ~ x ) ~  = (ax + . . . + ax) , where 

ax appears A times. 

Definition A.5 required the T umbrae to be distinct. The 

definition A.5 will be said to hold for any T umbrae if the 

calculation is made as though the umbrae were distinct. 

For example: 

We now proceed to define multiplication of umbrae. Many 

different definitions are possible. We choose the following 

definition which makes use of the operation of taking the 

N~~ power of a sum of umbrae. First, we note that any 

umbra, x = (xO,xl,. . . ) can be written as x = (q/0! ,C/l I , .. ) 

where = % N! Then r i s  used to mean the umbra 
-- 
( X X  lt...). The form x = ( ~ / 0 ! , ~ / 1 !  ,...) we will call the 

exponential form of the umbra x. 

Definition A.7 Let x and y be umbrae (written in 

exponential form). The product of x and y denoted bq 

juxtaposition xy, is the umbra p such that 



That is, 

Xy E (X + yl0 , (X + yil , ... ) . ( O! l! 

Umbra1 multiplication is easily shown to be commutative 

and associative. Powers under this multiplication can be 

defined as usual, the Ath power of x, that is, xxx.. .x, A times, 

will be denoted x (A) to distinguish it from (xlA. Notice 

that x and y behave under multiplication as though they were 

sequences of coefficients of (for ji and y scalars) exp & 

and exp respectively. We will make this connection more 

precise by defining exponents of umbrae in 9A.2 . 

Comments on Umbra1 Algebras from multi-suffixed scalars 

The algebra of umbra from doubly suffixed scalars can 

be defined similarly to A.1 through A.7. Instead of A.l we 

have 

Definition A. 8 If xm , ( M = O l  . . . ) , (N=0,1,. . . ) are 
any scalarsr the ordered array I is 

denoted by x and called an umbra. The suffixes are treated 

as ordered pairs. The M+lIN+1 th element, of x is x MA 
and in the umbra1 algebra 

MIN X x ~ , ~  



Umbra1 equality and the operations of scalar multiplication 

an umbra1 addition are extended in the obvious way. The 

umbrae defined by A.8 are then a vector space over R. If 
we follow the same development as for the uni-suffixed case, 

we would define the M , N ~ ~  power of a sum of umbrae, similarly 

to A.5. 

Definition A.9 If a,...,x are T distinct umbrae, then 

(aa + . . . + denotes the scalar p M,N ' 

= (=a + . . . + ex) MfN PM,N 

where QS ... denotes the multinomial coefficient 
1 

M! , and QR 
l"'i 

denotes the multinomial coeffi- 
S+.. ST! 

cient N! , and the double sum is over 
R I . . .  1 %! 

S1 + ... + ST = M, and R1 + . + % = N . 

We note that {ma + ... + C X * ~ , ~  
MlN f (=a + . . . + ex) . 

Definition A.6 and the comments following it are extended , in 

the obvious way. 
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An umbra x = will be written in exponential 

form by writing, similarly to before, v 

- 
where x 

M,N 
= X 

M ,N  
M!N! . We define the product of x and y 

similarly to definition A.8. 

Definition A.10 Let x and y be umbrae written in 

exponential form. The product of x and y denoted by 

xy, is the umbra p such that 

That is, 

Umbra1 multiplication is again commutative and associative. 

(A) The Ath power of x will be denoted x . 
These comments on the doubly-suffixed case should be 

sufficient to make it easy to see how umbra1 algebras of 

umbra arising from 'higher' multi-suffixed scalars would be 

defined. 



•˜ A.2 The exponential function (of umbrae) 

Definition A.ll Let x be an umbra, x = (xOIx We 

define the function, exponent of x and a formal scalar 

variable 8 to be 

where e has its usual meaning (2.7.. . ) .i 

We note that the function exp xe is just a formal power 

series and so the usual operations in formal power series 

Definition A.12 For x and y umbrae, 

where (x + y ) N  is defined by A. 5. Generally, for 

any number of factors on the left 
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Powers of exponent functions can be obtained from (A.12) or, 

more conveniently from 

Exponent functions are added according to: 

Definition A.13 Let x and y be umbrae, 

This definition extends to any number of summands in the 

obvious way. From definitions (A.12) and (A.13) 

Ex' Ieaae + ycel = e (gx +{=a+. . .+ycl) 8 ... + e e 

Definition A. 14 The N~~ derivative with respect to €3, 

denotedd ,of e 5x8 is 
de" 



The above definition is just the definition of the N th 

derivative of a formal power series. The definitions of umbra1 

calculus are then used in rearranging the quantities appearing 

until the final form shown above is obtained. 

The exponential function of an umbra behaves under 

differentiation in formal analogy with the ordinary exponential 

function of a scalar. From (A14) and previous comments we 

also have 

(A. 15)  

We have already noted that e is a formal power series 

expression. Expressions such as d - (ex') d~ , log (ex@) 
de 

and so on can be considered as formal power series expressions 

and have meanings analagous to the usual scalar expressions. 

In practice, special notations such as € 1 ,  ( ) ( ) 

A*ax and so on are usually dropped as the meaning of expressions 

is still clear enough. 
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Comments on t h e  exponent ia l  func t ion  (of umbrae from mul t i -  

s u f f i x e d  s c a l a r s  

Again w e  make a  few comments on umbra from doubly- 

s u f f i x e d  s c a l a r s  and t h i s  should p o i n t  o u t  t h e  way t o  extend 

t o  o t h e r  multi-suf f  ixed cases .  

Def in i t ion  A.16 I f  x  i s  an umbra, x  = M I >  nlN=O 

w e  d e f i n e  t h e  exponent of x  and two formal s c a l a r  

v a r i a b l e s  8 and A by 

where e has i t s  usua l  meaning (2 .7 .  . . ) . 

A s  be fo re ,  t h e  exponent func t ion  i s  a formal power series, i n  

t h i s  c a s e  a double formal power series. The p r o p e r t i e s  of 

e x(8 tA)  are s i m i l a r l y  def ined  t o  A.12  through A.15, f o r  

and s o  on. 

The d e f i n i t i o n  of d e r i v a t i v e s  must be  modified s l i g h t l y  

s i n c e  w e  now have two s c a l a r  v a r i a b l e s .  



Definition A.17 The derivative with respect to 8, 

denoted - 3 , of e Ex(etA' is given by .. 

c o w  

= Z Z cM+N+A (x) M+A,N eM AN 

M=O N=O M!N! 

w w 

= (gx)A'o-~ z (EX) M ~ N  eM 
M=O N=O M!N! 

The derivative with respect to. A is defined similarly, 

that is, 

The comments following (A.15) apply here also (with appropriate 

modifications) . 

* 

It is easy to see that the transformation of power series r ;  



00 

C eN -+ exp x9, where x is an umbra, is an onto 
%- N=O 

isomorphism. That it is one to one and onto is easy. The 

homomorphi$m properties are guaranteed by definition (A.13) and 

definition (A. 12) . 

We shall now solve (3.8) using umbral calculus. Recall 

that (3.8) was 

der the transformation just mentioned this becomes the 

equation umbral 

T*exp Tx = C*exp Cx *exp Tx , (A. 18) 

where x is the formal variable and C and T are 

umbrae. 

We can rearrange (A.18) as 

T - exp Tx = C exp Cx . 
exp Tx 

(A. 19) 

Although we did not go into the formal details of the 



definitions of the integral of umbral expressions such 

as exp xer these details can be obtained by recalling 

the definition of integration of formal power series and noting 

that we want T to be homomorphic with respect to this 

operation also. These formal details justify the usual 

manipulations. We can rewrite (A.19) using (A.14) and 

integrate both sides of the equation with respect to x from 

0 to x, 

d exp Cx dx dx = 
0 exp Tx 0 

Integrating (A. 20) we obtain 

X X 
log ( exp ~ x )  I = exp cx 1 . 

0 0 

We can then transform (A. 21) using to 

log(; TN(y) 5 ") - log TO (Y) 
N=O N! 

(A. 20) 

(A. 21) 

(A. 22) 

which is the same as equation (3.16) when we note that TO(y) = 1 

and CO (y) = 0 , and the conclusions are drawn by theorem (3.17) . 
We can also solve (4.6) using umbral calculus. Recall 



equation (4.6) was 

where x and z are formal variables. 

This equation transformed to an umbral equation (the umbral 

algebra is from doubly-suffixed , scalars) becomes 

Totl*exp T(x,z) = CO"*~X~ C(x,z)*exp T(x,z) , (A.23) 

where x, z are formal variables, C and T are umbrae. 

We can integrate both sides of (A.23) with respect to z from 

0 to z , and use definition A.17 to write 

az = aexpc(x,z) az . (~.24) 
0 exp T(x,z) 0 Jz , 

By performing the integration we obtain 

The result (A.25) can be transformed using r-' to 



03 00 M 
X M z N  - L C M f O ( Y ) X _  1 (A .  26) = z C M f N ( Y )  'K 

M=O N=O M=O. M! 

03 

which is  t h e  same a s  (4.12) i f  we n o t e  t h a t  l o g  C 
(M=O M! 

m 
M = log(; p )  = x and E CMtO(y) I = x and t h e  

M=O M! M=O M! 

conclusions a r e  drawn by theorem ( 4  . l 4 )  . 
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