
Pappa2 deletion has sex- and age-specific effects on bone in mice 1 

Julian K. Christiansa,*, Neilab Amiria, John D. Schipilowb, Steven W. Zhanga and Kristyna I. 2 

May-Rashkea 3 

 4 

aDepartment of Biological Sciences, Simon Fraser University, Burnaby, Canada 5 

bCentre for High-Throughput Phenogenomics, Oral Biological and Medical Sciences, University 6 

of British Columbia, Vancouver, Canada 7 

 8 

* Corresponding author 9 

 10 

Julian K. Christians: julian_christians@sfu.ca 11 

Neilab Amiri: neilab.amiri@kpu.ca  12 

John D. Schipilow: johnschipilow@gmail.com 13 

Steven W. Zhang: steven.zhang1213@gmail.com 14 

Kristyna May-Rashke: kimayras@sfu.ca 15 

 16 

 17 

Running title: Effects of Pappa2 deletion on bone in mice  18 



Abstract 19 

Objective 20 

In humans, loss-of-function mutations in the gene encoding pregnancy-associated pregnancy 21 

protein-A2 cause short stature and slightly reduced bone density. The goal of this study was to 22 

determine the effects of Pappa2 deletion on bone in mice. 23 

Design 24 

Pappa2 deletion mice and littermate controls were culled at 10, 19 or 30 weeks of age and 25 

femurs were analysed by micro-computed tomography. Serum markers of bone turnover and 26 

insulin-like growth factor binding protein 5 (IGFBP-5), a proteolytic target of PAPP-A2, were 27 

measured by ELISA.    28 

Results 29 

At 10 and 19 weeks of age, Pappa2 deletion mice had slightly reduced trabecular parameters, but 30 

by 19 weeks of age, female deletion mice had increased cortical tissue mineral density, and this 31 

trait was increased by a small amount in deletion mice of both sexes at 30 weeks. Cortical area 32 

fraction was increased in Pappa2 deletion mice at all ages. Deletion of Pappa2 increased 33 

circulating IGFBP-5 levels and reduced markers of bone turnover (PINP and TRACP 5b). 34 

Conclusions 35 

PAPP-A2 contributes to the regulation of bone structure and mass in mice, likely through control 36 

of IGFBP-5 levels. The net effect of changes in bone formation and resorption depend on sex 37 

and age, and differ between trabecular and cortical bone. 38 

 39 
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Introduction 42 

 43 

Pregnancy-associated pregnancy protein-A2 (PAPP-A2) is a protease of insulin-like growth 44 

factor binding proteins (IGFBPs) [1] and therefore contributes to the regulation of insulin-like 45 

growth factor (IGF) availability [2]. Recently, loss-of-function mutations in the human PAPPA2 46 

gene were found to cause short stature and slightly reduced bone density [3,4], and these 47 

conditions were improved by treatment with IGF-I [5–7]. IGF-I is known to play important roles 48 

in bone physiology [8–10] while IGFBP-5 is one of the most abundant IGFBPs in bone [11] and 49 

is a target of PAPP-A2 [1]. IGFBP-5 influences bone mineral density (BMD) [12–14] by 50 

regulating IGF availability as well as through IGF-independent effects [15,16]. 51 

 52 

Study of the mechanisms by which PAPP-A2 influences skeletal growth and BMD will 53 

require animal models. In mice, postnatal skeletal growth is reduced by both constitutive and 54 

bone-specific deletion of Pappa2 [17,18]. However, no effect of Pappa2 deletion on BMD, 55 

measured by pQCT, was observed in 4 month old mice [19]. The goal of the present study was to 56 

examine the effects of constitutive Pappa2 deletion on BMD at a range of ages using micro-57 

computed tomography (micro-CT) to allow assessment of bone microarchitecture, and also to 58 

examine effects on circulating markers of bone turnover. 59 

 60 

Methods 61 

 62 

Mice 63 

 64 



All work was carried out in accordance with the guidelines of the Canadian Council on Animal 65 

Care and was approved by the SFU University Animal Care Committee (protocols 945-09, 1035-66 

11 and 1188-11). Constitutive Pappa2 deletion mice with a C57BL/6 background were 67 

generated as previously described [17,20]. Mice were collected at 10, 19 or 30 weeks of age. 68 

Peak BMD is achieved shortly before 19 weeks [21], but trabecular bone peaks around 6-8 69 

weeks and declines thereafter [22]. Thus, 10 week mice have not yet achieved peak BMD but are 70 

close to maximum trabecular bone, 19 week mice have achieved peak BMD and show some 71 

trabecular bone loss, while 30 week mice have more bone loss and females are approaching 72 

reproductive senescence [23]. To generate the cohort collected at 10 weeks of age, mice 73 

heterozygous for the wild-type and deletion alleles (Pappa2wt/KO) were paired to produce litters 74 

in which all three genotypes were present, and Pappa2wt/wt mice were used as controls for the 75 

homozygous deletion mice. To generate the cohorts collected at 19 and 30 weeks of age, mice 76 

heterozygous for the conditional (floxed) and deletion alleles (Pappa2fl/KO) were paired to 77 

produce litters in which all three genotypes were present, and Pappa2fl/fl mice were used as 78 

controls; we have previously shown that postnatal growth does not differ between Pappa2fl/fl and 79 

Pappa2wt/wt mice [20]. Mice were genotyped by PCR using ear-clip tissue obtained at weaning, 80 

as previously described [20]. 81 

 82 

Micro-computed tomography   83 

 84 

Following sacrifice, mice were stored frozen at -20°C. Mice were later thawed, the skin and 85 

internal organs were removed, and the carcasses were exposed to dermestid beetles for removal 86 

of soft tissue. Femurs were measured using calipers and regions proportional to 5% of the total 87 



length of bone were used to measure trabecular parameters (in the distal metaphysis) and cortical 88 

characteristics (at the mid-shaft). Bones were scanned using micro-CT with an isotropic voxel 89 

size of 7.4µm (Scanco Medical µCT100, Switzerland; 70kVp, 114 µA, 100 ms integration time). 90 

For trabecular bone, the region of interest was proximal to the distal growth plate. The region of 91 

interest for cortical bone was immediately distal to the third trochanter (where the cross-section 92 

of the bone appears round/oval rather than the shape of a tear drop). Measures of trabecular bone 93 

microarchitecture included bone volume within the region of interest (BV, mm3), total volume of 94 

the region of interest (TV, mm3), bone volume fraction (BV/TV, %), trabecular number (Tb.N, 95 

mm-1), trabecular thickness (Tb.Th, µm), and trabecular separation (Tb.Sp, mm) [24]. Measures 96 

of cortical bone morphology included total cross-sectional area (Tt.Ar, mm2), cortical bone area 97 

(Ct.Ar, mm2), cortical area fraction (Ct.Ar/Tt.Ar, %), average cortical thickness (Ct.Th, µm), 98 

cortical porosity (Ct.Po, %) and tissue mineral density (TMD, mg calcium hydroxyapatite 99 

(HA)/cm3) [24]. 100 

 101 

Serum PINP and TRACP 5b 102 

 103 

We used ELISA to measure serum levels of a marker of osteoblast activity (bone formation), N-104 

terminal propeptide of type I procollagen (PINP) (AC-33F1, IDS Immunodiagnostics), and a 105 

marker of osteoclast number (bone resorption), tartrate-resistant acid phosphatase form 5b 106 

(TRACP 5b) (SB-TR103, IDS Immunodiagnostics) in a subset of constitutive Pappa2 deletion 107 

females at 6 and 19 weeks of age. We also measured serum IGFBP-5 at 19 and 30 weeks by 108 

ELISA (DY578, R&D Systems). 109 

 110 



Statistical analyses 111 

 112 

Data were analysed using general linear models (proc GLM, SAS, version 9.4) including effects 113 

of genotype, sex and the sex*genotype interaction term to test for sex-specific effects [25]. 114 

Where the interaction was significant, differences between genotypes were tested within each 115 

sex using the ESTIMATE statement (proc GLM). Since PINP and TRACP 5b were measured in 116 

the same individuals at two different ages, these data were analysed by repeated measures 117 

analyses (proc MIXED, SAS, Version 9.4). Values of PINP, TRACP 5b and IGFBP-5 were log-118 

transformed prior to analyses because the distributions were skewed, with a few large values. 119 

 120 

Results and Discussion 121 

 122 

Regions of interest were selected as a proportion of total bone length, and so were slightly 123 

smaller in Pappa2 deletion mice at all ages because their bones were shorter (Tables 1-3). At 10 124 

weeks of age, there were no sex-specific effects of Pappa2 deletion (no significant genotype*sex 125 

interactions). Pappa2 deletion increased cortical area fraction and reduced trabecular thickness 126 

(Table 1). At 19 weeks of age, Pappa2 deletion increased cortical area fraction, cortical 127 

thickness, and cortical TMD in females only. In contrast, Pappa2 deletion reduced trabecular 128 

bone volume fraction in males but not females, and there was a marginally non-significant 129 

reduction in trabecular thickness in both sexes (Table 2). At 30 weeks of age, there were no 130 

significant genotype*sex interactions, and Pappa2 deletion increased cortical area fraction and 131 

cortical TMD in both sexes, with no effects on trabecular parameters (Table 3). Although 132 

previous work using a different technique (pQCT) found no effect of Pappa2 deletion on BMD 133 



in 4 month old mice [19], this previous analysis did not examine cortical and trabecular bone 134 

separately. At 19 weeks (~4.5 months), we observed contrasting effects of Pappa2 deletion on 135 

cortical and trabecular bone that might have been obscured if these two compartments had been 136 

analysed together.  137 

 138 

 Since PAPP-A2 cleaves IGFBP-5, serum levels of IGFBP-5 were expected to be higher 139 

in Pappa2 deletion mice, and this was observed at 19 and 30 weeks (19 weeks: F1,35 = 8.4, P = 140 

0.007; 30 weeks: F1,35 = 4.0, P = 0.054; Fig. 1), although the difference was marginally non-141 

significant at 30 weeks. We have previously found serum IGFBP-5 to be elevated in Pappa2 142 

deletion mice at 6 weeks of age [20]. IGFBP-5 levels were higher in females than in males (19 143 

weeks: F1,35 = 9.7, P = 0.004; 30 weeks: F1,35 = 11.9, P = 0.002; Fig. 1), but there was no 144 

significant interaction between sex and genotype (19 weeks: F1,35 = 1.26, P = 0.27; 30 weeks: 145 

F1,35 = 0.1, P = 0.82; Fig. 1). IGFBP-5 levels were significantly higher at 19 weeks than at 30 146 

weeks (F1,74 = 27.0, P < 0.0001; Fig. 1) when analyzing the ages together and including effects of 147 

genotype, sex, genotype*sex interaction and age.    148 

 149 

Markers of bone formation (PINP) and bone resorption (TRACP 5b) were lower in 150 

Pappa2 deletion mice (PINP: F1,18 = 6.6, P = 0.02; TRACP 5b: F1,18 = 5.4, P = 0.03; Fig. 2). 151 

PINP levels were higher at 6 weeks than 19 weeks (F1,18 = 975.5, P < 0.0001), while TRACP 5b 152 

showed the opposite pattern (F1,17 = 117.8, P < 0.0001). However, there was no interaction 153 

between age and genotype (PINP: F1,18 = 0.62, P = 0.44; TRACP 5b: F1,17 = 0.1, P = 0.83). 154 

 155 



Pappa2 deletion reduced markers of bone formation and resorption and the net effect of 156 

these changes depended on age. At younger ages, Pappa2 deletion mice had slightly impaired 157 

trabecular parameters, but by 19 weeks of age, female deletion mice had very modest 158 

improvement in cortical TMD, and this trait was increased in both sexes by 30 weeks. The 159 

increases in cortical area fraction seen in Pappa2 deletion mice at all ages may reflect subtle 160 

changes in bone morphology, as previously described for the mandible and pelvic girdle [17].  161 

 162 

Increased IGFBP-5 concentrations, either at the local level or in circulation, represent a 163 

likely mechanism underlying the effects of Pappa2 deletion. The effects of IGFBP-5 on bone are 164 

controversial [11]. IGFBP-5 overexpression reduced BMD in young mice but not in older 165 

animals [12,14]. In contrast, daily injections of IGFBP-5 increased BMD in ovariectomized mice 166 

[13]. Thus, in healthy young mice, increasing IGFBP-5 may reduce BMD by reducing IGF-I 167 

availability, as observed in human children with loss-of-function mutations in PAPPA2 [3]. In 168 

contrast, in older or ovariectomized mice, when bone formation is reduced, an increase in 169 

IGFBP-5 may exert beneficial effects through IGF-independent mechanisms. While deletion of 170 

Pappa2’s paralog, Pappa, impaired bone density in mice at 2-12 months of age [26], PAPP-A 171 

cleaves IGFBP-4 as well as IGFBP-5, and so it is possible that the beneficial effects of increased 172 

IGFBP-5 were outweighed by reduced IGF-I availability due to increased IGFBP-4 and -5 levels. 173 

 174 

In conclusion, the present study shows that, in addition to its effects on the linear growth 175 

of bones [17,18], PAPP-A2 also plays sex- and age-specific roles in the regulation of bone mass 176 

in mice.      177 

 178 
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Figure 1. Effects of Pappa2 deletion on serum IGFBP-5 levels at 19 and 30 weeks of age (black bars: Pappa2 deletion mice; grey 

bars: controls). Values are least squares means ± standard error from general linear models including effects of genotype, sex, and the 

genotype*sex interaction. Data were log-transformed prior to analyses and back-transformed for graphical presentation. Sample sizes 

are shown above the x-axis. 

 



 

 

Figure 2. Effects of Pappa2 deletion on serum PINP and TRACP 5b levels in females at 6 and 19 weeks of age (black bars: Pappa2 

deletion mice; grey bars: controls). Levels were measured in the same individuals at two different ages and values are least squares 

means ± standard error from a repeated measures analyses including effects of genotype, age, and the genotype*age interaction. Data 

were log-transformed prior to analyses and back-transformed for graphical presentation. N = 10 females per genotype. 

 



Table 1. Bone parameters at 10 weeks of age. Values are least squares means ± standard error from a general linear model including 
effects of genotype, sex, and the genotype*sex interaction. Traits where the effect of genotype is significant are shown in bold.  
 

  

 Females Males Genotype*sex Genotype  Sex 
 Pappa2KO/KO Pappa2wt/wt Pappa2KO/KO Pappa2wt/wt       
Sample size 9 6 9 7 F1,27 P F1,27 P F1,27 P 
Mass at cull (g) 16.3 ± 0.5 19.0 ± 0.6 22.2 ± 0.5 24.5 ± 0.6 0.1 0.73 22.5 0.0001 115.3 0.0001 
Femur length (mm) 13.9 ± 0.1 14.3 ± 0.1 14.5 ± 0.1 14.8 ± 0.1 0.3 0.58 9.2 0.005 21.6 0.0001 
Trabecular           
TV (mm3) 1.000 ± 0.035 1.208 ± 

0.043 
1.345 ± 0.035 1.572 ± 

0.039 
0.0 0.81 32.8 0.0001 87.2 0.0001 

BV (mm3) 0.055 ± 0.012 0.057 ± 
0.014  

0.147 ± 0.012 0.185 ± 
0.013 

2.0 0.17 2.6 0.12 76.5 0.0001 

BV/TV (%) 5.4 ± 0.6 4.7 ± 0.8 10.9 ± 0.6 11.6 ± 0.7 1.0 0.34 0.0 0.98 76.4 0.0001 
Tb.N (mm-1) 4.3 ± 0.2 4.1 ± 0.2 5.3 ± 0.2 5.1 ± 0.2 0.1 0.76 1.0 0.32 36.5 0.0001 
Tb.Th (µm) 32 ± 1 33 ± 1 37 ± 1 40 ± 1 2.6 0.12 5.1 0.03 51.6 0.0001 
Tb.Sp (mm) 0.24 ± 0.01 0.24 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.0 0.94 1.2 0.29 36.1 0.0001 
Cortical           
Tt.Ar (mm2) 1.20 ± 0.04 1.42 ± 0.04 1.49 ± 0.04 1.72 ± 0.04 0.0 0.84 35.2 0.0001 59.0 0.0001 
Ct.Ar (mm2) 0.54 ± 0.02 0.58 ± 0.02 0.66 ± 0.02 0.73 ± 0.02 0.8 0.39 8.1 0.008 47.3 0.0001 
Ct.Ar/Tt.Ar (%) 45 ± 1 41 ± 1 44 ± 1 42 ± 1 4.2 0.051 26.8 0.0001 1.4 0.25 
Ct.Th (µm) 155 ± 3 149 ± 4 167 ± 3 166 ± 3 0.9 0.35 1.1 0.31 21.7 0.0001 
Ct.Po (%) 8.1 ± 0.2 8.4 ± 0.3 7.7 ± 0.2 8.0 ± 0.3 0.0 0.91 1.5 0.23 2.9 0.10 
TMD (mg 
HA/cm3) 

1153 ± 7 1158 ± 8 1140 ± 7 1123 ± 8 2.4 0.14 0.7 0.40 11.0 0.003 



Table 2. Bone parameters at 19 weeks of age. Values are least squares means ± standard error from a general linear model including 
effects of genotype, sex, and the genotype*sex interaction. Where the genotype*sex interaction is significant, the difference between 
genotypes has been tested within each sex. Traits where the effect of genotype is significant are shown in bold. In some cases, the 
genotype*sex interaction is significant and the effect of genotype is significant within both sexes, indicating that the magnitude of the 
effect differs between the sexes. 
 

 Females Males Genotype*sex Genotype Sex 
 Pappa2KO/KO Pappa2fl/fl Pappa2KO/KO Pappa2fl/fl       
Sample size 10 14 6 9 F1,35 P F1,35 P F1,35 P 
Mass at cull (g) 18.8 ± 0.6 21.1 ± 0.4 23.8 ± 0.9 26.7 ± 0.6 0.2 0.64 14.9 0.0008 61.8 0.0001 
Femur length (mm) 14.2 ± 0.1 14.4 ± 0.1 14.4 ± 0.1 14.9 ± 0.1 4.7 0.037 18.3 0.0001 14.2 0.0006 
Trabecular           
TV (mm3) 0.771 ± 0.040 1.063 ± 

0.034 
1.110 ± 0.051 1.662 ± 

0.042 
9.5 0.004 100.4 0.0001 123.6 0.0001 

BV (mm3) 0.010 ± 0.006 0.015 ± 
0.005  

0.059 ± 0.007 0.122 ± 
0.006 

20.5 0.0001 28.7 0.0001 149.7 0.0001 

BV/TV (%) 1.3 ± 0.3 1.4 ± 0.3 5.3 ± 0.4 7.3 ± 0.4 6.5 0.015 7.8 0.009 183.7 0.0001 
Tb.N (mm-1) 2.8 ± 0.1 2.7 ± 0.1 3.9 ± 0.1 3.7 ± 0.1 0.3 0.56 2.0 0.17 87.6 0.0001 
Tb.Th (µm) 27 ± 2 34 ± 2 40 ± 3 43 ± 3 0.4 0.54 3.6 0.07 16.0 0.0003 
Tb.Sp (mm) 0.36 ± 0.01 0.37 ± 0.01 0.26 ± 0.01 0.27 ± 0.01 0.1 0.83 0.9 0.36 70.0 0.0001 
Cortical           
Tt.Ar (mm2) 1.34 ± 0.03 1.64 ± 0.03 1.77 ± 0.04 2.17 ± 0.04 1.6 0.22 94.4 0.0001 178.6 0.0001 
Ct.Ar (mm2) 0.69 ± 0.01 0.75 ± 0.01 0.79 ± 0.02 0.93 ± 0.01 7.9 0.008 48.5 0.0001 92.8 0.0001 
Ct.Ar/Tt.Ar (%) 52 ± 1 46 ± 1 45 ± 1 43 ± 1 11.7 0.002 43.3 0.0001 68.2 0.0001 
Ct.Th (µm) 192 ± 2 183 ± 2 184 ± 3 192 ± 3 10.5 0.003 0.0 0.89 0.1 0.82 
Ct.Po (%) 5.6 ± 0.2 5.9 ± 0.2 6.2 ± 0.2 5.6 ± 0.2 5.1 0.03 0.8 0.38 0.5 0.48 
TMD (mg 
HA/cm3) 

1257 ± 6 1241 ± 5 1215 ± 7 1222 ± 6 3.9 0.06 0.6 0.44 27.5 0.0001 



Table 3. Bone parameters at 30 weeks of age. Values are least squares means ± standard error from a general linear model including 
effects of genotype, sex, and the genotype*sex interaction. Traits where the effect of genotype is significant are shown in bold. 
 

 

 Females Males Genotype*sex Genotype Sex 
 Pappa2KO/KO Pappa2fl/fl Pappa2KO/KO Pappa2fl/fl       
Sample size 10 7 16 7 F1,36 P F1,36 P F1,36 P 
Mass at cull (g) 22.4 ± 0.8 25.4 ± 0.9 28.1 ± 0.6 30.9 ± 0.9 0.0 0.95 13.6 0.0008 49.1 0.0001 
Femur length (mm) 14.6 ± 0.1 14.9 ± 0.1 14.6 ± 0.1 15.0 ± 0.1 1.0 0.32 13.0 0.0009 0.1 0.72 
Trabecular           
TV (mm3) 1.227 ± 0.063 1.503 ± 

0.075 
1.673 ± 0.050 2.039 ± 

0.075 
0.5 0.51 23.3 0.0001 54.5 0.0001 

BV (mm3) 0.040 ± 0.017 0.052 ± 
0.020  

0.197 ± 0.013 0.215 ± 
0.020 

0.0 0.87 0.7 0.40 80.3 0.0001 

BV/TV (%) 3.3 ± 0.7 3.4 ± 0.9 11.6 ± 0.6 10.2 ± 0.9 0.9 0.34 0.6 0.46 91.0 0.0001 
Tb.N (mm-1) 2.7 ± 0.1 2.6 ± 0.1 3.8 ± 0.1 3.9 ± 0.1 0.2 0.68 0.0 0.97 165.8 0.0001 
Tb.Th (µm) 44 ± 2 45 ± 2 49 ± 1 44 ± 2 3.4 0.07 1.3 0.27 1.45 0.24 
Tb.Sp (mm) 0.38 ± 0.01 0.38 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.0 0.88 0.0 0.98 188.7 0.0001 
Cortical           
Tt.Ar (mm2) 1.40 ± 0.05 1.74 ± 0.06 1.94 ± 0.04 2.27 ± 0.06 0.0 0.87 37.1 0.0001 96.9 0.0001 
Ct.Ar (mm2) 0.73 ± 0.02 0.82 ± 0.02 0.82 ± 0.01 0.90 ± 0.02 0.0 0.86 19.0 0.0001 20.8 0.0001 
Ct.Ar/Tt.Ar (%) 52 ± 1 47 ± 1 42 ± 1 40 ± 1 2.4 0.13 18.1 0.0001 92.9 0.0001 
Ct.Th (µm) 198 ± 3 194 ± 4 178 ± 3 173 ± 4 0.0 0.92 1.4 0.25 30.0 0.0001 
Ct.Po (%) 5.3 ± 0.1 5.6 ± 0.2 6.3 ± 0.2 6.6 ± 0.2 0.0 0.91 1.6 0.21 22.6 0.0001 
TMD (mg 
HA/cm3) 

1266 ± 6 1257 ± 7 1217 ± 5 1196 ± 7 0.9 0.34 6.0 0.02 79.7 0.0001 


