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Abstract

Given only a color camera's RGB measurement of a complete color signal spectrum,

how can the spectrum be estimated? We propose and test a new method that answers

this question and recovers an approximating spectrum. Although this approximation

has intrinsic interest, our main focus is on using it to generate tristimulus values for

color reproduction. In essence, this provides a new method of converting color cam-

era signals to tristimulus coordinates, because a spectrum de�nes a unique point in

tristimulus coordinates. Color reproduction is founded on producing spectra that are

metamers to those appearing in the original scene. Once a spectrum's tristimulus co-

ordinates are known, generating a metamer is a well de�ned problem. Unfortunately,

most color cameras cannot produce the necessary tristimulus coordinates directly be-

cause their color separation �lters are not related by a linear transformation to the

human color-matching functions. Color cameras are more likely to reproduce colors

that look correct to the camera than to a human observer. Conversion from camera

RGB triples to tristimulus values will always involve some type of estimation procedure

unless cameras are redesigned. We compare the accuracy of our conversion strategy to

that of one based on Horn's work on the exact reproduction of colored images. Our

new method relies on expressing the color signal spectrum in terms of a linear com-

bination of basis functions. The results show that a principal component analysis in

color-signal space yields the best basis for our purposes, since using it leads to the most

\natural" color signal spectrum that is statistically likely to have generated a given

camera signal.
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1 Introduction

Two spectra that look the same even though the spectra themselves are di�erent are called

metamers and are said to be metameric to one another. Metamers occur because the eye,

or a camera, collapses all the spectral information into a set of just three numbers|the

RGB signal in a camera or a similar set of three cone excitations in a human with normal

trichromatic vision. Metamers cause a problem whenever one shifts from one sensor system

to another|from camera to human, say|because what is a metamer for one in general will

not be for the other. This problem leads to di�culties in color reproduction systems.

As an example, consider three di�erent objects with arti�cially constructed spectra (given
in [29], p. 171) that would all look the same pale tangerine color to a human when viewed
under a standard daylight. The CIE system quanti�es this intuitive idea of what looks the

same to a human observer by assigning tristimulus values X;Y;Z (or simply XY Z) to a
color. These values are related to the proportion of color primaries that must be added
together to make the color. From XY Z one de�nes the chromaticity of the color by the
pair (x; y) where x = X=(X + Y + Z) and y = Y=(X + Y + Z). Chromaticities are usually
displayed on a diagram devised by the CIE in 1931. For our tangerine color, the tristimulus

values are (129:06; 100:00; 44:20) and the chromaticity is (x; y) = (0:4691; 0:3643).

The same objects that all looked the same color to the eye, viewed under the same
daylight illumination, unfortunately all appear di�erent from one another when viewed by
a typical camera. Speci�cally, the values of the RGB signal produced by the camera are

(1:490; 0:901; 0:388) for the �rst, (1:476; 0:838; 0:477) for the second, and (1:189; 1:150; 0:422)
for the last.

If these camera signals are now sent to a color display device, the \reproduced" colors of
the three objects will di�er from one another even though originally they were metameric.
On one system we tried, passing these RGBs 1 directly to the output device resulted in the

colors tangerine, salmon, and a pale green tan. The camera discerns that the spectra di�er
even though the eye does not. The converse situation also can occur; namely, the camera

may see three di�erent spectra as metameric (i.e., their RGB signals are the same) while the

human eye does not.

Since the eye and camera do not always agree, what XY Z value should be assigned to

a given RGB signal? This is the main question we seek to answer in this paper. Of course,
any answer must be a compromise because of the fundamental di�erence between the two

sets of sensor sensitivities.

1Throughout this paper we denote by `RGB' the camera system signal (not three tristimulus values, as
in [29]).
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The problem of metamerism has a long history in color science, although it is not always

recognized in computer graphics and computer vision as part of the problem in accurate color

reproduction. A visible-light signal is characterized by the spectral power distribution (SPD)

of relative intensities of the signal measured over many (usually evenly-spaced) wavelength

intervals. The SPD can be thought of either as an analytic function of wavelength, or

when the spectrum is sampled at N wavelength intervals, as a vector in an N -dimensional

space. The signal that arrives at the lens (either camera or human) is composed of the light

spectrum illuminating a surface multiplied by the surface spectral reectance function. The

resulting signal is variously called the color signal in computer vision (see, e.g., [28]) or the

object-color stimulus in color science [29].
When �ltered by color �lters and viewed by camera (or eye) sensors, the color signal for

each pixel is condensed into three RGB values that carry the intensity and color information
for the image. (We shall sidestep the issue of just how RGB information is created in the
eye by relying on the psychophysical color-matching functions [29] to characterize human
sensors.) The problem of metamerism arises because the mapping from SPD to RGB is
many-to-one: there are usually a great many possible color signals that could have resulted

in exactly the same set of sensor responses.
In terms of color reproduction this would create no problem, if as seen in the earlier

example, camera sensors were fooled by the same metamers as the human eye| i.e. if
camera metamers were the same as eye metamers (cf. [16]).

As Horn has pointed out [12], eye metamers and camera metamers can only be made to
coincide when the sensor curves of the two systems are a homogeneous linear transformation

away from each other. Unfortunately, this linear relationship between response curves for
machine and human vision does not in general hold.

Horn [12] gives a straightforward method for determining the linear transformation of the
color-matching functions that \best" corresponds to the actual sensor response curves. His
prescription implies, as well, a simple linear transformation of the camera RGB signal into

corresponding tristimulus values XY Z. (Here, we call this linear transformation \Method
A".) It is the tristimulus values that form the input to the chain of transformations leading

to color reproductions, either video or printed [12, 26]. Horn's approach is an attempt to
be algorithmic rather than to rely on the experience and expertise of practitioners in color

reproduction to apply appropriate rules of thumb to the color correction problem.

Our interest in this topic stems from our work on the computational vision problem of

separating a color signal into its component factors, illumination and reectance [11]. Using

the statistical properties of typical daylights and naturally occurring reectances, we showed
that it is indeed possible to disentangle the illumination from the reectance, provided

that one has available the entire SPD color signal function, not just an RGB signal. This
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information turns out to be available from a lens with nonvanishing chromatic aberration

[9], but is generally not available from standard video systems. We were led, therefore, to

the problem of producing an estimate of the color signal spectrum from just the sensor RGB

inputs, as a front end to our color-signal-separation algorithm.

It is precisely here that the problem of metamerismcrops up: Which of the many available

metamers, by de�nition all having the same sensor RGB, is the actual spectrum producing

that RGB? Of course, we cannot expect to recover the precise spectrum from just three

samples; however, we do claim to recover the most likely color signal spectrum.

Following the work of others [19, 6, 14, 23], we again use �nite dimensional linear models

as we did in our color-signal-separation algorithm [11], to reduce the amount of information
required to characterize an illumination spectrum or a surface spectral reectance function

by capturing all the necessary information in a few weights of a small number of terms
in a linear expansion in terms of a set of basis vectors. In the present case, however, the
�nite dimensional models model color signals instead of illuminants and reectances. Color
signals are approximated as a weighted sum of basis vectors. Truncating the expansion to
three terms produces a set of equations that can be solved for the basis vector weights given

the sensor RGB.
By generating an approximate, complete color-signal spectrum corresponding to a given

RGB, we also immediately obtain a corresponding XY Z tristimulus triple. Calculating an
XY Z for an RGB via the indirect step of an intermediate spectrum is in fact similar to
Method A in that the XY Z values are then a simple linear transformation away from the
input sensor RGB values. It turns out, though, that for a good choice of basis vectors (we

examine three di�erent alternatives) this new scheme (called \Method B") produces XY Z

values that are much closer to those of the original color signal. In fact, while Method A
works reasonably well for sensor response curves that are nearly a linear transformation away
from the color-matching functions|although still only 40% as well as Method B|it does
not work at all well for typical camera bandpass �lters. The accuracy of Method B, however,

remains undiminished in these cases.
As well, since we are producing XY Z values by way of generating a complete color-

signal SPD, we can examine the SPD produced for appropriate physical characteristics. In
particular, we �nd that it is simplest to eliminate any spectra having one or more negative

components. This turns out to be 0.3% of the large set of sample RGBs tested, and can be

accommodated easily by interpolation. The intermediate step of generating a complete SPD

thus amounts to a useful tool for discarding those XY Zs generated that would result from

impossible spectra. This validation step is not available to Method A.
Basis functions were calculated from 1710 synthetic color signals. Tests on 2052 synthetic

color signals including these 1710 color signals yielded a median error of 3.4 CIELUV units



6 Mark S. Drew and Brian V. Funt

between the tristimulus coordinates of the actual color signal and those of the color signal

estimated from the RGB data alone. The errors increase substantially for color signals

synthesized from illuminants and reectances far from the original data set, which points

out the desirability of incorporating as many spectra from as many diverse materials and

lights as possible in statistically-based modeling techniques of this sort. These tests, which

are described in detail below, show that our new method does not produce perfect results.

We claim only that it performs much better than existing methods.

2 Metamerism and Tristimulus Values

In reference [12], Horn is concerned with ascertaining the conditions for each step of the
process of color image reproduction that guarantee that the resulting colors cannot be dis-
tinguished by humans, as well as with developing some indicators of the accuracy of repro-
duction when the exactness conditions are not met. Here we address just the �rst step of the
reproduction process, that of converting the input sensor RGB responses into a best version
of tristimulus values XY Z. The measure of accuracy we shall use is the CIELUV unit in

uniform color space (see [29, p. 828]); this unit accounts for both the chromaticity di�erence
between spectra and their luminance di�erence.

If we generate a spectrum C(�) from the sensor RGB that matches the RGB when �ltered
by the camera �lters, then we have generated a metamer with respect to the color �lters
that produced the RGB. Our �rst problem consists in regenerating the one metamer among

all the choices available that best matches (in CIELUV space) the XY Z of the actual color
signal that produced the RGB. All the candidate metamers will have the same RGB (i.e.,
they will be camera metamers), but in general each will have a di�erent XY Z (i.e. they will
not be eye metamers).

Suppose that the camera has color �lters Rk(�), so that the RGB sensor responses,

denoted �k, are given by

�k =
Z
C(�)Rk(�) d� , k=1 . . . 3 : (1)

(For convenience, (1) employs function notation rather than vector notation.) Then any

C(�) spectrum is a camera metamer provided it has the same values for �k.
2.

Tristimulus values XY Z are determined in an analogous manner, but with the 1931 CIE
standard observer color-matching functions instead of the sensor response curves Rk. These

2Note that to determine the correct Rk it is necessary to calibrate the camera system carefully for
contributions from the lens system, the digitizer, etc. (cf. [16])



Natural Metamers 7

curves are commonly called �x; �y; �z, but for convenience we shall denote the collection of

three curves by �xk and the collection X,Y,Z by Xk:

Xk =
Z
C(�) �xk(�) d� : (2)

Our task is to generate from the �k those values Xk that best match the Xk that would

have been produced from the actual color signal. For computational vision applications, it

would also be of use to know just what C(�) produced the measured �k. We look at the

second issue in the next section; here we set out a method for developing a set of Xk from

the �k that is based on Horn's work.

Reference [12] is concerned with determining strictures on the image reproduction system
for the exact reproduction of colors. Horn shows that if the image sensor curves Rk are a
linear transform of the color-matching functions �xk, then camera metamers are the same as

eye metamers. As well, he develops the linear transform of the �xk that \best" �ts the sensor
curves Rk. To do so, he assumes that the actual response curves Rk can be approximated
by a linear transformation of the �xk:

Ri(�) '
3X

k=1

aik �xk(�) : (3)

Then by minimizing the squared di�erences between the actual response curves Rk and the
linear transform curves, the weights aik can be solved for:

3X
k=1

aik qkj = vij ; (4)

where

qkj =
Z
�xk(�) �xj(�) d�

vij =
Z
Ri(�) �xj(�) d�

Or in matrix notation:

A = V Q�1 (5)

provided Q is nonsingular. The approximation, equation (3), amounts to a projection of the
sensor curves onto the space spanned by the functions �xk.
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This approximation also entails a scheme for generating the Xk triples from the input �k.

We have

�i =
Z
Ri(�) C(�) d�

'
3X

k=1

aik

Z
�xk(�) C(�) d�

=
3X

k=1

aikXk (6)

Therefore, the input �k are approximately given by a linear transformation of the Xk, and
vice versa:

X ' QV �1� : (7)

In section 5 we explore how well this approximation does in reproducing the exact Xk.

3 Metamerism and Color Signal Reconstruction

The problem with the above formulation is that while it does generate the optimal sensor
functions from the actual Rk functions, there is no guarantee that it generates the best
tristimulus values Xk. In search of a better method, we consider instead approximating the
original color signal by a three-dimensional linear model and ask how well the tristimulus
values match those of the original.

Suppose that C(�) is approximated by

C(�) '
3X

i=1

ciCi(�) (8)

where Ci(�) are basis functions that do a good job of describing most color signals in a

training dataset. The sensor response to this approximate color signal calculated according
to equation (1) approximates the �k developed from the exact C(�).

�k '
3X

i=1

ci

Z
Ci(�)Rk(�) d�

�
3X

i=1

cibik (9)
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Since we have chosen the functions Ci(�) and they are �xed, we know the matrix bik and it

can be precalculated. The above system of equations is linear and their solution yields the

weights ci, which turn out to be simply a linear transformation of the �k.

In terms of minimizations, the best available approximation in equation (8) amounts to

a minimization

Min
Z
[C(�) �

3X
i=1

ciCi(�) ]
2 d�: (10)

The linear transformation (9) can be thought of as a minimization

Min
3X

k=1

(�k �
3X

i=1

ci bik)
2 (11)

provided the matrix bik is nonsingular.

Equation (2) yields values of Xk produced from the approximated color signal, so the

actual Xk are approximated as:

Xk '
3X

i=1

ci

Z
Ci(�) �xk d�

�
3X

i=1

cieik (12)

Or in matrix form:

XT ' cTE (13)

Writing equation (9) as

cT = �TB�1 (14)

and combining with the above, we have as our �nal approximation of the set of Xk,

XT ' �TB�1E : (15)

Since matrices B and E are �xed by the choice of sensor �lters and color-signal basis

functions, we are left with a simple linear transformation from the �k to the Xk that is

�xed and independent of the values of �k. A �xed linear transformation is precisely the
situation that obtains for Method A described in the last section. The di�erence lies in the

de�nitions of B and E, which both incorporate the choice of the color signal basis Ci(�).
With Method B, a judicious choice of basis set greatly improves on the values of Xk derived
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using Method A. Method B is equivalent to the minimization (11), which determines the

best basis function weights ci given sensor responses �k.

Method A invokes no assumptions about the color signals, whereas the choice of a basis set

Ci(�) entails an assumption about what color signals can be expected. Method B performs

best when that assumption is met.

4 Color Signal Basis Sets

Method B requires a basis set Ci(�). Following on the work of others, we consider a Fourier

basis and a basis formed from products of basis functions for illumination and reectance.
We then also introduce a third basis derived from a principal component analysis of color
signals. We compare Method B's performance on all three basis sets with that of Method A.

4.1 Fourier basis

As advocated in [25, 5], a set of three frequency-limited functions of wavelength can be

used as a basis set for modeling spectra. Wandell [28] suggests using the �rst three Fourier
functions, as follows:

F1(�) = 1

F2(�) = sin[2�(� � �min)=(�max � �min)]

F3(�) = cos[2�(� � �min)=(�max � �min)] (16):

Weighted sums of this set of functions can be expected to generate many physical chromatic-
ities [5], but it is not clear whether such spectra correspond to natural color signals or are

simply camera metamers that may be useful in generating RGB signals for use in graphics

In section 5 we test how closely weighted sums of the above functions correspond to actual
color signals. 3

3The Fourier basis was also used by Glassner [10] for the related problem of generating some instance
of a spectrum that forms a monitor-metamer giving a particular screen RGB. Such a metameric spectrum
is useful for full-spectrum-based antialiasing. Glassner's method relies on a transformation matrix M for
converting monitor values to XY Z equivalents such that M is �xed, for a given monitor, and is found by
calibrating to a monitor white spot (see, e.g., [22]). Glassner uses the set (16) and generates XY Z values
via X(i)k =

R
Fi�xkd�. These X(i)k are transformed to sets �(i)k by matrix M , and weights ci are found for

any screen RGB from these �(i)k via �k =
P3

i=1 ci�(i)k. This method for generating a spectrum di�ers from
equation (15) in that the matrix M is unconnected with the basis Fi.
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4.2 Basis function products

A second set of basis functions for color signals that has been used before (see Brainard et al.

[3] and Ho et al. [11]) consists of functions formed as product pairs taken from two separate

basis sets, one for illumination and another for reectance. For example, let the basis set for

illumination be Juddet al.'s derived from a principal component analysis of many daylight

SPDs [14]. Denote by Ei(�) these illumination basis functions. In addition, let Sj(�) be a

basis set for reectance; for these Brainard et al. [3] (see also [18]) use either Cohen's [6]

Munsell chip reectance basis or their own basis set developed using a principal component

analysis of a large set of Munsell chips (cf. Maloney's analysis [17] of the large sample of
natural reectances obtained by Krinov [15]). Judd et al. modeled most daylights using just
three to �ve illumination basis vectors; Cohen concluded that between three and six basis
vectors were su�cient for modeling reectance.

The full set of product functions consists of all the Ei(�)Sj(�) pairs, but for our purposes
we must choose just three product basis functions P (�) for modeling color signals. We select
pairs:

P1(�) = E1(�) S1(�)

P2(�) = E1(�) S2(�)

P3(�) = E2(�) S1(�) (17)

Our tests employ Judd's illumination basis functions Ei(�). For the reectance basis set,
we follow Maloney [17] and carry out a principal component analysis on the Krinov catalogue

of 370 natural reectances [15]. 4 Since these reectances are available in a limited range
in the visible|400nm through 650nm in steps of 10nm|we keep the analysis to only 26
samples over wavelength. In fact, since we use the Krinov reectances to generate test color

signals we use 26-component vectors throughout.

Judd et al.'s analysis of daylight illuminationwas a standard principal component analysis
[13]. In this type of analysis, one views the spectra as vectors in an N -dimensional vector
space. The �rst step translates each vector to a new origin, the mean vector of all the

spectra. The second step forms the variance-covariance matrix of all the mean-subtracted

vector components with each other over all the cases studied and diagonalizes this matrix.
The resulting vectors are ordered such that the �rst vector is in the direction that accounts for

the maximum variability in the whole set of samples. The second vector is perpendicular to
the �rst and accounts for the direction showing the next most important source of variability,

4Actually we used only 342 of the Krinov spectra, omitting those that were incomplete in the limited
wavelength range utilized by Krinov and three others (snows) that had reectance values above 1:0.
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and so on. The principal component vectors are not necessarily orthogonal to the mean

vector, however.

In modeling color signals as the product of a linear series in an illumination basis times a

similar series in a reectance basis, there can be uniqueness in the illumination and reectance

weights only up to an overall multiplicative factor because the color signal is formed by

multiplication [11]. It then makes sense to keep to a weight of 1 for the �rst illumination

basis function, since an overall choice of magnitude makes no di�erence. Therefore, using

the mean vector plus a linear series for illumination, as provided by a standard principal

component analysis, is just what is required.

For reectance, however, it makes more sense to derive basis vectors that are all orthogo-
nal, since we are not setting the �rst weight to a special value and more importantly because
for any new reectance we do not have available a sample mean by which to translate the
origin. Therefore, instead of a standard principal component analysis, we use a Karhunen-
Lo�eve analysis [27, p. 275], which does not translate by the mean and yields basis vectors

that are all orthonormal. In its simplest form, the Karhunen-Lo�eve transformation diag-
onalizes the raw component crossproduct matrix (the autocorrelation matrix) rather than
the variance-covariance matrix (although the term can also refer to the standard principal
component analysis). This amounts to viewing the origin, rather than the mean of the
reectance set, as a distinguished point. 5

For the recovery of color signals from �k values, the product basis set Pi turns out to
work quite well, better than the Fourier basis, as is shown in the section 5. This is due to
the fact that the Pi incorporate a good deal of statistical information on how the expected
color signals are formed.

4.3 Color signal space basis

The third basis set considered, and the one that tests show works the best, is similar to the
product basis set, but developed from a statistical analysis of color signals themselves instead

of their illumination and reectance components. By forming a large number of synthetic

color signals, as products of typical illumination spectra with natural reectance spectra,
we created a large data set to examine. We used the �ve standard Judd daylights [14] for

correlated color temperatures between 4800oK and 10000oK, multiplied by 342 reectance
spectra from the Krinov catalogue as 1710 di�erent synthetic, yet natural, color signals. We

performed a Karhunen-Lo�eve analysis on these spectra and derived a set of basis vectors,

5Alternatively, one can engineer the sample set such that the mean vector is zero [17].
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the �rst �ve of which are shown in Fig. 1. 6 7 Note that although it would be desirable to

use as many vectors as possible, equation (11) limits us to using only the �rst three of them.

Denote by Ci(�); i = 1 : : : 3 the color-signal-space basis set to be used in equation (8).

We show in the next section that these Ci perform better than either the Fourier or the

product basis sets in mapping an input set of �k back to a color signal.

It should be noted that each of the three basis sets entails an unrestricted gamut ofXY Zs

entirely covering the 1931 CIE chromaticity diagram. The three basis vectors C1; C2; C3 can

be viewed simply as three primary colors. These primaries can be combined in any linear

combination, including combinations with negative intensity weights. Only when we �lter

out RGB-to-XY Z mappings because the C(�) constructed during the intermediate step
contain negative components do we restrict the gamut at all.

In the next section we look at results for Method A and the results for Method B using
each of the three basis sets. For convenience, we refer to the methods as shown below:

Method A method derived from Horn's analysis
Method B.F basis function method using Fourier basis
Method B.P using EiSj product basis

Method B.C using color signal space basis

5 Results

We compare results for the various methods with two di�erent sets of color �lters, �rst using
reectances drawn from the original set used in deriving the color signal basis vectors, and

then using reectances drawn from other sources.

5.1 Spectra formed from original reectance data set

For the two di�erent sensor response functions, we use the human cone responses given by

Bowmaker and Dartnell [2], and as typical camera sensors, the transmittances of Kodak

�lters #25 (red), #58 (green) and #47B (blue) [8]. Both sets are shown in Fig. 2.

As a measure of accuracy of the color signal reconstruction, we use the CIELUV unit

of distance �E in uniform color space [29]. Since a color signal is already an illumination

6Buchsbaum [4] uses a Karhunen-Lo�eve expansion as well, but diagonalizes in an RGB space, not with
respect to the components of the color signal. See also [21].

7The (cumulative) variance-accounted for by the �rst �ve vectors is: 0.95819, 0.99063, 0.99724, 0.99839,
0.99893.
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multiplied by a reectance, it is not necessary to multiply by the standard light D65 to

obtain tristimulus values.

To provide a common ground for comparison, we normalize the luminance of each of the

synthesized color signals by setting the Y values to 100, as is done for illuminations in [29,

p. 149]. The Xk given by equation (7) must also be normalized in the same way, i.e. by

multiplication with 100=Yactual, where Yactual is the unnormalized value of the luminance for

the actual color signal. Similarly for the basis function methods, one should scale the tris-

timulus values calculated from equation (15) by Yactual. Since both actual and approximate

spectra are multiplied by the same normalization factor the �E produced is 3-dimensional

in that it accounts for intensity change as well as chromaticity change.
The set of synthetic color signals used to test each method consists of the �ve Judd

standard daylights as well as the mean vector for daylight in Australia [7], each multiplied
by each of the Krinov reectance functions [15]. Since the color signal basis set was derived
in part from this same set of product functions, it could be argued that this sample set does
not provide a stringent test for the method. However, the fact that a principal component
basis accounts for the variability in the whole data set does not imply that any particular

spectrum is well-modeled by a few basis functions. The chosen set provides a large sample
so many of the spectra will be poorly modeled. One does, however, expect the principal
component set to do relatively well overall.

While in general there is a good argument for choosing a set of basis functions that
matchs as well as possible the set of color signals actually expected, to see what happens
when the expectations are not met, we apply the method to spectra not drawn from this set

to determine how much the results degrade. We are also interested in how a change in �lter
functions a�ects the average error of each method.

For the human cone response functions, the results for the sample set are shown in Fig. 3
and Table 1.

Mean Median StdDev

Method A 16.4 16.2 6.6

Method B.F 16.9 16.5 6.9
Method B.P 11.8 9.8 9.3

Method B.C 7.4 5.4 6.6
Table 1: Statistics using human cone response functions for 2052 typical color signals.

Color di�erences are given in terms of 3-dimensional CIELUV �E.

As can be seen, from poorest to best the methods are: Method B.F;Method A;Method B.P;

Method B.C. The best mean uniform color space distance is 7.4 units. For the color signal
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space basis (Method B.C), 2% of the approximate color signals were not included in the his-

togram analysis (Fig. 3) because at least one vector component turned out to be negative. Of

the 2052 sample color signals examined, 37 had at least one negative component. Of these,

the average number of negative components was 2, the median was 2 and the maximum was

4. Another way of dealing with reconstructed signals with negative components, rather than

simply omitting them, would be by adding metameric black signals [29, p. 187], but we do

not address this option here.

For each of the other basis function methods, the histograms shown also omit any signals

with negative components. Signals that must be omitted strongly correlate among the three

basis function methods. For Method A, it is not possible to screen unphysical color signals
in this way. The fact that the cone functions are close to being just a linear transformation

of the color-matching functions means that the non-basis method, Method A, works not too
badly.

When applied to the typical camera �lter functions, Method B continues working well,
with the best �E average being 4.4 for Method B.C. Method A's error rises considerably|
up by a factor of 2 in CIELUV units|presumably because the sensor functions are far from

being a linear combination of eye functions. Table 2 tabulates the results with the camera
�lters and Fig. 4 histograms them. For all the methods, the standard deviations are quite
wide.

Mean Median StdDev

Method A 30.7 31.0 8.4
Method B.F 11.0 10.0 5.6

Method B.P 5.5 4.3 4.6

Method B.C 4.4 3.4 3.9
Table 2: Statistics using camera response functions for 2052 typical color signals, in terms

of �E.

As a particular case, consider as an example Method B.C applied to a color signal com-
posed of the Australian illumination spectrum multiplied by the �rst principal component
vector in Cohen's analysis of reectances. These spectra have no relationship to the develop-

ment of the color-signal-space basis set. For this `typical' natural color signal the tristimulus

values are Xk = (98:55; 100:00; 95:59) so that the chromaticity is (x; y) = (0:3350; 0:3400).
This color is very close to an ideal white. Using the camera sensors, the camera signal is

�k = (1:086; 1:012; 0:904) which displays as a pale pink|the camera does not see what the
eye does. Nonetheless, applying equation (15) Method B.C maps these �k back to tristim-

ulus values Xk = (98:13; 99:55; 99:58), or chromaticity (x; y) = (0:3301; 0:3349). In other
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words, Method B.C successfully reproduces the white the eye sees; the CIELUV error is only

�E = 4:76 : Fig. 5 shows the original color signal and the approximation derived by the

algorithm. Their agreement is striking.

For comparison, the results derived using Method A are Xk = ( 133.6, 124.4, 102.0 ) with

chromaticity (x; y) = ( 0.3712, 0.3456), giving a �E of 37.2. The results for Method B.F

are Xk = ( 86.5, 95.7, 92.9) and (x; y) = (0.3145, 0.3478), yielding �E = 22:0. For method

B.P, the results are Xk = ( 97.3, 98.9, 100.1), (x; y) = (0.3284, 0.3338) and �E = 6:2.

5.2 Spectra formed from other reectances

For a more stringent test, we apply the various methods to color signals that are modeled
much less well by the color signal basis set by composing natural color signals as products of
standard illuminant A, representing a full-radiator approximation of an incandescent source
[29], and the spectra from two sets of published reectance data.

First, we used the set of reectance patches on the Macbeth Color Checker chart [20]
(and see also [21]). This set consists of twelve custom-made patches and twelve standard

Munsell chips. The last 6 patches are neutrals. Data was drawn from a digitization of the
curves in [20]; the data was also checked in part using a 0/45 spectroradiometer system.8 As
expected, the method does not perform as well as when the color signal basis set is tailored

to the expected illuminants and reectance functions. The results are as in Table 3. In this
Table we show the number of negative components, if any, in the reconstructed color signal.
The existence of negative components is consistent across all the methods for reectances

with a large number of negative components.

The best results are given by Method B.C, with average errors for the four methods being

�E = 54.8, 32.7, 32.5, 21.8, for Methods A, B.F, B.P, and B.C respectively.

8Data kindly supplied in part by Pthalo Systems, Inc., 8500 Baxter Pl., Burnaby, B.C., Canada V5A 4T8.,
using their in-house spectroradiometer.
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Sample Method A Method B.F Negs Method B.P Negs Method B.C Negs

1 61.27 17.02 9 47.01 4 30.52 3

2 62.99 16.01 6 37.16 4 22.34 3

3 44.32 11.51 3.62 1.19

4 36.15 25.05 11.84 3 10.36 3

5 62.48 10.08 11.76 5.38

6 37.18 8.95 14.87 12.31

7 53.43 41.23 10 72.39 7 49.20 6

8 60.96 23.28 11.38 14.65

9 76.77 75.99 11 73.89 7 44.44 7

10 88.35 20.72 3 37.06 3 21.57

11 32.18 31.76 3 16.89 4 14.49 4

12 46.18 22.77 9 58.60 4 41.81 4

13 57.70 37.49 11.99 14.67

14 17.38 20.54 12.99 1 7.48 2

15 96.66 187.7 11 86.28 9 48.69 8

16 44.72 26.12 8 39.51 4 28.84 4

17 89.95 59.96 9 63.69 6 34.60 5

18 54.23 33.43 54.19 47.56

19 48.44 19.10 1 18.36 11.74

20 48.37 19.01 1 18.90 12.26

21 48.29 19.30 1 18.95 12.22

22 48.25 19.18 1 18.57 11.97

23 48.59 19.24 1 19.66 12.72

24 49.91 18.35 1 20.43 13.22

Mean 54.8 32.7 3.5 32.5 2.3 21.8 2.0
Table 3: �E for illuminant A and Macbeth patches using the camera �lters given in Fig 2.

1=dark skin, 2=light skin, 3=blue sky, 4=foliage, 5=blue ower, 6=bluish green, 7=orange,

8=purplish blue, 9=moderate red, 10=purple, 11=yellow green, 12=orange yellow, 13=Blue,

14=Green, 15=Red (primary), 16=Yellow, 17=Magenta, 18=Cyan, 19=white, 20=neutral 8,

21=neutral 6.5, 22=neutral 5, 23=neutral 3.5, 24=black.

Another data set used was the set of reectance spectra for ceramic tiles given in [1].
Again, negatives appeared for all the basis sets for these samples. Results are given in

Table 4.
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Sample Method A Method B.F Negs Method B.P Negs Method B.C Negs

1 51.48 18.22 2 20.86 13.31 1

2 39.61 14.85 25.57 19.85

3 50.69 19.47 27.50 25.35

4 49.78 18.72 1 19.93 12.87

5 44.71 6.59 20.24 1 17.96

6 49.45 18.56 1 18.47 11.75

7 47.37 37.69 10 73.87 7 51.77 6

8 48.94 18.81 1 18.58 11.91

9 75.62 31.51 8 53.89 7 32.50 5

10 91.12 140.0 11 80.23 9 45.80 8

11 48.98 19.55 1 20.53 13.38 1

12 44.75 26.54 8 34.79 4 25.40 4

Mean 53.5 30.9 3.6 34.5 2.3 23.5 2.0
Table 4: �E for illuminant A and ceramic tile reectances for camera response functions.

1=black, 2=blue, 3=cyan, 4=deep gray, 5=green, 6=mid gray, 7=orange, 8=pale gray, 9=pink,

10=red, 11=white, 12=yellow.

Again, Method B.C generates the best results with results being �E =53.5, 30.9, 34.5,
23.5.

5.3 Discussion

The average error of �E = 4:4 reported in Table 2 is really quite good. Although printing a

color consistently is quite a di�erent problem from reproducing a color, Stamm [24] reports
results that can be used for comparison. Stamm's results show that the average allowable
color variation in typical printing applications is �E = 6 units, with standard deviations

�3-4 (in the related CIELAB system). For another related problem, that of duplicating a
color on a di�erent device, Stone et al. report results of 8� 14 CIELUV units [26].

For the cases of the Macbeth patches and the ceramic tile reectances, the errors shown
in Tables 3 and 4 grow substantially. These are color signals that are not modeled well by

the color signal basis set. Even though these errors are quite high, it remains the case that

Method B.C does better than the others|better than Method A in particular.

The best case is Illuminant A multiplied by Macbeth patch #3. The worst case for a
spectrum recovered with all positive components is given by the same illuminant multiplied

by Macbeth patch #18. These cases are shown in Figs. 6 and 7. While the worst case is
clearly very poorly modeled, Method B.C still does better than the other methods. Fig. 8
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provides some intuition as to how a curve reconstructed with some negative components �ts

the original color signal.

Similar results are found using other sets of camera �lters. We carried out the same

tests using another set with somewhat narrower spectral response curves and slightly shifted

peaks. The results were substantially the same.

6 Conclusions

Each of the methods provides a homogeneous linear transformation from sensor RGB re-
sponses to XY Z coordinates. Method A makes no assumptions about the type of color
signals expected at the sensor, but optimizes a given set of sensor sensitivities to the human

cone sensitivities. Horn's work, on which Method A is based, points to the need for cam-
eras with spectral sensitivities that are appropriately matched to those of the human visual
system.

We have taken a typical existing camera as a starting point and found that a better linear
mapping from RGB to XY Z can be derived via the step of constructing an intermediate

spectrum. The intermediate spectrum involves an assumption about what color signals are
statistically likely to be seen by the camera. A principal component analysis in color signal
space determines which these are and generates a set of basis functions. The equations
restrict us to using only the �rst three of these basis functions, but within the limits of
this constraint, the algorithm recovers the most \natural" color signal that is also a camera

metamer to the input RGB. The RGB is then mapped to the XY Z of that metameric color
signal. The new method of RGB-to-XY Z mapping works well when either cone response
functions or camera response functions are used.

Since Method B amounts to a simple linear transformation that is independent of the ac-

tual values of �k, the method achieves exact reproduction of XY Z when the camera response

curves are exactly a linear transform of the color-matching functions, just as Method A does.

It is superior only when the linear-transform condition does not hold. If better cameras
become available, that more closely approximate a linear transform of the color-matching

functions, Method B.C will still be upward-compatible.

We found the color-signal basis derived from the statistical properties of natural color

signals to be the one least likely to generate intermediate color-signal spectra containing
negative components. The approximate color signal SPD can be examined for unphysical
components, and is of interest in its own right for other applications. Even when the method

produces a few negative components, the non-negative part of the spectrum is probably still

usable. The tests with the color-standard patches indicate that the estimated spectrum is
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not too bad even in cases where the input color signal di�ers substantially from those in the

data set used to construct the basis functions.

Method A performs well when applied to sensor RGBs that result from sensor sensitivities

close to the eye's; however, as we have shown, it generates unreliable results when the

response curves are far from being linear transforms of cone responses. Method B, on the

other hand, works reasonably well in both cases. We claim not that it is perfect, only that

it does better than existing methods for existing cameras.
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8 Figure captions

Figure 1. The �rst �ve color signal space basis vectors derived from a Karhunen-Lo�eve anal-
ysis of 1710 synthetic natural color signals.

Figure 2. Sensor response functions for human cones and typical camera sensors. Human

cones: solid lines; Filters: dashed lines.

Figure 3. Histograms showing frequency over �E for recovered color signal compared to

actual color signal for each method, using human cone sensor response functions. The num-
ber of synthetic spectra tested was 2052. For the basis function methods the percentages do

not add up to 100% because cases were omitted if one or more components of the recovered

color signal were negative. Percentages retained were: Fourier: 88.7%, Product: 90.4%, Color
signal space basis: 98.2%.

Figure 4. Histograms showing frequency over �E for recovered color signal compared to ac-

tual color signal for each method, using camera sensor response functions and 2052 synthetic
spectra. For the basis function methods the percentages of cases retained were: Fourier:
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99.85%, Product: 99.27%, Color signal space basis: 99.66%.

Figure 5. Sample test color signal: mean vector for Australian daylight multiplied by �rst

principal component vector for Munsell chip reectances, as given by Cohen.

Figure 6. Best case: actual and approximate color signal spectrum for standard Illuminant

A reected from Macbeth patch #3 (blue sky), using color signal basis set derived from Judd

illuminants and Krinov reectances.

Figure 7. Worst case: color signal recovery for illuminant A multiplying Macbeth patch #18
(Cyan).

Figure 8. Negative components: illuminant A multiplying Macbeth patch #4 (foliage).
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