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Abstract 

The projected increase in the proportion of seniors in society has prompted the growth of 

senior-technologies that support aging-in-place. The aim of this thesis to explore the 

suitability of Force Myography (FMG) for hand gesture identification in aging populations 

to complement other technologies that promote aging-in-place and to investigate the 

practical considerations for implementation.   

Characteristics of using FMG with seniors (aged 60+ years old) was first determined with 

a protocol involving five seniors and five non-seniors. Participants were invited to don a 

custom FMG device and perform a series of stationary hand gestures while being guided 

by a virtual user interface. The interface provided online image instructions of the required 

gesture, as well as visual feedback of successful gesture identification. Participants also 

performed household activities based tasks in a self-selected manner. On average, 

seniors completed specified hand gestures within 1.4 seconds of online instruction, with 

inadvertent identification of control gestures during household tasks lasting at most 1.45 

seconds. Although these times were comparable non-senior participants, seniors 

demonstrated increased variability. Lastly, online accuracies for gesture classification only 

reached 75% compared to the 91% of non-senior participants. 

Considering the results of the first study, a follow up study was performed with a larger 

recruitment pool focusing on intrinsic user features that influence the variability in FMG 

acquisition and modelling. The results demonstrate that age and gender associated 

differences in band tightness, grip strength and ratio of skinfold thickness to forearm 

circumference account for at most 30% of the variability in FMG responsiveness, 

translating to 7% to 30% of the variability of model test accuracy. Intrinsic user features 

also influenced the severity that functional noise (the affect of unintended movements) 

had on classification. Results also revealed that variables independent of the user, such 

as band removal, contribute significantly to declines in testing accuracy, where declines 

ranged from 28% to 96%. Finally, results also showed that methods of FMG modelling 

typically encountered in the literature shows limited effectiveness during non-static activity.  

Keywords:  Activities of daily living; age-related rehabilitation; rehabilitative and 
assistive technology; biomedical devices; human factors; independent 
living; prosthetic control; sensors/sensor application; force myography 
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Chapter 1.  
 
Introduction 

1.1. Chapter Overview 

This chapter begins by outlining the background, motivation, and objectives for this thesis 

in Sections 1.2 and 1.3. The scope of research and the contributions to the body of 

knowledge regarding FMG are also discussed in Sections 1.4  and 1.5 respectively. 

Finally, the layout of the remaining chapters of this thesis is presented in Section 1.6. 

1.2. Background & motivations 

Currently seniors, citizens aged 65 years old and above, make up about 16% percent of 

the population [1], and they are anticipated to become a larger portion of the population in 

upcoming decades [2], [3]. This is significant as seniors are one of the largest consumers 

of healthcare resources [4], [5], and the current availability of resources are ill-suited to 

meet these demands. Reasons for seniors absorbing so much of healthcare resources 

are associated with age-associated declines in physical and mental faculties [6]–[16], 

increased susceptibility to infectious diseases [17], and increased prevalence and severity 

of chronic diseases [18]. Given these challenges associated with aging, ‘successful aging’ 

[19] describes a state of having:  

1) a low probability of disease and disease related disability, 

2) high cognitive and physical functional capacity 

3) active engagement with life. 

There are many interventions that are utilized to meet the needs of seniors (regardless of 

whether they are aging successfully) and to promote successful aging where possible. 

These include financial services [20], social services [21], [22], residential service and care 
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[23], [24], home modifications [25], health services [26], transportation services [27]–[29], 

and preventative programs[16], [30]–[35]. However, high societal and personal financial 

burden[36], [37], more than half of seniors being home bound due to limited transportation 

resources [29], decreasing familial support [38], and a general shortage of health care 

professionals [39] will eventually cause these services to be insufficient. In response, 

stakeholders are advocating for more home-service based programs, as these programs 

are more cost effective [36], [37] and seniors prefer to age at home independently from 

others [40]–[43]. 

Generational attitudes towards technology are improving [44], and seniors are 

demonstrating increased technology/internet use [45]–[47]. Thus, technological 

interventions such as ‘Assisted Ambient Living Tools’ (AAL tools) [37], [48] and wearable 

technology are increasingly being explored. Technology to promote aging-in-place that 

have been developed include information and communication technology, robotics, 

telemedicine, sensor technology, medication management, and video games [48], [49]. 

Examples of ways in which these interventions address the needs of seniors are: 

movement and behaviour monitoring to track aberrant movements that indicate the onset 

of dementia or Alzheimer’s [50], [51]; slip and fall detection  [52]–[55]; control [54]; task 

prompting during activities of daily living (ADLs) [56]; biometrics and movement monitoring 

for telecare [57]–[60]; and emergency response [61]. 

Movement tracking of the upper extremities could be a significant method to address the 

functional independence of seniors at home. The hand is vital to the completion of 

activities of daily living (ADLs) and instrumental activities of daily living (IADLS). ADLs and 

IADLs refer to independently performed activities such as feeding, grooming, cleaning, 

transferring, and leisure. In adults, ADLs comprise about 9.5 hours of our day [62], with 

the hand being used for 60% to 75% of the time ADLs were being completed [63], [64]. 

The majority of object manipulation is achieved by less than 6 simple hand grasps [63], 

[64]. Unfortunately, there are several musculoskeletal and neurological barriers to arm 

and hand function such as bone fractures, sarcopenia, arthritis, and stroke, which are 

frequently present in aging populations [17]  and in higher severity compared to non-senior 

groups [17]. 
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Tracking arm and hand movements can be achieved by several sensing modalities, many 

of which are already being used in other assistive devices and AAL tools for seniors. 

Examples of these include ambient technology such as a vision systems [65], and 

wearable technologies incorporating inertial sensors (IMUs) [59], [66] and myography [67], 

[68]. The nature of ambient technology such as vision systems, unfortunately, suffers from 

limitations due to occlusion, the lack of direct movement data [48], and perceptions of 

privacy invasion [3], [69], [70]. In a similar manner, inertial sensing is limited by only being 

capable of monitoring gross upper limb movement behaviour, not necessarily hand grasp 

intention that could assist with ADLs. These limitations lead to myographic modalities, 

such as surface electromyography (sEMG) and force myography (FMG), to be the 

preferred method for identifying hand gestures during ADLs.  

Amongst myographic sensing modalities, FMG presents many advantages including 

electrical robustness [71], not requiring specialized skin preparation [72], minimal signal 

processing [73], and being cost effective [74]. Indeed, FMG has shown to be very 

promising in areas of rehabilitation [75]–[77], device/prosthetic control [72], [78]–[83] , gait 

analysis [84], and grip strength analysis [85] – all fields applicable to addressing the needs 

of seniors. Despite this, there are areas of FMG implementation that require further 

research to support its effective implementation into AAL systems for seniors aging-in-

place. 

Firstly, FMG research presents a significant lack of senior targeted study design. Target 

populations tested (not just considered) thus far have been limited to stroke survivors [75]–

[77], amputees [72], [80], [81], [86], and heathy young volunteers [68], [73], [75], [77], [79], 

[81], [84], [85], [87]–[103]. In fact, healthy young volunteers make up an overwhelming 

majority of test participants. This limited test pool is inconsiderate to the aspects of aging 

that make even successfully aging seniors distinct from young healthy populations or 

injured populations [6]. Secondly, there is a lack of research dedicated to understanding 

the impact of human factors on conclusions drawn from FMG recordings. Other 

myographic modalities such as electromyography (EMG), mechanomyography (MMG) 

have received direct research into the significant impacts of features such as skinfold 

thickness [104], [105] , hydration [106], and decreases in muscle cross sectional area 

[107]. With the nature of FMG being acquired at the surface of the skin and subject to the 
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mechanical properties of the skin and underlying tissue, FMG should be afforded this 

same level of scrutiny. Thirdly, is that most research involving FMG has involved isolated 

hand gestures or one degree of freedom (DOF) movements. The forearm (a frequently 

used location for FMG acquisition [79], [88], [101]), houses musculature that realize wrist 

motions, forearm motions, AND hand/finger gestures – all of which can occur 

independently and simultaneously of each other. Together, the arm and hand are capable 

of many combinations of gestures/orientations. A final limitation considered, is that 

regression and/or classification machine learning algorithms encountered in FMG 

literature require retraining. The models developed rely on pre-labelled data [108], [109], 

which would have significant impacts on the deployability of a commercial FMG device, 

let alone a technology that targets seniors. Cost (mental, time, and monetary) and 

practicality are two factors that affect initial technology acceptance and adherence in 

seniors [69], [110]. And unfortunately, the need to retrain an FMG device would negatively 

impact seniors’ adherence to FMG technology, and thus its long-term effectiveness. This 

could be addressed with translational learning or semi-supervised methods of training. 

However, further characterization of FMG variability and sources of variability would 

benefit further development. 

1.3. Objectives 

The main motivation and context for this thesis is to present Force Myography as a sensing 

method that would provide data measured directly from the user. The intention is that this 

data would be incorporated into home based systems that would allow seniors to access 

services from their home. Example services include telecommunication, remote 

monitoring of typical and a-typical activity, telerehabilitation applications, and remote 

interactions with health professionals. However, FMG as a method of movement tracking 

requires further development and characterization. 

Considering the background presented in Section 1.2, which is discussed in greater detail 

in Chapter 2, this thesis seeks to explore the suitability of FMG for hand gesture 

identification in aging populations. This thesis consists of three main objectives. 

• Objective 1. To characterize the use of FMG with aging populations 
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• Objective 2. To identify features intrinsic to the participant that significantly 
influence the variability of FMG measurements  

• Objective 3. To quantify the impact of features intrinsic to the participant on 
performance of FMG modelling  

The results of addressing Objective 1 are obtained separately and provided the guidance 

for protocol design and analysis for Objectives 2 & 3. While senior participants were 

included in the recruitment pool for Objectives 2 & 3, the protocol performed with senior 

participants was limited to that which was achievable without triggering muscular and 

mental fatigue. Thus, Objectives 2 & 3 included non-senior participants as well, to allow 

for a more extensive protocol and comprehensive analysis than would have been possible 

without. 

1.4. Scope 

The focus of this work is FMG acquired through force sensitive resistors (FSRs), and is 

referred to simply as FMG throughout this document for clarity. Given the number of 

variables involved with using FMG with seniors, the limitations and scope of this research 

is explicitly defined here to allow for a more focussed discussion in later chapters.  

Hardware and Firmware. To date, FMG implementation demonstrates high variability of 

sensor choice, design, placement, electrical circuitry, approaches to data processing and 

machine learning. Although the variability in these areas are reviewed in greater depth in 

Chapter 2, no standardized approach to FMG implementation has been noted in the 

literature. In this regard, FMG would benefit from a comparative analysis on sensor types, 

placement, electrical implementation, and machine learning methods. However, this type 

of consideration is considered outside of the scope of this thesis. 

Variability in physical and mental function in seniors. Although seniors are considered 

in a collective fashion, the author acknowledges the heterogeneity within aging 

populations. Demographics, morbidities/comorbidities, and differential aging of organ 

systems create a high degree of variability in aging seen amongst seniors. However, as 

an initial work into the use of FMG with seniors, participant recruitment was limited to those 

whom could follow instructions and self-identified as healthy. As FMG research matures, 
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future study could be expanded to explore the effectiveness of FMG in the presence of 

debilitating morbidities. Along this vein, research could also better characterize which 

groups among seniors could benefit most from FMG, as well as the way that FMG could 

complement other sensing modalities in an integrated fashion in AAL research.  

1.5. Contribution to body of knowledge 

The results of this work contribute several things to body of knowledge surrounding aging-

in-place and FMG. With respect to aging-in-place, this body of research presents an 

alternative sensing modality for movement and gesture tracking that could be used to 

complement other technologies being explored to promote aging-in-place. Also presented 

is the first documented targeted use FMG with community dwelling seniors. In addition, a 

detailed review of the needs of seniors and the current support network for seniors 

provides a sense for FMG can be implemented into the existing frameworks of geriatric 

technology research and development. 

With respect to Force Myography, this work contributes knowledge that transcends the 

focused application of FMG to geriatric research. To date, FMG has been used with young 

healthy volunteers, stroke survivors, and amputees for device control, rehabilitation, and 

assistive systems. As mentioned in Section 1.2 and discussed in detail in Chapter 2, 

there are a number of areas of practical FMG implementation that are not explicitly 

addressed and/or quantified by the current state of FMG research. Explicit areas of force 

sensitive resistor (FSR) based FMG research lacking attention that this work addresses 

are: variability of sensors throughout the functional range of movement/effort, the effect of 

band removal, the effect of compound gestures/movement, and the validity of statically 

trained supervised models on non-stationary activity.  

1.6. Document outline 

The following chapters of this thesis document are organized as follows. Chapter 2 

provides a detailed review of the literature concerning aging, the needs of seniors, 

technologies that promote aging-in-place, and the state-of-the-art of FMG research. This 
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is followed by Chapter 3 which describes in detail the methodology, results, and analysis 

used to address Objective 1. Chapter 4 describes in detail the methodology used to 

address Objectives 2 & 3, while the results are discussed in Chapter 5. Concluding 

remarks are presented in Chapter 6.  
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Chapter 2.  
 
Literature Review 

2.1. Chapter Overview 

The following chapter provides context for the motivation and design choices of this thesis. 

Firstly, components of aging are considered in Section 2.2, with attention to the needs of 

seniors. This provides the background for further discussion into the trends in technology 

development for seniors in Section 2.3. An overview of arm/hand structure, function as 

well as the role of the arm/hand in daily living are presented in Section 2.4 to facilitate the 

introduction of Myography, particularly Force Myography (FMG). Finally, Force 

Myography is introduced in Section 2.5 with attention given to areas of FMG research 

that warrant further study and exploration. This chapter concludes in Section 2.6 by 

summarizing the findings of the review. 

2.2. Aging 

Any discussion regarding assistive technology for aging should first seek to identify what 

is means ‘to age’. Although the intuitive characterization of aging rests on the passage of 

time, many researchers and gerontologists seek other identifiable markers and milestones 

of aging. Spirduso et. al. defined aging as a “process or group of processes occurring in 

living organisms that with the passage of time lead to a loss of adaptability, functional 

impairment, and eventually death […] with these processes being distinct from daily or 

seasonal biological rhythms and any other temporary change” [6]. In this thesis, aging 

populations shall be referred to as ‘seniors’ consisting of persons aged 60 and above. This 

referral, however, does not adequately acknowledge the heterogeneity within aging 

groups. Heterogeneity results from differing lifestyles, geography, socioeconomic status, 

environment events, and variable accumulation of chronic illnesses. This section presents 

an overview of geriatric research and the characteristics of aging.  
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Section 2.2.1 begins with a presentation of the population demographics of seniors, and 

is followed by an overview of age-associated changes and milestones in Section 2.2.2. 

Finally, Section 2.2.3 concludes the discussion of aging by exploring the needs of seniors, 

both self-identified and those identified by stakeholders in successful aging. 

2.2.1. Population demographics and dynamics 

In Canada, the current life expectancy at birth is approximately 81.5 years old [111] -  77 

years for males and 82 years for females [112]. Between 1920 to 1922, the life expectancy 

was only 59 and 61 years for males and females respectively [112]. This increase in life 

expectancy reflects the impacts of immunization, health promotion, illness prevention, 

community advocacy, broad social programs, and the use of legislation which reduce the 

mortality in earlier years [6], [111].  However, the total number of expected years past 65 

years has remained relatively stable for almost the past century [111]. The significance of 

this trend is a compression of morbidity and mortality into later years of life [6], with a 

decline in functional health accelerating past 65 and more severe disability occurring on 

average around age 77 [111].   

Data released by Statistics Canada indicates that in 2015, 16.1% of Canada’s population 

were over 65 years old [1], and that the population of people over 65 years old is predicted 

to be 28% of all Canada’s population by the year 2061 [2]. Seniors are one of the highest 

consumers of healthcare resources such as doctor’s visits, care aids, hospital stays, 

prescriptions, and assistance with daily activities [4]. Thus, the increased proportion and 

growth of aging groups leaves less time to prepare for the impact on health systems 

compared to previous decades [3].  

2.2.2. Age associated changes 

Aging is associated with several changes, which are typically grouped around 4 major 

themes: functional, physiological, cognitive, social. While not an exhaustive list, Table 2.1 

below provides a more detailed overview of age associated changes across these realms. 
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2.1. Areas that typically decline with age amongst healthy seniors 

Functional [6]  Physiological [6]–[12]  Cognitive [13]–[16] 
Social [6], [16], [113], 

[114] 

• writing 

• walking upstairs or 
shorts distances 

• shopping 

• laundry 

• bathing 

• grooming 

• preparing meals 

• eating 

• taking medications 

• light housework 

• dressing 

• transferring 

• toileting 

• help with 
incontinence 

• weight 

• height 

• hearing 

• vision 

• renal function 

• glucose tolerance 

• systolic blood 
pressure 

• bone density 

• pulmonary function 

• immune function 

• sympathetic nervous 
system activity 

• skin thickness 

• skin elasticity 

• rapid perception 

• rapid decision 
execution 

• working memory 

• verbal speed 

• episodic memory 

• semantic memory 

• vocabulary 

• decrease in contact 
frequency 

• smaller social circles 

• less participation in 
activities due to 
fears of falling 

In addition to these changes, seniors demonstrate an increased susceptibility to infectious 

diseases [17] and chronic conditions such as: osteoporosis, broken hips, hypertension, 

stroke, cancer, diabetes, heart disease, arthritis, obesity, weak or failing kidneys, asthma, 

and chronic obstructive pulmonary disease (COPD) [18]. Unfortunately, morbidity and 

mortality due to infectious diseases is higher among seniors [17]. Also, the accumulation 

of multiple chronic conditions is a strong predictor of upper- and lower- extremity 

limitations [115] which drive increased health system use [5] and functional dependence.  

The changes and declines presented above in Table 2.1 that mark the aging process are 

not necessarily inevitable, but they do beg the question, “What does it mean to age 

successfully?”. There are approximately 26 separate definitions of successful aging [116], 

and the most frequent predictor of successful aging among researchers involving disability 

and/or physical function [116], [117]. Indeed, these definitions of successful aging form 

the basis of defining the term by well-cited researchers Rowe and Kahn [19], whom 

approach successful aging as having:  

1) a low probability of disease and disease related disability 

2) high cognitive and physical functional capacity 
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3) active engagement with life.  

Surveys of community dwelling seniors indicate that seniors often define themselves as 

aging successfully despite chronic physical illness and disability [118]. In fact, a survey of 

community dwelling seniors demonstrated that independence, control, learning new 

things, and autonomy was more pervasive in personal ideas of successful aging than 

indicators related to physical health [117]. This shift in thinking about ‘successful aging’ 

and how to improve the quality of life for seniors in later years will prove beneficial when 

considering interventions to meet the needs of seniors. 

2.2.3. Factors that affect aging and seniors’ needs 

Given the number of features associated with aging in general, there are several intrinsic 

and extrinsic factors that affect the aging process. These factors contribute to the high 

variability of aging encountered in society [6]. Intrinsic factors are considered inalterable, 

such as genetic predeterminants of health. Alternatively, extrinsic factors indirectly 

influence the aging process, and include income, demographics, socioeconomic status, 

culture, environment, world events, physical activity, diet, disease and disability level, 

education, living arrangement, and compensatory behaviours [6]  .  

Extrinsic factors of aging are particularly motivating, as they shape the interventions used 

to meet the needs of seniors. The literature identifies the needs of seniors as ranging from 

income, social services, long term care, housing and support for modifications, health 

needs and resources, to transportation needs. Table 2.2 below provides some examples 

of interventions that address these needs.  

2.2. Needs of seniors and example interventions 

Need Significance Example Interventions 

Financial Income 
[20] 

• Often dictates the level of services that 
seniors can access in other realms 

• Old age security (OAS) 
pension 

• Canada Pensions Plan (CPP) 
or Quebec Pension Plan 
(QPP) benefits 

• Registered retirement savings 
plan (RRSP) income 

• Annuity payments 
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• Pooled registered pension 
plan (PRPP) payments 

• Retiring allowance, other 
pensions and superannuation, 
and other income 

• Employment 

Social services [21], 
[23] 

• Social workers help find solutions for 
older adults and families that address 
the personal, social, and environmental 
challenges that come with aging 

• Advocacy 

• Therapy for loneliness, depression, or 
anxiety 

• Act as a link to public and private 
programs, and sort out problems with 
delivery of resources 

• Government agencies 
(HealthLink BC, Office of the 
Seniors Advocate) 

• Public agencies 

• Private agencies 

• Non-profit agencies 

Residential Services 
& Care [23], [24] 

• Provide monitoring and care support for 
aging groups 

• Aid in activities of daily living (ADLs) 
and instrumental activities of daily living 
(IADLs) 

• Nursing homes 

• Retirement communities 

• Assisted living facilities 

• Nursing staff and care aids 
that make home visits 

• Live in caregivers 

Housing (home 
modifications) [25] 

• Aid in maintaining independence 

• Prevent accidents 

• Wheelchair ramps 

• Increased lighting 

• Grab bars and rails 

• Stair lifts 

• Security systems 

• Software tools and SMART 
homes 

• Climate control 

• Walk in tubs 

Health Service 
(public medical 
care) [26]  

• Mitigating the effects of gradual 
physical and functional decline, 
infectious diseases, and chronic 
conditions 

• Doctors’ visits 

• Occupational therapy 

• Rehabilitation 

• Ambulatory Care 

• Emergency Care 

• Surgical visits 

Transportation 
needs [27]–[29] 

• Making it to doctors’ appointments 

• Maintaining social engagement 

• Being able to reach services offered 

• Psychological benefits of independence  

• Ability to complete ADLs 

• Driving personal vehicles 

• Time-tabled public 
transportation 

• Specialized door-to-door 
public transportation 
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• Walking aids (canes, crutches, 
and walkers) 

• Mobility aids (wheelchairs) 

• Car share programs 

• Private drivers or car share 
programs 

• Walking clubs 

• Taxis 

Preventative 
Programs 

• Educate and engage seniors on 
lifestyle, diet, social engagement, and 
physical activity to help promote 
successful aging and independent living 

• Cognitive training [30], [31] 

• Physical activity programs 
[32]–[34]  

• Social engagement [16]  

• Education about aging [35] 

Many of these services are threatened by unmet transportation needs (causing many 

seniors to remain home-bound) [29], a predicted shortage of health professionals [39] and 

conflicting responsibilities of available family [38]. Fortunately, many of these services 

could potentially be provided at home. Examples include physical activity regimes 

implemented in the home [34], [119], socializing [120], and telecare/telerehabilitation 

[121]. In fact, home based services are increasingly being explored as a more cost 

effective option for both the government and the users [36], [37]. Also, a large number of 

elderly people prefer to age at home where it is a familiar environment for them and they 

can live independently from others [40]–[43]. The question remains - What can be done 

to encourage aging-in-place that also 1) adapts to or is considerate to the changes and 

declines that occur with aging, 2) meets the needs of seniors, and 3) addresses the 

shortage of resources and health care professionals, and 4) promotes the idea of 

successful aging as understood by both seniors and other stakeholders? 

2.3. Technologies to promote ‘Aging-in-Place’ 

2.3.1. Trends in seniors’ technology use 

Several key factors influence the preliminary acceptance of technology by seniors. These 

include perceived need and benefits, cost (monetary, time, effort, psychological), privacy, 

usability, effect on family members, obtrusiveness, stigmatization, inconvenience of false 

alarms, and fears of forgetting/losing the technologies [69], [110]. Many of these factors 
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also influence the continued adherence to using the technology, in addition to other 

emergent issues with the practicality of using the device, such as not being able to use it 

outside of the home [69]. Despite this, review of the literature across various disciplines 

has shown that technological interventions are a viable option for addressing the challenge 

posed in the previous section [122], [123].  

Seniors show the fastest rate of increasing computer and internet usage [45]–[47] and 

there have been noted generational improvements in attitudes towards technology [44]. 

Even though very old seniors (80+ years old) are least likely to adopt new technology 

[124], [125], a survey by Crabb, Raffie, and Weinhardt demonstrated that they use the 

internet and are open to do so for health purposes [124]. So far, it has been demonstrated 

that technology can replace or at least supplement personal assistance [126] and even 

decrease anxiety in those with dementia, their loved ones, and their care givers [127]–

[129].  

2.3.2. State of the art 

‘Aging-in-place’ is a term coined to denote the ability to live in one’s own home safely and 

independently regardless of age, income, or ability level [37]. This aptly describes the 

home-based care services that would be more cost affective and allow seniors to age at 

home where they are more comfortable. Designing technology to promote aging-in-place 

aims to be of a form that is readily accepted, but should also: 

•  accommodate age-related deterioration in physical and mental health  [3] 

• promote autonomy and social inclusiveness [3] 

• be comprehensive and informative tool for the stakeholders in the well-being 
of aging populations [48] 

• address family and care givers needs [44] 

Examples of technology shown to be effective in promoting aging-in-place include 

information and communication technology, robotics, telemedicine, sensor technology, 

medication management, and video games [48], [49]. Aging-in-place technologies have 

also been incorporated as ‘Ambient-Assisted Living’ (AAL) tools [37], [48]. ‘Ambient-

Assisted Living’ tools (or ‘smart’ homes) are digital environments which are sensitive, 
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adaptive, and responsive to human needs [48]. This would be particularly imperative given 

the increased rate of physical and mental decline of older seniors in later years [111], 

which is correlated with diminished technology use [125].  

There are several sensing modalities available, which are combined in various forms to 

meet the goals of aging-in-place. At this point, special attention is given to the sensing 

modalities used in aging-in-place technologies in two separate considerations: 1) ambient 

environments, and 2) wearable technological interventions. The purpose of the following 

sub-sections is to provide an overview of the current state of senior targeted technology 

research to create a picture of where any intervention developed as a part of this thesis 

would fit, if at all.  

Sensing Modalities in Ambient Environments 

For this discussion, sensing modalities used in ambient environments are not worn, but 

rather, are placed in the environment. One common feature monitored amongst these 

types of sensors are movement patterns from room to room. Monitoring the patterns of 

movement from room-to-room of seniors allows for tracking of aberrant behaviour 

indicative of declining cognitive faculties associated with dementia and Alzheimer’s [130]. 

Examples of sensors which provide this information include magnetic sensors placed on 

doors to monitor entry and exit [54], [131]; radio frequency identification tags (RFIDs) to 

triangulate location [50], [51]; CO2
 gas to determine is someone is present in a room [131]; 

infrared sensors for location triangulation [54], [131]–[133], ultrasonic sensing for location 

triangulation [134], and pressure floor tiles [54], [135]. Pressure floor tiles have also 

extensively been incorporated into chairs, flooring, and bedding to provide information 

related to sleeping patterns, motion, transferring patterns, fall detection, and gait analysis 

[54], [134]–[136]. Other general features of smart environments have included RFID tags 

to help find easily lost items [54]; climate controlling using thermistors [54]; tracking the 

body temperature of user with thermistors for potential emergency response [54]; and 

monitoring the use of household appliances using magnetic switches [54], [131], 

wattmeters [131], and flame detectors [131].  

Fall detection is particularly important in geriatric research. Accidental injuries are the 6th 

leadings cause of death in seniors [137], with slip and falls from standing constituting the 
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most common mechanism of injury in the geriatric population [138]. Injuries due to falls 

include intracranial hemorrhage, hip fractures, vertebral fractures, pelvis fractures, leg and 

arm fractures, and kidney failure [139], [140], each with their own host of potentially 

debilitating secondary complications. In addition to increased risk for falls, seniors face a 

heavy economic burden due to associated costs [139], [140]. Complemented with 

extensive pattern recognition algorithms, sensors that have been used to track and predict 

slip and falls include infrared [52], [53], accelerometers [54], sound and vibration sensors 

[55]. 

Vision systems are particulary interesting due to the wide range of applications that use 

them, particularly for seniors. These include movement tracking, facial and object 

recognition [141]–[143], fall detections [144], smart-homes [145], emergency detection 

tools [146], exercise promotion [34], and device control [65]. One benefit of vision based 

systems, are their unobtrusiveness, which would combat concerns of stigmatization, and 

address challenges associated with deteriorating physical and mental capacities that 

affect technology viability [48], [56], [147]. Voice-based systems are also adopted as 

talking is a natural way of human communication, and voice and speech recognition for 

device control is a well establish field. Examples of voice activated systems include control 

of peripheral devices such as TV or radio, and even for control of emergency response 

protocols by calling for help [54], [61], [148]–[150]. The effectiveness of voice-based 

systems is maximized by state of the art recognition and noise reduction software, and 

high density of microphones in the living space [61], [151], [152]. 

These sensors demonstrate both application specific advantages and disadvantages. For 

example, RFIDs are cheap, but often lack the necessary accuracy for a proactive smart 

home [134]. They are also subject to loss of signal due to obstruction, false signals by 

reflections, and interference from high frequency sounds [134]. A review [153] of vision 

based technologies highlighted several limitations to overcome including illumination, 

occlusion, potential overhead costs for real-time, accurate, continuous, on-going 

monitoring.  They have also been cited to potentially benefit from more comprehensive 

user information, such as grip strength, for rehabilitation purposes [48]. Privacy is the main 

concern for vision systems, and is the main source of resistance [3], [69], [70]. Silhouette-

based systems, or a binary image system which only have two possible values [154], are 
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often suggested to address concerns over privacy as they strip away identifying 

information [70]. They, however, lack the richness of comprehensive data for device 

control that RGB or Infrared vision system would have [70]. Although audio systems are 

particularly valuable when movement is not possible or is undetectable by vision systems, 

they are ill-suited to situations involving limited speech production capabilities and age 

related mental deterioration  [48], [147], and ‘talking to a house’ is seen as awkward and 

deterring [148]. Audio systems also suffer from similar barriers to vision systems, such as 

privacy, confounding effects of ambient sounds and noises, and the lack of direct physical 

monitoring of the user.   

Sensing Modalities in Wearable Interventions 

Wearable technology provides an avenue to capture direct user data, which was shown 

to be lacking in previously discussed ambient systems. Wearable technology is 

characterized by small scale sensors that has enabled them to be implemented and 

commercialized into low-profile designs such as necklaces [155], belt clips, arm bands 

[156], and smart-watches [157]–[159]. Wearable/Portable sensors have already been 

shown to be effective in improving the independence of seniors in activities of daily living 

[49]. They also offer several benefits compared to hand-held devices, such as a reduced 

likelihood of being misplaced. Also, with self contained software for ambient monitoring, 

user interfaces are not a requirement. User interfaces can frustrate those with failing 

memories, eyesight, motor skills, and coordination in the aging community [67] and 

present a barrier to long term effectiveness [48]. Finally, wearable sensors provide an 

opportunity for anonymized data (addressing concerns over privacy) and direct user data 

to complement previously mentioned ambient systems. Examples of sensors used in 

wearable technology include: 

• accelerometers and gyroscopes to promote/monitor physical activity[59], [66], 
[160] and fall detection [133] 

• glucometers to measure blood glucose levels [57] 

• pressure cuffs to measure blood pressure system [58] 

• electroencephalography (EEG) to record brain activity [161] 

• electrocardiography (ECG) to monitor the heart’s electrical activity and detect 
life threatening arrhythmias [59], [60] 
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• myography to measure muscle force production and send control commands 
for controlling devices, such as turning lights on and off or control a computer 
[67] be involved in rehab protocols of arm/hand movements [68] 

• pulse oximetry to measure hemoglobin O2 saturation levels, cardiorespiratory 
function and breathing rate [60].  

Just as ambient sensors face their own challenges, so do sensors used in wearable 

technology. For example, the accelerometers, gyroscopes, and magnetometers in inertial 

magnetic units (IMUs) are typically characterized by heavy noisy signals, drift, and 

magnetic disturbances from household devices respectively [162], [163]. Additional 

examples include pulse oximetry which is affected by shivering or muscle twitching and 

intense bright lights [164], electromyography (EMG) which is affected by sweating [71] 

and subcutaneous adipose tissue [165].  

With regards to tracking movement to promote the functional independence of seniors and 

to address the limited amount of user movement data from ambient sensors, myographic 

modalities show the most promise and development. For example, inertial magnetic units 

(IMUs) have been fused with electromyography (EMG) in [166] to provide comprehensive 

tracking of upper arm activity and hand gestures/object manipulation.  

The state-of-the-art of myography research and development, will be discussed in further 

detail later sections. However, to facilitate the focussed discussion of FMG and its 

potential role in technologies that promote aging-in-place amongst seniors, the following 

section presents an overview of the forearm, wrist, and hand as the upper extremity plays 

a significant role in maintaining functional independence [63]. 

2.4. Arm and Hand 

The arm and hand are one of the more complex and intrinsic structures of the human 

body. This section begins with a description of the role of the hand in daily living and the 

impacts of its dysfunction in Section 2.4.1. Next, metrics of hand function are considered 

in Section 2.4.2. Finally, an overview of forearm, wrist, hand structure and function in 

Section 2.4.3 concludes this section. 
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2.4.1. Role in ADLs and dysfunction 

In a typical case, the upper extremities enable us to communicate and complete activities 

of daily living (ADLs). A survey of working individuals indicated that approximately 9.5 

hours of each day was spent doing activities other than working or sleeping [62]. Of this 

time, video surveillance demonstrates that one or both hands are used 61% to 73% of the 

time on activities such as food preparation, feeding, personal care, housekeeping, 

shopping, driving and transport, leisure, and others (like talking on the phone) [63], [64]. 

The hand is largely significant due to its ability to form different gestures, grasp, and 

manipulate objects. A widely-utilized hand taxonomy developed by Cutkosky identified 16 

dominate hand gestures [167]. However, Vergara et. al. found that 9 grasps covered most 

of activities performed, with as little as 5 different grasps being used: pinch, lateral pinch, 

cylindrical grasp, lumbrical grasp, and non-prehensile grasps [63]. These grasps are 

described below in Table 2.3.  

2.3. Five most common grasps utilized during activities of daily living (ADLs)  

Name Description 

Pinch Thumb and finger tips (one or more) are used 

Lateral Pinch The lateral part of the fingers (one or more) are used, and usually the thumb 
as well 

Cylindrical Grasp The palm is involved. The thumb is in direct opposition to the fingers (in 
abduction or neutral) 

Lumbrical Grasp Thumb and proximal part of the fingers are involved, but the palm is not 
involved* 

Non-Prehensile Grasp Objects are manipulated without grasping them 

Note (*):  interphalangeal joints are extended and metacarpophalangeal joints are flexed  

Zheng et. al. [64] and Bullock et. al. [168], found that some of the same gestures listed in 

Table 2.3 (pinch, lateral pinch, and cylindrical grasp) and others such as power sphere 

and tripod accounted for approximately 80% of the gestures used during activity. With 

such a small collection of hand gestures/movements that impact our ability to interact with 

our environment and complete activities of daily living, the inability to complete even one 

of them would have far reaching consequences. These few gestures are deemed to be 

even more important to task completion than even rotation and flexion of the moving arm 

[169]. However, range-of-motion of proximal joints still plays a role in independent living.  
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At least 70% of wrist function is necessary to complete household tasks [170]. Studies 

report as little as 30° wrist extension, 5° wrist flexion, 15° ulnar deviation , and 10° radial 

deviation is required for upper extremity functionality during ADLs [171]. Decreases in the 

range of motion (ROM) in proximal joints (like the elbow and the forearm) and distal joints 

(like the wrist and in the hand) are also correlated with decreased hand function [172].  

With aging, there is a natural decline in range-of-motion [173] as well as a decline in hand 

function and dexterity due to increasing arthritic severity [18]. Along with arthritis, there 

are several other barriers to full hand/arm function that are associated with aging and/or 

affect seniors more severely [17]. These are presented below in Table 2.4. 

2.4. Neurological and Musculoskeletal which impeded forearm, wrist, and hand 
function 

Neurological Barriers Musculoskeletal Barriers [139], [140] 

• High level spinal cord injury [174]  

• Multiple Sclerosis (demyelination of the 
neurons of the CNS) [175]   

• Physical brain injury (blunt or penetrating) 

• Cerebral palsy (abnormal development or 
damage to developing brain) 

• Stroke 

• Carpal Tunnel  

• Muscular dystrophy (genetic mutation that 
results in deficient muscular proteins which 
results in wasting and weakness) 

• Sarcopenia (degenerative muscle loss 
associated with aging) 

• Amputation 

• Bone fractures 

• Repetitive Stress Injury 

• Sprains (Stretching or tearing of ligament) 

• Strains (Stretching or tearing of muscle of 
ligament) 

• Inflammation (muscles, tendons, bursae) 

• Arthritis (pain and stiffness of the joints, such as 
osteoarthritis and rheumatoid arthritis) 

• Joint dislocations 

As was seen in Section 2.2.2, due to the high risk of falls amongst seniors [139], [140], 

and associated medical costs, resultant bone fractures and other acute disruptions to hand 

and wrist function are a frequent barrier. This suggests that addressing arm and hand 

function in senior-targeted technological interventions could also play a significant role in 

addressing seniors’ ability to perform activities of daily living, thus influencing independent 

living and aging-in-place. 
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2.4.2. Metrics of function 

Metrics of upper extremity function are relevant, as they provide a guide of clinically 

relevant methods to quantify forearm, wrist, and hand movement and function. There are 

a multitude of assessments and diagnostics to quantify upper extremity function across 

various healthy and non-healthy populations, including but not limited to [176]: Box Block 

(BB) Test [177], Fugl-Meyer (FM) Assessment of Motor Function [178], Action Research 

Arm Test (ARAT) [179], Wolf-Motor (WM) Test [180], 9 Hole-Peg (9HPT) Test, Jebsen 

Hand Function (JB) Test [181], Chedoke-McMaster test (CM), Chedoke Arm and Hand 

Activity Inventory (CAHAI), Manual Muscle Testing (MMT), Arthritis Hand Function Test 

(AHFT) [181], Grip Ability Test (GAT) [181], Rheumatoid Hand Functional Disability Scale 

(The Duroz Hand Index [DHI]) [181], Across these various diagnostics and monitoring 

techniques are some common themes related to upper extremity function. These include:  

• grip strength [176], [178], [180], [181] 

• dexterity [176], [177] 

• range of motion [178], [179] 

• hand grasp formation [178], [179] 

• functional task completion [180], [181] 

• ability to complete activities of daily living [176], [181]  

• sensations [176], [178] 

• agility [178], [180] 

These metrics are not only used to quantify differences between healthy and non-healthy 

groups, but also quantify the physical and functional changes that occur within cohorts 

which are grouped by age, and track of the success of physical interventions. For example, 

features of arm/arm diagnostics applicable to seniors in health services include: grip 

strength as a predictor of functional, psychological, and social health [182], movement 

repetition in stroke rehabilitation [183], and gesture/grasp frequency as indicative of 

functional independence [77].  

2.4.3. Structure and movements 

The purpose of this final section, and the anatomical/directional terms listed in the 

Glossary are to provide consistent descriptions of the forearm, wrist, and hand for 
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discussion in later sections. Directional terms for the arm are referenced to anatomical 

position. The following has been summarized from [184]. 

Surface Landmarks 

Surface landmarks allow for the non-invasive identification of major regions of interest of 

underlying muscle, bone, and tissue. In this work, the forearm of the upper limb is identified 

as the region between the wrist and elbow. In this case, the wrist is identified by two 

prominences, the radial and ulnar styloid processes, which also mark the distal end of the 

long bones of the forearm. At the other end, the olecranon process (the bony prominence 

at the back of the arm) marks the elbow and the ‘beginning’ of the forearm. The part of the 

forearm that faces the front of the body in anatomical position is the ‘anterior’ side, while 

the part that faces the back of the body is the ‘posterior’ side.  

Distal to the forearm are the hand and fingers, capable of grasping and providing the rich 

tactile feedback. Major surfaces of the hand are the dorsal and palmar surfaces. Two 

additional surface landmarks, located on the palmar aspect of the hand are the thenar and 

hypothenar eminences, which are muscle groups located at the base of the thumb and 

the little finger respectively. Finally, are the five fingers, digits I-V, starting with the thumb 

as digit I. Figures 2.1 and 2.2 below summarizes the landmarks of the forearm and hand 

as discussed in this section.  

  

2.1. Forearm surface landmarks. 
Note. Anterior (left) and posterior (right) aspects are shown. Significant features shown are the 1) 
radial and 2) styloid processes which mark the wrist, and 3) the olecranon process which marks 
the elbow 
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2.2. Hand surface landmarks. 
Note. Anterior (left) and posterior (right) aspects are shown. Significant features shown are the 1)-
5) digits I to V, 6) the thenar prominence, 7) the hypothenar prominence. 

Bones and Joints 

The bones of the hand provide structural support and points of attachment for 

functional muscle groups, while their articulation (points of contact) allow for movement. 

There are two major bones in the forearm, the radius and the ulnar, which form the long 

axis of the forearm. The ulna is particularly marked by the olecranon process, which marks 

the proximal end of the forearm and the elbow. The radius and ulnar articulate each other 

at the proximal and distal radioulnar joints, located at the wrist and elbow respectively. 

Twisting of the radius and ulnar bones realize forearm pronation and supination. The 

radius and ulna are also in contact with humerus (of the upper arm) via the humeroradial 

and humeroulnar joints to form the elbow joint, a 1 DOF hinge joint. The humeroulnar joint 

plays the most significant role in realizing elbow function by allowing elbow flexion. Finally, 

the last major point of contact for the radius and ulna is with the bones of the wrist, the 

carpals. The principal articulation in the wrist is the radiocarpal joint, a 2 DOF, allowing 

flexion, extension, radial deviation, ulnar deviation, and circumduction. 

The carpals mark the beginning the hand. The carpals are 8 irregularly shaped bones that 

form the wrist and are in contact with the base of the thumb and the long bones of the 

palm of the hand. Running along the length of the hand and at the base of the thumb are 
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5 bones referred to as the metacarpals, which terminate at metacarpophalangeal joints 

(the knuckles), 1 DOF hinge joints. Finally, each of digits II to V are made up of the 3 

bones: the proximal, intermediate, and distal phalanges. Digit I (the thumb) has only 2 

phalanges, the proximal and distal. The articulations between the phalanges are referred 

to as the interphalangeal joints, 1 DOF hinge joints. Figure 2.3 below summarize the 

bones of the forearm, hand, wrist as discussed in this section. 

 

2.3. Bones of the forearm, wrist, and hand.  
Note. Significant structures shown are the 1) ulna, 2) radius, 3) the carpals, 4) the metacarpals, 
5)-7) the proximal, intermediate, and distal phalanges. By com329329 (Own work) [CC0 Public 
Domain (https://pixabay.com/en/x-ray-health-arm-doctors-medicine-1704855/)] via Pixabay 

Muscles and Movements 

There are 20 muscles in the forearm alone. Rather than provide an exhaustive list of 

muscles in the forearm and hand, a general overview of forearm and hand musculature 

organization as it relates to forearm/hand function is presented. 

The underlying musculature of the forearm has 3 major categorical distinctions, which 

facilitate the discussion of the hand and forearm’s various movements and functions. 

Firstly, ‘intrinsic’ or ‘extrinsic’ categorical labels identify whether the muscles of the forearm 

act on the bones of the forearm (intrinsic) or cross the wrist joint to act on the bones of the 

hand (extrinsic). The hand also has intrinsic musculature that originates and terminates 

within the hand structure itself. Secondly, ‘superficial’ and ‘deep’ categorical labels identify 

whether the muscles of the forearm are closer or farther to the surface of the skin 

https://pixabay.com/en/x-ray-health-arm-doctors-medicine-1704855/


 

25 

respectively. Finally, the ‘anterior’ and ‘posterior’ categorical labels identify whether the 

muscles of the forearm are in the anterior or posterior compartments of the forearm 

(defined in Surface Landmarks). The main movements of the forearm are pronation and 

supination, while the main movements of the wrist are flexion, extension, radial deviation, 

ulnar deviation, and circumduction. Figure 2.4 below presents these motions for further 

discussion.  

1)  2)  3)  4)  

5)  6)  7)  
2.4. Motions of the forearm and wrist.  
Note. Motions shown from left to right are 1) neutral wrist and forearm, 2) forearm pronation, 3) 
forearm supination, 4) wrist flexion, 5) wrist extension, 6) wrist radial deviation, 7) ulnar deviation 

Anterior and posterior categorical distinctions of forearm musculature bear a functional 

significance due to movement synergies of their constituents. For example, forearm 

pronation and wrist flexion are primarily achieved via anterior compartment forearm 

muscles, while forearm supination and wrist extension are achieved primarily by posterior 

compartment muscles. In addition, these muscles (which control gross forearm and wrist 

movement) are typically superficial to the extrinsic forearm muscles that act on the 

hand/digits. 

The main gross motions seen in the digits are flexion, extension, abduction, and 

adduction, and opposition. Figure 2.5 below presents these movements for further 

discussion.  
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1)  2)  3)  4)  5)  

2.5. Movement of the hand/digits.  
Note. Motions shown are 1) digit flexion, 2) digit extension, 3) digit abduction, 4) digit adduction, 
and 5) opposition, which involves touching the thumb (digit I) to the tips of the other fingers (digits 
II to V) 

With regards to the hand, extrinsic muscles of the forearm act on the digits to generate 

digit extension and flexion. Similar to the wrist flexors and extensors located in the anterior 

and posterior compartments of the forearm respectively, so are digit flexors and extensors 

analogously located. Complementing the function of extrinsic forearm muscle are intrinsic 

hand muscles. Grouped by function, they include the thenar group, hypothenar, and the 

interosseous and lumbrical muscles. The muscles in the thenar and hypothenar group, 

which act on the thumb and little finger respectively, act to flex, abduct, and oppose their 

respective digits. The interosseous on the dorsal and palmar aspects of the hand abduct 

and adduct the fingers respectively, while the lumbrical muscles simultaneously flexes the 

metacarpophalangeal joints (knuckles) and extend the digits.  

2.5. Myography & Force Myography (FMG) 

The review of literature thus far has provided an overview of aging, ‘successful aging’, and 

technologies that promote aging-in-place. Special attention was given to the wearable 

technologies and the significance of the arm/hand to ADLs, setting the stage for the 

potential role of myography, which measures the force produced by muscle due to 

contraction. An in-depth overview of Myography and FMG theory and development is now 

presented in Sections 2.5.1 and 2.5.2 below. 
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2.5.1. Myography 

Myography in general refers to a method of data collection that characterizes the force 

produced by a muscle during contraction. For the arm and hand, there are various 

methods that have been used to track hand patterns and gestures, some of which were 

discussed in Section ‘2.3 Technologies to promote ‘Aging-in-Place’’. Myographic 

technologies have been implemented as watch-like bands, marker attachments at points 

of interest, and data gloves [162]. The focus of this section shall be on markers or devices 

worn on at the wrist and/or arm, as gloves are associated with reduction of haptic feedback 

and interfere with natural movement [185].  

Mechanomyography (MMG) 

Mechanomyography is also referred to as Acoustic Myography (AMG) [186]. MMG uses 

inertial sensors [187]–[191], microphones [191], lasers [192], [193], or piezoelectric 

crystals [194] to measures the vibration of underlying muscle tissue oscillating at their 

resonant frequencies during voluntary movement. MMG has been used to monitor muscle 

fatigue [195], control prosthesis [191], track balance [187], and classify hand gestures 

[188]–[190]. With respect to classifying hand gestures, the literature demonstrates that at 

most 8 classes (finger movements, hand gestures, and wrist movements) can be classified 

using 2 to 4 sensors. Unfortunately, MMG typically requires a significant amount of signal 

processing [196] and there are not any successful attempts to fashion MMG into a 

wearable and portable device, possibly due to the sensitivity to muscle artifacts [186]. 

Features related to anthropometry that influence the MMG amplitude are muscle stiffness, 

tension, length, mass, intra-muscular pressure, viscosity of the surrounding medium, and 

motor unit firing frequency [197]. 

Ultrasound Myography (UMG) 

Ultrasound Myography is also referred to as Sonomyography [198]. Captured at the skin’s 

surface, UMG uses Doppler ultrasound to measure muscle movement velocity, which is 

directly related to muscle force production [199]. As an ultrasound based technique, UMG 

can detect muscle morphology and architecture. One of the advantages of UMG is that it 

can track the activity of deeper muscles [198], a feature other myographic methods lack. 

The main uses for UMG have been diagnosis and therapy [199], with a few applications 
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in control [198]. Although even a single sensor can be used to control a 1 DOF robot [198], 

Chen et. al. [198] and Castellani [200] have acknowledged that most ultrasound 

technologies are too expensive and that the ultrasound probe is too large for practical use. 

Lastly, the acoustic fields created by ultrasound have been known to give rise to heating 

[199], [201] are suggested to only be used by trained professionals. Thus, further sensor 

development would need to occur before any practical application of UMG can occur.  

Optical Myography (OMG) 

Optical Myography (OMG) is relies on optically tracking the skin undulations that occur 

with gesture formation [143], which is distinct from MMG that tracks vibrations at the skins 

surface. An example implementation of OMG have utilizes AprilTags [202], a 2D barcode 

style tag which are attached to the skin. Average normalized root mean square error 

(NRMSE) for OMG is within the same range as sEMG and FMG, ranging between 0.05 to 

0.22 on average [142], [143]. The benefits of this type of system range are the same as 

ambient vision systems described in Section 2.3. Primary amongst these are 

unobtrusiveness. However, as a vision system, OMG also shares challenges due to 

occlusion. Unfortunately, OMG studies thus far have been limited to having the arm in 

fixed positions and require further development [142], [143], [202]. 

Electromyography (EMG) 

Electromyography (EMG) measures the electrical activity that occurs with muscle 

activation, and can be achieved with either intramuscular electrodes or surface electrodes 

[203], [204]. EMG is distinguished by its far reaching applications, and is the preferred 

method for rehabilitation and human interface purposes [204]. Applications of EMG [204] 

range between ergonomics, exercise physiology, rehabilitation medicine, biofeedback, 

control of exoskeletons and prostheses. EMG has a demonstrated ability to track upper 

extremity movements and hand gestures [205] and has been commercialized into 

products for the general populations [206]. There are several challenges associated with 

using surface electromyography (sEMG) due to various sources of noise. These sources 

include inherent noise in the electrode, movement artifacts, electromagnetic noise, cross 

talk, ECG artifacts, skin formation, blood flow velocity, measured skin temperatures, the 

tissue structure (muscle, fat, etc.), and the measuring site [105]. However, many of these 

challenges can be addressed through machine learning and data preprocessing [105].  
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Force Myography (FMG) 

Force Myography is also referred to as Pressure Myography (PMG) [80], Topographic 

Force Mapping (TFM) [72], Residual Kinetic Imaging (RKI) [86], and Surface Muscle 

Pressure (SMP) [84]. The theoretical principle of FMG are volumetric changes in the limb 

that occur with functional movement. With concentric muscle contraction, the cross-

sectional area of the muscle fibres increases. FMG measures the patterns in surface 

pressure caused by volumetric changes in the limb. FMG has been used in multiple 

fashions across exoskeleton control [72], [78]–[83], gait analysis [84], gesture 

identification [68], [73], [79], [87]–[94], and rehabilitation [75]–[77].  

The inclusion of FMG has gained momentum in innovative and novel device design, 

typically dominated by EMG [207]. This is because it:  

1) is robust to external electrical interference and sweating [71] 

2) does not require precise sensor placement or extensive skin 
preparation [72] 

3) does not require the same level of signal processing required in EMG 
datasets [73] 

4) can be a cost effective method of tactile sensing, with off-the-shelf 
discrete FSRs sensors costing less than $10 [74] 

5) FMG signals are more stable over time during static gestures [79] 

In addition, the nature of the sensors used in FMG acquisition are not associated with 

increasing tissue heat, as ultrasound is. 

2.5.2. Force Myography (FMG): current state of research & 
recommendations for further study 

Force Myography was briefly introduced in Section 2.5.1. within a general overview of 

myographic sensing methods. Towards developing senior-targeted tools for seniors, FMG 

was selected outright as the sensing method of choice for several reasons. Significant 

reasons are that FMG does not require extensive skin preparation, it does not require 

specific sensor placement, and it does not require expert experience for optimal 

implementation. These were considered ideal characteristics for a deployable device into 

the general community. Further research comparing FMG to gold standards of myographic 
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sensing methods (i.e. sEMG) would contribute to the verification and validation of FMG’s 

effectiveness. However, this would build on the scope of this current project, which is to 

establish the characteristics of using FMG with seniors.   

The application of FMG ranges from rehabilitation, assistive device design, prosthetic 

control, and gait analysis. A survey on FMG related research is tabulated and summarized 

in Tables A.1. to A.7. in Appendix A. Areas of focus for this survey were: 

• Type of participants included in FMG studies 

• Areas of research where FMG has successfully been utilized 

• Types of sensors used in FMG acquisition 

• Areas of placement of an FMG sensing device 

• Methods of data processing, data representation, and feature extraction used 

in FMG research 

• Machine Learning Algorithms used in FMG research 

• Number of classes used in FMG classification 

Based on the results of this survey, several areas for further study have been noted 

which would support the practical implementation of FMG into senior targeted technology 

to support aging-in-place. 

Senior targeted research 

Firstly, FMG research presents a significant lack in senior targeted study design. As can 

be seen in Table A.1. ‘Types of participants included in FMG studies’, participant 

recruitment has been limited to stroke survivors, amputees, and healthy individuals. In 

fact, not only is an overwhelming majority of the participants considered ‘healthy’, but the 

average age of recruited participants did not exceed 30 years old. This is significant as 

the ‘successfully aging’ senior is distinct from young healthy population, due to naturally 

occurring physical changes. Even in the face of healthy and successful aging, age-

associated changes in mental and physical function can could impede the effectiveness 

of healthcare technologies [69]. Motivated to develop a senior targeted tool to promote 

aging-in-place, recruitment of seniors in the early stages of FMG development would be 

beneficial. 
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Machine Learning Methods & Feature Extraction 

Table A.6. ‘Machine Learning Algorithms used in FMG research’ provides an overview 

of the machine learning methods utilized in FMG research. The merits of each algorithm 

aside, there is a noted dominance of supervised training methods in current research. In 

supervised machine learning methods, each discrete input is assigned a category/label 

for future prediction [108], [109]. However, this can be a labor intensive and time-

consuming process which requires expertise in the task at hand. This is also a process 

which could render a publicly deployed device impractical. An alternative would be an 

unsupervised FMG model of hand/arm function, which is task dependent and relies on 

naturally appearing distinguishing features of the data [109]. Semi-supervised methods 

provide an additional alternative, utilizing both labelled and unlabelled data [108].  

In addition, feature extraction methods used with FMG were surveyed and tabulated in 

Table A.5. ‘Methods of data processing, data representation, and feature extraction 

used in FMG research’. FMG is frequently compared to sEMG, thus, feature extract and 

data preprocessing for FMG has been guided by standards set for sEMG. However, FMG 

presents as a different type of signal profile from sEMG [79]. A beneficial avenue for FMG 

research would be to explore feature extraction methods uniquely beneficial to FMG. 

Need for retraining 

The current state of FMG research has yet to address or acknowledge the need for 

machine learning algorithm retraining. From the overview provided in Table A.6. ‘Machine 

Learning Algorithms used in FMG research’ supervised learning models make up the 

majority of method used to predict hand and arm gestures from FMG. However, once an 

FMG band is removed and donned again, the respective machine learning algorithm 

needs to be trained again with pre-labelled data. This can be a time-consuming process, 

especially given that the number of reported classes in FMG studies ranged from 2 to 48 

classes. This would have significant and negative impacts on the acceptance and long-

term effectiveness of a commercial FMG device, let alone a technology that targets 

seniors [69], [110]. This is unfortunate given the potential to incorporate FMG into 

technology and systems that promote aging-place. A suggested avenue for further study 

could focus on FMG specific feature extraction methods that could either 1) improve the 
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success of a pre-train model across multiple sessions or 2) reduce the amount of input 

needed to retrain a model after each donning. An additional avenue for further study would 

be developing a generalized model of FMG for translational learning. 

Human Factors 

So far, FMG has demonstrated that it does not require precise sensor placement [72], but 

that measurements taken at the wrist are more accurate [73]. Gesture classification also 

appears to be affected by grasp force when considering an object [92]. For FMG collected 

on the arm, the underlying tissue is quite variable. Forearm cross sectional area is 

composed of muscle, bone, connective tissue, adipose tissue, and skin. In addition, the 

relative contribution of these different tissues types changes along the length of the 

forearm, where muscle tissue is more prominent closer to the elbow [208]. The is visually 

represented in the schematic below in Figure 2.6. 

 

2.6. Forearm compartments: transverse sections through the left forearm at 
various levels.  

Note. Taken from [208]  
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Volumetric changes due to muscle contraction are transmitted through these tissues. 

However, studies thus far have not explored if anthropometry also has an affect on FMG 

acquisition and modelling.  

It is hypothesized that age-associated changes in the mechanical properties of underlying 

tissues contribute to the variability of FMG acquisition and modelling. With aging, there is 

a decrease in muscle mass and muscular strength [6], which intuitively might affect the 

generalizability of FMG as there is a positive correlation between muscle cross sectional 

area and strength [209]. In addition, the amount of subcutaneous adipose tissue 

decreases with age [210], and connective tissue and skin tissue become thinner and less 

elastic [211] influencing how muscular forces are transmitted. With other myographic 

modalities [104]–[107] these effects are considered and accounted for in via feature 

extraction and machine learning [105]. The same level of consideration and understanding 

for FMG related work would be beneficial. 

Lack of multiple DOF movement characterisation 

Most research involving FMG has involved classification of grasps and/or wrist/forearm 

movements, which have also  been applied to the control of peripheral devices. The 

number of classes for these classifications has ranged from 2 to 48. However, for all the 

studies encountered, these gestures/grasps were considered as separate classes without 

an consideration for compound actions.  

The human forearm (a frequently used location for FMG acquisition [79], [88], [101]), 

houses musculature that realize wrist motions, forearm motions, AND hand/finger 

gestures – all of which can occur independently and simultaneously of each other. Thus, 

since elbow position affects the accuracy of FMG modelling [87], [212], the effects of wrist 

and forearm position should also be considered. Hand gesture recognition in FMG 

research focussed on mitigating the effects of wrist and forearm position (if any) would be 

beneficial.  
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2.6. Chapter Summary 

As the highest consumers of healthcare resources, our rapidly growing senior population 

poses a significant challenge for stakeholders in successful aging. High costs and a 

predicted shortage of healthcare professionals have prompted the exploration of 

alternatives methods to meet the needs of seniors. This has led to increasing 

consideration of technological interventions that allow aging-in-place, particularly in the 

home.  

Technology that supports the completion of activities of daily would contribute a great deal 

to the functional independence that would allow seniors to age more successfully in the 

home. As the arm and hand are an integral part of completing activities of daily living, 

technologies that track or monitor arm/hand activity could be particularly beneficial to 

promoting functional independence. One of the technologies capable of this is Force 

Myography (FMG), which tracks the volumetric changes that occur in an arm resulting 

from muscle contraction. FMG is an attractive choice for further development as it offers 

many advantages to other myographic modalities, including being electrically robust 

against sweating, not requiring specialized skin preparation, utilizing minimal signal 

processing, and being cost effective.  

By providing a thorough review of the declines associated with aging, needs of seniors, 

and nature of services provided, we have built a comprehensive framework with which to 

answer, “Where would FMG fit within the grand scheme of senior targeted services?” The 

literature demonstrates that FMG has been successful in device control, movement 

tracking, gesture identification and classification, grip strength, and gait analysis – all 

areas that are applicable to promoting seniors aging in place. However, there are still 

several areas that have not been adequately covered within FMG research to support its 

practical implementation into aging-in-place technology/systems. These include a lack of:  

1) standardization in FMG acquisition and sensor placement 

2) semi-supervised or unsupervised methods of FMG analysis 

3) Translation learning of FMG models to reduce training costs 

4)  senior targeted research 

5) Considerations of the effect of human factors 



 

35 

6) Consideration of functional noise 

Addressing all these questions is beyond the scope of the research, as outlined in Section 

1.4. However, addressing the objectives of this thesis will offer insights into 1) the 

characteristics of using FMG with aging populations, 2) the intrinsic user features that 

significantly influence the variability in FMG acquisition and 3) how user variability 

translates to the variability in FMG model performance. 
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Chapter 3.  
 
Feasibility of using an Force Myography (FMG) 
system with Seniors 

3.1. Chapter Overview 

The work described in this chapter is intended to address Objective 1 of this work, which 

is to characterize the use of an FMG based system with seniors. Section 3.2 opens with 

an overview of the study, and is followed by an in-depth description of the methodology in 

Section 3.3. Section 3.4 follows with a presentation of the results, which are discussed 

in Section 3.5. Finally, the implications of this pilot study on further sections of this thesis 

are considered and presented on Section 3.6.  

3.2. Study Overview 

The purpose of this study was to characterize the use of FMG with seniors to promote 

aging-in-place. The protocol consisted of a control scenario in a constrained environment, 

whereby participants were taught a set of pre-selected grasps and used them to control a 

custom designed graphical user interface. In addition, participants performed a set of tasks 

that were modelled after activities of daily living. It was predicted that seniors could 

successfully control and FMG system and would demonstrate similar performances to that 

of non-senior participants. Characteristics considered that were related to this prediction 

were 1) how long it took the senior and system to respond to gesture instruction, 2) 

cumulative accuracy while gestures were held, and 3) the frequency of unintended 

activation of the ‘virtual control scheme’. 
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3.3. Methods 

3.3.1. Participants 

Participants were recruited from the students, faculty, and staff of Simon Fraser University. 

Inclusion criteria for participation required that participants can follow instructions of the 

experimental protocol and perform the required gestures/tasks to completion. Exclusion 

criteria were limited to self-identified neurological or musculoskeletal barriers to functional 

movements of the upper extremities. All participants provided informed and written 

consent. Save for muscle fatigue, there was little to no risk to participants. 

3.3.2. Data collection devices 

A custom FMG band was designed in-house for this protocol. FMG relies on tracking 

patterns of skin deformation caused by volumetric changes in underlying musculature 

during movement. The band used in this study utilizes 16 Force Sensitive Resistors 

(Model 402, Interlink Technologies) in series, spaced 2 cm apart in a row. Force Sensitive 

Resistors (FSRs) consists of a polymer thick film (PTF) circuitry printed on a flexible 

substrate, which demonstrates a variable force resistance relationship.  FSRs were 

selected for FMG acquisition due to their low-profile dimensions, flexibility, cost-

effectiveness, wide-spread availability, and the ease of implementation into a portable and 

wireless design. 

FSRs were implemented in a series with a 4.6 kΩ resistor and supplied with a voltage of 

3.7 V. An ATMega328 microprocessor was used to facilitate data collection and 

transmission. Each FSR was sampled at approximately 10 Hz, with raw analog values 

converted to a digital signal ranging from 0 to 1023 (0.00361 V/bit). Digital values were 

time stamped and transmitted to an on-site computer via serial connection and saved onto 

a .txt file for offline processing. Participants donned the FMG band on the wrist, 1 to 1.5 

inches proximal to the radial and ulnar styloid process surface landmarks. The placement 

of the band is shown in Figure 3.1. As seen in Figure 3.1, the FSR sensors were 

positioned to be in contact with the participants’ skin, and the band was designed to be 

portable and wireless. 
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3.1. (Left) View of the positioning of the FMG band on participants’ wrist.  (Right) 
View of the Force Sensitive Resistor (FSR) band used to gather 
Force Myography (FMG) data. 

Note. The green light emitted from the Bluetooth module indicates the module is powered and 
transmitting. Shown are: the battery, the Microcontroller Module, and the series of FSRs that line 
the inside of the band which are in contact with the skin 

3.3.3. Experimental protocol 

All participants performed 3 repetitions of a test sequence that had 3 phases: (1) training, 

(2) online testing, and (3) household tasks. During training, raw FMG signals were 

recorded from the participant while they performed a set of pre-defined control hand 

gestures, which would eventually be used to train a Linear Discriminant Analysis (LDA) 

classifier for online classification. These gestures were used to control the user interface, 

and were experimentally selected based on their distinguishability from gestures most 

commonly used in object grasping and manipulation in activities of daily living. The 

selected gestures based on American Sign Language, and are shown below in Figure 

3.2. 
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1)  2)  3)  

4)  5)  6)  
3.2. The control gestures used and classified in the experimental protocol:  1) ‘6’, 

2) close, 3) ‘2’, 4) ‘Y’, 5) ‘I Love You’, 6) relax 

Our classification model included a ‘relaxed’ class/condition to account for a relax hand 

and other erroneous hand movements. Each gesture was repeated 4 times, with each 

repetition lasting 5 seconds. FMG recordings were saved as .csv files for further training 

of our online classification model. For each repetition of the test sequence, a new LDA 

model was trained if the FMG band was removed. 

During the online testing phase, participants were instructed with an image shown in 

Figure 3.3. Participants were also provided real-time feedback, by way of a visual 

indicator on the user interface, which lit up when the gesture was correctly identified by 

LDA model. Each gesture was presented for ten seconds in a random sequence in 

continuous succession. Overall, each gesture was presented 4 times during online testing. 

Digital FMG signals were recorded and recorded in a .csv file for offline analysis. The 

gesture completed by the participant was confirmed via direct observation. 
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3.3. User interface during online testing 
Note. The four main components include: the instruction image which gave a visual reminder of 
the desired gesture; the real-time output of the LDA model and threshold filter algorithm; the 
LEDs which provided the user with positive feedback when the gesture formed and identified by 
the LDA model coincided with the gesture shown in the instruction image (based on the trained 
LDA model); and the LED labels. 

Lastly, during the household tasks phase, participants performed a select number of 

‘household tasks’. These tasks were based on upper extremity diagnostic measures that 

incorporate functional ability measures, such as the ‘Rating of Everyday Arm-use in the 

Community and Home (REACH)’ [213]. These tasks also served as a reference for how 

the FMG implementation would perform in an unconstrained setting separate and apart 

from the intentional control of the virtual interface. Household tasks were performed in a 

self-selected manner using the objects shown below in Figure 3.4. The tasks were as 

follows: buttoning and unbuttoning a shirt; wiping a table; picking up a cup; opening and 

closing a jar; and sorting a set of pens. Digital FMG signals were recorded during the 

household task phase, and the predicted gesture was recorded in a .csv for offline 

analysis.  

1)  2)  3)  4)  5)  

3.4. Objects used to complete household tasks. 1) shirt buttoning/unbuttoning, 2) 
table wiping, 3) picking up a cup, 4) opening and closing a jar, 5) 
sorting a set of pens 
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3.3.4. Data analysis 

A custom program was designed in LabVIEW (© 2014) to facilitate data collection and 

recording for offline analysis. This custom program allowed for a user interface (Figure 

3.3) that presented the image instruction of the gesture to be performed, as well as LED 

feedback to the participant to indicate when the control gesture was correctly identified by 

the LDA model. Digital FMG signals were normalized using the global minimum and 

maximum of FMG training data, and served as a sample-by-sample input to a multi-output 

LDA model. Our LDA model was developed using built-in MATLAB R2016a machine 

learning functions. Linear Discriminant Analysis was chosen for this study due to its 

experimentally comparable performance to Support Vector Machine (SVM), and the 

added benefit of a decreased demand on processing and computational resources. This 

is ideal when considering a system where data collection and processing might be entirely 

self-contained within a deployable device such as a watch.  

The multiclass LDA online control scheme constituted a 6-class problem, with 5 of the 

classes being identified as one of the predefined control gestures shown in Figure 3.2 

(gestures 1-5). The sixth class identified included all other erroneous movements and the 

relaxed hand gestures (‘non-control gesture’). The likelihood output for the multiclass LDA 

model ranged from 0 to 1, and a 0.95 threshold indicated a ‘successfully’ identified 

gesture. In the case where no single class achieved a likelihood greater than or equal to 

0.95, the output for that sample identified the gesture as ‘relax/erroneous’. 

In offline processing, three main outcome measures were considered for analysis and 

further discussion:  

• Cumulative Accuracy. The cumulative was the primary outcome measure, 
and was considered with an increasing window size from the first instance a 
control gesture was correctly identified to the duration that a specific gesture 
instruction was displayed. This outcome provided an indication of our gesture 
identification model to correctly identify a sustained gesture.  

• Reaction Time. Secondly, during online testing, the reaction time of the 
system was considered. The reaction time was determined to be the time 
between when the instruction image was first displayed and the first instance 
when the control gesture was correctly identified. This provided an indication 
of how complicated the gesture was, the smoothness of control, and the 
sensitivity of identification. The reasoning behind this measure is that longer 
reaction times would translate to feelings of lack of control and frustration with 
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the control strategy. This would in turn hinder its continued use. Reaction time 
was also constituted one limitation of FMG with seniors. 

• Inadvertent Activation. This feature was identified as the amount of time a 
control gesture was inadvertently identified during household activities. This 
measure provides an indication of the likelihood of unintended triggering of 
paired devices, which would also contribute to feelings of lack of control and 
frustration. Inadvertent activation also constituted and additional of an FMG 
based system used with seniors. 

Non-senior participants were considered separately for comparison.  Descriptive statistics 

were collected and further analyzed. 

3.4. Results 

There were 10 participants in total, whom were divided into two groups based on their 

age. Participants aged between 0 and 60 years old were identified as ‘non-senior’, whilst 

participants aged 60+ years old were identified as ‘senior’. In the non-senior group, there 

2 females (mean 24 years old) and 3 males (mean 26.33 years old). In the senior group, 

there was 1 female (aged 73) and 4 four males (mean 65.5 years of age). Senior and non-

senior participants achieved a mean LDA training accuracy of 91.6% and 97.57%, 

respectively. 

During online testing of control gestures, senior participants successfully performed the 

gesture within 1.4 (2.34) seconds of the instruction. For the control gestures selected for 

these tasks, shown in Figure 3.2,the time to successfully complete the ‘6’ gesture took 

the most time at 1.1 seconds, followed by ‘I love you’,’2’,’Y’, and ‘close’ at 0.9, 0.8, 0.8 and 

0.7 seconds, respectively. Non-senior participants demonstrated an average reaction time 

of 0.9 (0.54) seconds. Gesture specific timings during household tasks were 1.9, 1.6, 1.4, 

1.3, 0.8, and 0.3 for ‘relax’, ’I love you’, ’2’, ’close’, ’Y’, and ‘6’.Gesture specific data for 

non-senior and senior participant reactions time are shown in Table 3.1, and summarized 

in Figure 3.5. 
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3.1. Summary of system reaction time (median + standard deviation) to complete a 
gesture when prompted with an image 

 Reaction Times (seconds)   

‘6’ close ‘2’ ‘Y’ ‘I Love You’ Average 

Non-senior 1.1 (0.56) 0.7 (0.2) 0.8 (0.4) 0.8 (0.83) 0.9 (0.25) 0.9 (0.54) 

Senior 1.8 (2.66) 1 (2.57) 1.3 (2.61) 1.6 (2.03) 1.9 (1.74) 1.4 (2.34) 

Note. Values (for age, weight, height, BMI) are presented as µ (σ2), where µ is the mean and σ2 is the 
standard deviation. 

 

3.5. Boxplot of absolute reaction times (s) over all gestures for senior and non-
senior participant during online testing.  

Note. These reaction times indicate how long the participant took to correctly form a control 
gestures (as monitored by a trained LDA model) after an initial instruction 

Once the gesture was successfully identified by the trained identification algorithm, seniors 

achieved a cumulative accuracy of 75.11% (15.61%). On the other hand, non-senior 

participants achieved a cumulative accuracy of 90.66% (9.99%).  Figure 3.6 below 

summarizes the changes that occur in accuracy over the progression of a gestures. 
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3.6. Cumulative accuracy of system expressed as a percentage of the duration a 
control gesture was held 

Finally, during household tasks, when a control gestures was mistakenly identified, 

continuous identification of the gesture lasted at most 1.45 (1.86) seconds for seniors over 

all gestures. For non-seniors, this was 1.25 (1.86) seconds over all gestures. Gesture 

specific timings are tabulated below in Table 3.2, and summarized in Figure 3.7. 

 

3.2. Summary of participant maximum duration (median + standard deviation) a 
control gesture is continuously identified when performing 
unconstrained activities of daily living 

 Continuous identification of control gestures (seconds) 

‘6’ close ‘2’ ‘Y’ ‘I Love You’ 

Erroneous 
Gestures/ 

'Relax’ 

Non-Senior 0.3 (1.76) 1.3 (0.98) 1.4 (0.98) 0.8 (0.54) 1.6 (0.95) 1.9 (3.48) 

Senior 0.9 (0.96) 3.6 (6.49) 0.9 (2.07) 1.2 (0.96) 1.3 (0.63) 3.3 (6.89) 

Note. Values (for age, weight, height, BMI) are presented as µ (σ2), where µ is the mean and σ2 is the 
standard deviation. 
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3.7. Boxplot of maximum durations of a continuously identified signal for all 
gestures for senior and non-senior participants during household 
tasks.  

Note. These times indicate the typical duration a control gesture is continuously identified by the 
participants trained LDA model whilst completing activities of daily living 

3.5. Discussion 

During the ‘Testing Phase’ where participants performed the specified control gestures 

with image instruction and LED feedback, senior participants demonstrated longer 

reaction times. Table 3.1 and Figure 3.5. presents the distribution of reaction times of 

each group across all three repetitions of the experimental protocol performed. Although 

this suggests that seniors are slower in successfully performing a control gesture on 

command, this would not necessarily translate to a direct measure of increased difficultly 

or frustration. Reasons for this increased time may be related to the intuitive nature of the 

control gesture, the amount of additional practice that seniors may required to perform 

comparably to non-senior participants, or the sensitivity of FMG to intended gestures. In 

addition, senior participants also demonstrated a larger variability in reaction time. This 

variability is a feature of using FMG amongst seniors that would need to be addressed in 

future research.  

Once a control gesture was correctly identified, non-senior participants demonstrated 

increased accuracy for the duration the gesture was held. This appeared to be consistent 
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throughout the duration that a gesture was held, which has been graphically represented 

in Figure 3.6. Taken at face value, a 75% accuracy amongst seniors would have 

implications on the real-world usage of FMG in aging-in-place technology. An inaccurate 

system would lead to false activations, potential frustrations, and subsequently, device 

abandonment. It was previously mentioned that the intuitiveness of the gesture as well as 

age-related differences in learning may have had an impact on the difference in 

performance between the two groups, as both groups of participants were given identical 

training sessions. It is also noted that with aging, new information in internalized differently 

[214]. Future work on comprehensive systems utilizing FMG should take into account 

these age-associated differences and incorporate effective learning strategies that are 

better suited for aging populations.  In addition to age-associated cognitive changes, there 

are also age associated changes to skin, muscle, and adipose tissue that could impact 

the transmission of forces to overlying FMG sensors [6], [11], [12]. This may also explain 

the variability in performance observed. The confusion matrices shown in Figures 3.8 and 

3.9 present a more comprehensive perspective of the control schema’s performance 

presented in Figure 3.6. 
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3.8. Confusion Matrix for control gestures for senior participants during online 
testing. 

Note. Classes 1-6 indicated the following gestures (in order): 'Erroneous', '6', 'close','2','Y', and 'I Love You' 
respectively. Red and Green squares indicate the number/percentage of incorrect and correct 
classifications, respectively. The grey row and column show the gesture specific accuracy, whilst the blue 
box shows the overall accuracy. 
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3.9. Confusion Matrix for control gestures for non-senior participants during 
online testing. 

Note. Classes 1-6 indicated the following gestures (in order): 'Erroneous', '6', 'close','2','Y', and 'I 
Love You' respectively. Red and Green squares indicate the number/percentage of incorrect and 
correct classifications, respectively. The grey row and column show the gesture specific 
accuracy, whilst the blue box shows the overall accuracy 

As previously mentioned, 5 gestures were used to control our virtual environment (turning 

on the LEDs). Our LDA scheme also had an additional ‘relaxed’ condition to capture 

unintentional movements and movements not specific to the control scheme. The 

confusion matrix for seniors in Figure 3.8 indicates that most of the false positives in 

classification, when compared to non-senior participants, where due to poor differentiation 

of control gestures from relaxed or erroneous movements. For seniors, the 5 control 

gestures were mislabeled as relax/erroneous 17.9% of the time, compared to only 5% for 

non-senior participants. Reasons for this may lie in the sensitivity of the FMG to small 

movements, or perhaps the 0.95 probability threshold used with the LDA models. This 

variability may also be explained by differences in the amount of force exerted by seniors 

as each gesture was repeated. Gesture force and effort would have changed because of 

fatigue, joint stiffness, or perhaps diminishing awareness of the effort they were exerting. 

Moving forward, an unsupervised learning model addressing differences in sensitivity and 



 

49 

increase variability of FMG sensors would prove beneficial for ongoing use of FMG 

technology [48].  

Finally, considered was unintended triggering. In a practical sense, unintended triggering 

provides some insight into the design choices to that would distinguish ambient activity 

from control specific movements.  These distributions are graphical shown and tabulated 

presented in Table 3.2 and Figure 3.7. The similarity in times is encouraging as it shows 

that the system demonstrates similar usability between senior and non-senior users. 

3.6. Limitations and future directions 

The similarity in timing between ‘seniors’ and ‘non-seniors’ for unintentional system 

triggering during activities of daily living is promising. This suggests that an appropriately 

chosen method of differentiating between erroneous movements and intentional gesture 

control could be stable, to a degree, throughout progressive aging. However, despite its 

potential strengths, the commercial implementation of FMG into healthcare 

systems/technologies is limited by lack of characterization of inter- and intra- patient 

inconsistencies which require FMG retraining before each use. The temporal and mental 

effort to retrain and recalibrate a system is an additional factor that could affect the 

system’s acceptance and adherence. Further study of FMG within the senior population 

should seek to quantify the effect of age associated changes to motor ability and 

underlying musculoskeletal tissue for use in a predictive and self-correcting model [48]. 

Ideally, future work should also consider an application specific and generalizable model 

of FMG patterns that could be extended across users. This would support unsupervised 

learning models of hand/arm activity, and in effect, minimal effort to recalibrate the system.  

The strengths of this work would be improved by adjustments that increase the sample 

size of the study, as well as incorporate concrete measures of satisfaction and usability. 

As our protocol was constrained to limited set of control methods and learning strategies, 

this work would also benefit from increased evaluation of FMG in unconstrained settings.  

Finally, given the review of geriatric research in Chapter 2, FMG would be better suited 

as a complement to senior target devices by providing direct user data. This would involve 

a. The most effective method of  technological intervention delivery has been shown to (1) 
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involve multiple modalities of communications (such as SMS messages or websites AND 

kinematics/tactile sensors) and to (2) incorporate environmental cues to guide notification 

delivery [48], [215].  

The conclusion of this study is that seniors can successfully use an FMG based system, 

however with increased variability and decreased accuracy when compared to non-senior 

counterparts. Further work is needed to incorporate FMG into a comprehensive system 

for effective healthcare intervention in the aging population. 

3.7. Follow Up Study Considerations 

Despite the high training accuracies, the results of this study suggest that using 

FMG with seniors would be unreliable. This is indicated by seniors achieving 75.11% 

accuracy during online testing. When compared to non-senior participants, whom 

achieved an average training accuracy of 90.66%, that the cause of this discrepancy was 

age related. Thus, a follow-up study was developed to determine age related differences 

between participants that would result in low FMG performance.  

A review of the protocol highlighted two areas that would be adjusted for this follow 

up study. One is the intuitiveness of the gestures, which was previously mentioned to be 

a probable cause of longer reaction times of seniors compared to non-seniors. As such, 

gestures in the follow up study were selected to involved more gross hand/arm 

manipulation rather than fine finger tasks. The second is the difference in the amount of 

training/learning participants would require to perform motions naturally. In this current 

study, instruction images were presented serially without pause. However, the follow-up 

study would be executed so that gestures would be completed individually and the 

observing experiment facilitator would correct participants in correct gesture formation. 

Finally, the results of this study also suggest that one of the reasons for lower 

accuracies is poor discernibility of control gestures from erroneous gestures. This is 

indicated by the confusion matrix in Figure 3.8, which shows that many false-positives 

occurred with the relax/erroneous condition. Thus, if age-related differences were 

assumed to a significant factor in FMG performance, anthropology was deemed to be one 
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of the main causes. The justification for this is that the age-associated changes that occur 

in underlying musculoskeletal tissue would change how FMG is transmitted to sensors 

during functional movement.  

Further details of this follow-up study are presented in Chapter 4 Factors that 

influence an FMG model: Methodology and in Chapter 5 Factors that influence an 

FMG model: Results and Analysis. 
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Chapter 4.  
 
Factors that influence an FMG model: Methodology   

4.1. Chapter Overview 

The work described in this chapter addresses Objectives 2 & 3 of this thesis. The first 

study presented in Chapter 3 sought to characterize the use of an FMG based system 

with seniors. The aim of this study addressing Objectives 2 & 3 is to identify measurable 

features intrinsic to the participant that can influence the variability of FMG acquisition and 

modelling.  This chapter opens with a study overview in Section 4.2.  Participants inclusion 

and exclusion criteria are presented in Section 4.3. Section 4.4 presents a detailed 

overview of the instrumentation used, and is followed by a review of the experimental 

protocol in Section 4.5. Data processing and analysis methods are then discussed in 

Section 4.6. The chapter concludes with a discussion of internal and external validity of 

the experimental design in Section 4.7. Results obtained using the methodology 

discussed in this chapter are reviewed and analyzed later in Chapter 5. 

4.2. Study Overview 

The purpose of this study is to identify features intrinsic to FMG users that are related to 

FMG acquisition variability and gesture classification success. As discussed in Chapter 

2, aging is associated with various physical and functional changes such as reduced 

strength, reduced muscle cross sectional area, and changing mechanical properties non-

muscle tissue. It is believed that these changes are related to variability in FMG 

acquisition, and indirectly influence machine learning testing accuracy. Participants are 

invited to complete a set of predefined hand gestures through various degrees of 

stationary and non-stationary wrist/forearm orientation. Hand gestures are composed of 

gross hand movements as well as fine finger movements based on those most likely 

utilized during activities of daily living. In addition, anthropometric features (limb lengths, 

limb circumferences, skinfold measurements, active ROM, and grip strength) are 

measured. Various simple machine learning models are generated to illustrate the effect 
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intrinsic user properties. Correlations within descriptive statistics are taken, and student’s 

t-tests are used to established statistically significant differences in gesture classification. 

4.3. Participants 

Testing took place across three locations: 1) MENRVA Laboratory, School of Engineering 

Science in the Faculty of Applied Science, Simon Fraser University, 8888 University Drive, 

Burnaby, British Columbia, CANADA; 2) MENRVA Laboratory School of Mechatronic 

Systems Engineering in the Faculty of Applied Science, Simon Fraser University, 250-

13450 102nd Avenue, Surrey, British Columbia, CANADA; and 3) Confederation Seniors 

Centre, 4585 Albert Street, Burnaby, British Columbia, CANADA. 

Participants were recruited from Simon Fraser University students, faculty, and staff, and 

the general population. Inclusion criteria for participation required that participants can 

follow instructions of the experimental protocol and perform the required gestures/tasks to 

completion. Exclusion criteria were limited to self-identified neurological and 

musculoskeletal barriers to functional movements. All participants provided informed and 

written consent. Save for muscle fatigue, there was little to no risk to participants. 

4.4. Instrumentation 

4.4.1. Force Myography band 

The primary instrumentation for this work is a custom design FMG sensing device, similar 

to that described in Section 3.3.2, but with an adjusted design. Adjustments to the design 

involved using Interlink polymer thick film FSRs with smaller active areas (25.5 mm2 vs 

126.7 mm2) in a staggered design. Smaller FSRs (Interlink Technologies, model: 400) 

were used to allow for placing the FSRs in closer proximity to each other, without 

overlapping the active areas. These adjustments were made to increase the number of 

FSRs in direct contact with the skin.  
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The FSRs were backed with Flex foam and fastened onto the interior of the band. The 

interior of the band was formed from cellulose acetate, a flexible and non-elastic material 

commonly used in overhead projector film transparencies. The data sheet for FSRs 

recommends more rigid backing in implementation [216] , the backing was used to 

facilitate better contact between the FSR and the skin while allowing the band to conform 

to the shape of the wrist.  Figure 4.1 below shows the new band design. 

 

 

4.1. (Left) Smaller FSRs used in the adjusted designed of the FMG band (Right) 
Staggered placement of the FSRs on a flexible non-elastic backing 

Note. Interlink FRS400 is shown in reference to a quarter for sizing information. 

4.4.2. Peripheral instrumentation 

The following itemized list summarizes the additional instrumentation utilized to address 

the Objective 2 & 3 of this thesis project. 

• Hand Grip and Pinch Grip were measured with a digital hand dynamometer 
(Vernier Software & Technology, model: HD-BTA), via Vernier Go!Link 
Connector (Vernier Software & Technology, model: GO-LINK). Offline 
maximum voluntary grip strength and recorded via Logger Lite software 
(Vernier Software & Technology, version: 1.9). Grip and pinch strength, 
measured concurrently with FMG activity was recorded via the Vernier 
LabVIEW Virtual Instrument plug-in (Vernier Software & Technology, version 
1.16.00) 

• Skinfold thickness was measured with an analog Slim Guide Skinfold 
Caliper (Creative Health Products). 

• Upper extremity segment circumferences and lengths were measured 
with a standard tape measure 

• Baseline active range of motion of the forearm and wrist were captured 
using an analog goniometer (Jamar Plus+ Digital 8” Goniometer by Patterson 
Medical, serial: 081660133). 

• Band tightness, represented as skin surface contact pressure, was estimated 
using a separate Force Sensitive Resistor (Interlink Technologies, type 400) 
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experimentally calibrated to measure skin surface contact pressure. Further 
details of implementation and calibration are described below. 

• Angle of forearm pronation/supination measured concurrently with FMG 
activity was measured by two Inertial Magnetic Units (SparkFun 9DoF IMU 
Breakout - LSM9DS1) placed on the wrist and the upper arm. Further details 
of implementation and calibration are described below. 

• Angle of wrist flexion/extension measured concurrently with FMG activity 
was measured by an analog rotary potentiometer (TT Electronics/BI, model: 
P160), with a range of 300 degrees. Further details of the implementation are 
described below. 

Estimating Band Tightness with a force sensitive resistor (FSR) 

To evaluate FMG band tightness, the literature was reviewed for devices or medically 

related tools where compression of the limb is a significant factor. Compression stockings 

represented these features. Compression socks are rated according to the amount of 

pressure they exert onto the surface of the lower leg. Typically, they are calibrated using 

a pneumatic bladder based system such as Kikuhime or PicoPress [217], [218] with the 

rating expressed in millimeters mercury (mmHg). FSRs have been used to evaluate 

commercially available compression socks [219], and have also been used as an 

alternative form of measuring skin contact pressure [218]. This served as a motivation for 

the proposed methodology to measure the tightness of the FMG band. 

Band tightness was represented as skin contact pressure, and was estimated using an 

experimentally calibrated FSR. To do this, data was simultaneously collected from the 

FSR and a digital pinch force dynamometer. While the FSR was attached to the pinch 

dynamometer, as shown below in Figure 4.2, light touch to maximum pressure was 

applied to the FSR with the thumb. The thumb was used to relate the calibration technique 

to the mode of implementation more closely in later testing. 
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4.2. Placement of FSR on pinch on dynamometer 

Values from the hand dynamometer, expressed in in Newton’s (N), were divided by the 

active area of the FSR (126.68 mm2), to obtained a representation of pressure in Pascals 

(Pa) later expressed in millimeters of mercury (mmHg). Measured pressure (mmHg) was 

regressed with raw FSR values in a 1st order exponential relationship (Equation 4.1 

below) and graphically represented below in Figure 4.3.  

𝑚𝑚𝐻𝑔 = 8.0433𝑒0.006𝐹𝑆𝑅 (4.1) 

 

4.3. Band Tightness sensor calibration. 
Note. Shown are (Left) the FSR-mmHg regression and residuals for the full range of values 
obtained during calibration, and (Right) the FSR-mmHg regression and residuals for the range of 
values encountered during testing with participants. 
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As seen in Figure 4.3, there is a pronounced increase in residual values at higher 

applications of force (larger FSR values). Although hysteresis effects of forces application 

are more pronounced at higher forces [216], the functional range of this sensor during 

testing was within the advised limit prescribed by the datasheet (0.2 to 20 N) [216], 

corresponding to lower ranges of the raw FSR digital output (less than 300). The median 

residual within the range of values recording during testing was 85.97 mmHg, while the 

root-mean-square error (RMSE) was 20.69 mmHg. 

Estimating forearm pronation/supination by inertial magnetic unit (IMU) 

IMUs placed on the arm and the wrist were used to measure elbow and forearm angle. A 

representative example of the IMUs location on the forearm and upper arm is shown below 

in Figure 4.4. The IMU used in this project employed an integrated chip (ST 

Microelectronics iNEMO inertial module, model: LSM9DS1), which houses a tri-axial 

magnetometer, a tri-axial accelerometer, and a tri-axial gyroscope. Prior to use, the 

magnetometer scale and offset were calibrated using a method described in [220] while 

the accelerometer scale and offset were calibrated using a method described in [221] and 

adapted to accelerometers. The gyroscope was calibrated by removing baseline values 

recorded whilst the gyroscope was stationary. The mean centered variability of the 

sensors’ signals is tabulated below in Table 4.1. 

4.1. Inertial Magnetic Unit (IMU) signal variability 

Sensor Units 
Location 

Wrist Arm 

Magnetometer Gauss (G) 1.35 x 10-5 1.06 x 10-5 

Accelerometer Gravity (g) 7.27 x 10-6 9.83 x 10-6 

Gyroscope Degrees/second (°/s) 0.063 0.24 

During offline post-processing, IMU axes were rotated so that the positive Z axis was 

pointed superiorly, and the positive X axis was pointed anteriorly. Movements were either 

slow or stationary, thus the accelerometer was deemed sufficient to estimate angle of 

forearm pronation/supination. Roll (angle of tilt of the Y axis) and pitch (angle of tilt of the 

X axis) euler angles were calculated using Equations 4.1 and 4.2 below: 



 

59 

𝑟𝑜𝑙𝑙 = atan⁡(
𝑎⃗ 𝑦

√𝑎⃗ 𝑥
2+⁡𝑎⃗ 𝑧

2
) (4.2) 

𝑝𝑖𝑡𝑐ℎ = atan⁡(
𝑎⃗ 𝑥

√𝑎⃗ 𝑦
2+⁡𝑎⃗ 𝑧

2
) (4.3) 

Baseline values were recorded while the participant was at 90° elbow flexion and neutral 

wrist, and subsequently subtracted from later measurements to obtain degrees of forearm 

pronation and supination. Forearm pronation/supination was taken as the roll angle of the 

IMU placed at the wrist. Elbow was taken as the relative pitch between the IMU at the wrist 

and the arm.  

Estimating wrist flexion/extension by rotary potentiometer 

An analog rotatory potentiometer was used to track wrist flexion/extension angles. The 

relationship between the degree of rotation of rotary shaft and the analog output value is 

linear, and the analog-to-digital resolution of the potentiometer during testing was 0.293 

°/bit. The potentiometer was incorporated into a Velcro strap, and the rotary shaft was 

attached to a lightweight and semi-rigid moving arm. A Styrofoam spacer was used to 

maintain contact and position between the hand and moving arm. On the participant, the 

potentiometer was positioned at the ulnar styloid process, while the moving arm was 

positioned along the hypothenar side of the hand. A representative example of placement 

on the participant is shown below in Figure 4.4 below. Baseline values were recorded 

while the participant was at 90° elbow flexion and neutral wrist. Baseline values were 

subsequently subtracted from later measurements to obtain degrees of wrist flexion and 

extension. 
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4.4. Full instrumentation 
Note. Shown are the (1) the IMUs used to measure forearm orientation on the upper arm, (2) the 
FSR used to measure band tightness, (3) the FMG band, and (4) the rotary potentiometer used to 
track angle of wrist flexion/extension. 

4.5. Experimental Protocol 

Table 4.2 below summarizes the full procedure employed with each participant, while the 

following subsections detail the experimental methods employed. Age, weight, height, and 

hand dominance were obtained via the participant’s consent form. Wrist circumference, 

forearm circumference, forearm length, and upper arm length were recorded separately. 

While participants completed the set of predefined tasks and wore the FMG band, wrist 

orientation, forearm orientation, and grip strength were simultaneously recorded using the 

instruments described in Section 4.4. Instruments were sampled at approximately 10 Hz, 

timestamped, and finally transmitted to an on-site computer via serial connection for 

further processing.  Participants performed the required tasks once, removed the band 

completely and then re-donned the band for a second session. Maximal voluntary grip 

strength was assessed prior to testing and after each session.  

For this work, neutral shoulder was defined as (approximately) 0° abduction/adduction, 0° 

internal/external rotation, and 0° flexion/extension. Neutral forearm orientation was 

defined as 0° pronation/supination, and was identified by the palm of the hand pointing 
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towards the midline of the body. Neutral wrist was approximately defined as 0° wrist 

flexion/extension, and finally, relaxed hand, was defined as not actively engaging the 

fingers. All testing was performed on the right side.  

4.2. Full experimental procedure employed with each participant 

 Item Description 

0 Informed Consent Review of study consent form 

1 Protocol Instruction 
Verbal instruction and demonstration of hand gestures and 
wrist/forearm orientations required in the participant tasks  

2 
Anthropometric 
measurements 

Measurement of forearm length, upper arm length, wrist circumference, 
forearm circumference, and forearm skinfold 

3 
Maximum Voluntary Grip 
Strength 

Average of 3 attempts at maximum voluntary contraction 

  ***Band is donned*** 

4 Calibration 
Participant holds the shoulder in neutral, elbow flexed to 90°, forearm in 
neutral, wrist in neutral, and hand relaxed 

5 Participant Tasks 
Dynamic Motions, Static Singleton Gestures, Static Compound 
Gestures 

  ***Band is removed*** 

6 
Maximum Voluntary Grip 
Strength 

Average of 3 attempts at maximum voluntary contraction 

  ***Band is donned*** 

7 Calibration 
Participant holds the shoulder in neutral, elbow flexed to 90°, forearm in 
neutral, wrist in neutral, and hand relaxed 

8 Participant Tasks 
Dynamic Motions, Static Singleton Gestures, Static Compound 
Gestures 

  ***Band is removed*** 

9 
Maximum Voluntary Grip 
Strength 

Average of 3 attempts at maximum voluntary contraction  

4.5.1. Segment length and circumference  

Standard positioning for limb length and circumference measurements was a neutral 

shoulder, 90° elbow flexion, neutral forearm, neutral wrist orientation, and relaxed hand.  

Forearm circumference was measured at the muscle belly, approximated by the widest 

part of the forearm. Wrist circumference was measured within 1 inch proximal to the wrist. 

When measuring segment circumference, standard protocols were used. Forearm length, 

was measured from the olecranon process to the ulnar styloid process. Lastly, the upper 



 

62 

arm length was measured from the acromial process to the olecranon process. 

Measurements were taken to the nearest millimeter. 

4.5.2. Skinfold thickness 

Skinfold thickness was measured from the anterior aspect of the forearm, approximately 

at the widest part of the forearm. Methods for taking skinfolds were taken from [222]. In 

brief, the skin is firmly grasped between the first three digits. The jaws of the calipers are 

then placed approximately 1 cm from where the skin is grasped, and the skin is released 

for measurement. Measurements were taken to the nearest millimeter. 

4.5.3. Baseline wrist and forearm ROM 

Wrist range-of-motion (ROM) for flexion and extension were performed while the shoulder 

was in neutral position, 90° elbow flexion, and neutral forearm orientation. The participant 

was instructed to actively flex or extend their wrist to the fullest capabilities, and the 

measurement for each motion was taken as the smallest relative angle between the 2nd 

meta-carpal and the central axis radius. Measurements were recorded to the nearest 

degree. 

Forearm ROM for pronation and supination were performed while the shoulder was in 

neutral position 90° elbow flexion, and neutral wrist position. The participant was instructed 

to hold a pencil in a closed fist, and to actively pronate or supination to the fullest 

capabilities. The measurement for each motion was taken as the smallest relative angle 

between the starting and ending position of the length of the pencil. Measurements were 

recorded to the nearest degree. 

4.5.4. Grip strength 

Grip strength tests were performed while the shoulder was in neutral position 90° elbow 

flexion, and neutral wrist position. Participants were instructed to the hold the hand 

dynamometer in a closed fist, and to squeeze the dynamometer with maximum effort 
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(maximum voluntary contraction) for approximately 3 seconds. This was repeated 3 times, 

with the average value being reported to the nearest 0.01 kilogram. [223] 

4.5.5. Hand gesture and wrist/forearm orientation 

Force Myography (FMG) was recorded from a custom FMG sensing device described in 

Section 4.4.1. All tests were based on a set of 6 different hand gestures (based on those 

most commonly used in activities of daily living [169]): relaxed, open, close, point, key, 

tripod; and 5 wrist/forearm orientations: neutral, flexion, extension, supination, and 

pronation. These are shown below in Figure 4.5. 

1)  2)  3)  4)  

5)  6)  7)  8)  

9)  10)  11)  12)  
4.5. Hand gestures and wrist motions used in testing. 
Note. Shown is 1) relaxed, 2) open, 3) close, 4) point, 5) lateral pinch (key), 6) pinch (tripod), 7) 
straight, 8) wrist flexion, 9) wrist extension, 10) forearm pronation, 11) forearm supination, 12) 
straight hand gesture and neutral wrist/forearm 

For uniformity, participants were given specific instructions and demonstrations for each 

gesture. For each of the wrist orientations (flexion, extension, neutral, pronation, and 

supination), unless otherwise indicated, participants were instructed to keep the fingers 

and thumb fully extended and adducted. For hand gestures: 
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• Relax. fingers and thumb are not engaged are actively flexed/extended 

• Open. fingers and thumb are fully extended AND fully abducted 

• Close. a fist with the buttressing of the distal tips of the phalanges against the 
central palm and buttressing of the thenar eminence and thumb against the 
dorsal surfaces of digits 2 and 3 [224] or the lateral aspect of the 2nd digit. 

• Point. only the 2nd digit (index finger) is fully extended, with the pad of the 
thumb resting on the lateral aspect of the 3rd digit 

• Tripod. the pads of the thumb, 2nd, and 3rd digits are in contact 

• Key. the pad of the thumb is in contact with the proximal interphalangeal joint 
of the 2nd digit 

Participants performed three groups of tasks based on the hand gestures and 

wrist/forearm orientations shown above in Figure 4.5: 1) Dynamic Motions, 2) Static 

Singleton Gestures, and 3) Static Compound Gestures.  

• Dynamic Motions. Participants were instructed to either move between two 
extremes of range-of-motion or produce a grip with minimal to maximal effort. 
Participants performed 1 repetition of each dynamic motion for 60 seconds. 

• Static Singleton Gestures. Participants were instructed to perform each of 
the hand gestures and wrist/forearm orientations individually, for a total of 11 
different classes. Participants performed 5 randomized repetitions of each 
static gesture for approximately 7 seconds each. 

• Static Compound Gestures. Participants were instructed to simultaneously 
perform a hand gesture AND a wrist/forearm orientation. For example, for 
‘point_supination’ the participant was instructed to simultaneously point the 
hand AND supinate the forearm. All possible combinations of the 6 hand 
gestures and the 5 wrist/forearm orientations were considered, for a total of 30 
different classes. Participants performed 5 randomized repetitions of each 
possible combination for approximately 7 seconds each. 

In consideration of greater potential for fatigue in senior adults and mental overload, an 

abridged version of these tasks was implemented with senior participants. In effect, the 

‘Static Compound Gestures’ tasks only required combinations between 3 of the hand 

gestures (relax, open, close) with all wrist positions rather than the full set of hand gestures 

(relax, open, close, point, key, tripod). Table 4.3 below provides an overview of the specific 

gestures that constitute each group of tasks.  
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4.3. Tasks completed by participants in experimental protocol 

Dynamic Motions Static Singleton Gestures Static Compound Gestures 

• Flexion <-> Extension 

• Pronation <-> Supination 

• Cylindrical Grip, Squeeze and 
Relax 

• Pinch Grip, Squeeze and 
Relax 

• Lateral Pinch Grip, Squeeze 
and Relax 

• relax 

• open 

• close 

• point 

• tripod 

• key 

• neutral 

• flexion 

• extension 

• pronation 

• supination 

All possible combinations of 
hand gestures and wrist 
orientations 

Hands 
Gestures 

• relax* 

• open* 

• close* 

• point 

• key 

• tripod 

 

Wrist 
Orientations 

• neutral 

• flexion 

• extension 

• pronation 

• supination 

 

Note. Seniors performed an abridged version of the protocol. In static compound gestures, seniors 
performed only the starred (*) hand gestures. 

4.5.6. Environment 

Measurements and testing was performed while sitting at a chair of standard height and 

depth. Instructions were given as images via a visual interface, shown below in Figure 

4.6, and displayed in real time on a monitor positioned between eye level and desk level. 

When necessary, the investigator demonstrated the hand gesture desired at the time 

and/or corrected the participants’ hand gesture to match the standards set for all 

participants.  

 

4.6. User Interface. 

Note. Features shown are the 1) Tasks Title, 2) Instruction Image, 3) Progress Timer  
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4.6. Data processing & analysis 

The dependent variable considered for this protocol is the FMG recording obtained during 

movement, while the independent variables considered for this research are as follows: 

1) age, 2) weight, 3) height, 4) hand dominance, 5) segment length and circumference, 6) 

skinfold thickness, 7) band tightness, 8) wrist/forearm orientation, 9) grip strength, 10) 

maximum wrist/forearm range-of-motion, 11) maximum voluntary grip strength, and 12) 

true class labels for statically held gestures. The following sections describe in further 

detail the data processing, feature extraction, and transformations utilized in this study. 

4.6.1. Processing, feature extraction, & transformations 

The following feature extraction methods and transformations were used. 

Calculation of new variables 

Upon collection, all FSR, grip strength, and angle/orientation values were filtered using a 

moving average filter of the data point immediately prior and following each sample. In 

addition, some of the variables measured were recombined to create new variables of 

interest. These include: 

• Ratio of skinfold thickness to forearm circumference, on range of [0,1] 

• Ratio of wrist circumference to forearm circumference, on a range of [0,1] 

• Percent drop in maximum voluntary grip strength after completing the required 
tasks 

• Online grip strength, pinch strength, lateral pinch strength as a ratio of 
maximum voluntary grip strength, on range of [0,1] 

• Online wrist flexion/extension, and forearm pronation and supination as a ratio 
of the full range of motion, on range of [0,1] 

Spatial Representation of FMG 

With respect to the FMG data, FMG was considered in two respects: 1) 1D samples 

consisting of 16 features, where each feature corresponds to a single FSR sensor in the 

FMG band, and 2) as a 2D transverse radial profile. The first form is trivial, and is shown 

graphically below in Figure 4.7.  
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4.7. Example of 1D FSR data. 
Note. Shown are the FSR signals from each of the FSR used in the FMG band (colored) and the 
delineations between each of the 6 hand gestures and the 5 wrist/forearm orientations (white/grey 
areas). The labels for each of these gestures are indicated in each area. Only a single repetition 
is shown. 

The second form of representing FMG data, which retained spatial information, is 

essentially a radial representation of the FMG data centered about the central axis of the 

wrist. In this form, the value for a FSR sensor after applying a given force is indicated by 

the distance from the center of the plot, which approximates the center of the wrist. The 

process is demonstrated using the info graphic below in Figure 4.8, with an example 

visualized in Figure 4.9 below. 

 

4.8. Example of 1D FSR data that retains spatial information. 
Note. In the first image, the FMG band is shown laid out flat, with the FSRs indicated in red and 
blue. Red and blue color identifiers are used to visualize the relative position of each sensor in a 
2D transverse radial plane in the third section. Finally, the last section shows how the 
instantaneous value of the FSR is mapped as a distance from the center of the figure. 
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4.9. Example of 2D FSR data. 
Note. This view is a trans-radial view of FSR activation (red) for wrist/forearm orientation. FSRs 
were approximately 1.25 cm apart (identified by the black solid and dotted lines radiating from the 
center to the perimeter of the plot). Grey/white delineations identify areas of FSR activation that 
were approximately 0% to 25%, 25% to 50%, 50% to 75%, and 75% to 100% of the wrist 
circumference. Only a single repetition is shown. 

For 1D representations, in addition to considering raw data, data was normalized using 

the global maximum and minimum. This representation was trivial in the 2D representation 

as the relative distances/positioning between each FSR remain unchanged in the visual 

profile, and was not considered. Non-supervised feature extraction methods were 

considered to reduce the dimensionality of the data. In this work, singular value 

decomposition was used to perform principal value analysis on FMG data.  

FMG Sensor Variability 

The variability of an FMG reading was calculated for tasks that involved repetitive and 

continuous motions. An example of this is shown below in Figure 4.10. 
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4.10. Example of variability in a sensor through repetitive movements 
Note. Shown above are the raw FSR readings (blue), the filtered signal (red). The readings 
pertain to forearm pronation/supination, so wrist flexion/extension is shown (green). The 
convention used in this work use positive (+) values for Wrist Flexion and Forearm Pronation, 
while using (-) values for Wrist Extension and Forearm Supination. 

As can be seen in the above figure, throughout the same degree of motion of wrist 

flexion/extension, FMG demonstrated variable readings. The variability observed was 

quantified as the root mean square (RMS) residual between the digital FMG signal (shown 

in blue in Figure 4.10) and the filtered signal (shown in red). 

Separability of gesture/orientation class clusters 

A Separability Index was calculated to quantify the linear separateness of the class data 

clusters used in classification. Consider the following, where: 

• 𝜔𝑖, class label 

• 𝑚𝑖, mean of class 𝜔𝑖 

• 𝐾𝑖, number of samples in class 𝜔𝑖 

• 𝑚, overall mean 

• 𝐾, overall number of samples 

• 𝑃𝑖, the a priori probability of class 𝜔𝑖 =
𝐾𝑖

𝐾⁄  

• 𝑆𝑖, scatter (covariance) matrix for class 𝜔𝑖 
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• 𝑆𝑊, within class scatter matrix, ∑ 𝑃𝑖
𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1 𝑆𝑖 

• 𝑆𝐵, between class scatter matrix, ∑ 𝑃𝑖(𝑚𝑖 − 𝑚)𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1 (𝑚𝑖 − 𝑚)𝑇 

Then the Separability Index was calculated as: 

𝐽𝐵/𝑊 = 𝑡𝑟𝑎𝑐𝑒(𝑆𝑊
−1𝑆𝐵) 

Intuitively, the optimal separability is achieved by maximizing the between-class variance 

and minimizing the within-class variance, correlating to larger values of 𝐽𝐵/𝑊. It is assumed 

that larger values of 𝐽𝐵/𝑊 would correlate to better predictive capabilities.  

Magnitude of Change and Derivative of FMG 

Quantifying the magnitude of change and derivative of FMG was also utilized,  however 

this was only applied to dynamic tasksn listed in Table 4.3. The following steps were taken 

to procress FMG in order to quantify the changes that occur in an FMG over a range of 

motion/effort. Let FMG be an n dimensional random vector, made up of samples Xi for i = 

1,2,3….n and Xi ∈ R16, the steps to determine the derivative were: 

1. Linearize data. In a series circuit implementation of FSRs, the relationship 
between the applied force and resultant voltage was non-linear. An 
approximate linearization was was achieved by taking the elemental inverse 
of each Xi.  

2. Remove baseline signal. Initial (linearized) sensor values taken during 
calibration were subtracted from the dynamic session. 

3. Sort. FMG, {X1,X2,...Xn}, was sorted based on the range of motion (degrees) 
of amount of effort (kg) at the time. 

4. Fliter. To filter the sorted signal, a low pass 1st order Butterworth fulter with ah 
normalized cutoff freqeuncy of 0.01 was used.  

5. Calculate successive differences between Xi and Xi-1. 

𝑑𝑖𝑓𝑓𝑖 = 𝑋𝑖 − 𝑋𝑖−1, for I = 1,2,…n 

6. Represent filtered magnitude (𝑋𝑅𝑀𝑆,𝑖)⁡and successive differences 

(𝑑𝑖𝑓𝑓𝑅𝑀𝑆,𝑖) of the filtered signal as an RMS over the dimensions of Xi. 

 𝑋𝑅𝑀𝑆,𝑖 = √∑ 𝑋𝑖,𝑗
216

𝑗=1  and 𝑑𝑖𝑓𝑓𝑅𝑀𝑆,𝑖 = √∑ 𝑑𝑖𝑓𝑓𝑖,𝑗
216

𝑗=1  
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This process is visually represented in Figures 4.11 to 4.14 below. The resultant 

derivative, shown in Figure 4.14, was incoporated into further analysis. 

 

4.11. Example linearized FSR recording (coloured lines) during a dynamic task 
with corresponding joint position (black dotted line). 

Note. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Only one trial is 
shown, with each FSR signal labelled as S. X, where X is a number from 1 to 16. 

 

4.12. Example sorted linearized FMG signal. 
Note. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Only one trial is 
shown. 
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4.13. Example filtered sorted linearized FMG signal. 
Note. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Only one trial is 
shown. 

 

4.14. Example RMS of (linearized, sorted, filtered) FMG magnitude (blue) and FMG 
differential (orange) signal. 

Note. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Only one trial is 
shown. 
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Characteristics of a statically trained model during non-static activity 

The effectiveness of an FMG model (trained in static conditions) in non-static conditions 

was also considered.  The method of processing for this analysis is shown below in Figure 

4.15.  

 

4.15. Schema for exploring gesture identification during non-static activity 
Note. Shown above are (blue) the static gestures used to train models, (red) non-static tasks onto 
which models were applied, and (green) the expected classification outputs 

As shown in Figure 4.15, models developed from static conditions using 11 standard 

gestures were implemented on non-static data from the dynamic tasks: wrist 

flexion/extension, forearm pronation/supination, cylindrical grip squeeze and release, key 

grip squeeze and release, and tripod squeeze and release. The expected output was 

based on the gestures of the task. For the example output shown below in Figure 4.16, 

there were three expected outputs for the Wrist Flexion/Extension task: flexion, neutral, 

and extension. 
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4.16. Example of (top) statically trained model performance on non-static degree 
of motion, and (bottom) degree of motion measured during statically 
held gestures 

Note. The colored regions are (black) misclassified areas, (blue) wrist extension, (green) neutral 
wrist, and (red) wrist flexion. Circular markers indicate the output of the specific model type. The 
convention used in this work use positive (+) values for Wrist Flexion and Forearm Pronation, 
while using (-) values for Wrist Extension and Forearm Supination. 

Figure 4.16 above shows an example output of this process, highlighting 3 features used 

for further analysis: 

• Number of Clusters. The number of clusters of classes identified during the 
task. The correct number of classes for wrist flexion/extension is three (3): 
extension, neutral, and flexion. For forearm pronation/supination is three (3): 
supination, neutral, and pronation. For cylindrical grip is one (1): close. For key 
grip, is one (1): key. For tripod grip is one (1): tripod. In the example shown in 



 

75 

Figure 4.16, three classes are identified for each of the model types during 
wrist flexion/extension. 

• Overlap with training region. Whether of not the class cluster overlapped 
with the training region for that static class. In the example shown in Figure 
4.16, each of the three expected class clusters (extension, neutral, and 
pronation) overlapped with the corresponding training region (shaded area).  

• Variability within class clusters. In the example shown in Figure 4.16, for 
the ELM model, the degree of motion occupied by the ‘Extension’ class cluster 
is also occupied by ‘Neutral’ and ‘Misclassified’ class clusters. Thus, 
demonstrating a higher amount of variability than if that region was only 
occupied by the ‘Extension’ class cluster. This was expressed as a proportion 
of a class cluster that was correctly identified. 

4.6.2. Analysis 

In this, work, to illustrate the influence of user features on FMG modelling, several simple 

machine learning models were simultaneously generated from the FMG data. In this work, 

the choice of simple machine learning model types was motivated by those encountered 

in the literature, and include: Artificial Neural Network (ANN), Extreme Machine Learning 

(ELM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM). While 

acknowledging the strengths and merits of each type of supervised method, the purpose 

of generating multiple types of models was to establish trends of FMG behaviour that were 

persistent despite model parameter selection and optimization. 

Lastly, Student’s t-Test, ANOVA, and Spearman’s correlation coefficient (R), Coefficient 

of Determination (R2) were used to evaluate the interaction between variables of interest. 

Significance tests were based on a significance level of  α = 0.05. 

4.7. Internal and external validity 

Validity is the criteria for how effective the design is in employing methods of measurement 

that will capture the data to address the research questions. There are two types of validity: 

internal and external validity. In a quantitative study, such as this, internal validity is the 

ability to determine cause and affect. On the other hand, external validity describes the 

extent to which the results of the study can reflect similar outcomes elsewhere, and can 

be generalized to other populations or situations. 
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Steps to maximize the external validity of this study involved recruiting both senior and 

non-senior males and females, with a range of anthropometric differences. In addition, 

participants from both SFU and community dwelling adults were recruited. Steps to 

maximize the internal validity of this study involved: 

• Taking FMG and range of force/motion measures simultaneously  

• Placing the band in the same position/orientation each time 

• Direct observation of the participant during tasks, and correcting the gesture 
performed if incorrect 

• Using the same protocol and instrumentation for each participant  

• Restricting recruitment to self-identified healthy individuals so that pathological 
differences in musculoskeletal morphology would not be a factor 
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Chapter 5.  
 
Factors that influence an FMG model: Results and 
Analysis 

5.1. Chapter Overview 

The motivations for this thesis are to explore the suitability of FMG as a potential tool for 

seniors aging in place. The results of the first study addressing Objective 1, demonstrated 

that seniors could successfully use an FMG based system, but with more variability and 

decreased accuracy. Further age-related characterization of FMG is required for long-term 

and practical implementation.  This chapters continues the presentation of the study 

introduced in Chapter 4,  which seeks to address Objectives 2 & 3 of this thesis.  

Objectives 2 & 3 of this thesis seeks to reveal user dependent variability in FMG data, as 

well as to quantify the effect on FMG modelling. As discussed in Chapter 2, aging is 

associated with various physical and functional changes such as reduced strength, 

reduced muscle cross sectional area, and changing mechanical properties non-muscle 

tissue. It is believed that these changes are related to variability in FMG acquisition, and 

indirectly influence machine learning testing accuracy. This chapter begins with an 

overview of non-FMG related participant statistics in Section 5.2, including comparisons 

with general populations norms for the values presented. Next, in Section 5.3, is an 

overview of the influence of intrinsic participant variables on the effectiveness of FMG 

processing.  This chapter concludes with a chapter summary in Section 5.5.  

5.2. Descriptive Statistics: Non-FMG variables 

There were 21 participants recruited overall for this study. Tables 5.1 to 5.9 summarize 

the age group and gender specific data related to: participant demographics, 

anthropometric measures, band tightness, grip strength, and online and offline range-of-

motion. The purpose of this section is to convey how representative the recruitment pool 

was, and to allow for further discussion of where restricted sampling may or may not have 

influenced the statistical significance of the relationships observed. Where present, 
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significant differences between groups or variations from national/literature norms are 

noted and elaborated upon further.  

5.1. Demographics 

 Non-senior Senior 

Female Male Female Male 

Number 6 9 4 2 

Age (years) 26.25 (2.44) 27.11 (3.55) 74.75 (5.44) 64.50 (4.95) 

Weight (kg) 65.40 (14.71) 87.11 (9.25) 74.50 (15.51) 82.41 (3.41) 

Canadian Averages 
for Weight (kg) [225] 

70.94  

(45.55, 112.14) 

87.06  

(61.96, 126.79) 

71.82  

(51.47, 98.24) 

85.15  

(61.49, 107.07) 

Height (m) 1.61 (0.04) 1.83 (0.08) 1.59 (0.07) 1.65 (0.07) 

Canadian Averages 
for Height (m) [225] 

1.63  

(1.55, 1.73) 

1.78  

(1.68, 1.87) 

1.59  

(1.49, 1.71) 

1.73  

(1.61, 1.85)  

BMI (kg/m2) 25.01 (4.74) 26.12 (3.17) 29.31 (5.57) 30.30 (1.34) 

Canadian Averages 
for BMI (kg/m2) [225] 

26.57  

(18.72, 40.05) 

27.37  

(20.26,39.42) 

28.12  

(20.56, 37.60) 

28.39  

(21.82, 35.98) 

Note. Values (for age, weight, height, BMI) are presented as µ (σ2), where µ is the mean and σ2 is the 
standard deviation. Canadian national averages (for weight, height, and BMI) are presented as 50th 
percentile (5th percentile, 95th percentile). 

5.2. Anthropometric Measures (cm) 

 

 

Non-Senior Senior 

Female Male Female Male 

Wrist Circumference (cm) 15.92 (1.88) 17.72 (0.97) 16.88 (1.80) 19.25 (0.35) 

Recommended American 
design norms for Wrist 
Circumference (cm) [226] 

15.5  

(14.5, 16.3) 

16.8  

(15.5, 18.5) 
See Note. See Note 

Forearm Circumference 
(cm) 

24.33 (2.82) 27.50 (3.82) 25.00 (1.78) 27.25 (0.35) 

Recommended American 
design norms for 
Forearm Circumference 
(cm) [226] 

26.3  

(24.4, 27.7) 

29.2  

(26.7, 32) 
See Note. See Note 

Forearm Length 25.17 (1.57) 27.89 (1.54) 25.63 (1.80) 28.50 (0.71) 

Recommended American 
design norms for 
Forearm Length (cm) 
[226] 

23.4  

(21.8, 25.4) 

25.4  

(23.4, 26.9) 
See Note. See Note 
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Skinfold Thickness (cm) 0.99 (0.23) 0.66 (0.25) 1.25 (0.51) 1.30 (0.42) 

Ratio: Skinfold Thickness 
to Forearm 
Circumference (unitless) 

0.04 (0.01) 0.02 (0.01) 0.05 (0.02) 0.05 (0.02) 

Ratio: Wrist 
Circumference to 
Forearm Circumference 
(unitless) 

0.65 (0.04) 0.66 (0.10) 0.68 (0.05) 0.71 (0.02) 

Note. Values are presented as µ (σ2), where µ is the mean and σ2 is the standard deviation. American 
national reference norms (for wrist circumference, forearm circumference, and forearm length) are 
presented as 50th percentile (2.5th percentile, 97.5th percentile) for non-seniors only. 

All measurements were performed on the right side, and all participants were right hand 

dominant – with the exception of 3 left-hand dominant participants (2 senior females, and 

1 non-senior male). The measurements for wrist circumference, forearm circumference, 

and forearm length (shown above in Table 5.2) fall within in the 2.5th and 97.5th percentiles 

of age and gender matched norms [226].  

For forearm skinfold thickness, up to date age and gender group data is limited. However, 

based on a study utilizing forearm skinfold thickness, the mean (standard deviation) for 

women aged 40 to 64 years is 0.84 (3.4) cm to .9 (3.8) cm, and for men aged 40 to 64 

years is 0.58 (0.2) to 0.6 (.23) cm [227]. Seniors were expected to demonstrate increased 

fat distribution compared to non-senior groups [6] as well as increased skin compressibility 

[10], [11]. However, the forearm is not a skinfold site traditionally shown to have high 

correlations with obesity measurements and was not expected to yield significant 

differences in such a small sample size.  

For the samples obtained, ANOVA showed significant (p = 0.0001, 0.0148, 0) gender 

associated differences in wrist circumference, forearm circumference, and forearm length. 

In contrast, skinfold thickness demonstrated a significant (p = 0.0002) age-associated 

difference, with larger skin fold thickness measurements occurring with seniors. Finally, 

the ratio of skinfold thickness to forearm circumference, related to the amount of muscle 

vs. muscle-free tissue, demonstrated both a significant age (p = 0.0002) and gender (p = 

0.0244) based difference.  
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5.3. FMG Band Tightness (mmHg) 

 Non-Senior Senior 

Female Male Female Male 

Band Tightness 24.79 (5.74) 26.12 (5.50) 13.18 (5.78) 17.89 (1.83) 

Difference in Band Tightness 
between Session 1 & 2 

5.55 (2.42) 3.88 (3.31) 5.18 (5.16) 3.16 (0.26) 

Note. Values are presented as µ (σ2), where µ is the mean and σ2 is the standard deviation. 

Band tightness, as tabulated above in Table 5.3 above, has never been considered in 

FMG research before, and as such, there are no norms for comparison. However, it is of 

note that the skin surface pressure observed is within range of that observed in 

commercially available light to moderate compression socks [219], which would feel tighter 

than an everyday athletic sock. Attempts were made to maintain the positioning and 

tightness of the FMG band across sessions, however there was a significant difference in 

band tightness (p < 0.01) between sessions 1 & 2 across subjects. As seen from the table 

above, the band tightness for seniors was lower (p = 0.000), but did not demonstrate any 

relationship to gender (p = 0.5434). The FMG band was adjusted for comfort, but it was 

the indentation in the skin caused by tightening the band and the number of initially 

activated sensors served as an indication of sufficient tightness for testing. However, 

despite these qualitative criteria, seniors demonstrated lower band tightness no matter 

how tightly the band was donned. This is attributed to age-associated changes in the 

mechanical properties of the skin and underlying tissues. Other qualitative observations 

made during measurements that support this were that the skin of seniors was less firm 

and more compressible upon taking skinfold measurements. 

5.4. Offline Grip Strength (kg, % of max) 

 Non-Senior Senior 

Female Male Female Male 

Maximum Grip Strength 
(kg) 

16.11 (4.43) 29.83 (7.55) 10.54 (2.72) 20.24 (4.45) 

Canadian Averages for 
Maximum Grip Strength 
[228]  (kg) 

27.65 

(21.25, 34.78) 

45.725 

(34.775, 57.58) 

23.65 

(16.075, 29.75) 

39.08 

(26.6, 50.03) 

Grip Strength after 
Session 1 (% of Max) 

96.68 (23.11) 88.46 (10.53) 102.23 (27.96) 96.15 (8.32) 
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Grip Strength after 
Session 2 (% of Max) 

74.32 (20.93) 92.62 (26.19) 106.26 (28.38) 100.01 (5.09) 

Note. Offline refers to measurements taken while the FMG band was not donned. The grip used for this 
measure was a cylindrical grip. Values are presented as µ (σ2), where µ is the mean and σ2 is the standard 
deviation. Canadian national averages (for maximum grip strength) are presented as 50th percentile (5th 
percentile, 95th percentile). 

From the grip strengths tabulated above in Table 5.4, males demonstrate larger grip 

strength values than females (p = 0.0005), both of which appear to decline with age (p = 

0). Although, this trend is shared by both the reference data AND the experimental data, 

the grip strengths of the recruitment pool is markedly lower (less than the 5th percentile) 

than that of age and gender matched national averages. This is attributed to the difference 

in instrumentation. In this study, a non-deformable hand dynamometer was utilized, 

however, the protocol conducted by the Canadian Health Measures Survey used a 

deformable hand dynamometer (Smedley III handgrip dynamometer). An additional 

explanation for the lower grip strengths is that the shape of the hand dynamometer used 

does not allow for customizable or optimal hand/finger joint angles in maximum grip 

strength testing. Fine finger motions have been shown to result in discernable differences 

in FMG patterns [97]. A non-deformable hand dynamometer was utilized to create a more 

stable signal and so that any variability in FMG could be attributed to variations in grip 

strength, as opposed to variable grip strength AND variable finger joint position.  

Unfortunately, there is no normative data available for grip strength tests performed with 

the Vernier Hand Dynamometer (model HD-BTA).  

Also tabulated above in Table 5.4, are the reductions that occurred in maximum grip 

strength that occurred after completing the protocol. Fatigue is defined as achieving less 

than 50% of maximum voluntary grip strength [6]. Although, none of the participants 

demonstrated textbook fatigue after the protocol, there was a marked decline in maximum 

voluntary grip strength, particularly for female participants. Seniors did not show this same 

decline; however, this is attributed to seniors being provided an abridged version of the 

protocol.  Table 5.5 below provides an overview of online grip strengths for three different 

types of grasps (cylinder grip, key grip, and tripod grip) achieved whilst wearing the FMG 

band. 
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5.5. Online Grip Strength (kg, % of max) 
 

Female Male 

kg % kg % 

N
on

-

se
ni

or
 

Grip 14.01 (3.87) 87.19 (7.12) 18.91 (7.68) 63.65 (21.00) 

Key  6.28 (0.67) 40.72 (8.62) 7.47 (2.14) 26.57 (10.44) 

Tripod  4.38 (0.62) 28.68 (7.98) 5.87 (2.19) 20.57 (8.26) 

S
en

io
r Grip 10.66 (2.27) 104.66 (25.62) 13.01 (5.00) 63.06 (10.82) 

Key  4.72 (0.47) 46.86 (11.61) 9.85 (1.01) 49.29 (5.85) 

Tripod  3.86 (0.83) 38.93 (15.55) 7.64 (1.06) 38.08 (3.15) 

Note. Online refers to measurements taken while the FMG band was donned. Shown are age and gender 
divided data for the absolute grip strength reading (kg) as well as a percentage of the maximum grip 
strength (%) recorded offline. ‘Grip’, ’key’, and ’tripod’ refer to the participant using a cylindrical grip, a lateral 
pinch grip, or a pinch grip to squeeze the dynamometer. Values are presented as µ (σ2), where µ is the 
mean and σ2 is the standard deviation. 

5.6. Offline Active Range of Motion (degrees) 

 
Non-Senior Senior 

Female Male Female Male 

Wrist Flexion 75.83 (11.69) 64.89 (15.03) 58.25 (12.61) 70.00 (7.07) 

Population Norms for Wrist 
Flexion [173], [229] 

72.4 

(55.46, 101.53) 

67.4 

(54.40, 97.40) 

59.30  

(36.93, 74.35) 

56.9 

(38.67, 74.73) 

Wrist Extension -70.83 (-.70) -66.89 (8.22) -58.50 (7.51) 56.00 (15.56) 

Population Norms for Wrist 
Extension [173], [226]  

-79.1 

(-116.81, -66.27) 

-72.8 

(-105.25,-58.82) 

-49.72 

(-55.82, -24.67) 

-43.3 

(-55.93, -28.53) 

Forearm Pronation 91.17 (13.79) 88.44 (5.15) 93.00 (5.60) 86.00 (1.41) 

Population Norms for 
Forearm Pronation [230] 

82  

(72.46, 125) 

76.9  

(65.39,114.56) 

80.8  

(70.44,122.17) 

77.7  

(67.83, 117.58) 

Forearm Supination -98.33 (6.89) -98.22 (13.20) -93.50 (6.03) 95.50 (10.61) 

Population Norms for 
Forearm Supination [230] 

-90.6  

(-134.54, -76.62) 

-85  

(-128.57, -74.14) 

-87.2  

(-131.67, -75.65) 

-82.4  

(-122.75, -70.06) 

Wrist (full range) 146.67 (10.76) 131.78 (20.41) 116.75 (15.11) 126.00 (8.49) 

Forearm (full range) 189.50 (18.88) 186.67 (13.46) 186.50 (7.72) 181.50 (9.19) 

Note. Offline refers to measurements taken while the FMG band was not donned. The convention used in 
this work use positive (+) values for Wrist Flexion and Forearm Pronation, while using (-) values for Wrist 
Extension and Forearm Supination. Values are presented as µ (σ2), where µ is the mean and σ2 is the 
standard deviation. Population norms for forearm pronation/supination are presented as 50th percentile (5th 
percentile, 95th percentile). 
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There are no remarkable differences between measured values and those reported for 

age and gender matched data for wrist and forearm range of motion. It is noteworthy, that 

the data of recruited participants demonstrates similar age related declines in wrist 

flexion/extension angle as the predicted in the literature (p < 0.1). Table 5.7 below 

provides an overview of the maximum range-of-motion achieved during online testing. 

5.7.  Online range-of-motion (ROM) across all tasks 

 

Female Male 

degrees % degrees % 

N
on

-S
en

io
r Wrist Flexion 96.00 (12.68) 129.85 (29.13) 72.49 (11.16) 118.67 (41.01) 

Wrist Extension -55.42 (5.90) -79.39 (12.58) -55.40 (11.95) -83.31 (16.74) 

Forearm Pronation 59.68 (22.74) 65.22 (23.42) 70.00 (13.80) 78.87 (12.63) 

Forearm Supination -64.62 (5.66) -65.87 (6.26) -67.84 (13.37) -69.36 (12.74) 

Wrist Full Range  151.42 (10.80) 104.00 (13.63) 127.90 (16.62) 98.66 (17.76) 

Forearm Full Range  124.30 (20.02) 65.92 (11.47) 137.84 (18.65) 74.03 (10.15) 

S
en

io
r Wrist Flexion 86.79 (10.36) 158.60 (60.99) 89.21 (13.05) 129.04 (31.68) 

Wrist Extension -54.93 (4.59) -95.76 (19.65) -51.12 (9.32) -97.36 (43.69) 

Forearm Pronation 82.21 (14.18) 89.10 (19.08) 72.51 (10.69) 84.43 (13.82) 

Forearm Supination -60.20 (14.15) -65.18 (19.14) -56.83 (23.84) -61.27 (31.76) 

Wrist Full Range  141.72 (14.66) 124.36 (30.81) 140.33 (3.73) 111.53 (4.55) 

Forearm Full Range  142.41 (16.14) 76.67 (11.03) 129.34 (13.15) 71.54 (10.87) 

Note. Online refers to measurements taken while the FMG band was donned. Shown are age and gender 
divided data for absolute range of movements (degrees) as well as a percentage of the maximum ROM (%) 
recorded offline. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Values are presented as µ 
(σ2), where µ is the mean and σ2 is the standard deviation. 

From the Table 5.7 above, it appears that the participants frequently went beyond the full 

range of wrist flexion, achieving 119% to 158% of full wrist flexion during online testing. 

However, because the full range of wrist flexion/extension remained approximately to 

100% (relatively), this appears to be a systematic error between the offline and online 

methods of method measuring wrist flexion/extension angle. This could be attributed to 

the location of the measurements. Offline, wrist flexion and extension was measured as 

the smallest angle between radius and 3rd metacarpal (ring finger). However, during online 

measurements, placement of the moving arm of the rotary potentiometer was placed on 

the 5th metacarpal. Thus, flexion of the distal transverse arch (shown below in Figure 5.1) 
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while completing hand gesture or wrist/forearm movements would contribute to a 

systematic difference between the two modes. With the location of the moving arm of the 

rotary potentiometer, that radial and ulnar deviation motions of the wrist also contributed 

to the systematic measurement error. Despite this, it is believed that the relative 

differences in wrist flexion/extension within-subjects and between-age/gender groups, and 

its influence on FMG, would still be informative as the error would be systematic across 

all participants. 

 

5.1. Arches of the hand.  
Note. Image reproduced from [231] 

Shown below in Table 5.8 is additional information regarding actual wrist flexion/extension 

and forearm pronation/supination angles measured when the participant was instructed to 

performed movements that required wrist flexion/extension or forearm 

pronation/supination. Finally, as wrist flexion/extension and forearm pronation/supination 

are not mutually exclusive movements, the degree of interaction between these two 

groups were also considered and tabulated below in Table 5.9.  

5.8. True online wrist position (degrees of flexion/extension) and forearm position 
(degrees of pronation/supination) when participants were instructed 
to actively flex/extend their wrist OR pronate/supinate their forearm 

 

Female Male 

degrees % degrees % 

N
on

-

se
ni

o r Wrist Flexion 82.21 (11.12) 111.71 (28.37) 55.01 (10.36) 91.40 (38.01) 

Wrist Extension -39.62 (10.25) -55.70 (12.54) -39.09 (10.11) -58.74 (14.54) 
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Forearm Pronation 39.35 (23.74) 42.10 (25.19) 43.56 (7.77) 49.27 (8.56) 

Forearm Supination -54.48 (4.56) -55.49 (4.21) -53.66 (12.82) -54.91 (12.83) 
S

en
io

r Wrist Flexion 66.19 (8.82) 120.05 (41.82) 63.94 (4.34) 92.13 (15.51) 

Wrist Extension -39.37 (5.13) -68.31 (14.23) -30.38 (8.82) -58.70 (32.07) 

Forearm Pronation 53.52 (11.25) 58.13 (15.29) 50.89 (22.16) 59.39 (26.74) 

Forearm Supination -42.92 (4.63) -46.15 (6.85) -43.14 (28.67) -47.13 (35.26) 

Note. Online refers to measurements taken while the FMG band was donned. Shown are age and gender 
divided data for absolute range of movements (degrees) as well as a percentage of the maximum ROM (%) 
recorded offline. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Values are presented as µ 
(σ2), where µ is the mean and σ2 is the standard deviation. 

5.9. Degree of online isolation between each individual wrist motion 
(flexion/extension) and forearm orientation (pronation/supination) 

 

Female Male 

degrees % degrees % 

N
on

-S
en

io
r During Pronation, 

Angle of the Wrist  
13.38 (9.92) 19.41 (15.60) 7.32 (10.82) 13.69 (20.73) 

During Supination, 
Angle of the Wrist  

21.78 (8.19) 30.42 (14.93) 4.59 (12.88) 10.72 (24.29) 

During Flexion, Angle 
of the Forearm  

-10.73 (5.87) -10.97 (6.14) -13.49 (6.49) -13.71 (6.23) 

During Extension, 
Angle of the Forearm  

-5.96 (4.66) -6.11 (4.74) -6.71 (4.32) -6.81 (4.48) 

S
en

io
r During Pronation, 

Angle of the Wrist  
12.70 (4.61) 23.82 (13.95) 2.18 (21.19) -1.02 (38.79) 

During Supination, 
Angle of the Wrist  

10.02 (14.83) 21.06 (30.72) 5.64 (10.22) 8.14 (16.49) 

During Flexion, Angle 
of the Forearm  

-7.85 (4.06) -8.38 (4.40) -17.12 (6.09) -18.39 (8.41) 

During Extension, 
Angle of the Forearm  

-4.83 (2.56) -5.16 (2.82) -1.83 (1.73) -2.03 (2.03) 

Note. Online refers to measurements taken while the FMG band was donned. Shown are age and gender 
divided data for absolute range of movements (degrees) as well as a percentage of the maximum ROM (%) 
recorded offline. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Values are presented as µ 
(σ2), where µ is the mean and σ2 is the standard deviation. 

The results in Table 5.9 suggest a frequent coupling between wrist flexion and forearm 

supination when completing the required gestures. Finally, online wrist and forearm 

orientation was tabulated below in Tables 5.10 and 5.11 to provide an indication of true 
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wrist and forearm angle when the participant was instructed to hold a neutral wrist and 

forearm.  

5.10. True online wrist position (degrees of flexion/extension) while participants 
were instructed to hold a neutral wrist  

 Female Male 

degrees % degrees % 

N
on

-S
en

io
r Overall  13.04 (7.12) 18.59 (11.58) 2.70 (9.15) 6.16 (16.77) 

G
es

tu
re

 S
pe

ci
fic

 

relax 5.84 (6.40) 8.03 (9.18) 2.14 (8.55) 4.63 (15.15) 

open 20.58 (10.24) 29.27 (18.87) 3.03 (9.22) 6.34 (16.25) 

close 15.99 (7.43) 22.28 (11.54) 6.48 (8.77) 12.24 (16.70) 

point 16.74 (7.66) 23.75 (13.73) 1.41 (11.11) 4.89 (19.89) 

key 10.70 (14.57) 15.54 (21.53) 1.93 (10.47) 5.07 (18.21) 

tripod 9.40 (8.62) 12.82 (12.36) 4.71 (11.30) 9.38 (21.64) 

straight 11.13 (7.65) 16.29 (12.98) -0.89 (10.13) 0.50 (16.90) 

S
en

io
r Overall 3.83 (4.86) 8.31 (11.51) -2.06 (13.44) -7.12 (26.27) 

G
es

tu
re

 S
pe

ci
fic

 

relax 4.75 (2.74) 9.40 (8.25) -9.19 (11.83) -20.13 (26.72) 

open 23.36 (4.38) 42.17 (13.90) 2.81 (13.85) 1.93 (24.69) 

close 4.39 (6.19) 7.80 (11.41) 9.39 (11.57) 14.33 (17.98) 

point 0.98 (9.83) 1.91 (17.21) -6.43 (21.65) -17.32 (43.81) 

key -6.08 (11.86) -9.31 (25.58) 0.07 (14.41) -3.34 (27.05) 

tripod -10.43 (4.40) -17.31 (5.34) -4.48 (8.74) -10.54 (18.61) 

straight 9.47 (13.75) 20.13 (29.88) -6.98 (11.84) -15.99 (25.63) 

Note. Online refers to measurements taken while the FMG band was donned. Shown are age and gender 
divided data for absolute range of movements (degrees) as well as a percentage of the maximum ROM (%) 
recorded offline. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Values are presented as µ 
(σ2), where µ is the mean and σ2 is the standard deviation.  
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5.11. True online forearm position (degrees of pronation/supination) while 
participants were instructed to hold a neutral forearm 

 
Female Male 

degrees % degrees % 

N
on

-S
en

io
r Overall -4.70 (4.73) -4.73 (4.71) -4.20 (2.79) -4.30 (2.88) 

G
es

tu
re

 S
pe

ci
fic

 

relax -5.52 (3.69) -5.59 (3.67) -4.04 (2.30) -4.15 (2.36) 

open -3.90 (5.37) -3.94 (5.36) -1.86 (3.89) -1.81 (3.92) 

close -3.40 (4.63) -3.44 (4.61) -4.08 (3.42) -4.16 (3.61) 

point -4.61 (6.17) -4.60 (6.26) -4.43 (4.10) -4.51 (4.29) 

key -6.87 (5.18) -6.86 (5.02) -5.37 (2.86) -5.46 (2.80) 

tripod -4.64 (5.84) -4.71 (5.96) -6.61 (3.85) -6.76 (4.05) 

straight -3.34 (4.23) -3.25 (4.20) -2.89 (2.63) -2.97 (2.82) 

S
en

io
r Overall -2.42 (2.85) -2.68 (3.30) -4.16 (10.79) -4.66 (12.36) 

G
es

tu
re

 S
pe

ci
fic

 

relax -3.94 (1.77) -4.29 (2.19) -6.61 (11.39) -7.49 (12.99) 

open 0.34 (4.22) 0.43 (4.72) -1.65 (6.36) -1.82 (7.30) 

close -4.45 (4.77) -4.93 (5.56) -1.73 (10.85) -1.85 (12.50) 

point 0.37 (1.92) 0.46 (2.23) -1.46 (11.99) -1.52 (13.83) 

key -7.03 (6.93) -7.89 (8.04) -8.24 (13.78) -9.33 (15.71) 

tripod -0.46 (1.26) -0.44 (1.28) -5.84 (16.95) -6.52 (19.44) 

straight -1.56 (3.14) -1.74 (3.64) -3.66 (4.33) -4.10 (4.99) 

Note. Online refers to measurements taken while the FMG band was donned. Shown are age and gender 
divided data for absolute range of movements (degrees) as well as a percentage of the maximum ROM (%) 
recorded offline. The convention used in this work use positive (+) values for Wrist Flexion and Forearm 
Pronation, while using (-) values for Wrist Extension and Forearm Supination. Values are presented as µ 
(σ2), where µ is the mean and σ2 is the standard deviation. 

Initial observations of the data presented in Tables 5.10 and 5.11 demonstrate that during 

online use, the repetition of a movement is quite variable, and that defining neutral as 0 

degrees is not a true reflection of the functional range for gesture identification. For 

evaluating online data, defining a range of values for identification of a ‘neutral’ would be 

more practical. 

5.3. Variables influencing FMG 

Objectives 2 and 3 of this thesis are to identify intrinsic user features that contribute to 

variability in FMG acquisition and modelling. Five features of FMG processing and 
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analysis were considered to illustrate the affect of user variability. The selection of these 

features was motivated in part by the limitations in FMG research presented by the 

literature review in Chapter 2, as well as, practical considerations for day-to-day use of 

FMG in the community. These features discussed in this section are:  

• variability of FMG sensors throughout non-static repetitive motions, addressed 
in Section 5.3.1 

• magnitude of FMG response to incremental activity, addressed in Section 
5.3.2 

• presence of compound movements/actions, addressed in Section 5.3.3 

• effect of non-static conditions on the performance of statically trained models, 
addressed in Section 5.3.4 

• effect of FMG band removal, addressed in Section 5.3.5 

5.3.1. FMG variability during non-static and repetitive activity 

There were 5 dynamic tasks used in this section: wrist flexion/extension, forearm 

pronation/supination, cylindrical grip, key grip, and tripod grip. Variability was quantified 

using the method described in Section 4.6.1. The root mean square (RMS) residuals 

across all subjects for these dynamic tasks are summarized in Figure 5.2 below. 

 

5.2. Bar graph of RMS Residual (50th, 75th, 90th, 95th, 100th) expressed as a 
percentage of the maximum reading for dynamic tasks 
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From Figure 5.2 above, approximately 95% of residuals calculated only represent between 2.85% 

to 6.47% of the range of readings. It is surmised that sources for this variability include: 1) 

Relaxation of the skin around the FMG sensor, 2) Variations in joint angle during movement, 3) 

underlying musculoskeletal structure. Firstly, regarding the role of skin relaxing around the FMG 

sensors, there was low (|R| < 0.3) correlation between residual magnitude and ongoing trial 

duration. These results are summarized below in Figure 5.3. Secondly, regarding variations in 

joints angles during movement, the wrist and forearm were considered. For example, during the 

Wrist Flexion/Extension task, participants were instructed to keep a neutral forearm. Deviation from 

this instruction could contribute to variability in the signal. Unfortunately, no data is available for 

intrinsic hand joint angles. However, as tabulated in Table  5.12, the wrist and forearm angle were 

stable through dynamic tasks, with standard deviations ranging from 2° and 5°. Finally, regarding 

the role of underlying musculature in signal variability, there are only low correlations (|R| < 0.3) 

between sensor variability and anthropometric variables. These results are summarized in Figure 

5.4, with significant correlations tabulated in Table 5.13. 

 

5.3. Boxplot of correlations between sensor residual and ongoing trial duration 
Note. Vertical grey lines identify margins for low correlations (|R| < 0.33), moderation correlations 
(|R| < 0.67), and high correlations (0.67 < |R|).  
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 5.12. Mean standard deviation of Wrist and Forearm angles (degrees) during 
dynamic tasks 

 

 

Task 

Dynamic 
Wrist Flex/Ext 

Dynamic 
Forearm 
Pro/Sup 

Cylindrical, 
squeeze & 

relax 

Key, squeeze 
& relax 

Tripod, 
squeeze & 

relax 

Jo
in

t 

Wrist 
Flex/Ext 

-- 4.95 (1.81) 3.00 (0.89) 3.14 (1.92) 3.16 (1.51) 

Forearm 
Pro/Sup 

4.22 (2.02) -- 2.46 (0.94) 2.06 (0.88) 2.47 (1.42) 

Note. Values are presented as µ (σ2), where µ is the mean and σ2 is the standard deviation. 

 

5.4. Bar graph of correlations between FMG variability and anthropometry 
Note. Vertical grey lines identify margins for low correlations (|R| < 0.33), moderation correlations 
(|R| < 0.67), and high correlations (0.67 < |R|).  
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5.13. p-values of Correlations between anthropometry and task specific signal 
variability which were significant 

Anthropometry Task p-value 

Is Senior? Wrist Flex/Ext 0.037 

Is Senior? Forearm Pro/Sup 0.012 

Is Senior? Cylindrical Grip 0.002 

Band Tightness Cylindrical Grip 0.045 

Grip Strength Forearm Pro/Sup 0.0211 

Although, generally there was only low and insignificant correlations (|R| < 0.3) between 

FMG variability and user properties, Figure 5.4 above indicates the strongest relationship 

between FMG variability and age.  

Finally, as shown in Figure 5.2, mean RMS residual represented less than 1% of the 

range of FSR values. Not only were mean RMS residuals small in range, but they also 

demonstrated a low relationship to model testing accuracy as shown below in Figure 5.5. 

Unfortunately, these correlations were not significant (as p > 0.05). 

 

5.5. Summary of correlations between mean RMS residual and testing accuracy 
Note. Horizontal grey lines identify margins for low correlations (|R| < 0.33), moderation 
correlations (|R| < 0.67), and high correlations (0.67 < |R|).  
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What these results demonstrate is that FMG stable throughout repetitive dynamic motions, 

as well as static conditions which was shown in [79]. 

5.3.2. Responsiveness of FMG 

The dynamic tasks involved in this study incorporated gross wrist and forearm movements 

(wrist flexion, wrist extension, forearm pronation, and forearm supination), gross hand 

gestures (cylindrical grip), fine finger movements (tripod grip) and isolated thumb actions 

(key grip). Sensitivity of FMG to changes during each task was calculated as per the 

method described in Section 4.6.1. In this context, sensitivity serves as a measure of 

responsiveness of FMG to incremental changes in range of motion or effort expended. 

Participants were also grouped and averaged based on age and gender, and an example 

summary of the results for Wrist Flexion/Extension is presented below in Figure 5.6.  

 

5.6. Example normalized derivative FMG throughout range of wrist 
flexion/extension. 

Note. Data has been separated into non-senior females (blue), non-senior males (orange), senior 
females (yellow), and senior males (purple). The dotted lines show the minimum and maximum 
ranges for each respective group. The convention used in this work use positive (+) values for 
Wrist Flexion and Forearm Pronation, while using (-) values for Wrist Extension and Forearm 
Supination. 

Sensitivity was explored as 1) the RMS magnitude of change from baseline values, and 

2) as RMS slope (successive differences of sorted values). ANOVA demonstrated 
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significant age AND gender based differences in FMG magnitude (0 < p < 0.1097) except 

for forearm pronation/supination, which only showed age based differences. With respect 

to sensitivity as defined as successive difference between sorted values, significant 

gender based differences were only observed during wrist flexion/extension, key grip, and 

tripod. Significant age based differences were observed during wrist flexion/extension, 

forearm pronation/supination, and cylindrical grip. These results indicate that being young 

and being male is correlated to having an FMG profile that is more responsive to changes 

in range of motion or effort. Gender and age accounted for approximately 17% and 24% 

of the variability in FMG magnitude. These results are tabulated in Table 5.14 below, and 

shown in greater detail in Figure Error! Reference source not found.. 

5.14. Mean correlation between anthropometry and 1) magnitude of response, and 
2) peak derivative of response 

Variable Magnitude Successive Differences 

 
Mean 

Correlation 
% contribution 

to variability 
Mean 

Correlation 
% contribution 

to variability 

is Male? 0.41 16.86 0.27 7.32 

is Senior? -0.49 23.55 -0.40 15.73 

Band Tightness 0.49 24.00 0.32 10.07 

Band Tightness (difference) -0.08 0.71 -0.06 0.34 

Grip Strength 0.55 30.31 0.44 19.20 

Skinfold Thickness -0.48 22.90 -0.39 14.94 

Ratio of Skinfold Thickness 
to Forearm Circumference 

-0.55 30.56 -0.45 19.95 

Ratio of Wrist Circumference 
to Forearm Circumference 

-0.39 14.91 -0.35 12.31 

Wrist Circumference 0.13 1.62 0.05 0.22 

Forearm Circumference 0.33 10.58 0.26 6.62 

Also, shown in Table 5.14 above are correlations with some of the independent measures 

of anthropometry considered in this study. Grip strength and ratio of skinfold thickness to 

forearm circumference (two features that demonstrate age and gender based differences) 

demonstrated the greatest relationship with FMG responsiveness, accounting for 

approximately 30% of the variability in magnitude and 19% to 20% of the of the variability 

in slope. Greater details of this relationship for each dynamic task are shown below in 
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Figure Error! Reference source not found., with p-values for the correlations tabulated in 

Tables 5.15 and 5.16. 

 

5.7. Correlation of Mean Normalized Derivative with variables of anthropometry 
Note. Horizontal grey lines identify margins for low correlations (|R| < 0.33), moderation 
correlations (|R| < 0.67), and high correlations (0.67 < |R|).  
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5.15. p-values for correlations between anthropometry and magnitude of FMG 
response 

 

Wrist 
Flex/Ext 

Forearm 
Pro/Sup 

Cylindrical 
Grip Key Grip Tripod 

is Male? 0.000 0.194 0.003 0.011 0.002 

is Senior? 0.000 0.000 0.000 0.057 0.012 

Band Tightness 0.000 0.000 0.000 0.027 0.002 

Band Tightness (diff) 0.513 0.904 0.437 0.399 0.621 

Grip Strength 0.000 0.001 0.000 0.003 0.000 

Skinfold Thickness 0.000 0.005 0.000 0.044 0.001 

Ratio Skinfold:ForearmC 0.000 0.000 0.000 0.009 0.000 

Ratio WristC:ForearmC 0.038 0.000 0.002 0.158 0.041 

WristC 0.110 0.949 0.904 0.211 0.314 

ForearmC 0.013 0.013 0.140 0.035 0.047 

Separability Index 0.000 0.002 0.000 0.072 0.005 

Note. Significance based on p < 0.05. Significant correlations are highlighted in yellow. 

5.16. p-values for correlations between anthropometry and derivative of FMG 
response 

 

Wrist 
Flex/Ext 

Forearm 
Pro/Sup 

Cylindrical 
Grip Key Grip Tripod 

is Male? 0.000 0.221 0.488 0.161 0.082 

is Senior? 0.001 0.000 0.000 0.806 0.024 

Band Tightness 0.011 0.064 0.000 0.614 0.067 

Band Tightness (diff) 0.520 0.454 0.680 0.767 0.566 

Grip Strength 0.000 0.013 0.022 0.027 0.010 

Skinfold Thickness 0.001 0.117 0.001 0.306 0.000 

Ratio Skinfold:ForearmC 0.000 0.036 0.001 0.100 0.000 

Ratio WristC:ForearmC 0.044 0.043 0.002 0.094 0.009 

WristC 0.098 0.795 0.341 0.159 0.736 

ForearmC 0.007 0.258 0.435 0.011 0.235 

Separability Index 0.002 0.000 0.003 0.915 0.107 

Note. Significance based on p < 0.05. Significant correlations are highlighted in yellow.s 
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The correlations observed in Figure Error! Reference source not found. suggest that 

having a greater grip strength is associated with greater responsiveness of FMG, whilst 

greater skinfold thickness relative to muscle and bone tissue are correlated to decreased 

responsiveness. The influence of grip strength is explained via the increase in muscle fibre 

cross sectional area that is associated with greater grip strength [232]. Similarly, the 

influence of skinfold thickness is explained as a dampening affect on the transmission of 

volumetric changes through underlying tissues. This variability is significant to FMG 

implementation, particularly for AAL tools for seniors, due to the age-associated changes 

that occur with grip strength and skin compressibility. As discussed in Section 2.2.2, non-

pathological age-associated changes include decreased grip strength, increased 

distribution of subcutaneous adipose tissue, and decreased skin elasticity. As such, these 

variables would need to be accounted for in FMG implementations. 

Initial band tightness also demonstrated strong relationships with FMG responsiveness, 

accounting for 24% of the variability in magnitude of response. In this aspect of FSR based 

FMG, magnitude of response is related to the sensitivity of the FSRs which could be 

addressed via circuitry [216]. Band tightness has never been addressed in FMG research, 

and further research into optimal band tightness would benefit future study. 

On average, FMG responsiveness showed a moderate correlation with linear separability 

of static hand gestures and wrist positions data clusters (0.4496 for magnitude and 0.2913 

for slope). This affect on the separability of static clusters also translated to affects on the 

testing accuracy of machine learning models. Figure 5.8 presents an overview of testing 

accuracies achieved with raw, normalized, and singular value decomposed FSR data.  
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5.8. Overview of testing accuracies across all participants  
Note. The standard deviation in accuracy for each test and data type are presented with the error 
bar at the top of each bar, while the training accuracy is printed in text above each bar. SVM, 
LDA, ELM, and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme 
Learning Machine, and Neural Network respectively.  

In this work, the raw, global min-max normalized, and singular value decomposed FSR 

were used to train four types of machines learning models: Support Vector Machine 

(SVM), Linear Discriminant Analysis (LDA), Extreme Learning Machine (ELM), and Neural 

Network (NN). While it is acknowledged that models such as SVM, ELM, and NN benefit 

from parameter optimization, the purpose of training various models was to illustrate 

trends independent of parameter optimization. Selecting the best data-model pairs, FMG 

responsiveness demonstrates moderate correlations with the testing accuracies of 

machine learning models, accounting for 25%, 35%, and 13% of the variability in SVM, 

LDA, and ELM testing accuracy. These results are tabulated and shown in greater detail 

in Table 5.17 and Figure 5.9 below. The relationship with the testing accuracy of the NN 

testing model was quite low with no significant relationships (p > 0.05). It is hypothesized 

that this is due low variability of testing accuracies – a restricted a range of data which is 

documented to have a negative affect on calculations of correlation [233]. 

 



 

98 

5.17. Summary of influence of FMG responsiveness on model testing accuracy 

 Training 
Accuracy 

(%) 

Testing Accuracy (%) Magnitude Successive 
Differences 

min max 
Mean 

Correlation 

% 
contribution 
to variability 

Mean 
Correlation 

% 
contribution 
to variability 

SVM 86.94 69.72 96.48 0.51 25.76 0.41 17.11 

LDA 89.21 69.05 98.51 0.59 34.63 0.44 19.26 

ELM 98.23 88.07 100.00 0.36 12.65 0.32 10.39 

NN 98.72 83.95 100.00 0.30 8.95 0.31 9.64 

Note. SVM, LDA, ELM, and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme 
Learning Machine, and Neural Network respectively. 

 

5.9. Influence of FMG responsiveness on model testing accuracy 
Note. SVM, LDA, ELM, and NN stand for Support Vector Machine, Linear Discriminant Analysis, 
Extreme Learning Machine, and Neural Network respectively. Horizontal red lines identify 
margins for low correlations (|R| < 0.33), moderation correlations (|R| < 0.67), and high 
correlations (0.67 < |R|).  

The last item of note are the differences observed when considering the magnitude and 

slope (successive sequential differences). For example, it can be observed from Table 

5.17 and Figure 5.9 that the relationships with FMG magnitude were much stronger (had 

higher correlations) than with successive differences. An explanation for this is [TODO]. 
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5.3.3. Sensitivity to compound movements/manipulations 

As described Section 4.5.5, participants were asked to perform a series of compound 

movements, which involved a hand gestures and a simultaneous wrist/forearm orientation. 

This was motivated by the dominance of singleton tasks in FMG research and the little 

regard for combinations of hand gestures, wrist movements, and forearm orientations 

possible. All possible combinations were subsequently reorganized to explore the 

influence of hand manipulation on the discriminability of wrist/forearm orientations, and 

visa versa.  

Classes for hand classification were: relax, open, close, point, tripod, key, and straight. 

The baseline performance was calculated for hand gestures completed only with a 

‘neutral’ wrist and forearm. Noise was introduced by performing the hand gestures with 

varying wrist and forearm orientations (wrist flexion/extension and forearm 

pronation/supination). Classes for wrist/forearm orientation were: neutral, wrist flexion, 

wrist extension, forearm pronation, and forearm supination. The baseline performance 

was calculated for wrist/forearm orientations completed only with a ‘straight’ hand gesture. 

Noise was introduced by completing the wrist/forearm orientation tasks with varying hand 

gestures (relax, open, close, point, tripod, key, and straight).  

As described in Section 4.5.5, senior participants completed an abridged protocol with 

only the (relax, open, close) hand gestures. Non-senior participants performed the full 

sequence of tasks for more comprehensive analysis. 

Abridged Protocol 

At a neutral wrist, the mean (standard deviation) separability of FMG clusters across the 

3 hand gestures was 124.79 (96.35). In the presence of noise (variable wrist/forearm 

orientation), separability of clusters significantly decreases to 8.94 (5.58) (p = 4.5481e-

10). With a straight hand gesture, the mean separability of FMG clusters across 5 

wrist/forearm positions (neutral, wrist flexion, wrist extension, forearm pronation, forearm 

supination) was 76.21 (41.28). In the presence of noise (variable hand gestures), 

separability significantly decreases to 17.96 (8.12) (p = 9.6784e-14). Even with this 

decrease in separability, FMG clusters of wrist position are statistically still more separable 

than FMG clusters of hand gestures (p = 2.8332e-07). 
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Without noise, ANOVA revealed only age associated differences in the separability of 

hand gestures and wrist gestures. With the introduction of noise, ANOVA revealed both 

age and gender associated differences in the decline of class separability. These ANOVA 

results are summarized in Table 5.18.  

5.18. ANOVA p-value results: Gender and Age associated in differences in 1) 
Separability of classes and 2) Decline in Separability after 
introducing noise 

 Gender Age 

Separability of Hand gestures (without noise) 0.6831 0.0001 

Decline of Separability of Hand gestures after introducing noise 0.0436 0.0004 

Separability of Wrist/Forearm orientation (without noise) 0.7168 0.0001 

Decline of Separability of Wrist/Forearm orientation after introducing noise 0.0449 0.0004 

Closer inspection of anthropometric and band placement variables indicated that these 

results are moderately correlated to grip strength, ratio of skinfold thickness to forearm 

circumference, and band tightness. These results are summarized in Figure 5.10. Grip 

strength, ratio of skinfold thickness to forearm circumference, and band tightness were 

three anthropometric variables that also demonstrated age and gender related differences 

as seen in Section 5.2. In addition, Figure 5.10 indicates that anthropometric variables 

demonstrated stronger relationships with the discriminability of hand gestures and 

declines after introducing noise. This indicates that wrist positions are less susceptible to 

the introduction of noise and anthropometric differences. Knowing the wrist position 

regardless of hand gesture reduces the classification scheme from a 30 class problem (6 

hand gestures and 5 wrist/forearm orientations) to a 6 class problem (6 hand gestures).  

This potentially supports the idea of a 2 stage-classifier which first identifies the 

wrist/forearm positions and adjusts the parameters of a subsequent hand classifier. An 

advantage of this proposed schema is the reduction of the amount of required training 

input. 
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~

 

5.10. Correlation between anthropometric variables and 1) Separability of classes 
and 2) Decline in Separability after introducing noise 

Note. Horizontal grey lines identify margins for low correlations (|R| < 0.33), moderation 
correlations (|R| < 0.67), and high correlations (0.67 < |R|).  

Table 5.19 below provides tasks specific p-values for the correlations shown above in 

Figure 5.10. Significant relationships (p < 0.05) are highlighted in yellow. 
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5.19. p-values of correlations between anthropometry and separability 

 Sep. of Hand 
Classes 

Sep. of Wrists 
Classes 

Decline of 
Hand Sep. after 

noise 

Decline in Wrist 
Sep. after noise 

is Male? 0.114 0.019 0.108 0.020 

is Senior? 0.000 0.000 0.000 0.000 

Band Tightness 0.000 0.029 0.000 0.038 

Band Tightness (diff) 0.200 0.307 0.214 0.218 

Grip Strength 0.000 0.009 0.000 0.010 

Skinfold Thickness 0.003 0.005 0.004 0.004 

Ratio Skinfold:ForearmC 0.001 0.005 0.001 0.004 

Ratio WristC:ForearmC 0.010 0.396 0.015 0.301 

WristC 0.910 0.603 0.928 0.531 

ForearmC 0.259 0.985 0.277 0.971 

Note. Significance based on p < 0.05. Significant correlations are highlighted in yellow. 

Extended Protocol 

With the introduction of additional hand gestures for classification with non-senior 

participants, the separability of hand gestures decreased and the separability of 

wrist/forearm positions increased. This is demonstrated via Figure 5.11 below. 
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5.11. Mean separability of Hand and Wrist/Forearm class (non-senior participants) 
Note. Error bars indicate the standard deviation of the data. 

At a neutral wrist, the mean (standard deviation) separability of FMG clusters across 7 

hand gestures (relax, open, close, point, key, tripod, straight) was 160.86 (91.16). In the 

presence of noise (variable wrist/forearm orientation), separability of clusters significantly 

decreases to 10.62 (5.58)  (p = 7.7374e-12). With a straight hand gesture, the mean 

separability of FMG clusters across 5 wrist/forearm positions (neutral, wrist flexion, wrist 

extension, forearm pronation, forearm supination) was 90.80 (37.20). In the presence of 

noise (variable hand gestures), separability significantly decreases to 20.38 (7.53) (p = 

3.8230e-13). Even with this decrease in separability, FMG clusters of wrist position are 

statistically still more discernable than FMG clusters of hand gestures (p = 2.4371e-08).  

This suggests that classification of hand gestures is more susceptible to variations in 

wrist/forearm orientation than the alternative (classification of wrist/forearm orientation 

being more susceptible to variations in hand gestures). Indeed, this pattern seen in 

separability indices also manifests itself in the testing accuracies of SVM, LDA, ELM, and 

NN models. Figure 5.12 presents the testing accuracy results of models using the best 

model-data pairs. For SVM, LDA, ELM, and NN, this was normalized data, normalized 

data, raw data, and normalized data respectively. 
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5.12. Testing accuracies, as a function of introduced noise, of machine learning 
models trained on normalized FMG data 

Note. The standard deviation in accuracy for each test and data type are presented with the error 
bar at the top of each bar, while the training accuracy is printed within each bar. SVM, LDA, ELM, 
and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme Learning 
Machine, and Neural Network respectively. For Hand, ‘train on 1st’ indicates that the model was 
trained on data only at neutral wrist/forearm. For Wrist, this indicates that the model was trained 
on data with a straight hand gesture only. 

Shown in greater detail in Figure 5.12 above, with the introduction of noise the accuracy 

of identifying hand gestures decreases by a mean (standard deviation) of 13.83% (4.12), 

32.71% (6.12), 4.87% (6.72), and 1.06% (1.35) for SVM, LDA, ELM, and NN model 

respectively. However, for wrist/forearm orientations, the decline in accuracy only ranged 

between 0.18% (0.30) and 4.0% (2.52) across all model types introduced. When the 

training data is reduced, the effect of noise is more pronounced. Reducing the training 

data for hand gesture identification to a single wrist orientation causes accuracy to decline 

between 50% and 54% across all models. Similarly, reducing the training data for 

wrist/forearm orientation identification to a single hand gesture caused accuracy to decline 

between 34% and 46% across all models. As suggested by these results, the identification 

of wrist/forearm identification is less susceptible to noise, indicated by significantly lower 
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declines in testing accuracy (2.3571e-08 < p < 0.0475) when training data is reduced. It is 

hypothesized that these results would be exacerbated with increasing age, due to the 

variability and low sensitivity related to decreased grip strength, increased skinfold, and 

diminishing mechanical properties of underlying tissues. 

5.3.4. Gesture identification during non-static activity 

As discussed on the literature review in Section 2.5.2, all the of the FMG studies to date 

have utilized supervised learning methods only. In addition, for classification of hand 

gestures and wrist/forearm orientations, models are trained on statically held gestures. 

The practicality of this scheme of implementation is explored in this section using the 

processing and feature extraction methods explained in Section 4.6.1. The results of this 

analysis across all participants are summarized in in Figures 5.13 to 5.16 below. 

 

5.13. Proportion of times when the correct number of classes was correctly 
identified by statically trained model tested on non-static activity 

Note. The correct number of classes for wrist flexion/extension is three (3): extension, neutral, 
and flexion. For forearm pronation/supination is three (3): supination, neutral, and pronation. For 
cylindrical grip is one (1): close. For key grip, is one (1): key. For tripod grip is one (1): tripod. 
SVM, LDA, ELM, and NN stand for Support Vector Machine, Linear Discriminant Analysis, 
Extreme Learning Machine, and Neural Network respectively. 

Shown in Figure 5.13, the proportion of trials where the correct number of classes were 

identified ranged from 57% to 100%. The dynamic wrist and forearm motions were more 
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likely to produce the correct number of classes, as the more closely resembled the static 

training position. For cylindrical, key, and tripod grips, the static models were trained 

without the hand dynamometer, explaining the decreased likelihood of correctly identifying 

the gesture. 

 

5.14. Proportion of times when the classes identified by the statically trained 
model overlapped with the training region  

Note. Only data for wrist flexion/extension and forearm pronation/supination is shown. ‘Extremes’ 
refers to flexion/extension and pronation/supination for the wrist and forearm respectively. 
‘Neutral’ refers to neutral wrist and neutral forearm. SVM, LDA, ELM, and NN stand for Support 
Vector Machine, Linear Discriminant Analysis, Extreme Learning Machine, and Neural Network 
respectively. 

Shown in Figure 5.14, there was a high degree of overlap between the training region for 

wrist/forearm movements and their associated class clusters, ranging between 58% and 

96% of trials. LDA, ELM, and NN models demonstrated a significantly lower proportion of 

trials whose class clusters in the extremes of range-of-motion overlapped with training 

regions.  

Shown in Figure 5.15, FMG at the extremes of range of motion (for the wrist and forearm) 

demonstrates the least amount of variability, indicated by higher proportions of correct 

classifications. In contrast, neutral wrist and forearm demonstrated the higher variability. 

It is believed that this behaviour is related to the differences in separability of hands 

gestures and wrist/forearm orientations in the presence of noise (as discussed in Section 
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5.3.3). hand dynamometer) and the resultant effect of the difference in hand/finger joints 

angles. 

 

5.15. Dominance of correct class within identified clusters of motions 
Note. Only data for wrist flexion/extension and forearm pronation/supination is shown. Standard 
deviations are shown via error bars. ‘Extremes’ refers to flexion/extension and 
pronation/supination for the wrist and forearm respectively. ‘Neutral’ refers to neutral wrist and 
neutral forearm. SVM, LDA, ELM, and NN stand for Support Vector Machine, Linear Discriminant 
Analysis, Extreme Learning Machine, and Neural Network respectively. 

Finally, Figure 5.16 shows that continuous identification of close, key, and tripod 

grips during dynamic cylindrical grip, key grip, and tripod grip tasks quite poor. This is 

indicated by low proportions of trials being correctly identified, ranging between 11% and 

28%. However, as previously mentioned, this is attributed to presence of an object (the 



 

108 

 

5.16. Dominance of correct class within identified clusters of motions 
Note. Only data for hand grips are shown. Standard deviations are shown via error bars. SVM, 
LDA, ELM, and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme 
Learning Machine, and Neural Network respectively. 

Sources of variability in these three features were also considered. ANOVA revealed little 

to no age or gender based differences, which was further supported by low (|R| < 0.3) 

correlation with anthropometric variables (shown below in Figure 5.17).  
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5.17. Correlation between features of performance during non-static activity with 
variables of anthropometry 

Note. Horizontal grey lines identify margins for low correlations (|R| < 0.33), moderation 
correlations (|R| < 0.67), and high correlations (0.67 < |R|).  
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These results indicate that the performance of statically trained models in non-static 

environments are more related to the nature of the models trained, feature selection, and 

the nature of implementation, rather than the variability between participants.  

5.3.5. Sensitivity to band removal 

A key and final part of the protocol considered the effect of removing and donning the 

FMG band on the effectiveness of a pre-trained model. As outlined in Section 4.5, the 

protocol for each participant involved repeating the entire set of dynamic and static gesture 

tasks twice, having removed and redonned the FMG band prior to the second session. 

For this section of analysis, an 11-class problem was considered, consisting of 6 hand 

gestures (relax, open, close, point, key, tripod) and 5 wrist/forearm orientations (neutral, 

wrist flexion, wrist extension, forearm pronation, and forearm supination). For all models 

considered, there was a marked and significant decrease in testing accuracy by 28% to 

96% when a model was trained on using the entire data of one session and tested on the 

other. Figure 5.18 provides an overview of the impact of band removal prediction 

performance. 

 

5.18. Influence of band removal on testing accuracy 
Note. The standard deviation in accuracy for each test and data type are presented with the error 
bar at the top of each bar, while the training accuracy is printed in text in the legend. SVM, LDA, 
ELM, and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme Learning 
Machine, and Neural Network respectively. 
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Using the optimal performing model-data type pairings, ANOVA indicated several age-

gender based differences in the preliminary testing accuracy and subsequent decline. 

Optimal data input types for SVM, LDA, ELM, and NN were normalized data, normalized 

data, raw data, and normalized data respectively. ANOVA P-value results are tabulated 

below in Table 5.20. 

5.20. ANOVA results: Gender and Age associated in differences in 1) Original 
Testing Accuracy, 2) Absolute decline in testing accuracy, 3) 
Proportional decline testing accuracy 

 p-value 

SVM LDA ELM NN 

Testing Accuracy 
achieved without taking 
the band off 

gender 0.0961 0.1956 0.2172 0.8613 

age 0.0088 0.0001 0.2301 0.0001 

Absolute Decline in 
Testing Accuracy after 
band removal 

gender 0.4366 0.1978 0.6537 0.1099 

age 0.3797 0.7956 0.2176 0.6473 

Proportional Decline in 
Testing Accuracy after 
band removal 

gender 0.8280 0.2956 0.8546 0.0982 

age 0.0253 0.1863 0.1332 0.1203 

As can be seen in Table 5.20 above, the variability in testing accuracy before the band 

was removed demonstrated significant age based differences, only for the SVM, LDA, and 

NN data types. Age are gender did not have an influence on the absolute decline in 

percentage or the proportional decline. Proportional decline is a ratio of absolute decline 

in testing accuracy (𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 − 𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒) and the preliminary testing accuracy prior to 

removing the band (𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒). This was calculated using the expression below: 

𝑎𝑐𝑐𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 =
𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 − 𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒

𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒
 

Closer inspection of the correlations between anthropometric variables and the testing 

accuracies of optimal model-data type pairs, shown below in Figure 5.19, only partially 

supported the results in Table 5.20. 
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5.19. Correlation between Anthropometry model accuracy and decline (absolute 
and proportional) in model accuracy after FMG band removal 

Note. Horizontal grey lines identify margins for low correlations (|R| < 0.33), moderation 
correlations (|R| < 0.67), and high correlations (0.67 < |R|). SVM, LDA, ELM, and NN stand for 
Support Vector Machine, Linear Discriminant Analysis, Extreme Learning Machine, and Neural 
Network respectively. SVM, LDA, ELM, and NN stand for Support Vector Machine, Linear 
Discriminant Analysis, Extreme Learning Machine, and Neural Network respectively. 
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Figure 5.19 shows that the testing accuracies of only SVM and LDA appeared to have 

moderate or strong relationships (0.3 <|R|) with the variability in testing accuracy. Of the 

participant variable considered, grip strength, ratio of skinfold thickness to forearm 

circumference, and band tightness demonstrated the strongest influence on model testing 

accuracy. Band tightness, grip strength, and ratio of skinfold thickness to forearm 

circumference accounted for (on average) 17%, 22%, and 48% of the variability in tasting 

accuracies in SVM and LDA models. As mentioned in previous sections, these three 

variables were also variables shown to have strong age and gender based differences, 

however it appears ages based differences have a stronger impact on model performance. 

With respect to the absolute decline in model testing accuracy that occurred after taking 

the FMG band off, only skinfold thickness related variables demonstrated moderate 

relationships to the absolute decline in testing accuracy. Despite this relationship 

(observed in Figure 5.19), variability in skinfold thickness did not result in any age or 

gender based differences in testing accuracy declines (indicated by the lack of significant 

group based differences in Table 5.20). Thus, it can be concluded that the absolute 

decline in testing accuracy was unrelated to difference in anthropometry. 

Lastly, with respect to proportional declines in testing accuracies, the results of ANOVA 

were inconsistent with the relationships (or lack thereof) observed in Figure 5.19. Thus, it 

can be concluded that the proportional decline in testing accuracy was unrelated to 

difference in anthropometry. 

Regarding band placement, band tightness only demonstrated moderate relationships 

with the testing accuracy prior to band removal. After removing the band, band tightness 

only demonstrated low relationships (|R| < 0.3) to the variability observed in the absolute 

decline in testing accuracies. Also, although the difference in band tightness (4.68 + 3.40 

mmHg) between sessions 1 and 2 was significant, there was only low correlation with 

testing accuracy decline due to band removal. The difference in band tightness between 

sessions 1 & 2 only accounted for less than 2% of the variability of absolute or proportional 

decline in SVM, LDA, and ELM models. In NN, the difference in band tightness between 

session 1 & 2 only explained less than 8% of the variability. The only remaining variable 

to be considered that would result in this reduction would be minute differences in sensor 
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positioning that occurred even though the FMG was placed in the same location for each 

session. The p-values for the correlations shown above in Figure 5.19 are tabulated below 

in Tables 5.21 to 5.23. Significant p-values are highlighted in yellow.  

5.21. p-values for correlations between anthropometry and testing accuracy 

 SVM LDA ELM NN 

is Male? 0.023 0.021 0.246 0.980 

is Senior? 0.009 0.001 0.302 0.000 

Band Tightness 0.011 0.004 0.382 0.196 

Band Tightness (diff) 0.236 0.247 0.113 0.418 

Grip Strength 0.004 0.001 0.262 0.132 

Skinfold Thickness 0.000 0.000 0.161 0.195 

Ratio Skinfold:ForearmC 0.000 0.000 0.077 0.123 

Ratio WristC:ForearmC 0.000 0.002 0.144 0.077 

WristC 0.374 0.501 0.840 0.866 

ForearmC 0.141 0.406 0.286 0.436 

Separability Index 0.000 0.000 0.000 0.003 

Note. Significance based on p < 0.05. Significant correlations are highlighted in yellow. SVM, LDA, ELM, 
and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme Learning Machine, and 
Neural Network respectively. 

5.22. p-values for correlations between anthropometry and the absolute decline in 
testing accuracy 

 SVM LDA ELM NN 

is Male? 0.711 0.203 0.882 0.385 

is Senior? 0.322 0.493 0.247 0.702 

Band Tightness 0.447 0.374 0.326 0.798 

Band Tightness (diff) 0.372 0.600 0.797 0.108 

Grip Strength 0.668 0.165 0.505 0.138 

Skinfold Thickness 0.004 0.000 0.108 0.073 

Ratio Skinfold:ForearmC 0.009 0.001 0.116 0.156 

Ratio WristC:ForearmC 0.097 0.049 0.981 0.860 

WristC 0.210 0.469 0.922 0.797 

ForearmC 0.811 0.989 0.578 0.370 
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Separability Index 0.476 0.136 0.724 0.386 

Note. Significance based on p < 0.05. Significant correlations are highlighted in yellow. SVM, LDA, ELM, 
and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme Learning Machine, and 
Neural Network respectively. 

 5.23. p-values for correlations between anthropometry and the relative decline in 
testing accuracy 

 SVM LDA ELM NN 

is Male? 0.536 0.824 0.620 0.472 

is Senior? 0.020 0.395 0.150 0.309 

Band Tightness 0.051 0.632 0.157 0.193 

Band Tightness (diff) 0.505 0.885 0.883 0.066 

Grip Strength 0.516 0.888 0.749 0.405 

Skinfold Thickness 0.206 0.018 0.250 0.381 

Ratio Skinfold:ForearmC 0.342 0.046 0.294 0.591 

Ratio WristC:ForearmC 0.795 0.252 0.664 0.396 

WristC 0.397 0.484 0.952 0.891 

ForearmC 0.383 0.659 0.429 0.391 

Separability Index 0.535 0.726 0.746 0.763 

Note. Significance based on p < 0.05. Significant correlations are highlighted in yellow. SVM, LDA, ELM, 
and NN stand for Support Vector Machine, Linear Discriminant Analysis, Extreme Learning Machine, and 
Neural Network respectively. 

5.4.  Discussion 

Five features were used to illustrate the impact of user anthropometry on FMG acquisition, 

modelling, and day-to-day use. These were: 

• variability of FMG sensors throughout non-static repetitive motions 

• magnitude of FMG response to incremental activity 

• presence of compound movements/actions 

• effect of non-static conditions on the performance of statically trained models  

• effect of FMG band removal 
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Overall, age-associated differences in FMG performance were observed in two of the five 

features selected for experimentation. These were 1) the responsiveness of FMG to range 

of movement/effort, and 2) in the severity of impact of functional noise in gesture 

identification. Based on ANOVA and Spearman’s correlation results, specific 

anthropometric variables resulting in these relationships were: 

• grip strength 

• band tightness 

• ratio of skinfold thickness to forearm circumference (as an indicator of muscle 
cross sectional area) 

Grip Strength 

Grip strength is an anthropometric measurement that is directly related to muscle fibre 

cross-sectional area. The motor unit of a muscle fibre is the sarcomere, which interact with 

each through mechanical cross bridges. A larger number of sarcomeres in the cross 

section of a muscle fibre, means greater volume as well as greater strength. A visual 

metaphor would be having one person pulling a large object with a rope vs having many 

individuals pulling on the same object with separate ropes. As FMG measures the 

volumetric changes that occur with activity, an understandable conclusion is that the lower 

grip strengths observed in seniors would result in lower magnitude of changes. 

Band Tightness 

With respect to band tightness and FSR implementations of FMG, it is assumed that there 

is surface contact pressure which optimizes the range of readings observed. With too 

much pressure, sensors would be too saturated to register any significant changes, whilst 

with too little pressure, there wouldn’t be enough contact force on the FSRs to register 

changes in underlying muscular tissue. As a non-rigid structure, the skin acts as a 

dampener of the forces produced by muscle fibres as they are transmitted to the FSR 

sensors. 

Although the band were fitted based on comfort and minimal activation of FMG sensor, 

the band tightness observed in seniors were significantly lower than non-seniors. It is 

believed that the age-related differences in band tightness observed are related to age-
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related differences in mechanical properties of the skin. This is supported by documented 

changes in skin mechanical properties that occur with ages, such as a decline in the 

amount of connective tissue. This is also supported by qualitative observations of 

mechanical skin properties during skinfold measurements. Seniors’ skin tended to be less 

elastic and more compressible than that of non-seniors. In effect, it’s hypothesized that 

the increased dampening from the skin, related to declining elasticity, helps explain why 

FMG was less responsive with seniors and why the effect functional noise was more 

severe.  

Ratio of Skinfold Thickness to Forearm Circumference 

A skinfold consists of 4 layers - 2 layers of skin and 2 layers of subcutaneous adipose 

tissue (SAT). It was previously mentioned that skin had a dampening effect on the 

transmission of forces from the volumetric expansion of the muscle fibre to the FMG 

sensors. As a nonrigid structure capable of energy dissipation, it is believed that SAT also 

plays a similar role. With this reasoning, increase adipose tissue would cause increased 

dampening, and thus decreased discernibility between gestures and decreased 

responsiveness to range of movement/effort. Ratio of skinfold thickness to forearm 

circumference went a step further by relating the among of skin and adipose tissue to 

underlying muscular tissue. The assumption in this regards is that the cross section area 

of bone was similar between participants. 

5.5. Limitations and future directions 

The conclusions drawn from this work and future research would benefit from addressing 

the limitations observed in the protocol. One limitation observed was the physical history 

of the participants. The nature of participant consent was limited to: hand dominance, 

weight, gender, age, damage/disease/surgeries to the upper extremity, self assessment 

of functionality (as a percentage), and any therapy they might be participating. Additional 

history that would have benefit the comprehensive use of FMG with seniors would have 

been cognitive assessments (to confirm that participants could follow instruction), hand 

assessments (to identify the possible confounding affect of arthritis), level of physical 

activity. An additional limitation is that all participant donned the FMG band on the right 
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hand, regardless of hand dominance. This study would be strengthened by increased 

recruitment of left handed individuals (as only 3 of the participant were left handed) or 

perhaps performing the same protocol on both the dominant and the non-dominant hand 

for comparison. As mentioned in Section 2.5.2, FMG was specifically chosen as it doesn’t 

require extensive skin preparation, sensor placement, or technical expertise. However, 

further work related to the effect of anthropometry would include gold standard methods 

of myography (i.e. sEMG) for comparison and cost-benefit analyses of prototype devices. 

Along this vein, further work into using FMG for senior targeted tools would be to 

characterize the performance of FMG during long term wear (days, weeks) and in 

unconstrained environments. Finally, this work would benefit increased recruitment of 

seniors for improved statistical significance.  

5.6. Chapter Summary 

The aim of this study was to two-fold: 1) identify user features that contributed to the 

variability of FMG acquisition, and 2) to quantify the effect on FMG modelling. Five features 

of FMG processing were utilized to demonstrate the effect of these variables, motivated 

in part by the limitations in FMG research presented by the literature review in Chapter 2, 

as well as, practical considerations for day-to-day use of FMG in the community: 

• Signal variability during repetitive motions 

• Responsiveness to amount of motion/effort 

• Multi-DOF movements 

• The use of statically trained models on non-static activity 

• Band removal 

Twenty-one participants were invited to performance stationary and non-stationary 

orientations and movements of the hand, wrist, and forearm significant to the completion 

of the activities of daily living. FMG was collected at the wrist using a custom designed 

FMG device, as well as several intrinsic variables: grip strength, band tightness, skinfold 

thickness, and range-of-motion. Multiple simple machine learning models were 

developed, and outcomes measures were based on ANOVA, Student’s t-test, and 
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Spearman’s Correlation Coefficient which identified significant differences and patterns. 

The main outcomes of the results were as follows: 

Variability. That FSR-based FMG was quite stable (< 6% variability) and demonstrated 

no significant relationships with anthropometry or influence on testing accuracy. 

Responsiveness. That there were age and gender based differences in the 

responsiveness of FMG to movement/effort which were explained in part by band 

tightness, grip strength, and ratio of skinfold thickness to forearm circumference. 

Differences in FMG responsiveness explained between 7% and 27% of the variability 

model testing accuracy. 

Presence of ‘functional’ noise. That FMG was strongly influenced by the presence of 

noise. Given the multi-DOF nature of the hand, wrist, and forearm, noise was described 

as the influence of unintended compound movements/gestures. This effect was more 

pronounced in seniors and was related to differences in grip strength, band tightness, and 

skinfold thickness. Noise resulted in a 1% to 14% decline in accuracy, which increased to 

a 35% to 50% decline when the amount of input training data was reduced. Overall it 

appears that identifying wrist position was less susceptible to noise (variable hand 

positioning) than identifying hand gestures in the presence of noise (i.e. variable 

wrist/forearm positioning).  

Performance during non-static activity. At the bare minimum, using a statically trained 

model to identify classes expected during non-static activity presented moderate to high 

success. Between 60-80% for cylindrical grip and tripod grip, and at least 80% for wrist 

flexion/extension, forearm pronation/supination, and key grip. However, this performance 

was not consistent through the full range of motion or effort, and was not necessarily 

related to the training conditions. Clusters of correctly identified activity were more 

consistent at the extremes of movement, but were least likely to overlap with the training 

region for that intended gesture. At neutral wrist/forearm, there was a high degree of 

variability and misclassification, however it is surmised that this is due to the inherently 

low separability of hand gestures. When the participants trained hand gestures without 

objects, there was a low probability of correctly identifying that gesture in the presence of 

an object (<27%). The performance of static models during non-static activity had little to 
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no relationship with anthropometry and band placement, and is more likely related to the 

nature of the machine learning paradigm itself.  

Band removal. Decline in testing accuracy after band removal ranged from 28% to 96%. 

Although the variabilities in testing accuracy is partially explained by anthropometry (grip 

strength, ratio of skinfold thickness to forearm circumference, and band tightness), there 

was little to no relationship between anthropometry and band placement and the absolute 

or relative decline in testing accuracy. This suggests that that this decline is more likely 

related to the nature of the machine learning paradigm itself rather than variables intrinsic 

to the participant.  
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Chapter 6.  
 
Concluding Remarks 

6.1. Chapter Overview 

The purpose of this chapter provides a summary of the findings of this thesis. Firstly, the 

objectives of this work are recalled and discussed in Section 6.2. Finally, future work 

considering the results of this thesis are considered in Section 6.3.  

6.2. Summary of Objectives and Findings 

The aim of this thesis is to explore the use of FMG as an additional tool to complement 

home-based senior-targeted technologies and to promote aging-in-place. Given the 

changes that occur with aging, increasing demands on healthcare resources and 

decreased availability of healthcare professionals pose a significant challenge to 

addressing the needs of seniors. Increasing use of technological interventions by seniors 

and the significance of the arm in hand in functional independence supports the 

exploration of FMG. FMG that provides direct user-movement data could complement 

Ambient Assisted Living environments which lack this information, and provide an 

alternative and potentially more advantageous sensing modality for tele rehab, 

communication, device control, and social applications. However, the literature review in 

Chapter 2 indicated areas of FMG research that required further development to support 

the practical implementation of FMG into aging-in-place technologies for seniors. Based 

on the results of Chapter 2, three objectives for this thesis were identified. 

Objective 1 of this thesis was to characterize the use of FMG with senior populations. To 

meet this objective, a study was designed and executed to recruit senior participants to 

perform 3 repetitions of donning an FMG device for gesture identification and control of a 

virtual user interface. The experimental protocol consisted of training an LDA classifier on 

5 select hand gestures for interface control, and subsequently performing an online 

identification routine. For online identification, four repetitions of each gesture were 
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performed in a randomized manner. The trained LDA model was then tested on erroneous 

data (created by performing household activities) to track unintended activation of the 

system. Outcomes measures for characterization were comparisons with non-senior 

participants on the following variables: 1) the time to complete a gesture effectively after 

instruction, 2) cumulative accuracy while a control is held, and 3) the incidence of 

inadvertent classification during household tasks. Experimental data was collected for 5 

senior participants and 5 non-senior participants. When compared to non-senior 

participants, seniors were able to the utilize the FMG system, but with increased error and 

variability. This was indicated by lower online testing accuracies (75% vs 91%), increased 

amount of time for the system to identify the gesture (1.4 s vs 0.9 s), and increased 

misidentification of erroneous movements as control gestures (1.45 s vs 1.28 s). These 

results suggest that on average, using FMG with seniors was feasible but more prone to 

misclassification.  Reasons for the noted differences in performances were attributed to 

the intuitiveness of the gestures, learning differences between the two groups of 

participants, variability in the mechanical properties of underlying tissue, initial grip 

strength, fatigue, and joint stiffness. Unsupervised feature extraction guided by age and 

gender based differences in FMG sensitivity and increased variability were recommended. 

Objective 2 of this thesis was to identify intrinsic participant features that account for the 

variability in FMG measurements. Objective 3 of this thesis was to quantify the impact of 

intrinsic participant features on the accuracy of FMG modelling. To meet these objectives, 

a study was designed and executed to recruit senior and non-senior participants to 

perform 2 repetitions of donning an FMG device for hand gesture and wrist/forearm 

orientation identification in a constrained setting. Several types of simple machine learning 

models were developed to identify consistent behavior and five features of FMG 

processing and analysis were considered to illustrate the impact of intrinsic participant 

variables:  

• Signal variability during repetitive motions 

• Responsiveness to amount of motion/effort 

• Multi-DOF movements 

• The use of statically trained models on non-static activity 

• Band removal 



 

123 

The experimental protocol consisted of holding static gestures, holding combinations of 

static hand gestures and wrist/forearm orientations, and moving through extremes of 

movements/effort. Experimental data was collected for 21 participants, 6 non-senior 

females, 9 non-senior males, 4 senior females, and 2 senior males. Outcomes measures 

of this study were age/gender group differences in select anthropometric variables, and 

ANOVA, Spearman’s correlations, and Students’ t-test to identify significant differences in 

model performance or FMG variability. Firstly, the experimental results indicate that FMG 

is quite stable with low variability (<6%) throughout repetitive movements/efforts, and was 

influenced very little by user variability. Secondly, there were demonstrated age and 

gender associated differences in band tightness, grip strength, and ratio of skinfold 

thickness to forearm circumference, which explained 24%, 30%, and 30% of the variability 

in FMG responsiveness to change. Differences in FMG responsiveness explained 

between 7% and 27% of the variability model testing accuracy. Thirdly, examining 

compound gestures highlighted age related relationships to the separability of class 

clusters as well as the decline in separability that occurred with the addition of functional 

noise. Gender based differences only demonstrated significance influence on the decline 

in separability with the introduction of noise. Noise resulted in a 1% to 14% decline in 

accuracy, which increased to a 35% to 50% decline when the amount of input training 

data was reduced. This effect was more pronounced when considering the identification 

of hand gestures than when identifying wrist/forearm orientations. Lastly, although there 

were noted declines in FMG model performance after band removal (28% to 96% decline) 

and unreliable performance during non-static activity – these behaviours were unrelated 

to user variability. This last result suggests that FMG performance in this regard was more 

related to the nature of model and feature selection. 

The results of this thesis provide preliminary confirmation of the suitability of using FMG 

for hand gesture and wrist/forearm orientation identification with seniors. In addition, this 

work has also identified intrinsic participant variables (grip strength, band placement, and 

ratio of skinfold thickness to forearm circumferences) which demonstrated age and gender 

based differences and explained a portion of the variability of FMG data and modelling 

performance. Finally, this work also quantified the impact of practical FMG use on the 

effectiveness of FMG modelling from methods encountered in the literature. This work 
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lays the ground work for investigating FMG and its implementation into senior-targeted 

technology to promote aging in place. 

6.3. Future Work 

Despite the results of this thesis, there are further areas of FMG implementation that 

require further consideration and research. Although not an exhaustive list, a selection of 

areas is summarized below. 

6.3.1. Calibrating for Differences in Anthropometry 

The results of the second study discussed in Chapter 4 and Chapter 5 demonstrated that 

several intrinsic user variables influenced the effectiveness of FMG based modelling. 

These variables (which also demonstrated age related decline) were:  grip strength, ratio 

of skinfold thickness to forearm circumference, and band tightness. Although the 

recruitment pool was limited to healthy participants, these variables also demonstrate 

variability in the face of pathological declines in motor ability. This would be particularly 

significant to the practical implementation of FMG with seniors, as seniors are marked by 

increased co-morbidities that reduce motor function. Further development of FMG would 

benefit from settings or scaling factors of raw FMG data that could mitigate the decline in 

accuracy and increase in variability that occurs because of these variables. This could be 

implemented as a calibration setting, a method currently being used in many commercial 

activity trackers.  

6.3.2. Image processing 

In this work, visualize inspection of 2D FMG data revealed spatial characteristics which 

inspired the use of image-processing techniques in FMG analysis. An example of this is 

the similarity between sessions 1 and 2 of the 2D FMG profiles of statically held gestures. 

The sample data shown in Figure 6.1 demonstrates this qualitative similarity. Exploration 

of image processing techniques in FMG processing and analysis would be beneficial. The 

end goal of this type of research would be a pretrained model or database of activity that 

would allow the user to just don an FMG band and immediately use without training. 
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6.1. Example spatial profile of statically held hand gestures and wrist/forearm 
orientations during sessions 1 (blue) and 2 (red) 
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6.3.3. Further Evaluation with Seniors 

As introduced in Section 1.4, this is an initial work on the use of FMG for hand gestures 

and wrist/forearm orientation identification with seniors. As such, participant recruitment 

was limited to seniors whom identified as healthy. However, as seen via a more detailed 

discussion in Chapter 2, demographics, morbidities/comorbidities, and differential aging 

of organ systems create a high degree of variability in aging seen amongst seniors. As 

FMG research matures, future study could be expanded to explore the effectiveness of 

FMG in the presence of debilitating morbidities. Along this vein, research could also better 

characterize which groups among seniors could benefit most from FMG, as well as, the 

way that FMG could complement other sensing modalities in an integrated fashion in AAL 

research.  

6.3.4. Methods to reduce the amount of training input required 

In the hand alone there are 27 degrees-of-freedom, capable of forming a plethora of 

gestures. Compounded with the 3 degrees-of-freedom the wrist and forearm are capable 

of, training a supervised learning algorithm for all gestures possible would prove to be an 

enormous task. As mentioned in Section 2.3.1, the time and effort to train such a classifier 

would deter acceptance and adherence of a technology in community dwelling seniors, 

and reduce it’s long term effectiveness.  Further work should seek to consolidate methods 

to reduce the amount of training required into a cohesive algorithm to improve accuracy 

after band removal and/or reduce the amount of required training data. This could 

potentially be realized through the development of a generalized model of FMG which 

utilizes specialized age and gender based setting to account for differences in grip 

strength, band tightness, and ratio of skinfold difference to forearm circumference. 

6.3.5. Machine Learning in Non-Stationary Environments 

The survey of FMG research showed that most FMG research has utilized static and 

supervised training regimes. The application of this method in non-static scenarios was 

explored as a part of this thesis in Section 5.3.4, and demonstrates poor consistency in 

non-static scenarios. This also demonstrated sensitivity to the presence of objects held in 

the grasp, which reduce FMG identification accuracy. Continued developed development 
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of FMG would benefit from machine learning algorithms dedicated to non-stationary 

environments. 

6.3.6. Bench to Bedside Considerations 

As stated in Section1.3, the main motivation and context for this thesis is to present Force 

Myography as a sensing method that would provide data measured directly from the user. 

The intention is that this data would be incorporated into home based systems that would 

allow seniors to access services from their home. In working towards this goal, the strength 

of this thesis is that is explores and analyses signal characteristics of FMG unique to 

seniors which could be used in future software development and hardware design. By 

investigating the unique characteristics of using FMG with seniors, this work is a stepping 

stone towards deploying a a reliable and convenient FMG system in the general 

community.  

The minimum required deliverable, as implied with this work and outline in Section 3.3.2, 

are tactile sensors placed on a flexible non-elastic backing which would allow the device 

to conform to the shape of the wrist. Considerations for comfort, convenience, and 

aesthetics would require that an FMG device be wireless, have a lower profile than what 

is proposed in Section 3.3.2 with the exposed wires and circuitry encased and hidden 

from the preview of the wearer. Thus a recommended avenue for further consideration is 

further prototype development of a standalone FSR based FMG device, or perhaps a 

sensing strip that could be incorporated into an existing watchband. 

A second milestone in bench to bedside translation of this work is the fusion of FMG with 

other sensing systems. Recommends include fusion with camera and audio systems, to 

facilitate remote health check ups with physicians, therapists, or other health 

professionals. Additional recommendations include integration with actuators systems to 

open doors and cabinets, with robotics for assistive and rehabilitative technology, and with 

proximity sensors for peripheral control of devices and household items.  
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Appendix A. 
 
Current state of FMG research 

A.1. Types of participants included in FMG studies 

Study Participants Reference 

Young healthy [68], [73], [75], [77], [79], [81], [84], [85], [87]–[103]   

Stroke survivors  [75]–[77]   

Amputees [72], [80], [81], [86]  

 

A.2. Areas of research where FMG has successfully been utilized 

Area References 

Control of hand prostheses, 
exoskeletons, and orthoses  

[72], [78]–[83] 

Tracking of intra-socket pressure in 
prostheses  

[234]  

Classification of grasps and/or 
hand/wrist/forearm gestures  

[68], [75], [79], [87], [88], [90]–[92], [235] 

Detection of a grasp [77] 

Regression of grasp force  [85] 

Regression of 6DOF wrist torques  [236] 

Regression of finger forces  [81], [95], [96], [207] 

Regression of finger 
position/displacement  

[97] 

Classification of ankle position  [75], [98] 

Analysis of gait  [84] 

 

A.3. Types of sensors used in FMG acquisition 

Sensor Mode of Operation Reference 

Accelerometer 
Measures acceleration and used to measure the 
vibration of muscles during contraction in MMG. 

[104], [107] 
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Force 
Sensitive 
Resistor 

Is a low power sensor, housing variable resistor 
whose resistance is inversely proportional to the 
amount of compression pressure/force applied to the 
active area of the sensor. Implemented as off-the-
self discrete sensors as well as custom made high 
density arrays. 

[68], [73], [75], [77], [79], [80], 
[82]–[85], [87]–[89], [91]–[98], 
[234], [236] 

 

Open-cell 
Polymeric 
Foam 
Pneumatic 
Sensors 

A custom design foam sensor and electrical 
interface, whose output is directly related to the 
amount of pressure applied. Has a considerable 
high fabrication cost.  

[81], [86] 

Optical Fiber 
Specklegram 
Sensor 

A fiber optic sensor placed in between two ridged 
deformer plates, whereby the laser intensity in the 
fiber is modulated by the displacement of the two 
deformer plates. 

[100], [102] 

Piezo-
resistive 
Fabric 
Material 

A fabric material which displays variable resistivity 
under mechanical stress. 

[90], [101] 

Space-
charged 
Piezo-
electrets 

An ‘electret’ is a permanently polarized piece of 
dielectric material, analogous to a permanent 
magnet. These materials have voids, which helps 
decrease the mass. These voids can be charged to 
create dipole moments, whereby the dipole moment 
can change due to mechanical, thermal, or electrical 
stress. [237] 

[99]  

Strain Gauge 
Sensors 

A low power sensor, which demonstrate variable 
output based on the amount of tensile forces applied 

[94], [235] 

 

A.4. Areas of Placement of FMG device 

Area of Placement Reference 

Thigh [84], [99], [104], [107], [238] 

Ankle [98] 

Calf [75] 

Forearm - cuff [85], [86], [90], [91], [93], [100], [234] 

Forearm - distal, wrist [68], [73], [88], [92], [94] 

Forearm - mid [79], [88], [101] 

Forearm - proximal [73], [77], [80], [82], [83], [87], [96], [97], [102], [236] 

Forearm - ventral side only [95]  
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A.5. Methods of data processing, data representation, and feature extraction used 
in FMG research 

Data Processing Description Reference 

Base line removal Subtracting the minimum-most value from the entire data set [84], [85] 

Full-wave 
rectification 

Taking the absolute value of all data points 
[84] 

Kurtosis coefficient 
Skewness of the data distribution (a method typically applied 
to EMG that was utilized with FMG) 

[99] 

Log Detector 

A non-linear detector used to estimate muscle contraction 
force. (a method typically applied to EMG that was utilized with 
FMG) 

𝐿𝑂𝐺 = 𝑒
1
𝑁

∑ log(|𝑥𝑖|)
𝑁
𝑖=1  

[99] 

Mean Absolute 
Value (MAV) 

For FMG devices that have more than value, a single value is 
reported by combing the n sensors in the following manner: 

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 

(a method typically applied to EMG that was utilized with FMG) 

 

[99] 

Median filter 

Each point is expressed as the median of a fixed number of 
points preceding and following the point of interest. Where m is 
the window size 

𝑥𝑖 =⁡
1

2𝑚 + 1
∑ 𝑥𝑗

𝑖+𝑚

𝑗=𝑖−𝑚

 

 

[92] 

Moving average 
filter 

Each point is expressed as the mean of a fixed number of 
points preceding and following the point of interest. 

[84] 

Normalized 
Scaling the data set so that the minimum-most and maximum-
most values correspond to the range [0 1]. 

[88], [94] 

Principle 
Component 
Analysis 

A statistical procedure that uses orthogonal transformation to 
convert a set of observations to linearly uncorrelated variables 
called principal components. The principal components are 
ordered based on how much they account for the variability in 
the data.  

[78], [79], [90], 
[95] 

Raw Raw un processed FMG signals. [96] 

Root Mean Square 
Rectification 

Multi channeled data are represented using the square root of 
the mean of the squared values.  

[84] 
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𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 

Separability of 
clusters 

Theory is that the more separable the clusters are, the better 
classification will be in general [239]. Expressed using Fisher’s 
Separateness Index, which is the global maximum of J(w) 
given that  

𝐽(𝑤) = ⁡
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
 

Where SB is the between class scatter matrix and SW is the 
within class scatter matrix 

[79] 

Simple Square 
Integral (SSI) 

Summation of square values of FMG sensor amplitudes. Also 
considered an energy index. 

𝑆𝑆𝐼 = ∑𝑥𝑖
2

𝑁

𝑖=1

 

(a method typically applied to EMG that was utilized with FMG) 

[99] 

Third Temporal 
Moments (TM3) 

A statistical method employed with EMG. 

𝑇𝑀3 = |
1

𝑁
∑𝑥𝑖

3

𝑁

𝑖=1

| 

(a method typically applied to EMG that was utilized with FMG) 

[99] 

t-Stochastic 
Neighbor 
Embedding 

a non-parametric unsupervised approach that maps high-
dimensional data to a low-dimensional space for visualization 
while preserving the significant structure of the original 
representation 

[101] 

Wavelet extraction Time-frequency transformation of optical based-FMG [100] 

 

A.6. Machine Learning Algorithms used in FMG research 

Machine Learning 
Algorithm 

Description Reference 

Artificial Neural 
Network (ANN) 

Implemented as a supervised method in the literature. A 
multilayer network, whereby each successive layer is a linear 
combination of the outputs of the previous layer. Layer weights 
are optimized for optimal separability [240]. 

[77], [83], [90], 
[99], [100], 
[102] 

Extreme Learning 
Machine (ELM) 

A feedforward neural network for classification or regression 
with a single layer of hidden nodes, where the weights 
connecting inputs to hidden nodes are randomly assigned and 
never updated [241]. Has been shown to have equal or 
superior performance to SVM and ANN, with faster learning 
speed [242]. 

[82], [87], 
[101] 
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Incremental Ridge 
Regression with 
Random Fourier 
Features (RR-RFF) 

Ridge Regression builds a linear model f(x) = wTx, where x 
denotes the sensor values, w is a weighting vector and f(x) is 
the predicted output; Random Fourier Features further employ 
a non-linear mapping from the input space to a higher-, finite-
dimensional feature space, where the linear regression is more 
likely to succeed [243]. A non-linear extension of Ridge 
Regression. 

[78], [79], [96] 

K-nearest neighbor 
(KNN) 

Implemented as a supervised method in the literature. A non-
parametric classification, with the object being assigned to the 
class most common among its k nearest neighbors. 

[99] 

Linear Discriminant 
Analysis (LDA) 

A supervised method of classification, which constructs a 
linear combination of the data which results in the highest 
amount of separability 

[73], [80], [88], 
[91], [92], [94], 
[98], [100] 

Random Fourier 
Features 
Regularized Least 
Squares 

It can be seen as a non-linear, finite-dimensional extension to 
RR 

[96] 

Support Vector 
Machine (SVM) 

A supervised method which maps the input data into a higher 
dimension, and constructs a hyperplane or set of hyperplanes 
in a high- or infinite dimensional space where data separability 
is optimized for classification or regression [244]. Deemed 
more accurate than Ridge Regression. 

 

[68], [89], 
[93]–[96] 

Support Vector 
Regression (SVR) 

[92], [97], 
[236] 

 

A.7. Number of classes used in FMG classification 

Number of Classes Reference 

2 [82], [83] 

4 [95], [99] 

5 [80], [101] 

6 [68], [87] 

8 [88], [90], [91], [94] 

9 [100], [102] 

11 [80] 

16 [92] 

17 [93] 

48 [73] 

 

 


