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Abstract: Finding a cure for HIV is challenging because the virus is able to integrate itself into the 12 
host cell genome and establish a silent state, called latency, allowing it to evade antiviral drugs and 13 
the immune system. Various “shock and kill” strategies are being explored in attempts to eliminate 14 
latent HIV reservoirs. The goal of these approaches is to reactivate latent viruses (“shock”), thereby 15 
exposing them to clearance by viral cytopathic effects or immune-mediated responses (“kill”). To 16 
date, there has been limited clinical success using these methods. In this review, we highlight 17 
various functions of the HIV accessory protein Nef and discuss their double-edged effects that may 18 
contribute to the limited effectiveness of current “shock and kill” methods to eradicate latent HIV 19 
reservoirs in treated individuals. 20 
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1. Introduction 23 
The presence of long-lived latent HIV reservoirs is the major hurdle to achieving combination 24 

antiretroviral therapy (cART)-free viral remission and a potential cure. To date, the only case of an 25 
apparently successful HIV cure is the “Berlin patient”, who received two hematopoietic stem cell 26 
transplants from separate CCR5∆32 homozygous donors to treat his leukemia [1,2]. He displays no 27 
evidence of HIV infection despite remaining off therapy since 2007. Such transplants are 28 
exceptionally high-risk procedures and are thus not applicable to the global population of 29 
approximately 37 million HIV-infected individuals [3]. Furthermore, subsequent attempts to use 30 
similar transplantation strategies in HIV-infected individuals who were also undergoing cancer 31 
therapy have been unsuccessful, with viral rebound observed within weeks to months following 32 
cART discontinuation [4]. Therefore, the development of safer and more effective methods to reduce 33 
or eliminate latent HIV reservoirs in cART-treated individuals is a high priority for researchers and 34 
the community. 35 

Different potentially curative approaches for HIV are currently under development, ranging 36 
from pharmacological approaches to immune-based and genetic therapies. Of these, the most 37 
intensively investigated strategies are the “shock and kill” methods to reduce or eliminate 38 
replication-competent latent HIV reservoirs in cART-treated individuals [5]. However, this strategy 39 
requires the induction of viral protein expression, including the regulatory and accessory proteins 40 
Tat, Rev, Nef, Vif, Vpr and Vpu, which could interfere with this process. In this article, we introduce 41 
the “shock and kill” method, describe the multi-functional viral accessory protein Nef, and consider 42 
how Nef may alter the efficiency of HIV cure approaches by modulating viral reactivation from 43 
latency or subsequent elimination by host immune mechanisms. 44 
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2. “Shock and kill” method  45 
An illustration of the “shock and kill” method to eliminate latent HIV-infected cells in cART-46 

suppressed individuals is shown in Figure 1A. Using latency-reversing agents (LRAs) that modulate 47 
cellular chromatin structure or otherwise stimulate the HIV 5’ LTR promoter, viral gene transcription 48 
is reactivated (“shock”) in latent HIV-infected cells. Subsequent viral protein expression followed by 49 
proteasomal processing and presentation of viral antigens on the cell surface in complex with human 50 
leukocyte antigen class I (HLA-I) molecules is then expected to result in the elimination (“kill”) of 51 
these cells by cytotoxic T lymphocytes (CTL). Alternatively, reactivated cells may undergo apoptosis 52 
due to the accumulation of viral cytopathic effects (CPE). By maintaining individuals on cART 53 
treatment during this process, viral replication and seeding of new HIV reservoirs is avoided.  54 

2.1. Inefficient viral reactivation using LRAs 55 
Different classes of LRAs have been identified and tested for their ability to “shock” the latent 56 

HIV reservoir. In particular, pan-histone deacetylase inhibitors (HDACi), such as vorinostat [6], 57 
romidepsin [7], and panobinostat [8], are currently among the most promising classes of LRAs. 58 
Through the inhibition of multiple HDAC enzymes, HDACi increases the overall level of acetylation 59 
on histone molecules. This ultimately reduces chromatin condensation and promotes nonspecific 60 
increases in both host and viral gene expression. Many HDACi are FDA-approved for cancer 61 
treatment, and their pharmacological and toxicological profiles are known. Hence, HDACi have 62 
advanced quickly to human clinical trials in the context of HIV cure strategies, where they have 63 
demonstrated a range of abilities to induce latent viral reservoirs that broadly reflect their potency 64 
[9,10]. Several other classes of LRAs have also been tested in clinical studies. For example, disulfiram 65 
modestly reverses HIV latency by depleting PTEN (phosphatase and tensin homolog), which 66 
subsequently results in activation of the PI3K/Akt pathway [11]. Protein kinase C (PKC) activators, 67 
such as prostratin and bryostatin, potently initiate HIV transcription in ex vivo experiments [12,13]; 68 
however, treatment with tolerable doses of bryostatin showed minimal ability to reactivate latent 69 
HIV in vivo in human studies [14]. Additional LRAs such as Toll-like receptor (TLR) agonists [15] and 70 
cytokines (i.e. interleukin-7 and -15) [16] are also being examined. Overall, none of these clinically 71 
relevant LRAs has been shown to reverse HIV latency potently in infected individuals. In fact, one ex 72 
vivo study indicated that many latent virus-infected cells remained uninduced despite strong T cell 73 
stimulation using phytohemagglutinin (PHA) or phorbol 12-myristate 13-acetate (PMA) plus 74 
ionomycin [17], suggesting that repeated induction using more potent LRAs may be necessary to 75 
achieve a clinically beneficial outcome. 76 

2.2. Ineffective clearance of reactivated cells 77 
Despite some success inducing latent HIV gene expression in cART-treated individuals, no 78 

significant reductions in viral reservoir size have been observed in vivo. This suggests that immune-79 
mediated clearance of reactivated cells and/or viral CPE is inefficient. While it is often assumed that 80 
the production of HIV proteins such as Vif and Vpr could cause cell death due to viral CPE [18], Shan 81 
et al. demonstrated that the presence of viral protein expression was not associated with a 82 
spontaneous reduction of latent HIV-infected cells following reactivation using vorinostat [19]. In 83 
addition to the limited impact of viral CPE, the same study showed that CTL isolated from most 84 
cART-treated individuals were unable to eliminate latent cells reactivated ex vivo with HDACi 85 
efficiently without pre-stimulation using HIV antigens [19]. Nevertheless, a more recent study using 86 
Nef- and Gag-stimulated CTL was unsuccessful in eliminating reactivated cells and reducing the size 87 
of latent reservoirs [20]. The lack of CTL-mediated killing is potentially attributed to impaired CTL 88 
functionality and/or limited viral peptide presentation by reactivated cells. While there has been 89 
controversy regarding LRA-associated CTL impairment, results from clinical studies showed no 90 
evidence of CTL dysfunction in patients who were treated with HDACi [7,21]. Nonetheless, 91 
increasing evidence from in vitro studies are reporting associations between treatment with selected 92 
LRAs and CTL dysfunction. In particular, romidepsin, panobinostat, and vorinostat appeared to 93 
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reduce the production of cytokines IFN-g, TNF-a and IL-2 [20,22]. Correspondingly, these HDACi-94 
treated CTL displayed impaired ability to eliminate HIV-infected cells [22]. On the other hand, 95 
limited studies have investigated HIV peptide presentation by reactivating cells. Clutton et al. 96 
observed impaired antigen presentation in reactivating cells due to inadvertent reduction in HLA 97 
class I expression following HDACi stimulation [23]. 98 

In summary, clinical studies have not reported successful reduction of the latent viral reservoir 99 
in vivo [6,7,10,21]. The major hurdles encountered by these strategies include inefficient induction of 100 
viral protein expression and ineffective clearance of reactivated cells by the host immune system. 101 

3. Modulation of HIV-infected cells by Nef 102 
HIV-1 Nef is a ~27 kDa myristoylated protein. It is encoded by the highly variable nef gene, 103 

which is located near the 3’ end of the viral genome. Nef is one of the earliest and most abundant 104 
viral proteins expressed by cells following infection [24-27], and presumably, following viral 105 
reactivation. Although Nef is often not required for HIV replication in vitro, it has been shown to be 106 
crucial for viral pathogenesis in vivo. Nef does not display any enzymatic activity; rather, it serves as 107 
a multi-functional adaptor protein that interacts with host proteins to interfere with a variety of 108 
processes in infected cells [28,29]. 109 

Nef downregulates CD4 expression on the surface of virus-infected cells [30] through clathrin-110 
mediated endocytosis [31,32] and increased endosomal retention [33,34] of CD4 molecules. Because 111 
CD4 is the primary receptor for HIV attachment and entry into target cells, reduced CD4 expression 112 
allows more efficient release of newly formed HIV particles [35,36], enhances virion infectivity [37] 113 
and inhibits superinfection [38]. Perhaps more important in the context of viral reactivation from 114 
latency, the interaction between CD4 and Env glycoproteins on the same cell has been shown to alter 115 
the conformation of Env to expose epitopes that are recognized by antibodies with potent antibody-116 
dependent cellular cytotoxicity (ADCC) activity [39-41]. Hence, efficient downregulation of CD4 by 117 
Nef can also protect infected cells from elimination by ADCC [42]. 118 

Nef is also well-known for its ability to evade the host immune response by selectively 119 
downregulating two HLA-I molecules, HLA-A and HLA-B [43-45]. This activity of Nef is genetically 120 
separable and mechanistically distinct from that of CD4 downregulation [46,47]. HLA-restricted CTL 121 
responses are associated with better control of viremia during primary HIV infection [48,49] and 122 
differential rates of clinical disease progression [50,51]. Thus, reduced expression of HLA-A and 123 
HLA-B molecules on the surface of infected cells can protect them from CTL recognition and 124 
elimination [52]. In addition, retention of HLA-C and HLA-E can inhibit the cytolytic activity of 125 
natural killer (NK) cells [44,45], preventing virus-infected cells from being eliminated through this 126 
innate immune mechanism. 127 

A novel strategy to explain how Nef enhances viral infectivity was elucidated by two groups of 128 
researchers in 2015, who demonstrated that Nef can antagonize host restriction factors serine 129 
incorporator 3 and 5 (SERINC3/5) [53,54]. While understanding the precise mechanisms responsible 130 
for SERINC-mediated antiviral activity is currently an area of active investigation [55,56], 131 
incorporation of SERINC3 or 5 into the membrane of newly formed virions significantly reduces their 132 
ability to form fusion pores with target cells, resulting in lower HIV infectivity [57]. To counteract 133 
these host restriction factors, Nef can downregulate SERINC3/5 from the surface of infected cells, 134 
which ultimately leads to the production of progeny virions that display higher infectivity [58].  135 

Another critical role of Nef during HIV infection is its ability to modulate T cell signaling events. 136 
By downregulating CD4 and CD28 molecules on the surface of virus-infected T cells, Nef reduces the 137 
efficiency of T cell activation mediated through the T cell receptor (TCR) [30,59]. To further suppress 138 
antigen-mediated stimulation of infected T cells, Nef binds Lck and redirects it to the trans-Golgi 139 
network (TGN), away from the plasma membrane where it can no longer participate in proximal 140 
TCR signal amplification events [60-62]. Together, the reduced availability of CD4, CD28 and Lck 141 
signaling molecules prevents the formation of an immunological synapse at the plasma membrane 142 
[60,61,63]. Paradoxically, while altered trafficking of Lck interrupts TCR-mediated signaling at the 143 
plasma membrane, it permits the activation of Ras and downstream mitogen-activated protein 144 
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kinase/extracellular signal-regulated kinases (MAPK/ERK) signaling events at the intracellular TGN 145 
compartment by forming a large complex that has been referred to as the Nef “signalosome” [62]. 146 
Alternatively, Nef can induce Ras activity via formation of a Nef-associated kinase complex (NAKC), 147 
which is comprised of Nef, Lck, linker of activated T cells (LAT) and Ras proteins [62,64]. In synergy 148 
with activated Ras signaling, interaction between Nef and the endoplasmic reticulum-resident 149 
inositol triphosphate receptor (IP3R) can trigger calcium flux into the cytosol and induce TCR-150 
independent NFAT activation [65,66]. Together, Nef’s uncoupled effects on T cell activation 151 
pathways can simultaneously suppress activation-induced cell death (AICD) triggered by 152 
extracellular antigen recognition and also increase viral gene transcription. 153 

Current evidence indicates that Nef may protect virus-infected cells from apoptosis, while 154 
simultaneously eliciting the death of bystander immune cells, which may enhance pathogenesis. To 155 
prevent infected cells from undergoing programmed cell death, Nef inhibits the activities of 156 
apoptosis signal-regulating kinase 1 (ASK1) [67], tumor suppressor p53 [68] and pro-apoptotic 157 
protein BAD (Bcl-2-associated death promoter) [69]. In contrast, secreted Nef can upregulate Fas 158 
ligand induced apoptosis of uninfected bystander CD4+ T cells and CTL [70-72], thereby dampening 159 
the local immune response against HIV-infected cells. Transgenic mice expressing Nef display AIDS-160 
like pathologies [73], raising the possibility that induction of Nef by “shock and kill” methods may 161 
lead to toxicity, particularly in localized tissues that harbor latent viral reservoirs, such as lymph 162 
nodes or the central nervous system [74,75]. 163 

Finally, by manipulating cytoskeletal dynamics, Nef may promote a more permissive cellular 164 
environment to support viral replication or spread. Nef associates with the serine/threonine kinase 165 
PAK2 in a multiprotein complex and redirects its phosphorylation to a novel target, the actin 166 
depolymerization factor cofilin, [76,77], which results in reduced F-actin turnover and actin 167 
cytoskeleton remodeling [78,79]. Consequently, this prevents F-actin accumulation at the 168 
immunological synapses upon TCR engagement [61], thereby contributing to the inhibition of AICD 169 
and prolonging the survival of infected cells [80].  170 

4. The double-edged effect of HIV-1 Nef 171 

4.1. How Nef might enhance “shock and kill” strategies 172 
Many factors that promote HIV latency are likely to contribute to the inducibility of viral 173 

reservoirs upon treatment with an LRA. Even though Nef’s role in the context of latency is not fully 174 
characterized, several studies have highlighted its ability to induce viral reactivation. For example, 175 
Fujinaga et al. demonstrated that exogenous Nef was activated virus production in latent cell lines 176 
(i.e. MOLT-20-2 and U1) as well as in peripheral blood mononuclear cells (PBMC) isolated from 177 
asymptomatic HIV-infected individuals [81]. Follow-up studies by the same group suggested that 178 
this effect was driven by Nef’s ability to induce Ras-mediated MAPK/ERK signaling [82]. The effect 179 
of Nef on latency reversal was confirmed in a separate study using U1 cells [83]. More recently, 180 
treatment using exogenous Nef alone was also found to be sufficient to activate the Akt pathway and 181 
to increase HIV reactivation in the Jurkat-derived 1G5 latent T cell line [84].  182 

In addition to Ras and Akt, Nef can also regulate cellular activation status by interacting with 183 
other host proteins. Hence, it is not entirely surprising that Nef could activate latent HIV-infected cell 184 
lines. For instance, the presence of Nef can trigger formation of NAKC and induce downstream 185 
Ras/MAPK activity [62,64]. Through its interaction with IP3R, Nef can trigger calcium flux into the 186 
cytosol and induce NFAT activation [65,66]. In both cases, early production of Nef during viral 187 
reactivation might enhance latent T cell activation. Moreover, previous studies reported that Nef can 188 
be released into the extracellular space either in soluble form [85,86] or within exosomes [87,88]. Both 189 
soluble and exosome-associated Nef have been shown to induce HIV reactivation in latently infected 190 
cells [81,89], but their proposed molecular mechanisms are distinct. In particular, soluble Nef may 191 
bind non-specifically to the surface of latent HIV-infected cells and be internalized via endocytosis 192 
[90,91]. After entering the cell, Nef can induce Ras/MAPK [82] and PI3K/Akt [84] signaling pathways 193 
that ultimately activate viral gene transcription. On the other hand, Nef increases the production of 194 
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exosomes containing activated ADAM17 (a disintegrin and metalloprotease domain 17) [92], an 195 
enzyme that converts pro-TNF-a into its active form. Uptake of ADAM17-containing exosomes by 196 
target cells can induce the release of TNF-a [93], which subsequently binds to TNF receptor type 1 197 
and activates NF-κB and JNK pathways [94]. Additionally, Nef has been shown to increase exosome 198 
release, which presumably enhances transfer of Nef-associated signaling activities to nearby cells 199 
[95]. Nef-mediated effects on cellular signaling are complex and their potential impacts on viral 200 
reactivation are not mutually exclusive. In fact, based on these previous findings, we speculate that 201 
Nef’s ability to enhance viral reactivation may be attributed to a positive feedback loop of cellular 202 
activation. Specifically, upon stimulation with LRAs, early Nef expression may increase viral gene 203 
expression. Subsequent secretion of soluble Nef and Nef/ADAM17-contaning exosomes could 204 
further increase the activation of latent cells through direct effects of Nef or TNF-mediated signaling 205 
pathways. 206 

4.2. How Nef might impair “shock and kill” strategies 207 
Recent results by Huang et al. suggested that replication-competent latent proviruses may 208 

display resistance to elimination by HIV-specific CTL [96]. Hence, apart from LRA-associated 209 
impairments in CTL functions, the expression of Nef immediately following viral reactivation may 210 
further reduce the ability of CTL to recognize and eliminate latent reservoirs. Specifically, the ability 211 
of Nef to selectively downregulate surface HLA-I molecules [43-45] may allow reactivated cells to 212 
evade immune surveillance. In support of this theory, Mujib et al. used small molecules designed to 213 
inhibit Nef, which partially reversed HLA downregulation and promoted the elimination of 214 
reactivating cells by HIV-specific CTL [97]. While the ability of Nef to downregulate CD4 can prevent 215 
ADCC-mediated elimination of productive virus-infected cells [42], no studies have examined this 216 
question in the context of latent viral reservoirs. 217 

As the leading class of LRAs, HDACi triggers various apoptotic pathways to induce tumor cell 218 
death (reviewed in [98]). While this strongly suggests that the use of certain LRAs could inadvertently 219 
induce apoptosis of latent reservoirs upon viral reactivation, the mechanism(s) involved have not 220 
been explored. Nonetheless, the ability of Nef to counteract multiple apoptotic pathways and 221 
promote cell survival could further hinder the clearance of reactivating reservoirs. First, Nef can bind 222 
directly to ASK-1 [67], an importance intermediate of Fas- and TNF-α-induced death signaling 223 
cascades [99,100], thereby preventing its dissociation from negative regulator thioredoxin [101]. 224 
Consequently, this inhibits ASK-1-mediated activation of downstream JNK signaling pathway to 225 
induce apoptosis [102]. Second, Nef can protect cells from undergoing p53-mediated apoptosis by 226 
binding and destabilizing p53, causing an overall reduction of this protein [68]. Third, the ability of 227 
Nef to associate with PI3K can induce downstream PAK-mediated phosphorylation of pro-apoptotic 228 
protein BAD [69]. Since phosphorylated BAD is incapable of forming heterodimers with anti-229 
apoptotic proteins Bcl-2 and Bcl-XL, these proteins remain active for the promotion of cell survival 230 
[103]. 231 

Furthermore, broad reactivation of HIV proteins using LRAs may lead to AICD among the 232 
proportion of reservoir cells that is HIV-specific [104]. In this case, Nef’s ability to downregulate CD4 233 
expression, modulate T cell signaling and cytoskeleton rearrangement may protect these cells from 234 
undergoing AICD. Taken together, early Nef expression following LRA-induced viral reactivation 235 
could inhibit CTL-mediated killing, apoptosis and AICD of latent reservoir, which may contribute to 236 
the lack of success seen using current “shock and kill” methods. 237 
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 238 
Figure 1. Impact of Nef on “shock and kill” methods to eradicate HIV reservoirs. (A) An illustration 239 
shows the expected outcome of a latent HIV-infected T cell following induction with LRAs (“shock”). 240 
The integrated HIV proviral genome is transcribed (1) and translated into viral proteins (2). Some 241 
viral proteins are degraded into peptide antigens and loaded onto HLA-I molecules (3) for 242 
presentation on the cell surface (4). Recognition of peptide-HLA complexes by CTL (5) induces 243 
cytotoxic mechanisms that kill the infected cell. Alternatively, the expression of viral proteins may 244 
induce viral cytopathic effects that result in death of the infected cell. (B) An illustration shows the 245 
potential contributions of Nef to modulate the reactivation and elimination of latent HIV-infected 246 
cells by “shock and kill” methods. In the presence of Nef, viral protein expression is robust, but HLA-247 
I molecules are down-regulated and cellular apoptosis is inhibited. In the absence of Nef, viral protein 248 
expression is reduced, thus limiting the amount of viral antigen that is available for presentation on 249 
HLA-I. In both scenarios, CTL-mediated recognition and elimination may be hindered. 250 
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5. Conclusions 252 
The efficiency of “shock and kill” strategies is determined by the degree to which latent HIV 253 

reservoirs are reactivated and subsequently eliminated in the host. We hypothesize that Nef might 254 
play a “dual” role in modulating both of these important factors (as illustrated in Figure 1B). While 255 
studies have demonstrated the use of exogeneous Nef to induce viral reactivation, Nef’s ability to 256 
mediate immune evasion and to enhance cell survival through inhibition of apoptosis are also well 257 
documented. Nef leads to downregulation of HLA-I molecules on the cell surface [43-45], which 258 
reduces presentation of viral peptide antigens and impairs CTL-mediated recognition and cytolytic 259 
activity against reactivating reservoirs [52]. Additionally, Nef’s ability to modulate apoptotic 260 
pathways may prevent reactivated cells from dying due to viral cytopathic effects [67,69]. In contrast, 261 
latent cells that lack functional Nef may be unable to produce viral proteins efficiently. As a result, 262 
presentation of viral peptides may be limited despite retaining high levels of HLA-I expression on 263 
the cell surface. Hence, the diverse roles played by Nef may create double-edged effects in the setting 264 
of a “shock and kill” strategy. Further studies to explore the possible impact of Nef and other viral 265 
accessory proteins, such as Vpr and Vpu, during HIV reactivation from latency may lead to enhanced 266 
clinical interventions. 267 
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