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Abstract

The genus of a graph G is the minimum integer h such that G has an embedding in
some surface (closed compact 2-manifold) Sh of genus h. In this thesis, we will discuss
the genus of generalized random and quasirandom graphs. First, by developing a
general notion of random graphs, we determine the genus of generalized random
graphs. Next, we approximate the genus of dense generalized quasirandom graphs.

Based on analysis of minimum genus embeddings of quasirandom graphs, we provide
an Efficient Polynomial-Time Approximation Scheme (EPTAS) for approximating
the genus (and non-orientable genus) of dense graphs. More precisely, we provide an
algorithm that for a given (dense) graph G of order n and given ε > 0, returns an
integer g such that G has an embedding into a surface of genus g, and this is ε-close to
a minimum genus embedding in the sense that the minimum genus g(G) of G satisfies:
g(G) ≤ g ≤ (1 + ε)g(G). The running time of the algorithm is O(f(ε)n2), where f(·)
is an explicit function. Next, we extend this algorithm to also output an embedding
(rotation system) of genus g. This second algorithm is an Efficient Polynomial-time
Randomized Approximation Scheme (EPRAS) and runs in time O(f1(ε)n2).

The last part of the thesis studies the genus of complete 3-uniform hypergraphs, which
is a special case of genus of random bipartite graphs, and also a natural generaliza-
tion of Ringel–Youngs Theorem. Embeddings of a hypergraph H are defined as the
embeddings of its associated Levi graph LH with vertex set V (H) t E(H), in which
v ∈ V (H) and e ∈ E(H) are adjacent if and only if v and e are incident in H. The
construction in the proof may be of independent interest as a design-type problem.

Keywords: graph embeddings (05C10); genus (57M15); Szemerédi regularity lemma
(05C85); random graphs (05C80); hypergraphs (05C65)
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Chapter 1

Introduction

1.1 Motivation

The study of topological graph theory dates back to the middle of the eighteenth
century, start with the study of Euler characteristic for polyhedra. It took heightened
interest in the latter part of the nineteenth century, with several map-coloring prob-
lems. The object is to find the minimum number of colors needed to color all possible
maps, where countries that share a border must be colored differently. Probably one
of the most famous conjectures in mathematics is Four Color Conjecture, that is, four
colors are enough to color all possible maps drawn on the plane. The conjecture was
made by Francis Guthrie [5, 47] in 1852. The first proof was published by Kempe
in 1878, but this contained an error which was found in 1890 [26] by Heawood, who
proved five colors are sufficient to color any map drawn on the plane. The conjecture
was finally confirmed in 1976 by Appel and Haken [3], after a century of false proofs
and refinements of techniques.

The problem of coloring maps on the plane is equivalent to the problem on the
sphere. Heawood Map-coloring Conjecture [26] generalizes the four color conjecture
to every closed compact 2-manifold. We state the orientable case:

χ(Sh) =
⌊7 +

√
1 + 48h
2

⌋
, for h > 0,

where h is the genus of the closed compact 2-manifold Sh. The problem was open for
almost eight decades, and in 1965 it was given the place of honor for Tietze’s Famous
Problems of Mathematics [68]. The problem was eventually reduced to the genus
computation for complete graphs and was studied in a series of papers in the twentieth
century. In 1968, Ringel and Youngs [53] determined the genus of all complete graphs,
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which implies the final solution of the Heawood’s Conjecture. The complete proof was
finally presented in the monograph [52]. Their proof is split in 12 cases, some of the
cases were slightly simplified later, but for the most complicated cases, no short proofs
are known.

Theorem 1.1.1 (Ringel–Youngs Theorem). If n ≥ 3 then

g(Kn) =
⌈

(n− 3)(n− 4)
12

⌉
.

If n ≥ 5 and n 6= 7, then

g̃(Kn) =
⌈

(n− 3)(n− 4)
6

⌉
.

Given a graph G, determine the genus of G is one of the central problems in
topological graph theory. It is also a very hard problem in both mathematics and
computer science, since Thomassen [65] proved that the problem is NP-complete. On
the other hand, determine the genus of a graph is also very important, by Robertson
and Seymour’s graph minor theory.

Definition 1.1.2. Given two graphs H and G, we say H is a minor of G if H can
be obtained from G by deleting edges and vertices and by contracting edges.

The following generalized Kuratowski’s Theorem [56] tells us, the genus of a graph
gives us a rough structure of the graph. Then many NP-complete algorithms become
ploynomial-time if we know the underlying graph has bounded genus.

Theorem 1.1.3 (Robertson and Seymour). Graphs with bounded genus have finitely
many forbidden minors.

The thesis is motived by the problem on approximating the genus of large dense
graphs. After applying Szemerédi regularity lemma on graph G, we obtain a partition
P of V (G), and the induced subgraph between any two parts (except an ε-fraction) is
random-like. Therefore, the theories of the genus of random and quasirandom graphs
are needed. Background of the graph genus problem is introduced in Chapter 5.1.1.

1.2 Structure of the Thesis

The thesis is organized as follows. In the second chapter, we introduce the basic defi-
nitions in topological graph theory, and we also present the tools we use to construct
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the minimum (or near minimum) genus embeddings of generalized random graphs
and quasirandom graphs. In chapter three, we determine the genus of random bipar-
tite graphs, and discuss the genus of H-random graphs. In chapter four, we approxi-
mate the genus of dense quasirandom graphs. In chapter five, we provide an Efficient
Polynomial-Time Approximation Scheme (EPTAS) for approximating the genus (and
non-orientable genus) of dense graphs, as well as an Efficient Polynomial-time Ran-
domized Approximation Scheme (EPRAS) for the near optimal embeddings of dense
graphs, based on the results in the previous chapters. In chapter six, we consider the
minimum genus embeddings of complete 3-uniform hypergraphs, which is a special
case of random bipartite graphs we discussed in chapter 3, and also a natural gen-
eralization of Ringel–Youngs Theorem. We determine the genus (and non-orientable
genus) of K3

n when n is even, and discuss the genus when n is odd. Parts of the results
in Chapters 3,4,5 and 6 are included in submitted papers [29, 30, 31]. Some of the
rest of the results in those chapters and some in-writing future work will be included
in [32, 33].
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Chapter 2

Embeddings of Graphs

2.1 Notation and Basic Definitions

Through out the dissertation, We will use standard notation in graph theory, topolog-
ical graph theory and graph limit theory as given in [16], [44] and [36], respectively.
We fix the following notation.

• Denote by N the set of non-negative integers, and [n] is the set {1, . . . , n}.

• G is always a graph (1-complexes).

• Given a graph G, suppose X, Y ⊆ V (G). We use E(X, Y ) denote the set of
edges between X and Y , and e(X, Y ) = |E(X, Y )|. We also use e(G) to denote
|E(G)|.

• For two sets X and Y , by X tY we denote the disjoint union of X and Y , and
we set X ⊕ Y = (X × Y ) ∪ (Y ×X).

• A(n) ∼ B(n) means limn→∞A(n)/B(n) = 1, and A(n) � B(n) means that
limn→∞A(n)/B(n) = 0. If limn→∞A(n)/B(n) = c for some constant c, we
denote it by A(n) = Θ(B(n)). We say an event A(n) happens asymptotically
almost surely (abbreviated a.a.s.) if P(A(n))→ 1 as n→∞.

Now we give the definition of the genus of graphs, as a natural generalization of
planar graphs.

Definition 2.1.1. Given a graph G, let g(G) be the genus of G, that is, the minimum
h such that G embeds into the orientable surface Sh of genus h, and let g̃(G) be the
non-orientable genus of G which is the minimum c such that G embeds into the non-
orientable surface Nc with crosscap number c. If orientability of a surface is not a
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concern, we define the Euler genus as ĝ(G) = min{2g(G), g̃(G)}. By a surface we
mean a compact two-dimensional manifold without boundary.

For any surface S, we say G is 2-cell embedded in S if in that embedding, each
face of G is homeomorphic to an open disk. Similarly, a k-gon embedding of G is when
every face is bounded by a cycle of length k. In particular, we say an embedding of G
is triangular if every face is bounded by a triangle, and an embedding is quadrangular
if every face is bounded by a cycle of length 4.

Every 2-cell embedding (and thus also any minimum genus embedding) of G can
be represented combinatorially by using the corresponding rotation system π = {πv |
v ∈ V (G)} where a local rotation πv at the vertex v is a cyclic permutation of the
neighbours of v. In addition to this, we also add the signature, which is a mapping
λ : E(G)→ {1,−1} and describes if the local rotations around the endvertices of an
edge have been chosen consistently or not. The signature is needed only in the case of
non-orientable surfaces; in the orientable case, we may always assume the signature
is trivial (all edges have positive signature). The pair (π, λ) is called the embedding
scheme for G. For more background on topological graph theory, we refer to [25, 44].

We say that two embeddings φ1, φ2 : G → S of a graph G into the same surface
S are equivalent (or homeomorphic) if there exists a homeomorphism h : S → S
such that φ2 = hφ1. By [44, Corollary 3.3.2], (2-cell) embeddings are determined up
to equivalence by their embedding scheme (π, λ), and two such embedding schemes
(π, λ) and (π′, λ′) determine equivalent embeddings if and only if they are switching
equivalent. This means that there is a vertex-set U ⊆ V (G) such that (π′, λ′) is
obtained from (π, λ) by replacing πu with π−1

u for each u ∈ U and by replacing λ(e)
with −λ(e) for each edge e with one end in U and the other end in V (G) \ U .

2.2 Near Minimum Genus Embeddings

Given a graph G, determining the genus of G is one of the fundamental problems
in topological graph theory. Youngs [72] showed that the problem of determining the
genus of a connected graph G is the same as determining a 2-cell embedding of G with
minimum genus. The same holds for the non-orientable genus [48]. That means, in this
thesis we only need to consider 2-cell embeddings of graphs. For 2-cell embeddings
we have the famous Euler’s Formula.
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Theorem 2.2.1 (Euler’s Formula). Let G be a graph which is 2-cell embedded in a
surface S. If G has n vertices, e edges and f faces in S, then

χ(S) = n− e+ f. (2.2.1)

Here χ(S) is the Euler characteristic of the surface S, where χ(S) = 2− 2h when
S = Sh and χ(S) = 2− c when S = Nc.

Definition 2.2.2. Let G be a simple graph. The corresponding digraph of G is a
family of random simple digraphs D obtained from G by randomly orienting each
edge.

Specifically, each digraph D ∈ D has V (D) = V (G) and If uv ∈ E(G) then either
−→uv or −→vu is an edge of D, each has probability 1/2 and the two events are exclusive.
The corresponding digraph D of a random graph G is a family of digraphs defined on
the same vertex set of graphs in G, and when two vertices u, v produce an edge with
probability p in G, then −→uv occurs with probability p/2 and −→vu occurs with probability
p/2 in D, and those two events are exclusive.

Definition 2.2.3. LetD be a digraph, a blossom of length l with center v and tips
{v1, v2, . . . , vl} is a set C of l directed cycles {C1, C2, . . . , Cl}, where −→viv,−−−→vvi+1 ∈ Ci,
for i = 1, 2, . . . , l, with vl+1 = v1. A k-blossom is a blossom, all of whose elements
are directed k-cycles. A blossom of length l is simple if either l ≥ 3 or l = 2 and
C1 6= C−1

2 .

v

v1

v2

v3

v4

C1

C2C3

C4

Figure 2.1: A 4-blossom of length 4 with center v and tips v1, v2, v3, v4.
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Let C be a family of arc-disjoint closed trails in D∪D−1. We say that C is blossom-
free if no subset of C forms a blossom centered at some vertex. The following lemma
is a slight strengthening of [58, Lemma 2.1]; the proof is elementary and we omit
details.

Lemma 2.2.4. Let G be a graph and let D be the corresponding digraph. Suppose
that C1 and C2 is a set of arc-disjoint closed trails in D and D−1 (respectively) such
that their union C1∪C2 is blossom-free in D∪D−1. Then there exist a rotation system
Π of G such that every closed trail in C1 ∪ C2 is a face of Π.

For every ε > 0, an ε-near k-gon embedding Π is a rotation system of G such that
kfk(Π) ≥ 2(1− ε)|E(G)|, where fk(Π) is the number of faces of length k of Π.

The following result from [21] (see also [49, 58] where its current formulation
appears) will be our main tool for constructing near-optimal embeddings of random
graphs and quasirandom graphs.

Theorem 2.2.5. Let ε > 0 be a real number and d ≥ 2 be an integer. Then there exist
a positive real number δ and an integer N0 such that for every N ≥ N0 the following
holds. If ∆ is a real number and if H is a d-uniform hypergraph with |V (H)| = N

such that

1. |{x ∈ V (H) | (1− δ)∆ ≤ deg(x) ≤ (1 + δ)∆}| ≥ (1− δ)N ,

2. for every x, y ∈ V (H), |{e ∈ E(H) | x, y ∈ e}| < δ∆,

3. at most δN∆ hyperedges of H contain a vertex v ∈ V (H) with deg(v) > (1+δ)∆,

then H has a matching of size at least (1−ε)N/d. Moreover, for every matching M in
H, there exists a matching M ′ in H with M ∩M ′ = ∅, and with |M ′| ≥ (1− ε)N/d.

Similarly as for undirected graphs (see [44, Lemma 5.4.2]), we have the following
property on digraphs.

Lemma 2.2.6. Let D(V,A) be a simple digraph and a, b ∈ A, a 6= b. Let f, g ∈ Z+.
Then there exists a positive integer K = K(f, g), such that if D contains at least
K closed trails of length f containing both a and b, then there exist two vertices
u, v ∈ V (D) and g internally disjoint directed paths from u to v, all of the same
length l, where 2 ≤ l ≤ f − 2.
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Proof. Let x ∈ V be the head of a and let y ∈ V be the tail of b. We may assume
x 6= y. The proof is by induction on f+g, with K(f, g) = ∏f−2

i=1 ((f−i)(f−i−1)g)2i−1 .
In the base case when g = 0 there is nothing to prove, and when f = 3, the claim
is easy, so we move to the induction step. Assume now we have K(f + 1, g) closed
trails of length f + 1 containing both a and b. Let −→Pxy be the set of paths from x

to y on these closed trails. Note that K(f + 1, g) = f(f − 1)gK(f, g)2. If one of the
edges say −→az, is used on K(f, g) of the paths, we can consider the K(f, g) subpaths
from z to y and apply induction. Otherwise, there is a subset

−→
P ′xy of −→Pxy containing

f(f − 1)gK(f, g) paths, all of which start with different edges. Choose one path in
−→
P ′xy arbitrarily, call it P .

If at least fK(f, g) of our paths intersect P , there exists v ∈ V (P ) such that at
least K(f, g) paths pass though v. Contract all of those directed paths from a to v,
we have K(f, g) closed trails of length at most f containing both a and b. For those
closed trails of length f ′ < f , we will add closed trails of length f − f ′ containing x.
By induction, we obtain g internally disjoint directed paths.

Finally we suppose that we do not have fK(f, g) paths of
−→
P ′xy intersecting P . Since

P is arbitrary, we may assume the same holds for any P . Then at least (f−1)g of our
paths of length at most f − 1 are internally disjoint. Therefore at least g internally
disjoint directed paths having the same length l, where l ≤ f − 1.
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Chapter 3

Genus of Generalized Random
Graphs

3.1 Introduction

The random graph (Erdős-Rényi Model [17]) G(n, p) is a probability space whose
objects are all (labelled) graphs defined on a vertex set V of cardinality n, and each
possible edge occurs with probability p independently, i.e., a graph G = (V,E) ∈
G(n, p) has probability p|E|(1 − p)(

n
2)−|E|. There are thousands of papers studying

properties of random graphs; for more background about this fascinating area, see
[2, 7].

Stahl [60] was the first to consider the genus (in fact, the average genus) of random
graphs. Almost concurrently, Archdeacon and Grable [4] studied the genus of random
graphs in G(n, p). They obtained the following result when p = p(n) is not too small.

Theorem 3.1.1 ([4]). Let ε > 0 and let 0 < p < 1 with p2(1 − p2) ≥ 8(lnn)4/n.
Then almost every graph G in G(n, p) satisfies

(1− ε)pn
2

12 ≤ g(G) ≤ (1 + ε)pn
2

12

and
(1− ε)pn

2

6 ≤ g̃(G) ≤ (1 + ε)pn
2

6 .

They also conjectured that almost every graph in Gn,p has an ε-near k-gon embed-
ding (in which all but an ε-fraction of edges lie on the boundary of two k-gonal faces)
on some orientable surface and on some non-orientable surface. Rödl and Thomas
[58] resolved their conjecture and extended Theorem 3.1.1 to an even broader range
of edge-probabilities.
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Theorem 3.1.2 ([58]). Let ε > 0, let i ≥ 1 be an integer and assume that n−
i

i+1 �
p� n−

i−1
i . Then G ∈ G(n, p) almost surely satisfies

(1− ε) i

4(i+ 2)pn
2 ≤ g(G) ≤ (1 + ε) i

4(i+ 2)pn
2

and
(1− ε) i

2(i+ 2)pn
2 ≤ g̃(G) ≤ (1 + ε) i

2(i+ 2)pn
2.

In this chapter, we will study the genus of a more general setting of random graphs.
In the next section, we determine the genus of a general setting of random bipartite
graphs. In the rest of the chapter, we will discuss the genus of H-random graphs.

3.2 Genus of Random Bipartite Graphs

In this section, we define random bipartite graphs G(n1, n2, p) as the probability space
of all bipartite graphs with (labelled) bipartition X t Y , |X| = n1, |Y | = n2, where
each edge xy (x ∈ X, y ∈ Y ) appears independently with probability p. In this thesis,
we will always assume n1 ≥ n2 for convenience.

3.2.1 Random Bipartite Graphs G(n1, n2, p)

Let us first consider the case when n1 and n2 have about the same magnitude.

Lemma 3.2.1. Let ε > 0 and G ∈ G(n1, n2, p) be a random bipartite graph on vertex
set X t Y with |X| = n1 ≥ n2 = |Y |. If there exist a positive real number c and a
positive integer i such that n1/n2 < c, and p � (n1n2)−

i
2i+1 , then a.a.s. G has an

ε-near (2i+ 2)-gon embedding.

Proof. Choose 0 < ε1 < 1
2 , ε0 = 3i+4

1−ε1
ε1, such that ε0 < 1/2 and ε ≥ 4ε0

1+ε0
. Let

n = √n1n2. Then p � n−
2i

2i+1 . Let us first assume that p � n
− 2i−ε1

2i+1−ε1 . Let D ∈ D
be the corresponding digraph of G(n1, n2, p). Consider the following hypergraph H,
where V (H) is the edge set of D and E(H) is the set of closed trails of D of length
2i+ 2. Let d = 2i+ 2, δ = ε1

1−ε1
and ∆ = ni1n

i
2(p2)2i+1. We claim that our hypergraph

H satisfies all three conditions in Theorem 2.2.5, a.a.s.
To prove that condition (1) holds, let N = |V (H)|. We have

E(N) = n1n2p,

E(N2) = n1n2p(n1 − 1)(n2 − 1)p+O(n2
1n2p

2 + n2
2n1p

2).
(3.2.1)
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By Chebyshev’s inequality,

P(|N − E(N)| ≥ ε1n1n2p) ≤
E(N2)− E2(N)

ε2
1E2(N) = O

(
n1 + n2

n1n2

)
= o(1). (3.2.2)

Therefore, we have a.a.s.

(1− ε1)n1n2p < N < (1 + ε1)n1n2p. (3.2.3)

For each pair of vertices (a, b) ∈ X ⊕ Y , let ρ(b, a) be the number of directed paths
in D from b to a of length 2i+ 1, and let U be the number of edges −→uv of D such that
the number of directed paths from v to u of length 2i + 1 is at most (1 − δ)∆ or at
least (1 + δ)∆. Similarly as above we have

E(ρ(b, a)) =
(
n1 − 1
i

)(
n2 − 1
i

)
(i!)2

(p
2
)2i+1

,

E(ρ2(b, a)) =
(
n1 − 1
i

)(
n2 − 1
i

)(
n1 − 1− i

i

)(
n2 − 1− i

i

)
(i!)4

(p
2
)4i+2

+O(n2i
1 n

2i−1
2 p4i+1 + n2i−1

1 n2i
2 p

4i+1).

(3.2.4)

Using Chebyshev’s inequality, since |∆ − E(ρ(b, a))| = o(E(ρ(b, a))), for sufficiently
large n,

P
(
|ρ(b, a)−∆| ≥ δ∆

)
≤ P

(
|ρ(b, a)− E(ρ(b, a))| ≥ ε1

2 E(ρ(b, a))
)

≤ E(ρ2(b, a))− E2(ρ(b, a))
( ε1

2 )2E2(ρ(b, a)) = O

(
n1 + n2

n1n2p

)
= o(1).

(3.2.5)

Also for U we have

E(U) = pn1n2P(|ρ(b, a)−∆| ≥ δ∆) ≤ O(n1 + n2). (3.2.6)

Hence by Markov’s inequality,

P
(
U ≥ ε1

p

2n1n2

)
≤ E(U)
ε1

p
2n1n2

= O

(
n1 + n2

n1n2p

)
= o(1). (3.2.7)

This means, together with (3.2.3) and (3.2.5), a.a.s. at least N − ε1
p
2n1n2 > (1− δ)N

vertices of V (H) satisfy (1− δ)∆ ≤ deg(x) ≤ (1 + δ)∆, so condition (1) holds for H.
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To verify (2), let e, f be two edges of D that together belong to at least δ∆
hyperedges in H. This means that they are together in many closed trails of length
2i + 2. By Lemma 2.2.6 there exists an integer K only depending on i, such that if
we have more than K closed trails of length 2i + 2 containing both e and f , there
exist two vertices u and v, and at least 8i+ 2 internally disjoint directed paths from
u to v of length l, where 2 ≤ l ≤ 2i.

Let B be the number of vertex pairs (u, v) ∈ V (D)2 such that there exist 8i + 2
internally disjoint directed paths from u to v of length l. Note that p� n

− 2i−ε1
2i+1−ε1 <

n−
4i−1
4i+1 since ε1 < 1/2. We have

E(B) = O
(
n

(8i+2) l−1
2 +1

1 n
(8i+2) l−1

2 +1
2 p(8i+2)l

)
≤ o(n4l−8i) = o(1), when l ≡ 1 (mod 2);

E(B) = O
(
n

(8i+2) l
2

1 n
(8i+2) l−2

2 +2
2 p(8i+2)l

)
≤ o(n2l

1 n
2l−8i
2 ) = o(1), when l ≡ 0 (mod 2).

(3.2.8)

By Markov’s inequality, P(B ≥ 1) ≤ o(1), that implies that no more than K closed
trails of D contain both e and f , for every e, f ∈ A(D), a.a.s. Therefore in our
hypergraph H, condition (2) holds for H when n is large enough.

Finally, let us consider condition (3) of Theorem 2.2.5. Let F be the number of
closed trails of length 2i + 2 in D which contain at least one directed edge −→uv ∈ P δ,
where P δ is the set of pairs of vertices (u, v) ∈ X⊕Y such that the number of directed
trails from v to u of length 2i+1 is at least (1+δ)∆. Each trail R = x1y1x2y2 · · · yi+1x1

contributing to F is determined by two sequences of vertices x1, x2, . . . , xi+1 ∈ X and
y1, y2, . . . , yi+1 ∈ Y . Each such closed trail R has the same probability that it forms
a trail contributing to F . There are 2i + 2 candidates for an edge of R being in P δ.
This implies that

E(F ) ≤ ni+1
1 ni+1

2 (2i+ 2)P(R ⊆ A(D))P(−−→x1y1 ∈ P δ | R ⊆ A(D)). (3.2.9)

For j = 1, . . . , 2i − 1, let αj be the number of trails of length 2i + 1 from y1 to
x1 that contain precisely j edges in R. Then α = ∑2i−1

j=1 αj is the number of trails of
length 2i + 1 from y1 to x1 different from R which contain at least one edge in R.

12



Since n2 = Θ(n1), we have

E(α | R ⊆ A(D)) =
2i−1∑
j=1

E(αj | R ⊆ A(D))

≤
2i−1∑
j=1

(
2i+ 1
j

)
j!n2i−j

1

(p
2
)2i+1−j

≤ O(n2i−1p2i+1).

(3.2.10)

Now, by Markov’s inequality,

P(α ≥ 1 | R ⊆ A(D)) ≤ O(n2i−1p2i+1)� O(n−
4i

4i+1 ) = o(1). (3.2.11)

In the next argument we will use the following events: Qδ is the event that the
number of trails of length 2i + 1 from y1 to x1 that are different from R is at least
(1 + δ)∆− 1; RE is the event that all edges in R appear in D, possibly with different
orientations. There are 22i+2 different orientations ω1, . . . , ω22i+2 of these edges. We
denote by Rj

E the event that these edges are present and have orientation ωj. Clearly,
different events Rj

E are mutually exclusive and RE is the union of all these events.
Note that the following holds:

P(−−→x1y1 ∈ P δ, α = 0 | R ⊆ A(D)) = P(−−→x1y1 ∈ Qδ, α = 0 | R ⊆ A(D))

≤
22i+2∑
j=1

P(−−→x1y1 ∈ Qδ, α = 0 | Rj
E)

= 22i+1 P(−−→x1y1 ∈ Qδ, α = 0 | RE)

≤ 22i+1 P(−−→x1y1 ∈ Qδ, α = 0)

≤ 22i+1 P(−−→x1y1 ∈ Qδ).

We used the fact that α = 0 is less likely to happen under the condition that RE

holds and that −−→x1y1 ∈ Qδ is independent of RE when α = 0.
Combining the above inequalities with (3.2.5), we get

P(−−→x1y1 ∈ P δ | R ⊆ A(D))

= P(−−→x1y1 ∈ P δ, α ≥ 1 | R ⊆ A(D)) + P(−−→x1y1 ∈ P δ, α = 0 | R ⊆ A(D))

≤ o(1) + 22i+1P(−−→x1y1 ∈ Qδ) = o(1).
(3.2.12)

13



Now, together with (3.2.9), E(F ) ≤ o(ni+1
1 ni+1

2 p2i+2), and by Markov’s inequality,

P(F ≥ δN∆) ≤ 22i+1o(n2i+2p2i+2)
δ(1− ε1)n2i+2p2i+2 = o(1). (3.2.13)

This means condition (3) holds for H a.a.s.
We are now ready to apply Theorem 2.2.5. The theorem tells us that for sufficiently

large n, there exists a matching M of H of size at least (1 − ε1) N
2i+2 . Therefore

M−1 = {H−1 | H ∈ M} is a matching on H−1 defined on D−1. Again, by Theorem
2.2.5, we have another matching M ′ in H−1 of size at least (1 − ε1) N

2i+2 such that
M ′ ∩ M−1 = ∅. This implies that M ∪ M ′ does not have non-simple blossoms of
length 2.

Next we will argue that there is only a small number of simple blossoms. Consider
the digraph D ∪ D−1. Let 2 ≤ j ≤ 1

ε1
be an integer, and let T (j) be the number of

simple (2i+ 2)-blossoms of length j in D ∪D−1. We have

E(T (j)) ≤ n1(nij1 nij2 pj+ij) + n2(nij1 nij2 pj+ij)

≤ 2n1(nij1 nij2 pj+ij) ≤ 2
√
cn1+2ijpj+2ij

< 2
√
c n2pn

1
ε1

(2i−ε1)
p

1
ε1

(2i+1−ε1)

< 2
√
c n2pn

1
ε1

(2i−ε1)
n
− 1

ε1
(2i−ε1) = O(n2p).

(3.2.14)

Hence by Markov’s inequality,

P
( 1/ε1∑
j=2

T (j) ≥ ε1pn
2
)
≤ P

(
T (j) ≥ ε2

1pn
2
)
≤ o(1). (3.2.15)

Therefore, a.a.s. the number of simple (2i + 2)-blossoms of length at most 1/ε1 in
D ∪D−1 is at most ε1pn1n2 = ε1pn

2. Since M ∪M ′ has size at least 2(1− ε1) N
2i+2 , it

has a subsetM1 without simple (2i+2)-blossom of length at most 1/ε1 after removing
at most ε1pn

2 closed trails. By using (3) we have:

|M1| ≥ 2(1− ε1) N

2i+ 2 − ε1pn
2

≥ (1− ε1) N

i+ 1 −
ε1

1− ε1
N

≥ (1− i+ 2
1− ε1

ε1) N

i+ 1 , a.a.s.

(3.2.16)
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Now we consider the (2i+ 2)-blossoms of length at least 1/ε1 in M1. If C1 and C2 are
two blossoms of M1 with center v, by the way we constructed M1 we could see that
the tips of C1 and C2 cannot intersect. Therefore, if v has m neighbours in D, at most
ε1m different (2i+ 2)-blossoms of length at least 1/ε1 have center v. Thus, the total
number of such blossoms is at most ∑v∈V (D) degG(v)/(1/ε1) = 2ε1N . By removing
one of the trails from each such blossom we get a blossom-free subsetM0 ⊆M1 which
satisfies

|M0| ≥ |M1| − 2ε1N

≥ (1− 3i+ 4
1− ε1

ε1) N

i+ 1 = (1− ε0) N

i+ 1 .
(3.2.17)

Finally, using M0 we can obtain an ε0-near (2i + 2)-gon embedding of G by using
Lemma 2.2.4. This completes the proof when p� n

− 2i−ε1
2i+1−ε1 .

For the case p ≥ Θ
(
n
− 2i−ε1

2i+1−ε1
)
, we use a similar argument as used in [58, Lemma

4.8]. Choose an integer t = t(n), such that n−
2i

2i+1 � p/t � n
− 2i−ε1

2i+1−ε1 . Let p1 = p/t.
Now take a corresponding digraph D of G(n1, n2, p) and partition its edges into t

parts, putting each edge in one of the parts uniformly at random. Then each of the
resulting digraphs D1, D2, . . . , Dt is a corresponding digraph of G(n1, n2, p1). By the
above, for every 1 ≤ j ≤ t, Dj ∪D−1

j has a collection of blossom-free directed (2i+2)-
trails of size at least (1 − ε0) |A(Dj)|

i+1 a.a.s. That means, if we let q be the probability
that Dj ∪D−1

j does not have such set of trails, then q → 0 as n→∞.
Let I ⊆ {1, 2, . . . , t} be the index set, containing all j, 1 ≤ j ≤ t, for which

Dj ∪ D−1
j does not have a collection of directed blossom-free (2i + 2)-trails of size

at least (1 − ε0) |A(Dj)|
i+1 . Then by Markov’s inequality, P(|I| ≥ √qt) ≤ √q. Hence for

sufficiently large n, |I| ≤ ε0t a.a.s.
Similarly as in the proof of (3.2.3), we see that for each 0 ≤ j ≤ t a.a.s.

(1− ε0)1
2n

2p1 ≤ |A(Dj)| ≤ (1 + ε0)1
2n

2p1. (3.2.18)
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Now let Γ be the union of collections of directed blossom-free (2i+ 2)-trails of size at
least (1− ε0) |A(Dj)|

i+1 for j /∈ I. We have:

|Γ| ≥ (1− ε0)
∑
j /∈I

|A(Dj)|
i+ 1 ≥ (1− ε0)2t(1− ε0) p1n

2

2i+ 2

≥ (1− ε0)3 pn2

2i+ 2

≥ (1− ε)(1 + ε0)pn
2

2 ≥ (1− ε) |A(D)|
i+ 1 .

(3.2.19)

Since the directed closed trails of Γ that belong to any Dj (j /∈ I) are blossom-free
and any Dk and Dj are edge disjoint for k 6= j, Γ is blossom-free. By Lemma 2.2.4,
we get a rotation system Π in which every closed trail in Γ is a face of Π. Let f2i+2

be the number of faces of length 2i+ 2 of Π. We have (2i+ 2)f2i+2 ≥ 2(1− ε)|E(G)|,
thus Π is an ε-near (2i+ 2)-gon embedding.

The result of Lemma 3.2.1 has been proved under the assumption that n2 = Θ(n1).
However, that assumption can be omitted as long as n2 � 1.

Lemma 3.2.2. Let ε > 0 and G ∈ G(n1, n2, p) be a random bipartite graph on vertex
set X t Y with |X| = n1 ≥ n2 = |Y |. If p� n

− 2i
2i+1

2 where i is a fixed positive integer
and n2 � 1, then a.a.s. (as n2 →∞) G has an ε-near (2i+ 2)-gon embedding.

Proof. It is sufficient to consider the case n1/n2 � 1. Let t = bn1
n2
c, and let P =

{Xj}j∈J be the equitable partition of X into t parts, where J = [t]. Note that |Xj| =
Nj is between n2 and 2n2, for every j ∈ J . Let Gj be the bipartite graph G[Xj t Y ]
and let Dj be its corresponding digraph. Choose ε0 > 0 such that ε > 4ε0

1+ε0
. By

Lemma 3.2.1 there exists a set Mj of closed trails of length 2i+ 2 in Dj ∪D−1
j , such

that |Mj| ≥ (1− ε0) |A(Dj)|
i+1 and Mj is blossom-free, for each j ∈ J a.a.s. That means,

if we let qj be the probability that Dj ∪D−1
j does not have such set of closed trails,

we have qj → 0 when n2 → ∞. The probabilities qj are almost the same since |Xj|
only take at most two different values. We let q = max{qj | j ∈ J}. Define the
index set I ⊆ J containing those j ∈ J , for which Dj ∪ D−1

j does not have a set of
closed trails satisfying the conditions stated above. By Markov’s inequality, we have
P(|I| ≥ √qt) ≤ √q. Then, when n is large enough, |I| ≤ ε0t. Similarly as in the proof
of (3.2.3) we have a.a.s.

(1− ε0)Njn2p ≤ |A(Dj)| ≤ (1 + ε0)Njn2p, ∀j ∈ J,

(1− ε0)n1n2p ≤ |E(G)| ≤ (1 + ε0)n1n2p.
(3.2.20)
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Let M = ⋃
j∈J\IMj. Since each Mj (j ∈ J \ I) is blossom-free and the edge-sets of

different Dj are disjoint, M is also blossom-free. We also have:

|M | =
∑
j∈J\I

|Mj| ≥ t(1− ε0)(1− ε0) |A(Dj)|
i+ 1

≥ t(1− ε0)3Njn2p

i+ 1 ≥ (1− ε0)3n1n2p

i+ 1

≥ (1 + ε0)(1− ε)n1n2p

i+ 1 ≥ (1− ε) |E(G)|
i+ 1 .

(3.2.21)

Therefore, by Lemma 2.2.4 we get the desired ε-near (2i+ 2)-gon embedding Π a.a.s.

Now we are ready to compute the genus of random bipartite graphs.

Theorem 3.2.3. Let ε > 0 and G ∈ G(n1, n2, p) be a random bipartite graph and
suppose that i ≥ 2 is an integer. If p satisfies (n1n2)−

i
2i+1 � p � (n1n2)−

i−1
2i−1 ,

n1/n2 < c and n2/n1 < c where c is a positive real number, then we have a.a.s.

(1− ε) i

2i+ 2pn1n2 ≤ g(G) ≤ (1 + ε) i

2i+ 2pn1n2

and
(1− ε) i

i+ 1pn1n2 ≤ g̃(G) ≤ (1 + ε) i

i+ 1pn1n2.

Proof. To prove the lower bound, we count the number of closed trails of G of length
at most 2i. Let C be the number of such closed trails. We have

E(C) ≤
i∑

j=2
nj1n

j
2p

2j = o(n1n2p). (3.2.22)

Then by Markov’s inequality, a.a.s. at most 1
4(i−1)εpn1n2 closed trails of G have length

at most 2i. Similarly as in the proof of (3.2.3) we get |E(G)| ≥ (1− 1
2iε)pn1n2, a.a.s.

Let Π be a rotation system of G, and let f(Π) be the number of faces, and f ′ be the
number of faces of Π with length at most 2i. Then 2|E(G)| ≥ (2i+2)(f(Π)−f ′)+4f ′ ≥
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(2i+ 2)f(Π)− (2i− 2)f ′. By the above, f ′ ≤ 2C ≤ 1
2(2i−2)εpn1n2. Now we have a.a.s.

g(G,Π) = 1
2(|E(G)| − f(Π)− |V (G)|) + 1 ∼ 1

2(|E(G)| − f(Π))

≥ i

2i+ 2 |E(G)| − i− 1
2i+ 2f

′

≥
(

1− 1
2iε

)
i

2i+ 2pn1n2 −
i− 1
2i+ 2

1
2(i− 1)εpn1n2

= (1− ε) i

2i+ 2pn1n2.

(3.2.23)

For the upper bound, by Lemma 3.2.1 we have an ε′-near (2i + 2)-gon embedding
Π, with ε′ = iε

2+ε , and let f(Π) be the number of faces. Also, we have |E(G)| ≤
(1 + 1

2ε)pn1n2. Therefore,

g(G,Π) = 1
2(|E(G)| − f(Π)− |V (G)|) + 1 ∼ 1

2(|E(G)| − f(Π))

≤ 1
2(|E(G)| − 2(1− ε′)

2i+ 2 |E(G)|)

≤
(

1 + 1
2ε
)
i+ ε′

2i+ 2pn1n2 = (1 + ε) i

2i+ 2pn1n2.

(3.2.24)

This completes the proof for the orientable genus. The proof for g̃(G) is essentially
the same, where the lower bound uses Euler’s Formula as in (3.2.23), while for the
upper bound we just observe that g̃(G) ≤ 2g(G) + 1, see [44].

Theorem 3.2.4. Let ε > 0 and G ∈ G(n1, n2, p) be a random bipartite graph. If
n1 ≥ n2 � 1 and p� n

− 2
3

2 , then we have a.a.s.

(1− ε)pn1n2

4 ≤ g(G) ≤ (1 + ε)pn1n2

4

and
(1− ε)pn1n2

2 ≤ g̃(G) ≤ (1 + ε)pn1n2

2 .

Proof. The lower bound follows from [44, Proposition 4.4.4]. For the upper bound,
we have the same proof as for (3.2.24), except that we use Lemma 3.2.2 (with i = 1)
instead of Lemma 3.2.1.

3.2.2 Bipartite Graphs with a Small Part

Now we consider the case when G ∈ G(n1, n2, p) where n1 � 1 and n2 is a constant.
We say S is a standard graph of G(n1, n2, p) if S is a bipartite graph on the vertex
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set V (S) = X t Y with |X| ∼ n1 and |Y | = n2, and we have expected degree
distributions for G(n1, n2, p). This means, for every Y ′ ⊆ Y with |Y ′| = m, |{x ∈
X | N(x) = Y ′}| = bpm(1 − p)n2−mn1c, where N(x) is the set of neighbours of x.
Suppose that c is some constant. Then we say that an embedding Π of G is a near
k-gon embedding (with respect to c) if 2|E(G)| − kfk(Π) ≤ c.

Lemma 3.2.5. Let S be the standard graph of G(n1, n2, p) where n1 � 1 and n2

is a constant. Suppose that p � n
− 1

2
1 and let S ′ be the bipartite graph obtained by

removing all vertices of degree at most one in S. Then S ′ has a near 4-gon embedding
with respect to the constant c = (4n2 + 14)2n2.

Proof. Let V (S) = X(S)tY (S). Note that n1− 2n2 ≤ |X(S)| ≤ n1 and |Y (S)| = n2.
For every Y ′ ⊆ Y (S), let FS(Y ′) = {x ∈ X(S) | N(x) = Y ′}. Now consider all of
the 2n2 subsets of Y (S), they give us a partition of X(S) = ⊔

Y ′⊆Y (S) FS(Y ′). Note
that S[Y ′ t FS(Y ′)] is a complete bipartite graph for every Y ′ ⊆ Y (S). If |Y ′| ≥ 2,
by [51], we have a near 4-gon embedding of S[Y ′ tFS(Y ′)]. Moreover, there is always
a near 4-gon embedding with respect to the constant 14 since in the worst case, we
may have one 6-gon and one 8-gon apart from the 4-gons. Let C(Y ′) be the set of all
facial walks of length 4 in the optimal embedding of S[Y ′ t FS(Y ′)]. We can remove
from C(Y ′) a collection of at most |Y ′| closed trails to make C(Y ′) free of blossoms
with center in Y ′. Therefore, we can remove at most 2n2n2 closed trails of length 4
to make ⋃Y ′∈Y (S),|Y ′|≥2 C(Y ′) free of blossoms centered in Y ′. An obvious extension of
Lemma 2.2.4 shows that the union of these sets for all Y ′ with |Y ′| ≥ 2 gives rise to
a near 4-gon embedding of S ′ with respect to the constant c = (4n2 + 14)2n2 .

Lemma 3.2.6. Let S be the standard graph of G(n1, n2, p) where n1 � 1 and n2 is a
constant. Suppose that p� n

− 1
3

1 , then

g(S) ∼ n1n2p

4

n2−1∑
i=2

i− 1
i+ 1

(
n2 − 1
i

)
(−p)i.

In particular, when n−
1
3

1 � p� 1, g(S) = (1 + o(1))n1p3

4

(
n2
3

)
.
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Proof. Let Π be the rotation system of S ′ given by Lemma 3.2.5. Since this gives a
near 4-gon embedding, we have

g(S ′) ∼ 1
2(2 + |E(S ′)| − f(Π)− |V (S ′)|)

∼ 1
2(|E(S ′)| − f(Π)− n1 + (1− p)n2n1 + (1− p)n2−1n1n2p)

∼ 1
2

(
|E(S ′)|

2 − n1 + (1− p)n2n1 + (1− p)n2−1n1n2p

)

∼ 1
2

(
n1n2p− (1− p)n2−1n1n2p

2 − n1 + (1− p)n2n1 + (1− p)n2−1n1n2p

)

= 1
2

(
1
2n1n2p

n2−1∑
i=1

(
n2 − 1
i

)
(−p)i + n1

n2∑
i=2

(
n2

i

)
(−p)i

)

= n1n2p

4

n2−1∑
i=2

(
n2 − 1
i

)
(−p)i i− 1

i+ 1 .

(3.2.25)

Since g(S) = g(S ′), this completes the proof.

Lemma 3.2.7. Let ε > 0 and G ∈ G(n1, n2, p) where n1 � 1 and n2 is a constant.
If p� n

− 1
3

1 and S is the standard graph of G(n1, n2, p), we have a.a.s. (as n1 →∞)

(1− ε)g(S) ≤ g(G) ≤ (1 + ε)g(S).

Proof. Let V (G) = X(G) t Y (G) with |X(G)| = n1 and |Y (G)| = n2. For every
Y ′ ⊆ Y (G), where |Y ′| = m ≥ 1, let FG(Y ′) = {x ∈ X(G) | N(x) = Y ′}. Then

E(|FG(Y ′)|) = pm(1− p)n2−mn1,

E(|FG(Y ′)|2) = p2m(1− p)2n2−2mn1(n1 − 1) + pm(1− p)n2−mn1.
(3.2.26)

For every t > 0, by Chebyshev’s inequality, we have

P
(∣∣∣|FG(Y ′)| − E(|FG(Y ′)|)

∣∣∣ ≥ tE(|FG(Y ′)|)
)
≤ E(|FG(Y ′)|2)− E2(|FG(Y ′)|)

t2E2(|FG(Y ′)|)

∼ pm(1− p)n2−mn1

t2p2m(1− p)2n2−2mn2
1

= 1
t2pm(1− p)n2−mn1

.

(3.2.27)
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Suppose now that p � n
− 1

3
1 and m ≥ 3. By taking t = ε

10n22n2 p
3−m(1 − p)m−n2/2

in (3.2.27) we obtain that

P
(∣∣∣|FG(Y ′)| − E(|FG(Y ′)|)

∣∣∣ ≥ ε
10n22n2 p

3(1− p)n2/2n1
)
≤ 100n2

24n2

ε2p6−mn1
≤ o(1). (3.2.28)

Let S be the standard graph of G(n1, n2, p) with V (S) = X(S) t Y (S). We may
assume that Y (S) = Y (G) = [n2]. Let G′ be the subgraph obtained from G by
deleting all vertices of degree at most 2 in X(G). Observe that deleting vertices of
degree at most 1 does not change the genus and that vertices of degree 2 form (at
most)

(
n2
2

)
“parallel” classes, thus

g(G′) ≤ g(G) ≤ g(G′) +
(
n2

2

)
. (3.2.29)

For every Y ′ ⊆ Y (and |Y ′| ≥ 3), we consider FG′(Y ′) = FG(Y ′) and FS(Y ′). By
(3.2.28), these two sets have almost the same cardinality (a.a.s.). More precisely, we
have a.a.s.∑

|Y ′|≥3

∣∣∣|FG(Y ′)| − |FS(Y ′)|
∣∣∣ ≤ ∑

|Y ′|≥3

(∣∣∣|FG(Y ′)| − E(|FG(Y ′)|)
∣∣∣+ 1

)

≤ 2n2(1 + 2n2ε

10n2
p3(1− p)n2/2n1) ≤ 2n2 + ε

10n2
p3n1.

(3.2.30)

If p � 1, then (3.2.30) implies, in particular, that S can be obtained from G′ by
adding and deleting at most n22n2 + ε

10p
3n1 edges a.a.s. Since adding an edge changes

the genus by at most 1, and by Lemma 3.2.6, g(S) > 1
5p

3n1 � 1 (if n1 is large), we
obtain that (1 − 1

2ε)g(S) ≤ g(G′) ≤ (1 + 1
2ε)g(S) a.a.s. Together with (3.2.29) this

implies the lemma.
Finally, suppose that p � n

−1/n2
1 . In this case we take t = εpΨ(p,n2)

15n22n2 in (3.2.27),
where Ψ(p, n2) is defined in Theorem 3.2.8. Therefrom we conclude that with high
probability ∣∣∣|FG(Y ′)| − |FS(Y ′)|

∣∣∣ ≤ 2 + εpΨ(p, n2)
15n22n2

|FS(Y ′)|.

Now we derive similarly as above that S can be obtained from G′ by adding and
removing less than 2n22n2 + ε

10 pΨ(p, n2)n1 edges a.a.s., which is less than ε
5 pΨ(p, n2)n1

when n1 is sufficiently large. The same conclusion as above follows.
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We have all tools to prove the last main statement.

Theorem 3.2.8. Let ε > 0 and G ∈ G(n1, n2, p) where n1 � 1 and n2 is a constant.

(a) If p� n
− 1

3
1 we have a.a.s. (as n1 →∞)

(1− ε)n1n2p

4 Ψ(p, n2) ≤ g(G) ≤ (1 + ε)n1n2p

4 Ψ(p, n2)

and
(1− ε)n1n2p

2 Ψ(p, n2) ≤ g̃(G) ≤ (1 + ε)n1n2p

2 Ψ(p, n2),

where Ψ(p, n2) = ∑n2−1
i=2

i−1
i+1

(
n2−1
i

)
(−p)i.

(b) If n−
1
2

1 � p� n
− 1

3
1 , then a.a.s.

g(G) =
⌈

(n2 − 3)(n2 − 4)
12

⌉
and g̃(G) =

⌈
(n2 − 3)(n2 − 4)

6

⌉

with a single exception that g̃(G) = 3 when n2 = 7.

(c) If p� n
− 1

2
1 , then a.a.s. g(G) = 0.

Proof. To prove part (a), we just combine Lemmas 3.2.5, 3.2.6 and 3.2.7.
For case (b), when Y ′ ⊆ Y (G) with |Y ′| = m ≥ 3, we have

E(|FG(Y ′)|) = pm(1− p)n2−mn1 = o(1). (3.2.31)

Then by Markov’s inequality, P(|FG(Y ′)| ≥ 1) = o(1). For the sets Y2 ⊆ Y (G)
with |Y2| = 2, by (3.2.27) we can see that for every t > 0, (1 − t)p2n1 ≤ |FG(Y2)| ≤
(1+t)p2n1 a.a.s. That means if we remove all vertices with degree 1 inG, we will obtain
the complete graph Kn2 , in which each edge is replaced by roughly p2n1 internally
disjoint paths of length 2. By [53] we have g(G) = g(Kn2) =

⌈
(n2−3)(n2−4)

12

⌉
a.a.s. (and

similarly for g̃(G), where the exception occurs when n2 = 7). This proves part (b).
To prove (c), note that when p� n

−1/2
1 , none of the subdivided edges of Kn2 from

case (b) will occur (a.a.s.), and with high probability, every vertex in X(G) will be
of degree at most 1. Thus, g(G) = 0 a.a.s.

Note that in Theorem 3.2.8, when p = Θ(n− 1
3 ), a.a.s. the graph G will be the Levi

graph of mK3
n1 , where mK

3
n1 is the complete 3-uniform multi-hypergraph of order n1,

and each triple has m edges. This problem is hard and of independent interest as a
generalization of Ringel-Youngs Theorem. We will discuss it in Chapter 6.
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3.3 Genus of Generalized Random Graphs

Now, we define a general notion of random graphs. Let Hm be a weighted complete
graph with loops of order m, we may assume it has vertex set [m] and edge set [m]2.
The vertex weights of Hm are c1, . . . , cm such that ∑m

i=1 ci = 1, and the edge weights
are pij, where 1 ≤ i ≤ j ≤ m. Let Hm(n) be a family of graphs which are the blow-up
of Hm, that is, for every G ∈ Hm, |V (G)| = n, and there is a partition V1, . . . , Vm

of V (G) such that |Vi| = cin, and edge with end vertices in Vi and Vj occurs with
probability pij, for every 1 ≤ i ≤ j ≤ m.

We consider the genus of Hm-random graphs. Suppose m and ci are constants for
every 1 ≤ i ≤ m, and n is large enough. Since a significantly smaller pij does not
contribute a lot to the genus of G ∈ Hm(n) (actually it hides in the error term when
n is large enough), we may assume all non-zero pij have the same magnitude. That
is, there is a function p(n) of n, and constants qij for every 1 ≤ i ≤ j ≤ m, such that
pij = qijp(n), i.e. the edges between Vi and Vj in G occur with probability qijp(n).

3.3.1 H2-Random Graphs

Random bipartite graphs are actually a special family of H2-random graphs, where
the underlying complete graph H2 does not have loops. In this section, we deal with
a more general random graphs. We assume c1 = c2 = 1/2 for the convenience.

Lemma 3.3.1. Let ε > 0, and G ∈ H2, where i+1
2 (q11 + q22) ≥ q12 and i is odd,

n−
i

i+1 � p(n)� n−
i−1

i . Then a.a.s. G has an ε-near (i+ 2)-gon embedding.

Proof. Note that we only need to consider the case when i is odd, or we can split
the graph into a random bipartite graph G(n, n, q12p(n)), and two random graphs
G(n, q11p(n)) and G(n, q22p(n)). We first consider the case i+1

2 (q11+q22) ≥ q12. Suppose
0 < ε1 < 1/2 and ε0 = 4iε1+1

1−ε1
. Assume first p(n) � n

− i−1−ε1
i−ε1 . Let D ∈ D(H2) be the

corresponding digraph of H2. Now we partition the digraph D into two edge-disjoint
digraphs D1 and D2. The second digraph D2 contains some edges in V1×V1∪V2×V2,

each of which picked uniformly at random with probability p =
q11+q22−

2
i+1 q12

q11+q22
. Let

eD1(V1, V2) = N1, eD1(V1, V1) + eD1(V2, V2) = N2, eD2(V1, V1) = N3 and eD2(V2, V2) =
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N4. Similarly as what we proved in Inequality (3.2.3), we have a.a.s.

(1− ε1)q12n
2p(n) ≤ N1 ≤ (1 + ε1)q12n

2p(n),

(1− ε1) 1
i+ 1q12n

2p(n) ≤ N2 ≤ (1 + ε1) 1
i+ 1q12n

2p(n),

(1− ε1)1
2q11pn

2p(n) ≤ N3 ≤ (1 + ε1)1
2q11pn

2p(n),

(1− ε1)1
2q22pn

2p(n) ≤ N4 ≤ (1 + ε1)1
2q22pn

2p(n).

(3.3.1)

Let d = i + 2 and H1 be a d-uniform hypergraph, where V (H1) is the edge set
of D1 and E(H1) is the set of directed closed trails of length d in D1, which satisfy
every edge in E(H1) contains one edge in e(V1, V1) or e(V2, V2).

For every pairs x, y ∈ V1 × V1 ∪ V2 × V2, let P be the number of directed trails of
length i+ 1 from y to x contains all edges in the set eD1(V1, V2). We have

E(P ) = 1
2i+1n

iqi+1
12 p(n)i+1,

Let ∆1 = 1
2i+1n

iqi+1
12 p(n)i+1 and δ = 2ε1

1−ε1
, then by Chebyshev’s inequality, for suffi-

ciently large n we have,

P(|P −∆1| ≥ δ∆1) ≤ E(P 2)− E2(P )
δ2E2(P ) = O

( 1
np(n)2

)
= o(1). (3.3.2)

Let U be the number of edges −→ab in eD1(V1, V1)∪ eD1(V2, V2) such that the number
of directed paths from b to a of length i+ 1 is at least (1 + δ)∆1 or at most (1− δ)∆1.
Therefore,

E(U) = n2

2 q12p(n)P(|P −∆1| ≥ δ∆1) = O
(

n

p(n)

)
.

Hence by Markov’s inequality,

P
(
U >

ε1

2 q12p(n)n2
)
≤ O

( 1
np(n)2

)
= o(1).

For every pair (x, y) ∈ V1 ⊕ V2, let P ′ be the number of directed paths from y to
x of length i+ 1 in D1, and let U ′ be the number of directed edges −→ab in eD1(V1, V2)
such that the number of directed paths from b to a of length i+1 is at least (1+δ)∆1
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or at most (1− δ)∆1. Then similarly we get

P(|P ′ −∆1| ≥ δ∆1) ≤ E(P ′2)− E2(P ′)
δ2E2(P ′) = O

( 1
np(n)

)
= o(1),

P
(
U ′ >

ε1

2 q12n
2p(n)

)
≤ O

( 1
np(n)2

)
= o(1).

Therefore, there exist V ′(H1) ⊆ V (H1) with |V ′(H1)| ≥ (1 − ε1
1−ε1

)N1 + (1 −
2ε1

1−ε1
)N2 ≥ (1 − δ)V (H1) such that for every v ∈ V ′(H1), we have (1 − δ)∆ ≤

degH1(x) ≤ (1 + δ)∆1.
Condition (2) in Theorem 2.2.5 holds for H1 trivially. By a similar argument in

the proof of Lemma 4.2.3, condition (3) also holds for H1 a.s.s. By applying Theorem
2.2.5, we obtain a matching M1 of H1 of size at least (1− ε1)N1+N2

i+2 . For H−1
1 defined

on D−1
1 , we have another large matching M ′

1 disjoint from M−1
1 has size at least

(1− ε1)N1+N2
i+2 . Therefore, M1 ∪M ′

1 is a collection of directed triangles in D1 ∪D−1
1 of

size at least 2(1− ε1)N1+N2
i+2 . Since M1 ∩M ′

1 = ∅, it does not contain any non-simple
blossoms of size two.

Let 2 ≤ j ≤ 1
ε1

be an integer, and let B(j) be the number of simple (i + 2)-
blossoms of length j in D1 ∪ D−1

1 , same as what we do in Lemma 3.2.1, for some
integer j/2 ≤ a ≤ j we have

E(B(j)) ≤ O
(
n1+jq2j

12p(n)2j
(max(p1, p2)

p1 + p2

)a)
≤ o(n2p(n)),

It follows by Markov’s inequality that the number of simple (i+2)-blossoms of length
at most 1/ε1 where each triangle contains vertices in both V1 and V2 in D1 ∪D−1

1 is
at most ε1p(n)n2, a.a.s.

Obviously at most 2ε1(N1 +N2) blossoms have length at least 1/ε1, by removing
one triangle in each blossoms, we obtain a blossom-free set M ⊆M1 ∪M ′

1, such that

|M | ≥ 2(1− ε1)N1 +N2

i+ 2 − ε1q12n
2 − 2ε1(N1 +N2)

= 2(1− 4iε1 + 1
1− ε1

)N1 +N2

i+ 2 ≥ 2(1− ε0)N1 +N2

i+ 2 .

Now consider the digraph D2, we view D2 as two disjoint corresponding digraphs
D2[V1] and D2[V2] of G(n, p′1p(n)) and G(n, p′2p(n)), respectively, where p′1 = q11p and
p′2 = q22p. Therefore, by [58, Lemma 1.3], there exists a blossom-free set M ′ of closed
trails of size at least 2(1− ε0)N3+N4

i+2 .
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Since M and M ′ are edge disjoint, and both M and M ′ are blossom-free, M ∪M ′

is also blossom-free and it has size at least 2(1 − ε0)N1+N2+N3+N4
i+2 = 2(1 − ε0) |E(G)|

i+2 .
Note that when q11 + q22 = q12, we will only get digraph D1, then we will also get the
large blossom-free set of triangles in D1 ∪D−1

1 .
Next we choose a real number t = t(n) such that n−

i
i+1 � p(n)/t� n

− i−ε1
i+1−ε1 . By

the same argument in Lemma 3.2.1 and by Lemma 2.2.4, we get the desired rotation
system Π.

Lemma 3.3.2. Let ε > 0, and G ∈ H2, where i+1
2 (q11 + q22) ≤ q12 and i is odd,

n−
i

i+1 � p(n)� n−
i−1

i . Then a.a.s. G has an embedding Π, such that

fi+2(Π) ≥ 2(1− ε)(e(V1, V1) + e(V2, V2)),

(i+ 3)fi+3(Π) ≥ 2(1− ε)(e(V1, V2)− (i+ 1)(e(V1, V1) + e(V2, V2))).
(3.3.3)

Proof. For the same reason, we also only consider the case when i is odd. Let D ∈
D(H2) be the corresponding digraph. Now we partition D into two edge disjoint
graphs D1 and D2. D1 is obtained by removing edges between V1 and V2 uniformly at

random with probability p = q12−
i+1

2 (q11+q22)
q12

. Let N1 and N2 be the number of edges
in D1 and D2, respectively.

Let 0 < ε0 < 2 such that ε = 2ε0(2 − ε0). By Lemma 3.3.1 and Theorem 3.2.3,
there exist two setsM1 andM2 with high probability, such thatM1 is a set of directed
blossom-free closed trails of length i+ 2 in D1 ∪D−1

1 , and M2 is a set of blossom-free
directed closed trails of length i+3 in D2∪D−1

2 . They also satisfy |M1| ≥ 2(1−ε0) N1
i+2

and |M2| ≥ 2(1−ε0) N2
i+3 . Since D1 and D2 are edge disjoint,M = M1∪M2 is blossom-

free. By Lemma 2.2.4, M = M1 ∪M2 gives us a rotation system Π.
By Chebyshev’s inequality, similarly as the proof of Inequality 3.2.3 we have

(1− ε0)i+ 2
2 n2(q11 + q22)p(n) ≤ N1 ≤ (1 + ε0)i+ 2

2 n2(q11 + q22)p(n),

(1− ε0)n2q12pp(n) ≤ N2 ≤ (1 + ε0)n2q12pp(n).

Let ε′ = ε
2(1−ε) > 0, same as Inequalities 3.3.1 we have

(1− ε′)1
2q11n

2p(n) ≤ e(V1, V1) ≤ (1 + ε′)1
2q11n

2p(n),

(1− ε′)q12n
2p(n) ≤ e(V1, V2) ≤ (1 + ε′)q12n

2p(n),

(1− ε′)1
2q22n

2p(n) ≤ e(V2, V2) ≤ (1 + ε′)1
2q22n

2p(n).

(3.3.4)
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Therefore,

(i+ 2)fi+2(Π) = (i+ 2)|M1| ≥ 2(1− ε0)N1 ≥ 2(1− ε)(1 + ε′)i+ 2
2 n2(q11 + q22)p(n)

≥ 2(i+ 2)(1− ε)(e(V1, V1) + e(V2, V2)).

For faces of length i+ 3, we have

(i+ 3)fi+3(Π) = (i+ 3)|M2| ≥ 2(1− ε0)N2

≥ 2(1− ε)(1 + ε′)n2(q12 −
i+ 1

2 (q11 + q22))p(n)

≥ 2(1− ε)(e(V1, V2)− (i+ 1)(e(V1, V1) + e(V2, V2))).

This completes the proof.

Next theorem will give us the minimum genus of H2.

Theorem 3.3.3. Let ε > 0, and G ∈ H2, where n−
i

i+1 � p(n)� n−
i−1

i . Then a.a.s.

1. if i is even or i is odd and i+1
2 (q11 + q22) ≥ q12, then

(1− ε) ip(n)
4(i+ 2)n

2(q11 + q22 + 2q12) ≤ g(G) ≤ (1 + ε) ip(n)
4(i+ 2)n

2(q11 + q22 + 2q12),

2. if i is odd and i+1
2 (q11 + q22) < q12, then

(1− ε)Fn2p(n) ≤ g(G) ≤ (1 + ε)Fn2p(n),

where F = i+1
2(i+3)q12 + i−1

4(i+3)(q11 + q22).

Proof. Note that we only need to consider the case when i is odd, or we can split
the graph into a random bipartite graph G(n, n, q12p(n)), and two random graphs
G(n, q11p(n)) and G(n, q22p(n)). Suppose i+1

2 (q11 + q22) ≥ q12 first. We can obtain the
lower bound directly by [58]. To verify the upper bound, by Lemma 3.3.1, with high
probability, there exists an ε0-near (i + 2)-gon embedding Π of G, where we pick
ε0 <

iε
2(2+ε) . By Inequalities 3.3.1, |E(G)| ≤ (1 + ε

2)1
2n

2(q11 + q22 + 2q12). By Euler’s
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Formula,

g(G) ∼ 1
2(|E(G)| − f(Π)− |V (G)|)

≤ 1
2(|E(G)| − 2(1− ε0)

i+ 2 |E(G)|)

≤ 1
2(i+ 2)(i+ 2ε0)(1 + ε

2)1
2n

2(q11 + q22 + 2q12)

= (1 + ε) i

4(i+ 2)n
2(q11 + q22 + 2q12).

For the case i+1
2 (q11 + q22) ≥ q12, pick ε0 > 0 small enough, apply Lemma 3.3.2

we obtain

g(G) ∼ 1
2(|E(G)| − f(Π)− |V (G)|)

≤ 1
2(e(V1, V1) + e(V2, V2) + e(V1, V2)− 2(1− ε0)(e(V1, V1) + e(V2, V2))

− 2
i+ 3(1− ε0)(e(V1, V2)− (i+ 1)(e(V1, V1) + e(V2, V2))))

= ( i+ 1
2(i+ 3) + ε0

i+ 3)e(V1, V2) + ( i− 1
2(i+ 3) + 4ε0

i+ 3)(e(V1, V1) + e(V2, V2))

≤ ( i+ 1
2(i+ 3) + ε0

i+ 3)(1 + ε0)n2q12p(n)

+ ( i− 1
4(i+ 3) + 2ε0

i+ 3)(1− ε0)n2(q11 + q22)p(n)

≤ (1 + ε)( i+ 1
2(i+ 3)q12 + i− 1

4(i+ 3)(q11 + q22)n2p(n)) ≤ (1 + ε)Fn2p(n).

In order to verify the lower bound, let Π be an arbitrary embedding, f ′ is the
number of faces of length i+ 2 of Π. Note that for a face of length i+ 2 of Π contains
at least one edge in E(V1, V2), it has to contain at least one edge in E(V1, V1)∪E(V2, V2)
since i is odd. Therefore,

f ′ ≤ 2(e(V1, V1) + e(V2, V2)).

Also, let f be the number of faces, we have

2|E(G)| ≥ (i+ 2)f ′ + (i+ 3)(f − f ′),

which implies f ≤ 2
i+3 |E(G)|+ 1

i+3f
′.
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Then by Euler’s Formula,

g(G) ∼ 1
2(|E(G)| − f − |V (G)|)

≥ 1
2(i+ 1
i+ 3 |E(G)| − 1

i+ 3f
′)

≥ i+ 1
2(i+ 3)e(V1, V2) + i− 1

2(i+ 3)(e(V1, V1) + e(V2, V2))

≥ (1− ε)( i+ 1
2(i+ 3)q12 + i− 1

4(i+ 3)(q11 + q22)n2p(n)) ≥ (1− ε)Fn2p(n),

This completes the proof.

We have the following result for the non-orientable embeddings.

Theorem 3.3.4. Let ε > 0, and G ∈ H2, where n−
i

i+1 � p(n)� n−
i−1

i . Then a.a.s.

1. if i is even or i is odd and i+1
2 (q11 + q22) ≥ q12, then

(1− ε) ip(n)
2(i+ 2)n

2(q11 + q22 + 2q12) ≤ g̃(G) ≤ (1 + ε) ip(n)
2(i+ 2)n

2(q11 + q22 + 2q12),

2. if i is odd and i+1
2 (q11 + q22) < q12, then

2(1− ε)Fn2p(n) ≤ g̃(G) ≤ 2(1 + ε)Fn2p(n),

where F = i+1
2(i+3)q12 + i−1

4(i+3)(q11 + q22).
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Chapter 4

Genus of Dense Quasirandom
Graphs

4.1 Cut Metric and Quasirandomness

Szemerédi Regularity Lemma [61] is one of the most powerful tools in understanding
large dense graphs. Szemerédi first used the lemma in his celebrated theorem on
long arithmetic progressions in dense subset of integers [62]. Nowadays, the regularity
lemma has many connections to other areas of mathematics, for example, analysis,
number theory and theoretical computer science. For an overview of applications, we
refer to [38, 63]. Regularity Lemma gives us a structural characterization of graphs.
Roughly speaking, it says that every large graph can be partitioned into a bounded
number of parts such that the graphs between almost every pair of parts is random-
like. To make this precise we need some definitions.

Let G be a graph and X, Y ⊆ V (G). We define the edge density d(X, Y ) =
e(X, Y )/(|X||Y |). We say the pair (X, Y ) is ε-regular if for all X ′ ⊆ X and Y ′ ⊆ Y

with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have |d(X ′, Y ′) − d(X, Y )| < ε. A vertex
partition P = {Vi}ki=1 is equitable if Vi ∩ Vj = ∅ for every 1 ≤ i < j ≤ k, and we have∣∣∣|Vi| − |Vj|∣∣∣ ≤ 1. An equitable vertex partition V1, . . . , VK with K parts is ε-regular if
all but εK2 pairs of parts (Vi, Vj) (1 ≤ i < j ≤ K) are ε-regular.

Theorem 4.1.1 (Szemerédi Regularity Lemma). For every ε > 0 and every integer
m, there exists an integer M = M(m, ε) such that every graph G has an ε-regular
partition into K parts, where m ≤ K ≤M .

For ε > 0, a partition obtained from the regularity lemma is also called an ε-
Szemerédi partition. In the original proof of the regularity lemma, the bound M on
the number of parts is a tower of twos (We define the tower function T (n) of height n
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as follows: T (1) = 2, and T (n) = 2T (n−1) for n ≥ 2.) of height O(1/ε2). Unfortunately,
this is not far away from the truth. Gowers [24] showed that such an enormous bound
is indeed necessary. In this paper, we will always assume that m� 1/ε, so K � 1/ε
as well.

Recall that the cut metric d� between two (edge-weighted) graphs G and H on
the same vertex set V is defined by

d�(G,H) = max
U,W⊆V

|eG(U,W )− eH(U,W )|
|V |2

. (4.1.1)

Here eG(U,W ) denotes the total weight of the edges with one end vertex in U and
the other end vertex in W . When G and H are bipartite graphs defined on the vertex
set X t Y , we can define the cut metric as

d�(G,H) = max
U⊆X,W⊆Y

|eG(U,W )− eH(U,W )|
|X||Y |

. (4.1.2)

If |X| ∼ |Y | is large, definitions (4.1.1) and (4.1.2) differ by a small constant factor.
By using the language of cut metric, a weaker statement of the Szemerédi partition

P = {V1, . . . , VK} is that, for all but at most εK2 pairs of (Vi, Vj), we have d�(G[Vi t
Vj], K(Vi, Vj; pij)) < ε, where K(Vi, Vj; pij) is the complete bipartite graph defined on
the vertex set Vi t Vj with all edges weighted pij = dG(Vi, Vj).

The cut distance gives us a way to describe the similarity between two graphs,
and it is widely used in graph limit theory [36]. Another widely used way to describe
the similarity between two large graphs is comparing the homomorphism densities
of small graphs. Let hom(F,G) denote the number of homomorphisms of F into G.
Then we define the homomorphism density:

t(F,G) = hom(F,G)
|V (G)||V (F )| .

To compare the cut distance and homomorphism densities, we have the following
fundamental relation. For the more general version to graphons, see [36, 37].

Lemma 4.1.2 (Counting Lemma). Let G and G′ be two graphs defined on the same
vertex set. Then for any graph F ,

|t(F,G)− t(F,G′)| ≤ |E(F )|d�(G,G′).
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Quasirandom graphs are graphs which share many properties with random graphs.
The definition of quasirandomness was first introduced in a seminal paper by Chung,
Graham and Wilson [13]. In that paper, they listed many equivalent definitions of
quasirandom graphs, but essentially, quasirandom graphs are graphs close to random
graphs in the sense of cut distance. We will introduce a general form of quasirandom-
ness. In order to avoid to use probability, we define the corresponding edge weighted
complete graphs.

We will focus on a more general setting of quasirandom graphs. Let P be a m×m
symmetric matrix with non-negative entries. Let K(n(m), P ) be the complete edge
weighted graph, which is defined on the vertex set V1t · · ·tVm, and for every i ∈ [m]
we have |Vi| = n and the weight of edges between Vi and Vj is given by the (i, j)-entry
of P . Although by using the same method, we can deal with more general graphs,
for the convenience we only consider the case that each part of the graph has the
same size. We will always let the diagonal of P be 0 (then K(n(m), P ) is actually a
m-partite graph), and all the entries in P are between 0 and 1. We will use pij to
denote the (i, j)-entry of P .

Recall [36] that a graphon is a symmetric measurable function W : [0, 1]2 → [0, 1].
Let K̃m = Km(P ) be the quotient graph of K(n(m), P ), that is, K̃m has m vertices,
and the weight of the edge ij is pij. Let Wm = Wm(P ) be a step function of K̃m,
that means 〈Wm, [ i−1

m
, i
m

]× [ j−1
m
, j
m

]〉 = pij. We say a sequence of graphs {Gn} is Wm-
quasirandom if Gn → Wm as n → ∞ where the convergence is in the cut-distance
metric.

Definition 4.1.3. Given a graph G of order mn, we say G is ε-Wm-quasirandom if
d�(G,K(n(m), P )) < ε, and we write G ∈ Q(n(m), P, ε) in such a case. If m = 1, we
write just Q(n, p, ε).

Given a graph G of order n and an partition P = {V1, V2, . . . , Vk}, we say P is
an ε-quasirandom partition if for every i ∈ [k] we have |Vi| = n/k, and for every
1 ≤ i < j ≤ k, d�

(
G[Vi ∪ Vj], K((n/k)(2), d(Vi, Vj))

)
< ε. Clearly, one can obtain

an ε-quasirandom partition from an ε-Szemerédi partition P ′ = {V1, . . . , Vk}. By
removing all the edges between irregular pairs, we obtain an ε-quasirandom partition
of the resulting graph.

To obtain a Szemerédi partition, there are many know results (for example,
[1]), and recently Tao [64] provided a probabilistic algorithm which produces an ε-
Szemerédi partition with high probability in constant time (depending on ε). In this
paper, we will use a more recent deterministic PTAS due to Fox et al. [19].
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Theorem 4.1.4 ([19]). There exists an Oε,α,k(n2) time algorithm, which, given ε > 0,
and 0 < α < 1, an integer k, and a graph G on n vertices that admits an ε-Szemerédi
partition with k parts, outputs a (1 + α)ε-Szemerédi partition of G into k parts.

4.2 Genus of Quasirandom Graphs

Throughout this section, we will assume our graph is large enough, and ε is small.
Given ε > 0, we consider a graph G ∈ Q(n, p, ε). Recall that this means that
d�(G,K(n, p)) < ε. Suppose that ε < p8/10. By the Counting lemma 4.1.2, we
have the following result.

Lemma 4.2.1. Suppose that we have ε > 0 and 0 ≤ p ≤ 1, and a simple graph
G ∈ Q(n, p, ε). Then we have

2
∑

uv∈E(G)
|n(u, v)− p2n| ≤

√
13ε n3.

Proof. By the Counting Lemma, we have

2
∑

uv∈E(G)
n(u, v) = hom(K3, G) ≥ (p3 − 3ε)n3.

Let K−4 be the graph obtained by K4 by deleting an edge. Let A be the adjacency
matrix of G, and aij the (i, j)-entry of A. Hence by Chauchy-Schwarz inequality,

(
2

∑
uv∈E(G)

|n(u, v)− p2n|
)2

=
( ∑
u,v∈V (G)

|n(u, v)− p2n|auv
)2

≤ n2 ∑
u,v∈V (G)

∣∣∣n(u, v)− p2n
∣∣∣2a2

uv

= n2
(

2
∑

uv∈E(G)
n2(u, v)− 4p2n

∑
uv∈E(G)

n(u, v) + 2p4n2|E(G)|
)

∼ n2
(
hom(K−4 , G)− 4p2n

∑
uv∈E(G)

n(u, v) + 2p4n2|E(G)|
)

≤ n6(5ε+ 6εp2 + 2εp4) ≤ 13εn6.

This completes the proof.

Given an ε-quasirandom graph G ∈ Q(n, p, ε), we choose a real number t = t(n)
such that n−1/2 � p/t � n−(1−ε)/(2−ε) (we will use this upper bound to limit the
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number of short blossoms in the graph later). Let D ∈ D(G) be the corresponding
digraph of G, and we partition its edges into t parts, putting each edge in one of the
parts uniformly at random. We call the resulting digraphs D1, . . . , Dt. Now for each
Di, let Hi be the 3-uniform hypergraph where V (Hi) is the edge set of Di, and E(Hi)
is the set of directed triangles in Di. For convenience, we write p1 to denote p/t.

Lemma 4.2.2. Let ∆ = np2
1/4. Then there exists a real number δ > 0 such that

a.a.s.

|{x ∈ V (Hi) | (1− δ)∆ ≤ deg(x) ≤ (1 + δ)∆}| ≥ (1− δ)|V (Hi)|.

Proof. We first go back to the graph G. By Lemma 4.2.1, we have

2
∑

uv∈E(G)
|n(u, v)− np2| ≤

√
13ε n3. (4.2.1)

Let λ2 =
√

14ε
p2(p−2ε) . For every edge uv ∈ E(G), we say uv is unbalanced if there are

at least (1 + λ)np2 paths of length 2 between u and v, or at most (1− λ)np2 paths of
length 2 between them. Assume there are at least λ|E(G)| unbalanced edges. Then

2
∑

uv∈E(G)
|n(u, v)− np2| ≥ 2λ2|E(G)|np2

> λ2(n2p− 2εn2)np2 >
√

13εn3,

which contradicts (4.2.1).
We say an edge is balanced if it is not unbalanced in G. Let B be the set of edges

in G which are balanced. Since we create Di by selecting edges uniformly at random
from D, then for every ε > 0, we have

E(|B ∩ E(Di)|) = |B|
t
.

E(|B ∩ E(Di)|2) = |B|
2 − |B|
t2

.

Then by Chebyshev’s inequality,

P
(∣∣∣|B ∩ E(Di)| − E(|B ∩ E(Di)|)

∣∣∣ > ε
|B|
t

)
≤ |B|t2

t2ε2|B|2
= 1
ε2|B|

= o(1), (4.2.2)

which means a.a.s. that Di contains at least (1 − ε)|B|/t edges which are balanced
in G. In the graph Di, for every e ∈ E(Di), let Ti(e) be the set of directed triangles
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which contain e. Also in the graph G, let T (e) be the set of triangles which contain
e. Therefore,

E(|Ti(e)|) = TG(e)
4t2 , E(|Ti(e)|2) = T

2
G(e)− TG(e)

16t4 .

Then by Chebyshev’s inequality,

E
(∣∣∣|Ti(e)| − E(|Ti(e)|)

∣∣∣ > εE(|Ti(e)|)
)
≤ E2(|Ti(e)|)− E(|Ti(e)2|)

ε2E2(|Ti(e)|)
= 1
|TG(e)| = o(1).

This means at least (1−ε)2|B|/t edges in Di are contained in at least (1−ε)(1−λ)∆
directed triangles and in at most (1 + ε)(1 + λ)∆ triangles.

Since |B|/t ≥ (1 − λ)|E(G)|/t, and a.a.s. |V (Hi)| < (1 + ε)|E(G)|/t (also by
Chebyshev’s inequality), we choose δ ≥ δ0 := max{λ+ε+ελ, ψ(ε, λ)}, where ψ(ε, λ) =
λ(1−ε)2+ε(3−ε)

1+ε . Therefore,

(1 + ε)(1 + λ)∆ = (1 + λ+ ε+ ελ)∆ < (1 + δ)∆,

(1− ε)(1− λ)∆ = (1− λ− ε+ ελ)∆ > (1− δ)∆,

(1− ε)2 |B|
t
≥ (1− ε)2(1− λ) |V (Hi)|

1 + ε
= (1− ψ(ε, λ))|V (Hi)| ≥ (1− δ)|V (Hi)|,

which completes the proof.

Now we fix the value ∆ in Lemma 4.2.2. The lemma shows that a.a.s. Hi satisfies
condition (1) of Theorem 2.2.5. Condition (2) holds trivially since for every a, b ∈
V (Hi), at most one triangle of G contains both a and b as its edges. Condition (3)
holds by the following lemma.

Lemma 4.2.3. Let Fi be the number of directed triangles in Di which contain at least
one directed edge −→uv ∈ P δ, where P δ is the set of pairs of vertices (u, v) ∈ V 2(Di) such
that the number of directed paths from v to u of length 2 in Di is at least (1 + δ)∆.
Then a.a.s. Fi < δ∆|V (Hi)|.

Proof. By using probabilistic method, we can almost pass the counting properties
from G to Di, then it suffices to consider the dense graph G. Let F be the number
of triangles which contain at least one unbalanced edge in G. Since Di is constructed
randomly, if F < (1− ε)δnp2|E(G)|, then Fi < δ∆|V (Hi)| a.a.s.
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By Lemma 4.2.1, we have

2
∑

uv∈E(G)\B
n(u, v) <

√
13ε n3 + 2

√
13ε
δ

n3.

Therefore, we let δ > max{δ0, φ(ε)}, where φ(ε) =
√

13ε+
√

13ε+16p2
√

13ε
4p2(p−2ε)(1−ε) . Now Lemma

4.2.2 still holds, and we have the following quadratic function always positive for
x ≥ δ:

q(x) = 2p2(p− 2ε)(1− ε)x2 −
√

13εx+ 4p2.

This implies

F <
∑

uv∈E(G)\B
n(u, v) < δn3p2(p− 2ε)(1− ε) < (1− ε)δnp2|E(G)|,

which completes the proof.

Now we are going to apply Theorem 2.2.5 to construct a large set of blossom-free
triangles. Using them together with Lemma 2.2.4, we will be able to obtain a near
triangular embedding. Specifically, we say that an embedding of a graph is ε-near
triangular (ε-near quadrangular) if all but at most 2ε|E(G)| edges of G belong to two
triangular (quadrangular) faces.

Theorem 4.2.4. For every ε > 0, every graph G ∈ Q(n, p, ε) admits a 9ε-near
triangular embedding of G.

Proof. Suppose that G ∈ Q(n, p, ε). We will use the notation introduced earlier. For
every i ∈ [t], Hi satisfies conditions (1)–(3) in Theorem 2.2.5 a.a.s. That means, if q is
the probability that Hi does not satisfy all of the conditions, then q → 0 as n→∞.
Let I ⊆ [t] be the index set, such that for every j ∈ I, Hj does not satisfy all the
conditions listed in Theorem 2.2.5. By Markov’s inequality we obtain |I| ≤ εt a.a.s.
Note that “a.a.s.” here comes from the way we construct Di, that means there exists a
construction of Di for every i ∈ [t] such that |I| ≤ εt. For the convenience, we denote
J = [t] \ I.

For every i ∈ J , apply Theorem 2.2.5. For sufficiently large n, there exists a
matchingMi of Hi of size at least (1−ε) |E(Di)|

3 . Let H−1
i be the 3-uniform hypergraph

defined on the digraph D−1, then M−1
i is a large matching in H−1

i . Apply Theorem
2.2.5 again, we obtain another matching M ′

i in H−1
i which is disjoint with M−1

i , and
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it has size at least (1− ε) |E(Di)|
3 . Therefore, in the graph Di ∪D−1

i , Mi ∪M ′
i has size

at least 2(1− ε) |E(Di)|
3 , and does not have non-simple blossoms of length 2.

In order to apply Lemma 2.2.4 to obtain a rotation system and a surface embed-
ding, we have to remove one of the cycles from each of the blossoms that appear in
Mi ∪M ′

i . We first consider short blossoms, that means, blossoms of length at most
1/ε. We use −→Bj to denote 3-blossom-graphs of length j in D ∪D−1, and Bj is the un-
derlying simple graph in G, where j is an integer such that 2 ≤ j ≤ 1/ε. By Counting
Lemma, we have

hom(Bj, G) ≤ nj+1p2j + 2jεnj+1.

By the way we construct Di, for every i ∈ [t], given a 3-blossom simple graph Bj,
P(−→Bj ∈ Di ∪D−1

i ) = 1
2j−1t2j . Let Ni(j) denote the number of −→Bj in Di ∪D−1

i . Then by
Chebyshev’s inequality

Ni(j) < (1 + ε)
(
nj+1p2j

1
2j−1 + 2jεnj+1p2j

1
p2j2j−1

)
� n2p1, a.a.s.

That means ∑1/ε
j=1Ni(j) < ε(1 − ε)n2p1/2 < ε|E(Di)|, a.a.s. Then we can remove a

triangle from each blossom of length at most 1/ε, we obtain a subset of Mi ∪M ′
i of

size at least 2(1− 3ε) |E(Di)|
3 .

In the next step we will argue that there is only a small number of long blossoms.
If B and B′ are two blossoms with center v inMi∪M ′

i , it is clear that the tips of B and
B′ are disjoint. Therefore if v has l neighbours in Di, at most εl different 3-blossoms
of length at least 1/ε have center v. Therefore, the total number of long blossoms
is at most 2ε|E(Di)|. By removing one of the triangles from each long blossom, we
finally obtain a blossom-free subset Mi of Mi ∪M−1

i , such that

|Mi| ≥ 2(1− 3ε) |E(Di)|
3 − 2ε|E(Di)| = 2(1− 6ε) |E(Di)|

3 .

Note that for every i ∈ J , by Chebyshev’s inequality, there exists a set J ′ ⊆ J

such that |J ′| ≥ (1− ε)|J | and for every i ∈ J ′,

(1− ε) |E(G)|
t
≤ |E(Di)| ≤ (1 + ε) |E(G)|

t
.

Now we take the union of all Mi with i ∈ J ′, the union set is blossom-free since
all pairs of the graphs Di and Dj with i 6= j are edge disjoint. Now, applying Lemma
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2.2.4, we obtain an embedding Π from ⋃
i∈J ′Mi such that

3f3(Π) ≥ 3
∑
i∈J ′
|Mi| ≥ 2(1− 6ε)(1− ε)3|E(G)|

≥ 2(1− 9ε)|E(G)|,

which completes the proof.

Theorem 4.2.5. Suppose that ε > 0, and every G ∈ Q(n, p, ε/18). Then we have.

e(G)
6 ≤ g(G) ≤ (1 + ε)e(G)

6

and
e(G)

3 ≤ g̃(G) ≤ (1 + ε)e(G)
3 .

Proof. By Theorem 4.2.4, G has an ε/2-near triangular embedding Π. Therefore,

g(G) ≤ g(G,Π) ∼ 1
2(e(G)− f(Π)) ≤ 1

2(e(G)− f3(Π))

≤ 1
2(e(G)− 2(1− ε

2)e(G)) ≤ (1 + ε)e(G)
6 .

The lower bound for g(G) follows by [44, Proposition 4.4.4] directly, and the error
term comes from Euler’s formula. For the non-orientable genus, since g̃(G) ≤ g(G)+1,
we can just simply multiply by 2 the formula for the orientable genus.

4.3 Genus of Bipartite and Tripartite Quasiran-
dom Graphs

Given ε > 0, we consider a graph G ∈ Q(n(2), p, ε). This means G is defined on the
vertex set V1 t V2, each Vi of size n, and d�(G,K(n(2), p)) < ε. The following lemma
is an analogous result to Lemma 4.2.1.

Lemma 4.3.1. Let ε > 0 and let G2 ∈ Q(n(2), P, ε). For every vertices u ∈ V1 and
v ∈ V2, we have

2
∑

uv∈E(G2)
|p3(u, v)− n2p3| ≤

√
17ε n4.

Proof. First by Counting Lemma, we have

2
∑

uv∈E(G2)
p3(u, v) = hom(C4, G2) ≥ (p4 − 4ε)n4.
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Therefore, by Cauchy-Schwartz inequality,
(

2
∑

uv∈E(G2)
|p3(u, v)− n2p3|

)2

≤ 2n2 ∑
uv∈E(G2)

∣∣∣p3(u, v)− n2p3
∣∣∣2

≤ n2(n6p7 + 8εn6 + n6p7 + εn6p6 − 2n6p7 + 8εn6p3)

< 17εn8,

and this proves the lemma.

Like what we did for quasirandom graphs in the proof of Theorem 4.2.4, in order to
bound the number of short blossoms, we choose an integer t = t(n) and let p1 = p/t,
such that n− 2

3 � p1 � n−
2−ε
3−ε . Let D ∈ D(G2) be the corresponding digraph of G2.

We partition its edges into t parts uniformly at random, the resulting edge disjoint
digraphs are D1, . . . , Dt. For each Di, let Hi be the 4-uniform hypergraph such that
V (Hi) = E(Di) and the edge set of Hi is the set of directed closed trails of length 4.
Now we are going to check condition (1) of Theorem 2.2.5.

Lemma 4.3.2. Let ∆2 = n2p3
1/8, then there exists a real number δ > 0 such that

a.a.s.

|{x ∈ V (Hi) | (1− δ)∆2 ≤ deg(x) ≤ (1 + δ)∆2}| ≥ (1− δ)|V (Hi)|.

Proof. Recall that p = tp1. Suppose λ2 =
√

18ε
p3(p−ε) and uv is an edge in G2. We say uv

is balanced if p3(u, v) is at least (1− λ)n2p3 and at most (1 + λ)n2p3, otherwise it is
unbalanced. Assume that at least λ|E(G2)| edges are unbalanced. Then we have

2
∑

uv∈E(G2)
|p3(u, v)− n2p3| ≥ λ2n2p3(n2p− εn2) ≥

√
18ε n4,

which contradicts Lemma 4.3.1. Then in the graph G2, at least (1− λ)|E(G2)| edges
are balanced.

For the graph Di, by Chebyshev’s inequality, it satisfies

(1− ε) |E(G)|
t
≤ |E(Di)| ≤ (1 + ε) |E(G)|

t
, a.a.s.

Let U be the number of balanced edges in G2. Then a.a.s. Di contains at least
(1 − ε)U/t edges which are balanced in G2, and most of them are still in Di. To be
more precise, at least (1− ε)2U/t edges are contained in at least (1− ε)(1−λ)n2p3

1/8
directed cycles of length 4, and are contained in at most (1+ε)(1+λ)n2p3

1/8 directed
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cycles of length 4. Now we let δ ≥ max{λ+ ε+ ελ, ψ(ε, λ)}, where ψ(ε, λ) is given in
Lemma 4.2.2. We have a.a.s.

(1− ε)2U

t
≥ (1− ε)2(1− λ) |E(G2)|

t

≥ (1− ε)2(1− λ)
1 + ε

|V (Hi)| ≥ (1− δ)|V (Hi)|.

Also for the number of 4-cycles, we have 1+δ > (1+ε)(1+λ) and 1−δ < (1−ε)(1−λ).
This completes the proof.

For the Condition (2) in Theorem 2.2.5, a.a.s. Di contains at most t2n cycles of
length 4 that contain two edges. Since t � n1/3, this is definitely less than δ∆2 =
Θ(n2). In order to verify Condition (3), we have the following lemma. The proof is
same as what we did in Lemma 4.2.3, and we omit the details.

Lemma 4.3.3. Let Fi be the number of directed cycles of length 4 in Di which contain
at least one directed edge −→uv ∈ P δ, where P δ is the set of pairs of vertices (u, v) ∈
V1 ⊕ V2 such that the number of directed paths from v to u of length 3 is at least
(1 + δ)∆2. Then with high probability, Fi < δ∆2|V (Hi)|.

Then for each Hi, it satisfies condition (1)–(3) a.a.s. Then we can apply Theorem
2.2.5 to obtain a rotation system.

Theorem 4.3.4. Let ε > 0 and G2 ∈ Q(n(2), P, ε), then G2 has a 10ε-near quadran-
gular embedding.

Proof. By the same argument as was used in the proof of Theorem 4.2.4, there exists
a construction of D1, . . . , Dt by partitioning the edges uniformly at random from the
corresponding digraph D. By Markov’s inequality, we have |I| ≤ εt, where I ⊆ [t] is
the index set and every Hi with i ∈ I fails to satisfy some of the conditions listed in
Theorem 2.2.5. We denote the set [t] \ I by J .

Then for every i ∈ J , there exists a matchingMi of Hi of size at least (1−ε) |E(Di)|
4 ,

and another matching M ′
i in H−1

i which is disjoint with M−1
i , and it also has size at

least (1−ε) |E(Di)|
4 . Then in the graph Di∪D−1

i ,Mi∪M ′
i has size at least (1−ε) |E(Di)|

2 ,
and does not have non-simple blossoms of length 2.

Now we proceed with removing all the blossoms inMi∪M ′
i . For all of the blossoms

of length at most 1/ε, let −→Bj be the 4-blossom-graphs of length j in D ∪D−1, and Bj
is the underlying simple graph in G, where 2 ≤ j ≤ 1/ε. Therefore,

hom(Bj, G) ≤ n2j+1p3j + 3jεn2j+1.
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For every i ∈ [t], giving a 4-blossom simple graph Bj, P(−→Bj ∈ Di ∪D−1
i ) = 1

2j−1t3j .
Let Ni(j) be the number of −→Bj in Di ∪D−1

i . Then we have

Ni(j) < (1 + ε)
(
n2j+1p3j

1
22j−1 + 3jεn2j+1p3j

1
p3j22j−1

)
� n2p1, a.a.s.

That means ∑1/ε
j=1Ni(j) < ε(1− ε)n2p1 < ε|E(Di)|, a.a.s.

Now we are going to remove one cycle from each of the blossoms. Since the number
of 4-blossoms of length at least 1/ε is bounded by 2ε|E(Di)|, we obtain a blossom-free
subset of Mi ∪M ′

i of size at least (1 − 7ε) |E(Di)|
2 , a.a.s. By Lemma 2.2.4 there exists

a construction of Di for every i ∈ [t], and (1 − ε)2t of them have almost the correct
number of edges, and they give rise to a 7ε-near quadrangular embedding. Then G
has an embedding Π such that

4f4(Π) ≥ 2(1− 7ε)(1− ε)3|E(G)| ≥ 2(1− 10ε)|E(G)|,

which completes the proof.

Now we are going to compute the genus of G2 ∈ Q(n2, p, ε).

Theorem 4.3.5. Let ε > 0, there exist a real number λ > 0 such that for every
positive number τ < λ and every G2 ∈ Q(n2, p, τ), we have.

e(G2)
4 ≤ g(G2) ≤ (1 + ε)e(G2)

4 ,

and
e(G2)

2 ≤ g̃(G2) ≤ (1 + ε)e(G2)
2 .

Proof. It suffcies to consider the orientable genus. The lower bound follows by [44,
Proposition 4.4.4]. For the upper bound, we use Theorem 4.3.4 which gives an ε/2-
near quadrangular embedding Π. Therefore,

g(G2) ≤ g(G2,Π) ≤ 1
2(e(G2)− f4(Π)) ≤ (1 + ε)e(G)

4 ,

which completes the proof.

In the next case, we will focus on tripartite quasirandom graphs. We useQ(n(3), p, ε)
to denote the family of quasirandom graphs defined on the vertex set V1 t V2 t V3

with |Vi| = n for every 1 ≤ i ≤ 3, and for every G ∈ Q(n(3), p, ε), we have
d�(G,K(n(3), p)) < ε. We start with an analogous result to Lemma 4.2.1.
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Lemma 4.3.6. Let ε > 0 and G3 ∈ Q(n(3), p, ε), where V (G3) = V1 t V2 t V3. Then
for every i 6= j and u ∈ Vi, v ∈ Vj, we have

2
∑

uv∈E(G3)
|n(u, v)− np2| ≤

√
13ε n3.

Proof. First apply the Counting Lemma,

2
∑

uv∈E(G3)
n(u, v) = hom(K3, G3) ≥ (6p3 − 3ε)n3.

Therefore,
(

2
∑

uv∈E(G3)
|n(u, v)− np2|

)2

≤ 2n2 ∑
uv∈E(G2)

∣∣∣n(u, v)− np2
∣∣∣2

≤ n2
(
(6p5 + 5ε)n4 + n2p4(6n2p+ εn2)− 2n2p(6p3n3 − 3εn3)

)
≤ n6(5ε+ 2εp4 + 6ε) ≤ 13εn6,

and this proves the lemma.

Similarly as what we did before, we choose an integer t = t(n) and let p1 = p/t,
such that n− 1

2 � p1 � n−
1−ε
2−ε . Let D ∈ D(G3) be the corresponding digraph of G3.

We partition the edge set of D into t parts uniformly at random, and the resulting
edge disjoint digraphs are denoted by D1, . . . , Dt. For each Di, we define Hi be the
3-uniform hypergraph for every i ∈ [t], such that V (Hi) = E(Di) and the edge set of
Hi is the set of directed triangles in Di. The following lemma implies that Condition
(1) in Theorem 2.2.5 holds a.a.s. in Hi.

Lemma 4.3.7. Let ∆3 = np2
1/4, then for every i ∈ [t] there exists a real number

δ > 0 such that a.a.s.

|{x ∈ V (Hi) | (1− δ)∆3 ≤ deg(x) ≤ (1 + δ)∆3}| ≥ (1− δ)|V (Hi)|.

Proof. Suppose λ2 =
√

14ε
p2(3p−ε) . In order to use Counting Lemma, we go back to graph

G3. Suppose uv is an edge in G3. Similarly as what we did in quasirandom graphs, we
say uv is balanced if n(u, v) is at least (1 − λ)np2 and at most (1 + λ)np2, otherwise
it is unbalanced. Assume that at least λ|E(G2)| edges are unbalanced. Then we have

2
∑

uv∈E(G2)
|n(u, v)− np2| ≥ λ2np2(3n2p− εn2) ≥

√
14ε n3,
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which contradicts Lemma 4.3.6. This means that in the graph G3, at least (1 −
λ)|E(G3)| edges are balanced.

Note that the graph Di has correct number of edges a.a.s. This means

(1− ε) |E(G3)|
t

≤ |E(Di)| ≤ (1 + ε) |E(G3)|
t

, a.a.s.

By a similar argument as we used before, we let U be the number of balanced
edges in G3. Then Di contains at least (1− ε)U/t balanced edges in G3, and at least
(1−ε)2U/t edges are contained in at least (1−ε)(1−λ)np2

1/4 directed triangles and at
most (1+ε)(1+λ)np2

1/4 triangles inDi, a.a.s. Now we let δ ≥ max{λ+ε+ελ, ψ(ε, λ)},
where ψ(ε, λ) is defined in Lemma 4.2.2. This completes the proof.

Since edges in Hi are triangles, Condition (2) in Theorem 2.2.5 holds trivially. For
Condition (3), we have the following lemma. The proof follows almost the same step
as were used in the proof of Lemma 4.2.3. We omit the details.

Lemma 4.3.8. Let Fi be the number of directed triangles in Di which contain at least
one directed edge −→uv ∈ P δ, where P δ is the set of pairs of vertices (u, v) ∈ Vi × Vj
such that the number of directed paths from v to u of length 2 is at least (1 + δ)∆3,
for every i 6= j. Then with high probability, Fi < δ∆3|V (Hi)|.

Now we are going to construct an embedding of G3 by using Lemma 2.2.4 and
Theorem 2.2.5.

Theorem 4.3.9. Let ε > 0, and G3 ∈ Q(n(3), p, ε). Then G3 has a 9ε-near triangular
embedding.

Proof. There exists a construction of D1, . . . , Dt such that set I ⊆ [t] containing all
indices i for which Hi fails to satisfy conditions (1)–(3) of Theorem 2.2.5 is small,
|I| < εt. Let J = [t] \ I.

Now we apply Theorem 2.2.5 for every Hi where i ∈ J . As before, there exists
a matching Mi of Hi of size at least (1 − ε) |E(Di)|

3 , and another matching M ′
i in

H−1
i which is disjoing with M−1

i , and it also has size at least (1 − ε) |E(Di)|
3 . Then in

the graph Di ∪D−1
i , Mi ∪M ′

i has size at least 2(1 − ε) |E(Di)|
3 , and does not contain

non-simple blossoms of length 2.
As before, we are going to remove a cycle from each of the blossoms. For the short

blossoms of length at most 1/ε, we let −→Bj be the 3-blossom-graphs of length j in
D ∪D−1, and let Bj be the underlying simple graph in G. Then,

hom(Bj, G) ≤ 3nj+1p2j + 2jεnj+1.
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For every i ∈ [t], given a 3-blossom simple graph Bj, P(−→Bj ∈ Di ∪D−1
i ) = 1

2j−1t2j . Let
Ni(j) be the number of−→Bj inDi∪D−1

i . Similarly as before we have a.a.s.Ni(j)� n2p1,
which implies ∑1/ε

j=1Ni(j) < ε(1− ε)3n2p1 < ε|E(Di)|, a.a.s.
Note that the number of blossoms of length at least 1/ε is bounded by 2ε|E(Di)|.

Therefore, we can obtain a blossom-free subset ofMi∪M ′
i of size at least (1−6ε) |E(Di)|

2

a.a.s. By Lemma 2.2.4 there exists a construction of Di for every i ∈ [t], such that
(1− ε)2t of them have almost the correct number of edges, and they admit a 6ε-near
triangular embedding. Then G has an embedding Π such that

3f3(Π) ≥ 2(1− 6ε)(1− ε)3|E(G)| ≥ 2(1− 9ε)|E(G)|,

which completes the proof.

We have the following consequence on the genus of G3 ∈ Q(n(3), p, ε).

Theorem 4.3.10. Let ε > 0, and G3 ∈ Q(n(3), p, ε/18). Then we have a.a.s.

(1− ε)e(G)
6 ≤ g(G3) ≤ (1 + ε)e(G)

6

and
(1− ε)e(G)

3 ≤ g̃(G3) ≤ (1 + ε)e(G)
3 .

Proof. By using the same argument as in Theorem 4.2.5, the upper bound follows
from Theorem 4.3.9, and the lower bound follows from [44, Proposition 4.4.4].

4.4 Genus of Multipartite Quasirandom Graphs

We first consider partition of quasirandom graphs into several quasirandom sub-
graphs. We need this process throughout our approximation algorithm when we try to
construct an embedding. Given a quasirandom graph G, the following lemma shows
that we can partition the graph into a number of edge disjoint graphs with prescribed
edge densities, each of which is also quasirandom.

Lemma 4.4.1. Let ε > 0 and G ∈ Q(n(2), p, ε). Suppose k is a constant and
c1, c2, . . . , ck are positive real numbers such that ∑k

i=1 ci = 1. Then there exists an
edge partition of G into k edge-disjoint graphs G1, G2, . . . , Gk, such that for every
i ∈ [k], Gi ∈ Q(n(2), cip, 3ciε).
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Proof. We first consider a random partition, that is, for every edge e ∈ E(G), we
have P(e ∈ E(Gi)) = ci. Suppose G is defined on the vertex set V1 t V2. Then for
every X ⊆ V1 and Y ⊆ V2, by Chebyshev’s inequality, we have a.a.s.

(1− ε)cieG(X, Y ) ≤ eGi
(X, Y ) ≤ (1 + ε)cieG(X, Y ).

That is

|eGi
(X, Y )− eG(X, Y )ci| ≤ ciεn

2 + ciε
2n2 + ciεeG(X, Y ) < 3ciεn2.

This implies d�(Gi, K(n(2), cip)) < 3ciε. Thus, if n is large enough, there exists a
random partition such that for every i ∈ [k], Gi ∈ Q(n(2), cip, 3ciε).

For any non-negative edge weighted simple graph H, let de be the weight of the
edge e. Let T be the set of all triangles (of positive edge weight) in the graph H. Now
we consider the following linear program with indeterminate {t(T ) | T ∈ T }:

ν(H) = max
∑
T∈T

t(T ),
∑

T3e,T∈T
t(T ) ≤ de, for every edge e of H,

t(T ) ≥ 0, for every T ∈ T .

(4.4.1)

Given G ∈ Q(n(m), P, ε), let pij be the (i, j)-entry of P . Suppose G is defined on
the vertex set V1t· · ·tVm and let H be the quotient graph of G. That is, |V (H)| = m,
and for every i, j ∈ V (H), the edge weight w(ij) = pij. With all tools in hand, we
have the following theorem on the genus of ε-Wm-quasirandom graphs. Suppose ν(H)
is the maximum obtained from the linear program (4.4.1).

Theorem 4.4.2. Let ε > 0 and G ∈ Q(n(m), P, ε/30). Suppose H is the quotient
graph of G. Then

(1− ε)e(G)− ν(H)n2

4 ≤ g(G) < (1 + ε)e(G)− ν(H)n2

4 + nm2

and
(1− ε)e(G)− ν(H)n2

2 ≤ g(G) < (1 + ε)e(G)− ν(H)n2

2 + 2nm2.

Proof. We first consider the upper bound. Suppose G is defined on the vertex set
V1 t V2 t · · · t Vm. Suppose ν(H) is defined as above together with a set of triangles
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{Tijk} for every 1 ≤ i < j < k ≤ m. Let dijk = t(Tijk). For every Vi and Vj, let
bij = pij −

∑
k 6=i,j dijk, where pij is the edge weight of edge ij in H. Now for every

1 ≤ i < j ≤ m, we randomly partition the edges between Vi and Vj into at most m−1
parts Eij

1 , . . . , E
ij
m, E

ij
0 , using probabilities dij1/pij, . . . , dijm/pij, bij/pij, respectively.

By Lemma 4.4.1 we partition the graph G into O(m2) ε/10-quasirandom bipartite
graphs and O(m3) ε/10-quasirandom tripartite graphs. That is, pick Vi, Vj and Vk,
there exist a subgraph Gij

k defined on Vi∪Vj, a subgraph Gjk
i defined on Vj ∪Vk and a

subgraph Gik
j defined on Vi∪Vk such that Gij

k , G
jk
i , G

ik
j ∈ Q(n(2), dijk, ε/10). Combine

them together, we obtain a tripartite graph in Q(n(3), dijk, ε/10).
Now we embed the graph G by the partition we constructed. For the tripartite

parts, we embed them as quasirandom tripartite graphs, and for the bipartite parts,
we embed them as quasirandom bipartite graphs. By Theorems 4.3.5 and Theorem
4.3.10 we obtain a rotation system Π for the disjoint union of these graphs whose
genus is

∑
i

g(Gi) ≤ (1 + ε)
(∑
i<j

n2bij
4 +

∑
i<j<k

n2dijk
2

)

= (1 + ε)
(∑
i<j

n2pij
4 −

∑
i<j<k

n2dijk
4

)
= (1 + ε)e(G)− ν(H)n2

4 .

To obtain an embedding of G we identify pairwise copies of the same vertex in
different copies of the quasirandom subgraphs. Each identification can increase the
genus by at most 1, and the number of identification is at most m for each of the
vertices. This justifies the added term nm2 in the upper bound.

Now we consider the lower bound for g(G). For any embedding Π of G, let T1(Π)
and T2(Π) be the subsets of E(G) such that for every e ∈ Tl(Π), there exist l
triangular faces in Π that contain e (l = 1, 2). For every 1 ≤ i < j ≤ m, let
Elij = Tl(Π) ∩ EG(Vi, Vj), and let Tlijk be the triangles in Tl(Π) whose vertices lie
in Vi, Vj and Vk. Let kElij = Elij ∩ Tlijk, jElik = Elik ∩ Tlijk and iEljk = Eljk ∩ Tlijk, for
every 1 ≤ i < j < k ≤ m and l = 1, 2. Let

mijk = min{|kE2
ij|+ |kE1

ij|/2, |iE2
jk|+ |iE1

jk|/2, |jE2
ik|+ |jE1

ik|/2}.

Then the number of triangles in T1
ijk ∪ T2

ijk is at most 2mijk.
Let us now consider the quotient graph H. For every triangle Tijk in H, where

1 ≤ i < j < k ≤ m, let t1(Tijk) = mijk)/n2. Then {t1(Tijk)} is an admissible solution
of the linear program (4.4.1), but it may not be optimal. Suppose all the {t1(Tijk)} we
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obtained indeed give us the maximum solution in linear program (4.4.1), we define a
new partition P ′ by keeping all the number of edges given in {t1(Tijk)}, but partition
it randomly. Then by Theorem 4.3.9, in each subgraph T1

ijk ∪ T2
ijk, the number of

triangles is at least 2(1− ε)mijk. This implies the lower bound of g(G).

Let us observe that Theorem 4.4.2 also gives a formula for the genus of dense
Hm-random graphs mentioned in Chapter 3.
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Chapter 5

Genus of Large Dense Graphs

5.1 Introduction

5.1.1 The Graph Genus Problem

The genus is a natural measure how far is G from being planar. Determining the
genus of a graph is one of fundamental problems in graph theory with wide range of
applications in computing and design of algorithms. Algorithmic interest comes from
the fact that graphs of bounded genus share many properties with planar graphs and
thus admit efficient algorithms for many problems that are difficult for general graphs
[14, 18, 15].

The genus of graphs played an important role in the developments of graph theory
through its relationship to the Heawood problem asking what is the largest chromatic
number of graphs embedded in a surface of genus g. This problem was eventually
reduced to the genus computation for complete graphs and resolved by Ringel and
Youngs in 1968, see [52]. Further importance of the genus became evident in the
graph minors theory of Robertson and Seymour with developments of structural graph
theory that plays an important role in stratification of complexity classes [15].

The genus problem is the computational task of deciding whether the genus of a
given graph G is smaller than a given integer k. The question about its computational
complexity was listed among the 12 open problems in the monograph by Garey and
Johnson [23] in 1979. Half of these problems were resolved by 1981, three of them
(including graph isomorphism) are still unresolved, while three of them have been
answered with considerable delay. The genus problem was among the latter three
problems. It was resolved in 1989 when Thomassen [65] proved that it is NP-complete.
Later, Thomassen simplified his proof in [66] by showing that the question whether
G triangulates an (orientable) surface is NP-complete. In 1997 he also proved that
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the genus problem for cubic graphs is NP-complete [67]. Mohar [43] proved that the
genus is NP-complete even if we restrict our attention to apex graphs, i.e. graphs
which become planar by removing a single vertex.

Measuring graphs by their genus is fixed parameter tractable. It follows from the
Robertson and Seymour theory of graph minors (and their O(n3) algorithm for testing
H-minor inclusion for any fixed graph H [54, 55]) that for every fixed k, there is an
O(n3) algorithm for testing whether a given graph G has genus at most k. The
time complexity in their cubic-time algorithm involves a huge constant depending on
H, and the algorithm needs the list of the forbidden minors for genus k. Notably,
this is “an impossible task" since the number of surface obstructions is huge (see,
e.g., [46] for the up to date results about the surface of genus 1). Moreover, the
Robertson–Seymour theory has a non-constructive element. The constants involved
in their estimates about forbidden minors are not computable through their results.
This deficiency was repaired with the results of Mohar [41, 42], who found a linear-
time algorithm for embedding graphs in any fixed surface. His result generalizes the
seminal linear-time algorithms for planarity testing by Hopcroft and Tarjan [27] and
by Booth and Lueker [8]. It also generalizes to any surface the linear time algorithms
that actually construct an embedding in the plane [11] or find a Kuratowski subgraph
when an embedding does not exist [71]. Mohar’s algorithm gives a constructive proof
for the finite number of forbidden minors for surface embeddability. The price paid
for this is that the algorithms are complicated and hard to implement. A different
linear-time FPT algorithm based on structural graph theory (reducing a graph to
have bounded tree-width) has been found by Kawarabayashi, Mohar, and Reed [28].
This algorithm includes as a subroutine a linear-time algorithm for computing the
genus of graph of bounded tree-width, which turned to be a difficult task by itself.

A large body of research has been done on approximating the genus by means of
polynomial-time algorithms. Graphs whose genus is Θ(n) (n being the number of ver-
tices) admit a constant factor approximation algorithm. This is an easy consequence
of Euler’s formula, see [10]. This case includes graphs whose (average) degree is at
least d for some d > 6.

For graphs of bounded degree, ∆ = ∆(G) ≤ ∆0, other approaches have been
found. Chen et al. [10] describe a factor O(

√
n) algorithm. Chekuri and Sidiropoulos

[9] found a polynomial-time algorithm that finds and embedding into a surface whose
Euler genus is at most (∆ ĝ(G) log n)O(1). Here the approximation factor depends on
∆, polylog factor in n and polynomial factor of the Euler genus itself.
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Some other results give additional insight into approximating the genus when the
average degree is bounded. For example, the aforementioned paper of Mohar [43]
yields a polynomial-time constant factor approximation for the genus of apex graphs
(whose maximum degree can be arbitrarily large, but their average degree is less than
8). This result was extended to k-apex graphs in [35].

Kawarabayashi and Sidiropoulos [35] removed the dependence on the maximum
degree needed in Chekuri and Sidiropoulos approximation. With a very clever ap-
proach they were able to design a polynomial-time algorithm that approximates the
Euler genus of any graph within a factor of O(ĝ255 log189 n). A corollary of their re-
sult is that the genus can be approximated within factor O(n1−α) for some constant
α > 0, see [35]. A predecessor to this result was published by Makarychev, Nayy-
eri, and Sidiropoulos [39], who proved that for a graph G possessing a Hamiltonian
path (which, unfortunately, needs to be given as part of the input), one can effi-
ciently approximate the Euler genus within factor (g(G) log n)O(1). Here the quality
of approximation depends on the orientable genus together with a polylog(n) factor.

5.1.2 Overview of the Algorithm

The main results of this paper provide a Efficient Polynomial-Time Approximation
Scheme (EPTAS) for approximating the genus of dense graphs. A graph is α-dense
if |E(G)| ≥ αn2. By saying a graph G is dense we mean it to be α-dense for some
fixed α > 0. While a constant factor approximation is trivial for this class of graphs,
approximations with factor arbitrarily close to 1 provided in this paper need a so-
phisticated algorithm and complicated mathematical justification.

Given a (dense) graph G of order n and the allowed approximation error ε > 0,
we want to find an integer g and an embedding of G into a surface of genus g which
is close to a minimum genus embedding, i.e. g(G) ≤ g ≤ (1 + ε)g(G). It is easy to see
that (after appropriate rescaling of ε) this problem is equivalent to the following one,
where the assumption on density is left out.

Approximating Genus Dense.
Input: A graph G of order n and a real number ε > 0.
Output: An integer g and either a conclusion that g(G) ≤ g < εn2, or that
g(G) ≤ g ≤ (1 + ε)g(G).

In order to obtain EPTAS for the genus of dense graphs, we outline an algorithm
whose time complexity is O(f(ε)nO(1)), where f(·) is an arbitrary positive function.
In fact, the polynomial dependence on n in our algorithm is quadratic.
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Theorem 5.1.1. The problem Approximating Genus Dense can be solved in
time O(f(ε)n2), where f(·) is an explicit positive function.

The dependence on ε−1 in the time complexity of our algorithms is super-exponen-
tial. In fact, the value f(ε) is a tower of exponents of height O(ε−1). There are two
steps where non-polynomial dependence on ε−1 occurs. The main one is with “small”
graphs, where n is considered small in terms of a huge function of ε−1. This case
has linear complexity in terms of n [41, 42], but it involves a large constant factor
which is increasing super-exponentially fast with ε−1. This is where we are prevented
of designing an FPTAS.

Our second computational result extends the previous one by constructing an
embedding whose genus is close to the minimum genus. Formally, we consider the
problem:

Approximate Genus Embedding Dense.
Input: A graph G of order n and a real number ε > 0.
Output: Rotation system of a 2-cell embedding of G, whose genus g is
close to g(G): either g(G) ≤ g ≤ (1 + ε)g(G), or g(G) ≤ g < εn2.

As a solution we provide an Efficient Polynimial-time Randomized Approximation
Scheme (EPRAS) [69].

Theorem 5.1.2. There is a randomized algorithm for Approximate Genus Em-
bedding Dense which returns an embedding of the input graph G of genus g, such
that either g(G) ≤ g ≤ (1 + ε)g(G), or g(G) ≤ g < εn2. The time spent by the
algorithm is O(f1(ε)n2), where f1(·) is an explicit positive function.

There are two parts in the embedding algorithm that are nondeterministic. One
of them uses random partition of the edges of G. This part can be derandomized
(yielding a cubic polynomial dependence on n), but for the other one we do not
see how to derandomize it. This part finds a large matching in a 3-uniform (or 4-
uniform) hypergraph, and existence of a large matching and its construction relies on
the Lovász Local Lemma (for which one could use a randomized algorithm by Moser
and Tardos [45]). We use another randomized solution using Rödl nibble [57] which
yields quadratic dependence on n.

Algorithms in Theorems 5.1.1 and 5.1.2 are based on analysis of minimum genus
embeddings of quasirandom graphs. We partition the input graph into a bounded
number of quasirandom subgraphs, which are preselected in such a way that they
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admit embeddings using as many triangles and quadrangles as faces as possible. The
starting partition is obtained through an algorithmic version of the Szemerédi Regu-
larity Lemma (due to Frieze and Kannan [22] and to Fox, Lovász, and Zhao [19, 20]).

We use the notion of quasirandomness inspired by the seminal paper of Chung,
Graham, and Wilson [13] (see also [12]), and we need it in two special cases of bipartite
and tripartite graphs, respectively. In order to define it, we need some notation.

Let G be a graph, and X, Y ⊆ V (G). We define the edge density between X

and Y as the number d(X, Y ) = e(X, Y )/(|X||Y |), where e(X, Y ) is the number of
edges with one end in X and another end in Y . If G is a (large) bipartite graph with
balanced bipartition V (G) = V1 ∪ V2 (||V1| − |V2|| ≤ 1 and n = |V1| + |V2|), we say
that G is ε-quasirandom if for every X ⊆ V1 and every Y ⊆ V2, we have

|e(X, Y )− |X||Y |d(V1, V2)| ≤ ε|V1||V2|.

This is equivalent to saying that the number of 4-cycles with vertices in X∪Y is close
to what one would expect in a random bipartite graph with the same edge density,
i.e. d4(V1, V2)|V1|2|V2|2, with an error of at most 4ε|V1|2|V2|2.

First we prove the following result.

Theorem 5.1.3. Suppose that G is a bipartite ε-quasirandom graph with edge density
d = d(V1, V2). If ε < d8/10 and n = |V (G)| ≥ Θ(ε−3/2), then

1
4(1− 10ε)e(G) ≤ g(G) ≤ 1

4(1 + 10ε)e(G).

The above theorem says, roughly speaking, that G admits an embedding in which
almost all faces are quadrilaterals. More precisely, almost all edges are contained in
two quadrangular faces.

A similar result holds for tripartite ε-quasirandom graphs. Here we have three
almost equal parts V1, V2, V3, and the graph between any two of them is bipartite
ε-quasirandom. Here we only need the corresponding embedding result when the
densities between the three parts are the same.

Theorem 5.1.4. Suppose that G is a tripartite ε-quasirandom graph with edge den-
sities d = d(V1, V2) = d(V1, V3) = d(V2, V3). If ε < d8/10 and n = |V (G)| ≥ Θ(ε−3/2),
then

1
6(1− 10ε)e(G) ≤ g(G) ≤ 1

6(1 + 10ε)e(G).

Similarly as for Theorem 5.1.3, the outcome of the above theorem is that G admits
an embedding in which almost all edges are contained in two triangular faces.
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Theorems 5.1.3 and 5.1.4 have extensions to multipartite case with possibly non-
equal edge densities and non-empty quasirandom graphs in the parts of the vertex
partition. For this extension see the main part of the paper.

Proofs of Theorems 5.1.3 and 5.1.4 build on the approach introduced by Archdea-
con and Grable [4] and Rödl and Thomas [58]. The main ingredient is to find two
disjoint almost perfect matchings in a 3-uniform (or in a 4-uniform) hypergraph as-
sociated with short cycles in G. One difference is that there may be too many short
cycles, in which case the matchings obtained from these hypergraphs may not form
a set which could be realized as facial cycles of an embedding of the graph. This has
to be dealt with accordingly. The proof uses an old result of Frankl and Rödl [21].

From the above expressions about the genus of quasirandom graphs, there is just
one major step left. We show that G can be partitioned into a constant number of
bipartite and tripartite ε-quasirandom subgraphs such that almost all triangles of G
belong to the tripartite ε-quasirandom subgraphs in the partition. For each of these
ε-quasirandom subgraphs, Theorem 5.1.4 or Theorem 5.1.3 can be applied. The main
result is the following version of Szemerédi Regularity Lemma.

Theorem 5.1.5. There exists a computable function s : N × [0, 1] → N such that
the following holds. For every ε > 0 and every positive integer m there is an integer
K, where m ≤ K ≤ s(m, ε) such that every graph of order n ≥ m has an equitable
partition of its vertices V (G) = V1∪· · ·∪VK into K parts and G admits a partition into
O(K2) bipartite ε-quasirandom subgraphs Gij (1 ≤ i < j ≤ K) with V (Gij) = Vi∪Vj,
and into O(K3) tripartite ε-quasirandom subgraphs Gijk (1 ≤ i < j < k ≤ K) with
V (Gijk) = Vi ∪ Vj ∪ Vk with equal densities between their parts, and one additional
subgraph G0 with at most εn2 edges. Moreover, the union of all bipartite constituents
Gij is triangle-free.

To obtain such a partition V (G) = V1 ∪ · · · ∪ VK we start with an ε-regular
partition obtained from the Szemerédi Regularity Lemma. Such a partition can be
constructed in quadratic time by using an algorithm of Fox, Lovász, and Zhao [20].
The edges in irregular pairs and all edges in subgraphs G[Vi] (1 ≤ i ≤ K) are put
into the subgraph G0. All the remaining edges belong to bipartite subgraphs joining
pairs Vi and Vj (1 ≤ i < j ≤ K). Let dij be the edge density for each such bipartite
subgraph. We represent the partition by a weighted graph H on vertices {1, . . . , K},
where each edge ij has weight dij.
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Let T be the set of all triangles in the quotient graph H (of positive edge weight).
For every triangle T = abc ∈ T , let d(T ) = min{dab, dbc, dac}. Now we consider the
following linear program with indeterminates {t(T ) | T ∈ T }:

ν(H) = max
∑
T∈T

t(T ),
∑

T3e,T∈T
t(T ) ≤ de, for every edge e of H,

t(T ) ≥ 0, for every T ∈ T .

(5.1.1)

We consider an optimum solution (t(T ) | T ∈ T ) of this linear program. For each
T = abc ∈ T we now define GT as a subgraph of G[Va∪Vb∪Vc] by taking a random set
of edges with density t(T ) from each of the three bipartite graphs between Va, Vb, Vc.
The edges between the sets Vi and Vj (1 ≤ i < j ≤ K) that remain after removing
all tripartite subgraphs GT form bipartite quasirandom subgraphs.

From the Partition Theorem 5.1.5 it is not hard to see that

g(G) ≤
∑
i,j

g(Gij) +
∑
i,j,k

g(Gijk) + nK2 + εn2.

By using Theorems 5.1.3 and 5.1.4 we derive the main result:

Corollary 5.1.6. Let G be a graph that is partitioned as stated in Theorem 5.1.1, let
ν = ν(H) be the optimum value of the linear program (5.1.1), and let s : N×[0, 1]→ N
be the function from Theorem 5.1.5. If n = |V (G)| ≥ Θ(s(4ε−1, ε) · ε−3/2), then the
genus of G satisfies:

(1− ε)1
4

(
e(G)− νn2

K2

)
≤ g(G) ≤ (1 + ε)1

4

(
e(G)− νn2

K2

)
+ nK2 + εn2.

Application of Theorems 5.1.3 and 5.1.4 requires that the densities are not too
small. If this is not the case, we just add the edges to G0.

In order to apply the corollary to obtain an ε-approximation to the genus, we use
the corollary with the value 1

2ε playing the role of ε. If n ≥ Θ(s2(4ε−1, ε) · ε−1), then
the last two terms in the corollary are bounded by 3

4εn
2. Now, if ε is much smaller

than the lower bound α on the density of G, we get an ε-approximation of the genus
of G.
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Although we have not mentioned anything about the nonorientable genus before,
the same results hold for the nonorientable genus, where all formulas about the genus
need to be multiplied by 2.

On a high level, our EPTAS for Approximating Genus Dense works as follows.

Phase 0. Check whether the graph is dense enough: If |E(G)| ≤ εn2, we return
the information that g(G) < εn2 and stop.

Phase 1. Letm = 2ε−1 and letM = s(m, ε) where the function s is from Theorem
5.1.5. If |G| = O(M2ε−1), we compute the genus of G exactly and return the result.
Otherwise we proceed with the next step.

Phase 2. We find a Szemerédi partition of G into K parts, where m ≤ K ≤ M ,
and according to Theorem 5.1.5 partitionG into edge-disjoint subgraphsG0, G1, . . . , GN ,
where N = O(K3), each of them except G0 of order Θ(n/K) such that the following
holds:

(i) G0 has at most 1
2εn

2 edges.

(ii) All other subgraphs are either bipartite or tripartite ε-quasirandom.

(iii) The union of bipartite subgraphs contains no triangles.

Phase 3. Determine the densities dij, 1 ≤ i < j ≤ K, and solve the linear
program (5.1.1). Let ν = ν(H) be the optimal value computed. Return the value
g = 1

4e(G)− νn2

4K2 .

The heart of the algorithm lies in Phase 2. However, Phase 3 is the most
challenging mathematical part and has complicated justification. For the partition of
G into G0, G1, . . . , GN we could use algorithmic version of the Szemerédi Regularity
Lemma due to Frieze and Kannan [22]. But it is more convenient to use a recent
strengthening of Frieze-Kannan partitions due to Fox, Lovász, and Zhao [19]. Their
result provides an ε-regular partition (in the sense of Szemerédi) of V (G) into sets
V1, . . . , VK of size n/K (we neglect rounding of non-integral values as they are not
important for the exposition) such that the majority of pairs (Vi, Vj) (1 ≤ i < j ≤ K)
are ε-regular. Each such pair induces a bipartite ε-quasirandom graph. The edges in
pairs that are not ε-regular can be added to G0 together with all edges in ⋃Ki=1G[Vi].
So from now on, we assume that all edges of the graph are in ε-regular pairs (Vi, Vj)
(1 ≤ i < j ≤ K).

The second, most difficult step, is to analyse the quotient graph determined by the
partition. In this step we use a linear programming approach to find for each triple T =
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(i, j, k), 1 ≤ i < j < k ≤ K, the number t(T ) ≥ 0 and an ε-quasirandom subgraph
GT ⊆ G[Vi ∪ Vj ∪ Vk] with t(T )(n/K)2 edges between each pair (Vi, Vj), (Vi, Vk), and
(Vj, Vk). The graphs GT are then used to obtain as many triangular faces as possible
(up to the allowed error) for the embedding of G. The edges that remain form quasi-
random bipartite parts Gij between pairs (Vi, Vj) (1 ≤ i < j ≤ K). We use those
to obtain as many quadrangular faces as possible (up to the allowed error) for the
embedding of G.

Finally, the near-triangular embeddings of all GT and near-quadrangular embed-
dings of all Gij are used to produce a near-optimal embedding of G. The description
of this part is in the main part of the paper.

Let us now comment on the main issues in the algorithmic part and in the theo-
retical justification. First, we use known regularity partition results to find a partition
V1, . . . , VK . The algorithm runs in quadratic time with a decent (but superexponen-
tial) dependence on 1/ε. The linear programming part to determine triangle densities
t(T ) is done on a constant size linear program and a rounding error of magnitude
O(ε) is allowed. Having gathered all the information about the required edge densi-
ties in the partition, the partition of G into subgraphs GT and Gij uses a randomized
scheme, although derandomization is possible. For the computation of the approxi-
mate value for the genus (Corollary 5.1.6), the partition is not needed. We just need
to know that it exists, and we need to know the edge densities between the regular
pairs of the partition. Thus this part is deterministic.

For the justification that the graphs GT and Gij admit almost triangular and
almost quadrangular embeddings, respectively, we use the quasirandomness condition.
The proof is based on a theorem by Frankl and Rödl [21] giving a large matching in a
dense 3- or 4-uniform hypergraph (respectively). The hyperedges in the hypergraph
correspond to cycles of length 3 and 4 (respectively) in the considered subgraph GT

or Gij. Two such matchings are needed in order to combine them into an embedding
of the graph, most of whose faces will be the triangles or quadrangles of the two
hypergraph matchings. Quasirandomness is used to show that such matchings exists
and that they have additional properties needed for them to give rise to an embedding.
To obtain such a matching, we can follow the proof of Frankl and Rödl, but the
proof uses the Lovasz Local Lemma. In order to make a construction, we may apply
the algorithmic version of the Lovasz Local Lemma that was obtained by Moser
and Tardos [45]. Alternatively, we may apply the randomized algorithm of Rödl and
Thoma [57] which uses the Rödl nibble method. A similar algorithm was obtained by
Spencer [59]. Both of these latter algorithms use greedy selection and run in quadratic
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time, but they are both randomized. This is the essential part where we are not able
to provide corresponding derandomized version.

5.2 Algorithms and Analysis

In this section, we will analyse properties on an large dense graph G. Section 5.4.1
provides a deterministic EPTAS for the problem Approximating Genus Dense. In
the Section 5.4.2, we will discuss how to construct a near minimum genus embedding
for the problem Approximate Genus Embedding Dense.

5.2.1 EPTAS for the Genus of Dense Graphs

Suppose G has n vertices and suppose we have an equitable partition P of V (G) into
K parts, V (G) = V1 t · · · t VK . We use H = G/P denote an edge-weighted complete
graph with K vertices, V (H) = {v1, . . . , vK}. The edge between vi and vj in H has
weight equal to the edge density dij = d(Vi, Vj) between Vi and Vj in G.

Theorem 5.2.1 (Szemerédi Regularity Lemma). There exists a computable function
s : N × [0, 1] → N such that the following holds. For every ε > 0, every positive
integer m, every graph G of order n ≥ m has an ε-Szemerédi partition P of its
vertices V (G) = V1 ∪ · · · ∪ VK into K parts, where m ≤ K ≤ s(m, ε).

Given a graph G, the following theorem shows the relation between the genus of G
and ν(H), where H is the quotient graph of G with respect to its Szemerédi partition.

Theorem 5.2.2. For every ε > 0, there exist a positive number ε′ > 0 and an ε′-
Szemerédi partition P defined in Theorem 5.2.1. Suppose H = G/P be the quotient
graph, and ν(H) is an optimal solution of linear program (4.4.1). Then

(1− ε)e(G)− ν(H)n2
0

4 ≤ g(G) ≤ (1 + ε)e(G)− ν(H)n2
0

4 ,

and
(1− ε)e(G)− ν(H)n2

0
2 ≤ g̃(G) ≤ (1 + ε)e(G)− ν(H)n2

0
2 ,

where n0 = n/K.

Proof. Take m = 4/ε and apply regularity lemma with ε′. We first remove all the
edges in each G[Vi] for every i ∈ [K]. Let G′ be the resulting graph. Since genus
property is edge-Lipschitz, we have that 0 ≤ g(G)− g(G′) ≤ 1

8εn
2.
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For the quotient graph H, by the linear program (4.4.1), we obtain a real number
ν(H) and a set of triangles {Tijk} for every 1 ≤ i < j < k ≤ K. Let dijk = t(Tijk),
where the function t(·) is defined as an optimal solution of the linear program. For
every 1 ≤ i < j ≤ K, let bij = dij −

∑
k 6=i,j dijk, where dij is the edge density between

Vi and Vj in G. We assume first that in the partition P , for every 1 ≤ i < j ≤ K,
the graph induced on Vi and Vj is ε′-regular. Then we partition the edge set E(Vi, Vj)
into at most K − 1 parts lEij for all l 6= i, j and Bij randomly, each with probability
dij1/dij, . . . , dijK/dij, bij/dij. For convenience, we denote the graphs with vertex set
Vi∪Vj which has edge set lEij by lGij, and the graph with vertex set Vi∪Vj which has
edge set Bij by Gij. Then by Lemma 4.4.1, we have d�(lGij, K(n(2)

0 , dijl)) < 3ε′dijl/dij
and d�(Gij, K(n(2)

0 , bij)) < 3ε′bij/dij. We also let Tijk be the graph defined on the
vertex set Vi ∪ Vj ∪ Vk, with edge set iEjk ∪ jEik ∪ kEij, hence d�(Tijk, K(n(3)

0 , dijk)) <
3ε′mijk, where mijk = max{dijk/dij, dijk/dik, dijk/djk}.

We are now going to compute the genus of G′. We construct an embedding Π
such that all the Tijk (1 ≤ i < j < k ≤ K) embeds as tripartite quasirandom graphs
and all the Bij embeds as bipartite quasirandom graphs. Apply Theorem 4.3.5 and
Theorem 4.3.10 we have

g(G′,Π) ≤ (1 + 30ε′)
( ∑

1≤i<j<k≤K

e(Tijk)
6 +

∑
1≤i<j≤K

e(Bij)
4

)

≤ (1 + 30ε′)
( ∑

1≤i<j<k≤K

3n2
0dijk + 27ε′mijkn

2
0

6 +
∑

1≤i<j≤K

n2
0bij + 3ε′ bij

dij
n2

0

4

)
.

To evaluate the error terms, we let p = max{dij} and q = min{dij : dij >
√
ε′} where

the maximum and minimum are taken over all i, j, 1 ≤ i < j ≤ K. We assume first
that all positive dij in G′ are greater than

√
ε′. Then,

g(G′,Π) ≤ (1 + 30ε′)
( ∑

1≤i<j<k≤K

n2
0dijk
2 +

∑
1≤i<j≤K

n2
0bij
4 + 21pε′n2

4q

)

= (1 + 30ε′)
( ∑

1≤i<j≤K

n2
0dij
4 −

∑
1≤i<j<k≤K

n2
0dijk
4 + 21pε′n2

4q

)

≤ (1 + 30ε′)
(e(G′)− ν(H)n2

0
4 + 42p + q

8q ε′n2
)
.

However, in the partition P of G′, not all the pairs (Vi, Vj) are ε′-regular, and
some of the densities dij can be very small (compared with

√
ε′). By removing all the

edges between irregular pairs and edges with density less than
√
ε′, we obtain a new
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graph G′′. We let H0 be the quotient graph G′′/P . Note that ν(H0) is also a solution
of H of the following system of linear inequalities:

µ(H) =
∑
T∈T

t(T ),
∑

T3e,T∈T
t(T ) ≤ de, for every edge e of H0,

t(T ) ≥ 0, for every T ∈ T .

(5.2.1)

Clearly ν(H0) ≤ µ(H) ≤ ν(H). Therefore,

g(G) ≤ (1 + 30ε′)
(e(G)− ν(H)n2

0
4 + 43

8
√
ε′n2

)
+ ε′n2 +

√
ε′

2 n2 + ε

8n
2

≤ (1 + ε)
(e(G)− ν(H)n2

0
4

)
.

(5.2.2)

For the lower bound, note that the lower bound on g(G′′) is also a lower bound
on g(G), thus it suffices to consider the graph G′′. We first show that e(G′′)−ν(H0)

4 is
also a lower bound on g(G′′) (up to a constant factor (1 − o(1))). The proof uses a
similar argument as we used in the proof of Theorem 4.4.2.

For any embedding Π of G′′, let T1(Π) and T2(Π) be the subsets of E(G′′) such
that for every e ∈ Tl(Π), there exist l triangular faces in Π that contain e. For every
1 ≤ i < j ≤ K, we define Elij = Tl(Π) ∩ EG′′(Vi, Vj), and let Tlijk be the sets of
triangles in Tl(Π) whose vertices lie in Vi, Vj and Vk. We also define kElij = Elij ∩Tlijk,
jElik = Elik ∩Tlijk and iEljk = Eljk ∩Tlijk, for every 1 ≤ i < j < k ≤ K and l = 1, 2. Let

mijk = min{|kE2
ij|+ |kE1

ij|/2, |iE2
jk|+ |iE1

jk|/2, |jE2
ik|+ |jE1

ik|/2},

then Tijk contains at most 2mijk triangles.
Now we consider the quotient graph H0. For every triangle Tijk in H0, let t(Tijk) =

mijk/n
2
0. This is a solution of the linear inequalities (5.2.1) of H0. Under this random

partition (by the values of t(Tijk)), the number of trianglar faces in the subembedding
of G′′[Vi ∪ Vj ∪ Vk] is at least 2(1− 10ε′ t(Tijk)

dij
)mijk. Therefore, by Theorem 4.3.5 and

4.3.10 we have
g(G′′) ≥ (1− 30ε′)

(e(G′′)− ν(H0)n2
0

4

)
.

In the next step, we will compare ν(H) and ν(H0). Clearly, H0 is obtained from
H be deleting edges between irregular pairs and edges with small weights. The total
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weight of edges we delete is at most ε′K2 + K2

2

√
ε′. Therefore,

ν(H0) + 3
(
ε′K2 + K2

2

√
ε′
)
≤ ν(H).

Then we have

g(G) ≥ (1− 30ε′)
(e(G)− 1

2Kn
2 − ε′n2 −

√
ε′

2 n2 − ν(H)n2
0 + 3

(
ε′K2 + K2

2

√
ε′
)
n2

0

4

)

≥ (1− 30ε′)
(e(G)− ν(H)n2

0
4 +

n2(2ε′ +
√
ε′ − ε

8)
4

)
≥ (1− ε)

(e(G)− ν(H)n2
0

4

)
(5.2.3)

Take ε′ be the solution of inequalities (5.2.2) and (5.2.3), this completes the proof.

With all tools in hand, we are going to provide the algorithm Approximating
Genus Dense. Given ε > 0 and a graph G of order n, we do the following:

Step 1. Let τ = 3ε′/2, where ε′ is defined in Theorem 5.2.2. Pick α = 1/2,
m = 4/ε and, apply the algorithm in Theorem 4.1.4 with integer k taking values from
m to s(τ,m). Then the algorithm will output an ε′-Szemerédi partition into K parts,
where m ≤ K ≤ s(τ,m).

Step 2. Consider the quotient graph H = G/P . Solve the linear program (4.4.1)
on H to obtain ν(H).

Step 3. Output g = (1 + ε) e(G)−ν(H)n2
0

4 , where n0 = n/K.

5.2.2 EPRAS for Embeddings of Dense Graphs

Now, we turn to our algorithm for Approximate Genus Embedding Dense where
the added feature is to construct an embedding. Given ε > 0 and a graph G of order
n, we can apply Approximating Genus Dense to get g such that g(G) ≤ g ≤
(1+ε)g(G). We are going to construct a rotation system Π of G, whose genus satisfies
the same bound. Our algorithm proceeds as follows:

Step 1. Apply Approximating Genus Dense, we obtain an r(ε)-Szemerédi
partition P into K parts, where r(ε) is the value of ε′ in Theorem 5.2.2. Determine
the quotient graph H and compute the value ν(H) as well as the family of triangles
T in H and their balanced edge densities t(T ), T ∈ T. We randomly partition the
graph into b = O(K2) bipartite graphs Bij and t = O(K3) tripartite graphs Tijk as
we defined in Theorem 5.2.2. Then with high probability, for any τ > 0, at least
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(1−r(ε)− τ)b bipartite graphs are quasirandom and at least (1−r(ε)− τ)t tripartite
graphs are quasirandom. Note that r(ε) appears here because of the irregular pairs.

Step 2. Let t1 = n
2−ε
4−ε . For every 1 ≤ i < j < k ≤ K, we partition the edge set

of the graph Tijk into t1 parts uniformly at random. These t1 sets of edges give us t1
graphs 1Tijk, . . . , t1Tijk. Then for any τ > 0, with high probability at least (1 − τ)t1
graphs are still quasirandom. For every x ∈ [t1], let xDijk be the corresponding digraph
of xTijk, and let xHijk be the hypergraph as defined in Section 3.

Step 3. Let t2 = n
4−ε
6−ε . For every 1 ≤ i < j ≤ K, we partition the edge set of the

graph Bij into t2 parts uniformly at random. These t2 sets of edges give us t2 graphs
1Bij, . . . , t2Bij. Then for any τ > 0, with high probability at least (1− τ)t2 graphs are
still quasirandom. For every y ∈ [t2], let yDij be the corresponding digraph of yBij,
and let yHij be the hypergraph as defined in Section 3. Let h be the total number of
hypergraphs.

Step 4. Apply random greedy algorithm [57] on 3-uniform hypergraphs xHijk for
every x ∈ [t1] and every 1 ≤ i < j < k ≤ K, and on 4-uniform hypergraphs yHij

for every y ∈ [t2] and every 1 ≤ i < j ≤ K. Note that the expected running time
here is still quadratic even though we need to run the algorithm t1 + t2 times. This
is because the running time is linear on the number of vertices of the hypergraph,
and with high probability, we have |V (xHijk)| = Θ(n2

t1
) and |V (yHij)| = Θ(n2

t2
). Then

for every τ > 0, with high probability the algorithm will output a τ -near perfect
matching in at least (1 − r(ε) − τ)h hypergraphs. Let M be the set of hyperedges
(triangles and 4-cycles) such that for every e ∈ M, e is output by the algorithm as
an element of a τ -near perfect matching in a hypergraph H.

Step 5. For each hypergraph H we defined in Step 4, consider H−1. Delete all
the edges contained in M (with inverse direction) from H−1. By [58, Theorem 3.3],
the resulting hypergraph still satisfies Conditions (1)–(3) in Theorem 2.2.5. Apply
random greedy algorithm again. For every τ > 0, with high probability the algorithm
will output a τ -near perfect matching in at least (1− r(ε)− τ)h hypergraphs. We also
put edges in these near perfect matchings into M.

Step 6. Output the rotation Π = {πv | v ∈ V (G)} which is constructed as
follows. For every vertex v ∈ V (G), if there exists a hyperedge e such that v ∈ e and
e ∈M, suppose v1 is one of the neighbours (in the graph G) of v in e, put v1 in the
rotation system πv. If there exists another edge e1 in M such that e1 contains both
v and v1, put the other neighbour of v in e1 into πv clockwise following v1, and do it
recursively. If at some point, we cannot find any other edges containing v in M, we
move to the other vertices. If vl is a neighbour of v, and when we try to add vl in πv,
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the hyperedges in M we processed form a blossom, then remove this hypergraph from
M. By the proofs in Section 3, with high probability, there is only a small number of
blossoms. If for a vertex u ∈ V (G), there are some edges that have not been put in
πu during this process, we put them in πu arbitrarily in order to obtain the rotation
system πu. By Theorem 5.2.2, we have (1 + ε)g(G) ≥ g(G,Π).
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Chapter 6

Genus of Complete 3-Uniform
Hypergraphs

6.1 Embeddings of Hypergraphs

In this chapter, we will discuss the embeddings of complete 3-uniform hypergraphs,
which is a natural generalization of Ringel-Youngs Theorem. The problem was first
discussed by Jungerman, Stahl and White [34]. The genus problems of hypergraphs
are tightly related with the genus of bipartite graphs, 2-complexes, block designs and
finite geometry. We refer to [6, 50, 70] for more background.

LetH be a hypergraph. In order to study the embeddings ofH, let us first consider
its associated Levi graph.

Definition 6.1.1. The associated Levi graph of a hypergraphH is the bipartite graph
LH defined on the vertex set V (H) ∪ E(H), in which v ∈ V (H) and e ∈ E(H) are
adjacent if and only if v and e are incident in H.

In this paper, we use K3
n to denote the complete 3-uniform hypergraph of order n,

and we denote its Levi graph by Ln. The vertices of Ln corresponding to V (K3
n) = [n]

will be denoted by Xn and the
(
n
3

)
vertices corresponding to the edges of K3

n will be
denoted by Yn. Following [70, Chapter 13], we define embeddings of a hypergraph H
in surfaces as the 2-cell embeddings of its Levi graph LH . That means we have the
following definition (See Figure 6.1 as an example).

Definition 6.1.2. Suppose H is a hypergraph, we define the genus g(H) (the non-
orientable genus g̃(H), and the Euler genus ĝ(H)) as the genus (non-orientable genus,
and Euler genus, respectively) of LH .

Since LH is bipartite, we have the following simple corollary of Euler’s Formula
(see [44, Proposition 4.4.4]):
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Figure 6.1: Planar embeddings of K3
4 and its Levi graph L4.

Lemma 6.1.3. Let H be a 3-uniform hypergraph with n vertices and e edges. Then

ĝ(H) ≥ 1
2e− n+ 2. (6.1.1)

Moreover, equality holds in (6.1.1) if and only if the Levi graph LH admits a quadri-
lateral embedding in some surface.

In the case of the complete 3-uniform hypergraphs we obtain:

Proposition 6.1.4. For every n ≥ 4 we have ĝ(K3
n) ≥

⌈
(n−2)(n+3)(n−4)

12

⌉
.

6.2 Hypergraphs of Even Order

In this section, we assume n ≥ 4 is an even integer.

6.2.1 Minimum Genus Embeddings of Hypergraphs

For each i (1 ≤ i ≤ n), let Kn − i be the labelled complete graph defined on the
vertex set [n] \ {i}. Suppose Ti and T ′i are Eulerian circuits in Kn − i. If T ′i is the
reverse of Ti, we denote it by T−1

i and view them to be equivalent. Two families F ,F ′

of circuits are equivalent if there is a bijection f : F → F ′ such that for each C ∈ F
either f(C) = C or f(C) = C−1.

Suppose Ti is an Eulerian circuit in Kn− i and Tj in Kn− j, where j 6= i. Define a
transition through j in Ti as a subtrail of Ti consisting of two consecutive edges aj and
jb, and we denote it simply by ajb (which may sometimes be written as a, j, b). We
say that Ti and Tj are compatible if for every transition ajb in Ti, there is a transition
aib or bia in Tj, and Ti and Tj are strongly compatible if for every transition ajb in
Ti, there is the transition bia in Tj. Note that this gives a bijective correspondence
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between n−2
2 transitions through j in Ti and n−2

2 transitions through i in Tj. We call
a set of trails {T1, . . . , Tn} an embedding set if Ti is an Eulerian circuit in Kn − i for
each i = 1, . . . , n and any two of them are compatible. An embedding set is strong if
for every i 6= j, Ti and Tj are strongly compatible. In our construction of embeddings,
we will use different rules when specifying Eulerian circuits for odd and even values
of i, and we will say that i ∈ [n] is an odd vertex (or even vertex) when i is odd (or
even) viewed as an integer.

The following result is our main tool.

Theorem 6.2.1. Let n ≥ 4 be an even integer. There exists a bijection between
equivalence classes of the (labelled) quadrilateral embeddings of the Levi graph Ln of
K3
n and the equivalence classes of embedding sets of size n. Under this correspondence,

strong embedding sets correspond to orientable quadrilateral embeddings.

Proof. Suppose Π = {πv | v ∈ V (Ln)} is a quadrilateral embedding of Ln. Recall that
Xn = [n] and Yn =

(
[n]
3

)
is the bipartition of Ln. For every vertex i ∈ Xn, consider

the local rotation πi around i. Note that the neighbors of i are all
(
n−1

2

)
=: N triples

of elements of [n] which contain i, and all of them have degree 3 in Ln.
Each pair of consecutive vertices (triples) in πi determines a 4-face with two ver-

tices in Xn, say i and j. Then both triples are adjacent to i and to j in Ln, so they
both contain i and j. Let us now consider the two 4-faces containing the edge joining
i and a triple ijk. Since this triple is adjacent to vertices j and k in Ln, one of the
neighbors of i preceding or succeeding ijk in the local rotation πi contains j and the
other one contains k. Therefore there is a sequence a1, a2, . . . , aN such that aj is the
common element between the jth and (j + 1)st neighbor of i in πi. Moreover, the
jth neighbor of i is the triple iaj−1aj (where a0 = aN). Clearly, the cyclic sequence
Ti = (a1a2 . . . aN) is an Eulerian circuit in Kn − i since the consecutive pairs aj−1aj

(1 ≤ j ≤ N) run over all pairs in [n] \ {i}.
Suppose iaj and ijk are consecutive neighbors of the vertex i in πi and assume

iaj → ijk is clockwise. See Figure 6.2 for clarification. That means, ajk is a transition
in Ti. Now consider the local rotation πj. Clearly, iaj and ijk are consecutive vertices
in πj. Moreover, assuming the local rotations around i and j are chosen consistently
with the clockwise orientation in the face containing i, iaj, j, ijk, we have ijk → iaj

is clockwise. That means that Ti and Tj are compatible (strongly in the orientable
case). Therefore, {T1, . . . , Tn} form an embedding set (or strong embedding set).

This gives a correspondence (π, λ) 7→ {T1, . . . , Tn}. Let us first observe that equiv-
alent embedding schemes (obtained by switching over a vertex-set U ⊆ V (Ln))
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a

iaj

j

i k

ijk

c

b

ikb

jkc
Ti : . . . ajkb . . .

Tj : . . . ckia . . .

Tk : . . . b ijc . . .

Figure 6.2: A quadrilateral embedding around a vertex ijk ∈ Yn. The chosen clockwise
rotation around vertices i, j, k is indicated by the dashed circular arcs.

correspond to changing the Eulerian circuits Tu with their inverse circuits T−1
u for

u ∈ U ∩Xn. Thus the correspondence preserves equivalence.
To see that the described correspondence is injective, consider two quadrilateral

embeddings with schemes Π1 = (π1, λ1) and Π2 = (π2, λ2), whose embedding set
{T1, . . . , Tn} is the same. This in particular means that π1 and π2 agree on Xn.
Clearly, this implies that the set of quadrangular faces is the same for both embeddings
(for every π1

i -consecutive neighbors iaj → ijk the corresponding 4-face has vertices
i, iaj, j, ijk). By [44, Corollary 3.3.2], this implies that Π1 and Π2 are equivalent.

In order to show the map is surjective, suppose E = {T1, . . . , Tn} is an embed-
ding set. We have to show that there is a quadrilateral embedding of K3

n such that
this embedding returns an equivalent embedding set under the correspondence de-
scribed in the first part of the proof. The quadrilateral embedding will be given by
an embedding scheme Π = (π, λ) which is determined as follows.

For i ∈ Xn, let Ti be the circuit a0a1a2 . . . aN , where a0 = aN . Then we define the
rotation πi around the vertex i as the cyclic permutation:

πi = (ia0a1, ia1a2, ia2a3, . . . , iaN−1aN).

For each triple ijk ∈ Yn (where i < j < k), set πijk = (i, j, k). Finally, define the
signature as follows. Given i < j < k, let e1, e2, and e3 be the edges joining ijk

with the vertex i, j, and k, respectively. We set λ(e1) = 1 if the edge jk appears in
the direction from j to k in Ti. Otherwise, set λ(e1) = −1. Similarly, set λ(e2) = 1

66



(λ(e3) = 1) if and only if the edge ki (ij) appears in Tj (Tk) in the direction from
k to i (from i to j). By these rules it is clear that equivalent embedding sets give
equivalent embedding schemes, and that Π will give back the same embedding set. It
remains to see that the embedding Π is quadrilateral. To see this, consider a triple
ijk (i < j < k) and the faces around it. Figure 6.2 should help us to visualize
the situation. By changing the embedding set E to an equivalent embedding set (by
possibly changing Ti, Tj, Tk to their inverses), we may assume that Ti traverses jk in
the direction from j to k, Tj traverses ki from k to i, and Tk traverses ij from i towards
j. Then λ(e1) = λ(e2) = λ(e3) = 1. Let Ti : . . . ajkb . . . and Tj : . . . ckia . . . . Here we
used compatibility condition to conclude that kia is a transition in Tj. Compatibility
condition implies that Tk : . . . bijc . . . . This implies that the faces around ijk are
precisely as shown in the figure. Since ijk was arbitrary, we conclude that all faces
are quadrilaterals, which we were to prove.
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Figure 6.3: A minimum genus orientable embedding of K3
6 .

Example 6.2.2. The genus of K3
6 is 3.

Here we give a construction of an optimal orientable embedding of K3
6 , see Figure

6.3. Identity the same number as end vertices in edges with same letter , we will get
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an embedding on the triple torus. Its strong embedding set E6 is the following:

T1 = 3, 4, 2, 5, 3, 6, 4, 5, 6, 2;

T2 = 4, 3, 1, 6, 3, 5, 4, 6, 5, 1;

T3 = 1, 2, 4, 6, 1, 5, 2, 6, 5, 4;

T4 = 2, 1, 3, 5, 1, 6, 2, 5, 6, 3;

T5 = 6, 1, 4, 3, 6, 4, 2, 3, 1, 2;

T6 = 5, 2, 4, 1, 3, 4, 5, 3, 2, 1.

6.2.2 Genus of Hypergraphs

Next, we will construct minimum genus embeddings of K3
n when n is even.

Theorem 6.2.3. If n ≥ 4 is even, then

g(K3
n) = (n− 2)(n+ 3)(n− 4)

24 .

Proof. By Proposition 6.1.4, it suffies to show that g(K3
n) ≤ (n−2)(n+3)(n−4)

24 . We will
prove it by induction on n. The base case when n = 4 is clear from Figure 6.1, so we
proceed with the induction step.

Assume Ln quadrangulates some orientable surface, and En = {T1, . . . , Tn} is the
corresponding strong embedding set, where Ti is an Eulerian trail in Kn− i (i ∈ [n]).
Now we consider Ln+2 with two new vertices in Xn+2 = [n + 2]. For brevity we will
write x = n + 1 and y = n + 2. For every odd vertex 1 ≤ i ≤ n− 1, Ti contains n−2

2

transitions of the form a, i + 1, b. We arbitrarily pick one of those transitions, and
denote it by ai, i + 1, bi. In the next step, we are going to insert a trail Ei between
i+ 1 and bi in Ti to get a closed Eulerian trail in Kn+2− i. The new, longer trail will
be denoted by T ′i . For the trail Ti+1 in En, since ai, i + 1, bi is a transition in Ti, the
transition bi, i, ai is contained in Ti+1 by the strong compatibility condition. Similarly
as what we do for Ti, we will insert a trail Ei+1 between i and ai in Ti+1, and the new
longer trail we get is denoted by T ′i+1.

For every odd vertex 1 ≤ i ≤ n−1, let σi be the permutation of the set [n]\{i, i+1}
that is obtained from the sequence 1, 2, . . . , n by removing i and i+1 and by switching

68



the pairs 2j − 1, 2j for j = 1, . . . , i−1
2 . Specifically:

σ1 = 3, 4, 5, 6, . . . , n− 1, n;

σ3 = 2, 1, 5, 6, . . . , n− 1, n;

· · ·

σi = 2, 1, 4, 3, . . . , i− 1, i− 2, i+ 2, i+ 3, i+ 4, . . . , n− 1, n;

· · ·

σn−1 = 2, 1, 4, 3, . . . , n− 2, n− 3.

We construct Ei as follows. We start with x, and then insert y and x consecutively
in the interspace of numbers in σi, and add x, y, i+ 1 at the end, for every odd vertex
1 ≤ i ≤ n− 1. For the case Ei+1, we start with y, insert x and y (alternating) in the
interspace of numbers in σi, and add y, x, i at the end. To be more precise, we get the
following:

E1 = x, 3, y, 4, x, 5, y, 6, . . . , x, n− 1, y, n, x, y, 2;

E2 = y, 3, x, 4, y, 5, x, 6, . . . , y, n− 1, x, n, y, x, 1;

· · ·

Ei = x, 2, y, 1, . . . , x, i− 1, y, i− 2, x, i+ 2, y, . . . , x, n− 1, y, n, x, y, i+ 1;

Ei+1 = y, 2, x, 1, . . . , y, i− 1, x, i− 2, y, i+ 2, x, . . . , y, n− 1, x, n, y, x, i;

· · ·

En−1 = x, 2, y, 1, x, 4, y, 3, . . . , x, n− 2, y, n− 3, x, y, n;

En = y, 2, x, 1, y, 4, x, 3, . . . , y, n− 2, x, n− 3, y, x, n− 1.

It is easy to see that T ′i and T ′i+1 are Eulerian trails in Kn+2− i and Kn+2− (i+1).
To verify the strong compatibility of these Eulerian trails, note that our construction
preserves almost all transitions in En, except for every odd i we break the transition
ai, i+ 1, bi in Ti, and the transition bi, i, ai in Ti+1. That means we only need to check
the strong compatibility of transitions in Ei. If j and i are both odd and j < i,
this is true since x, i, y is a transition in Ej and y, j, x is a transition in Ei. Similar
observations hold in the other three cases depending on the parities of j and i. This
shows that T ′a and T ′b are strongly compatible for every 1 ≤ a < b ≤ n.

In the final step, we will construct Eulerian trails T ′x and T ′y, such that En+2 =
{T ′1, . . . , T ′n, T ′x, T ′y} is a strong embedding set. We have to fix some transitions in T ′x
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and T ′y in order to get the strong compatibility with trails T ′j (1 ≤ j ≤ n). We list
these transitions in the following tables, where we assume 3 ≤ i ≤ n − 3 is an odd
vertex.

Transitions in T ′x through odd vertices (3 ≤ i ≤ n− 3)
3 1 2 2 i i+ 1 2 n− 1 n
5 1 4 4 i 1 4 n− 1 1
7 1 6 6 i 3 6 n− 1 3
9 1 8 . . .

... . . .

i− 1 i i− 4
... i+ 2 i i− 2 ...

i+ 4 i i+ 3
... n− 4 n− 1 n− 7

n− 1 1 n− 2 n− 1 i n− 2 n− 2 n− 1 n− 5
y 1 n y i n y n− 1 n− 3

Transitions in T ′x through even vertices (4 ≤ i+ 1 ≤ n− 2)
4 2 3 1 i+ 1 2 1 n 2
6 2 5 3 i+ 1 4 3 n 4
8 2 7 ...

i− 2 i+ 1 i− 1
... . . . i+ 3 i+ 1 i+ 2 . . .

...
...

n 2 n− 1 n i+ 1 n− 1 n− 3 n n− 2
1 2 y i i+ 1 y n− 1 n y

If T ′x has all the transitions listed in the tables above, then it is strongly com-
patible with T ′j for every 1 ≤ j ≤ n. Since each pair of two different numbers will
consecutively appear in T ′x exactly once, the above tables give us the following n/2
subtrails {A1, . . . , An

2
} in T ′x where we also let 3 ≤ i ≤ n− 3 be odd.

A1 = y, 1, n, 2, n− 1, n, y;

· · ·

A i+1
2

= y, i, n, i+ 1, Fi(1), Fi(2), . . . , Fi( i−1
2 ), n− i, n+ 1− i, y;

· · ·

An
2

= y, Fn−1(1), Fn−1(2), . . . , Fn−1(n2 ), 2, y.
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where Fi(j) (3 ≤ i ≤ n− 3) is a subtrail of length 4 such that Fi(j) = n+ 1− 2j, i−
2j, n− 2j, i+ 1− 2j and Fn−1(j) = n+ 1− 2j.

Similarly, the following tables state the transitions in T ′y forced by strong compat-
ibility with T ′j for every 1 ≤ j ≤ n.

Transitions in T ′y through odd vertices (3 ≤ i ≤ n− 3)
4 1 3 1 i 2 1 n− 1 2
6 1 5 3 i 4 3 n− 1 4
8 1 7 ...

i− 2 i i− 1
... . . . i+ 3 i i+ 2 . . .

... ...
n 1 n− 1 n i n− 1 n− 3 n− 1 n− 2
2 1 x i+ 1 i x n n− 1 x

Transitions in T ′y through even vertices (4 ≤ i+ 1 ≤ n− 2)
3 2 1 2 i+ 1 i 2 n n− 1
5 2 4 4 i+ 1 1 4 n 1
7 2 6 6 i+ 1 3 6 n 3
9 2 8 . . .

... . . .

i− 1 i+ 1 i− 4
... i+ 2 i+ 1 i− 2 ...

i+ 4 i+ 1 i+ 3
... n− 4 n− 2 n− 7

n− 1 2 n− 2 n− 1 i+ 1 n− 2 n− 2 n n− 5
x 2 n x i+ 1 n x n n− 3

The above tables also give us the following n/2 subtrails {B1, . . . , Bn
2
} in T ′y.

B1 = x, 2, n, n− 1, x;

· · ·

B i+1
2

= x, i+ 1, n,Gi(1), Gi(2), . . . , Gi( i−1
2 ), n− i, x (i is odd, 3 ≤ i ≤ n− 3);

· · ·

Bn
2

= x, n, n− 3, Gn−1(1), Gn−1(2), . . . , Gn−1(n−4
2 ), 3, 2, 1, x.
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where Gi(j) (3 ≤ i ≤ n − 3) is a subtrail of length 4 such that Gi(j) = i − 2j, n +
1 − 2j, i + 1 − 2j, n − 2j, and Gn−1(j) is a subtrail of length 3 where Gn−1(j) =
n+ 1− 2j, n− 2j, n− 2j − 3.

Finally we are going to combine those subtrails of T ′x and T ′y. Note that any
combination will give us a closed Eulerian trail on Kn+2−x or Kn+2−y (respectively),
since if ab (or ba) appears twice in the subtrails of T ′x, then either T ′a or T ′b is not an
Eulerian trail. We let T ′x = A1, A2, . . . , An

2
and T ′y = B1, B2, . . . , Bn

2
, that means the

construction is the following:

T ′x = y, 1, . . . , n, y, 3, . . . , n− 2, y, 5, . . . , 4, y, n− 1, . . . , 2;

T ′y = x, 2, . . . , n− 1, x, 4, . . . , 5, x, n− 2, . . . , 3, x, n, . . . , 1.

It remains to show that T ′x and T ′y are strongly compatible. This is true because
for every odd vertex 3 ≤ i ≤ n − 1, we can see that n + 3 − i, y, i is a transition in
T ′x and i, x, n + 3 − i is a transition in T ′y, as well as 2, y, 1 is a transition in T ′x and
1, x, 2 is a transition in T ′y. This completes the proof.

Lemma 6.2.4. The non-orientable genus of K3
6 is 6.

Proof. By Lemma 6.1.3, we have g̃(K3
6) ≥ 6. Then it suffices to provide a construction

of an embedding of K3
6 in some non-orientable surfaces of genus 6. By Theorem 6.2.1,

we only need to construct an embedding set, but not a strong embedding set. Here
is the construction of the embedding set E6.

T1 = 4, 2, 5, 3, 6, 4, 5, 6, 2, 3;

T2 = 4, 6, 5, 1, 4, 3, 1, 6, 3, 5;

T3 = 1, 2, 4, 6, 1, 5, 2, 6, 5, 4;

T4 = 5, 1, 6, 2, 5, 6, 3, 2, 1, 3;

T5 = 6, 3, 4, 2, 3, 1, 2, 6, 4, 1;

T6 = 2, 1, 5, 3, 2, 5, 4, 3, 1, 4.

Note that 6, 3, 4 is a transition in T5 and 6, 5, 4 is a transition in T3, and also 2, 3, 1
is a transition in T5 and 1, 5, 2 is a transition in T3. That means, neither T3 or T−1

3 is
strongly compatible with T5. It is not hard to see that the set E6 is compatible.
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Theorem 6.2.5. If n ≥ 6 is even, then

g̃(K3
n) = (n− 2)(n+ 3)(n− 4)

12 .

Proof. The proof follows the same inductive construction we used in the proof of
Theorem 6.2.3. Instead of using K3

4 as the base step, we use Lemma 6.2.4 as the base
step. Therefore, by the way we constructed the embedding set of K3

n, Eulerian trails
T3 and T5 will always be compatible, but they will never be strongly compatible.

6.2.3 Number of Non-Isomorphic Embeddings

We say that two embeddings φ1, φ2 : G → S are isomorphic if there is an automor-
phism α of G such that the embeddings φ1 and φ2α are equivalent. In this section we
will show how to obtain many non-isomorphic optimal embeddings of K3

n when n is
even.

It is easy to see that the number of non-equivalent (2-cell) embeddings of K3
n in

some surface is equal to

2(n
3)23(n

3)
(((

n

3

)
− 1

)
!
)n

2−n = 2 1
2n

4 logn(1−o(1)).

The genera of all these embeddings take only O(n3) different values, but the majority
of them will have their genus much larger than the minimum possible genus. The
number of minimum genus embeddings is indeed much smaller as made explicit in
the following.

Lemma 6.2.6. The number of non-equivalent embeddings of K3
n into a surface of

Euler genus 1
6(n− 2)(n+ 3)(n− 4) is at most 2 1

4n
3 logn(1+o(1)), where the logarithm is

taken base 2.

Proof. We may assume that n is even since otherwise there are no such embeddings.
By Theorem 6.2.1, optimal embeddings ofK3

n into surfaces of Euler genus 1
6(n−2)(n+

3)(n−4) are quadrilateral and are in a bijective correspondence with embedding sets.
These are sets of Eulerian circuits satisfying compatibility conditions. Their number
can be estimated as follows.

Suppose that compatible Eulerian circuits T1, . . . , Tk−1 are already chosen (1 ≤
k ≤ n). To construct the next circuit Tk, we start by an arbitrary edge in Kn − k.
If we come to a vertex i < k when following the last chosen edge, the transition is
determined by compatibility with Ti. On the other hand if we come to a vertex i > k
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for the rth time, there are (at most) n − 1 − 2r edges which can be chosen as the
next edge on the trail. All together, when passing through such a vertex i, we have at
most (n− 3)(n− 5)(n− 7) · · · 3 · 1 = (n− 3)!! choices. Therefore the number of ways
to choose Tk is at most ((n− 3)!!)n−k. Thus the number of embedding sets is at most:

((n− 3)!!)(n−1)+(n−2)+···+1+0 = 2 1
4n

3 logn(1+o(1))

and this completes the proof.

Note that in the proof we are actually giving a bound on compatible closed trail
decompositions. Nevertheless, this estimate may be rather tight, since the number of
Eulerian circuits in Kn−1 is 2 1

2n
2 logn(1+o(1)), see [40, Theorem 4].

Now we will turn to a lower bound on the number of non-isomorphic minimum
genus embeddings that can be obtained by a simple generalization of the construction
in our proofs of Theorems 6.2.3 and 6.2.5.

Theorem 6.2.7. If n is even, there exist at least 2 1
4n

2 logn(1−o(1)) non-isomorphic
optimal embeddings of K3

n in each, the orientable and the non-orientable surface of
Euler genus 1

6(n− 2)(n+ 3)(n− 4).

Proof. Let In be the number of non-isomorphic optimal embeddings of K3
n. Here we

will only deal with the orientable case; for the non-orientable embeddings, arguments
are the same.

Recall that in the construction of the embedding set En = {T ′1, . . . , T ′n} of K3
n, for

every odd vertex i ∈ [n− 2] we arbitrarily pick a transition ai, i + 1, bi in Ti ∈ En−2,
and insert a subtrail Ei. Since i+ 1 appears exactly n−4

2 times in Ti, different choice
of transitions through i + 1 will give us different trails T ′i and T ′i+1. Also, the choice
of consecutive odd-even pairs i, i + 1 gives us a perfect matching of Kn−2. It is easy
to see that any perfect matching of Kn−2 can be used as such a pairing and this will
give us different embedding sets En. Moreover, fixing a perfect matching, for example,
i, i+ 1 for every odd i, we can exchange i and i+ 1 to get a new embedding set. Note
that x and y are symmetric in our construction, and can be exchanged.

Let In denote the resulting number of inequivalent embedding sets. Then we have:

In ≥
1
2

(
n− 4

2

)n−2
2

(n− 3)!! 2
n−2

2 In−2.
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Therefore,

log In ≥ log
n−2

2∏
k=2

(k − 1)k(2k − 1)!! 2k−1

≥ log
(n−4

2 )!n−2
2 2n

2 ( n
2−2)∏n−4

2
k=2 k!∏n−6

2
k=1 k!

= n(n− 4)
4 log n− 4

2e +O(n2)

= 1
4n

2 log n (1− o(1)).

That means that there are at least 2 1
4n

2 logn (1+o(1)) inequivalent minimum genus em-
beddings.

If φ1 and φ2 are non-equivalent but isomorphic embeddings, then there is an au-
tomorphism α such that φ1 is equivalent with φ2α. Each such automorphism is deter-
mined by the values α(1) and α(123), and by noting whether α preserves or reverses
the local rotation around the vertex 1. This means that the number of isomorphic
embeddings is polynomial in n, and thus the number of isomorphism classes of em-
beddings decreases by a factor that can be hidden in the o(1) term in the (1− o(1))
factor. This completes the proof.

6.2.4 Hypergraphs with Multiple Edges

Now we are going to investigate the genus of complete 3-uniform graphs with multiple
edges. These results will partially answer the question the authors asked in Theorem
3.2.8. In that work, the genus of random bipartite graphs G(n1, n2, p) is considered,
where n1 � 1 and n2 is a constant, and the edge probabilities are p = Θ(n−1/3

1 ). In
that regime, the following hypergraph occurs. Let mK3

n be the complete 3-uniform
hypergraph where each triple occurs m times, i.e., each edge of K3

n has multiplicity
m. In this situation, each trail Tmi in the embedding set Emn is an Eulerian circuit in
m(Kn− i). Similarly, we say two trails Ti and Tj are strongly compatible (compatible)
if transitions ajb appear in Ti exactly t times, then transitions bia (aib or bia) appear
in Tj exactly t times. It is easy to see that Theorem 6.2.1 is still true in this case, the
proof is similar and we omit the details. Therefore, we have the following result.

Theorem 6.2.8. If n ≥ 4 is even and m ≥ 2, then g(mK3
n) = (n−2)(mn(n−1)−12)

24 and
g̃(mK3

n) = (n−2)(mn(n−1)−12)
12 .
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Figure 6.4: A non-orientable embedding of 2K3
4 on the Klein bottle.

Proof. The lower bound follows by Lemma 6.1.3. To see the upper bound, we will
give an inductive construction on m.

Suppose Emn = {Tm1 , . . . , Tmn } is a (strong) embedding set of mK3
n, and suppose

that En = {T1, . . . , Tn} is a (strong) embedding set of K3
n. For every odd i ∈ [n],

suppose the transition ai, i+1, bi is in both Tmi and Ti. Note that by our construction,
such transition exists, and actually we have at least n−2

2 such transitions for every i.
We arbitrarily pick one such transition ai, i+1, bi. Since Ti also contains the transition
ai, i+ 1, bi, we break Ti between i+ 1 and bi, and we write Ti by starting with bi and
end with ai, i + 1. We also break transition ai, i + 1, bi in Tmi , and insert Ti between
i+ 1 and bi. For the case i+ 1, we do the same things on transition bi, i, ai. Therefore,
we will get a (strong) embedding set Em+1

n of (m + 1)K3
n. It is easy to verify the

(strong) compatibility among trails in Em+1
n .

The described construction works in all cases except when n = 4, and we look for
the non-orientable embeddings of mK3

4 . Since g(K3
4) = 0, the base case of induction

for the non-orientable genus of mK3
4 is when m = 2. In this case, we construct the

following non-orientable embedding set E2
4 on the Klein bottle (see Figure 6.4 for the

corresponding embedding):

T 2
1 : 3, 2, 4, 2, 3, 4;

T 2
2 : 4, 1, 3, 4, 1, 3;

T 2
3 : 1, 4, 2, 1, 4, 2;

T 2
4 : 2, 3, 1, 3, 2, 1.

The induction step follows the same argument as when n ≥ 6.
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Let us observe that the embedding of mK3
n described in the proof of Theorem

6.2.8 (with the exception of the non-orientable case when n = 4) is just a branched
covering from a quadrilateral embedding of K3

n where each vertex i ∈ Xn is a branch
point with branching degree m.

6.3 Hypergraphs of Odd Order

Since a complete graph having even number of vertices does not have any Eulerian
trails, we have the following observation.

Lemma 6.3.1. If n is even, the shortest closed walk in Kn that cover all of its edges
has at least n

2 repeated edges, and any two of those repeated edges are not adjacent in
the walk with minimal length.

Proof. For every v ∈ Kn, deg(v) = n − 1 is odd. In order to visit all the edges, for
every vertex v, at least one repeated edge is incident by v. Thus the walk has at least
n
2 repeated edges. If ab and bc are consecutive edges in the walk with minimal length
and both of them are repeated edges, we can replace them by ac, this will give us a
shorter walk.

1

2

4 3

5

123

124

134

125

135

145

234

235 245

345

134

124

245 235

135

Figure 6.5: An optimal non-orientable embedding of K3
5 .

Theorem 6.3.2. ĝ(K3
5) = g̃(K3

5) = 4.

Proof. To prove that 4 is the lower bound, by Theorem 6.2.1 and Lemma 6.3.1, for
every vertex i, where 1 ≤ i ≤ 5, at most 4 faces of length 4 contain i. Thus, in any
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embedding of K3
5 , it has at most 10 faces of length 4. Since n(n− 1) is not divisible

by 3 when n = 5, the remaining faces cannot by all 6-gons. By Euler’s formula, we
have ĝ(K3

5) ≤ 4.
The proof of the upper bound is by construction, see Figure 6.5. The embedding

is on a projective plane together with 3 crosscaps, it has 10 faces of length 4, 2 faces
of length 6 and one face of length 8.

Theorem 6.3.3. If n ≥ 5 is odd, then

ĝ(K3
n) ≥

⌈
(n− 3)(n2 + n− 8)

12

⌉
.

Proof. Recall that V (Ln) = XntYn where Xn = [n] and Yn =
(

[n]
3

)
. For every v ∈ Xn,

it has
(
n−1

2

)
neighbors. By Lemma 6.3.1, at least n−1

2 pairs of them are contained in
the faces other than cycles of length 4. Therefore, suppose f be the number of faces
in the minimum genus embeddings of K3

n, we have

f ≤
n
((

n−1
2

)
− n−1

2

)
2 + n(n− 1)

6

= 3
2

(
n

3

)
− 1

6

(
n

2

)
.

Thus, by using Euler’s Formula, we obtain

ĝ(K3
n) ≥

⌈
2− n−

(
n

3

)
− 3

2

(
n

3

)
+ 1

6

(
n

2

)
+ 3

(
n

3

)⌉

=
⌈

(n− 3)(n2 + n− 8)
12

⌉
,

which completes the proof.
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