
Online Density Bursting Subgraph
Detection from Temporal Graphs

by

Yanyan Zhang

M.Eng., University of Chinese Academy of Sciences, 2014
B.Eng., Shandong University, 2011

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Science

©Yanyan Zhang 2018
SIMON FRASER UNIVERSITY

Summer 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name:

Degree:

Title:

Examining Committee:

Yanyan Zhang

Master of Science (Computer Science)

Online Density Bursting Subgraph Detection from
Temporal Graphs

Chair: Qianping Gu
Professor
School of Computing Science

Date Defended:

Jian Pei
Senior Supervisor
Professor
School of Computing Science

Jiannan Wang
Supervisor
Assistant Professor
School of Computing Science

Martin Ester
Internal Examiner
Professor
School of Computing Science

May 7, 2018

ii

Abstract

Given a temporal weighted graph that consists of a potentially endless stream of updates,
we are interested in finding density bursting subgraphs (DBS), where a DBS is a subgraph
that accumulates its density at the fastest speed. Online DBS detection enjoys many novel
applications. At the same time, it is challenging since the time duration of a DBS can be
arbitrarily long but a limited size storage can buffer only up to a certain number of up-
dates. To tackle this problem, we observe the critical decomposability of DBSs and show
that a DBS with a large time duration can be decomposed into a set of indecomposable
DBSs with equal or larger burstiness. We further prove that the time duration of an in-
decomposable DBS is upper bounded and propose an efficient method TopkDBSOL to
detect indecomposable DBSs in an online manner. Extensive experiments demonstrate the
effectiveness, efficiency, and scalability of TopkDBSOL in detecting significant DBSs from
temporal graphs.

Keywords: dense subgraph, online, temporal graph, bursting subgraph

iii

Dedication

To my family.

iv

Acknowledgements

I owe my deepest gratitude to my senior supervisor, Dr. Jian Pei, for his continuous guid-
ance, enthusiam and encouragement throughout my studies, and throughout the process of
researching and writing this thesis. His rigorous attitude for science, extensive knowledge
on the statistics and computing science, and broad vision for the specialized area influenced
me a lot and led me to think deeply on my studies, research, and even the future careering
development.

I am deeply grateful to Dr. Jiannan Wang for being my supervisor and offering me
helpful suggestions on this thesis as well as how to be a good data researcher.

My sincere gratitude is also given to Dr. Martin Ester, the internal examiner of my
supervisory committee, for his kind help and insightful comments.

I also owe my great gratitude to my lab mates for their kind help and encouragement.
A particular acknowledgement gose to Juhua Hu, Xiangbo Mao, Yu Yang, Chuancong Gao,
Xiao Meng, Zicun Cong, Zijin Zhao, Xia Hu, Yajie Zhou.

Last but not least, I want to express my sincere gratitude to my husband, Dr. Lingyang
Chu, for his love and company. Being my closest family as well as best friend, he gives me
continuous support throughout my studies and research. My warmest gratitude would give
to my parents, Chuanfang Zhang and Chuanqin Ma, for giving birth to me and offering
me their unconditional love and support. Also, I would like to thank my dear sister Meng
Zhang, for her love and support, as well as her company with our parents.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Major Idea and Contributions . 2
1.3 Organization of the Thesis . 3

2 Related Work 4
2.1 Dense Subgraph Detection . 4
2.2 Dense Temporal Subgraph Detection . 5
2.3 Maximum Density Segment Problem . 6

3 Problem Definition 7
3.1 Temporal Graph and Temporal Subgraph 7
3.2 Density Bursting Subgraph . 8
3.3 Top-k DBS Finding Problem . 9

4 Finding a Single DBS and a Static Baseline Method 11
4.1 Finding a Single DBS . 11

4.1.1 The CQP problem . 11
4.1.2 The MDS problem . 12

4.2 A Static Baseline and a Challenge for Online Solution 13

vi

5 DBS Decomposition and Online Top-k DBS Detection 15
5.1 DBS Decomposition . 15
5.2 Online Top-k DBS Detection . 17

5.2.1 The OTDF problem . 17
5.2.2 Finding the Set of NDBSCs . 17
5.2.3 Updating the Set of ODBSCs . 19

6 Experiment 22
6.1 Effects of Parameters . 25

6.1.1 Effect of θ . 25
6.1.2 Effect of k . 25

6.2 Scalability Analysis . 27
6.3 Comparison with DenseAlert . 28
6.4 Case Study . 29

6.4.1 Discovering Travel Patterns from TAXI-1 and TAXI-2 30
6.4.2 Finding Emerging Research Topics from KAN 31

7 Conclusions 33

Bibliography 35

vii

List of Tables

Table 3.1 Frequently used notations. 8

Table 6.1 Detailed description of data sets. 23
Table 6.2 The numbers of indecomposable DBSs (#Indec) and decomposable

DBSs (#Dec) detected by SW. We rank all DBSs in descending order
of burstiness, and Rank is the rank of the decomposable DBS with the
largest burstiness. 25

Table 6.3 The numbers of vertices (#V) and edges (#E) of the data sets sampled
from DBLP, ENRON and FBWP. 27

Table 6.4 The durations and topics of detected DBSs. 31

viii

List of Figures

Figure 5.1 The slope representation of a decomposable DBS (x∗, T ∗), where
T ∗ = (tb∗ , te∗] and T (tb∗ , te∗) 6= ∅. P and Q are the two blue triangle
regions, respectively. 16

Figure 5.2 The slope representation to prove Theorem 5.3. L is an auxiliary line
that crosses zc. The slope of L is g(x̂, T̂). 19

Figure 6.1 The effect of parameters θ. Figures (a), (c) and (e) show the Average
Edge Density Burstiness (EDB) of detected DBSs by all methods.
Figures (b), (d) and (f) show the Running Time (RT) of all methods. 24

Figure 6.2 The effects of parameter k. Figures (a), (c) and (e) show the Average
Edge Density Burstiness (EDB) of detected DBSs by all methods.
Figures (b), (d) and (f) show the Running Time (RT) of all methods. 26

Figure 6.3 The RT of OL, OLnsi and SW on the temporal graphs sampled from
DBLP, ENRON and FBWP. The parameters are θ = 3, k = 30. . . 28

Figure 6.4 The Average EDB of OL, OLnsi and DA. We set θ = 3 for OL, OLnsi.
Since DA uses a fixed size sliding window, we set the window size w
of DA as w = {2, 3, 4}, such that the sliding window contains 3, 4
and 5 snapshots, respectively. 29

Figure 6.5 The bursting taxi trips between a set of locations in the city of
Chicago in US. (a) shows the number of taxi trips between a set
of locations during 17:30-18:45 on TAXI-1. (b) shows the number of
taxi trips between a set of locations during 22:45-23:45 on TAXI-2. 30

Figure 6.6 The normalized popularity (POP) of detected topics. x-axis is the
time line of years. ID corresponds to Table 6.4. 32

ix

Chapter 1

Introduction

In this chapter, we first introduce the motivation of this thesis, then illustrate the key ideas
and major contributions of our work. In the end, we introduce the structure of the thesis.

1.1 Motivation

General Eric Shinseki said, “If you don’t like change, you’re going to like irrelevance even
less”. Finding the most and fastest changing parts is a central task in analyzing temporal
data. For example, in a series of snapshots of a social network, analysts are often interested in
the density bursting subgraphs where a group of people gain intra-group connection density
at the fastest speed. More specifically, in a stream of snapshots of a business collaboration
network, where each vertex is a person or a company and the weight of an edge represents
the collaboration strength between two parties in the time duration of a snapshot, a density
bursting subgraph is a group of parties whose collaboration strengths in between increase
dramatically fast. Such a density bursting subgraph may indicate a new business consortium
is forming, for example, due to new business opportunities like ICO.

As another concrete example, the taxi trips in a city naturally form a temporal network,
where each vertex is a location in the city and the weight of an edge is the number of taxi
trips between two locations during a specific time period. In such a network, a density
bursting subgraph indeed reveals a burst of taxi trips among a group of locations. Our case
study in Figure 6.5 and Section 6.4 give two examples of such bursts of taxi trips, which
reveal interesting travel patterns of people on weekdays and weekends, respectively.

We can also form a network where each vertex is a keyword and the weight of an edge
is the frequency two keywords co-occurring in an article in a specific year. Then, a bursting
subgraph in a series of snapshots of the network indeed suggests a topic that gains fast
growth in a period. Our experimental results (Table 6.4) give 6 such example bursting
topics and their corresponding periods.

If one wishes, the list of possible applications of finding density bursting subgraphs can
easily keep growing. Surprisingly, although finding density bursting subgraphs is interesting

1

and has many applications, this problem has not been touched systematically in literature.
As reviewed in Chapter 2, the existing works on finding dense subgraphs [7, 1, 30, 33, 35]
only focus on density but do not consider the speed of density changes. The previous works
on dense temporal subgraph detection [37, 27, 31, 2, 3, 6, 32] maintain dense subgraphs
against incremental or streaming updates, but again do not account the change speed of
density. Since a dense subgraph may slowly accumulate a large density in a long time, it may
not necessarily be a density bursting subgraph. Therefore, existing dense (temporal) sub-
graph detection methods cannot be straightforwardly extended to detect density bursting
subgraphs.

As will be investigated in Section 4.2, Chapter 4, a closer look finds out that the problem
of finding density bursting subgraphs is far from trivial. Due to the nature of weighted
graphs, a burst can last for a long and potentially indefinite time. A static method has to
buffer all the snapshots involved in a burst, thus cannot handle a large number of updates.
This leaves us no choice but to design an efficient online algorithm for density bursting
subgraph detection.

1.2 Major Idea and Contributions

In this thesis, we tackle the novel problem of online density bursting subgraph detection.
Specifically, given a stream of snapshots of a temporal graph, a density bursting subgraph
(DBS) is a subgraph that accumulates its density at the fastest speed during a time interval.
We measure the speed of density accumulation by burstiness, which is the ratio between the
density gain of a subgraph and the time to accumulate the density. We make the following
contributions.

First, we consider the static Top-k DBS Finding (TDF) version of the problem, that is,
all snapshots of a temporal graph are available and we find the set of DBSs with the top-
k largest burstiness. We model the static TDF problem as a mixed integer programming
problem and show that it is NP-hard. We also propose a baseline method SlideWin to
find a good solution to the TDF problem by iteratively solving a constrained quadratic
programming (CQP) problem and a maximum density segment (MDS) problem.

Second, considering the general DBS detection problem, we show that the time duration
of a DBS can be arbitrarily long, and thus a straightforward extension of SlideWin or alike
does not work. To tackle the problem systematically, we follow a principled approach – we
try to identify the “atomic” components of DBSs. Critically, we observe that a DBS with
a large time duration can be decomposed into a set of indecomposable DBSs with equal or
larger burstiness. Most importantly, we show that the time duration of an indecomposable
DBS is upper bounded, which makes it possible to detect indecomposable DBSs in an online
manner.

2

Last, we formulate the online Top-k DBS Finding (OTDF) problem, which is to detect
top-k indecomposable DBSs online. The OTDF problem is also NP-hard. We develop an
efficient algorithm TopkDBSOL, which achieves a 2-approximation of the top-1 indecom-
posable DBS. Our extensive experiments and an interesting case study clearly show that
our method is effective and efficient in finding DBSs from large temporal graphs.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. We review the related works in Chapter 2,
and formulate the static Top-k DBS Finding problem (TDF) in Chapter 3. In Chapter 4,
we investigate how to find a single DBS and present the proposed static baseline method
SlideWin. We also discuss the major challenges of online DBS detection in this chapter. In
Chapter 5, we explore the decomposition properties of DBS, present the online Top-k DBS
Finding (OTDF) problem and develop TopkDBSOL. We report a systematic empirical
study in Chapter 6 and conclude the thesis in Chapter 7.

3

Chapter 2

Related Work

Online density bursting subgraph detection is a novel task that has not been touched in
literature. Nevertheless, as one of the most widely used structures to model the relationship
between entities, graphs, as well as detecting dense subgraphs from (temporal) graphs, have
been studied extensively in literature. Our work is highly relevant to dense subgraph detec-
tion, dense temporal subgraph detection, and Maximum Density Segment (MDS) Problem,
which works as a building block in our method. Therefore, we review these three subjects
in this chapter.

2.1 Dense Subgraph Detection

Detecting dense subgraphs from static graphs is a well investigated task [7, 1, 30, 33, 35].
Our work is most related to the cohesiveness based methods [8, 29, 23, 24, 11], which
measure the density of a subgraph by cohesiveness, that is, a quadratic function x>Ax of
a subgraph embedding x ∈ 4n, where 4n = {x |

∑
i xi = 1,xi ≥ 0} represents standard

n-dimensional simplex.
For unweighted graphs, Motzkin et al. [28] proved that maximizing the cohesiveness is

equivalent to finding the maximum clique in a graph. For weighted graphs, Pavan et al. [29]
proposed Dominent Set (DS), which detects clique-like dense subgraphs by applying an opti-
mization method named replicator dynamics to find local maximum points of cohesiveness.
However, the O(n2) time complexity of replicator dynamics limits the scalability of DS. To
further improve the efficiency of DS, Bulò et al. [8] proposed a more efficient optimization
method named Infection Immunization Dynamics (IID) to find local maximum points of
cohesiveness. IID is a population game dynamics motivated by the analogy with infection
and immunization processes within a population of “game players”. The time complexity of
IID is O(n). Since most dense subgraphs exist in local regions, Liu et al. [24, 23] proposed
the shrinking and expansion algorithm (SEA) to efficiently search local maximum points of
cohesiveness in small local subgraphs and prevent unnecessary time and space cost.

4

All these cohesiveness based methods efficiently find clique-like dense subgraphs that
are well demonstrated to be stable and robust to noise [26, 12, 24, 10, 39, 14]. However,
they cannot process the temporal information inherent in a potentially endless stream of
snapshots.

2.2 Dense Temporal Subgraph Detection

Detecting dense temporal subgraphs from temporal graphs has attracted much attention in
recent years [37, 27, 31, 2, 3, 6, 32, 38].

Bogdanov et al. [6] proposed MEDEN to detect dense temporal subgraphs with a large
sum of edge weights. Ma et al. [27] proposed FIDES, which is three orders of magnitudes
faster than MEDEN, for the same problem. The above research works detect a dense sub-
graph by finding the connected temporal subgraph with the largest sum of positive edge
weights. As a result, these algorithms tend to detect a very large connected subgraph in a
graph without negative edge weights, which does not have much value in practice.

Yang et al. [37] used γ-quasi-clique to find the set of most diversified γ-dense subgraphs
that can cover the original temporal subgraph as much as possible. Boden et al. [5] employed
γ-quasi-clique to find vertices densely connected by edges with similar labels. These methods
buffer temporal graphs in a static manner, and have to compute from scratch when new
updates arrive. Thus, they cannot process a temporal graph with an endless stream of
updates.

To handle streaming updates, Aggarwal et al. [2] proposed a probabilistic model to mine
dense structural patterns by summarizing a graph stream. Angel et al. [3] incrementally
computed dense subgraphs by maintaining a small number of sparse subgraphs. Epasto et
al. [17] maintained a temporal subgraph with near-optimal average degree. Bhattacharya et
al. [4] maintained a temporal subgraph with the largest average degree. These methods
find subgraphs with large density instead of considering how fast a temporal subgraph
accumulates density. Since a subgraph can slowly accumulate a large density during an
arbitrarily long time, a subgraph with large density is not necessarily a density bursting
subgraph. As a result, the methods mentioned above cannot accurately find density bursting
subgraphs.

Shin et al. [31] proposed a dense subtensor detection method named DenseAlert, which
can be extended to maintain the top-1 temporal subgraph that has the largest average
degree [18] within a time window. However, since a subgraph with a large average degree
usually has a low edge density [33], the temporal subgraph maintained by DenseAlert

usually has a small edge density, and is substantially different from the top-k DBSs detected
by our method.

5

2.3 Maximum Density Segment Problem

Given a sequence of numbers Q = 〈q1, . . . , qn〉 and a positive integer L ≤ n, the Maximum
Density Segment (MDS) problem [9] is to select a subsequence of Q with length at least L,
such that the average sum of the selected numbers is maximized. Clearly, if L = 1, then a
trivial solution with the largest element in the array will be returned.

The MDS problem is a fundamental problem that has many linear time solutions. Huang
et al. [20] solved it in O(nL) time, and prove that the size of an optimal solution is at most
2L− 1. Lin et al. [22] proposed a right-skew method with time complexity O(n logL). Kim
et al. [21] gave a slope interpretation on the original MDS problem, and solved it in O(n)
time by finding the line segment with the maximum slope. Goldwasser et al. [19] applied
locally optimal segments to solve it in O(n) time. Chung et al. [15] extended Goldwasser’s
method [19] to a linear online method. Curtis et al. [16] proposed an online method based
on sliding window.

In our work, we employ MDS methods as a building block. However, as proved in
Section 3.3, finding dense burst subgraphs in temporal graphs is an NP-hard problem,
which is dramatically different from the polynomial-time solvable MDS problem.

6

Chapter 3

Problem Definition

In this chapter, we first introduce several essential notions, then formalize the top-k density
bursting subgraph finding problem and investigate its computational complexity. Table 3.1
summarizes some frequently used notations.

3.1 Temporal Graph and Temporal Subgraph

In this thesis, we in general consider weighted graphs where each edge carries a weight. A
temporal graph, denoted by G(t0, tc) = 〈G(t0), G(t1), . . . , G(tc)〉, is a sequence of snap-
shots that arrive at different times between an initial time t0 and a current time tc. In a
temporal graph, new snapshots may introduce new vertices and edges. However, in most
real world scenario, the number of vertices in a temporal graph is not infinite. Therefore, we
assume that all snapshots share the same set of vertices V , which is large enough to cover
all the vertices in the temporal graph. The changes over time would only happen on edges.
We further assume that t0 is the time when G(t0, tc) is initialized as an empty graph, that
is, G(t0) contains only a set of vertices but no edges.

The snapshot that arrive at time th ∈ {t1, . . . , tc} is a static graph denoted by G(th) =
(V,A(th)), where th is the arrival time, and A(th) is the affinity matrix that defines the edge
weights between vertices.

Denote by n = |V | the number of vertices in V . For each snapshot G(th), we represent
the affinity matrix A(th) by an n-by-n non-negative matrix, where the entry Aij(th) at the
i-th row and the j-th column of A(th) is the edge weight between the i-th vertex vi ∈ V
and the j-th vertex vj ∈ V . There is an edge between vi and vj if and only if Aij(th) > 0,
and there is no edge connection between vertices in different snapshots.

A time interval, denoted by T = (tb, te] = {tb+1, tb+2, . . . , te}, is the set of the time
points between begin time tb and end time te, excluding tb. The duration of T = (tb, te]
is te − tb.

An accumulated graph during T = (tb, te] is a static graph denoted by G(tb+1, te) =
(V,A(tb+1, te)), where A(tb+1, te) =

∑e
h=b+1A(th) is the accumulated affinity matrix. Denote

7

Table 3.1: Frequently used notations.
Notation Description
x ∈ 4n The indicator vector to represent a set of vertices.
(x∗, T ∗) A Density Bursting Subgraph (DBS) in G(t0, tc).
(x̂, T̂) An indecomposable DBS candidate in G(t0, tc).
ts ts = prev(prev(tc)) is the begin time of G(ts, tc).

εk(tc−1) The k-th largest burstiness of all ODBSCs in D(tc−1).
V (tb+1, te) The set of vertices connected by at least one edge in

the accumulated graph G(tb+1, te). (see Section 3.1)
Px∗ Px∗ = {(th, sx∗(th)) | th ∈ {t0, . . . , tc}} the set of

points induced by x∗ (see Section 4.1.2).
u(vi) ∈ 4n The indicator vector where only the i-th entry is 1 and

the other entries are 0’s. (see Section 4.2)

by Aij(tb+1, te) the element at the i-th row and the j-th column of A(tb+1, te), we write the
set of vertices that are connected by at least one edge in G(tb+1, te) as V (tb+1, te) = {vi ∈
V | ∃Aij(tb+1, te) > 0}.

Denote by G(tb+1, te) = 〈G(tb+1), . . . , G(te)〉 the sequence of snapshots that arrive during
T = (tb, te]. A temporal subgraph is a sequence of subgraphs that are induced by a set
of weighted vertices S ⊆ V on each of the snapshots in G(tb+1, te). Each vertex vi in S is
assigned a positive weight xi that indicates the importance of vi in S. The weights of all
vertices in V \ S are set to 0’s. In this way, we can induce S by an n-dimensional vector
x = [x1,x2, . . . ,xn]>, such that Vx = S = {vi ∈ V | xi > 0}. Following the conventional
dense subgraph detection settings [24], we enforce x to be in the standard simplex, that is
x ∈ 4n = {x |

∑
i xi = 1,xi ≥ 0}. For the rest of the thesis, we write a temporal subgraph

as a tuple (x, T).
The duration of a temporal subgraph (x, T) is exactly the duration of T . For any vertex

vi ∈ V , if vi ∈ Vx, we say vi is contained by (x, T) and write vi ∈ (x, T).
Next, we introduce the notion of density bursting subgraph.

3.2 Density Bursting Subgraph

For a temporal subgraph (x, T) and a time th ∈ T , denote by Gx(th) the subgraph in-
duced by Vx from the snapshot G(th). We measure the density of Gx(th) by the following
cohesiveness [29].

qx(th) = x>A(th)x (3.1)

The burstiness of (x, T) measures how fast it accumulates cohesiveness during time
interval T = (tb, te], that is,

g(x, T) =
∑e

h=b+1 qx(th)
te − tb

= x>A(tb+1, te)x
te − tb

(3.2)

8

Next, we define Density Bursting Subgraph (DBS).

Definition 3.1. Given a temporal graph G(t0, tc) and a minimum duration threshold θ, a
density bursting subgraph, denoted by (x∗, T ∗) where T ∗ = (tb∗ , te∗], is a temporal subgraph
in G(t0, tc), such that

1. x∗ ∈ 4n is a local maximum point of g(x, T ∗);

2. T ∗ is a global maximum point of g(x∗, T); and

3. te∗ − tb∗ ≥ θ.

Denote by Gx∗(tb∗+1, te∗) the subgraph induced by Vx∗ from the accumulated graph
G(tb∗+1, te∗). As illustrated later in Section 4.1.1, condition (1) of Definition 3.1 requires
Gx∗(tb∗+1, te∗) to be a dense subgraph in G(tb∗+1, te∗) [29, 25, 8].

Given x∗, condition (2) of Definition 3.1 requires T ∗ to be the optimal time interval,
such that the temporal subgraph (x∗, T ∗) achieves the largest burstiness.

In condition (3) of Definition 3.1, the minimum duration threshold θ effectively prevents
trivial temporal subgraphs that have extremely small duration. According to Equation 3.2,
a trivial temporal subgraph with extremely small duration can have an extremely large
burstiness even if its cohesiveness is very small. More often than not, such trivial temporal
subgraphs consist of a single edge in snapshots with very small duration, which are not of
much interest in real world applications.

Interestingly, by changing the meaning of A(th), the DBS defined in Definition 3.1 can
be easily extended to model the following interesting patterns in temporal graphs.

1. When A(th) represents the absolute difference matrix between the affinity matrices of
neighboring snapshots, a DBS (x, T) models the subgraph x whose absolute internal
edge weights changes the most during time interval T .

2. When each entry of A(th) represents the relative change between the corresponding
edge weights of neighboring snapshots, a DBS (x, T) models the subgraph x whose
internal edge weights have the largest relative change during time interval T .

3.3 Top-k DBS Finding Problem

Now we introduce the Top-k DBS Finding problem and prove that it is NP-hard.

Definition 3.2. Given a temporal graph G(t0, tc), a minimum duration threshold θ, and a
positive integer k, the problem of Top-k DBS Finding (TDF for short) is to compute
the set of DBSs in G(t0, tc) that have the top-k largest burstiness.

Theorem 3.1. The TDF problem is NP-hard.

9

Proof. We only need to prove that the Top-1 (i.e., k = 1) DBS Finding problem is NP-
hard. Consider an arbitrary unweighted and undirected graph G, whose affinity matrix
is A. The entries of A are either 0 or 1. We create an instance of the TDF problem by
constructing a temporal graph G(t0, tc) = 〈G(t0), . . . , G(tc)〉, such that tc − t0 = θ = 1,
A(tc) = A and the affinity matrices of all the snapshots in G(t0, tc−1) are matrices of all 0’s.
Since tc − t0 = θ = 1, it follows Definition 3.1 that T ∗ = (t0, tc] is the only optimal time
interval for any DBS in G(t0, tc). Thus, the problem of maximizing g(x, T ∗) s.t. x ∈ 4n can
be reduced to the Top-1 DBS Finding problem. Since g(x, T ∗) = x>Ax, we are actually
maximizing x>Ax s.t. x ∈ 4n, which is NP-hard [28].

Given the definition and the hardness of the TDF problem, in the next chapter, we will
first introduce how to find a single DBS by modeling the TDF problem as a mixed integer
programming problem. Then we will propose a static baseline method, namely SlideWin,
to find good solutions for the TDF problem.

10

Chapter 4

Finding a Single DBS and a Static
Baseline Method

In this chapter, we first introduce how to find a single DBS. Then we present a static sliding
window method to find a good solution to the TDF problem. At last, we present a challenge
in designing online methods to solve the TDF problem.

4.1 Finding a Single DBS

In this section, we introduce how to find a single DBS by solving a Mixed Integer Program-
ming (MIP) problem.

According to Definition 3.1, a DBS (x∗, T ∗) is a local maximum point of the following
MIP problem.

argmax
(x,T)

g(x, T)

s.t.x ∈ 4n, T = (tb, te], te − tb ≥ θ
(4.1)

To find a single DBS, we find a local maximum point of the MIP problem by iteratively
updating x and T to monotonously increase g(x, T). Next, we illustrate how to update x and
T by solving a Constrained Quadratic Programming (CQP) problem [29] and a Maximum
Density Segment (MDS) problem [9], respectively.

4.1.1 The CQP problem

Given a time interval T = (tb, te] such that te − tb ≥ θ, by plugging Equation 3.2 into
Equation 4.1 and omitting the constant factor te − tb, we transform the MIP problem into
the following CQP problem [29].

argmax
x

x>A(tb+1, te)x

s.t.x ∈ 4n
(4.2)

11

Algorithm 1: FindDBS(G(t0, tc), θ, (x, T))
Input: G(t0, tc), θ, (x, T) an initial temporal subgraph.
Output: (x∗, T ∗) a DBS in G(t0, tc).

1: repeat
2: Solve the CQP problem by IID [8, 11]: x← argmax

x
x>A(tb+1, te)x, s.t.x ∈ 4n.

3: Solve the MDS problem by MDSD [15]: T ← argmax
T

sx(te)−sx(tb)
te−tb

, s.t. te − tb ≥ θ.

4: until The value of g(x, T) does not increase.
5: return (x∗, T ∗) = (x, T).

According to the previous works of dense subgraph detection [29, 25, 8], a local maximum
point x∗ of the CQP problem induces a dense subgraph Gx∗(tb+1, te) in G(tb+1, te).

We can efficiently find a local maximum point of the CQP problem by the Infection
Immunization Dynamics (IID) method [8]. The time complexity of IID is O(λn), where λ
is the number of iterations of IID, and n is the volume of V . Since x ∈ 4n is usually very
sparse, we can efficiently solve the CQP problem using a small sub-matrix of A(tb+1, te) [11].

4.1.2 The MDS problem

Given x ∈ 4n, denote by sx(tr) =
∑r

h=0 qx(th) the sum of cohesiveness from t0 to tr. We
rewrite the burstiness in Equation 3.2 as g(x, T) = sx(te)−sx(tb)

te−tb
, which is exactly the slope

between two points, (tb, sx(tb)) and (te, sx(te)), in the 2-dimensoinal Cartesian coordinate
system.

Using the above slope representation of burstiness, we transform the MIP problem into
the following MDS problem [9].

argmax
T

sx(te)− sx(tb)
te − tb

s.t. te − tb ≥ θ
(4.3)

Denote by Px = {(th, sx(th)) | th ∈ {t0, . . . , tc}} the set of points induced by x. Solving
the MDS problem is equivalent to finding T ∗ = (tb∗ , te∗] such that te∗ − tb∗ ≥ θ, and the
points (tb∗ , sx(tb∗)) and (te∗ , sx(te∗)) in Px achieve the global maximum slope.

We can efficiently compute T ∗ by the MDS Detection (MDSD) method proposed by
Chung et al. [15]. The time complexity of MDSD is O(c + 1), where c + 1 the number of
snapshots in G(t0, tc).

We summarize the FindDBS method in Algorithm 1, which starts from an initial
temporal subgraph (x, T) and finds a DBS by iteratively solving the CQP problem and the
MDS problem.

12

Algorithm 2: SlideWin(G(t0, tc), θ, k)
Input: G(t0, tc), θ, k a positive integer.
Output: K(tc) the set of top-k DBSs in G(t0, tc).

1: D ← ∅.
2: for each te ∈ {t1, . . . , tc} do
3: for each tb ∈ {t0, . . . , te−1} such that te − tb ≥ θ do
4: for each vi ∈ V (tb+1, te) do
5: (x∗, T ∗)← FindDBS(G(t0, tc), θ, (u(vi), (tb, te])).
6: D ← D ∪ (x∗, T ∗).
7: end for
8: end for
9: end for

10: K(tc)← TOPK(D).
11: return K(tc).

4.2 A Static Baseline and a Challenge for Online Solution

The TDF problem requires to find multiple local maximum points of the non-concave MIP
problem in Equation 4.1.

Normally, to find a set of good solutions to the non-concave MIP problem, we first
find multiple DBSs by running FindDBS multiple times with different initializations, then
return the set of DBSs that have the top-k largest burstiness. Following this idea, we propose
the static baseline method SlideWin in Algorithm 2, where D stores all detected DBSs,
and TOPK(D) returns the top-k DBSs in D.

To obtain as many different initializations as possible, we initialize T by every time
interval (tb, te] such that te− tb ≥ θ. We initialize x in the same way as IID [8]. That is, for
each vi ∈ V (tb+1, te), we set x = u(vi), where u(vi) ∈ 4n is an n-dimensional vector such
that only the i-th entry is 1 and all the other entries are 0’s. Initializing x in this way keeps
the size of Vx small and improves the efficiency of IID [8].

The major drawback of SlideWin is the requirement to buffer all the snapshots in
G(t0, tc). Since G(t0, tc) may be a long or even endless stream of snapshots, buffering all the
snapshots in G(t0, tc) is infeasible. As a result, we are much more interested in an online
method that maintains the top-k DBSs in real time using a limited buffer of snapshots.
However, designing an online method for the TDF problem is still difficult due to the
following challenge.

For an online method, the number of snapshots to buffer is lower bounded by the max-
imum duration of DBSs, which, as shown in Theorem 4.1, can be as large as tc − t0 in a
temporal graph G(t0, tc).

Theorem 4.1. There exists a temporal graph G(t0, tc) such that the maximum duration of
a DBS in G(t0, tc) is tc − t0.

13

Proof. We prove by constructing a temporal graph G(t0, tc) such that tc − t0 ≥ θ, every
snapshot in G(t1, tc) has exactly the same non-empty affinity matrix, and ∀i ∈ {1, . . . , c−1},
ti − ti−1 = ti+1 − ti. By Definition 3.1, for any local maximum point x∗ ∈ 4n of qx(t1),
(x∗, (t0, tc]) is a DBS in G(t0, tc). The theorem follows.

Theorem 4.1 presents a big challenge in designing online methods for the TDF problem.
To find a DBS with duration tc − t0, we have to buffer all the snapshots in G(t0, tc), which,
unfortunately, may be a long or even endless stream of snapshots.

In the next chapter, we will first introduce the decomposition property of DBSs, which
opens the door to efficient online DBS detection. Then we will demonstrate our online Top-k
DBS detection method.

14

Chapter 5

DBS Decomposition and Online
Top-k DBS Detection

In this chapter, we first introduce an important decomposition property of DBSs, then
present our online Top-k DBS detection method.

5.1 DBS Decomposition

In this section, we present a critical observation: a long DBS can be easily decomposed
into a set of shorter DBSs that have the same or larger burstiness. We also show that the
durations of the shorter DBSs are upper bounded, which makes it possible to design a highly
efficient online algorithm for the TDF problem.

Given a DBS (x∗, (tb∗ , te∗]), if ∃th ∈ (tb∗ , te∗] such that tb∗ + θ ≤ th ≤ te∗ − θ, then
(x∗, (tb∗ , te∗]) is said to be decomposable at time th. Otherwise, (x∗, (tb∗ , te∗]) is inde-
composable.

If a DBS (x∗, (tb∗ , te∗]) is decomposable at time th, we say the two temporal subgraphs
(x∗, (tb∗ , th]) and (x∗, (th, te∗]) are the components of (x∗, (tb∗ , te∗]) at time th.

Denote by prev(te) = max{th | th ≤ te − θ} the time of the last snapshot that arrives
no later than te − θ, by next(tb) = min{th | th ≥ tb + θ} the time of the first snapshot
that arrives no earlier than tb + θ, and by T (tb, te) = {th | next(tb) ≤ th ≤ prev(te)} the
set of times between next(tb) and prev(te). Clearly, (x∗, (tb∗ , te∗]) is indecomposable if and
only if T (tb∗ , te∗) = ∅. If T (tb∗ , te∗) 6= ∅, then (x∗, (tb∗ , te∗]) is decomposable at any time
th ∈ T (tb∗ , te∗).

Next, we present the important observation that a decomposable DBS has exactly the
same burstiness as its components.

Theorem 5.1. For a decomposable DBS (x∗, T ∗) where T ∗ = (tb∗ , te∗], any component of
(x∗, T ∗) at time th ∈ T (tb∗ , te∗) has the same burstiness as (x∗, T ∗).

15

𝑡"∗ 𝑡"∗ + 𝜃 𝑡&∗𝑡&∗ − 𝜃

P

Q
𝑧)

𝑧*

𝑧+𝑧,

Time

𝑠𝒙∗(𝑡0)

𝜃 𝜃

𝑧2

𝑡2
Figure 5.1: The slope representation of a decomposable DBS (x∗, T ∗), where T ∗ = (tb∗ , te∗]
and T (tb∗ , te∗) 6= ∅. P and Q are the two blue triangle regions, respectively.

Proof. Consider the slope representation of (x∗, T ∗) in Figure 5.1. We first prove by con-
tradiction that the triangle regions P and Q do not contain any point in Px∗ . Assume P
contains z3 ∈ Px∗ . Then, the slope between z1 and z3 is larger than the slope between z1

and z2. Thus, T ∗ is not the global maximum ponit of the MDS problem. This contradicts
with the condition that (x∗, T ∗) is a DBS. Similarly, Q does not contain any point z4 ∈ Px∗ .

Second, we prove that (x∗, T ∗) and its components have the same burstiness. Since
(x∗, T ∗) is decomposable, we know T (tb∗ , te∗) 6= ∅ and (x∗, T ∗) is decomposable at any time
th ∈ T (tb∗ , te∗). Recall that zh ∈ Px∗ cannot be contained by P or Q, since ∀th ∈ T (tb∗ , te∗),
tb∗ + θ ≤ th ≤ te∗ − θ, zh must reside on the segment between z1 and z2. By the slope
representation of burstiness, g(x∗, (tb∗ , th]) = g(x∗, (th, te∗]) = g(x∗, T ∗).

According to Theorem 5.1, a decomposable DBS (x∗, T ∗) can be decomposed into two
components, (x∗, (tb∗ , th]) and (x∗, (th, te∗]), that have the same burstiness as (x∗, T ∗). How-
ever, since x∗ may not be a local maximum point of g(x, (tb∗ , th]) or g(x, (th, te∗]), the
components of (x∗, T ∗) may not be DBSs.

If a component (x′, T ′) of a decomposable DBS (x∗, T ∗) is not a DBS, we can further
increase the burstiness of (x′, T ′) by feeding (x′, T ′) as the initial temporal subgraph into
FindDBS. The output of FindDBS is a new DBS (x∗new, T

∗
new) such that g(x∗new, T

∗
new) >

g(x′, T ′) = g(x∗, T ∗). If (x∗new, T
∗
new) is also decomposable, we keep decomposing it and

updating its components by FindDBS. Eventually, we can decompose a decomposable
DBS (x∗, T ∗) into a set of indecomposable DBSs with the same or even larger burstiness.

Interestingly, the duration of any indecomposable DBS (x∗, (tb∗ , te∗]) is upper bounded
by te∗ − prev(prev(te∗)), because T (tb∗ , te∗) = ∅ if and only if tb∗ > prev(prev(te∗)). This
makes it possible to detect indecomposable DBSs in an online manner without buffering all
snapshots. Another reason to find indecomposable DBSs is that most DBSs with large

16

burstiness are indecomposable in practice. We will analyze this phenomenon using the
experiments in Table 6.2 and Section 6.1.

5.2 Online Top-k DBS Detection

Enabled by the observations in Section 5.1, in this chapter, we define the Online Top-
k DBS Finding (OTDF) problem and develop an efficient online DBS detection method
named TopkDBSOL.

5.2.1 The OTDF problem

Denote byM(tc) the set of indecomposable DBSs in G(t0, tc). We define the OTDF problem
as follows.

Definition 5.1. GivenM(tc−1) and a sequence of buffered snapshots G(ts, tc), the problem
of Online Top-k Density Bursting Subgraph Finding (OTDF for short) is to compute
the top-k indecomposable DBSs inM(tc).

The OTDF problem is NP-hard following the same reduction in the proof of Theo-
rem 3.1.

Recall that the duration of any indecomposable DBS ending at time tc is upper bounded
by tc − prev(prev(tc)), we set

ts = prev(prev(tc)),

so that any indecomposable DBS inM(tc)\M(tc−1) is an indecomposable DBS in G(ts, tc).
However, an indecomposable DBS (x∗, T ∗) in G(ts, tc) may not be an indecomposable

DBS in M(tc) \ M(tc−1), because, without the snapshots in G(t0, ts−1), we cannot verify
whether or not T ∗ is the global maximum point of g(x∗, T) in G(t0, tc). As a result, we
cannot computeM(tc) directly.

To tackle this problem, we compute a superset of M(tc) by finding the set of inde-
composable DBS candidates. Here, an indecomposable DBS candidate is a temporal
subgraph (x̂, T̂) that has a begin time tb̂, and is an indecomposable DBS in G(tb̂, tc). Since
any indecomposable DBS is an indecomposable DBS candidate, the set of indecomposable
DBS candidates, denoted by D(tc) = {(x̂, T̂) | T̂ = (tb̂, tê]∧ tê ≤ tc}, is a super set ofM(tc).

As illustrated in the rest of this section, given D(tc−1) and G(ts, tc), we can efficiently
find a good solution to the OTDF problem in three steps: (1) find new indecompos-
able DBS candidates (NDBSC) in D(tc) \ D(tc−1); (2) update old indecomposable
DBS candidates (ODBSC) in D(tc−1); and (3) compute the top-k indecomposable DBS
candidates in D(tc) as the final result.

5.2.2 Finding the Set of NDBSCs

17

Algorithm 3: FindNDBSC(G(ts, tc), θ,D(tc−1), k)
Input: G(ts, tc), θ,D(tc−1), k.
Output: N (tc) the set of NDBSCs.

1: N (tc)← ∅, and compute εk(tc−1).
2: for each tb ∈ {ts, . . . , tc−1} such that tc − tb ≥ θ do
3: T ← (tb, tc].
4: for each vi ∈ V (tb+1, tc) do
5: if α(vi, T) ≥ εk(tc−1) then
6: x← o(vi, T).
7: (x̂, T̂)← FindDBS(G(ts, tc), θ, (x, T)).
8: if (x̂, T̂) 6∈ D(tc−1) then
9: N (tc)← N (tc) ∪ (x̂, T̂).

10: end if
11: end if
12: end for
13: end for
14: return N (tc).

According to the definition of NDBSC, any indecomposable DBS in G(ts, tc) is an
NDBSC if it is not contained in D(tc−1). A straightforward way to find indecomposable
DBSs in G(ts, tc) is to call SlideWin. However, SlideWin is inefficient because it calls
FindDBS for every vertex vi ∈ V (tb+1, te).

Interestingly, we observed that a large proportion of the vertices in V (tb+1, te) are not
contained in any top-k indecomposable DBS. Inspired by this observation, we first derive
an upper bound for the burstiness of any indecomposable DBS that contains a vertex vi,
then we propose a smart initialization heuristic, which applies the upper bound to filter
out a large proportion of vertices that are not contained in any top-k indecomposable DBS.
This significantly reduces the number of calls of FindDBS, and achieves a speedup of two
orders of magnitudes in our experiments.

Next, we show that α(vi, T) = maxj Aij(tb+1,te)
te−tb

is an upper bound of the burstiness of
any indecomposable DBS that contains a vertex vi during a time interval T = (tb, te].

Theorem 5.2. For any indecomposable DBS (x∗, T ∗), if vi ∈ (x∗, T ∗), then g(x∗, T ∗) ≤
α(vi, T

∗).

Proof. Since (x∗, T ∗) is an indecomposable DBS, x∗ is a local maximum point of x>A(tb∗+1, te∗)x.
Since vi ∈ (x∗, T ∗), vi ∈ Vx∗ . According to Liu et al. [25], since vi ∈ Vx∗ and x∗ is a local max-
imum point, (x∗)>A(tb∗+1, te∗)x∗ =

∑
j x∗jAij(tb∗+1, te∗). Since x∗ ∈ 4n,

∑
j x∗jAij(tb∗+1, te∗) ≤

maxj Aij(tb∗+1, te∗). In sum, g(x∗, T ∗) = (x∗)>A(tb∗+1,te∗)x∗
te∗−tb∗

=
∑

j
x∗j Aij(tb∗+1,te∗)

te∗−tb∗
≤ α(vi, T

∗).

Now, we introduce the smart initialization method.

18

𝑡" 𝑡#𝑡$ = 𝑝𝑟𝑒𝑣(𝑡#)

𝑧"

𝑧#

Time

𝑠./(𝑡0)
𝑧$

𝑠𝑙𝑜𝑝𝑒 𝐿 = 𝑔(𝑥/, 𝑇8)

𝐿

𝜃 𝜃

Figure 5.2: The slope representation to prove Theorem 5.3. L is an auxiliary line that crosses
zc. The slope of L is g(x̂, T̂).

Denote by εk(tc−1) the k-th largest burstiness of all ODBSCs inD(tc−1). By Theorem 5.2,
for any time interval T , if α(vi, T) < εk(tc−1), then vi is not contained by any indecomposable
DBS (x∗, T ∗) such that T ∗ = T and g(x∗, T ∗) ≥ εk(tc−1).

Since we are only interested in the top-k indecomposable DBSs whose burstiness is larger
than εk(tc−1), we skip each vertex vi such that α(vi, T) < εk(tc−1). If α(vi, T) ≥ εk(tc−1), we
initialize FindDBS by x = o(vi, T) = 0.5u(vi)+0.5u(vj), where vj = argmaxvj

Aij(tb+1, te)
is the nearest neighbour of vi in G(tb+1, te). As to be shown in Theorem 5.4, by setting
x = o(vi, T), we achieve a 2-approximation of the top-1 indecomposable DBS.

Algorithm 3 summarizes FindNDBSC, which efficiently finds a set of NDBSCs. The
smart initialization is performed in steps 5-6.

5.2.3 Updating the Set of ODBSCs

When a new snapshot arrives at time tc, the ODBSCs in D(tc−1) need to be updated because
a ODBSC in D(tc−1) may not be necessarily an indecomposable DBS candidate in D(tc).

Denote by (x̂, T̂), T̂ = (tb̂, tê] an ODBSC in D(tc−1). If tb̂ ≥ ts, we can directly update
(x̂, T̂) by calling FindDBS(G(ts, tc), θ, (x̂, T̂)). However, when tb̂ < ts, we cannot update
(x̂, T̂) by calling FindDBS(G(ts, tc), θ, (x̂, T̂)), because the snapshots before time ts are not
buffered in G(ts, tc). For such ODBSCs, we show in Theorem 5.3 a necessary and sufficient
condition to verify whether it is contained in D(tc).

Theorem 5.3. For any ODBSC (x̂, T̂) ∈ D(tc−1) where T̂ = (tb̂, tê] and tb̂ < ts, (x̂, T̂) ∈
D(tc) if and only if @th ∈ (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂).

Proof. (Direction only-if) Suppose ∃th ∈ (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂).
Since tb̂ < ts < th, (x̂, T̂) is not an indecomposable DBS in G(tb̂, tc). Thus, (x̂, T̂) 6∈ D(tc).

19

Algorithm 4: UpdateODBSC(G(ts, tc), θ,D(tc−1))
Input: G(ts, tc), θ, D(tc−1).
Output: U(tc) the set of updated ODBSCs.

1: U(tc)← ∅.
2: for each (x̂, T̂) ∈ D(tc−1) do
3: if tb̂ ≥ ts then
4: U(tc)← U(tc) ∪ FindDBS(G(ts, tc), θ, (x̂, T̂)).
5: else if ∃th ∈ (ts, prev(tc)] : g(x̂, (th, tc]) > g(x̂, T̂) then
6: U(tc)← U(tc) ∪ FindDBS(G(ts, tc), θ, (x̂, (th, tc])).
7: else
8: U(tc)← U(tc) ∪ (x̂, T̂).
9: end if

10: end for
11: return U(tc).

Algorithm 5: TopkDBSOL(G(ts, tc), θ,D(tc−1), k)
Input: G(ts, tc), θ, D(tc−1), k.
Output: D(tc) and TOPK(D(tc)).

1: N (tc)← FindNDBSC(G(ts, tc), θ,D(tc−1), k).
2: U(tc)← UpdateODBSC(G(ts, tc), θ,D(tc−1)).
3: D(tc)← N (tc) ∪ U(tc).
4: return D(tc) and TOPK(D(tc)).

(Direction if) Suppose ∃tb ∈ (tb̂, ts] such that g(x̂, (tb, tc]) > g(x̂, T̂). Then, as shown
in Figure 5.2, zb is under L. Since @th ∈ (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂),
hence for tq = prev(tc) in Figure 5.2, zq is above or on L. This means that the slope of
the segment (zb, zq) is larger than the slope of L, thus g(x̂, (tb, tq]) > g(x̂, T̂). Since tb̂ < tb,
tq ≤ tc−1 and tq − tb ≥ tq − ts ≥ θ, it follows g(x̂, (tb, tq]) > g(x̂, T̂) that (x̂, T̂) 6∈ D(tc−1).
This contradicts with the condition (x̂, T̂) ∈ D(tc−1). Therefore, @tb ∈ (tb̂, ts] such that
g(x̂, (tb, tc]) > g(x̂, T̂).

Since @th ∈ (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂), we know @tb ∈ (tb̂, prev(tc)]
such that g(x̂, (tb, tc]) > g(x̂, T̂). It follows (x̂, T̂) ∈ D(tc−1) that (x̂, T̂) is an indecomposable
DBS in G(tb̂, tc). Therefore, (x̂, T̂) ∈ D(tc).

Theorem 5.3 provides a straightforward way to verify whether a ODBSC (x̂, T̂), whose
begin time tb̂ is smaller than ts, is contained inD(tc). If (x̂, T̂) 6∈ D(tc), it follows Theorem 5.3
that ∃th ∈ (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂), then we update (x̂, T̂) by calling
FindDBS(G(ts, tc), θ, (x̂, (th, tc])); if (x̂, T̂) ∈ D(tc), we keep it in D(tc).

We summarize UpdateODBSC and TopkDBSOL in Algorithm 4 and Algorithm 5,
respectively.

20

Next, we show that TopkDBSOL achieves a 2-approximation of the top-1 indecompos-
able DBS in G(t0, tc).

Theorem 5.4. TopkDBSOL produces a 2-approximation of the top-1 indecomposable DBS
in G(t0, tc).

Proof. Denote by (x̃, T̃) the real top-1 indecomposable DBS in G(t0, tc), where T̃ = (tb̃, tẽ].
By Theorem 5.2, ∀vi ∈ (x̃, T̃), g(x̃, T̃) ≤ α(vi, T̃). Denote by εk(tẽ−1) the k-th largest bursti-
ness of all indecomposable DBSs in D(tẽ−1). Since (x̃, T̃) is the top-1 indecomposable DBS,
α(vi, T̃) ≥ g(x̃, T̃) ≥ εk(tẽ−1). Thus, for tc = tẽ, step 7 of FindNDBSC calls FindDBS
with an initialization (o(vi, T̃), T̃) to find a NDBSC (x̂, T̂) ∈ D(tẽ). Since g(o(vi, T̃), T̃) ≤
g(x̂, T̂) ≤ g(x̃, T̃) ≤ α(vi, T̃) and g(o(vi, T̃), T̃) = 0.5∗0.5∗maxj Aij(tb̃+1,tẽ)+0.5∗0.5∗maxj Aij(tb̃+1,tẽ)

tẽ−tb̃

= 0.5 ∗ α(vi, T̃), (x̂, T̂) is a 2-approximation of (x̃, T̃). For tc > tẽ, if (x̂, T̂) 6∈ D(tc),
UpdateODBSC updates (x̂, T̂) to increase its burstiness. The updated (x̂, T̂) is still a 2-
approximation of (x̃, T̃).

In the next chapter, we demonstrate the effectiveness and efficiency of our proposed
online method by extensive experiments.

21

Chapter 6

Experiment

In this chapter, we evaluate the performance of the proposed methods SlideWin (SW)
and TopkDBSOL (OL), and compare them with the state-of-the-art method DenseAlert
(DA) [31]. To evaluate the effect of the smart initialization in Section 5.2.2, we also imple-
ment an algorithm named TopkDBSOLnsi (OLnsi) by disabling the smart initialization of
OL. The Java code for DA is provided by its authors [31]. Our algorithms are implemented
in C++. All experiments are conducted on a PC with Core-i7-3370 CPU (3.40 GHz), 16GB
main memory, and a 5400 rpm hard drive running Windows 7 OS.

We report the running time (RT) of an algorithm. We also report edge density
burstiness (EDB), the speed that a detected temporal subgraph accumulates edge den-
sity [13, 33, 23]. Specifically, denote by (S, (tb, te]) a detected temporal subgraph that is
induced by the set of vertices S from the snapshots of G(tb+1, te). The edge density of the
subgraph induced by S from G(th) is computed by Eq. 6.1.

EDS(th) =
∑

vi∈S

∑
vj∈S Aij(th)

|S|(|S| − 1) (6.1)

, where |S| is the volume of S. The EDB of (S, (tb, te]) is computed by Eq. 6.2.

1
te − tb

e∑
h=b+1

EDS(th) (6.2)

We employ EDB to evaluate the burstiness of detected temporal subgraphs, because the
output of DA cannot be used to directly compute cohesiveness [29], and edge density is a
well recognized evaluation metric for graph density [13, 33, 23].

We use the following five public real world data sets. Detailed information of the data
sets is shown in Table 6.1.

DBLP Coauthorship (DBLP) Data Set [34]. This data set is the co-authorship
network in DBLP. Each vertex is an author. Each edge represents the co-authorship between
two authors. The edge weight is the number of coauthored publications.

22

Table 6.1: Detailed description of data sets.
Data Set # Vertices # Edges # Snapshots Time Granularity
DBLP 1,282,461 7,354,929 45 1 Snapshot / YEAR
ENRON 87,273 920,478 2,222 1 Snapshot / DAY
FBWP 46,952 585,932 1,591 1 Snapshot / DAY
TAXI-1 362 88,547 96 1 Snapshot / 15 MIN.
TAXI-2 362 70,202 96 1 Snapshot / 15 MIN.
KAN 33,967 142,068 20 1 Snapshot / YEAR

ENRON Data Set [34]. This data set is the email communication network of Enron.
Each vertex is an employee. Each edge represents the email communication between two
employees. The edge weight is the number of emails sent between two users.

Facebook Wall Posts (FBWP) Data Set [34]. This data set is the wall post network
of Facebook. Each vertex is a user. Each edge represents the wall post activity between two
users. The edge weight is the number of wall posts.

TAXI-1 and TAXI-2 Data Sets. These data sets are constructed using the taxi trips
in July 2017 in the city of Chicago1. We uniformly partition the city into 362 blocks, each
of which corresponds to a vertex in the temporal graph. The period of one day is uniformly
divided into 96 snapshots, each of which corresponds to a time interval of 15 minutes. The
taxi trips during the same time interval of all days are grouped into the same snapshot. For
each snapshot, the edge weight between two vertices is the number of taxi trips between
two locations. TAXI-1 and TAXI-2 consist of the taxi trips of weekdays and weekends,
respectively.

Keyword Association Network (KAN) Data Set. This data set is a keyword
association network [3] extracted from the DBLP-Citation-network V10 data set (https:

//static.aminer.org/lab-datasets/citation/dblp.v10.zip). We use the abstracts of
the papers published in some well established data mining venues, such as KDD, ICDM,
SDM, PKDD, PAKDD, TKDE and TKDD. Each vertex is a keyword. Each edge represents
the co-occurrence of two keywords in the same abstract. The edge weight is the number
of co-occurring abstracts. In this data set, a DBS corresponds to a set of keywords that
describe an emerging hot research topic.

Since SW runs too slow on the full data sets of DBLP, ENRON and FBWP, we sample a
small data set from each full data set for the experiments of SW. For DBLP, we first sample
10, 000 vertices from the accumulated graph of all snapshots by breath first search, and then
use the temporal subgraph induced by the sampled vertices from each snapshot to form a
sample of a snapshot. For ENRON and FBWP, we use the complete set of vertices, and
sample two temporal graphs with continuous durations of 30 days and 50 days, respectively.

1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

23

https://static.aminer.org/lab-datasets/citation/dblp.v10.zip
https://static.aminer.org/lab-datasets/citation/dblp.v10.zip
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

3

1 2 3 4 5

A
ve

ra
ge

 E
D

B

10

14

18

22

26 OL OLnsi SW

(a) DBLP (k = 30)

3

1 2 3 4 5

R
T

(s
ec

)

100

101

102

103

104 OL OLnsi SW

(b) DBLP (k = 30)

3

2 4 6 8 10

A
ve

ra
ge

 E
D

B

0

2

4

6 OL OLnsi SW

(c) ENRON (k = 30)

3

2 4 6 8 10

R
T

(s
ec

)

100

101

102

103

104 OL OLnsi SW

(d) ENRON (k = 30)

3

2 4 6 8 10

A
ve

ra
ge

 E
D

B

2

6

10

14

18 OL OLnsi SW

(e) FBWP (k = 30)

3

2 4 6 8 10

R
T

(s
ec

)

100

101

102

103

104 OL OLnsi SW

(f) FBWP (k = 30)

Figure 6.1: The effect of parameters θ. Figures (a), (c) and (e) show the Average Edge
Density Burstiness (EDB) of detected DBSs by all methods. Figures (b), (d) and (f) show
the Running Time (RT) of all methods.

24

Table 6.2: The numbers of indecomposable DBSs (#Indec) and decomposable DBSs (#Dec)
detected by SW. We rank all DBSs in descending order of burstiness, and Rank is the rank
of the decomposable DBS with the largest burstiness.

DBLP ENRON FBWP
θ 2 3 5 2 5 10 2 5 10

#Indec 4,985 3,915 2,684 9,074 6,197 4,355 35,788 29,988 23,806
#Dec 51 6 0 14 0 0 47 0 0
Rank 613 402 N/A 244 N/A N/A 310 N/A N/A

6.1 Effects of Parameters

In this section, we analyze the effects of parameters θ and k on the small data sets sampled
from DBLP, ENRON and FBWP.

6.1.1 Effect of θ

We show the effects of parameter θ on Running Time (RT) and Average Edge Density
Burstiness (EDB) in Figure 6.1.

Figures 6.1(a), 6.1(c) and 6.1(e) show the effect of θ on Average EDB. That is, the
Average EDB decreases when θ increases. This is because most co-authors in DBLP do not
stay highly productive together for a long time, the email frequencies between colleagues
in ENRON do not stay high for long, and most social events in FBWP only heat up at the
fastest speed for a short time.

When θ increases, the Running Time of OL and OLnsi increases, because a large θ
increases the number of buffered snapshots in G(ts, tc), which increases the running time of
FindDBS in Algorithm 3 and Algorithm 4. While the Running Time of SW stays stable,
because increasing θ increases the time cost of FindDBS, however, reduces the number
of times to call FindDBS in Algorithm 2. This is clearly shown in Figures 6.1(b), 6.1(d),
6.1(f).

Table 6.2 shows the effect of θ on the numbers of indecomposable DBS and decomposable
DBS. Both #Indec and #Dec decrease when θ increases, because θ is the minimum duration
threshold of DBS, a larger θ rules out more DBSs whose duration is smaller than θ.

We can also see from Table 6.2 that #Dec is less than 1% of all detected DBSs, and the
decomposable DBS with the largest burstiness has a very low Rank. These results verify
our observation in Section 5.1: regarding the necessary condition (Theorem 5.1) for a DBS
to be decomposable, most DBSs with large burstiness are indecomposable in practice.

6.1.2 Effect of k

In this subsection, we will analyze the effect of k on Running Time (RT) and Average Edge
Density Burstiness (EDB), as shown in Figure 6.2.

25

k
10 40 70 100

A
ve

ra
ge

 E
D

B

10

13

16

19

22

25 OL OLnsi SW

(a) DBLP (θ = 3)

k
10 40 70 100

R
T

(s
ec

)

100

101

102

103

104 OL OLnsi SW

(b) DBLP (θ = 3)

k
10 40 70 100

A
ve

ra
ge

 E
D

B

2

4

6

8 OL OLnsi SW

(c) ENRON (θ = 3)

k
10 40 70 100

R
T

(s
ec

)

100

101

102

103

104 OL OLnsi SW

(d) ENRON (θ = 3)

k
10 40 70 100

A
ve

ra
ge

 E
D

B

6
8

10
12
14
16
18 OL OLnsi SW

(e) FBWP (θ = 3)

k
10 40 70 100

R
T

(s
ec

)

100

101

102

103

104 OL OLnsi SW

(f) FBWP (θ = 3)

Figure 6.2: The effects of parameter k. Figures (a), (c) and (e) show the Average Edge
Density Burstiness (EDB) of detected DBSs by all methods. Figures (b), (d) and (f) show
the Running Time (RT) of all methods.

26

Table 6.3: The numbers of vertices (#V) and edges (#E) of the data sets sampled from
DBLP, ENRON and FBWP.

ID DBLP ENRON FBWP
#V (×103) #E (×105) #V (×103) #E (×105) #V (×103) #E (×105)

1 20.0 2.5 1.0 0.5 2.0 0.2
2 100.0 11.6 5.0 2.3 6.0 0.9
3 300.0 30.8 9.0 4.8 10.0 1.8
4 500.0 46.0 15.0 6.3 20.0 3.8
5 1282.5 73.5 87.3 9.2 47.0 5.9

Since the detected DBSs are ranked in burstiness, the Average EDB decreases when k
increases, which is consistent with the curves in Figures 6.2(a), 6.2(c), 6.2(e). The efficiency
of OLnsi and SW are irrelevant to k, thus their Running Time stays stable. However, the
Running Time of OL increases, because a larger k decreases the value of εk(tc−1), which
increases the number of times to call FindDBS in Algorithm 3. This is clearly shown in
Figures 6.2(b), 6.2(d) and 6.2(f).

As shown in Figure 6.1 and Figure 6.2, for all values of θ and k, the Average EDB of OL
and OLnsi are highly comparable with the brute force baseline SW. OL is dramatically faster
than OLnsi and SW by orders of magnitudes. These results demonstrate the effectiveness
and efficiency of OL in detecting high quality DBSs with large burstiness.

6.2 Scalability Analysis

We compare the scalability of OL, OLnsi and SW on DBLP, ENRON and FBWP. To obtain
a series of samples of different sizes, for each data set, we sample four temporal graphs as
follows. First, we start a Breadth First Search (BFS) from a randomly picked vertex on the
accumulated graph of all snapshots. Second, let S be the set of all vertices visited by the
BFS, we use S to induce a subgraph from each of the snapshots of the original temporal
graph. Last, we use the sequence of induced subgraphs as a sampled temporal graph. The
numbers of vertices and edges of the sampled temporal graphs are listed in Table 6.3, where
the 5-th data set is simply the complete data set.

Figure 6.3 shows the RT performance. We do not report the RT of SW on ENRON and
FBWP, because SW cannot finish in 24 hours due to its quadratic time complexity with
respect to the number of snapshots. Since the smart initialization effectively reduces the
number of calls of FindDBS in Algorithm 3, OL always completes in less than 100 seconds,
which is 2 orders of magnitudes faster than OLnsi and is at least 4 orders of magnitudes
faster than SW.

27

Edges #106
0 2.5 5 7.5

R
T

 (
se

c)

100

101

102

103

104

105 OL OLnsi SW

(a) DBLP

Edges #105
0 2.5 5 7.5 10

R
T

 (
se

c)

100

101

102

103

104

>24h

OL OLnsi SW

(b) ENRON

Edges #105
0 2 4 6

R
T

 (
se

c)

100

101

102

103

104

>24h

OL OLnsi SW

(c) FBWP

Figure 6.3: The RT of OL, OLnsi and SW on the temporal graphs sampled from DBLP,
ENRON and FBWP. The parameters are θ = 3, k = 30.

6.3 Comparison with DenseAlert

We compare the Average EDB of OL, OLnsi and DA on the full datasets of DBLP, ENRON
and FBWP. The Average EDB of OL and OLnsi are identical, which demonstrates that the
smart initialization in Algorithm 3 does not affect the Average EDB of OL.

In Figure 6.4(a), OL achieves a much higher Average EDB than DA on DBLP. This is
because DA maintains the dense temporal subgraph with the largest average degree [18],
which is typically a large graph with a small edge density [33].

Since DA only maintains the top-1 dense temporal subgraph, it often detects duplicate
temporal subgraphs. The number of detected dense temporal subgraphs is limited by the
number of snapshots. For example, in Figure 6.4(a), DA detects 45 dense temporal subgraphs
from the 45 snapshots of DBLP, but in every case with respect to a fixed value of w, only
less than 30 are not duplicates.

28

0 20 40 60 80 100
k

0

10

20

30

A
ve

ra
ge

 E
D

B

OL, OLnsi DA (w=2) DA (w=3) DA (w=4)

k
0 25 50 75 100

A
ve

ra
ge

 E
D

B

0

10

20

30

(a) DBLP
k

0 25 50 75 100

A
ve

ra
ge

 E
D

B

0

10

20

30

(b) ENRON

k
0 25 50 75 100

A
ve

ra
ge

 E
D

B

0

20

40

(c) FBWP

Figure 6.4: The Average EDB of OL, OLnsi and DA. We set θ = 3 for OL, OLnsi. Since DA
uses a fixed size sliding window, we set the window size w of DA as w = {2, 3, 4}, such that
the sliding window contains 3, 4 and 5 snapshots, respectively.

In Figures 6.4(b)-(c), the Average EDB of OL is still higher than DA on ENRON and
FBWP. However, the advantage of OL is not as significant as on DBLP, because the temporal
networks of ENRON and FBWP are much sparser than DBLP. In sparse temporal networks,
DA is forced to find small temporal subgraphs with heavily weighted edges, thus it achieves
a closer Average EDB to OL. However, since DA focuses on optimizing average degree, its
Average EDB is always inferior to OL.

6.4 Case Study

In this section, we will show the practical effectiveness of our method by two cases on the
datasets TAXI-1, TAXI-2 and KAN, respectively.

29

1

2

3
4

5

(a) Weekdays (17:30-18:45)

1

2

3

4

(b) Weekends (22:45-23:45)

Figure 6.5: The bursting taxi trips between a set of locations in the city of Chicago in US.
(a) shows the number of taxi trips between a set of locations during 17:30-18:45 on TAXI-1.
(b) shows the number of taxi trips between a set of locations during 22:45-23:45 on TAXI-2.

6.4.1 Discovering Travel Patterns from TAXI-1 and TAXI-2

We show some interesting patterns of taxi trips discovered by finding the most significant
DBSs from TAXI-1 and TAXI-2.

Figure 6.5(a) shows the bursting taxi trips between a set of locations during 17:30-18:45
on weekdays. The location 2 is surrounded by office buildings, the locations 1, 3, 4 and 5 are
surrounded by shopping centres and restaurants. The number of taxi trips between these
locations burst during 17:30-18:45 on weekdays, because people often go shopping and dine
out after a day’s busy work.

Figure 6.5(b) shows an even more interesting pattern of bursting taxi trips during 22:45-
23:45 on weekends. Where are people going at midnight? The answer lies in the locations 1,
3 and 4, where the neighbourhoods have many mid-night pubs and restaurants that open
late at night. Who are these people? We investigate the neighbourhood of location 2 and
find that it is a college town surrounded by the Moody Bible Institute and the Loyola
University Chicago. Most of the taxi trips are related to location 2. Obviously, midnight
parties at pubs are one of the favourite weekend entertainments of young students. The pubs
and restaurants start to close at 22:30, and many people go home before 00:00, therefore,
the number of taxi trips bursts during 22:45-23:45.

In this simple case study, finding DBSs from the temporal network of taxi trips discovers
interesting travel patterns that provides useful insights into people’s behavior patterns. Such
patterns can be used to, for example, improve taxis dispatch plans and develop better public
traffic designs.

30

Table 6.4: The durations and topics of detected DBSs.
ID Keywords Years
1 deep learning, image patch, feature representation 2012-2015

2 multiple type, link prediction, 2011-2014heterogeneous information network
3 visual word, local feature, inverted index 2010-2013
4 domain adaptation, conditional probability, semg signal 2010-2013

5 graph laplacian, cluster label, feature selection algorithm, 2012-2015spectral feature, unsupervised feature selection
6 loss function, machine learning, wide range, vast amount 2011-2015

6.4.2 Finding Emerging Research Topics from KAN

In this subsection, we show some interesting research topics discovered by finding DBSs
from the KAN dataset.

Each row of Table 6.4 shows a set of keywords, which describe a research topic that
emerges at the fastest speed during the corresponding years. To validate the duration of the
emerging topics, we crawled from AMINER (https://aminer.org/) the annual popularity
of each keyword, and computed the popularity of each topic by the product of the popular-
ities of all related keywords. Figure 6.6 shows the normalized popularities of the detected
topics in each year.

As shown in Figure 6.6, the durations of all topics in Table 6.4 accurately highlight the
time when their popularities rise fast.

In summary, by finding DBSs in the keyword association network of KAN, the pro-
posed method effectively detects hot research topics, as well as the time interval when their
popularity rise fast.

31

https://aminer.org/

Year
2000 2004 2008 2012 2016

P
O

P

0

0.2

0.4

0.6

0.8

1

ID=1

Year
2000 2004 2008 2012 2016

P
O

P

0

0.2

0.4

0.6

0.8

1

ID=2

Year
2000 2004 2008 2012 2016

P
O

P

0

0.2

0.4

0.6

0.8

1

ID=3

Year
2000 2004 2008 2012 2016

P
O

P

0

0.2

0.4

0.6

0.8

1

ID=4

Year
2000 2004 2008 2012 2016

P
O

P

0

0.2

0.4

0.6

0.8

1

ID=5

Year
2000 2004 2008 2012 2016

P
O

P

0

0.2

0.4

0.6

0.8

1

ID=6

Figure 6.6: The normalized popularity (POP) of detected topics. x-axis is the time line of
years. ID corresponds to Table 6.4.

32

Chapter 7

Conclusions

Many graphs in real world applications are temporal graphs that consist of a potentially
endless stream of updates. Detecting DBSs from temporal graphs is a useful task that enjoys
many interesting applications.

In this thesis, we tackle the novel problem of finding top-k DBSs from temporal graphs.
We formulate the top-k DBSs finding problem as a MIP problem and, as a baseline, solve
it by SlideWin. By investigating the decomposition property of DBSs, we further design
TopkDBSOL to find the set of top-k indecomposable DBSs in an online manner. Extensive
experiments show that TopkDBSOL finds a comparably good solution as SlideWin, and
improves the efficiency of SlideWin by orders of magnitudes in finding DBSs from large
temporal graphs. The cases of Chicago taxi and keyword association network show that
detecting DBSs discovers meaningful patterns in real world scenarios.

The method proposed in this thesis is the beginning of our DBS detection framework.
In the future, we will further enrich our toolkit of DBS detection towards the following
interesting tasks.

• Recovering decomposable DBSs by aggregating indecomposable DBSs. In this thesis, we
show the infeasibility of directly finding decomposable DBSs in an online manner, and
also prove that a decomposable DBS can be decomposed into a set of indecomposable
DBSs with equal or larger burstiness. The proposed TopkDBSOL focuses on detecting
indecomposable DBSs, however, since some indecomposable DBSs are components of
decomposable DBSs, how to recover decomposable DBSs by aggregating detected
indecomposable DBSs is an interesting task that worth further investigation. As a
naive example, we can recover a decomposable DBS by concatenating the detected
indecomposable DBSs that have exactly the same burstiness, and are induced by the
same set of vertices in successive time durations.

33

• Finding DBSs from signed temporal networks. Opinion based temporal social net-
works, such as Slashdot1 and Epinions2, consist of cohesive and opponent relation-
ships. These networks are naturally modeled as signed temporal networks, whose
edge weights between vertices are either positive (i.e., cohesive relationship) or nega-
tive (i.e., opponent relationship). Finding top-k DBSs from signed temporal networks
finds emerging communities of coherent opinions, which is potentially useful in mon-
itoring the trend of social opinions. However, it is also a challenging task to extend
TopkDBSOL to find DBSs from signed temporal networks, because the cohesive-
ness [29] in Equation 3.1 is not well defined due to the existence of negatively weighted
edges.

• Finding DBSs from temporal hypergraphs. A temporal hypergraph, where each hy-
peredge indicates the relationship among multiple vertices at a specific time, is pow-
erful in describing the complex dynamic relationships among multiple objects. For
example, temporal hypergraph is superior for modeling multi-user relationships in so-
cial networks [36], such as multi-player online gaming networks and email networks
where the carbon copying operation often involves multiple users. Detecting DBSs
from such temporal hypergraphs discovers emerging communities of users that are
strongly connected by hyperedges. However, there is no straightforward way to ex-
tend TopkDBSOL to find DBSs from temporal hypergraphs, because our current
definition and properties of DBSs do not hold on temporal hypergraphs.

1https://snap.stanford.edu/data/soc-Slashdot0811.html

2https://snap.stanford.edu/data/soc-Epinions1.html

34

https://snap.stanford.edu/data/soc-Slashdot0811.html
https://snap.stanford.edu/data/soc-Epinions1.html

Bibliography

[1] James Abello, Mauricio Resende, and Sandra Sudarsky. Massive quasi-clique detection.
Theoretical Informatics, pages 598–612, 2002.

[2] Charu C Aggarwal, Yao Li, Philip S Yu, and Ruoming Jin. On dense pattern mining
in graph streams. PVLDB, 3(1-2):975–984, 2010.

[3] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. Dense subgraph maintenance under
streaming edge weight updates for real-time story identification. PVLDB, 5(6):574–585,
2012.

[4] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. Tsourakakis. Space-and time-
efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In
ACM symposium on Theory of Computing, pages 173–182, 2015.

[5] B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. Mining coherent subgraphs in
multi-layer graphs with edge labels. In The 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August
12-16, 2012, pages 1258–1266, 2012.

[6] Petko Bogdanov, Misael Mongiovì, and Ambuj K Singh. Mining heavy subgraphs
in time-evolving networks. In 11th IEEE International Conference on Data Mining,
ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011, pages 81–90, 2011.

[7] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. ACM Communications, 16(9):575–577, 1973.

[8] Samuel Rota Bulò and Immanuel M Bomze. Infection and immunization: a new class
of evolutionary game dynamics. Games and Economic Behavior, 71(1):193–211, 2011.

[9] K. Chao. Maximum-density segment. In Encyclopedia of Algorithms, pages 1–99. 2008.

[10] Tianlong. Chen, Shuqiang Jiang, Lingyang Chu, and Qingming Huang. Detection and
location of near-duplicate video sub-clips by finding dense subgraphs. In MM, pages
1173–1176, 2011.

[11] Lingyang Chu, Shuhui Wang, Siyuan Liu, Qingming Huang, and Jian Pei. Alid: scalable
dominant cluster detection. PVLDB, 8(8):826–837, 2015.

[12] Lingyang Chu, Shuhui Wang, Yanyan Zhang, Shuqiang Jiang, and Q. Huang. Graph-
density-based visual word vocabulary for image retrieval. In IEEE International Con-
ference on Multimedia and Expo, ICME 2014, Chengdu, China, July 14-18, 2014, pages
1–6, 2014.

35

[13] Lingyang Chu, Zhefeng Wang, Jian Pei, Jiannan Wang, Zijin Zhao, and Enhong Chen.
Finding gangs in war from signed networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 1505–1514, 2016.

[14] Lingyang Chu, Yanyan Zhang, Guorong Li, Shuhui Wang, Weigang Zhang, and Qing-
ming Huang. Effective multimodality fusion framework for cross-media topic detection.
IEEE Transactions on Circuits and Systems for Video Technology, 26(3):556–569, 2016.

[15] Kai-min Chung and Hsueh-I Lu. An optimal algorithm for the maximum-density
segment problem. SIAM Journal on Computing, 34(2):373–387, 2004.

[16] Sharon Curtis and Shin-Cheng Mu. Calculating a linear-time solution to the densest-
segment problem. Journal of Functional Programming, 25, 2015.

[17] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph com-
putation in evolving graphs. In Proceedings of the 24th International Conference on
World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 300–310, 2015.

[18] AV Goldberg. Finding a maximum density subgraph. 1984.

[19] Michael H Goldwasser, Ming-Yang Kao, and Hsueh-I Lu. Linear-time algorithms for
computing maximum-density sequence segments with bioinformatics applications. J.
Comput. Syst. Sci., 70(2):128–144, 2005.

[20] Xiaoqui Huang. An algorithm for identifying regions of a dna sequence that satisfy a
content requirement. Bioinformatics, 10(3):219–225, 1994.

[21] Sung Kwon Kim. Linear-time algorithm for finding a maximum-density segment of a
sequence. Inf. Process. Lett., 86(6):339–342, 2003.

[22] Yaw-Ling Lin, Tao Jiang, and Kun-Mao Chao. Efficient algorithms for locating the
length-constrained heaviest segments with applications to biomolecular sequence anal-
ysis. J. Comput. Syst. Sci., 65(3):570–586, 2002.

[23] H. Liu, L. J. Latecki, and S. Yan. Fast detection of dense subgraphs with iterative
shrinking and expansion. IEEE Trans. Pattern Anal. Mach. Intell., 35(9):2131–2142,
2013.

[24] Hairong Liu and Shuicheng Yan. Common visual pattern discovery via spatially coher-
ent correspondences. In The Twenty-Third IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pages
1609–1616, 2010.

[25] Hairong Liu and Shuicheng Yan. Robust graph mode seeking by graph shift. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 671–678, 2010.

[26] Hairong Liu and Shuicheng Yan. Efficient structure detection via random consensus
graph. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, Prov-
idence, RI, USA, June 16-21, 2012, pages 574–581, 2012.

36

[27] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. Fast compu-
tation of dense temporal subgraphs. In 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages 361–372,
2017.

[28] Theodore S Motzkin and Ernst G Straus. Maxima for graphs and a new proof of a
theorem of turán. Canad. J. Math, 17(4):533–540, 1965.

[29] Massimiliano Pavan and Marcello Pelillo. Dominant sets and pairwise clustering. IEEE
Trans. Pattern Anal. Mach. Intell., 29(1):167–172, 2007.

[30] Jian Pei, Daxin Jiang, and Aidong Zhang. On mining cross-graph quasi-cliques. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 228–
238, 2005.

[31] K. Shin, B. Hooi, J. Kim, and C. Faloutsos. Densealert: Incremental dense-subtensor
detection in tensor streams. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017, pages 1057–1066, 2017.

[32] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. D-cube: Dense-block
detection in terabyte-scale tensors. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United King-
dom, February 6-10, 2017, pages 681–689, 2017.

[33] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser than the densest
subgraph: extracting optimal quasi-cliques with quality guarantees. In The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013, pages 104–112, 2013.

[34] UKL. Konect. http://konect.uni-koblenz.de/, 2018.

[35] Jia Wang and James Cheng. Truss decomposition in massive networks. PVLDB,
5(9):812–823, 2012.

[36] Wenyin Yang, Guojun Wang, Md Zakirul Alam Bhuiyan, and Kim-Kwang Raymond
Choo. Hypergraph partitioning for social networks based on information entropy mod-
ularity. Journal of Network and Computer Applications, 86:59–71, 2017.

[37] Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, and John CS Lui. Di-
versified temporal subgraph pattern mining. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 1965–1974, 2016.

[38] Yu Yang, Lingyang Chu, Yanyan Zhang, Zhefeng Wang, Jian Pei, and Enhong Chen.
Mining density contrast subgraphs. arXiv preprint arXiv:1802.06775, 2018.

[39] Yanyan Zhang, Guorong Li, Lingyang Chu, Shuhui Wang, Weigang Zhang, and Qing-
ming Huang. Cross-media topic detection: A multi-modality fusion framework. In Pro-
ceedings of the 2013 IEEE International Conference on Multimedia and Expo, ICME
2013, San Jose, CA, USA, July 15-19, 2013, pages 1–6, 2013.

37

http://konect.uni-koblenz.de/

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Major Idea and Contributions
	Organization of the Thesis

	Related Work
	Dense Subgraph Detection
	Dense Temporal Subgraph Detection
	Maximum Density Segment Problem

	Problem Definition
	Temporal Graph and Temporal Subgraph
	Density Bursting Subgraph
	Top-k DBS Finding Problem

	Finding a Single DBS and a Static Baseline Method
	Finding a Single DBS
	The CQP problem
	The MDS problem

	A Static Baseline and a Challenge for Online Solution

	DBS Decomposition and Online Top-k DBS Detection
	DBS Decomposition
	Online Top-k DBS Detection
	The OTDF problem
	Finding the Set of NDBSCs
	Updating the Set of ODBSCs

	Experiment
	Effects of Parameters
	Effect of
	Effect of k

	Scalability Analysis
	Comparison with DenseAlert
	Case Study
	Discovering Travel Patterns from TAXI-1 and TAXI-2
	Finding Emerging Research Topics from KAN

	Conclusions
	Bibliography

