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Abstract

Empowered by today’s rich tools for media generation and collaborative production, mul-

timedia service paradigm is shifting from the conventional single source, to multi-source,

to many sources, and now towards crowdsource, where the available media sources for the

content of interest become highly diverse and scalable. Such crowdsourced livecast systems

as Twitch.tv, YouTube Gaming, and Periscope enable a new generation of user-generated

livecast systems, attracting an increasing number of viewers all over the world. Yet the

sources are managed by unprofessional broadcasters, and often have limited computation

capacities and dynamic network conditions. They can even join or leave at will, or crash at

any time.

In this thesis, we first conduct a systematic study on the existing crowdsourced livecast sys-

tems. We outline the inside architecture using both the crawled data and the captured traffic

data from local broadcasters/viewers. We then reveal that a significant portion of the un-

popular and dynamic broadcasters are consuming considerable system resources. Because

cloud computing provides resizable, reliable, and scalable bandwidth and computational

resources, which naturally becomes an effective solution to leverage heterogeneous and dyn-

amic workloads. Yet, it is a challenge to utilize the resources from the cloud cost-effectively.

We thus propose a cloud-assisted design to smartly ingest the sources and cooperatively

utilize the resources from dedicated servers and public clouds.

In current crowdsourced livecast systems, crowdsourced gamecasting is the most popular ap-

plication, in which gamers lively broadcast game playthroughs to fellow viewers using their

desktop, laptop, even mobile devices. These gamers’ patterns, which instantly pilot the

corresponding gamecastings and viewers’ fixations, have not been explored by previous stu-

dies. Since mobile gamers and eSports gamers occupy a large portion of content generators.

In this thesis, we target on two typical crowdsourced gamecasting scenarios, i.e., mobile

gamecasting and eSports gamecasting, respectively. We investigate the gamers’ patterns

to explore their effects on viewers and employ intelligent approaches, e.g., learning-based

techniques, to capture the associations between gamers’ patterns and viewers’ experiences.

Then, we employ such associations to optimize the streaming transcoding and distribution.

Keywords: Crowdsourced livecast; measurement; enhancement
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Chapter 1

Introduction

Empowered by today’s rich tools for media generation and collaborative production, multi-

media service paradigm is shifting from the conventional single source, to multi-source, to

many sources, and now towards crowdsource [63], where the available media sources for the

content of interest become highly diverse and scalable. Such crowdsourced livecast systems

as Twitch.tv (or Twitch for short), YouTube Gaming1, and Periscope2 enable a new genera-

tion of user-generated livecast systems, attracting an increasing number of viewers all over

the world. Crowdsourced content creation is expected to usher in a new wave of innovations

in how multimedia content is created and consumed, allowing content creators from different

backgrounds, talents, and skills to collaborate on producing future multimedia content.

Different from user-generated Video-on-Demand (VoD) services [13, 85, 87], e.g, You-

Tube and Vimeo, and professional broadcasting services, e.g., NBC (National Broadcasting

Company) and CBC (Canadian Broadcasting Corporation), crowdsourced livecast systems

do not provide the sources of live contents by themselves. Rather, they serve as the platforms

that bridge the sources and viewers, thereby greatly expanding the content and user bases.

On the other hand, the sources are managed by unprofessional broadcasters, and often have

heterogeneous devices and networking conditions, which generate a large number of con-

tents with different bit-rates and resolutions. They can even join or leave at will, or crash

at any time. According to our measurement from Twitch, the number of the concurrent

broadcasters is about 6 thousand at the quiet time and more than 25 thousand at the prime

time. If these broadcasters create live contents simultaneously from their personal devices,

this crowdsourced paradigm will lead to more dynamic workloads both in the ingesting and

transcoding steps. All these make high-quality streaming more challenging.

There have been some studies on crowdsourced livecast systems [38, 59, 2, 6, 10, 72].

Many of them still consider these systems as the live streaming systems with a large-scale of

viewers, but neglect the challenges from the heterogeneous broadcasters [38, 2]. The latest

1https://gaming.youtube.com/

2https://www.pscp.tv/

1
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studies mainly focus on the following three directions: (1) how to minimize the latency gap

between different viewers[10, 26]; (2) how to optimize the ingesting and transcoding services

from the perspective of the crowdsourced livecast service providers [10, 27, 81, 78]; (3) how

to reduce the encoding/uploading latency on the broadcaster-side [72, 86].

In this chapter, we first present the overview of video streaming and crowdsourced live

streaming. Then, we summarize the contributions and describe the organization of this

thesis.

1.1 Overview of Video Streaming

Due to the rapid growth of high-performance personal devices (e.g., smartphone) and the

widespread deployment of high-speed communication networks (e.g., 4G/LTE), video stre-

aming has become one of the most popular Internet services and attracted an increasing

number of users as the content providers and consumers [54, 1, 33, 46, 16]. To serve the

growing workloads, the architecture of video streaming services mainly experiences three

stages [43]:

• Client-Server model: This model is a typical distributed structure used by a large

number of applications, such as Email, World Wide Web (WWW), and FTP (File

Transfer Protocol) downloading applications. In client-server video streaming appli-

cations, the original contents are managed and generated by professional broadcas-

ting companys, such as BBC (British Broadcasting Corporation), these contents are

distributed via Internet. During the 1990s and early 2000s, most of the researchers

studied the design and implementation of new streaming protocols, such as Real Time

Streaming Protocol (RTSP) [61], RTP Control Protocol (RTCP) [22], and Real-time

Transport Protocol (RTP) [34]. The drawback of client-server video streaming appli-

cations is that the server node must maintain the streaming status of all requests from

the client nodes, which consumes a huge number of resources when the client nodes

increase largely.

• Peer-to-Peer (P2P) network: P2P network was popularized by file sharing applications

in 1999. Then, it was used in video streaming applications to scale up an increasing

number of users, attracting much attention from academia [83, 28, 49]. In a P2P

video streaming application, each video client is considered as a peer, which not only

downloads video contents from original servers, but also uploads these contents to

other peers. The main issue of using P2P streaming protocol is that all peers need to

install dedicated applications and this protocol is not firewall-friendly.

• HTTP video streaming: To conveniently transfer video contents via the Internet and

users’ local networks, HTTP video streaming was proposed and implemented recently.

According to the latest HTTP video streaming standard DASH (Dynamic Adaptive

2



Streaming over HTTP [64, 67]), a video is encoded into various versions with different

bit-rates and resolutions; each version is divided into a sequence of small segments.

These segments can be downloaded using HTTP and distributed by standard Content

Delivery Networks (CDNs). Video clients can adaptively adjust the streaming rates

according to networking capacity, buffer size, etc [53, 84, 51].

Today, such commercial services as Netflix, YouTube, and Hulu have adopted HTTP

video streaming to delivery their videos to the users. A substantial amount of researches

focus on the optimization of streaming systems [4], the improvements of Quality-of-Service

(QoS) [77, 48] and Quality-of-Experience (QoE) [21, 36] from service providers’ and viewers’

perspectives, respectively. Besides, social network services (SNS) [44] [50] and cloud-based

technologies [7] [23, 31] provide lots of unique opportunities to improve the delivery of video

streaming.

1.2 Overview of Crowdsourced Livecast

In this section, we briefly introduce the system diagram of crowdsourced livecast systems. As

shown in Figure 3.1, two main services, streaming service and chatting service, jointly serve

the geo-distributed broadcasters and fellow viewers. In the former, broadcasters’ devices

(i.e., sources) send encoded streams to the service provider’s ingesting servers, using TCP-

based protocols, e.g., Real Time Messaging Protocol (RTMP)3, to maintain the low-latency

communication. Then, the streams are transcoded to multi-quality formats, e.g., HTTP

Live Streaming (HLS)4, and delivered to fellow viewers through Content Delivery Networks

(CDNs). In the latter, a set of chatting servers receive the viewer’s live messages, and then

dispatch the messages to the corresponding broadcaster and other viewers, enhancing the

participants’ experience and interaction in live events [80].

For example, the crowdsourced gamecasting “TwitchPlaysPokemon”5, as shown in Fi-

gure 1.1a, offered the live stream and emulator for a role-playing video game “Pokemon

Red”, in which players (also as the viewers in Twitch) simultaneously send the control mes-

sages of Pokemon through the IRC (Internet Relay Chat) protocol and live messages in

Twitch. That said, the viewers are no longer passive, but can affect the progress of the

broadcast as well. This truly crowdsourced game streaming attracted more than 1.6 million

players and 55 million viewers. Figure 1.1b demonstrates another typical livecast example,

in which two travelers (i.e., broadcasters) are lively broadcasting their journey, performing

their discussion and guitar show. We split this screenshot into three areas. The travelers’

3https://en.wikipedia.org/wiki/Real-Time_Messaging_Protocol

4https://en.wikipedia.org/wiki/HTTP_Live_Streaming

5https://en.wikipedia.org/wiki/Twitch_Plays_Pokemon

3
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Streaming service Chatting service

Game Playthrough Control

Commands
Control Messages

Live Messages

(a) TwitchPlaysPokemon (Twitch)

1

2

3

(b) Daily Show (Periscope)

Figure 1.1: An illustration of two crowdsourced live streams

shows are rendered in area #1. The viewers can discuss this performance using the chat-

ting window in area #2. In such a scenario, it is worth noting that the broadcasters and

viewers can be highly heterogeneous and dynamic, who can have quite different hardware

and software configurations, and may join or leave the system at will. The broadcasters’

popularity varies significantly as well. “TwitchPlaysPokemon” has attracted more than 72

million viewers6; yet many broadcasters have only one or two viewers, or even none.

6https://www.twitch.tv/twitchplayspokemon
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1.3 Contributions

In this thesis, we present a comprehensive study on crowdsourced livecast systems from

the perspectives of measurement and enhancement. In particular, we make the following

contributions:

• We for the first time present an initial investigation on crowdsourced livecast systems.

Taking Twitch as a representative, we outline their inside architecture using both

the crawled data and the captured traffic data from local broadcasters/viewers. After

closely examining the access data collected in a two-month period, our measurement

results reveal the unique source- and event-driven viewing features, showing that the

existing delay strategy on the viewer’s side substantially impacts the viewers’ inte-

ractive experiences, and there is a significant disparity between the long broadcasting

latency and the short live messaging latency. On the broadcaster’s side, the dynamic

uploading capacity is a critical challenge, which noticeably affects the smoothness of

live streaming for viewers.

• We further analyze the popularity of different broadcasters and calculate their band-

width and computational consumptions. The results show that a significant portion

of the unpopular and dynamic broadcasters are consuming considerable system re-

sources. Yet expensive server clusters have been deployed to ingest and transcode live

streams, fulfilling the demands from a large number of heterogeneous broadcasters

and geo-distributed viewers. Through the real-world measurement and data analysis,

we show that the public cloud has great potentials to address these scalability chal-

lenges. We accordingly present the design of Cloud-assisted Crowdsourced Livecast

(CACL) and propose a comprehensive set of solutions for broadcaster partitioning.

Our trace-driven evaluations show that our CACL design can smartly assign inges-

ting and transcoding tasks to the elastic cloud virtual machines, providing flexible

and cost-effective system deployment.

• We have witnessed an explosion of gamecasting applications, in which game players (or

gamers in short) broadcast game playthroughs by their personal devices in real-time.

Such pioneer platforms as YouTube Gaming, Twitch, and Mobcrush have attracted

a massive number of online broadcasters, and each of them can have hundreds or

thousands of fellow viewers. The growing number, however, has created significant

challenges to the network and end-devices, particularly considering that bandwidth-

and battery-limited smartphones or tablets are becoming dominating for both gamers

and viewers. Yet the unique touch operations of mobile interface offer opportunities,

too. In this paper, our measurements based on the real traces from gamers and vie-

wers reveal that strong associations exist between the gamers’ touch interactions and

the viewers’ gazing patterns. Motivated by this, we present a novel interaction-aware

5



optimization framework to improve the energy utilization and stream quality for mo-

bile gamecasting. Our framework incorporates a touch-assisted prediction module to

extract association rules for gazing pattern prediction and a tile-based optimization

module to utilize energy on mobile devices efficiently. Trace-driven simulations illus-

trate the effectiveness of our framework in terms of energy consumption and stream

quality. Our user study experiments also demonstrate much improved quality satis-

faction over the state-of-the-art solution with similar network resources.

• As the most complicated and popular branch in crowdsourced livecast systems, eS-

ports gamecasting service has attracted much attention from a large number gamers

and viewers. To mitigate the huge pressure from gamecasting delivery, CGC service

providers have to transcode gamers’ RTMP (Real Time Message Protocol) streaming

to HTTP-based live streaming. Yet more than 68% of the gamecasting latency bet-

ween gamers and viewers come from the transcoding step according to the statistics

from Twitch.tv. In this paper, we are interested in optimizing transcoding task assig-

nment in eSport gamecasting services. To explore the challenges therein, we deploy

a gamecasting testbed and find that game events in eSports games largely impact

the complexity of game scenes, which in turn determines the transcoding latency of

the corresponding gamecasting contents. Motivated by this observation, we propose

a novel framework StreamingCursor, which first analyzes gamers’ interactions and

strategies to capture key game events (i.e., highlights) with the assistance of deep

learning techniques, and then optimizes transcoding task assignment in eSports ga-

mecasting service. Our design has been extensively evaluated through our trace-driven

experiments.

1.4 Thesis Organization

The remainder of the thesis is structured as follows:

• In Chapter 2, we examine the characteristics of broadcasters and viewers based on

the crawled data from Twitch.tv. In addition, we study the impact of heterogeneous

devices on the broadcaster side and viewer side, respectively.

• In Chapter 3, based on our measurement study on different broadcasters, we propose

a cloud-assisted design to allocate resources cost-effectively.

• In Chapter 4, we investigate the associations between the broadcasters and the viewers

in mobile gamecasting applications. We further propose an interaction-aware design

to predict such associations and employ them to optimize the tile-based streaming

transmission.
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• In Chapter 5, we analyze the relationships between different events and transcoding

latencies in eSports gamecasting. Through investigating the potentials from the play-

ers’ interactions, we build a learning-based framework to predict the game highlights

and use the prediction results to assign the transcoding tasks efficiently.

• In Chapter 6, we conclude this thesis, and also discuss some future directions.
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Chapter 2

A Twitch.TV-Based Measurement

Study

Recent years, crowdsourced content creation is expected to usher in a new wave of in-

novations in how multimedia content is created and consumed, allowing content creators

from different backgrounds, talents, and skills to collaborate on producing future multime-

dia content. For instance, the industrial pioneer, Twitch.tv (www.twitch.tv), allows anyone

to broadcast their content to massive viewers, and the primary sources come from game

players from PCs or other gaming consoles, e.g., PS4 and XBox. According to Twitch’s Re-

trospective Report 20131, in just three years, the number of viewers grew from 20 million to

45 million, while the number of unique broadcasters tripled to 900 thousand. Other similar

platforms such as Poptent (www.poptent.com) and VeedMe (www.veed.me) have emerged

in the market with great success, too. In the 2014 Sochi Winter Olympics, NBC (National

Broadcasting Company) had a total of 41 live feeds distributed both in Sochi and in USA,

and in the 2014 FIFA World Cup, when a goal is scored, CBC (Canadian Broadcasting

Corporation) synchronized the live scenes of the cheering fans in public squares from cities

worldwide in its live streaming channel. The evolution is driven further by the advances

in personal and mobile devices that can readily capture high-quality audio/video anywhere

and anytime (e.g., iPhone 6 supports 60 fps 1080p High Definition (HD) video recording,

and 240 fps slow-motion recording for 720p HD videos).

Crowdsourced livecast systems promote viewers’ involvement with live content broad-

casters. The viewers can choose their preferred perspective for a live event (e.g., one par-

ticular game player, or a game commentator) and enjoy virtual face-to-face interactions

with real-time chatting. It is necessary to ensure timely interaction and minimize the swit-

ching latencies, which again is aggravated with the multiple non-professional sources and

the massive viewers.

1http://www.twitch.tv/year/2013
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In this chapter, we present an initial investigation on the modern crowdsourced livecast

systems. Taking Twitch as a representative, we outline their inside architecture using both

crawled data and captured traffic of local broadcasters/viewers. Closely examining the access

data collected in a two-month period, we reveal that the view patterns are determined

by both events and broadcasters’ sources. Our measurements explore the unique source-

driven and event-driven views, showing that the current delay strategy on the viewer’s side

substantially impacts the viewers’ interactive experience, and there is significant disparity

among the long broadcast latency and the short live messaging latency. On the broadcaster’s

side, the dynamic uploading capacity is a critical challenge, which noticeably affects the

smoothness of live streaming for viewers. Inspired by the measurement results, we discuss

potential enhancements toward better crowdsourced interactive live streaming.

2.1 Inside the Twitch Architecture

Table 2.1: Twitch REST APIs used in our crawler

REST APIs Description

GET /streams/summary Get the global statistics of streams and views at pre-
sent

GET /streams Get the meta file of live streams at present

GET /channels/:channel Get the number of total views, followers and delay
setting of broadcaster’s channel

GET /channels/:channel/videos Get the number of total views, duration of each stream
in broadcaster’s channel

As a new generation and proprietary system, despite certain information leakages [30],

the inside details of Twitch and particularly the access data remain unclear to the public, so

do many other crowdsourced livecast systems in the market. With the assistance of Twitch’s

Representational State Transfer (REST) APIs2, we continually crawled the access data of

live contents from Twitch in a two-month period (from October 1st to November 30th, 2014).

The crawled data include the number of Twitch streams, the number of Twitch views, and

the meta-data of live streams every ten minutes. The meta-data include that the game name,

stream ID, broadcaster’s channel ID, current views, created time and other information. Our

crawler analyzed these meta files to create the sets of broadcasters’ channels and scrape the

number of the total views and durations of past broadcasts of each broadcaster every day.

Because every past broadcast only counts the number of viewers during its broadcast, the

number of total views indeed reflects the characteristics of live streams. Table 2.1 shows the

details of the REST APIs used in our crawler. Our dataset includes 2, 923 active broadcasters

(i.e., sources), who have broadcast a total of 105, 117 live performances, attracting over 17.8

2http://dev.twitch.tv/
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Figure 2.1: Device distribution of Twitch’s live sources

million viewers. That is, each source has conducted around 36 live broadcasts in the two-

month period. These broadcasts are of different durations and viewer populations, as we

will analyze in the next section.

The broadcast sources can be quite heterogeneous, involving PCs, laptops, and even

PS4/XBox game consoles, and multiple sources can be involved in one broadcast event.

For instance, recent Dota2 game championships “The Summit 2” embraces at least three

sources to stream this event, including two game competitive players and a commentator’s

perspective. Figure 2.1 plots the distribution of the broadcasters’ devices in Twitch. Given

that the build-in Apps of PS4/Xbox were available just after March 2014, we can clearly see

that the PC/Laptop are the most popular devices, at about 76.7%; the second is PS4, at

about 15.1%; and the third is XBox One, at about 9.2%. This figure also indicates that the

most widely used streaming software on PC/laptop platform is Open Broadcaster Software

(OBS) 3, at about 59%.

Our analysis results show that Twitch deploys RTMP (Real Time Messaging Protocol

over HTTP Tunnel) streaming servers, covering 14 regions, to compensate the weaknesses

of the sources, e.g., networking fluctuation and inferior performance. The original streaming

will be transferred through HTTP Live Streaming from streaming servers to viewers with

the assistance of a CDN, whereas all the servers are of names: video#.sfo##.hls.twitch.tv,

which also indicates the location of the corresponding CDN server, e.g., “sfo” for San Fran-

cisco. It is known that Twitch further deploys load balancing servers (usher.twitch.tv) to

optimize the live streaming distribution [30] and deliver HTTP Live Streaming playlist file

channelID.m3u8 to each viewer’s device. To accommodate heterogeneous viewers, Twitch

also provides adaptive online transcoding service to premium content broadcasters. All the

live performances can be watched by web browsers or Twitch Apps for mobile devices (e.g.,

3https://obsproject.com
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Figure 2.2: Two broadcasters/game players measurement configuration

iOS or Android-based). If a premium broadcaster enables online transcoding service, the

browser-based viewers can manually select a proper quality from Source, High, Medium, Low,

and Mobile, and the option Auto (i.e., adaptive streaming) is the default setting for a mo-

bile user. However, as we will show, the duration of 50% sessions are over 150 minutes,

which imposes too much overhead to transcoding, and hence non-premium broadcasters

can only make a tradeoff by selecting a streaming quality for most of the viewers.

Interactive communication is a unique feature in such a Twitch-like crowdsourced sy-

stem. A set of interactive messaging servers receive the viewer’s live messages, and then

dispatch the messages to the corresponding live broadcaster and other viewers, enhancing

the participants’ experience for the live events towards realistic competition environment.

That said, the viewers are no longer passive, but can affect the progress of the broadcast as

well. In particular, for broadcasting live game playing, the interactive service allows viewers

to interact with the game players and commentators in realtime. Our data reveal that these

servers for interaction are only deployed in North America using the IRC (Internet Relay

Chat) protocol; yet they deliver all the live messages worldwide with reasonably low latency,

as we will show in Section 2.4.

To closely investigate the behavior and experience of individual sources and viewers, we

also set up three source-end PCs (one commentator and two game players) and five viewers

over the Twitch platform, and use network tools, including Wireshark, tcpdump, and ISP

lookup, to monitor their detailed incoming and outgoing traffic. Figure 2.2 describes the

basic two-player competition broadcast setup for game DotA2. Each player has installed

a web camera that captures the video in realtime and encodes in H.264 locally with OBS

v0.63b, which is then transmitted to the Twitch platform through RTMP. All devices in our

platform are of household PC/tablet configurations, which ensure that our measurement

results are representative for general users. The configuration of each device is shown in

Table 2.2 and 2.3. The iOS and Android devices were jail-broken/rooted to capture the

incoming/outcoming traffic precisely. We also deployed a NETGEAR GS108PEv2 switch

to simulate the dynamic uploading bandwidth on the hardware level, which is much more

accurate than a software limiter. Finally, to quantify the latencies on the viewer’s side and
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the impact of network dynamics on Quality-of-Experience (QoE), we use the commentator’s

laptop (B1) as NTP (Network Time Protocol) server and synchronize other devices to

improve the accuracy of measurement results.

Table 2.2: Configuration of broadcasters’ devices

ID Type Operating Sys. Uploading

B1 (Commentator) Laptop Windows 8.2 2-12 Mb/s

B2 (Players) Desktop Windows 8.2 5-18 Mb/s

B3 (Players) Desktop Windows 7 3-15 Mb/s

Table 2.3: Configuration of viewers’ devices

ID Network Operating Sys. Downloading

P1 Wired Windows 7 160-250 Mb/s

P2 Wireless Windows 8.2 7-25 Mb/s

M1 Wireless iOS 8.0 2-25 Mb/s

M2 Wireless Android 4.2.2 4-36 Mb/s

M3 3G Android 4.2.2 0.6-1.2 Mb/s

2.2 View Statistics and Patterns

We analyze Twitch views data and find that it represents several novel and unique charac-

teristics. As of October, 2014, the peak of concurrent streams is above 12000, most of which

are for online gaming broadcast. These game streams attract more than one million views

every day. We first investigate the characteristic of views in different live contents, and then

discuss the source-driven and event-driven views.

2.2.1 Popularity and Duration

The number of viewers is one of the most important characteristics, which reveals the

popularity and access patterns of the content. For our global view dataset containing more

than 105 thousand streams, we plot the number of views as a function of the rank of the

video streams’ popularity in Figure 2.3. Clearly, the plot has a long tail on the linear scale;

it does not fit a classical Zipf distribution, which is a straight line in a log-log scale, as

shown in Figure 2.3. We also plot two other typical distributions, Weibull and Gamma.

Because they have heavy tail, especially in the top part, and have been demonstrated to

be better fits in YouTube [13], they are also good in the Twitch’s case, either. We also

calculate the coefficient of determination R2 to indicate the fitness in this figure. Weibull

and Gamma distributions can fit the rise part, in which the popular streams hosted by

famous players or commentators attract a large number of game fans through broadcasting

game competitions. We also analyze the influences of live events in Section 2.2.2.
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Figure 2.5: Views patterns in Twitch (From 2014OCT01 to 2014OCT07)

To understand Twitch’s uniqueness, we closely examine the relationship among the

total number of views and broadcasters, and the number of views in top broadcasters every

ten minutes in our dataset. We find that top-0.5% broadcasters contribute to more than

70% of the total views in general. In several extreme cases, the top-0.4% broadcasters
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account for more than 90% of total views. As such, the distribution of the views in Twitch

exhibits extreme skewness, being much stronger than conventional streaming systems, e.g.,

YouTube [87] and PPLive [46].

When considering the computation and traffic impacts of a broadcast, popularity is

not the only factor, which must be weighted together with the duration of a broadcast.

As shown in Figure 2.4, the streaming durations are highly diverse, too. About 30% live

contents have a duration around 60− 120 minutes, but there are also 30% being more than

4 hours, which is dramatically longer than those in typical user-generated video sharing

platforms, e.g., YouTube, where the longest steam is around 2-3 hours (i.e., movies) [13]. The

exact duration of a Twitch broadcast, which depends on the interest of and the interaction

with the viewers, can hardly be predicted in advance, either. This again is different from

professional content services, e.g., TV broadcast. Such long-lived and yet unpredictable

broadcast apparently pose challenges on computation and bandwidth resource allocation

for real-time online transcoding and reliable broadcasting.

2.2.2 Event- and Source-Driven Views

Due to the globalized demands with time/region diversities, it is well-known video services

always experience dynamics and fluctuations requests [10]. To understand the view dynamics

of Twitch, Figure 2.5a depicts the online views over time in a one-week period (from OCT01

to OCT07, 2014). The number of concurrent online views exhibits daily patterns: like in the

conventional video services [87], the Twitch viewers tend to watch game streaming during

the day and evening, whereas less likely in midnight. Interestingly, the number of views

was the highest around the midnight on OCT04 and then hastily decreased to the lowest

level, implying that if a prominent source can indeed attract massive viewers, despite time.

Similar (though less striking) patterns can be seen in OCT05, 06, and 07.

There are also two transient drops from time to time, e.g., on OCT03. After investi-

gating the broadcasters’ data, we find that a popular live streaming was disconnected for

an unknown reason but re-connected quickly. Accordingly, the number of viewers decreased

instantly but managed to recover in a few minutes after re-connection. Such situations ra-

rely happen for professional broadcasters, which have highly reliable equipment setup and

network connections. Crowdsourced broadcast system, e.g., Twitch, on the other hand, re-

lies on the non-professionals to provide the broadcast content in realtime; as such, even if

the Twitch platform itself is highly reliable with over-provisioned resources, it can hardly

guarantee the source video quality.

To further understand the roles of the sources, Figure 2.5b and 2.5c detail the number of

views among top broadcasters in two game categories (League of Legends, and Defense of the

Ancients 2) during one week. As can be seen, the broadcast can be suspended suddenly; e.g.,

there are four obvious rises in Figure 2.5b which dropped immediately, due to terminating

the game competitions. Since the live progress depends on what is actually happening in the
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Figure 2.6: The characteristics at the viewer-side (error bars are 95% confidence intervals)

game competitions, the duration and the exact time of termination can hardly be predicted

(see for example the variations in 2.5c). The exact reason and time that trigger a views burst

can hardly be predicted, either. Note that these still hold with content other than gaming, as

long as they are provided by distributed crowdsources. In short, the views of a crowdsource

live streaming system can be more dynamic and unpredictable than conventional video

services, and the views are both event- and source-driven. Even though the Twitch platform

is aware of the online status of the massive sources and viewers, significant efforts are still

needed to provide the persistently good user experience.

2.3 Messaging and View Latency

We next examine the latencies in the Twitch system, which are critical to the user experience,

particularly with live interactions. To this end, we focus on the latencies experienced by a set

of representative viewers with typical devices and network settings, namely, wired PC viewer

(P1), wireless PC viewer (P2), and mobile tablet viewers (M1, M2, M3). Three latencies are

of interest here, namely, live messaging latency, broadcast latency, and switching latency.
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2.4 Live Messaging Latency

A distinct feature of the crowdsourced content production is that all viewers and broadcas-

ters can interact and discuss the current live events, which collectively affect the ongoing and

upcoming broadcast content. Twitch enables the collaboration via live messages exchanged

through a set of interactive servers, as shown in Figure 2.2. We capture the networking

traffic from five devices and three sources and analyze the send/receive timestamps of live

messages (see Section 2 for the experiment configuration). Figure 2.6a presents the live

message latencies for five representative viewer devices in our experiments. This type of

latency depends on both network conditions and device types; two desktop devices witness

the almost same latency between the message sending and receiving operations, whereas the

receiving latency of mobile devices is lower than the sending latency. Yet the measurement

results suggest that, in general, the live message latency is quite low (≤ 400ms), enabling

responsive interaction among the participants (viewers and broadcasters). It is worth noting

that, along with the live message, the certain control information including a participant’s

type and streaming quality is also sent to a Twitch statistic server (mp.twitch.tv), as found

in our captured network data.

2.4.1 Broadcast Latency

We next measure the broadcast latency, which is defined as the time lag of a live event when

viewers watch the live streaming from the source. It reflects a viewer’s time difference with

the commentator and other viewers when they watch and discuss the current live event. A

long broadcast latency will obviously affect the interactivity.

Figure 2.6b shows the average, maximum, and minimum broadcast latencies of the four

viewer devices (P1, wired PC; P2, wireless PC; M1, M2, mobile tablet). We first vary the

streaming bitrates from 800 Kb/s to 2400 Kb/s, and ensure that the downloading bandwidth

of each device is significantly higher than the streaming bitrate, so as to mitigate the

bottleneck within the network. As shown in the figure, the browser-based P1 and P2 have a

latency about 12 seconds for different streaming rates, whereas the client-based M1 and M2

have about 21 seconds. We closely investigate the traffic of each device and find that Twitch

adopts a device-dependent broadcast latency strategy to gather the crowdsourced content

for processing and to ensure smoothed live streaming. For desktop devices, the inevitable

latency derives from that Twitch receives and converts RTMP streaming to HTTP Live

Streaming chunks, each of which is a four-second streaming segment; on the other hand,

for mobile devices, Twitch will strategically send three more chunks than desktop devices,

if all devices start to play live streaming simultaneously. That is, even if we consider an

ideal network, mobile devices will still suffer an extra 12 seconds broadcast latency in the

current Twitch platform. To evaluate the impact of network bottlenecks, we also compare the

latencies of mobile devices with WiFi (M2) and 3G (M3) networks, as shown in Figure 2.6c.
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As can be seen, the latencies for M2 remain almost constant across all streaming rates, and

M3 incurs extra network delays that increase with the growing streaming rate. The extra

network latency is significant only with very high streaming rates, which implies that the

processing time (about 10s for all devices) and strategic delivery (extra three chunks for

mobile devices) within the Twitch platform are the key factors in broadcast latency.

2.4.2 Source Switching Latency

Given the massive sources available, a viewer has rich choices and can frequently switch

among different sources, for the same broadcast event, or even to a totally different event,

both of which are now done manually in Twitch (per viewer’s action). To investigate the

latency of source switching, we record the time duration for 100 switches performed by the

different types of devices in different network environments, as shown in Figure 2.6d. Not

surprisingly, a higher downloading bandwidth enables a lower switching latency in both

wired and wireless networks (e.g., 4 seconds for a high speed wired network and 5.5 seconds

for a low-speed wireless network). The latency however is not proportional to the bandwidth;

in particularly, the devices in the mobile networks generally have lower switching latencies

than those in the wired network, although the mobile bandwidths are indeed much lower,

which again indicates different device-dependent strategies have been applied within Twitch.

2.4.3 Impact of Broadcaster’s sources

So far, we have examined the latencies on the viewer’s side, which includes not only the

processing time within the Twitch server and the time from the server to the viewer, as

in conventional streaming systems, but also the latency from the source to the server,

a new component in the crowdsourced system. Through household Internet accesses and

multimedia-ready PCs or mobile devices, anyone can become a Twitch broadcaster, any-

where and anytime. These non-professional broadcasters however have diverse networking

connections, both in terms of capacity and stability, especially with wireless mobile accesses.

To evaluate the network impact, we deploy a modified OBS module on every broadcaster to

record the bandwidth consumption, and first initialize live streaming service in the networks

with sufficient uploading bandwidth.

To understand the impact, we next control the maximum uploading bandwidth following

five settings: No Limit, 4000 Kb/s, 2000 Kb/s, 1000 Kb/s, and 512 Kb/s; each one lasts

five minutes (300 seconds), and the setting finally returns to No Limit at the 1500 second.

The original streaming encoding setting is still 4000 Kb/s, and the measurement results are

shown in Figure 2.7. From this figure4, we observe that the number of total dropped fra-

4For simplicity, we only show the broadcast latency between P1 and B1. To avoid measurement bias, we
repeat the same test on another two broadcasters’ devices B2/B3 and other viewer’s devices. The results
remain consistent with Figure 2.7.
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mes consistently grows with decreasing the uploading bandwidth on the broadcaster’s side.

In the meantime, the broadcast latency on the viewer’s side also suffers the stepwise rise;

in particular, the live streaming experiences two notable delay increases at 900 and 1200

seconds. That said, Twitch attempts to maintain a stable broadcast latency, but cannot gua-

rantee the smooth live streaming. Another interesting phenomenon occurs after recovering

the broadcaster’s uploading condition (1500-1800 seconds). In this case, the uploading ca-

pacity becomes sufficient again, and the broadcaster can offer a stable streaming to Twitch;

yet Twitch just decreases the broadcast delay slightly to mitigate the impact of previous

networking diversity at the broadcaster-side. These measurement results indicate that the

streaming service provided by Twitch is vulnerable and sensitive when the broadcaster’s

networking capacity is changed frequently, not to mention responsive interactions.

2.5 Summary

In this chapter, we presented an initial investigation on the crowdsourced livecast systems,

using Twitch as a case study. Closely examining the access data collected in a two-month

period, we outlined the inside architecture of Twitch, and revealed that the views patterns

are determined by both the event and the broadcasters’ sources. Our measurement also

explored the unique source-driven and event-driven views, showing that the current delay

strategy on the viewer’s side substantially impacts the viewers’ QoE, and there is significant

inconsistency among the long broadcast latency and the short live messaging latency. On the

broadcaster’s side, the dynamic uploading capacity is a critical challenge, which noticeably

affects the smoothness of live streaming for viewers.
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Chapter 3

Cloud-assisted Crowdsourced

Livecast

Recent years, crowdsourced livecast has emerged as a powerful and popular streaming ser-

vice over the Internet [35]. Such livecast services as Twitch.tv (or Twitch for short), Ga-

mingLive1, and Dailymotion2, allow Internet users to broadcast cooking shows, costume

design, music-making, game playthrough3, etc., attracting an increasing number of viewers

around the world. One recent report from Twitch4 revealed that more than 30,000 broad-

casters stream game playthrough on Twitch simultaneously and over 10 billion messages

are delivered by its live chatting service a day. To accommodate the growing number of

broadcasters and viewers, Twitch is aggressively expanding dedicated servers clusters into

high-demand areas5. Currently, it has 31 service regions (i.e., ingesting regions) across five

continents6.

To better understand the challenges and opportunities therein, we have closely monito-

red 1.5 million broadcasters and 9 million streams within one month on Twitch. We find

that, despite the success of numerous celebrities, there indeed exist many more broadcas-

ters who have very few or even no viewers. These unpopular broadcasters have irregular

schedules, starting or terminating their broadcast programs at any time. They have created

highly dynamic workloads to the Twitch’s servers and consumed a significant amount of

valuable server resources continuously. In particular, over 25% of the bandwidth resources

1www.gaminglive.tv

2www.dailymotion.com

3When game players play games, they also broadcast the monitor contents from their game devices to
fellow viewers with the real-time comments.

4https://goo.gl/cHW1md

5https://goo.gl/S9mfCS

6https://twitchstatus.com/
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and over 30% of the computational capacity are used to host the broadcasters with no any

viewer at all. These unpopular broadcasters are not only in greater numbers, but also harder

to be managed with the irregular schedules and resource consumptions. They are not yet

considered in the optimization of existing streaming systems, making the optimal resource

allocation quite challenging.

Previous studies have shown the potentials of public clouds in accommodating the dy-

namic patterns of workloads [56][70]. The technical report from Twitch, however, revealed

the weakness of completely employing public clouds in terms of the higher expense, the

latency concerns, and the inflexible management7. We, therefore, explore the feasibility of

using dedicated servers and public clouds cooperatively. Through a series of measurements

based on Amazon EC28 (EC2 for short) and PlanetLab9 nodes, we find that public clouds

can provide comparable performance in the ingesting and transcoding steps. Yet given the

existence of different service regions, how to assign the broadcaster to the regions with

minimum operation costs remain challenging.

In this chapter, we present CACL (Cloud-assisted Crowdsourced Livecast), a generic

framework that facilitates a cost-effective migration for broadcasters’ workloads. In this

framework, we first design a stability index (s-index) to characterize a broadcaster’s degree

of stability in the workload patterns. Then, we formulate and solve the resource allocation

problems in ingesting and transcoding steps, considering the diverse capacities and expenses

in different regions. Trace-driven evaluations show that our proposed solutions migrate up

to 59.9% of workloads from the dedicated servers to the public cloud and reduce about 20%

of leasing cost compared with other cloud-assisted strategies.

3.1 Related Work

Some recent studies have already focused on crowdsourced livecast systems. Kaytoue et

al. [38] introduced the characteristics of Twitch from the perspective of web communities.

To address the transcoding problem for non-professional broadcasters, Aparicio-Pardo et

al. [6] first analyzed the Twitch dataset, and then proposed an optimal model to improve the

viewer’s satisfaction. Shea et al. [62] conducted an empirical performance study and profile

the architecture of Twitch. Their work further extended the Twitch framework through

bridging cloud gaming platforms and live streaming services. Essaili et al. [21] explored the

QoE-based uplink resource allocation of user-generated video content. The proposed solution

improves resource utilization in mobile networks. Our work differs from these recent studies

in the following aspects: first, we focus on how to cost-effectively accommodate the dynamic

7https://goo.gl/tFCxcu

8https://aws.amazon.com/ec2

9https://www.planet-lab.org/
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Live Streams

Live Chatting

Broadcaster Viewers

Figure 3.1: A generic system diagram of crowdsourced livecast platforms

and irregular workloads in crowdsourced livecast systems; second, our cloud-assisted design

utilizes the flexible resources from public clouds as a complement, with the minimum change

to the existing architecture.

On the other hand, cloud transcoding, as a critical component of live streaming, has

emerged in the current industrial market. For example, Amazon provides its online transco-

ding service “Elastic Transcoder (ETS10)” that works with the master copy of contents in

Amazon S3, but does not support the transcoding tasks of live streaming. Another cloud

platform Bitmovin11 supplies both the on-demand and live transcoding service to custo-

mers. Similar services also include Zencoder12, PandaStream13, EncoderCloud14, etc. There

have been significant researches on cloud-assisted transcoding in recent years. Most of these

works examine the characteristics of on-demand video and design the cloud-assisted transco-

ding architectures in the practical scenarios. Li et al. [45] presented “Cloud Transcoder” to

transcode the high resolution and heterogeneous videos from mobile devices. Ma et al. [51]

proposed a scheduling strategy on video transcoding for DASH (Dynamic Adaptive Strea-

ming over HTTP) in a cloud environment through monitoring the workload on each virtual

10http://aws.amazon.com/elastictranscoder/

11http://www.bitmovin.net/

12https://zencoder.com/en/

13https://www.pandastream.com/

14http://www.encodercloud.com/
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machines. Different from these works, we deploy ingesting and transcoding services on pu-

blic clouds and optimize the resource allocation for the dynamic broadcasters’ workloads in

the crowdsourced livecast scenario.

3.2 Measurements of Crowdsourced Livecast: Twitch as a

Case Study

In this section, we try to answer the following questions: how many unpopular broadcasters

exist in real crowdsourced livecast systems? And, what is the underlying impact of those

unpopular broadcasters on the platform performance? We closely investigate the broadcas-

ters’ workloads and the corresponding resource consumptions using the crawled data from

Twitch, the largest commercial crowdsourced livecast platform15.

3.2.1 Twitch-based Datasets

The crawled data are continuously collected from Twitch every five minutes in a one-month

period (Feb. 1st-28th, 2015). Through the official APIs, our multi-threaded crawler16 obtai-

ned information from each broadcaster and the official system dashboard17. We retrieved

both the broadcaster dataset and stream dataset from it18. We have excluded certain out-

liers19 from the two datasets. A brief explanation is as follows:

• in broadcaster dataset: each trace collects the total number of views and other statis-

tics such as the device type (PC, XBox, or PS4), partner status20 and the playback

bitrate and resolution of source quality, for a total of more than 1.5 million broadcas-

ters (2% outliers have been eliminated).

• in stream dataset: each trace records the number of viewers every five minutes and

other properties including the start time, duration, game name, etc., for a total of

more than 9 million streams (0.3% outliers have been removed).

15http://marketingland.com/marketers-paying-attention-twitch-202984

16Our multi-threaded crawler does not need Twitch’s API client-ID and avoids the limitation for the
maximum number of objects to return in each request.

17The official system dashboard provides the statistics of current broadcasters, viewers, and games. Link:
https://stats.twitchapps.com/

18The multi-threaded crawler and data are available at: https://clivecast.github.io/

19We remove a broadcaster or a stream from the datasets, if its trace is incomplete due to network outage
or other connection/terminal problems.

20There are two types of broadcasters: partner and non-partner. Twitch enables quality options for part-
ners, whose viewers can select the preferred streaming quality from the source quality (1080p) to 720p, 540p,
etc.
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3.2.2 Characteristics of Crowdsourced Live Broadcasters

Broadcasters can stream their game playthroughs from XBox, PS4, and PC/Laptop. XBox

and PS4 connect to Twitch’s ingesting servers through built-in applications directly, and

PC/Laptop captures the live contents from the monitor by various hardware (e.g., Roxio

Game Capture HD Pro) or software (e.g., XSplit21 and OBS). We measure the percentage

of each type of devices in the broadcaster dataset. The result shows that: the most popular

device is PC/Laptop, at 65%-85%; the second is PS4, at 5%-25%; the third is XBox, at

5%-15%. Figure 3.2 exhibits the proportion of three types of devices during one day.

In our broadcaster dataset, we also record the time when each broadcaster starts, so we

can closely examine the inter-arrival time and arrival rate of the broadcasters during the

one-month period. Figure 3.3 plots the Probability Density Function (PDF) of broadcasters’

inter-arrival time. As can be seen, the inter-arrival time of more than 60% of XBox broad-

casters is less than two seconds. The percentages are 75% and 90% in PS4 and PC/Laptop,

respectively. Note that a Poisson Distribution can be used to fit the inter-arrival time on

three platforms with different parameters λ.

Figure 3.4 shows the PDF of broadcasters’ arrivals per minute. The crawled data in three

types of devices show similar distributions, which exhibit two peaks. These peaks are mainly

caused by the daily pattern of broadcasters. In particular, the whole streaming system has

the lowest workloads at midnight and the highest at noon; therefore, the first peak is

generated by the midnight workloads, and the second peak is caused by the noon workloads

in this figure. Besides, this figure also illustrates the different activities of broadcasters in

different types of devices. For example, the arrival peaks on the XBox platform are only 12

and 41 arrivals per minute, which is greatly lower than for the other two platforms. This

finding also proves the significant disparity of the inter-arrival time in three types of devices

in Figure 3.3 as well. The arrival PDF can be fitted by a bimodal distribution, which is

a mixture of two normal distributions. The parameters are also shown in Figure 3.4, in

which “N&N” indicates that the fitting curve is a component of two normal distributions

with parameters (p, µ1, µ2, σ1, σ2). Parameter p determines the weight of the two normal

distributions (i.e., the first normal distribution has a weight p, and the second one has a

weight (1− p), 0 < p < 1). µ1, µ2 show the means, and σ1, σ2 show the standard deviations.

3.2.3 Effects of Crowdsourced Live Events

Crowdsourced livecast enables event-related live streamings with different broadcasters. For

example, five players in one e-sports competition not only cooperatively play a game, but

also simultaneously broadcast their game playthroughs to fellow viewers. These streams may

be ingested by different streaming servers, and show the distinct contents for this e-sports

21https://www.xsplit.com/
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Figure 3.5: Characteristics of crowdsourced live events

competition. These event-related live streams not only have the event-based correlation,

but also exhibit the broadcaster-related differences. We first use the broadcasters’ names

and game types to find these event-related live streams, and then explore their characteris-

tics. Figure 3.5a plots the number of live events during one month. We can find that live

events exist in all data traces. Moreover, they attract up to 52% of total viewers in our

dataset, as shown in Figure 3.5b. If viewers switch live streams among these broadcasters

to select a preferred perspective, the extra latency will impact on the viewers’ QoE. As

such, we consider the event-related feature in the problem formulation and optimization in

Section 3.4.

3.2.4 Popularity of Crowdsourced Live Broadcasters

We then focus on the distribution of broadcaster’s popularity, which is a key feature in pre-

vious studies for multimedia systems [13][49], and is also critical to answer our first question.

We plot the highest number of concurrent viewers against the rank of the broadcasters (in

terms of the popularity) in log-log scale in Figure 3.6. From this figure, we observe that
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the popularity of those broadcasters well exhibits a Zipf’s pattern22. We further find that

there exists such a high skewness, that is, the top-3% popular broadcasters account for

about 80% of total viewers at the peak time. Another interesting finding is that 90% of the

broadcasters only attract less than 8 viewers (labeled on the small figure in Figure 3.6) even

at their peak time. Based on these findings, if the peak number of concurrent viewers in all

live streams of a broadcaster is less than 8, we assume that this broadcaster is unpopular

and their streams are also unpopular.

26



FEB01 FEB02 FEB03 FEB04 FEB05 FEB06 FEB07 FEB08 FEB09
0

0.5

1

1.5

2

2.5
x 10

4

#
 o

f 
v

ie
w

er
s

 

 

Broadcaster A

(a) Popular broadcaster A

FEB01 FEB02 FEB03 FEB04 FEB05 FEB06 FEB07 FEB08 FEB09
0

1

2

3

#
 o

f 
v

ie
w

er
s

 

 

Broadcaster B

(b) Unpopular broadcaster B
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3.2.5 Dynamics of Crowdsourced Live Broadcasters

In the stream dataset, the unpopular streams account for 89.5% of all streams. We next

try to answer two critical questions: (1) How long are these unpopular streams? (2) Is

there any difference between popular and unpopular streams in terms of live duration? We

compare the distribution of their duration with the popular streams, as shown in Figure 3.7.

This figure shows that the duration of about 80% of unpopular streams is less than 83

minutes. Because the number of unpopular streams is quite large (about 8.13 million), these

unpopular streams could occupy the resources frequently and dynamically in the dedicated

servers. We also calculate the total duration of all unpopular streams in one month to be

nearly 830 years, while the total duration of popular streams is only 310 years. A huge

amount of resources is not utilized effectively.

We also plot the PDF of the broadcasters’ arrivals per five minutes in Figure 3.8. This fi-

gure shows that the arrivals of the popular broadcasters are clearly lower than 300, while the

unpopular broadcasters’ arrivals have a considerable range from 400 to 1800. To illustrate

the differences between the two types of broadcasters, we plot two typical broadcasters’

activities during ten days in Figure 3.9a and 3.9b. Figure 3.9a illustrates that broadcaster

A has a regular schedule with a stable live duration, attracting a large number of viewers.

Figure 3.9b shows that the broadcaster B attracts a few viewers, but consumes the dedi-

cated resources continuously with the irregular schedule. Due to the frequent arrivals and

irregular resource consumption, it is necessary to optimize the dynamic workloads of these

unpopular broadcasters in current crowdsourced livecast systems.

22We use the coefficient of determination, denoted R2, to illustrate how well our measured data fit the
Zipf’s law.
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Figure 3.10: Different types of broadcasters’ resource consumptions

3.2.6 Challenges of Hosting Unpopular Broadcasters

To understand the challenges in hosting these unpopular broadcasters, we use the playback

bitrate and resolution in the broadcaster dataset to estimate the consumption of band-

width/computational resources of live streams. The estimation is based on the work in [6],

which provides the empirical CPU cycles measurements under different transcoding set-

tings. Figure 3.10 shows the proportion of bandwidth/computational consumption of two

types of broadcasters when they stream live content to ingesting servers on Feb 14th/15th,

2015. The broadcasters who do not have any viewers consume about 25% of bandwidth

resources and 28% of computational resources. In the meantime, about 33% of bandwidth

resources and 31% of computational resources are consumed by the broadcasters who only

have less than 8 concurrent viewers. Note that these broadcasters only attract less than 5%

of online viewers.

3.3 CACL: Architecture and Design

The results from the Twitch-based measurement have illustrated that the dedicated re-

sources are not utilized effectively and motivated us to design a new crowdsourced livecast

framework. In this section, we first examine the feasibility of migrating certain workload

to public clouds through an EC2-based measurement, and then present the architecture of

our Cloud-assisted Crowdsourced Livecast (CACL) design, which targets on mitigating the

impact of current dynamic, unpredictable, and irregular workloads cost-effectively.

3.3.1 EC2-based measurement

Due to the elastic resource provisioning and cost-effective scaling, public clouds have been

proven to be an effective complement of dedicated servers for streaming services [1]. For

28



PlanetLab Nodes Public clouds (EC2) 

Datacenters (Twitch)

Figure 3.11: Diagram of the EC2-based
measurement

0 200 400 600 800 1000

RTT (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

EC2-Best

Twitch-Best

EC2-Worst

Twitch-Worst

0 20 40
0

0.2

0.4

0.6

0.8

Figure 3.12: RTT comparison

instance, Netflix, the major streaming provider in America, has migrated its streaming

infrastructures to Amazon EC2 (EC2 for short) and the storage of master film copies to

Amazon S3 (Simple Storage Service) since 2010. For crowdsourced livecast, it remains to

identify which workloads to be migrated to the public cloud without sacrificing the QoE of

viewers. We next conduct the measurements to investigate this problem based on Amazon

EC2 and PlanetLab nodes. We focus on the Round-Trip Time (RTT) between broadcasters

and ingesting servers because this metric is mainly used to test the ingesting performance

in the broadcasting software (e.g., OBS).

To compare the ingesting performance (i.e., RTT) between the dedicated servers and

the public clouds, we deploy eight ingesting servers on EC2 using m3.medium instances

with Ubuntu 14.04 and Nginx-RTMP module23. Similar to Twitch’s dedicated ingesting

servers, these EC2 instances, which are located at eight locations (Virginia, Tokyo, Ireland,

etc.), can receive/transcode live streams using Nginx-RTMP module and deliver them to

geo-distributed viewers. We also set up 224 PlanetLab nodes (the maximum number of

available nodes during our study) to run as the broadcasters and measure the performance

of the ingesting connection between these broadcasters and ingesting servers, as shown in

Figure 3.11. We measure the RTTs between 224 PlanetLab nodes and 26 ingesting servers

(18 in Twitch24 and 8 on EC2) and acquire the following results.

3.3.2 Round-trip Time

Figure 3.12 shows the RTT comparison for the Twitch and EC2 cases. We can observe that

about 60% of broadcasters in the Twitch-best case have a quite low RTT (less than 35 ms),

but the disparity between the two best cases is quite small, as shown in the small figure

23https://github.com/arut/nginx-rtmp-module

24Twitch had only 18 ingesting regions during our study.
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Figure 3.13: Broadcast latency and CPU usage on different instances

in Figure 3.12. Moreover, nearly 40% of broadcasters can enjoy a lower connection latency

(with the maximum up to 150ms) when they choose EC2 instances as the preferred ingesting

servers. We also compare the worst cases and find that the RTTs in the EC2-worst case

are very similar to the results in the Twitch-worst case, which means that EC2 instances

do not increase RTTs significantly even in the worst situations. We, therefore, can use EC2

instances to ingest broadcasters’ live streams with the comparable performance. Note that

the ingesting step is only the first part of livecast services, we still need to consider the

broadcast latency, which reflects the viewers’ QoE directly.

3.3.3 Broadcast Latency

Our previous work defined two types of latencies in crowdsourced livecast platforms [79]:

(1) broadcast latency: the time lag of a live event when viewers watch the live streaming

from the source. (2) live messaging latency: the time difference when a message is sent from

a viewer to other viewers. The viewers are more sensitive to broadcast latency, because the

disparity between broadcast latency and live messaging latency will affect viewers’ QoE in

terms of the participation and discussion.

To measure the broadcast latency on public clouds, we lease two types of instances

(m3.medium and m3.large25) from Amazon’s Oregon data-center. We deploy a PC (Dell

7010) with OBS as the broadcaster’s device and a laptop (Samsung NP355V5C) with VLC26

as the viewer’s device in a campus network. We stream the active window of a stopwatch

application from the broadcaster’s PC to the instance and play this live stream on the

viewer’s laptop. To calculate the time difference, i.e., broadcast latency, between them, we

25We lease on-demand instances. The configuration and price are m3.medium: 1vCPU, 2.5GHz, Xeon
E5-2670v2, 3.75G memory, $0.067/h; m3.large: 2vCPUs, 2.5GHz, Xeon E5-2670v2, 7.5G memory, $0.133/h

26VLC is a free and open source multimedia player and framework,
http://www.videolan.org/vlc/index.html
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Figure 3.14: Framework of Cloud-assisted Crowdsourced Livecast (CACL)

set up a camera to record two monitors at the same time. The transcoding settings are

Source quality (i.e., 1080p, 3200kbps), 720p (1500kbps), 480p (800kbps), 360p (500kbps),

and 228p (200kbps). We plot the results in Figure 3.13 with the average values and standard

deviations. Figure 3.13a and 3.13b show the broadcast latency and CPU usage on the

m3.medium instance in different transcoding settings. We can observe that this instance

cannot transcode the source RTMP stream to 1080p and 720p HLS streams due to the

overloaded CPU. Yet it can process another three workloads very well and acquire the

lower broadcast latency (about 5 seconds) than Twitch, which suffers from more than 10

seconds broadcast latency during live events [79]. Because another m3.large instance has two

vCPUs27, it has better performance, as shown in Figure 3.13c and 3.13d. From Figure 3.13c,

we observe that all broadcast latencies of various settings are decreased to about 5 seconds

with the sufficient computational capacity. From Figure 3.13d, we find that only the 1080p

transcoding task uses the computational resources of more than one vCPU. In summary, the

transcoding workloads can be migrated from dedicated servers to public clouds, provided

that the instances are carefully selected without increasing the broadcast latency.

3.3.4 CACL Architecture

The livecast broadcasters constantly utilize the streaming service, any interruption will

remarkably affect viewer’s QoE. Besides, crowdsourced live events, in which several broad-

casters simultaneously start live streams, have a more stringent restrictions on broadcast

latency.

To overcome these challenges, our design aims to systematically optimize the following

three steps, as shown in Figure 3.14: (1) Initial Offloading, for the broadcasters who al-

ready have historical activities, including the duration and schedule information of live

streams, the system assigns an ingesting region to them from public clouds or dedicated

servers according to their stability index. (2) Ingesting Redirection, based on the broadcas-

ters’ popularity, the system allocates a proper ingesting area and redirects the broadcasters’

workloads; (3) Transcoding Schedule, the system considers the broadcasters’ resource con-

sumption and the transcoding capacities in different service regions during the workload

migration. Step 2 and 3 have to be designed together, because once a broadcaster’s wor-

27Each of vCPUs is a hyperthread of an Intel Xeon core
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kload is offloaded to a certain ingesting region, the corresponding transcoding workload has

to be processed in the same region to reduce the broadcast latency.

3.3.5 Initial Offloading

In the CACL framework, the first challenge is how to allocate a proper ingesting server to the

broadcasters at the beginning of live-broadcast. We introduce a stability index (s-index) to

calculate a broadcaster’s degree of stability: an s-index close to zero means the broadcaster

is highly dynamic and close to 1 means it is likely stable and has a regular broadcasting

schedule. The s-index of a broadcaster depends on her schedule in recent several days. For

example, Alice broadcasts her game sessions from 1:00 PM to 3:00 PM in recent three days,

while Bob has only one stream at the same days; therefore, Alice’s s-index is higher than

Bob’s. For one broadcaster b who has activities in recent n days (n ≥ 2), we first divide

the ith day to m equal time slots, each time slot j has a value di,j is a binary variable that

indicates whether b has a live stream in current time slot. As such, we can use SI(b) to check

whether the broadcaster b regularly consumes the bandwidth/computational resources in

recent n days.

SI(b) =















1
n

∑n
i=2

∑m

j=1
d

(b)
i,j

·d
(b)
i−1,j

∑m

j=1
d

(b)
i−1,j

if
∑m

j=1 d
(b)
i−1,j 6= 0

0 otherwise

(3.1)

Given the s-index SI(b) of a broadcaster b, a straightforward way to give the offloading

decision is to set a threshold H: if SI(b) ≥ H, broadcaster b will be assigned to the ingesting

servers in dedicated servers, otherwise, to public clouds. Using a firm threshold, however,

suffers from the following drawback: if the dedicated servers have a massive amount of spare

resources, leasing the instances on public clouds to specifically ingest unpopular workloads

will not be cost-effective. We solve this problem by updating the value of H to the average

of existing broadcasters’ SI per time slot. Followed by the growth of broadcasters, more

and more stable broadcasters will be ingested into dedicated servers, and the dynamic

broadcasters are offloaded to public clouds.

3.4 Problem Formulation and Solution

Due to the significance of broadcast latency for viewers’ QoE, there have been lots of

studies on latency minimization for the conventional streaming system, mainly focusing

on the transcoding efficiency inside the transcoding servers [45][51][6]. Nevertheless, the

latency of user’s interaction in crowdsourced livecast systems poses a stringent constraint

in the ingesting and transcoding stages of live streams, not to mention the interactions

in the live event. Considering the crowdsourced live events and latency disparity, we take

the decrease of broadcast latency as our objective and propose a formal description of this
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optimization problem. Because the broadcasters are highly dynamic, our design is based on

the broadcaster’s popularity in real-time.

3.4.1 Basic Model with Ingesting Latency

We first focus on a basic model to optimize the ingesting latency in our CACL framework

cost-effectively. We target on maximizing the reduction of latency, when the ingesting region

is determined. To make the problem easy to discuss, we quantize time into discrete slots,

which may be a few minutes to several hours (e.g., five minutes in our experiment). We use

B(t) to denote the set of broadcasters and E(t) to denote the set of crowdsourced live events

in time slot t. (∀i = 1, 2, · · · , m,∀j = 1, 2, · · · , m, ei ⊆ E(t), |ei| ≥ 1, ei ∩i6=j ej = ∅, and

∪ei = B(t)). We define R as the set of ingesting areas where a broadcaster can be connected

to upload live contents and define set W
(t)
r as the bandwidth demand of ingesting area

r. We assume that the instance in public cloud areas are homogeneous and let W denote

the bandwidth capacity of each instance, assuming the intra-area workload allocation is

optimized [75][11][70]. We define L
(t)
(b,r) as the broadcast latency if b selects ingesting area r.

It can be calculated as:

L
(t)
(b,r) = l

(t)
(b,r) + l(t)r + l(r,v) (3.2)

where l
(t)
(b,r) is the link latency between b and r, l

(t)
r is the ingesting latency that is determined

by the instance type in r, and l(r,v) is the latency between ingesting server to a class of

viewers v. We aim to decrease L
(t)
(b,r) for each broadcaster cost-effectively.

To fulfill this target, we have to find an assignment A(t) that determines the mapping

from B to R in time slot t. We define a utility function U (t)(b, r) that indicates the effects

of L
(t)
(b,r) when b uploads live streaming to ingesting area r. In particular, U (t)(b, r) can be

calculated as follows:

U (t)(b, r) = G(t)(b, r) ·N
(t)
b (3.3)

where N
(t)
b is the number of viewers who watch broadcaster b’s live streaming in time slot

t. G(t)(b, r) refers to the gain of latency decreasing. Without loss of generality, we assume

G(t)(b, r) is a non-negative, strictly concave, and twice continuously differentiable function.

The conventional choice is logarithmic function [40], we define G(t)(b, r) as follows:

G(t)(b, r) = α + ln(1− βL
(t)
(b,r)) (3.4)

where α and β are two tunable parameters, which control the function shape. We employ

ln(1− ·) to make sure that the less the broadcast latency, the more the gain.

Based on the previous definitions, let I(r) be the indicator function which takes value 1

when area r belongs to the public cloud and value 0 otherwise. Given the broadcast latency
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between b and r, our objective is to find an assignment A that can maximize the minimum

utility F (A(t)) among all broadcasters in a live event.

Maximize
e∈E(t)

F (A(t)) = min
b∈e
r∈R

{U (t)(b, r)} (3.5)

subject to:

Bandwidth Availability Constraint:

∀r ∈ R, W (t)
r ≤Wr (3.6)

Bandwidth Cost Constraint:

∑

r∈R

W
(t)
r

W
· Costw(r) · I(r) ≤ Kw (3.7)

where Wr is the bandwidth capacity of ingesting area r. Costw(ri) is the bandwidth price

in the area ri. The bandwidth availability constraint (3.6) asks that at any given time, the

bandwidth demands have to be satisfied. The total budget constraint (3.7) asks that at any

given time, the total cost of leasing instances does not surplus total budget Kw.

3.4.2 Enhanced Model with Transcoding Latency

We now extend our model by considering the transcoding workloads in different ingesting

areas. Similar to the definition of the previous problem, the objective is to optimize the bro-

adcast latency in the ingesting service regions. Yet we re-define L
(t)
(b,r) in the equation (3.8),

considering the transcoding step with multi-quality streams. For example, Twitch provides

five streaming quality options (Source, High, Medium, Low, and Mobile) to viewers. We

define V as the set of streaming quality.

L
(t)
(b,r,v) = l

(t)
(b,r) + l

(t)
(qb,qv) + l(r,v) (3.8)

where qb is the quality (i.e., bitrate) of b’s source streaming, qv is the quality of target

version v (v ∈ V ). l
(t)
(qb,qv) is the transcoding latency, which can be measured in advance.

We now extend utility function U (t)(b, r) as:

U (t)(b, r) =
∑

v∈V

G(t)(b, r, v) ·N
(t)
(b,v) (3.9)

where N
(t)
(b,v) is the number of viewers who watch b’s v version streaming in this time slot. This

value is initially determined by b’s historical distribution of different versions. G(t)(b, r, v)

means the gain when b select r as the ingesting and transcoding area and is calculated as
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follows:
G(t)(b, r, v) = α + ln(1− βL

(t)
(b,r,v))

= α + ln(1− β(l
(t)
(b,r) + l

(t)
(qb,qv) + l

(t)
(r,v)))

(3.10)

where l
(t)
(qb,qv) denotes the transcoding latency. If the original quality qb is no more than the

target quality qv, the transcoding servers only transcode the original RTMP stream to the

HTTP-based stream, using the same resolution and bitrate settings. That is, the transcoding

latency l
(t)
(qb,qv) = l

(t)
(qb,qb). The transcoding latency depends on the current computing capacity

of area r and monotonously increases based on both qb and qv [74].

Our objective is extended to a new version as:

Maximize
e∈E(t)

F (A(t)) = min
b∈e
r∈R

{U (t)(b, r)} (3.11)

subject to:

Previous Constraints: (3.6), (3.7)

Computational Availability Constraint:

∀r ∈ R, C(t)
r ≤ Cr (3.12)

Computational Cost Constraint:

∑

r∈R

C
(t)
r

C
· Costc(r) · I(r) ≤ Kc (3.13)

where C
(t)
r is the computing demand of area r, C denotes the computing capacity of an

instance. Costc(r) is the price of an instance in r in terms of computing capacity. The

computing availability constraint (3.12) guarantees that at any given time t, the consump-

tion of computational resources in each transcoding task can be satisfied. The budget con-

straint (3.13) guarantees that the computational cost is lower than the budget Kc, which

we assume can at least serve all offloading workloads.

3.4.3 Solution

The objective function (3.11) has four constraints (3.6) (3.7) (3.12), and (3.13), the band-

width cost and computational cost are not independent due to the pricing criteria of instan-

ces on public clouds. Previous studies on EC2 instances already reveal that the bandwidth

capacity is more than 700Mbps on m3.large instance [24]. Moreover, our measurement re-

sults in Section 3.3.1 also reveal that generating low-latency live streams will consume a vast

amount of computational resources. If we relax constraints (3.6) and (3.7), other constraints

can still work for the optimization objective function (3.11). Assuming that the capacities

of the different service areas are given, our assignment problem can be transformed into a

35



0-1 Multiple Knapsack problem with a non-linear objective function, which is known to be

NP-hard [19].

We thus propose a heuristic solution, which includes two steps: scale decrease and re-

source allocation. In the first step, as shown in Algorithm 1, we aim to eliminate the re-

dundant assignments based on the optimization target of maximizing the minimum utility

in live events. We first get the maximum value from the set of the minimum utility of each

assignment (b, r) in crowdsourced live events (line 1-8). We then remove most parts of the

solution space (line 9-14) to improve the search efficiency. In the second step, as shown in

Algorithm 2, c(b) denotes the computational consumption of transcoding workloads b, we

define the new utility u(t)(b, r) of each broadcaster in all events using the equation (3.14)

and find the area r∗ in the equation (3.15), which is derived from [15]. Then, we sort them in

decreasing order of u(t)(b, r∗), which allows the assignment with the higher resource utiliza-

tion being explored first. According to the sorted broadcasters, we assign them to available

service areas.

u(t)(b, r) =
C

(t)
r · U (t)(b, r)

c(b)
(3.14)

r∗
b = argmin

r∈R

{u(t)(b, r)} (3.15)

Algorithm 1: ScaleDecrease()

1 for each live event e ⊆ E do

2 U
(t)
1 ← ∅

3 for each region r ∈ R do

4 U
(t)
2 ← ∅

5 for each broadcaster b ∈ e do

6 add U (t)(b, r) into set U
(t)
2

7 add min{U2} into set U
(t)
1

8 U
(t)
e ← max{U

(t)
1 }

9 for live event e ⊆ E do
10 for each region r ∈ R do
11 for each broadcaster b ∈ e do

12 if (U (t)(b, r) < U
(t)
e ) and (isPath(b) > 1) then

13 // isPath(b) returns the number of b’s assignments in A(t)

14 A(t) ← A(t) − (b, r)

15 // Remove this assignment from A(t)
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Algorithm 2: ResourceAllocation()

1 for each broadcaster’s assignment (b, r) in A(t) do

2 add u(t)(b, r) into u
(t)
b

3 // Calculate u(t)(b, r) using the equation (3.14)

4 Bsorted ← Sorted broadcasters in descendant order of u(t)(b, r∗
b )

5 // Get r∗
b from u

(t)
b according to the equation (3.15)

6 for broadcaster b ∈ Bsorted do

7 rsorted ← Sorted available area r of b in descendant order of u
(t)
b

8 for region r ∈ rsorted do

9 if C
(t)
r − c(b) ≥ 0 then

10 A(t) ← A(t) − (b, ·)
11 // Remove all assignment of b

12 C
(t)
r ← C

(t)
r + c(b)

13 A(t) ← A(t) + (b, r)

14 return A(t)
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Figure 3.15: Impact of computational capacity

3.5 Performance Evaluation

In this section, we conduct the trace-driven simulations and examine the performance of

our cloud-assisted crowdsourced livecast with the proposed algorithms.

3.5.1 Efficiency of Resource Allocation

We first evaluate the performance of our resource allocation algorithm using the traces in the

EC2-based measurement (Section 3.3.1). We used the measured RTTs of each PlanetLab

node to evaluate the proposed algorithms. Because we already have the distribution of
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resolution and bitrate according to the Twitch datasets, we can assign the resolution and

bitrate settings to every PlanetLab node as a broadcaster and add it into a live event. In

the meantime, we set different arrival times and leave times to each node based on the

measurement results in the Twitch datasets. We randomly assign 224 PlanetLab nodes

(i.e., broadcasters) into 100 crowdsourced events and set the number of viewers and the

resolution of every broadcaster according to the Twitch-based measurement in Section 3.2.

We assume that all service areas in dedicated servers and public clouds have the same

computational capacity. The consumption of computational resources is estimated according

to the measurement in [6]. To clearly demonstrate the effectiveness of our solution, we

adjust the computational capacity from 100% to 20%. Figure 3.15 demonstrates the impact

of different settings in the computational capacity. From this figure, we can observe that a

small proportion of broadcasters suffers higher RTTs in 80%, 60%, and 40% of computational

capacity. Because 20% of computational capacity is less than the requirement of transcoding

all streams from the broadcasters, we can find a significant rise in the ingesting performance.

As such, our resource allocation algorithm achieves a similar result with a lower amount of

total computational resources.

3.5.2 Trace-driven Simulation

We then conduct the trace-driven simulation based on our Twitch datasets. We make a few

simplifications in the simulation based on realistic settings: first, as transcoding consumes

most of the computational resources from the instances on public clouds, as shown in our

EC2-based measurement, we use the computational resources as the constraint to decide

the assignment strategy; second, we consider that the EC2 instances are homogeneous and

latency l(r,v) is fixed for a certain quality level of HTTP Live Streaming; third, we ignore

the cost in dedicated servers and focus on the cost when workloads are offloaded into the

instances in public clouds. The following default settings are used in the simulation: because

the broadcast latency28 in Twitch is from 10 to 40 seconds [79], we set α = 1 and β = 0.011 to

make G(t)(·) ∈ [0, 1] when the broadcast latency L
(t)
(·) ∈ [0, 57]. We assume that the instance

type on public clouds is m3.large based on the EC2-based measurement in Section 3.3.1.

The algorithms are launched every five minutes, which also is the time slot of crawling data.

We first study the impact of stability index SI and threshold H. To accelerate the

simulation, we calculate the stability index for each broadcaster and save the results in

advance. The simulation program can directly acquire the stability index of broadcasters

when they start live streams. According to our design, the parameter n is more than or equal

to 2. The default setting of n is 2 in our trace-driven simulation. We set the initial threshold

28Readers can check your broadcast latency through activating “Show video stats” after clicking Options
button when you watch any live stream from Twitch.
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Figure 3.17: Performance evaluation of proposed solutions

H = 0 and use it to classify the new broadcasters without any other strategies. We assume

that the offloading starts when the bandwidth consumption is up to 60% of dedicated severs.

Figure 3.16 illustrates the evolution of H and its impact for the public cloud during three

days (Feb 3rd-5th, 2015). From Figure 3.16a, we observe that the value of H increases

dramatically at the beginning of that day, and then it stabilizes between 0.5 and 0.7. At

the peak traffic time (from 9:00AM to 13:00PM), a vast majority of the broadcasters arrive

at the streaming system; therefore, the value of H experiences a small decrease. However,

the limitation of H induces that the public cloud only hosts a small number (maximum

6.5%) of broadcasters. Thus, threshold H plays a beneficial role on the offloading process,

but other strategies, i.e., Ingesting Redirection and Transcoding Schedule, are still needed

to reduce the impact of broadcasters’ dynamics.
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With the previous parameter setting of H, we then conduct the extended simulation

to investigate how CACL perform with the real-world data traces. We also propose the

views-based (LB-V) migration and computation-based (LB-C) migration as two baseline

approaches for comparisons. The LB-V approach migrates the unpopular live stream to the

public cloud, considering the number of online viewers. While the LB-C approach migrates

workloads to the dedicated servers when the computational resources are still available.

Figure 3.17a compares the leasing cost of three workload provisioning approaches: LB-V,

LB-C, and CACL-based approaches in three days. For ease of comparison, the leasing cost in

each day is normalized by the corresponding cost of the LB-C approach. Our CACL-based

approach has the lowest cost, decreasing 16.9%-19.5% of LB-C approach and 17.8%-20.4%

of LB-V approach. Another observation is that the leasing cost on Feb03 is higher than those

of the other two days in all approaches, because the number of broadcasters on Feb03 is the

highest. We also plot the normalized leasing cost and the average percentage of migration

from dedicated servers to public clouds during our whole datasets in Figure 3.17b, we can

observe that the decreasing cost shows the weekly pattern and our approach provides the

elastic workload provisioning cost-effectively. Moreover, more than 30% of broadcasters are

migrated to public clouds in every day. Our simulation results show that compared with

hosting all broadcasters in dedicated servers, leasing flexible instances on public clouds to

migrate the workload of certain broadcasters is a cost-effective solution.

3.6 Summary

In this chapter, we examined the crowdsourced livecast platforms, which provide live stre-

aming service and live chatting service to Internet users. The results from Twitch-based

measurement indicated the potential issues therein. In particular, a large number of unpopu-

lar broadcasters consume the valuable dedicated resources continuously. Through Amazon

EC2-based measurement, we analyzed the feasibility of migrating a part of these broadcas-

ters to public clouds. To accommodate unpredictable workloads and realize the adaptive

offloading in demand, we proposed the Cloud-assisted Crowdsourced Livecast (CACL) for

the initial offloading, as well as the ingesting redirection and transcoding assignment. Our

trace-driven simulations demonstrated the cost-effectiveness of the CACL framework.
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Chapter 4

Exploring Viewer Gazing Patterns

for Touch-based Mobile

Gamecasting

Empowered by today’s high-performance mobile devices and communication networks, we

have witnessed an explosion of mobile gamecasting (MGC) as a must-have application on

gamers’ mobile devices. Such MGC platforms as YouTube Gaming, Twitch, and Mobcrush,

have ushered in a new wave of innovations in how multimedia content is created and consu-

med, distributing a game playthrough from a gamer’s (i.e., broadcaster’s) personal device

to a large population of viewers. The recent news from Twitch reveals that more than 35%

of the viewership are mobile viewers in all its gamecasting channels every month. A rese-

arch report from Google also indicates that a third of the U.S. mobile gamers are defined

as “avid gamers”, who spend more than nine hours a week on average playing mobile ga-

mes on smartphones; moreover, the more time these “avid gamers” spend on YouTube, the

more time they spend on gaming. These MGC applications, as the propellents in both strea-

ming and gaming markets, are posing significant challenges to the existing live broadcasting

platforms, particularly with mobile broadcasters and viewers.

Several studies [72, 59] have already investigated the opportunities on the broadcaster-

side. Yet the oscillation of source quality may affect the viewers’ QoE (Quality-of-Experience)

greatly. Recently, the rapid development of eye-tracking research makes foveated-aware op-

timization of viewers’ watching experience possible, which has seen use cases for content

distribution and live streaming [60] [2]. They are not targeting MGC applications, and ty-

pically need eye-tracking peripherals to collect the viewers’ gazing data in real-time, which

in turn produces extra energy consumption on mobile devices.

To explore the opportunities in the MGC context, we measure the data traces col-

lected from gamers and viewers. The results show that strong correlations exist between

the gamers’ interactions on touch screens and the viewers’ gazing patterns. Motivated by

this observation, we propose a novel interaction-aware optimization framework that guides
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Table 4.1: Classification and definition of gamer’s touch interactions

Touch Interaction Definition Examples

Single-touch (ST) press once and release quickly press a button or activate an ob-
ject in a game

Press-drag (PD) first press a few seconds to acti-
vate/select a game element and
then drag it to a target

move a card onto a target area or
deploy attacking path using sol-
diers

Pan (PA) omnidirectional one-finger swipe
in mobile games

expand the field of view when
game scene is larger than screen
size

Zoom (ZM) a double-touch interaction, two
fingers are used to scale up/down
the game view

display (or hide) details before
attacking enemy camps

mobile gamecasting in advance, even before the source encoding step. The target and key

challenges towards designing the framework lie in three aspects: (1) We need to understand

the characteristics of the gamers’ interactions and the viewers’ gazing patterns with dynamic

game strategies and eye movements. (2) We need online prediction to find the correlations

with no the assistance from eye-gazing peripherals preferably. (3) We need to design an

optimization strategy to improve the energy efficiency and adjust the stream quality using

the predicted gazing patterns.

To address the above problems, we first classify the users’ behaviors into distinct groups,

including single-touch, press-drag, pan, and zoom for touch interactions (as shown in Ta-

ble 4.1), and area-fixation, smooth-pursuit, and scene-saccade for gazing patterns (as shown

in Table 4.2), corresponding to the steady, slow, and fast movements of human eyes. Our

framework then incorporates a touch-assisted prediction (TAP) module and a tile-based

optimization (TBO) module. The former achieves offline training and online prediction by

building association rules [73], and the latter improves the energy efficiency in mobile de-

vices using a tile-based quality selection with bandwidth and QoE constraints. Trace-based

simulations and a user study demonstrate that our framework achieves noticeably better

QoE under similar network constraints.

4.1 Background

Recent years have witnessed an explosion of gamecasting applications, in which gamers

broadcast their game playthroughs in real-time [79]. Such pioneer platforms as YouTube

Gaming, Twitch, and Mobcrush have attracted a massive number of online broadcasters,

and each of them can have hundreds or thousands of fellow viewers. As shown in Figure 4.1,

a typical MGC platform maintains two services: (1) a live streaming service, which not

only fulfills the encoding, ingesting, transcoding, and distribution of live streams, but also

implements the screen recording functionality on mobile devices; and (2) a live chat service,
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Table 4.2: Classification and definition of viewer’s gazing patterns

Gazing Pattern Definition Examples

Area-fixation (AF) gaze on a fixed area spend more time to watch the
center of gamecasting if there is
no player’s touch interaction

Smooth-pursuit (SP) gaze smoothly follows the mo-
vement of an object

focus on the moving game
cards or buildings when ga-
mers change strategies or de-
ployments

Scene-saccade (SS) move eyes between two or more
fixation areas quickly

read a notice board or item des-
criptions

Game Players Viewers

Mobile gamecasting Interactive message

MGC App

Live Chat

Game App

Screen Record

Live Streaming

Figure 4.1: A generic architecture of the MGC platform
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Figure 4.2: Motivations of our study

which exchanges the users’ messages through IRC (Internet Relay Chat) or proprietary

chatting protocols. Some recent studies have already focused on gamecasting platforms by
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proposing novel frameworks [26] or optimizing the live streaming service [6]. Compared

with these studies, we focus on a novel branch of gamecasting services: mobile gamecasting.

We therefore investigate its unique feature, i.e., gamers’ touch interactions, to optimize the

gamecasting transmission.

A representative MGC scenario is illustrated as follows: a gamer first launches a mobile

game using an MGC application, e.g., YouTube Gaming App, on a smartphone. The top

bar on the screen provides the controllers for mobile cameras, microphone, screen recording,

and other configurations. After clicking the screen recording button, the gamer can use this

MGC application to encode the recorded game scenes as a live stream and transmit it

to an ingesting server. After multi-version transcoding, the segments of this live stream

are delivered to a large number of heterogeneous viewers. During the gamecasting, the

gamer and the viewers can closely interact by lively discussing game strategies via a chat

service. Yet the high-performance mobile devices suffer from energy constraints with the

built-in batteries, but also enjoy opportunities with novel operation interfaces, in particular,

the touch screens. Several works have been devoted to analyzing the touch behaviors for

specific applications, e.g., recognizing users [12]. Zhang et al. [82] examined the instant

video clip scheduling problem based on the unique scrolling behaviors on mobile devices.

Our touch-assisted prediction is motivated by these works, but we focus on the gamers’

touch interactions to predict the viewers’ gazing patterns for MGC applications.

Our tile-based optimization is motivated by the works in [66, 47]. They mainly employ

saliency models to predict Region-of-Interest (ROI) in live streams, but can hardly capture

the patterns of human gaze in real-time. To overcome these challenges, recent works have

designed content transmission based on the viewers’ gazing information in live streaming

services [60] and cloud gaming systems [2]. These works need extra support from eye-

tracking devices, e.g., a web-camera, to capture the gazing data during the whole process.

Our work differs from them in that we predict the viewers’ gazing patterns based on the

gamers’ interactions in MGC applications.

4.2 Motivation

In this section, we optimize MGC applications from a new perspective. That is, through

analyzing the gamers’ touch interactions on touch screens, we predict the viewers’ gazing

patterns towards energy-efficient streaming. We first answer the following question: How do

a gamer’s interactions affect the viewer’s gazing patterns (including the focusing regions and

movements)? To investigate the associations between them, we capture the gamers’ touch

data and the viewers’ gazing data through our testbed, which consists of a smartphone, an

eye-tracking device, and a desktop PC. We connect the smartphone to the desktop PC to

record the gamers’ touch data and deploy the eye-tracking device to capture the viewers’
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Figure 4.4: Sample of touch screen events

gazing data. The details about the testbed configurations will be introduced in Sections 4.4

and 4.5, respectively. Here, we first highlight our findings.

Our testbed experiments show that the gamers’ touch interactions change the mobile

game scenes and objects, which in turn pilots the viewers’ gazing patterns. Figure 4.2 gi-

ves two examples to illustrate their associations using the viewers’ gazing heatmap. In

Figure 4.2a, a gamer designs an attacking path to deploy soldiers from region #1 to #7.

Consequently, a viewer’s gazing points also follow this path. This example implies that the

gazing regions correspond to the touch interaction regions but have a temporal delay. In

Figure 4.2b, a gamer touches the button in region #1 and activates the system setting opti-

ons. Afterward, a viewer focuses on reading the information on each button. This example

shows that the gazing regions do not always have spatial correlations with the touch regions,

but their associations still can be found by analyzing the gamers’ touch interactions and

the viewers’ gazing patterns together.

Yet there is a new question: if a gamer considers the game strategies through investiga-

ting a game scene first, and then decides a touch interaction in the next step, why cannot
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Table 4.3: Statistics of touch data

Game ID Game Name # of Events # of Interactions Game Genre

G1 Clash of Clans 65940 684 Multiplayer online stra-
tegy game

G2 HearthStone 33422 250 Collectible card game

G3 Clash Royale 37151 421 Multiplayer online battle
arena, collectible card
games, tower defense

we directly rely on the gamer’s gazing data for the viewer’s gazing prediction? Such a stra-

tegy, however, needs to capture the gamer’s eye movements in real-time, which needs either

plugin supplements (e.g., a mobile camera) with higher energy consumption or expensive

eye-tracking glasses. There are also discrepancies among different gamer and viewer groups.

To illustrate it, we use an example1 to compare the gazing differences between a gamer

and a viewer in Figure 4.2c. In this figure, we plot the circle regions to exhibit the gazing

movements of a gamer and a viewer, respectively. We can find that the gamer proactively

focuses on lots of areas to determine the next action (i.e., click a button and open a shop-

ping list). The gazing sequence is: the empty fields (regions #1, #3, #5, #7 and #9), and

then the SHOP button (region #11). On the other hand, the viewer pays much attention

to the center area in region #2, and then focuses on the Town Hall in region #4. Since a

gamer must observe the game objects carefully to determine the next game strategy, s/he

has more complex and unpredictable gazing patterns compared with a viewer. From these

examples, we also see an association sequence between the gamers’ and viewers’ behaviors:

gamers’ gazing behaviors → gamers’ game strategies → gamers’ touch interactions → vie-

wers’ gazing patterns. A gamer first observes the game scenes and thinks about the game

strategies; different strategies then generate the corresponding touch interactions. When a

viewer watches this game video, the gazing patterns are based on two factors. First, the

human eyes prefer to gaze on the center area of a scene; second, when a gamer touches or

activates any object, the video scene will be changed significantly, attracting the viewer’s

attention. Two video examples2 show the relationships among the touch interactions and

gazing patterns of a gamer and the gazing patterns of a viewer.

4.3 Interaction-Aware Design

Motivated by these observations, we design an interaction-aware optimization framework

for MGC platforms, as shown in Figure 4.3a. Our design incorporates two new modules:

1Example link: https://youtu.be/EP2v9m9d15E

21. https://goo.gl/2WsdtP, 2. https://goo.gl/XNS8Bu
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Touch-Assisted Prediction (TAP) and Tile-Based Optimization (TBO). The TAP module

predicts the viewer’s gazing patterns through ingesting the gamers’ touch interactions and

relays the prediction results to the TBO module, which then accordingly optimizes the

energy and bandwidth consumption.

4.3.1 Touch-assisted Prediction Module

As shown on the left part in Figure 4.3b, the TAP module involves three steps: Data

Collection, Data Classification, and Gazing Prediction. We highlight their design concepts

here and present the details of each step in the following sections.

• Data Collection: We recruit a set of gamers and viewers for training. We first collect

these gamers’ touch events and record the game videos when they play a mobile game.

We then capture these viewers’ gazing points when they watch the selected videos.

These training data will be formatted and processed towards the next step.

• Data Classification: According to game-specific rules, we classify the touch events and

gazing points into pre-defined groups. The gamers’ touch interactions include single-

touch, press-drag, pan, and zoom. The viewers’ gazing patterns consist of area-fixation,

scene-saccade, and smooth-pursuit.

• Gazing Prediction: The main part of this step is to build an association model, which

is derived from association rules learning. The prediction module receives the gamers’

touch interactions and obtains the predicted viewers’ gazing patterns during mobile

gamecasting.

4.3.2 Tile-based Optimization Module

In the TBO module, as shown on the right part in Figure 4.3b, our framework is based on

the Spatial Relationship Description (SRD) feature in the recent MPEG-DASH (Dynamic

Adaptive Streaming over HTTP) amendment [55]. SRD works to stream a subset of spa-

tial sub-parts of a video to viewers’ devices. Every frame of a short content in a video is

first partitioned into multiple frames of smaller resolution. Then, these neighboring smaller

frames in the same region are combined into an HTTP-based tiled content (tile in short).

Finally, a viewer’s media player renders a sequence of tiles to reconstruct this video. Every

tile, therefore, contains a part of the video during a short interval. A tile-based optimiza-

tion algorithm is then designed to adjust the quality of every tile according to the predicted

viewers’ gazing patterns. We partition every short stream into n − by − n tiles following

the works in [55, 42]. In practical scenarios, the tile size can be adjusted to meet different

requirements [42], for example, 4x2 in HD videos [55]. In our study, the default n is set to

be 5.
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4.4 Understanding Game Touch Interactions

In this section, we investigate the gamers’ touch interactions based on real-world data traces

and classify game-specific touch interactions.

4.4.1 Touch Data Collection

To collect the gamers’ touch data, we install the Android Debug Bridge (ADB)3 on a

desktop PC (DELL Optiplex 7010) that connects to a mobile phone (Samsung Galaxy S5

with Android 6.0.1).

Figure 4.4 shows a sample of touch screen events, where each line is an event with

four fields: timestamp, event type, multi-touch event, and value. According to the multi-

touch events and the event values, we can distinguish different touch interactions. This

sample represents a single-touch interaction, which means a gamer quickly touches the screen

center once. The dynamics of touch position (ABS_MT_POSITION_X/Y) and touch area

(ABS_MT_TOUCH_MAJOR/MINOR) are recorded in a trace file. We write a Python

script to extract the event properties of every touch interaction from the original data

traces. The formatted touch interaction is a 5-tuple: {ID, start_timestamp, position_array,

area_dynamics, duration}.

(a) G1 (b) G2 (c) G3

Figure 4.5: Time intervals between consecutive touch interactions

To understand the characteristics of distinct gamers, we recruited ten volunteers4. Each

of them individually plays a game on S5 for two minutes. To explore the impact of game

genre, we select three popular games: G1-Clash of Clans, G2-HearthStone, G3-Clash Royale

and capture the screens during game playing. The selected three games not only attract a

huge number of audiences in various gamecasting platforms, but also achieve high revenue

3ADB is a versatile command line tool that allows users communicate with connected Android devices.

4Gender, female/male: 2/8; Age, (20-25)/(26-30)/(>30): 3/5/2; Game experience, expert/beginner: 7/3,
https://eyegazing.github.io/
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Figure 4.6: Characteristics of touch regions

in the mobile gaming market over the world5. Table 4.3 presents the details of our data

traces. We find that the number of touch interactions is mostly determined by the gamers’

preferences. There is no strict proportion between the number of events and the number

of interactions. We also investigate the time interval between two consecutive touch inte-

ractions. As shown in Figure 4.5, the time intervals in G2 are higher than those in G1 and

G3.

4.4.2 Interaction Classification

According to the official description of touch actions in the Android Design Documentation6,

we define the following four game-specific interactions: Single-Touch (ST), Press-Drag (PD),

Pan (PA), and Zoom (ZM), as shown in Table 4.1. These touch interactions are frequently

used in mobile games. We use a decision tree [73] to classify them with five key features

extracted from the data: duration, position, direction, maximum touch area, and minimum

touch area. Corresponding to the touch interactions, this decision tree has four outputs:

single-touch, press-drag, pan, and zoom. To train the decision tree and test the accuracy,

we use 300 touch interactions labeled by the gamers. The decision tree achieves an average

accuracy of 97% for the classification of the four touch interactions, which is adequate for

the association learning in our framework.

As shown in Figure 4.6, we divide the touch screen into 25 regions, the vertical color-bar

exhibits the mapping of the percentages into the color-map on the left part. We can find

that (1) G1 gamers touch almost all the areas, except for area #1, because the gamers have

to frequently carry out strategies in G1; (2) G2 gamers seldom touch the left-side regions,

5https://www.superdataresearch.com/market-data/

6https://material.google.com/patterns/gestures.html
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Illuminators

Monitor
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Figure 4.8: Eye tracking device in our test-
bed

Viewer

Monitor

Eye-tracking device

Figure 4.9: An illustration of collecting a
viewer’s gazing data

because most of the objects controlled by the gamers are located on the right-side and the

bottom-side of the touch screen; (3) G3 gamers prefer the top-side and right-side areas7,

which is also determined by the game design.

4.5 Insights into Viewers’ Gazing Patterns

In this section, we first propose the data collection method in the viewers’ gazing investi-

gation. Then, we analyze the characteristics of the viewers’ gazing data.

4.5.1 Gazing Data Collection

We choose Tobii eyeX8 as the eye-tracking device to collect the viewers’ gazing data due to

its affordable price, suitable sampling rate, and high accuracy. It is connected to a desktop

7Because G3 is a portrait-oriented game, the top-side and right-side in Figure 4.6c are the right-side and
bottom-side of the portrait-oriented touch screen, respectively.

8The refreshing rate: > 60Hz; the operating range: 50-90cm.
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Figure 4.10: Characteristics of gazing regions

PC (DELL Optiplex 7010) through a USB 3.0 port and attached to the frame of a 27-inch

monitor (DELL U2715H), as shown in Figure 4.8. The eye-tracking device consists of three

illuminators and one camera. Figure 4.9 illustrates that a viewer’s gazing data is collected by

the eye-tracking device. When the viewer watch a video, the illuminators create patterns of

near-infrared light on his/her eyes. Then, the camera captures high-resolution images of the

eyes. Finally, the built-in algorithms analyze these images and calculate the corresponding

gazing coordinates on the monitor. The ten volunteers mentioned earlier have also assisted

us to collect gazing data. Each of them have personal profiles to calibrate the eye-tracking

device before the data collection. As a viewer, every volunteer watches three two-minute

game videos selected from a gamer in Section 4.4.

4.5.2 Gazing Classification

We define the following three gazing patterns: Area-Fixation (AF), Smooth-Pursuit (SP),

and Scene-Saccade (SS), which are based on state-of-the-art eye-tracking research [20], as

shown in Table 4.2. Figure 4.7a shows several examples of these patterns. In this figure, we

use the labeled circles to indicate the AF patterns of a viewer. The viewer’s attention is

quickly changed from region #1 to region #2, which corresponds to an SS pattern. Then,

we observe three SP patterns among areas #2, #3, #4, and #5.

After investigating the gazing points, we find that perfectly classifying gazing points into

the three patterns is impossible due to data noises. As such, we first pre-process the gazing

points to improve the accuracy. As shown in Figure 4.7a, if a viewer gazes on a fixed area,

the gazing points are clustered in a two-dimensional space. Moreover, every gazing point

has a temporal dimension, i.e., its timestamp, so we employ the OPTICS (Ordering Points

To Identify the Clustering Structure) algorithm [5] to pre-process these gazing points. The

OPTICS algorithm finds the density-based clusters (i.e., the AF patterns in our data traces)
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through calculating the distance between two gazing points. This distance also reflects the

speed of the movement of human eyes from one area to another. Figure 4.7a shows a

pre-processing example, which depicts five AF patterns, one SS pattern (from area #1

to #2), and three SP patterns (#2→#3, #3→#4, and #4→#5). Figure 4.7b shows the

corresponding pre-processing results using the OPTICS algorithm. According to the results,

we extract the features of the viewers’ gazing patterns, including the time interval and the

reachability distance9. Similar to the classification of the touch interactions, 100 labeled

patterns are used to train the decision tree, which achieves an average accuracy of 96% for

the classification of the three gazing patterns.

To further investigate the viewers’ gazing patterns, we use a similar approach as in

Section 4.4.2 to examine the characteristics of the gazing regions. According to the setting

of divided tiles, we define “gazing region” to illustrate which tile is gazed by a viewer.

Figure 4.10 plots the percentages of the gazing regions in the three games. Note that the

viewers exhibit distinct gazing preferences in different games: (1) G1 viewers mostly gaze

on the left part of gamecasting; (2) G2 viewers focus on the middle part; (3) G3 viewers

prefer the top part. This implies that strong correlations exist between the gamers’ touch

interactions and the viewers’ gazing patterns in the MGC context.
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To further examine the associations between the touch interactions and the gazing pat-

terns, we choose Multivariate ANalysis Of VAriance (MANOVA) [8] to statistically analyze

different viewers’ gazing regions between the start of a touch interaction and the start of

the next one. In MANOVA, a high p-value means a high similarity of the gazing regions

among different viewers. Figure 4.11 shows the Cumulative Distribution Function (CDF) of

the p-values in the three games. The mean for each game is higher than 0.45. Besides, more

than 60% of results are higher than 0.4, which implies that the viewers’ gazing patterns are

similar after the same touch interactions.

9The reachability distance from point g1 to g2 is equal to the maximum value two types of distances: (1)
the distance from point g1 to g2; and (2) the distance from point g1 to the core point in its cluster.
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Table 4.4: Encoding example

Data traces Encoded transactions
{ST, (365, 632)};{AF, (250,430),(255,439)} T1. {1113, 217}
{PD, (375, 700), (300, 1000)};
{SP, (280,500),(255,900)}

T2. {1213, 1218, 227, 2217}

4.6 Touch-Gaze Association Learning

Association rules describe strong relations of the items that occur frequently together in a

data set. In this section, we first introduce the preliminaries of association rule learning,

and then build up such associations in the MGC scenario.

4.6.1 Preliminaries

The inputs of association rules learning contain: (1) items data, Ai, where item Ai ∈

I, i = {1, · · · , M}, and (2) a transaction set, T , which consists of a set of transactions

< Ti, {Ap, . . . , Aq} >, where Ti is a transaction identifier and Ai ∈ I, i = {p, · · · , q}. A

collection of zero or more items is defined as an itemset. If an itemset contains k items, it is

called k-itemset. An association rule is defined as an implication expression of form X → Y ,

where X
⋂

Y = ∅ and X, Y ⊆ I. The item support count δ(X) of itemset X gives the num-

ber of the transactions that contain a particular itemset. δ(X) = |{Ti|X ∈ Ti, Ti ∈ T}|. To

find the frequently occurred rules, support and confidence also need to be defined. Support

determines how often a rule is applicable to a given data set, while confidence determi-

nes how frequent items in Y appear in transactions that contain X. Support s(X → Y )

is defined as follows: δ(X
⋃

Y )/M . Confidence of a rule X → Y is accordingly defined as

c(X → Y ) = δ(X
⋃

Y )/δ(X).

To discover frequent itemsets and build reasonably strong associations, we must specify

two thresholds: minimum support, s′, and minimum confidence, c′. The first step is to find

all the itemsets that satisfy threshold s′. These itemsets are called frequent itemsets. The

second step is to extract all the rules from the frequent itemsets found in the previous

step such that the confidence of these rules is no less than threshold c′. The second step

is straightforward, while the first step needs more attention since it involves searching all

possible itemsets. The classical Apriori algorithm [73] employs a bottom-up approach by

identifying the frequent individual items in the transaction data set and extending them

to larger itemsets while the items satisfy the minimum support threshold. The frequent

itemsets returned by the Apriori algorithm are then used to determine the association

rules.

4.6.2 Touch-Gaze Association

To map our data into the corresponding transactions Ti, we treat the touch interactions and

the gazing patterns as items and each transaction in our study as a combination of several
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touch items and gazing items from the start time of one touch to the start time of next one.

To simplify the discussion and fit the tile-based optimization, we partition the touch items

and the gazing items into N groups according to their positions, where N = n2, n ∈ Z
+.

Each item is then encoded based on the tree structure in Figure 4.12, where the fourth layer

represents the order of groups. Thus, given a touch interaction or a gazing pattern, we can

encode it based on its classification and position. Table 4.4 shows one encoding example. In

this example, we set N = 25. {ST, (365, 632)} and {AF, (250, 430), (255, 439)} mean that

(1) a gamer touches (365, 632) once before the next interaction; and (2) a viewer’s gazing

points contain (250, 430) and (255, 439), which is an area-fixation pattern. According to

the setting of tiles, two gazing points are in a region, thus they are encoded in an item

{217}. The encoded transaction T1 includes two items {1113} (Touch-ST-13) and {217}

(Gaze-AF-7). The rationale of this encoding method is that each encoded item contains all

key information we need.

Algorithm 3: Touch-Gaze Association Learning

Input:
(1) A: the list of encoded touch interactions;
(2) B: the list of encoded gazing patterns
Output: G, Association rules

1 create an empty transaction set T
2 for i from 1 to |A| do
3 create an empty transaction Ti

4 add touch interaction Ai in Ti

5 if Ai is not the last touch interaction then
6 add the gazing patterns that occur between Ai and Ai+1 in Ti

7 else
8 add the gazing patterns that occur after Ai in Ti

9 add Ti in T

10 generate frequent itemsets G from T using the Apriori Algorithm
11 for each itemset g in G do
12 if all items in g belong to a type of behavior then
13 remove g from G

14 return G;

We summarize the touch-gaze association learning in Algorithm 3. Because lots of gazing

patterns may occur after a touch interaction, the algorithm first adds the encoded gazing

items into a sequence of transactions according to the time intervals between consecutive

touch items(lines 2 to 9). Then, we use the Apriori algorithm to find all frequent itemsets for

mining strong association rules in the encoded transactions (line 10). Since we aim to find

the association rules between the touch items and the gazing items, we remove the frequent

itemsets that only contain touch items or gazing items (lines 11 to 13). For example, we
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cannot find association rules from frequent itemset {211, 212, 235}, because all items in it

are gazing items.

Given the frequent items, we can acquire the association rules to predict the viewers’

gazing patterns. Through employing association rules for new touch data, the TAP module

will predict the gazing patterns before the next touch interaction. As mentioned, the gazing

region (i.e., the tile gazed by viewers) is related to the viewers’ QoE. We thus define four

gazing pattern sets to represent the importance of gazing regions: (1) if an AF pattern

exists in a gazing region, we add the order of this region into set L1; (2) similarly, let L2

denote the set of the regions that contain SP patterns; (3) L3 is the set of the regions that

include SS patterns; (4) L4 is the set of other regions that do not have gazing patterns.

Finally, the result L of the predicted gazing patterns is sent to the TBO module, where

L = {L1, L2, L3, L4}.

4.7 Tile-based Optimization

In this section, we first model the tile-based optimization problem with bandwidth and QoE

constraints and transform it into an equivalent problem with an efficient solution.

4.7.1 Problem Formulation

For ease of exposition, we assume that the duration D of a short stream varies from a few

seconds to several minutes (e.g., two seconds in our experiments). Every short stream is

reconstructed by N tiles and each tile has V quality versions. We thus denote each tile as

ti,j, i ∈ {1, · · · , N}, j ∈ {1, · · · , V }. Let di,j and ei,j be the size and downloading energy

consumption of tile ti,j, respectively. We denote the quality of a tile by qi,j, which is a

concave increasing function of the encoding bitrate. The size and encoding bitrate of a tile

can be acquired from the streaming servers, and the downloading energy consumption can

be estimated [32]. We use S to denote the duration of the buffered stream on the viewer-

side. The tile-based optimization can thus be formulated as to maximize the tile quality per

energy consumption.

Maximize :
N

∑

i=1

V
∑

j=1

qi,j

ei,j

xi,j (4.1)

subject to:

Streaming Availability Constraints (4.2) and (4.3)

∑N
i=1

∑V
j=1 di,jxi,j

B
≤ S (4.2)

V
∑

j=1

xi,j = 1, i ∈ {1, · · · , N}, xi,j = {0, 1} (4.3)
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Foveated Quality Constraints (4.4), (4.5) and (4.6)

v(ti,a) ≥ α, ti,a ∈ L1 (4.4)

0 ≤ v(ti,a)− v(ti,b) ≤ β, ti,a ∈ Lk, ti,b ∈ Lk+1 (4.5)

v(ti,a)− v(ti,b) = 0, ti,a, ti,b ∈ Lk, k ∈ {1, · · · , 4} (4.6)

where B is the average bandwidth, which is estimated according to the current gamecasting

session on the viewer-side, and α and β are two tunable parameters. The rationale of the

Streaming Availability Constraints is as follows: (1) all tiles should be downloaded comple-

tely before the buffer becomes empty, which guarantees smooth playback of a gamecasting;

(2) the clients only need to download one quality version for every tile, which avoids extra

bandwidth consumption. The rationale of the Foveated Quality Constraints is as follows:

(1) to improve the quality of the tiles in gazing pattern set L1, we denote the minimum

quality version of these tiles by a parameter α; (2) we can select the version of the tiles

in different gazing pattern sets to meet the streaming availability constraints and achieve

the optimization target, but the version gap between two neighboring pattern sets cannot

be larger than β considering that a large value will impact viewers’ QoE; (3) the tiles in a

gazing pattern set should have the same version.

4.7.2 Solution

If we only consider the Streaming Availability Constraints, the tile-based optimization pro-

blem can be transformed into a Multiple Choice Knapsack (MCK) problem, which is NP-

hard with practically efficient solutions available (e.g., pseudopolynomial-time dynamic pro-

gramming) [39]. It is worth noting that the optimal solution of this MCK problem may not

meet the Foveated Quality Constraints. We therefore propose Algorithm 4. The inputs in-

clude (1) parameters α and β; (2) the prediction result L; and (3) the version of tiles,

and the corresponding size and estimated energy consumption. The algorithm first narrows

down the solution space (lines 2 to 6) according to the Foveated Quality Constraints before

employing dynamic programming. If there exists a feasible solution (line 7), the algorithm

solves the MCK problem using a dynamic programming approach; otherwise, it uses a pa-

rameter index to alternately adjust β and α to enlarge the solution space (lines 10 to 16).

Finally, we can obtain the version selection of every tile (line 18).

57



Algorithm 4: Tile-based Selection Optimization

Input:
(1) Tinfo, tile information, including the version info., size info., and energy info.
for all tiles;
(2) L, the result of the predicted gazing patterns;
(3) α, the minimum version for the tiles in L1;
(4) β, the maximum version gap between the tiles in Lk and Lk+1.
Output: Q, the version selection for all tiles

1 index = 0
2 for each gazing pattern set l in L do
3 for each tile t in l do
4 for each quality version v of t do
5 remove v if it does not meet the Foveated Quality Constraints

6 update Tinfo

7 if the time of downloading the lowest versions of all tiles is less than the duration
of buffered stream then

8 acquire optimal version selection Q using a dynamic programming solution of
the MCK problem

9 else
10 //update β and α alternately to enlarge the solution space
11 if index mod 2 == 0 then
12 β ← β + 1
13 else
14 α← α− 1
15 β ← β − 1

16 index← index + 1
17 goto line 2

18 return Q;
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(a) G1 (b) G2 (c) G3

Figure 4.13: Eye gazing patterns vs. Prediction results

4.8 Performance Evaluation

In this section, we examine the performance of the proposed framework by the following

three steps: we first evaluate the performance of the touch-assisted prediction module based

on three state-of-the-art similarity metrics; then, we collect real traces to examine the

performance of the tile-based optimization; finally, we conduct a user study to compare the

viewers’ QoE under a variety of configurations.

4.8.1 Performance of Touch-assisted Prediction

In computer vision research, saliency models generate saliency maps to predict where hu-

mans look at images. Similarly, our touch-assisted prediction module can be used to generate

saliency maps to reflect the gazing areas of viewers. To examine the performance of this

module, we choose three state-of-the-art metrics [9]: Normalized Scanpath Saliency (NSS),

Area Under the Curve (Borji implementation, AUC-Borji in short), and Area Under the

Curve (Judd implementation, AUC-Judd in short). We use the three metrics to compare

the similarity between the predicted saliency maps and the ground truth collected by our

eye-tracking device. Higher NSS, AUC-Borji, and AUC-Judd values indicate high-valued

predictions of viewers’ gazing areas. The theoretical ranges of NSS, AUC-Borji, and AUC-

Judd are [−∞, ∞], [0, 1], and [0, 1], respectively (best score in bold). Based on the setting

of tiles in this paper, every predicted saliency map consists of white/grey/black tiles, as

shown in Figure 4.13. In these examples, the white tiles show that these areas include AF

patterns, the grey ones contain SP and SS patterns, and the black ones do not have any

gazing patterns. We further plot the percentage of all metrics to show the prediction perfor-

mance in Figures 4.14, 4.15, and 4.16. From these figures, we observe that the touch-assisted

prediction achieves good performance for the three games with all the three metrics. The
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(a) G1 (b) G2 (c) G3

Figure 4.14: Normalized Scanpath Saliency

(a) G1 (b) G2 (c) G3

Figure 4.15: Area Under the Curve (Borji)

(a) G1 (b) G2 (c) G3

Figure 4.16: Area Under the Curve (Judd)

prediction performance in G2 is worse than others, because the time intervals between two

touch interactions are longer than those in G1 and G3. That is, the time intervals between

consecutive touch interactions can affect the similarities of gazing patterns among different

viewers.

4.8.2 Trace-driven Simulation

We evaluate our interaction-aware optimization framework through trace-driven simulations

and a user study under various settings. We first connect a Samsung Galaxy S5 with Android

4.4.2 to a PC (DELL Optiplex 7010) and gain privileged control using rooting tools, CF-

Auto-Root. Then, we collect the communication data using Android tcpdump and retrieve

the tile files using wget on this S5 in a campus network. To measure the energy consumption,

we supply the power of this S5 using a Monsoon power monitor, which connects to a PC
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Figure 4.17: Energy measurement platform
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Figure 4.18: Impact of different α and β settings

through USB and feeds back the energy consumption of the viewer’s S5 to the PC in real-

time, as shown in Figure 4.17.
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(b) Stream quality

Figure 4.19: Comparison of our approach and DASH (SRD)

We first investigate the impact of parameters α and β in terms of energy consump-

tion, data transmission, and stream quality. We divide a 2-second video into 25 tiles, which

are encoded at eight versions. Based on the predicted gazing pattern sets, as shown in

Figure 4.18a, we conduct the tile-based optimization to determine which tile should be

obtained and collect the corresponding results, i.e., the energy consumption, data trans-

mission and stream quality, under different parameter settings. For ease of comparison, the

results are normalized by the respective maximum values. We plot the normalized results

under different α and β settings in Figure 4.18b, 4.18c, and 4.18d. We observe that α has a

higher impact than β; therefore, if there is no feasible solution, the optimization algorithm

first adjusts β, and then changes α (lines 10 to 16 in Algorithm 4). To avoid the impact of

large β, we adjust it only once for different α in Algorithm 4.

To explore the effectiveness of our solution, we also examine the performance of the tile-

based optimization under different network capacities through throttling the bandwidth on

the mobile device. We compare our method with the original DASH (SRD) selection, in

which all tiles have the same version in a short content. In our simulation, we set α = 8

and β = 1 by default. Figure 4.19 plots the results. In Figure 4.19a, we observe that our

method has lower energy consumption except for two data points at 50% and 40% of the

network capacity. The reason is that the original DASH adaptation may reduce the quality

of tiles suddenly to accommodate a decrease of bandwidth, while our method fully utilizes

the available bandwidth to optimize the tile quality per energy consumption. Figure 4.19b

shows that our solution optimizes the tile quality selection with low energy consumption

except for the case of 100% of network capacity, which is determined by our optimization

objective, i.e., efficient energy utilization.
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Figure 4.20: PSNR experiments in four gazing pattern sets

4.8.3 User Study

We further conduct a user study to examine the QoE of ten viewers. We first select a

10-second video clip and generate 25 tiles at 8 versions using ffmpeg, x264 encoder, and

mp4box10. According to the corresponding touch interactions, we predict the gazing pattern

sets and output the video clips under different network capacities. We also produce DASH

(SRD) video clips for comparisons.
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Figure 4.21: Satisfaction Score (error bars are 95% confidence intervals)

We plot the PSNR for each gazing pattern set in Figure 4.20. As can be seen, our appro-

ach scores a slightly high PSNR under different network capacities in Figure 4.20a; however,

it decreases PSNR in other three sets because our approach optimizes the tiles in the area-

10https://gpac.wp.mines-telecom.fr/mp4box
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fixation pattern set. To compare the quality differences of the two video clips, we deploy a

desktop PC to simultaneously play them under the same network capacity. To guarantee the

fairness of comparison, we play the two clips in randomly selected windows every time. The

viewers compare their quality differences with the source video clip through grading their

satisfaction. Here, we use a satisfaction score to represent the viewers’ evaluation about the

qualities of their gazing tiles and the whole scene. The satisfaction score is from 1(worst) to

100(best). If they find the quality of one gazing region in video clip A is higher than that

in video clip B, they will assign a high score to A. Because the source video clip has the

best quality, we assume that its satisfaction score is 100. Figure 4.21 shows the evaluation

results under different network capacities. From this figure, we observe that our approach

always achieves a higher score (3%-13%) than DASH (SRD).

4.9 Summary

In this chapter, we explored the emerging mobile gamecasting systems in which both stream

sources and receivers are mobile devices. Through collecting traces from gamers and viewers

in the real world, we identified the relations between the touch interactions of the gamers

(i.e., broadcasters) and the gazing patterns of the viewers. Motivated by this, we proposed

an interaction-aware optimization framework that includes two novel designs: (1) a touch-

assisted prediction module to build association rules offline and performs viewers’ gazing

pattern prediction online; and (2) a tile-based optimization module for energy consumption

and quality selection under limited network capacity. The experimental results showed that

our solution effectively utilizes the available bandwidth with better tile quality and less

energy consumption. The user study also proved that the approach improves the viewers’

satisfaction (from 3% to 13%).
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Chapter 5

Highlight-Aware eSports

Gamecasting with Strategy-Based

Prediction

Fueled by today’s high-speed networks and blossom games market, crowdsourced game-

casting has emerged as a popular live streaming service, in which gamers (i.e., streamers)

broadcast their game playthroughs1 in real-time to a large number of viewers who dis-

cuss game-related topics at the same time. Such services as Twitch, YouTube Gaming, and

DouyuTV2, have contributed to a significant amount of today’s Internet traffic and got

into fellow viewers’ daily life. As the mainstay of these services, eSports gamecasting chan-

nels continuously attract much attention from both gamers and viewers. According to the

statistics from Twitch, more than 60% of concurrent viewers are contributed by eSports

gamecasting channels every day, such as Dota2, League of Legends (LoL), and CS:GO3.

Similarly, DouyuTV, the twenty-eighth of top sites in China, also reported that more than

70% of the most attractive streamers are interested in LoL game matches4.

Compared with professional broadcasting services, e.g., HBO5 and Apple TV6, eSports

gamecasting services do not host content sources. The encoded game scenes are continuously

streamed from content sources managed by gamers to ingesting servers through proprietary

1Game playthrough is the act of playing a game from start to finish.

2https://www.douyu.com

3Dota2 and League of Legends are two multiplayer online battle arena (MOBA) video games. Counter-
Strike: Global Offensive (CS:GO) is a multiplayer first-person shooter video game.

4https://www.douyu.com/directory/rank_list/game

5Home Box Office (HBO) is an American premium cable and satellite television network.
http://www.hbo.com

6Apple TV is a digital media player and microconsole. https://www.apple.com/tv
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Figure 5.1: Impact of transcoding stages

protocols, e.g., RTMP (Real Time Message Protocol7). Considering the overhead on the

server side, such proprietary protocols cannot be used to deliver gamecasting contents to a

large number of viewers [69]. The general way is to transcode original RTMP streaming to

HTTP-based streaming, e.g., HTTP Live Streaming (HLS8), but consume a massive amount

of computational resources and costs [58]. Besides, eSports gamecasting services encourage

streamers and fellow viewers to participate real-time discussions. If there exist the huge

difference of latencies among fellow viewers, viewers’ Quality-of-Experience (QoE) will be

largely impaired. For example, a high-latency viewer may know the final result of an eSports

match from the low-latency viewers’ online discussion before watching the corresponding

gamecasting content.

There have been some efforts addressing the aforementioned issues from both industry

and academia. Yet the existing solutions either change transcoding settings on the strea-

mer side or optimize the streaming delivery using the information on the viewer side. Such

strategies, when used in eSports gamecasting services, lack full knowledge of game events,

which lead to the lag and inaccuracy of optimizations. For instance, a strategy first predicts

that the highest concurrent viewing number will occur after two minutes in an eSports

gamecasting. Then, the corresponding optimization strategy reserves extra computational

and bandwidth resources to serve this peak workload in the future. Yet this match and ga-

mecasting are terminated after one minute, the optimization fails and the reserved resources

also become wasteful.

To explore the challenges and opportunities for addressing these problems, we first col-

lect the official latency statistics from top-10 streamers of top-10 popular gamecastings in

Twitch, as shown in Figure 5.1a, to investigate the characteristics of broadcasting latency,

which is defined as the time lag between a game scene on the gamer side and the correspon-

7https://www.adobe.com/devnet/rtmp.html

8https://developer.apple.com/streaming
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ding gamecasting content received on the viewer side. We observed that more than 68% of

the broadcasting latency is derived from the transcoding period, as shown in Figure 5.1b.

We further analyze transcoding latency by deploying a crowdsourced gamecasting service

on various Amazon EC2 instances. Our measurement results reveal that game highlights,

i.e., key events in a game, largely impact the complexities of game scenes, which in turn

determine the transcoding latencies of corresponding game streams. Motivated by these

observations, we propose a novel gamecasting framework StreamingCursor to capture the

unique features in eSports games, i.e., the multiplayer’s real-time operations and strategies,

to predict the game highlights. The key challenges towards designing the framework lie

in: (1) how to reduce the prediction lag and improve the accuracy; (2) how to adopt the

prediction results to optimize the transcoding tasks cost-effectively.

To this end, StreamingCursor incorporates a strategy-based prediction (SBP) module

and a highlight-aware optimization (HAO) module. The former predicts the highlights in a

game using gamers’ interaction data based on a proposed deep learning network, and the

latter optimizes the transcoding tasks to reduce the broadcasting latency according to the

predictions from the SBP module. To the best of our knowledge, our study is the first to

explore the potentials from the multiplayer’s operations in the eSports gamecasting services.

Our contributions can be summarized as follows: (1) We conduct the cloud-based measu-

rements to reveal the challenges and motivate our design; (2) To usher the optimizations

in transcoding and delivery, the framework is designed with full knowledge of multiplayer’s

game strategies; (3) The performance evaluation demonstrates that the SBP module achie-

ves more than 90% accuracy in the highlight prediction based on the collected replays in

the popular eSports game Dota2. In addition, the trace-based simulations show that the

proposed optimization approach reduce the broadcasting latency cost-effectively.

5.1 Background

Crowdsourced gamecasting has emerged as one of the most popular live streaming applicati-

ons in recent years. It offers two parallel services: Streaming Service and Interactive Service,

as shown in Figure 5.2. Game scenes are first captured and encoded by a streaming software

(e.g., OBS) deployed on the streamer’s device. Then, the streaming service ingests game

sessions, assigns transcoding tasks, and distributes contents to viewers. In the meantime, the

interactive service provides an embedded chatting platform for the streamers and viewers,

creating lots of novel streaming scenarios, e.g., crowdsourced gaming TwitchPlaysPokemon.

According to the statistics from Alexa9, Twitch’s global traffic ranking just experienced a

huge boost from the first hundred to forty-fifth in the last year. Moreover, crowdsourced ga-

mecasting applications also occupy more and more viewers’ daily life. For example, “average

9https://www.alexa.com
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Figure 5.2: An illustration of CILS paradigm

time on site” of Twitch’s viewers is about 6 minutes per day, and this index on DouyuTV

is about 9 minutes.

As one of the most important branches in such crowdsourced gamecasting applicati-

ons, eSports gamecasting has attracted millions of viewers from all over the world. It has

been reported that global games market generated $91 billion in revenues with a nearly

23% growth in 201610, which further elevates the growth of eSports gamecasting. Taking

a Twitch’s streamer “eleaguetv” as one example, its eSports gamecasting on last January

attracted more than 1 million concurrent viewers11. As the source of eSports gamecasting,

a typical eSports match contains several gamers who are divided into different teams to

compete various resources, e.g., golds, weapons, and controlled areas. The left part in Fi-

gure 5.2 briefly demonstrates the design of an eSports game “Dota2”, in which ten gamers

are grouped into two teams. The battle area consists of several types of regions: three lanes

(top, middle, and bottom), a river, four jungle areas, etc. When a match starts, every gamer

first chooses one hero, then upgrades the hero’s level and equipment by fighting with the

enemies and the other gamers in another team. Like most of the eSports games, Dota2 also

highlights the gamers’ cooperation in one team, therefore, how to fight enemies together,

called “teamfight”, becomes the most important event, which may determine the final result

of a match. In a Dota2’s teamfight, most of the gamers participate in casting their heroes’

skills and attacking others, which also attracts the attentions and discussions from fellow

viewers during the gamecasting. Several initial works to detect the highlights and winning

team in an eSports match have been studied in recent years. After parsing the replay or

10https://www.superdataresearch.com/insights

11https://goo.gl/63iNrK
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Figure 5.3: Illustrations of the playing flow in Dota2.

video of a match, these studies focus on the changes of the gamers’ information, e.g., loca-

tion, gold, and experience, and the dynamics of visual effects in the videos. Yang et al. [76]

analyzed the replays using a sequence of event-related graphs and extracted key patterns

to predict the successful team of the entire game. They achieved an 80% prediction accu-

racy when testing on new game replays. Drachen et al. [18] examined the spatiotemporal

patterns of the gamers with four skill tiers, i.e., normal, high, very high, and professional.

They further analyzed the relationship between game skills and match results. The work

in [65] detected the highlights from the videos of eSports game matches. By using CNNs

to learn the features of visual effects in the videos, the proposed approaches achieves more

than 80% accuracy in the highlights detections. Similarly, Chu et al. [14] recognized the

designated text displayed on a game screen when key events occur as visual features. The

proposed highlight prediction models are based on the visual features, event features, and

viewer’s behavior. In addition, their approach also can predict the emerge of a highlight in

the next few seconds.
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These previous efforts motivate our work, but still face two limitations: (1) because

the highlights only can be detected after they appear, existing approaches cannot meet

the timeliness requirement of the optimization in eSports gamecasting applications; (2)

based on pre-recorded eSports videos, current prediction strategies cannot better guide

the optimization due to the low accuracy and short forecasting gap. To overcome these

limitations, we directly investigate the interactions among the gamers in an eSports game,

closely explore the correlations between these interactions and highlights, and timely predict

the highlights.

5.1.1 Optimization in Crowdsourced Gamecasting Services

Some recent studies already focused on the optimization in crowdsourced gamecasting ser-

vices. Fan-Chiang et al. [76] investigated the importance of segment-of-interest in such

services and optimized the resource allocation during the gamecasting. The proposed fra-

mework reduces the consumption of bandwidth resource and improves the viewing quality.

Wu et al. [86] explored opportunities to combine the edge-based and cloud-based network

resources. A novel framework to allocate the resources was designed to improve the inges-

ting performance in crowdsourced gamecasting services. He et al. [27] proposed a framework

“CrowdTranscoding” for crowdsourced gamecasting services through allocating the transco-

ding assignment to the massive viewers. Both the trace-driven simulation and experiments

show the superiority of this novel framework. Our work complements them by exploiting

the hints that guide the optimization in crowdsourced gamecasting services in advance, even

before the encoding stage of a gamecasting. Our work proposes a new design in the realm of

utilizing the gamers’ interactions in eSports games, where the cooperation and competition

data are extracted into gamer-related, team-related and item-related features. Integrating

these features into deep learning models pose a new opportunity to optimize the eSports

gamecasting services and improve the viewers’ QoE.

5.1.2 Learning-based QoE Improvement in Multimedia Systems

Learning-based approaches have recently become popular solutions to improve viewers’

QoEs in multimedia systems. In a typical learning-based approach, a prediction module

collects the feedbacks from streaming servers and viewers and forecast the viewers’ QoE

in various locations and network connections. As shown in [36], the proposed data-driven

prediction model coordinates the relationships between video quality and observed session

features, capturing the key features and updating quality predictions in near real-time.

Vega et al. [68] used unsupervised deep learning techniques and measurements on the vie-

wer side to accurately assess the video quality in real-time. Jiang et al. [37] introduced a

prediction-based mechanism, considering the video sessions that share the same features

into a group. The proposed framework well responds the quick changes and biases in the

real-time QoE optimization. Our work differs from these studies in two aspects: First, we
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Table 5.1: Configuration of Amazon EC2 instances

ID Type vCPU Memory (GB) Price

A1 m4.xlarge 4 16 $0.2/h

A2 m4.2xlarge 8 32 $0.4/h

A3 m4.4xlarge 16 64 $0.8/h

A4 c4.xlarge 4 7.5 $0.199/h

A5 c4.2xlarge 8 15 $0.398/h

A6 c4.4xlarge 16 30 $0.796/h

employ the feedbacks from gamers and broadcasters in crowdsourced eSports gamecasting

services, rather than the sessions features from various viewers, which is a significant dif-

ference from a system point of view. Second, the interactions of gamers are ahead of the

viewing behaviors and sessions on the viewer side, which guarantees the timeliness of the

prediction results in our work.

5.2 Measurement and Observation

In this section, we investigate the characteristics of transcoding tasks on various Amazon

EC2 instances. The measurements are mainly based on the game Dota2, which is a typical

multiplayer online battle arena (MOBA) game and one of the most popular eSports games.

The measurement results also motivate our work in this section.

5.2.1 Measurement Settings

In a Dota2 match, the game flow mainly includes the following five parts, the corresponding

snapshots are shown in Figure 5.3:

• Pick/Ban (P/B): Pick/Ban stage is the first phase of a MOBA tournament match.

The captain in each team bans certain heroes, preventing either team from picking

the hero; every captain also chooses five heroes for the whole team alternately;

• Game Start: After choosing preferred heroes, the gamers in a team start the game

from their base and choose the combat lanes according to the heroes’ abilities;

• Farming/Pushing (F/P): In this stage, all gamers upgrade their equipment and levels

through earning golds and experiences from clearing enemy creeps on the lanes or

combating the neutral creeps at the jungle areas;

• Teamfight (TF): During an eSports gamecasting, teamfights are the most attractive

events, in which the gamers attack the opponent heroes using their skills. It occurs

in several farming/pushing stages. Because the goal of a teamfight is to eliminate as

many of the opponent heroes as possible, a good teamfight can determine the final

result of a match.
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• Game End: After several rounds of farming, pushing and teamfight, the gamers in a

team will try to attack the opponents’ base, if success, they will win the match;

Our measurement for each stage relies on ten videos that are recorded from five randomly

selected Dota2 replays. we conduct the measurements on Amazon EC2 instances. As shown

in Table 5.1, we consider six types of instances, which have various settings and prices.

A1, A2, and A3 are m4 instances, which can provide a balance of compute, memory, and

network resources. A4, A5, and A6 are c4 instances, which are optimized for compute-

intensive workloads and delivers very cost-effective high performance at a low price/compute

performance in EC2. We measure the transcoding performance using FFmpeg to convert the

original videos to different resolutions and bitrates. The broadcasting latency is measured

by deploying Nginx-RTMP module12 on each platform. The instance with this module can

be considered as a crowdsourced livecast server that ingests video contents from a source

and transcodes it to various quality versions.

5.2.2 Measurement Results

Figure 5.4 shows the measurement results for the transcoding tasks on different instances.

As shown in Figure 5.4a, we observe that the computation-optimized instances A4, A5,

and A6 achieve lower latencies than the general instances A1, A2, and A3, even they have

the similar cost. But the superiority of computation-optimized instances is decreased in

the transcoding tasks with the low-resolution quality versions. Figures 5.4b indicates the

performance of transcoding the game scenes in different stages on A4. We find that the

latency of P/B stage is clearly lower than the other stages. Besides, the transcoding tasks

in TF and End stages need more time to process complex game scenes, which introduce

extra latencies. We also observe the huge disparity among different streaming qualities. For

example, in TF stage, the average transcoding latency of the 1080p videos is 3 seconds

higher than that of the 720p videos in Figure 5.4b. Figure 5.4c shows the impact of the

number of the threads on A6 instance. Through changing the number of the used CPU

threads to a reasonable setting, we can dynamically adjust the transcoding latencies for

the different quality versions in a gamecasting. These measurement results motivate us to

design a framework that not only predicts the highlights in a gamecasting but also balances

the transcoding latency and cost in different settings according to the prediction results.

5.3 StreamingCursor: An Overview

In this section, we first outline the StreamingCursor framework and proposed the detailed

design in the following two sections. As shown in Figure 5.5, StreamingCursor is a generic

12https://github.com/arut/nginx-rtmp-module
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Figure 5.4: Measurement results for the transcoding tasks on different instances
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framework that facilitates the optimization of existing eSports gamecasting services. It

consists of two modules, namely, Strategy-based Prediction (SBP) module and Highlight-

aware Optimization (HAO) module. The SBP module is a new part of this framework

compared with that of existing eSports gamecasting services. Upon receiving the gamers’

interactions in a match from the game server in real-time, the SBP module will be aware

of the team strategies, predicting the highlights, e.g., teamfights, in this match. The HAO

module receives the predictions from the SBP module as the hints to guide the transcoding

and distribution of gamecasting. Combining these hints and the viewing demands, the HAO

module reserves and allocates resources ahead of the emerges of the predicted highlights

cost-effectively.

There are however a number of critical practical and theoretical issues to be addressed

in this generic framework. First, the gamers’ interactions change over time, which genera-

tes the varying strategies of cooperations in a team and competitions between two teams.

Although the existing study in [14] have predicted the highlights in the next few seconds,

the accuracy of its prediction is not very high. As such, StreamingCursor must well fore-

cast the highlights with a higher accuracy and a larger prediction gap after receiving the
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Table 5.2: Statistics of a replay file

Type Description # of logs Percentage

4 Hero’s movements 392,268 87.9%

24 Damage in combats 29,544 6.6%

3
Hero’s local statistic,
e.g., gold and experience

5,810 1.3%

27 Ability used in combats 1,801 0.4%

26 Death in combats 3,903 0.9%

29 Item buy/sell 600 0.1%

others
Other info. in combats,
gamers’ statistics, etc.

12,434 2.8%

interactions. Longer predicted gap, earlier to prepare the corresponding optimization. In ad-

dition, after predicting the highlights, how to cost-effectively allocate the transcoding tasks

and strategically design the content distribution will significantly impact the viewers’ QoE.

These problems are further complicated given the heterogeneous devices and network con-

nections of viewers and that of streamers (i.e., gamers). Besides, such a framework should

be transparent to the streamers and viewers, i.e., the whole design does not suspend the

match, impact the gamecasting, or reduce the viewers’ QoE. Therefore, it can complement

with existing eSports gamecasting services.

5.4 Framework Design and Solution

In this section, we propose the design and solution for the highlight prediction in eSports

matches and the gamecasting optimization. We first illustrate the strategy-based prediction

(SBP) module based on gamers’ interactions.

5.4.1 Strategy-based Prediction

MOBA games usually save game matches by recording the gamers’ interactions into the

proprietary replay files. We, therefore, are able to retrieve every gamer’s interaction data

through parsing these game replays. To better understand these interactions and preprocess

them, we first classify them into several groups according to their interaction types that

are pre-defined by the game developers. As shown in Table 5.2, we show the details of

different types of data in a replay. We observe that about 88% of data show the changes

of gamers’ locations, and 6.5% are combat logs, which illustrate how gamers attack their

enemies, e.g., damage values during a combat. Besides, other data consist of the changes

of gamers’ golds, experiences, skill levels, equipment, etc. These interactions naturally can

be further classified into spatial and temporal interactions: (1) spatial interactions, e.g.,

every gamer has a fixed location at a certain time; (2) temporal interactions, e.g., the golds

owned by every gamer will be changed along with the time of a match. The StreamingCursor
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framework, therefore, must capture the characteristics of these two types of interactions. To

fulfill this target, we extract global data and local data. The global data contain the location

changes of all gamers, the unit changes of the whole battle arena, and the competition data

of two teams. The local data includes the changes of the gold, experience, buy/sell items of

every gamer along with match time.

Finally, the SBP module is mainly constructed by a deep learning network, as shown in

Figure 5.6. It consists of several 2dCNN (Convolutional Neural Network) layers [41, 17] and

stack LSTM (Long Short-Term Memory) layers [29], capturing the correlations between

the spatiotemporal features in an eSports game and the highlights in the corresponding

gamecasting. In deep learning research, the CNN is a class of deep, feed-forward neural

network that has successfully been applied to processing videos/images and decreasing

the dimensions of input data. LSTM is a type of RNN (Recurrent Neural Network) [52],

well classifying, processing and predicting time series. Through unique gating units, LSTM

avoids the long-term dependency problem, having the ability to remove or add information

when learning time series.

In the SBP module, the first part is two 2dCNN layers for global strategy and local

strategy, respectively. For each time slot, the 2dCNNs can better reduce the dimensions

of two types of input data. Then, we concrete the outputs of two 2dCNNs as the input

of the stacked LSTM Networks. The stacked LSTM layers output the prediction results,

indicating that the highlights will occur. To reflect the prediction lag, we train the model

using different input data labeled by various time gaps.

5.4.2 Transcoding Task Assignment Optimization

In this subsection, we design the transcoding optimization. We assume a general transcoding

framework, where a large number of transcoding tasks need to be assigned to different servers

with various computational configurations. Because highlight predictions give us opportu-

nities to reserve and allocate resource earlier, we perform the transcoding task assignment

according to the following two rules: (1) the workloads that belong to a predicted highlight

should be transcoded priority-wise, such that the transcoding time for these workloads can

be reduced using high-performance servers; (2) other workloads should be finished before its

deadline when viewers request them, such that our optimization does not impair viewers’

QoEs. Figure 5.7 illustrates the basic concept of transcoding task assignment optimization.

Gamecasting g1 needs to be transcoded into two versions: v1 and v2. Based on the pre-

dictions, we already know the time when a highlight occurs (shadow areas); therefore, we

first assign the workloads 3 and 4 on the high-performance server s1, and then assign the

workloads 1 and 2 on the low-performance server s2. Finally, all transcoding tasks will be

finished before their deadlines and the total transcoding latency is lower than the previous

assignment. Yet how to allocate these tasks cost-effectively still need to be addressed. Next,

we formulate this problem and propose the solution.
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We denote (g, v) as a task that transcodes a gamecasting g from the original quality

version to quality version v. Without loss of generality, we use S
(T )
(g,v) to denote the transco-

ding server that is assigned to task (g, v). Let E(T )[(g, v), s] denote the transcoding cost if

task (g, v) is allocated to server s in time slot T . It can be calculated as follows:

E(T )[(g, v), s] =
c(T )(g, v)

C(s)
P(s)

where c(T )(g, v) is the amount of computation resource that is required by task (g, v) in

time slot T . C(s) and P(s) are the computation capacity and unit price of a server s,

respectively. We also denote the profit of transcoding task (g, v) on server s in time slot T

as F (T )[(g, v), s], which can be calculated as follows:

F (T )[(g, v), s] = W (T )(g, v)log(α − βl(T )[(g, v), s])

where W (T )(g, v) is the predicted viewing number of the version v of gamecasting g;

l(T )[(g, v), s]) is the transcoding latency of task (g, v) on server s. Base on the definitions

of the transcoding cost and profit of tasks, we define the transcoding gain T G(T )[(g, v), s]

when assigning task (g, v) on server s as follows:

T G(T )[(g, v), s] =
F (T )[(g, v), s]

E(T )[(g, v), s]
(5.1)

As such the optimization of transcoding tasks in time slot T is then formulated as

follows:

max
∑

g

∑

v

T G(T )[(g, v), S
(T )
(g,v) ] (5.2)

subject to:

Transcoding Latency Constraint:

l(T )(g, v)H
(T )
(g,v) ≤

∑

t∈[0,T −1] l(t)(g, v)(1 −H
(t)
(g,v))

∑

t∈[0,T −1](1−H
(t)
(g,v))

≤ γ,∀(g, v) ∈ G(T )

(5.3)

H
(T )
(g,v) =







1, if task (g, v) belongs to a highlight

0, otherwise
(5.4)

Resource Availability Constraint:

∑

g

∑

v

c(T )(g, v) ≤
∑

s

C(T )(s) (5.5)
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where H
(T )
(g,v) shows whether task (g, v) belongs to a highlight, as shown in equation (5.4).

The optimization is to assign the transcoding tasks to different servers, so that the overall

transcoding gain can be maximized. The rationale of transcoding constraint is as follows:

(1) the tasks that belong to highlights should enjoy a similar transcoding time compared

with other tasks; (2) all tasks should be completed in a period γ, which proposes a basic

QoE requirement for the transcoding tasks in eSports gamecasting services. The resource

availability constraint guarantees that there exist enough computational resources for all

transcoding tasks.

Because the Transcoding Latency Constraint is independent of the Resource Availability

Constraint, we can first remove the transcoding servers that do not meet the former, and

then this problem can be transformed into a minimum cost network flow problem. The

minimum cost network flow problem [3] is briefly introduced as follows. Let G = (N, E) be

a directed network with a set N of n nodes and a set E of m edges. Every node i ∈ N has

an associated number b(i) to denote its supply or demand depending on whether b(i) > 0

or b(i) < 0. Every edge (i, j) ∈ E has an associated per unit flow cost cij and a flow

capacity uij . The minimum cost flow problem can be formulated as follows. Such problem

can be solved by double scaling algorithm [3] in polynomial time. Let C denote the largest

magnitude of any edge cost and U denote the largest magnitude of any edge capacity. The

time complexity is O(nmlogUlog(nC)).

Minmize
∑

(i,j)∈E

cijxij

subject to:
∑

{j:(i,j)∈E}

xij −
∑

{j:(j,i)∈E}

xji = b(i),∀i ∈ N

0 ≤ xij ≤ uij ,∀(i, j) ∈ E

To transform our optimization to a minimum cost flow problem, we next introduce

several transformation rules:

1. We introduce supply node vstart and demand node vend.

2. For each transcoding task (g, v), we add a node v(g,v) and an edge (vstart, v(g,v)), its

capacity uvstart,v(g,v)
is equal to the computational requirement of transcoding task

(g, v);

3. For each transcoding server s, we add a node vs and an edge (vs, vend), and its capacity

uvs,vend
is equal to the amount of available computational resource on server s;

4. If task (g, v) can be assigned to server s, we add an edge (v(g,v)), vs) and its capacity

uv(g,v)),vs
is equal to the computational requirement of transcoding task (g, v).

78



Table 5.3: Performance of the strategy-based highlight prediction on different networks

Networks CNN LSTM Input Strategy Game Event

ID # of Layers # of Layers Global Local Highlight Non-highlight

1 1 1 (Single) o o 0.92 0.92

2 1 2 o o 0.95 0.94

3 1 3 (our design) o o 0.95 0.95

4 1 4 o o 0.93 0.92

5 2 3 o o 0.92 0.92

6 1 3 o x 0.79 0.85

7 1 3 x o 0.67 0.67

5. We set the cost from vstart to any task node v(g,v) and the cost from any server node vs

to vend to 0, and set the cost of existing edge (v(g,v), vs) to −[T G[(g, v), s]/uv(g,v) ,vs ]13.

6. To meet our optimization problem, we use the following constraints in the transformed

minimum cost flow problem:

xvstart,v(g,v)
= uvstart,v(g,v)

,∀v(g,v) ∈ N

xv(g,v)),vs
= uv(g,v)),vs

,∀v(g,v),∀vs ∈ N

xvs,vend
≤ uvs,vend

,∀vs ∈ N

After applying the above rules, we can transform our optimization problem (5.1) into a

minimum cost flow problem.

5.5 Performance Evaluation

We have conducted trace-driven experiments to evaluate the performances of the prediction

module SBP and the optimization module HAO in the framework StreamingCursor.

5.5.1 Strategy-based Prediction Results

We collect 80 game replays from Dota2. Based on an open source package14, we write an

offline parser to extract interaction data of every replay into continuous time slots and

recognize teamfights based on the damage and multiple kill data. Because the SBP module

is expected to predict highlights before their occurrences, we assume that the interactions

between time slot T and T + tgap will trigger a highlight, i.e., teamfight, if they occur tgap

seconds ahead of this highlight. Here, we set prediction gap tgap to 10 seconds. Based on

13Without loss of generality, we omit the index time slot T .

14https://github.com/dotabuff/manta
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Figure 5.9: Normalized transcoding latency
under different number of broadcasters

this rule, we label the data in different time slots using highlight or non-highlight. We train

the proposed learning network using the half of these data, and then test the prediction

performance of the network using the remaining half. The deep learning based highlight

prediction in the SBP module is implemented in Keras15 with cuDNN on an Nvidia GTX

1080 GPU. For the comparison of SBP module, we have also implemented several networks

with different settings, as shown in Table 5.3. In our evaluation of this module, we use

F-score [25] to reflect the performance of the SBP module.

We first evaluate the impact of the number of the LSTM layers. As shown in the networks

1 to 4 in Table 5.3, we adjust the number of the LSTM layers and fix other settings. It can

be seen that network 1 with single LSTM layer has the lowest prediction performance.

When we use stacked LSTM and increase the layer number, network 3 acquires better

result than networks 1 and 2. We further test a stacked LSTM with four layers and find

the prediction performance is lower than networks 2 and 3. We consider that this deeper

LSTM design overfits the training data. Based on this observation, we fix the number of

stacked LSTM layers to 3 and change other settings to study the impact. In network 5, as

shown in Table 5.3, the number of CNN layers is added to 2, but this decreases about 3%

of the performance in the highlight prediction. The extra CNN layer, which is not suitable,

reduces the dimensions of the training data too much and further impact the effectiveness

of LSTM layers. To investigate the impact of global and local strategies in our design, we

train networks 6 and 7 using global strategy or local strategy only. As shown in Table 5.3,

networks 6 and 7 suffer a significant performance decrease due to the lack of local or global

strategies. This illustrates the effectiveness of adopting global and local strategies together.

15https://keras.io
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5.5.2 Highlight-aware Optimization Performance

For the comparison of HAO module, we have implemented two strategies: Randomly Transco-

ding Allocation (RTA) and Load-Based Allocation (BPA). The former assigns a transco-

ding task on a randomly selected server from all available ones. The latter always selects

the transcoding server with the lowest load for the current task. In the evaluation of this

module, we adopt two metrics: transcoding latency and expense, which combined together

illustrate the performance when using three strategies. We use the transcoding traces col-

lected in Section 5.2 and the gamecasting traces crawled using Twitch official API in one

hour. We write three simulators to conduct the performance evaluation, which can choose

transcoding servers from three types of instances, i.e., A4, A5, and A6 and elastically le-

ase/release them. Considering the transcoding settings in practical gamecasting services,

we assume that all gamecastings are transcoded from original RTMP streaming to HLS

segments with four quality versions, i.e., 1080p, 720p, 480p, and 360p16, using the instances

on Amazon EC2.

Transcoding Cost on the Cloud

In this experiment, because the instances can be leased elastically, they can satisfy all the

transcoding requests of gamecastings. We calculate the cost of leasing Amazon EC2 instan-

ces as transcoding servers. In Figure 5.8, each bar represents the cost when a particular

number of gamecastings are transcoded during one hour. For ease of comparison, the re-

sults are normalized by the maximum cost. It is noted that transcoding a large number of

gamecastings generally consume larger computation resources. The reason is that all game-

castings have to be processed and transcoded, even if some of them do not have any viewer.

For any number of gamecastings in this figure, we observe that the transcoding cost with

our HAO module is less than or equal to that with the other two approaches.

Transcoding Latency

In the following experiments, we will evaluate the effectiveness of our HAO module. We

focus on the average transcoding latency, which is the average time when transcoding a large

number of gamecastings. For ease of comparison, the results are normalized by the maximum

latency in Figure 5.9. We evaluate the impact of the different number of gamecastings. As

shown in Figure 5.9, each bar represents the average transcoding latency when a particular

number of gamecastings are transcoded during one hour. We can observe that our approach

can effectively reduce the transcoding latency, with an average 10% decrease. In particular,

about 20% of the transcoding latency is reduced when the number of the gamecastings is

equal to five.

16https://stream.twitch.tv/encoding
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5.6 Summary

In this paper, we showed the evidence that in practical crowdsourced gamecasting platforms

like Twitch, the transcoding complexity and latency of an eSports gamecasting closely de-

pends on the gamers’ interactions in the corresponding game match. Motivated by this

observation, we explored opportunities and challenges to optimize the transcoding tasks

in eSports gamecasting services. We presented StreamingCursor, a generic framework that

investigates eSports gamers’ interactions and predicts game highlights to optimize the cor-

responding transcoding tasks cost-effectively. Specifically, we first designed a strategy-based

prediction (SBP) module, which mainly adopts a deep learning based network to predict

highlights in real-time. We further proposed a highlight-aware optimization (HAO) module,

which receives the prediction results from the SBP module and select transcoding servers

cost-effectively. Extensive simulations driven by traces from Amazon EC2 and Twitch il-

lustrated the high prediction accuracy of the SBP module and the cost-effectiveness and

superior transcoding performance of the HAO module.
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Chapter 6

Conclusion

Crowdsourced livecast systems have emerged in recent years. Such systems as Twitch, You-

Tube Gaming, and Periscope have received much attention both from industry and aca-

demic and substantially changed the generation and consumption of live streaming con-

tent, occupying more and more Internet users’ daily life. In this thesis, we have conducted

measurement study to investigate the existing crowdsourced livecast systems and propo-

sed enhancements to augment the content ingesting, transcoding, and distribution. In this

chapter, we first summarize this thesis, and then discuss the future directions.

6.1 Summary of the Thesis

First, we conducted the measurement study on crowdsourced livecast systems. Taking

Twitch as one example, we revealed the views patterns and source/event-driven features.

To better understand the challenges and opportunities inside, we further deploy a testbed

to examine the streaming uploading and receiving on the broadcaster side and view side,

respectively. The results show that (1) the disparity of streaming latencies among different

viewers significantly impact their viewing experiences; (2) it is a big challenge for the ser-

vice providers to host the dynamic broadcasters pose and provide the high-quality ingesting

links.

Second, we measured the broadcasters’ resource consumption in Twitch, revealing that a

large number of unpopular broadcasters occupy the valuable bandwidth and computational

resources on dedicated servers. We further proposed a cloud-assisted framework for the

initial offloading, as well as dynamic ingesting redirection and transcoding assignment, to

migrate crowdsourced live contents between dedicated servers and public clouds. Extensive

simulations driven by traces from Twitch and Amazon EC2 demonstrated the superiority

of our design under diverse configurations.

Third, we investigated the emerging mobile gamecasting, in which both livecasting sour-

ces and receivers are mobile devices. We investigated the associations between the touch

interactions of the gamers (i.e., broadcasters) and the gazing patterns of the viewers and
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proposed an interaction-aware optimization framework, including two novel modules: (1)

a touch-assisted prediction module to build association rules offline and performs viewers’

gazing pattern prediction online; and (2) a tile-based optimization module for energy con-

sumption and quality selection under limited network capacity. The experimental results

showed that our solution effectively utilizes the available bandwidth with better tile qua-

lity and less energy consumption. The user study also proved that the superiority of our

approach against the state-of-the-art method.

Fourth, we explored the eSport gamecasting, the most popular branch of crowdsourced

livecast systems. Based on the measurement study on Twitch and Amazon EC2, we revealed

that the transcoding complexity and latency of an eSports gamecasting closely depends on

the gamers’ interactions in the corresponding game match. We further presented a generic

framework StreamingCursor to extract eSports gamers’ interactions and predict game high-

lights to optimize the corresponding transcoding tasks cost-effectively. In this framework, we

designed two modules: (1) a strategy-based prediction (SBP) module, which mainly adopts

a deep learning based network to predict highlights in real-time; (2) a highlight-aware op-

timization (HAO) module, which receives the prediction results from the SBP module and

select transcoding servers cost-effectively. Extensive simulations driven by traces illustrated

the high prediction accuracy of the SBP module and the superior transcoding performance

of the HAO module.

6.2 Future Directions

There are still several directions that can be further explored in the future work.

6.2.1 Further Measurements on Crowdsourced Gamecasting

In February 2014, a pilot project “Twitch Plays Pokemon” offered live streaming and game

emulator for the game Pokemon Red, in which players (also as the viewers in Twitch) simul-

taneously send the control message of Pokemon through the IRC protocol and live messages

in Twitch. This truly crowdsourced game streaming attracted more than 1.6 million play-

ers and 55 million viewers. Similar scales however have yet to appear in other interactive

events, though. It is also known that the user interaction experience is not very satisfied in

the pilot project, which is due largely to the latency disparity between live messages and

the broadcast content, as we have quantified through further measurements.

6.2.2 Further Enhancement on the Broadcaster Side

Joint optimization of servers and clients has been commonly employed in state-of-the-art

streaming services to provide smooth streaming experience for heterogeneous viewers[71].

For crowdsourced livecast systems, it is necessary to include the massive sources in the

optimization loop, which however can be quite challenging given their strong dynamics. Yet
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the crowdsourced nature provides opportunities, too. We suggest that, through analyzing

the enormous amount of historical activities of the broadcasters and viewers, the service

provider may predict their behaviors in advance and accordingly improve the streaming

quality.

Our measurement indicates that the adaptation strategy in Twitch is mainly based on

CBR video. As such, good smoothness and low latency can hardly be both offered with

limited bandwidth. For the viewer side, existing work [57] proposed a trade-off solution to

distribute adaptive streaming in Twitch, which allows the heterogeneous viewer’s devices

to adaptively select the best-fit streaming quality. For the source side, we are working on a

crowd uploading strategy that attempts to leverage the aggregated bandwidth of the many

sources for speedy uploading. The live messaging and the associated social connections can

play useful roles in the uploading, too.

6.2.3 Further Works on Mobile Gamecasing

Many mobile games are non-deterministic, e.g., a gamer touches and attacks the enemies

that appear in different locations randomly. If a new location never appears in the collected

touch data, the association rules cannot provide any feedback to the tile-based optimization

module. To address this issue, we propose the following solution: after learning the rules

from the original setting of tiles (e.g., the 5x5 setting in this paper), the association learning

algorithm also adjusts the setting of tiles to learn the rules, e.g., from 5x5 to 4x4. For

example, when an enemy appears at the location of tile #1 in the 5x5 setting, the gamer

touches and attacks it. If there does not exist any rule about tile #1 in this setting, the

prediction module searches the rules in the 4x4 setting. Because tile #1 in the 4x4 setting

contains the contents of tiles #1, #2, #6, and #7 in the 5x5 setting, if the prediction

module finds rules in the 4x4 setting, we consider these four tiles together to optimize the

gamecasting.

If a game involves mostly randomly generated objects, the benefit would diminish. For

example, in a Pinball game, the ball is only controlled by the player when launching it at the

first step or redirecting it by two flippers. Then, the movements of this ball totally depend

on the design of the playfield. In this scenario, the viewers’ gazing patterns can hardly be

predicted.
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