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Abstract

Treatment noncompliance is a common issue in randomized controlled trials that may
plague the randomization settings and bias the treatment effect estimation. The complier-
average causal effect (CACE) model has become popular in estimating the method effec-
tiveness under noncompliance. Performing multiple univariate CACE analysis separately
fails to capture the potential correlations among multivariate outcomes, which will lead
to biased estimates and significant loss of power in detecting actual treatment effect. Mo-
tivated by the Arthritis Health Journal Study, we propose a multivariate CACE model to
better account for the correlations among outcomes. In our simulation study, the global
likelihood ratio test is conducted to evaluate the treatment effect which fails to control the
type I error for moderate sample sizes. So, we further perform a parametric bootstrap test
to address this issue. Our simulation results suggest that the Multivariate CACE model
outperforms multiple Univariate CACE models in the precision of estimation and statisti-
cal power in the case of correlated multivariate outcomes.

Keywords: Multivariate CACE; Univariate CACE; non-compliance; MLE; statistical power;
parametric bootstrap test
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Chapter 1

Introduction

1.1 Background

Randomized controlled trial (RCT) is a type of study in which subjects are randomly as-
signed to either a treatment arm receiving some clinical intervention or a control (placebo)
arm. RCT study is considered the gold standard to test the efficacy of a new treatment by
comparing the outcomes after participants receive different interventions. Randomization
minimizes the selection bias and eliminates the confounding and unobserved factors so
that the difference in measurements we observe from different groups is only attributable
to the different treatments the participants have received. Inferences based on randomiza-
tion require that all participants adhere to their initial treatment assignments. However,
noncompliance often occurs when the randomized experiments involve human subjects.
In practice, participants may refuse to take the treatment due to side effects, inconvenience,
etc. Therefore, noncompliance turns out to be an important issue as it may lead to biased
estimates of actual treatment effect. The bias comes from the dilution of the treatment effi-
cacy caused by noncompliance behavior.

Intention-to-treat (ITT) analysis and as-treated(AT) analysis are considered as two tra-
ditional approaches in evaluating the treatment effect. The ITT analysis (also known as as-
randomized analysis) compares the outcomes between participants assigned to the treat-
ment group and participants assigned to the control group, regardless of the actual receipt
of treatment. Usually, the ITT analysis is the default approach for estimating treatment
effect under noncompliance, which provides the unbiased estimate for use/program ef-
fectiveness. While the use effectiveness can be of critical importance in RCTs, the method
effectiveness is our primary interest. The method effectiveness is the biological effect of the
new treatment/drug, which is unaffected by noncompliance behaviors. The compliance
rate would increase if the method effectiveness was known to be beneficial. The use ef-
fectiveness may vary for different populations, but the method effectiveness for one treat-
ment should remain similar over different populations. Given the perfect compliance, the
method effectiveness and use effectiveness can be treated equally for the entire population.
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The ITT analysis tends to offer conservative estimate of the actual treatment effect under
noncompliance, thus is biased for method effectiveness.

As-treated (AT) analysis, which aims at estimating the method effectiveness, compares
the outcomes based on the actual receipt of treatment and ignores the initial assignment of
treatment. A concern of the AT analysis under noncompliance is the violation of random-
ization assumption so that some unobserved factors may potentially corrupt the causal
interpretation of treatment effects. Important as it has seemed to be, the noncompliance
behavior is not random as it may depend on the health status and other characteristics
of participants. For instance, patients with mild symptoms are more likely to drop-out of
the treatment. Thus, the AT analysis also fails to provide an unbiased estimate of method
effectiveness.

Under such circumstance, an alternative candidate called Complier-Average Causal Ef-
fect (CACE) analysis was introduced ( LEWIS b. Sheiner and Rubin [1995]) as a remedy for
estimating the method effectiveness. There are four possible types of compliance behavior
discussed in CACE analysis: "always-taker", "never-taker", "complier" and "defier", which
will be defined in Chapter 3 in detail.

One of the main advantages of the ITT analysis and the AT analysis over CACE could
be the simplicity of calculations, especially in former times when people had to do calcu-
lations by hand. With the rapid development in computing technology, time-consuming
calculation is no longer a problem for CACE analysis. Thus, CACE becomes a popular
model for causal inferences.

1.2 Motivation

In efforts to better evaluate the treatment efficacy in RCT studies, many researchers take
multiple measurements, thus producing multivariate outcomes. For example, if researchers
want to evaluate the effect of a new drug D on breast cancer, many measurements includ-
ing complete blood count (CBC) and some breast cancer tumor markers (e.g. CA 15-3) are
taken as the outcomes. Previous literatures only considered the Univariate CACE model so
that in the case of multivariate outcomes, multiple Univariate CACE models were applied
to evaluate the treatment effect. However, the Multivariate CACE model will outperform
multiple Univariate CACE models in three ways.

First of all, an important focus of CACE model is the compliance mechanism. In gen-
eral, the compliance rate is not fully observable in RCTs, thus needs to be estimated from
the observed outcomes and baseline covariates. If we perform multiple Univariate CACE
analysis on k dimensional outcomes separately, we will get k different estimates of compli-
ance rate. For a given population, however, the compliance behavior depends on baseline
variables rather than the type of health outcomes; that is, we should have one compliance
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rate for one population. Hence, having different estimates of compliance rate makes no
sense and is hard to interpret in a scientific way.

Secondly, multiple Univariate CACE models fail to capture the potential correlations
among multivariate outcomes. In many situations, we are not sure about the underlying
correlations among outcomes, thus performing multiple univariate analysis may risk los-
ing information about the given data. Even in the case of uncorrelated outcomes, the Mul-
tivariate CACE model still has a slight advantage over the Univariate CACE in precise
estimation. In practice, the multivariate measurements are intuitively correlated based on
their scientific meaning. Therefore, the Multivariate CACE is considered to be a properer
candidate for better modeling multivariate health outcomes.

Thirdly, the significance of treatment effect is of great interest to researchers in many, if
not all, RCT studies. Multiple univariate tests inflate both the experiment-wise type I error
rate and the experiment-wise type II error rate (often called probability pyramiding [Haase
and Ellis, 1987]) when there are more than one dependent measurements. Experiment-wise
type I error rate (αEW) is defined as the overall type I error when conducting a series of tests
on dependent outcomes. And per-comparison type I error rate (αPC) refers to the risk of a
"false positive" occurring in an individual test on one of the dependent outcomes. Suppose
there are k dependent outcomes, then αEW = 1− (1− αPC)

k. As dimension k increases,
the experiment-wise error rate escalates rapidly. For example, if we set αPC to 0.05 and the
dimension k = 6, αEW will increase to 0.226. Similarly, the experiment-wise type II error
rate, βEW , runs into to the same problem. βEW escalates exponentially as the number of
dependent outcomes increases for fixed βPC (per-comparison type II error). Multivariate
analysis controls the escalation of βEW , which ensures a higher experiment-wise power of
the study.

Hence, multivariate analysis is properer for causal inferences when the health out-
comes are multivariate. Multivariate analysis captures the potential correlations among
multivariate outcomes, generates interpretable results and boosts our confidence of test
results.

1.3 Literature Review

Dating back to the late 20th century, when randomized clinical trials became very popular
for studies involving human subjects, researchers started to notice the issue of noncom-
pliance. The occurrence of noncompliance could violate the assumption of the standard
theories of randomization popularized by Fisher [1925]. Some researchers, like Lee et al.
[1991], pretended the compliance was perfect and compared the outcomes between partic-
ipants grouped by the arms to which they were randomized.

Economists were also interested in estimating causal effects and the dominant ap-
proach was based on structural equation models via instrumental variables (IV). Angrist
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et al. [1996] proposed a framework for causal effects in the case of noncompliance. They
made use of IV to get IV estimands and showed that IV estimands could be fit into the Ru-
bin Causal Model ( Holland [1986]). They also showed that the IV estimands is the average
causal effect for compliers under some interpretable assumptions. This approach made it
easier to interpret the critical assumptions needed for causal inferences in a scientific way
and allowed for sensitivity analysis on violation of key assumptions in more straightly.

Imbens and Rubin [1997] developed a framework for estimating causal effects via
Bayesian inferential methods to address the issue of imperfect compliance. They obtained
the posterior estimation from EM algorithm and data augmentation algorithm. They also
implemented their proposed approach to both discrete and continuous outcomes and com-
pared the results of the posterior estimation, the maximum likelihood estimate (MLE) and
the IV estimands. The results suggested that the MLE had comparable performance with
the posterior estimation in terms of bias and root mean squared error, and both the poste-
rior estimation and the MLE clearly outperformed standard IV estimands. The two stage
IV estimator can be very robust but it fails to take into full consideration that the observed
outcomes are mixtures of outcomes with different compliance types. In many clinical tri-
als, when the sample size is moderate, the likelihood-based approach is considered more
efficient to provide more powerful results.

Hirano et al. [2000] reanalyzed the study conducted by McDonald et al. [1992] to ex-
plore the efficacy of the influenza vaccine. Similar to Imbens and Rubin [1997], they ob-
tained the causal effect via Bayesian approach. But one of the new features of this extended
framework was that they took consideration of baseline covariates, which might influence
the probability of receiving the treatment. In addition, they also relaxed the exclusion re-
striction assumption, one of the critical assumptions required by Angrist et al. [1996]. This
assumption rules out the direct effect of treatment assignment on the final outcomes, which
might violate the scientific meaning in some cases. This proposed framework could still
work well when the exclusion restriction assumption is violated.

Connell [2009] employed the CACE approach to evaluate the intervention effect of
adaptive prevention programs on the development of substance use behaviors. They stud-
ied the long-term outcomes of reducing tobacco-use from early adolescence through early
adulthood. They only focused on the maximum likelihood approach based on a mixture
modeling framework to identify the compliers in the control group and compare with
the observed compliers in the treatment group. They also validated the meeting of as-
sumptions required by the CACE model through their dataset and discussed the potential
results due to the violation of exclusion restriction.

Stanger et al. [2011] conducted a similar research on the substance abuse issue. Previ-
ous studies suggested that children of substance abusers were more likely to suffer from
behavioral/emotional problems. A new program called contingency management (CM)
was designed to enhance the compliance with parent training by providing incentives. Be-
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sides the basic CACE model, they also extended the CACE model by including covariates
to predict the treatment outcomes and the compliance behavior. They modeled multivari-
ate outcomes separately and found that only some outcomes were significantly different
between different treatment groups. Compared to the ITT analysis, the CACE model pro-
vided stronger evidence of the treatment effect. Unfortunately, their study was limited by
the small sample size.

Knox et al. [2014] studied the treatment compliance and the efficacy of a cognitive
behavioral intervention for low back pain via CACE approach. CACE estimates showed
greater difference in change scores from baseline compared to the conservative ITT ap-
proach, but both approaches reached the same conclusion that the treatment effect was
statistically significant. They also investigated the sensitivity to the missing data via multi-
ple imputation. Their research suffered much from the noncompliance issue: nearly half of
the participants in the treatment group failed to adhere to their original assignment. They
analyzed the multivariate outcomes by multiple Univariate CACE models.

The univariate CACE model was first proposed in last century and became very pop-
ular in clinical trails for treatment effect estimation. But limited resources for multivariate
CACE analysis exist in the available literature, probably as a result of the intensive com-
putation and the complexity of the analysis.

1.4 Outline

This project mainly focuses on the CACE analysis for multivariate outcomes with an appli-
cation to the Arthritis Health Journal Study. Results from both the Univariate CACE and
the Multivariate CACE analysis are compared in terms of the accuracy of estimates, the
type I error rate and the statistical power via a simulation study.

The project is organized as follows: Chapter 2 introduces the background of the Arthri-
tis Health Journal Study and provides descriptive analysis of this motivating example.
Chapter 3 describes the technical details of the CACE model, including the discussion
about the assumptions and the derivation of likelihood functions and score functions.
Chapter 4 shows the simulation study on the comparison of the Univariate CACE and
the Multivariate CACE for different sample sizes, effect sizes and variance-covariance ma-
trices. Results from our simulation study suggest that the Multivariate CACE analysis pro-
vides better estimates and more powerful tests. Chapter 5 presents our application to the
Arthritis Health Journal Study. Chapter 6 offers a brief discussion on findings and limita-
tions and a discussion of future research.
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Chapter 2

Motivating Example

2.1 Introduction of the Arthritis Health Journal Study

Arthritis Health Journal is an online tool launched by Dr. Diane Lacaille, a senior scientist
at Arthritis Research Centre of Canada. This tool enables rheumatoid arthritis (RA) pa-
tients to be actively involved in monitoring their symptoms and disease activity. Patient
passports and health journals have been commonly used in chronic diseases to promote
active involvement of patients in their care, and have led to better treatment and health
outcomes.

During the development stages of this study, both patients and rheumatologists were
interviewed. They were asked to provide important insights into the value of an arthritis
health journal and how it could be used to improve care. Patients identified the poten-
tial benefits of increased self-awareness, better self-management, and improved timing of
rheumatologists’ visits.

RA needs to be treated early and aggressively to achieve the best long-term health
outcomes and prevent bone and joint damage. This online tool is a natural fit for RA pa-
tients because it will accommodate early and aggressive treatment and the Treat to Tar-
get approach, which involves escalating treatment until the target (little or no inflamma-
tion) is met , and modifying treatment when this target is no longer met. If patients can
self-monitor their own disease activity, they can provide their health care team with early
warnings when targets are not being met, this facilitating the Treat to Target approach.

By using this tool, RA patients are able to asses their disease activity, clearly view re-
sults (displayed as remission, low, moderate, or high disease activity), and identify pat-
terns over time. By promoting timeliness of visits to rheumatologists and more accurate
information to be shared with rheumatologists, overall disease management should ul-
timately improve resulting in better outcomes for both RA patients and the health care
system. They planed to invite 100 patients with RA to test the Arthritis Health Journal but
only 94 patients showed up at baseline.
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2.2 Descriptive Analysis

The original dataset consists of the measurements at baseline and at 3 month after the
treatment. In order to evaluate the efficacy of this treatment, we focus on the change scores
from the baseline; that is, the difference between measurements at 3 month and the mea-
surements at baseline. In the Arthritis Health Journal Study, 94 participants were randomly
assigned to the treatment group and the control group at baseline and a total of 45 (47.87%)
were allocated to the treatment group. A random sample of 14 participants were selected
to take part in face-to-face interviews at 6 month instead of self-reported questionnaires,
so their measurements at 3 month were missing and 11 of these 14 participants were in the
treatment group. Since they were chosen randomly, we just assume that the missing mech-
anism is missing completely at random (MCAR) and delete the observations with missing
values. Therefore, the final sample size of the Arthritis Health Journal data is 80 in total: 34
in the treatment group and 46 in the control group.

There are a total of 6 health outcomes in the data set and all of them can be treated as
continuous variables

- Effective Consumer 17 Scale: The overall score of questions about participants and
how they manage their disease on a 0 to 100 scale, and 100 indicates "most confident".

- Manage Symptoms Scale: The overall score of questions about how they manage
their symptoms on a 0 to 10 scale, where 0 indicates "not at all confident" and 10
indicates "totally confident".

- Manage Disease in General Scale: The overall score of questions about how they
manage their disease in general on a 0 to 10 scale, where 0 indicates "not at all confi-
dent" and 10 indicates "totally confident".

- Communicate with Physician Scale: The overall score of confidence in communi-
cating with their rheumatologists on a 0 to 10 scale, where 0 indicates "not at all
confident" and 10 indicates "totally confident".

- Partners in Health Scale: The overall score of their knowledge of disease and treat-
ment on a 0 to 80 scale, where 80 indicates "poor self-management".

- Satisfaction with Various Aspects of Medical Care: The overall score of their satis-
faction with the content and format of the tool on a 0 to 10 scale, where 0 indicates
"completely unsatisfied" and 10 indicates "completely satisfied".

Except for the fifth outcome Partners in Health Scale, positive values of change scores
for the rest five outcomes represent beneficial treatment effect and negative values repre-
sent harmful treatment effect. We first rescale Y2 to Y6 to make all outcomes on a 0 to 100
scale for easy comparing.
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Additionally, there are a total of 5 binary baseline covariates in the data set

- Disease Duration: 0 indicates late disease, that is, having disease for 2 or more years;
and 1 indicates early disease ( 0-2 years).

- Disease Activity 1/2: 0 indicates low disease activity (with remission, moderate/low
RAPID4 values) and 1 indicates high disease activity (high RAPID4 values).

- Gender: 0 indicates female and 1 indicates male.

- Age: 0 indicates below the median age (54.50) and 1 otherwise.

There are two other variables in the dataset: one storing the allocation of group assignment
and one reflecting the compliance behavior.

- Group: 0 indicates the treatment group and 1 indicates the control group; partici-
pants in the treatment receive the treatment immediately and for ethical concerns,
participants in the control group receive the treatment after 6 months from baseline.

- High/Low User: 1 indicates that the number of using the tool is no less than 3 times
at 3 month, thus represents high user and 0 represents low user. We define the high
users as compliers and low users as non-compliers.

We begin with presenting the descriptive statistics of the change scores for 80 partici-
pants. Table 2.1 shows the minimum, median, mean and maximum values of six outcomes
grouped by the treatment assignment. An important observation is that Y1 and Y5 have a
wide range, implying larger variances. The medians for all outcomes are around 0, which
confirms the fact that all change scores are centered around 0. It is also worth noticing that
the minimum, mean and maximum values for the treatment group are different those for
the control group.

Table 2.1: Summary statistics of change scores.

Outcome
Min Median Mean Max

A(N = 80) T(N = 34) C(N = 46) A(N = 80) T(N = 34) C(N = 46) A(N = 80) T(N = 34) C(N = 46) A(N = 80) T(N = 34) C(N = 46)

Y1 -30.88 -22.06 -30.88 0.74 0.74 0.74 1.86 2.90 1.09 25.00 25.00 20.59
Y2 -38.00 -22.00 -38.00 0.00 -1.00 0.00 -0.14 0.57 -0.07 32.00 32.00 26.00
Y3 -24.00 -18.00 -24.00 2.00 0.00 2.00 1.58 1.29 0.18 46.00 46.00 28.00
Y4 -40.00 -26.67 -40.00 0.00 0.00 0.00 0.38 3.43 -0.19 60.00 60.00 33.33
Y5 -43.75 -43.75 -28.75 -0.63 -0.63 -0.63 -1.80 -3.38 -0.50 41.25 23.75 41.25
Y6 -5.94 -5.94 -4.84 0.00 0.31 0.00 0.37 0.71 0.09 10.16 10.16 6.56

- A indicates all individuals, T indicates the treatment group, C indicates the control group
- Numbers in brackets are sample sizes for different groups

Figure 2.1 shows the distribution of health outcomes for the treatment group, the con-
trol group and compliers in the treatment group. We can barely observe the difference
between the entire treatment group and the control group. Compliers can not be separated
from the non-compliers in the control group, thus we only show the subgroup of compli-
ers in the treatment. For outcome Y4, Y5 and Y6, the subgroup of compliers, as compared
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with the entire control group, appears to be in the direction of enjoying the benefit from the
treatment. There are no discernable patterns for the other 3 outcomes. Simply comparing
the subgroup of compliers with the entire control group can lead to misleading results as
the subgroup is not comparable with the control group at the baseline. Therefore, the ob-
jective of this project is to develop a method to investigate the complier-average treatment
effect combining information from all outcomes.

Figure 2.1: Distribution of multivariate outcomes for the treatment group, the control
group and the subgroup of compliers: red boxes represent the subgroup of compliers,
green represents the control group and blue represents the treatment group.
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Chapter 3

Treatment Effect Evaluation Methods

3.1 Notation

To better define the complier-average causal effect (CACE) model, we consider a hypo-
thetical evaluation of the treatment effect of a new treatment D on some health outcome
Y in a population of N participants. The initial assignment of participants is stored in the
variable X:

Xi =

{
1 if the ith participant is assigned to the treatment,
0 if the ith participant is assigned to the control.

The actual receipt of the treatment is denoted by the variable Z:

Zi =

{
1 if the ith participant receives the treatment,
0 if the ith participant does not receive the treatment.

For clinical trials involving human subjects, the value of the binary variable Z is not under
investigators’ control due to ethical problems. Thus, we write Z as a function of X. Let
Zi(X) be the indicator of whether the ith participant takes the treatment given assignment
X:

Zi(X) =

{
1 if the ith participant receives the treatment given assignment X,
0 if the ith participant does not receive the treatment given assignment X.

In the case of perfect compliance, Zi(X) = Xi for all participants. Unfortunately, Zi(X)

differs from Xi for various reasons in practice. Similarly, we can define Yi(X, Zi(X)) as the
outcome of the ith participant given the random assignment X and the actual receipt Z.
For univariate analysis, Y(X, Z) is a vector with N elements, whereas in the multivariate
case, Y(X, Z) is a N × k matrix (k is the dimension). Define Zi = (Zi(0), Zi(1)) and Yi =

(Yi(0, Zi(0)), Yi(1, Zi(1))) to be the potential outcomes, which can be partially observed in
the experiment.
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3.2 Basic Analysis of Treatment Effect

As we mentioned in Chapter 1, intention-to-treat (ITT) analysis and as-treated (AT) anal-
ysis are two commonly used approaches for modeling treatment effect. The ITT analysis
compares outcomes between participants assigned to the treatment and participants as-
signed to the control, while the AT analysis compares outcomes of patients who actually
received the treatment to outcomes of those who did not. We would like to introduce two
assumptions before we define the ITT causal effect and the AT causal effect.

3.2.1 Assumptions for Causal Inference

Assumption 1: SUTVA

Stable Unit Treatment Value Assumption (SUTVA) is a conventional and important lim-
itation in causal effect analysis. SUTVA consists of two components: no interference and
well defined potential outcomes. The first component requires that the potential outcome
of one unit should be unaffected by the particular assignment of treatment to other units.
The second component requires that each participant receives the exactly same version
of treatment. SUTVA allows us to write Yi(X, Z) and Zi(X) as Yi(Xi, Zi) and Zi(Xi). An
experiment would yield biased estimate of causal effect if SUTVA is violated.

Assumption 2: Random Assignment

We also assume the initial treatment assignment X is random; that is, the treatment as-
signment is independent of all baseline variables. This assumption ensures that each par-
ticipant has an equal chance of being allocated in any arm. Therefore, observations in the
treatment and the control group are exchangeable.

In cases where random assignment would violate ethical standards or in observational
studies, the random assignment assumption could be replaced by the Ignorability of Treat-
ment when evaluating the causal effect. The Ignorability assumption simply means that
the choice of assignment can be assumed to be effectively random when conditioned on
observable characteristics (or baseline variables) of the study objects.

3.2.2 Intention-to-treat Analysis & As-treated Analysis

Under the SUTVA, the causal effect of X on Z at the individual level can be defined by
Zi(1)− Zi(0), and accordingly, the causal effect of X on Y at the unit level can be defined
by Yi(1, Zi(1))−Yi(0, Zi(0)). The causal effect of X on Y is usually not observable because
each participant could be only assigned to either the treatment or the control group; that
is, Yi(1, Zi(1)) and Yi(0, Zi(0)) are not jointly observable. Since the random assignment
eliminates unobserved and confounding factors, we consider the average causal effect.
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The average ITT causal effect of X on Z and the average ITT causal effect of X on Y are
defined as

ITTZ =
1
N

N

∑
i=1

(
Zi(1)− Zi(0)

)
, (3.1)

and

ITTY =
1
N

N

∑
i=1

(
Yi(1, Zi(1))−Yi(0, Zi(0))

)
. (3.2)

The average ITT causal effect can also be calculated by

ITTY =
∑N

i=1 YiXi

∑N
i=1 Xi

− ∑N
i=1 Yi(1− Xi)

∑N
i=1(1− Xi)

. (3.3)

Unlike ITT analysis, the AT analysis only focuses on the actual receipt of treatment and
ignores the initial assignment of treatment. Hence, the potential outcome Y only depends
on Z, and it can be written as Y(Z). We define the average AT causal effect of Z on Y as

ATY =
1
N

N

∑
i=1

(
Yi(1)−Yi(0))

)
, (3.4)

which can also be written in the form of (3.3)

ATY =
∑N

i=1 YiZi

∑N
i=1 Zi

− ∑N
i=1 Yi(1− Zi)

∑N
i=1(1− Zi)

. (3.5)

3.3 CACE

3.3.1 Definition of the Compliance Type

There are four types of compliance behavior: compliers, never-takers, always-takers and
defiers. Compliers always adhere to the original assignment; never-takers never take the
treatment even if they are assigned to the treatment group; always-takers always take the
treatment regardless of the initial assignment; and defiers always do the opposite of their
assignment. The compliance type takes four possible values:

Ci =


c(complier) if Zi(X) = X, for X = 0, 1;
n(never-taker) if Zi(X) = 0, for X = 0, 1;
a(always-taker) if Zi(X) = 1, for X = 0, 1;
d(defier) if Zi(X) = 1− X, for X = 0, 1.

So C is a vector with N elements and Nt is the number of participants of type t, where
t ∈ {c, n, a, d}.
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Table 3.1 illustrates the relations among the treatment assignment, the compliance type,
the actual receipt of the treatment and the outcomes. This table also shows how Zi is de-
termined by Xi and Ci.

Table 3.1: Relations among the treatment assignment, the compliance mechanism, the ac-
tual receipt of the treatment and the outcomes.

Xi Ci Zi(X)
Yi(X, Z)

Yi(0, 0) Yi(0, 1) Yi(1, 0) Yi(1, 1)

1 c 1 - - - *
0 c 0 * - - -
1 n 0 - - * -
0 n 0 * - - -
1 a 1 - - - *
0 a 1 - * - -
1 d 0 - - * -
0 d 1 - * - -

* represents the observed outcome
- represents the unobserved outcome

3.3.2 Assumptions for CACE

In addition to two assumptions for basic analysis of causal effects, we need three more
assumptions to build an identifiable CACE model in this thesis.

Assumption 3: Weak Exclusion Restriction

Weak Exclusion Restriction requires that treatment assignment X has no effect on potential
outcomes for never-takers and always-takers; that is: for all i, Zi(0) = Zi(1), Yi(0, Zi(0)) =
Yi(1, Zi(1)). Angrist et al. [1996] proposed Exclusion Restriction for all compliance types:

Yi(Xi, Zi) = Yi(X′i , Zi), (3.6)

for all i. This assumption implies that Yi(0, Z) = Yi(1, Z) for Z = 0, 1, which means any
effect of the assignment X on the outcome Y must be via the effect of X on the actual receipt
Z. With the support of this assumption, we can write Y(X, Z) as a function of Z alone. This
assumption is reasonable in the double-blinded RCTs since participants do not know the
treatment assigned to them.

Assumption 4: Strict Monotonicity

This assumption was first proposed by Imbens and Angrist [1994]. Strict Monotonicity
restricts the patterns of compliance behavior; that is, for all i ∈ {1, ..., N}, Zi(1) ≥ Zi(0)
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with inequality for at least one unit. This assumption rules out the occurrence of defiers
and requires the presence of at least one complier.

Assumption 5

Since this thesis is motivated by the Arthritis Health Journal Study, we have one more as-
sumption to rule out always-takers in the settings of our CACE model. That is, participants
in the control group have no access to the new treatment. Thus, we only have compliers
and never-takers in our model.

Aside from the assumptions we have mentioned above, our notation of the assignment
X and the actual receipt Z also implies that X and Z only have two levels: 0 and 1. Hence
we do not consider partial compliance. These assumptions hold throughout the rest of this
thesis.

3.3.3 CACE

The complier-average causal effect (CACE) is a particular form of the ITT analysis or the
AT analysis where inference concerns the average treatment effect within the subgroup of
compliers. As defined in (3.2), the ITT effect on Y can be written as

ITTY = ∑
t∈{c,n,a,d}

Nt ITT(t)
Y

N
, (3.7)

and for t ∈ {c, n, a, d}, the ITT effect on Y for each compliance type can be written as

ITT(t)
Y = ∑

{i|Ci=t}

Yi(1, Zi(1))−Yi(0, Zi(0))
Nt

, (3.8)

where Nt is the number of participants with compliance type t.
Then, define the CACE of Z on Y to be ITT(c)

Y . For compliers, Zi(1) = 1 and Zi(0) = 0
and based on Assumption 3, Equation (3.8) can be simplified as

CACE = ITT(c)
Y = ∑

{i|Ci=c}

Yi(1)−Yi(0)
Nc

. (3.9)

Under Weak Exclusion Restriction assumption, the subgroup of never-takers does not
address the causal effect of receiving the new treatment: both Yi(1, Zi(1)) and Yi(0, Zi(0))
represent outcomes without taking any treatment. Therefore, we have ITT(n)

Y = 0.
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3.3.4 Likelihood Function

Assume the health outcome Y is continuous. As defined in (3.9), if we know the exact
number of compliers in both treatment and control groups, CACE could be calculated as

CACE = ITT(c)
Y = ∑

{i|Ci=c,Xi=1}

Yi(1)
Nc1

− ∑
{j|Cj=c,Xj=0}

Yj(0)
Nc2

, (3.10)

where Nc1 and Nc2 are the number of compliers in the treatment group and the control
group, and Nc1 + Nc2 = Nc. Unfortunately, the compliance type is unobservable for par-
ticipants in the control group in many RCTs. For example, in our Arthritis Health Journal
Study, all individuals assigned to the control group have no access to the new treatment,
so we have no idea what they would do if they were assigned to the treatment group; that
is, they could be either compliers or never-takers. In such cases, we could not use (3.10)
to get an unbiased estimate of CACE. Instead, we derive the likelihood function and the
estimate of CACE is carried out via maximum likelihood.

Univariate Case

Previously, multiple univariate models were used to model multivariate outcomes without
considering the correlation among outcomes. So we begin with modeling the univariate
outcome and assume the health outcome Y follows a normal distribution. Without loss of
generality, considering the baseline covariates W, we define the probability of a participant
being a complier as

Pr(Ci = c|Wi = w, ψ) = pc = Ψ(c, w, ψ), (3.11)

and
Pr(Ci = n|Wi = w, ψ) = 1−Ψ(c, w, ψ), (3.12)

where we have
Ψ(c, w, ψ) =

exp(wψ)

1 + exp(wψ)
. (3.13)

The compliance rate pc is unaffected by the initial assignment X and the actual receipt Z.
Consider those who have been assigned to the treatment group (Xi = 1): if Zi = 0, the

ith participant is a never-taker, otherwise, he/she is a complier. For those who have been
assigned to the control group (Xi = 0), we have no information about their compliance
behavior. Based on the randomization assumption, there should be the same percent of
participants being compliers in two groups. Thus, we assume that the probability of being
a complier for participants in the control is pc, as defined in (3.11).

We further assume that for compliers in the treatment group,

Y ∼ N(µc + δc, σ2
c ); (3.14)
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for compliers in the control group,

Y ∼ N(µc, σ2
c ); (3.15)

and for non-compliers,
Y ∼ N(µn, σ2

n), (3.16)

where Y is the heath outcome. δc is the difference between the compliers in the treatment
and the compliers in the control, thus represents the CACE. Since the compliance type is
not affected by the treatment assignment and all participants are assigned randomly, there
is no difference between non-compliers in different groups. Recall that Zi = (Zi(0), Zi(1))
and Yi = (Yi(0, Zi(0)), Yi(1, Zi(1))) are the potential outcomes, which can be partially ob-
served in the experiment. There are three possible patterns of missing and observed data
in (Zi, Yi) corresponding to the three possible values for (Xobs,i, Zobs,i): (0, 0), (1, 0), (1, 1),
which are displayed in Table 3.2. Define the subsets of units exhibiting each pattern by
S(0, 0), S(1, 0) and S(1, 1). For example, for i ∈ S(0, 0), both Zi(1) and Yi(1, Zi(1)) are
missing. Table 3.3 shows the distribution of Y under different combinations of X, Z and C.

Table 3.2: Possible patterns of missing and observed data.

(Xobs,i, Zobs,i)
Zi Yi Subset

Zi(0) Zi(1) Yi(0, Zi(0)) Yi(1, Zi(1))

(0, 0) * - * - i ∈ S(0, 0)
(1, 0) - * - * i ∈ S(1, 0)
(1, 1) - * - * i ∈ S(1, 1)

* represents the observed outcome
- represents the missing data

Table 3.3: Distribution of Y under different combinations of X, Z and C.

Xi Zi Ci Yi

1 (Treatment) 1 c N(µc + δc, σ2
c )

1 (Treatment) 0 n N(µn, σ2
n)

0 (Control) 0 c/n pcN(µc, σ2
c ) + (1− pc)N(µn, σ2

n)
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Based on Table 3.2 and Table 3.3, we can derive the likelihood function in terms of the
observed data separately:

Li(θ|Xobs
i , Zobs

i , Yobs
i , Wobs

i ) ∝



Ψ(c, w, ψ) 1√
2πσ2

c
exp{− (yi−(µc+δc))2

2σ2
c

} if i ∈ S(1, 1);

(1−Ψ(c, w, ψ)) 1√
2πσ2

n
exp{− (yi−µn)2

2σ2
n
} if i ∈ S(1, 0);

Ψ(c, w, ψ) 1√
2πσ2

c
exp{− (yi−µc)2

2σ2
c
}

+(1−Ψ(c, w, ψ)) 1√
2πσ2

n
exp{− (yi−µn)2

2σ2
n
} if i ∈ S(0, 0),

(3.17)
where θ = (ψ, µc, µn, δc, σc, σn) is the full parameter vector. The rationale behind the like-
lihood is that the outcome distribution of never-takers in the control is the same as the
outcome distribution of never-takers in the treatment and the control group only consists
of compliers and never-takers.

We assume that all compliers have the same variance σ2
c regardless of which group

they were assign to and similarly, all never-takers have the same variance σ2
n . The main

target of this research is to estimate the method effectiveness and thus we only care about
compliers. We want to explore the difference between the compliers in the treatment group
and the control group, denoted by δc in (3.14).

The actual likelihood function for N individuals is

L(θ|Xobs, Zobs, Yobs, Wobs)

∝ ∏{i∈S(1,1)} Ψ(c, w, ψ) 1√
2πσ2

c
exp{− (yi−(µc+δc))2

2σ2
c

}

× ∏{i∈S(1,0)}(1−Ψ(c, w, ψ)) 1√
2πσ2

n
exp{− (yi−µn)2

2σ2
n
}

× ∏{i∈S(0,0)}

[
Ψ(c, w, ψ) 1√

2πσ2
c

exp{− (yi−µc)2

2σ2
c
}+ (1−Ψ(c, w, ψ)) 1√

2πσ2
n

exp{− (yi−µn)2

2σ2
n
}
]

.

(3.18)

Multivariate Case

Recall that our motivating example consists of 6 health outcomes and we do not want to
risk losing any information before we get to the final conclusion. Therefore, we propose
a multivariate CACE model to account for correlations among outcomes. The idea is to
extend the univariate CACE model to multivariate cases. Naturally, we assume the health
outcome Y follows a multivariate normal distribution.

Similarly, for compliers in the treatment group, we assume

Y ∼ MVNk(µc + δc, Σc); (3.19)
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and for compliers in the control group, we assume

Y ∼ MVNk(µc, Σc); (3.20)

and for non-compliers in both groups, we assume

Y ∼ MVNk(µn, Σn), (3.21)

where MVNk denotes the k-dimensional normal distribution and Y is the multivariate
health outcome. Unlike the univariate case, µc, δc, µn are vectors and Σc, Σn are variance-
covariance matrices.

Consider the observed likelihood for the ith participant:

Li(θ|Xobs
i , Zobs

i , Yobs
i , Wobs

i ) ∝



Ψ(c, w, ψ) 1

(2π)
k
2 |Σc|

1
2

exp{− 1
2 (yi − (µc + δc))TΣ−1

c (yi − (µc + δc))} if i ∈ S(1, 1);

(1−Ψ(c, w, ψ)) 1

(2π)
k
2 |Σn|

1
2

exp{− 1
2 (yi − µn)TΣ−1

n (yi − µn)} if i ∈ S(1, 0);

Ψ(c, w, ψ) 1

(2π)
k
2 |Σc|

1
2

exp{− 1
2 (yi − µc)TΣ−1

c (yi − µc)}

+(1−Ψ(c, w, ψ)) 1

(2π)
k
2 |Σn|

1
2

exp{− 1
2 (yi − µn)TΣ−1

n (yi − µn)} if i ∈ S(0, 0),

(3.22)
where θ = (ψ, µc, µn, δc, Σc, Σn) is the full parameter vector.

Similarly, we assume all compliers have the same variance-covariance matrix Σc and
all never-takers have the same variance-covariance matrix Σn. Modeling k-dimensional
outcomes via multiple Univariate CACE models needs to estimate k− 1 more parameters
for pc and 1

2 k(k − 1) less parameters for covariance per variance-covariance matrix than
via the Multivariate CACE model. So Multivariate CACE model needs to estimate (k− 1)2

more parameters in total.
The likelihood function for N individuals is then

L(θ|Xobs, Zobs, Yobs, Wobs)

∝ ∏{i∈S(1,1)} Ψ(c, w, ψ) 1

(2π)
k
2 |Σc|

1
2

exp{− 1
2 (yi − (µc + δc))TΣ−1

c (yi − (µc + δc))}

× ∏{i∈S(1,0)}(1−Ψ(c, w, ψ)) 1

(2π)
k
2 |Σn|

1
2

exp{− 1
2 (yi − µn)TΣ−1

n (yi − µn)}

× ∏{i∈S(0,0)}
[
Ψ(c, w, ψ) 1

(2π)
k
2 |Σc|

1
2

exp{− 1
2 (yi − µc)TΣ−1

c (yi − µc)}

+ (1−Ψ(c, w, ψ)) 1

(2π)
k
2 |Σn|

1
2

exp{− 1
2 (yi − µn)TΣ−1

n (yi − µn)}
]
.

(3.23)

3.3.5 The Identifiability of the Likelihood Function

A natural question of interest is the identifiability of the derived likelihood function. The
identifiable likelihood ensures us to learn the true values of parameters in the CACE
model.

Upon a closer inspection on the likelihood function defined in (3.23), the first two parts
are identifiable. The third part is the probability density function of a mixed multivariate
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normal distribution which might not be identifiable. For example, suppose Ψ(c, w, ψ) =

0.5, µc = µ1, Σc = Σ1, and µn = µ2, Σn = Σ2, and then the mixture part would generate the
same value when Ψ(c, w, ψ) = 0.5, µc = µ2, Σc = Σ2, and µn = µ1, Σn = Σ1. Fortunately,
the first two parts of the likelihood function yield different values with different sets of
parameters. Hence the whole likelihood function is identifiable.

The violation of Weak Exclusion Restriction assumption may lead to non-identifiable
CACE model. Without Weak Exclusion Restriction, the potential outcomes for never-takers
in the treatment group and the control group are different. In contrast to (3.23), the likeli-
hood function for N individuals should be written as

L(θ|Xobs, Zobs, Yobs, Wobs)

∝ ∏{i∈S(1,1)} Ψ(c, w, ψ) 1

(2π)
k
2 |Σc|

1
2

exp{− 1
2 (yi − (µc + δc))TΣ−1

c (yi − (µc + δc))}

× ∏{i∈S(1,0)}(1−Ψ(c, w, ψ)) 1

(2π)
k
2 |Σn|

1
2

exp{− 1
2 (yi − (µn + δn))TΣ−1

n (yi − (µn + δn))}

× ∏{i∈S(0,0)}
[
Ψ(c, w, ψ) 1

(2π)
k
2 |Σc|

1
2

exp{− 1
2 (yi − µc)TΣ−1

c (yi − µc)}

+ (1−Ψ(c, w, ψ)) 1

(2π)
k
2 |Σn|

1
2

exp{− 1
2 (yi − µn)TΣ−1

n (yi − µn)}
]
.

(3.24)
Consider a special case when distinct values of θ fail to generate distinct likelihood func-
tions: when Ψ(c, w, ψ) = 1− Ψ(c, w, ψ) and N{i∈S(1,1)} = N{i∈S(1,0)}, exchanging values of
parameters for compliers and never-takers will generate the same likelihood function.

3.3.6 Score Function

In order to speed up the computation process when trying to maximize the log-likelihood
function in R, we derive the first derivative with respect to θ. This score function was
only used in the simulation study. For simplicity, we write the likelihood function in ma-
trix notation and assume pc is a constant unaffected by baseline covariates. The variance-
covariance matrices Σc and Σn must be symmetric, positive definite k × k matrices. Intu-
itively, only k(k + 1)/2 parameters are needed to form one variance-covariance matrix. Let
ηc and ηn denote the minimal sets of parameters to determine Σc and Σn; and each of these
two sets has k(k + 1)/2 elements. According to Pinheiro and Bates [1996], the rationale
behind the parameterization is to write

Σc = LcLT
c (3.25)

and
Σn = LnLT

n ; (3.26)

where Lc and Ln are lower triangular matrices. Since there is no constrain of the input
values for ηc and ηn, we exponentiate the diagonal elements of Lc and Ln to avoid the
occurrence of 0 at diagonal positions of variance-covariance matrices. In order to ensure
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the probability of being a complier is between 0 and 1, another transformation is needed
before coding the score function. Recall that θ = (pc, µc, µn, δc, Σc, Σn) is the full parameter
vector, assuming dimension k, the elements of θ are (θ1, ..., θ(k+2)2−3). Table 3.4 shows the
number of parameters in our Multivariate CACE model.

Table 3.4: The number of parameters in the Multivariate CACE model.

pc µc µn δc Σc Σn Total

# of parameters 1 k k k 1
2 k(k + 1) 1

2 k(k + 1) (k + 2)2 − 3

So pc is coded as

pc =
exp(θ1)

1 + exp(θ1)
. (3.27)

Let β = (µc, µn, δc)T = (θ2, ..., θ3k+1)
T be a vector of means, (θ3k+2, ..., θ(k−1)(k−4)/2) be the

lower triangular elements of Lc and exp{(θ((k−1)(k−4)/2)+1, ..., θ((k−1)(k−4)/2)+k)} be the di-
agonal elements of Lc. Similarly, we perform the transformation of the rest elements of θ

to form Ln.
Another advantage of writing likelihood function in matrix notation is that it would be

convenient to add pretreatment covariates if needed for future research. The log-likelihood
function in matrix notation is written as

`(θ|Xobs, Zobs, Yobs)

∝ Σ{i∈S(1,1)}{log pc +
1
2 log |Σc| +

(
− 1

2 rT
ci

Σ−1
c rci

)
}

+ Σ{i∈S(1,0)}{log (1− pc) +
1
2 log |Σn| +

(
− 1

2 rT
ni

Σ−1
n rni

)
}

+ Σ{i∈S(0,0)}
[

log pc +
1
2 log |Σc| +

(
− 1

2 rT
1i

Σ−1
c r1i

)
+ log (1− pc) +

1
2 log |Σn| +

(
− 1

2 rT
2i

Σ−1
n r2i

)]
,

(3.28)

where rci = yi −Wci β, Wci =
[
Ik×k 0k×k Ik×k

]
, Ik×k is the identity matrix. Accordingly,

rni = yi −Wni β, Wni =
[
0k×k Ik×k 0k×k

]
; r1i = yi −W1i β, W1i =

[
Ik×k 0k×k 0k×k

]
and

r2i = rni , W2i = Wni .
Lindstrom and Bates [1988] derived the first derivative of the log-likelihood in matrix

form for linear mixed-effects models. With the help of their formula, we can easily derive
the score function for our multivariate CACE model. We start from the first element of our
parameter vector θ

∂`
∂θ1

= Σ{i∈S(1,1)}
exp(θ1)

pc(1+exp(θ1))2

+Σ{i∈S(1,0)}
exp(θ1)

(pc−1)(1+exp(θ1))2

+Σ{i∈S(0,0)}
L1i /pc−L2i /(1−pc)

L1i+L2i

exp(θ1)
(1+exp(θ1))2 ,

(3.29)
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where
L1i =

pc

(2π)
k
2 |Σc|

1
2

exp{−1
2

rT
1i

Σ−1
c r1i},

and
L2i =

1− pc

(2π)
k
2 |Σn|

1
2

exp{−1
2

rT
2i

Σ−1
n r2i}.

The first derivative with respect to β can be written as

∂`
∂β = Σ{i∈S(1,1)}WT

ci
Σ−1

c rci

+Σ{i∈S(1,0)}WT
ni

Σ−1
n rni

+Σ{i∈S(0,0)}
1

L1i+L2i
(L1iW

T
1i

Σ−1
c r1i + L2iW

T
2i

Σ−1
n r2i).

(3.30)

Taking the derivative of log-likelihood with respect to ηc = (θ3k+2, ..., θ(k−1)(k−4)/2+k) con-
sists of two parts: the lower triangular elements and the diagonal elements of Σc. For θj,
where j ∈ {3k + 2, ..., (k− 1)(k− 4)/2 + k}

∂`
∂ηc

= Σ{i∈S(1,1)} − 1
2

[
tr(Σ−1

c
∂Σc
∂θj

)− rT
ci

Σ−1
c

∂Σc
∂θj

Σ−1
c rci

]
+Σ{i∈S(1,0)}0
+Σ{i∈S(0,0)}

1
L1i+L2i

(− 1
2

[
tr(Σ−1

c
∂Σc
∂θj

)− rT
1i

Σ−1
c

∂Σc
∂θj

Σ−1
c r1i

]
),

(3.31)

where ∂Σc
∂θj

= Lc Jnm + JmnLT
c for lower triangular elements and ∂Σc

∂θj
= exp(θj)(Lc Jnm +

JmnLT
c ) for diagonal elements. Jmn is the single-entry matrix with 1 at (m, n) and 0 else-

where, where n ∈ {1, ..., k− 1} and m ∈ {n + 1, ..., k}.
Similarly, taking the derivative with respect to ηn, we have

∂`
∂ηn

= Σ{i∈S(1,1)}0

+Σ{i∈S(1,0)} − 1
2

[
tr(Σ−1

n
∂Σn
∂θj

)− rT
ni

Σ−1
n

∂Σn
∂θj

Σ−1
n rni

]
+Σ{i∈S(0,0)}

1
L1i+L2i

(− 1
2

[
tr(Σ−1

n
∂Σn
∂θj

)− rT
2i

Σ−1
n

∂Σn
∂θj

Σ−1
n r2i

]
),

(3.32)

where ∂Σn
∂θj

= Ln Jnm + JmnLT
n for lower triangular elements and ∂Σn

∂θj
= exp(θj)(Ln Jnm +

JmnLT
n ) for diagonal elements.

3.3.7 Global Likelihood Ratio Test

In order to evaluate the actual treatment effect from a statistical view, we conducted a
global likelihood ratio test to explore whether the difference is statistically significant. We
tried to test

H0 : δc = 0k

Ha : The full model is true,
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where the full model consists of all parameters and the reduced model sets δc to 0k. Conse-
quently, the reduced model is nested within the full model, as required by the likelihood
ratio test. The test statistic can be calculated as

G = −2(`reduced|θ̂r
− ` f ull |θ̂ f

), (3.33)

where ` is the log-likelihood, θ̂r is the MLE obtained from the reduced model and θ̂ f is the
MLE obtained from the full model. The distribution of the test statistic is approximately
an chi-square distribution with degree of freedom k (the dimension of the outcomes).

For multiple Univariate CACE models, the significance cut-off value should be α/k
according to the Bonferroni correction, where α is the desired overall alpha level. If any of
these k hypotheses is rejected, the treatment effect is considered significant.

3.3.8 Parametric Bootstrap Test

We have found that the mixture part of our CACE model, the sample size and the compli-
ance rate have an influence on the convergence of G. Our simulation results suggest that
the type I error inflates under a low compliance rate for moderate sample sizes. If we get
rid of the mixture part of the Multivariate CACE model, the estimated type I error drops
a lot. We could also control the type I error by improving the compliance or increasing the
sample size. But in the case of a low compliance rate and limited sample size, an alternative
approach needs to be considered to ensure the accuracy of our test.

Parametric bootstrap turns out to be a good alternative. Bootstrapping is commonly
used to estimate the sampling distribution by drawing samples from the estimated popu-
lation with replacement. The following steps describe how we performed the parametric
bootstrap test on each simulated dataset

• Maximized `reduced and ` f ull to get θ̂r and θ̂ f , and calculated the LR test statistic G0.

• Generated 100 new datasets using θ̂r as the true values of parameters.

• Calculated the new LR test statistic GBi for the ith dataset, where i ∈ {1, 2, ..., 100}.

• Sorted {GB1 , ..., GB100} in increasing order to get {GB∗1 , ..., GB∗100
}.

• If G0 > GB∗95
, reject H0.

In this way, we managed to get the estimated distribution of the test statistic (G) when
the asymptotic distribution of G is inaccurate for a finite sample size. We expect to observe
a clear improvement in estimated type I error by performing the parametric bootstrap test.
The results will be displayed in Chapter 4 and Chapter 5.
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Chapter 4

Simulation Study

We conducted a simulation study to show the advantages of the proposed Multivariate
CACE model when health outcomes are multivariate.

4.1 Design of Study

Under the assumption that the health outcome Y follows a multivariate normal distri-
bution, the outcomes of the compliers in both groups and the outcomes of never-takers
were generated from MVNk(µc + δc, Σc), MVNk(µc, Σc) and MVNk(µn, Σn), where µc =

(1, 1, 1, 2, 2, 2) and µn = (2, 2, 2, 1, 1, 1). The effect size δc is a vector with same elements.
Nine values ranging from 0 to 5 were selected as the effect size: (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5),
and we set sample size to 100, 200, 500 for non-zero effect sizes and an additional 1000
when effect size equals 0. To keep consistent with our real data example, we set dimen-
sion k = 6 for all scenarios. For simplicity, we assume the compliance rate is unaffected
by baseline covariates and set pc to 0.4, which is close to the MLE of pc from our real data
example. Given sample size N, the group allocation of participants was stored in vector
X with first N/2 participants assigned to the treatment group and the rest assigned to the
control group. As for the actual treatment receipt Z, set Zi to 0 for all units in the control
group. For the treatment group, set Zi to 1 with probability pc.

In our simulation study, the statistical power of global LR test was used to evaluate
the performance of both CACE models, as shown in Figure 4.3 . The power is affected
by the sample size, the effect size and variance, thus we considered different scenarios by
varying these three factors. For scientific meaning, we assumed the variance-covariance
matrices were of the same magnitude. Two different sets of values were considered for
variance-covariance matrices, which are presented as follows:
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Σc1 =



1 1 −1 −1 1 −1
1 2 −1 0 1 −2
−1 −1 2 0 −1 0
−1 0 0 7 1 1
1 1 −1 1 6 −1
−1 −2 0 1 −1 7


, (4.1)

Σn1 =



1 1 −1 −1 −1 1
1 2 −2 −2 −2 2
−1 −2 3 1 1 −3
−1 −2 1 7 5 −3
−1 −2 1 5 8 −4
1 2 −3 −3 −4 9,


; (4.2)

and

Σc2 =



9 3 3 −3 −3 6
3 10 −2 −7 −7 8
3 −2 11 7 −2 6
−3 −7 7 18 −3 1
−3 −7 −2 3 19 −16
6 8 6 1 −16 26


, (4.3)

Σn2 =



9 3 3 −3 −3 −3
3 10 −2 2 −2 2
3 −2 11 1 −1 −5
−3 2 1 12 0 −2
3 −2 −1 0 13 1
−3 2 −5 −2 1 14,


. (4.4)

The corresponding correlation matrices are as follows

$c1 =



1 0.71 −0.71 −0.38 0.41 −0.38
0.71 1 −0.50 0 0.29 −0.53
−0.71 −0.50 1 0 −0.29 0
−0.38 0 0 1 0.15 0.14
0.41 0.29 −0.29 0.15 1 −0.15
−0.38 0.53 0 0.14 −0.15 1,


; (4.5)
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$n1 =



1 0.71 −0.58 −0.38 −0.35 0.33
0.71 1 −0.82 −0.53 −0.50 0.47
−0.58 −0.82 1 0.22 0.20 −0.58
−0.38 −0.53 0.22 1 0.67 −0.38
−0.35 −0.50 0.20 0.67 1 −0.47
0.33 0.47 −0.58 −0.38 −0.47 1,


. (4.6)

$c2 =



1 0.32 0.30 −0.24 −0.23 0.39
0.32 1 −0.19 −0.52 −0.51 0.50
0.30 −0.19 1 0.50 −0.14 0.35
−0.24 −0.52 0.50 1 −0.16 0.05
−0.23 −0.51 −0.14 −0.16 1 −0.72
0.39 0.50 0.35 0.05 −0.72 1,


; (4.7)

$n2 =



1 0.32 0.30 −0.29 0.28 −0.27
0.32 1 −0.19 0.18 −0.18 0.17
0.30 −0.19 1 0.09 −0.08 −0.40
−0.29 0.18 0.09 1 0 −0.15
0.28 −0.18 −0.08 0 1 0.07
−0.27 0.17 −0.40 −0.15 0.07 1,


. (4.8)

4.2 Results

In this section, we will only focus on the estimates of effect size δc and pc, and the difference
in statistical power of multivariate and multiple univariate tests.

4.2.1 Point Estimate

The maximum likelihood estimates (MLEs) of δc shown in Table 4.1 were obtained from
500 simulated datasets. Since the effect size has little influence on the accuracy of the es-
timates, we only selected three values of δc. Figure 4.1 presents the distribution of MLEs
for different scenarios and each panel shows the comparison of two CACE models. Pan-
els in the same row share the same effect size and panels in the same column share the
same sample size. The selected sample sizes are 100, 200, 500 and the chosen effect sizes
are 0, 0.5, 1. The effect of the variance of outcomes on the distribution of the estimates can
be observed from Figure 4.1 because Y1,..., Y6 have different variances. Therefore, we only
show the results for the smaller variance-covariance matrices (Σc1 , Σn1).

By inspection of Table 4.1 and Figure 4.1, we observe that:

(a) As expected, the finite sample bias for the maximum likelihood estimates (MLEs) of
means decreases as sample size increases for both Multivariate CACE and Univariate
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Figure 4.1: Comparison of the distribution of MLEs for two CACE models with smaller
variance-covariance matrices (Σc1 , Σn1): red boxes represent the results for the Multivariate
CACE and green boxes represent the results for the multiple Univariate CACE.

CACE models and the distribution of MLEs is unaffected by the magnitude of effect
size. As defined in (4.1), the variances of (Y1, Y2, Y3, Y4, Y5, Y6) are (1, 2, 2, 7, 6, 7),
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which could be the proper explanation for different variances of the estimates for
different outcomes.

(b) It is worth noting that the variation of estimates is always bigger and the estimates
are less accurate for multiple Univariate CACE models in every scenario. A possible
reason is that Univariate CACE models the multivariate health outcomes separately
and ignores the correlations among outcomes. In conclusion, our proposed Multi-
variate CACE model outperforms multiple Univariate CACE models in precise esti-
mation.

Table 4.2: Estimates of compliance rate for the Multivariate CACE and the Univariate
CACE under different sample sizes.

Sample Size pc
Univariate CACE

Multivariate CACEY1 Y2 Y3 Y4 Y5 Y6 Mean

100 0.4 0.397 0.398 0.395 0.396 0.397 0.396 0.397 0.395
200 0.4 0.399 0.399 0.400 0.398 0.398 0.399 0.399 0.399
500 0.4 0.399 0.400 0.400 0.399 0.399 0.400 0.399 0.399

- Effect size δc = 0

The estimates of compliance rate are displayed in Table 4.2, from which we can observe
that the mean estimates of pc from univariate models are very similar to the estimates from
the multivariate model.

4.2.2 Interval Estimate

According to the asymptotic normality of MLE, we have

δ̂c → MVNk(δc, IN(δc)
−1), (4.9)

where IN(δc) is the Fisher information for N individuals. In our simulation study, IN(δc) is
estimated by evaluating the negative Hessian matrix at δ̂c.

Confidence regions are multivariate extensions of univariate confidence intervals, which
should be a k-dimension ellipsoid centered at δ̂c. Since it is hard to imagine the shape of a
high dimensional ellipsoid, simultaneous confidence intervals are more useful in practice.
Simultaneous confidence intervals for vector δc require that a group of confidence intervals
all include true values of δc at some confidence level. Simultaneous confidence intervals
concentrates on linear scalar functions of δc, of the form t′δc for any t ∈ R6. According
to delta method, t′δ̂c asymptoticly follows N(t′δc, t′ IN(δc)−1t) as N → ∞. We managed to
calculate the confidence intervals for single element of δc by setting a set of vectors t1, ..., t6,
where t1 = (1, 0, ..., 0)T, t2 = (0, 1, 0, ..., 0)T, ..., and t6 = (0, ..., 0, 1)T, thus the confidence
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interval for each element of δc can be calculated as

t′δ̂c ± c
√

t′ IN(δ̂c)−1t, (4.10)

where c is the appropriate critical value. Simultaneous confidence intervals is based on
both the individual confidence level and the number of confidence intervals. We used the
Bonferroni correction to limit the probability that one or more of the confidence intervals
does not contain the true value to a maximum of α.

Table 4.3 shows the mean 95% simultaneous confidence intervals (CIs) based on 500
datasets. Figure 4.2 presents the distribution of the length of the confidence intervals. Pan-
els in the same row share the same effect size and panels in the same column share the
same sample size.

By inspection of Table 4.3 and Figure 4.2 , we observe that

(a) Overall, as sample size increases and variance decreases, the width of CIs decreases
correspondingly. The effect size is not related to the length of CIs.

(b) While the Bonferroni correction was applied to both the Multivariate CACE and the
Univariate CACE, the multivariate model has shorter confidence intervals. Further-
more, multivariate analysis has smaller variance of the length of the confidence in-
tervals.

Additionally, we calculated the coverage rate for confidence intervals. The coverage
rate is defined as the proportion of times that the confidence intervals contain the true δc

values. We have found that the true coverage rate is always less than the nominal coverage
probability, which is set to 0.95 in our simulation study. We are happy to observe higher
coverage rate of confidence intervals produced by the Multivariate CACE from Table 4.4.
Coverage rate increases as sample size increases and remains unaffected by the effect size
and the magnitude of variance-covariance matrices.
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Table 4.3: 95% simultaneous confidence intervals of δc.

Σ δc N Model Y1 Y2 Y3 Y4 Y5 Y6

1

0

100
Mul (-0.854, 0.833) (-1.188, 1.206) (-1.224, 1.169) (-2.254, 2.215) (-2.128, 2.040) (-2.240, 2.250)
Uni (-1.174, 1.089) (-1.641, 1.566) (-1.829, 1.564) (-3.043, 3.147) (-2.986, 2.937) (-3.108, 3.435)

200
Mul (-0.602, 0.617) (-0.872, 0.859) (-0.889, 0.856) (-1.621, 1.584) (-1.447, 1.535) (-1.600, 1.629)
Uni (-0.830, 0.819) (-1.290, 1.142) (-1.333, 1.241) (-2.263, 2.381) (-2.165, 2.336) (-2.393, 2.498)

500
Mul (-0.389, 0.384) (-0.552, 0.551) (-0.564, 0.539) (-1.004, 1.031) (-0.980, 0.915) (-1.019, 1.039)
Uni (-0.520, 0.516) (-0.782, 0.759) (-0.826, 0.786) (-1.483, 1.555) (-1.494, 1.472) (-1.545, 1.602)

0.5

100
Mul (-0.375, 1.321) (-0.709, 1.702) (-0.735, 1.680) (-1.629, 2.845) (-1.631, 2.567) (-1.710, 2.858)
Uni (-0.726, 1.575) (-1.297, 2.006) (-1.268, 2.167) (-2.468, 3.897) (-2.488, 3.551) (-2.692, 3.870)

200
Mul (-0.108, 1.102) (-0.380, 1.348) (-0.392, 1.341) (-1.086, 2.105) (-1.014, 1.964) (-1.064, 2.165)
Uni (-0.320, 1.313) (-0.768, 1.676) (-0.812, 1.735) (-1.813, 2.854) (-1.780, 2.760) (-1.829, 3.027)

500
Mul (0.109, 0.880) (-0.058, 1.046) (-0.050, 1.053) (-0.515, 1.521) (-0.476, 1.426) (-0.528, 1.539)
Uni (-0.031, 1.009) (-0.291, 1.257) (-0.316, 1.325) (-0.986, 2.056) (-1.001, 1.938) (-1.054, 2.110)

1

100
Mul (0.140, 1.841) (-0.185, 2.233) (-0.228, 2.213) (-1.156, 3.290) (-1.066, 3.129) (-1.290, 3.231)
Uni (-0.227, 2.037) (-0.734, 2.543) (-0.801, 2.673) (-2.024, 4.215) (-1.903, 4.072) (-2.259, 4.224)

200
Mul (0.393, 1.615) (0.130, 1.874) (0.134, 1.884) (-0.632, 2.580) (-0.478, 2.527) (-0.728, 2.540)
Uni (0.160, 1.825) (-0.266, 2.188) (-0.306, 2.258) (-1.322, 3.399) (-1.243, 3.344) (-1.484, 3.374)

500
Mul (0.616, 1.390) (0.447, 1.552) (0.443, 1.547) (-0.019, 2.014) (0.029, 1.930) (-0.051, 2.013)
Uni (0.481, 1.526) (0.216, 1.763) (0.170, 1.832) (-0.513, 2.505) (-0.467, 2.477) (-0.618, 2.566)

2

0

100
Mul (-2.612, 2.636) (-2.671, 2.831) (-2.903, 2.901) (-3.676, 3.718) (-3.912, 3.625) (-4.224, 4.454)
Uni (-3.598, 3.446) (-3.869, 3.672) (-3.939, 3.958) (-4.581, 4.747) (-4.816, 4.870) (-5.266, 5.506)

200
Mul (-1.866, 1.884) (-1.925, 2.009) (-2.026, 2.088) (-2.610, 2.637) (-2.758, 2.590) (-3.007, 3.154)
Uni (-2.631, 2.593) (-2.771, 2.769) (-2.952, 2.856) (-3.413, 3.317) (-3.513, 3.455) (-3.748, 3.870)

500
Mul (-1.241, 1.167) (-1.253, 1.259) (-1.344, 1.287) (-1.671, 1.668) (-1.731, 1.672) (-1.976, 1.963)
Uni (-1.771, 1.657) (-1.823, 1.801) (-1.943, 1.880) (-2.099, 2.169) (-2.238, 2.191) (-2.471, 2.325)

0.5

100
Mul (-2.262, 3.051) (-2.299, 3.262) (-2.448, 3.328) (-3.096, 4.259) (-3.283, 4.331) (-3.969, 4.788)
Uni (-3.627, 3.900) (-3.370, 4.125) (-3.687, 4.244) (-4.082, 5.394) (-4.211, 5.447) (-4.918, 5.812)

200
Mul (-1.483, 2.357) (-1.493, 2.474) (-1.597, 2.567) (-2.129, 3.145) (-2.176, 3.213) (-2.777, 3.460)
Uni (-2.383, 3.016) (-2.371, 3.271) (-2.552, 3.337) (-2.933, 3.922) (-3.046, 4.031) (-3.561, 4.168)

500
Mul (-0.709, 1.699) (-0.740, 1.753) (-0.802, 1.825) (-1.161, 2.166) (-1.224, 2.173) (-1.440, 2.484)
Uni (-1.242, 2.180) (-1.327, 2.264) (-1.384, 2.397) (-1.640, 2.620) (-1.746, 2.674) (-1.893, 2.870)

1

100
Mul (-1.679, 3.622) (-1.750, 3.755) (-1.857, 3.928) (-2.618, 4.721) (-2.823, 4.711) (-3.298, 5.452)
Uni (-2.719, 4.433) (-2.904, 4.645) (-3.108, 4.826) (-3.485, 5.711) (-3.689, 5.800) (-4.286, 6.399)

200
Mul (-0.814, 2.955) (-0.928, 3.006) (-1.071, 3.037) (-1.628, 3.524) (-1.641, 3.695) (-2.120, 4.061)
Uni (-1.640, 3.597) (-1.827, 3.705) (-2.003, 3.975) (-2.463, 4.331) (-2.442, 4.541) (-2.865, 4.811)

500
Mul (-0.171, 2.235) (-0.238, 2.270) (-0.291, 2.339) (-0.632, 2.698) (-0.746, 2.667) (-0.941, 2.982)
Uni (-0.681, 2.755) (-0.822, 2.815) (-0.889, 2.926) (-1.118, 3.177) (-1.228, 3.223) (-1.361, 3.459)

2

100
Mul (-0.640, 4.687) (-0.639, 4.848) (-0.911, 4.860) (-1.671, 5.651) (-1.865, 5.674) (-2.282, 6.459)
Uni (-2.719, 4.433) (-2.904, 4.645) (-3.108, 4.826) (-3.485, 5.711) (-3.689, 5.800) (-4.286, 6.399)

200
Mul (0.058, 3.877) (-0.015, 3.940) (-0.100, 4.045) (-0.590, 4.643) (-0.674, 4.686) (-1.117, 5.053)
Uni (-0.753, 4.598) (-0.913, 4.756) (-1.007, 4.898) (-1.317, 5.375) (-1.547, 5.404) (-1.826, 5.776)

500
Mul (0.783, 3.191) (0.742, 3.251) (0.640, 3.280) (0.312, 3.646) (0.320, 3.720) (-0.051, 3.884)
Uni (0.197, 3.659) (0.146, 3.782) (0.007, 3.829) (-0.165, 4.141) (-0.224, 4.229) (-0.502, 4.305)

- N indicates the size of the simulated population.
- δc indicates the true value of the effect size : we assume the same effect size for all dimensions.
- Σ indicates different variance-covariance matrices: 1 represents the smaller variance-covariance

(Σc1 , Σn1 ) matrices and 2 represents the larger variance-covariance matrices (Σc2 , Σn2 ).

4.2.3 Comparison of Statistical Power

As mentioned in the last Chapter, we performed a global likelihood ratio test to evaluate
the significance of treatment effect. A natural question of interest is whether the global
likelihood ratio test is a powerful test. The statistical power is used to compare the per-
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Figure 4.2: Distribution of the length of confidence intervals: red boxes represent the re-
sults for the Multivariate CACE and green boxes represent the results for the multiple
Univariate CACE.
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Table 4.4: Coverage rate of confidence intervals.

Σ δc N Multivariate CACE Univariate CACE

1

0
100 0.890 0.762
200 0.906 0.866
500 0.946 0.936

0.5
100 0.896 0.748
200 0.934 0.868
500 0.936 0.932

1
100 0.882 0.742
200 0.930 0.864
500 0.938 0.926

2

0
100 0.886 0.816
200 0.938 0.876
500 0.930 0.926

0.5
100 0.880 0.808
200 0.940 0.874
500 0.950 0.920

1
100 0.884 0.822
200 0.942 0.868
500 0.946 0.920

2
100 0.884 0.814
200 0.934 0.872
500 0.934 0.924

- N indicates the size of the simulated population.
- δc indicates the true value of the effect size : we assume the

same effect size for all dimensions.
- Σ indicates different variance-covariance matrices: 1 rep-

resents the smaller variance-covariance matrices (Σc1 , Σn1 )
and 2 represents the larger variance-covariance matrices
(Σc2 , Σn2 ).

formance of the multivariate model and multiple univariate models. All power analysis is
done at the same significance level (α = 0.05).

We generated 500 datasets for each setting and for each simulated dataset, we tried to
test

H0 : δc = 06.

The power of this test can be estimated as

power = Pr(reject H0|Hais true) =
Nrej

500
, (4.11)

where Nrej is the number of tests that have been correctly rejected.
Figure 4.3 presents the power curves produced by the Multivariate CACE, the Univari-

ate CACE and parametric bootstrap tests. Panels in the same column represent the results
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for the same sample size. Each panel shows the relationship between the power and the
effect size under fixed variance and sample size. We observe from the plot that

(a) Overall, the power increases sharply as the effect size increases and the multivari-
ate model has the steepest slopes. The power can be improved by at most 0.7 by
performing the multivariate test rather than multiple univariate tests for moderate
sample size when the variance is small. When focusing on panels in the same col-
umn, we notice that the larger variance leads to lower power under the same effect
size. The difference between two CACE models decreases as sample size grows.

(b) We start from the first row, when N = 100, the power of the multivariate test reaches
1 after the effect size grows over 1. As the sample size increases to 200 and 500, we
could observe a sharp increase of power within small changes in the effect size and
the power reaches 1 earlier.

(c) For the larger variance-covariance matrices, we observe a similar trend of power
except when the effect sizes are comparably small. In cases where the true effect
sizes are too small, compared to the corresponding variance, and the sample size
is not large enough, we could observe some little fluctuations for CACE models by
chance.

(d) The parametric bootstrap test performs quite robust for different values of the variance-
covariance matrices and the sample size. It performs much better than the Univari-
ate CACE and slightly worse than the Multivariate CACE in terms of the power. But
combined with its performance in controlling the type I error, the parametric boot-
strap test is preferred for moderate sample sizes.

Therefore, the Multivariate CACE is the clear winner in terms of statistical power.
Estimating the type I error is considered as a special case in our power analysis. When

the true value of the effect size equals 0, the type I error can be estimated via (4.11). Ta-
ble 4.5 shows the results of α̂ for different variance-covariance matrices, sample sizes and
CACE models. Ideally, the estimates of type I error should be approximately 0.05 as we
assumed α = 0.05. However, it is worth noticing that the estimates of α inflate for the mul-
tivariate model under moderate sample sizes. The occurrence of the mixture part in our
Multivariate CACE model could be a possible explanation of this phenomenon. It could
also be a result of a low compliance rate. We set pc to 0.4 in our simulation so that only
40% of the data could be used to estimate the treatment effect. If the sample size equals
100, then the effective sample size is only 40. We also notice that the the magnitude of
variance-covariance matrices is not related to the magnitude of α̂, thus we only consider
the small variance-covariance matrices from now on. Surprisingly, the performance of mul-
tiple univariate models is quite good that the α̂ does not inflate. This might be caused by
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Figure 4.3: Power analysis based on 500 simulated datasets: the first row represents the re-
sults for smaller variance-covariance matrices (Σc1 , Σn1) and the second row represents the
results for larger variance-covariance matrices (Σc2 , Σn2); the green dash curve represents
the results for the Multivariate CACE, the red solid curve represents the results for the
parametric bootstrap test and the blue dash curve represents the results for the Univariate
CACE (δc = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5)).
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the Bonferroni correction we applied to multiple univariate tests. The Bonferroni correc-
tion tends to be a bit too conservative as it is trying to make it unlikely that you would
make even one false rejection.

Theoretically, the LR test statistic G asymptotically follows the chi-square distribution
under large sample sizes. Unfortunately, as we mentioned earlier, the approximation is in-
accurate even for moderate sample sizes (N = 100, 200) for the multivariate model when
the compliance rate is low. So we tried the parametric bootstrap test to address this issue
and the results are presented in Table 4.5. To be consistent, we also performed the para-
metric bootstrap test for large sample size scenarios, which is not suggested in practice
due to high computational cost. We could observe a clear improvement from Table 4.5 that
α̂ drops to the nominal level even for the smallest sample size. This approach also performs
well for large sample sizes.

Table 4.5: Estimates of type I error from the multivariate likelihood ratio test, the univariate
likelihood ratio test, the parametric bootstrap test for different variance-covariance matri-
ces.

Variance-covariance Matrix 1 2
Model Mul Uni Mul Uni

N / Test LR Bootstrap LR LR Bootstrap LR

100 0.140 0.055 0.056 0.158 0.056 0.058
200 0.106 0.052 0.056 0.070 0.045 0.034
500 0.064 0.042 0.042 0.050 0.048 0.044
1000 0.048 0.053 0.032 0.048 0.052 0.038

We gathered the test statistics from 500 simulated datasets and visualized the results in
Figure 4.4. Each panel shows the distribution of test statistics grouped by the sample size.
For moderate sample sizes, the kernel estimated distribution has a lower peak and a fatter
tail, and as sample size increases, the discrepancy disappears accordingly. As expected, a
perfect overlap of two densities appears when sample size increases to 1000.

Another parameter of interest is the compliance rate. In order to figure out whether
higher compliance rate leads to lower type I error, we chose several different values of
pc in our simulation study. Table 4.6 shows the estimates of α for pc = (0.4, 0.5, 0.6, 0.8).
Under fixed sample size, as compliance rate increases from 0.4 to 0.6, α̂ decreases quickly.
The decreasing slows down after the compliance rate reaches 0.6. To be consistent, we
performed the parametric bootstrap test for different values of pc as well. Upon closer
inspection we can see that the parametric bootstrap test gives quite robust results that
α̂ fluctuates within a small range for different sample sizes and compliance rates. These
results have been visualized in the left panel in Figure 4.5.
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Figure 4.4: Distribution of LR test statistics: the green dash curve is the density function of
the chi-square distribution and the blue solid curve is the kernel estimated density function
from test statistics.

Table 4.6: Estimates of type I error for different compliance rates.

pc pc = 0.4 pc = 0.5 pc = 0.6 pc = 0.8
N / Test LR Parametric Bootstrap LR Parametric Bootstrap LR Parametric Bootstrap LR Parametric Bootstrap

100 0.140 0.055 0.092 0.056 0.088 0.060 0.086 0.052
200 0.106 0.052 0.062 0.045 0.056 0.050 0.058 0.047
500 0.064 0.042 0.054 0.051 0.048 0.046 0.048 0.051
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Figure 4.5: Estimated type I error for different compliance rates.

4.2.4 Simulation for Independent Outcomes

As mentioned in our motivation, independent outcomes can be treated as a special case
in multivariate analysis. We would like to have a brief discussion on the results for inde-
pendent multivariate outcomes in this section. Instead of using (4.1) and (4.2), we chose
two diagonal matrices as variance-covariance matrices to generate datasets. The diagonal
elements of two new variance-covariance matrices are the same as (4.1) and (4.2).

The distribution of estimates is shown in Figure 4.6, grouped by the sample size. Not
surprisingly, two CACE models have comparable performance.

We also present the distribution of the length of confidence intervals in Figure 4.7. The
width of confidence intervals decreases as sample size increases. We are happy to observe
that the Multivariate CACE model still outperforms multiple Univariate models in the
length of confidence intervals.
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Figure 4.6: Distribution of MLEs for independent outcomes: red boxes represent the results
for the Multivariate CACE and green boxes represent the results for the multiple Univari-
ate CACE (δc = 0).

Figure 4.7: Distribution of the length of confidence intervals for independent outcomes:
red boxes represent the results for the Multivariate CACE and green boxes represent the
results for the multiple Univariate CACE.
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Chapter 5

Application

We return to our motivating example described in Chapter 2. For consistency and com-
pleteness, we fitted both the Multivariate CACE and multiple Univariate CACE models to
the Arthritis Health Journal data to compare the estimates of parameters. Since the esti-
mated value of the compliance rate is around 0.4, and the sample size is only 80 in total,
we decided to conduct both the global likelihood ratio test and the parametric bootstrap
test to evaluate the significance of the treatment effect. Additionally, we also performed
Intention-to-treat (ITT) analysis and As-treated (AT) analysis to our dataset. The ITT anal-
ysis is considered to be comparably conservative in estimating method effectiveness while
the AT analysis may exaggerate the method effectiveness, so we expect to see the estimates
obtained from the Multivariate CACE fall in the range formed by the estimates from the
ITT analysis and the AT analysis.

5.1 Point Estimate

The estimates of δc are listed in Table 5.1. Upon closer inspection we can see the discrepancy
between Multivariate CACE estimators and Univariate CACE estimators, which might be
caused by the non-ignorable correlations among different health outcomes. Recall that all
health outcomes are change scores from baseline and δ̂c is the estimate of the difference in
change scores between treatment and control groups with the positive values indicating
beneficial treatment effects of using the online tool except for outcome Y5 whose positive
change score suggests harmful treatment effects. It is worth noticing that the Multivariate
CACE estimates for the 6 outcomes are all in the direction of beneficial treatment effects of
the online tool whereas the Univariate CACE estimates for Y2 and Y3 point to the direction
of harmful treatment effects of the online tool. The shrinkage of the extreme estimates in
the Multivariate CACE helps to provide more precise estimates by borrowing information
from multiply correlated data and is demonstrated to have impact on CACE estimates
with potential clinical implications in this application.
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Table 5.2 and Table 5.3 show the estimates of means for compliers in the treatment
group and never-takers.

Table 5.1: Estimates of δc for the Multivariate CACE analysis, the Univariate CACE analy-
sis, the ITT analysis and the AT analysis.

Outcome / Model
CACE

ITT AT
Mul Uni

Y1 0.961 1.250 1.811 1.163
Y2 2.017 -1.030 1.247 5.328
Y3 4.008 -2.165 -0.499 3.883
Y4 9.914 12.545 5.315 11.678
Y5 -5.814 -11.030 -2.757 -10.140
Y6 0.976 2.017 0.592 1.973

Table 5.2: Estimates of µc for the Multivariate CACE analysis, the Univariate CACE analy-
sis, the ITT analysis and the AT analysis.

Outcome / Model
CACE

ITT AT
Mul Uni

Y1 2.078 1.789 2.898 2.685
Y2 0.383 3.430 0.573 3.652
Y3 0.792 6.965 1.294 4.348
Y4 0.753 -1.879 3.431 8.670
Y5 -4.769 0.447 -3.382 -9.022
Y6 1.315 0.275 0.708 1.773

Table 5.3: Estimates of µn for the Multivariate CACE analysis, the Univariate CACE analy-
sis, the ITT analysis and the AT analysis.

Outcome / Model
CACE

ITT AT
Mul Uni

Y1 1.428 1.486 1.087 1.522
Y2 -1.080 -2.537 -0.674 -1.675
Y3 0.853 -1.944 1.793 0.465
Y4 -2.864 -2.051 -1.884 -2.982
Y5 1.801 0.130 -0.625 1.118
Y6 -0.514 -0.193 0.116 -0.200

Estimates of variances for the Univariate CACE are listed in (5.1) and (5.2). As shown
in (5.3) and (5.4), the variance-covariance matrices for compliers and never-takers are quite
similar. The variances of Y1 to Y5 are huge and the correlations among outcomes are non-
negligible.

σ̂c = (70.478, 69.283, 166.042, 518.459, 273.333, 7.327), (5.1)
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σ̂n = (127.657, 228.597, 130.011, 78.076, 97.585, 2.312); (5.2)

Σ̂c =



60.143 23.323 47.894 106.599 −47.663 6.441
23.323 80.742 92.118 61.113 −51.681 4.575
47.894 92.118 178.645 136.651 −117.646 15.241
106.599 61.113 136.651 525.573 −102.971 32.906
−47.663 −51.681 −117.646 −102.971 251.736 −10.609

6.441 4.575 15.241 32.906 −10.609 5.616


, (5.3)

Σ̂n =



127.752 74.798 53.929 65.222 −75.603 9.506
74.798 217.553 123.435 42.303 −90.385 11.536
53.929 123.435 148.105 38.099 −65.327 4.778
65.222 42.303 38.099 103.726 −58.588 11.084
−75.603 −90.385 −65.327 −58.588 119.076 −9.910

9.506 11.536 4.778 11.084 −9.910 2.690


. (5.4)

Another important parameter in our model is the compliance rate. As we discussed
in Chapter 1, one limitation of the multiple Univariate CACE is that it yields 6 different
estimates of pc (see Table 5.4). We calculated the average value of these 6 estimates for

Table 5.4: Maximum likelihood estimates of pc.

Y1 Y2 Y3 Y4 Y5 Y6 Mean

p̂c 0.45 0.43 0.44 0.43 0.45 0.39 0.43

interpretation purpose. The estimate of pc provided by the Multivariate CACE is 0.38.

5.2 Interval Estimate

We compared the confidence intervals of the treatment effect δc for two CACE models (see
Table 5.5 and Figure 5.1). An important observation is that the Univariate CACE gives
wider confidence intervals than the Multivariate CACE for most outcomes. This confirms
the finding from our simulation study that the Multivariate CACE outperforms the Uni-
variate CACE in the length of confidence intervals. It is also worth noticing that all con-
fidence intervals contain 0, which implies that the treatment effect is not statistically sig-
nificant. The length of confidence intervals also reflects the magnitude of variances of out-
comes.
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Table 5.5: 95% simultaneous confidence intervals of δc for the Multivariate CACE and the
Univariate CACE.

Outcome / Model Mul CACE Uni CACE

Y1 (-6.796, 8.718) (-8.688, 11.188)
Y2 (-7.338, 11.371) (-12.340, 10.340)
Y3 (-9.872, 17.887) (-18.800, 14.470)
Y4 (-12.349, 32.177) (-8.590, 33.681)
Y5 (-21.215, 9.587) (-27.430, 5.370)
Y6 (-1.337, 3.289) (-0.702, 4.737)

Figure 5.1: MLEs and the corresponding 95% confidence intervals: the red bars represent
the Multivariate CACE and the green bars represent the Univariate CACE.

5.3 Hypothesis Test

The global likelihood ratio test was conducted for both CACE models, and the parametric
bootstrap test was only conducted for the Multivariate CACE to control the inflation of
type I error.

42



5.3.1 Multivariate CACE Analysis

In the Arthritis Health Journal data, we have 6 health outcomes in total. We consider the
global likelihood ratio test first. Recall that the test statistic G is calculated as

G = −2 (lreduced|θ̂r
− l f ull |θ̂ f

), (5.5)

where the reduced model sets δc to 0. Under the null hypothesis, G asymptoticly follows a
chi-square distribution with degree of freedom 6.

Applying the calculation to the Arthritis Health Journal data, the test statistic equals
2.381 and the p value equals 0.881. Therefore, we fail to reject the null hypothesis; that is,
the treatment effect is not statistically significant.

Following the steps described in Section 3.3.8, we conducted a parametric bootstrap
test to get the estimated distribution for G (see Figure 5.2). It is clear that the kernel esti-
mated density curve and the density of chi-square distribution overlap each other for most
parts, but the differences still exist around the peak and the right tail. The kernel estimated
density has a fatter tail and a lower peak as seen in the simulation study. We fail to re-
ject the null hypothesis, which confirms the conclusion we have obtained from the global
likelihood ratio test.

5.3.2 Univariate CACE Analysis

As for Univariate CACE analysis, Bonferroni correction should be considered for multiple
tests. Therefore, the cut-off value for significance should be 0.0083 at level 0.05 when k = 6.
Six tests were conducted separately and we obtained 6 p values as follows

0.739, 0.813, 0.734, 0.127, 0.076, 0.065.

Consequently, we fail to reject any of these six hypotheses.
Despite the discrepancy between the estimates, the Multivariate CACE model and mul-

tiple Univariate CACE models reach the same conclusion that the treatment effect is not
statistically significant in the Arthritis Health Journal Study.

5.4 Effects of Baseline Covariates on Compliance Mechanism

There are 5 binary pre-treatment covariates in our Arthritis Health Journal dataset: Disease
Time, Disease Activity I, Disease Activity II, Age and Gender. Disease Activity I and Dis-
ease Activity II are two different ways to define disease activity, so we just keep Disease
Activity I as one of the predictors. As defined in (3.13), pc is no longer a constant when
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Figure 5.2: Estimated distribution of the test statistic via the parametric bootstrap test: the
red bars represent counts, the blue solid curve is the kernel estimated density, the green
dash curve is the density function of chi-square distribution with degree of freedom 6 and
the black vertical line represents the value of the original LR test statistic G0.

considering potential effects of baseline covariates on the compliance mechanism:

pc = Ψ(c, w, ψ) =
exp(ψ0 + ψ1w1 + ψ2w2 + ψ3w3 + ψ4w4)

1 + exp(ψ0 + ψ1w1 + ψ2w2 + ψ3w3 + ψ4w4)
. (5.6)

Table 5.6 shows how the estimates were affected by adding baseline covariates to our
CACE models. The effect of baseline covariates on the estimates is somewhat limited that
even the estimate of pc did not change much after adding baseline covariates to our mod-
els.

In addition to the new estimates of parameters, we also obtained a new LR test statistic
G and the corresponding p value: G = 2.749 and p value = 0.840. Considering baseline
covariates does not change our conclusion that the treatment effect is not statistically sig-
nificant.

Table 5.7 shows the estimated intercept and coefficients to predict the compliance be-
havior. Based on the calculated p value, only the Disease Activity I and Age are significant
predictors at level 0.05. Recall that w1 is the binary indicator for Disease Duration; w2 is
binary indicator for Disease Activity I; w3 is the binary indicator for Gender; and w4 is the
binary indicator for Age, we consider the interpretation of the intercept and coefficients.
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Table 5.6: Comparison of new and old estimates of δc & pc.

Outcome / Model
Multivariate CACE Univariate CACE
Old New Old New

Y1 0.961 0.301 1.250 -0.343
Y2 2.017 2.436 -1.030 -2.668
Y3 4.008 4.952 -2.165 -2.634
Y4 9.914 9.345 12.545 12.327
Y5 -5.814 -6.165 -11.030 -11.741
Y6 0.976 0.953 2.017 1.876
pc 0.380 0.386 0.430 0.401

Table 5.7: Estimates of the intercept and coefficients.

MLE se z value p value

Intercept (ψ0) -1.290 0.785 -1.644 0.100
Disease Duration (ψ1) -0.768 1.043 -0.736 0.461
Disease Activity I (ψ2) 1.658 0.718 2.310 0.021
Gender (ψ3) -0.761 1.543 -0.493 0.622
Age (ψ4) -0.842 0.358 -2.349 0.019

The intercept ψ0 is the log odds of being a complier for a female patient with late disease,
low disease activity under 54.5 years old. Therefore, ψ̂0 = −1.290 suggests that a young
woman with late disease and mild symptoms is less likely to be a complier. The coeffi-
cients could be interpreted as the difference in log odds ratio with other covariates fixed.
For example, ψ1 is the difference in log odds of being a complier between patients with
early disease and patients with late disease when the disease activity, gender and age are
fixed. In conclusion, young female patients with late disease and high disease activity 1
are more likely to be compliers.

Though we fail to observe huge difference between with and without the baseline co-
variates, adding baseline covariates to our model still has some scientific meaning for re-
searchers. For instance, researchers may be capable of predicting participants’ compliance
behaviors based on their baseline measurements and take some actions to avoid noncom-
pliance behavior.

45



Chapter 6

Discussion

6.1 Summary

Many researchers have encountered the noncompliance issue in the RCTs involving hu-
man subjects when they try to evaluate the efficacy of a new treatment. The Intention-
to-treat (ITT) analysis only concentrates on the initial treatment assignment, while the as-
treated (AT) analysis concerns the actual receipt of treatment and ignores the assignment.
With the occurrence of non-compliers, both the ITT analysis and the AT analysis would
generate biased estimates of method effectiveness. CACE analysis was introduced to pro-
vide an unbiased estimate of the method effectiveness. Due to the complexity of treatment
effect evaluation, correlated multivariate outcomes are common in epidemiological stud-
ies. In this thesis, we generalized the Univariate CACE model to the Multivariate CACE
model in order to better deal with multivariate health outcomes. Instead of analyzing mul-
tivariate outcomes separately, we managed to model the multiple outcomes all together
without losing key information.

We conducted a systematic simulation study to compare Multivariate and Univariate
CACE models in different scenarios. We also applied both models to the Arthritis Health
Journal data to estimate the treatment effect. In particular, we performed a global likeli-
hood ratio test to test the significance of the treatment effect as well as a parametric boot-
strap test to control type I error inflation. Interestingly, we found the Multivariate CACE
estimates all pointed to the direction of beneficial effects of using the online tool whereas
two out of six estimates in the Univariate CACE pointed to the direction of harmful treat-
ment effects. Despite this difference in estimates, the treatment effect is not statistically
significant in the Arthritis Health Journal Study according to the results of both tests.

6.1.1 Interesting Findings from Simulation Study

We summarize some interesting findings from our simulation study, which shows the
clearer evidence of advantages of the Multivariate CACE model over multiple Univari-
ate CACE models.
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First of all, one of the advantages of the Multivariate CACE model over multiple Uni-
variate CACE models is that it produces more precise estimates with smaller variance
of the MLEs, narrower confidence intervals and higher coverage rate. The multivariate
model further expands its advantage as the variance of the outcomes increases. Even in
cases where the multivariate outcomes are independent from each other, the Multivariate
CACE still performs slightly better than the univariate model.

Secondly, performing multivariate analysis could bring considerable improvement in
statistical power. As shown in Figure 4.3, the test power increases by 0.7 at most by using
the multivariate model when sample size equals 100 with smaller variance-covariance ma-
trices. Given the same effect size and variance-covariance matrices, the difference in power
between two models becomes larger as sample size increases. Additionally, it seems very
promising that the power of the Multivariate CACE model grows more faster and reaches
1 earlier as effect size and sample size increase.

However, we lost the control of the type I error that should be 0.05 in theory when
modeling multivariate outcomes via the Multivariate CACE model. Parametric bootstrap
test was conducted to address this issue. It turns out that the parametric bootstrap test
is very robust to control both the type I error and the type II error simultaneously for
different values of the sample size and compliance rate. Figure 4.4 shows the estimated
distribution of LR test statistic from which we could observe the perfect overlap of the
estimated distribution and the chi-square distribution when sample size is large enough.

6.1.2 Limitations

Despite the fact that the Multivariate CACE outperforms the Univariate CACE in estima-
tion and statistical power, several important issues are not addressed.

We assumed the health outcomes to follow a multivariate normal distribution in our
simulation study and in the Arthritis Health Journal Study. In fact, the multivariate health
outcome does not always follow an exact multivariate normal distribution, which may
violate the assumptions of the likelihood function. A nonparametric model can be a bet-
ter candidate to model the non-normal outcomes, however it is beyond the scope of this
project.

In the Arthritis Health Journal Study, participants who have used the online tool for no
less than 3 times are defined as compliers. As compared to the never-takers in the control
group, never-takers in the treatment group may use the online tool for once or twice. The
definition of compliers implies no difference between never-takers in two groups. Thus,
the exclusion restriction assumption is violated. An alternative definition of the compli-
ers in the AHJ Study may make the assumption of exclusion restriction more reasonable,
which will be investigated in the future.

In most clinical trials, a moderate sample size of 100 or 200 can be very common. To
control the inflation of type I error, the parametric bootstrap test is required. The paramet-
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ric bootstrap test performs well in controlling both the type I error and the type II error at
the sacrifice of significantly increased computational cost. Therefore, it may not be attrac-
tive to spend hours on a simple test. But we have not found a more efficient way to control
both error rates simultaneously.

6.2 Future Work

The Multivariate CACE model proposed in this thesis is a rather basic one, as it ignores
the effects of the baseline covariates on health outcomes. We only considered the effect of
baseline covariates on the compliance rate for the Arthritis Health Journal data. Further
improvements could be made to the Multivariate CACE model to provide more accurate
analysis results by considering the baseline characteristics.

Our proposed Multivariate CACE model highly relies on some crucial assumptions,
further work can be done to explore the scenarios when one or few assumptions are vio-
lated. The random assignment is not a realistic assumption when involving human sub-
jects due to ethical concerns. Furthermore, if the SUTVA and the exclusion restriction as-
sumption are violated, the CACE model would not be identifiable. In future, we will pro-
pose a more robust multivariate CACE model or other nonparametric models to address
above concerns.
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