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Abstract 

Interest in the area of state and parameter estimation in nonlinear systems has 

grown significantly in recent years. The use of sliding mode observers promises superior 

robustness characteristics that make them very attractive for noisy uncertain systems. In 

this thesis, a novel Time-Averaged Lypunov functional (TAL) is proposed that examines 

the effect of Gaussian noise on the stability of a sliding mode observer. The TAL 

averages the Lyapunov analysis over a small finite time interval, allowing for intuitive 

analysis of noises and disturbances affecting the system. Initially, a sliding mode 

observer for a linear system is analysed using the proposed functional. Later, the results 

are extended to various classes of nonlinear systems. The necessary and sufficient 

conditions for the existence of the observer are presented in the form of Linear Matrix 

Inequality (LMI), which can be explicitly solved offline using commercial LMI solvers. The 

types of nonlinearity examined are fairly general and embodies Lipschitz, bounded 

Jacobian, Sector bounded and Dissipative nonlinearities. All the system models 

considered are highly nonlinear and consist of system disturbances and sensor noise. 

The proposed sliding mode observer provides less conservative conditions to verify the 

existence and stability of the observer. The observer can also be effectively used for 

unknown parameter estimation as outlined in the final chapter of this report. Various 

examples are provided throughout the premise to support the proposed observer design 

and demonstrate its effectiveness. 

Keywords: Sliding mode observers; Time Averaged Lyapunov functional; Unknown 

Parameter estimation; State estimation; Sector Bounded Nonlinearities 
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Chapter 1.  
 
Introduction 

In order to completely analyze a control system, one needs to have full 

information of all the states that define the system. The states define the internal 

dynamics of the physical system in the form of variables and parameters. However, in 

practical situations it is not always possible to measure all the states of the system 

because of various technical or economic constraints. The use of sensors to measure 

every state is expensive and can induce significant errors such as stochastic noise and 

cyclical noises [1]. Additionally, the limited responsiveness of some sensors can 

introduce phase lag in the control system, thereby reducing the margin of stability [1]. 

Observers can reduce the sensor requirements and may improve disturbance rejection 

in such systems.  An observer or a state-estimator is used to obtain an estimate of the 

system’s internal states, given measurements of the input and output of the system. The 

chief consideration in the design of the observer is that the state estimate should be able 

to converge to the true state value of the observed system. This state estimate can also 

be used for many different observer-based applications like unknown parameter 

estimation, fault estimation and fault reconstruction [2], [3]. 

Most of the real world systems are complex in nature, and thus have some kind 

of uncertainty associated to them. Therefore, it is always challenging to transform these 

physical systems into their mathematical models without introducing any uncertainty. In 

addition, other uncertainties/disturbance may also originate from the system’s operating 

environment. These disturbances may be in the form of unknown system disturbances 

and sensor noise. The sensor noise that appears in many control systems is in the form 

of additive white Gaussian noise. Also, for systems where the exact form of sensor noise 

is not known, the noise can be approximated to be Gaussian in nature [4]. This is 

because the sensor noise is nondeterministic in nature and can be characterised by a 

zero mean Gaussian distribution. The Gaussian approximation of these errors, makes it 

fairly easy to determine their effect on the system by analysing its distribution (normal 

distribution).  The sensor noise can show up in systems because of temperature 

changes (thermal noise), transmission (electronic circuit noise), and black body radiation 
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(electromagnetic radiation). These additive sensor noises can have a severe effect on 

the observer’s state estimate and controller signals, especially for cases with large 

sensor noise [5], [6]. Further, in many cases the system dynamics along with the actual 

states of the system are unknown and have to be reconstructed form the output data. 

Modelling errors often arise from the approximation of these system dynamics, 

especially in the presence of uncertainty. Hence, the observer design needs to be highly 

robust in order to be stable in the presence of such modeling uncertainties[7]. 

 Nonlinear observers 

The complex nature of nonlinear systems makes it challenging to design 

observers, largely because there is no defined method that works for all classes of 

nonlinearities. Plenty of research has been carried out in order to develop effective 

observers for various classes of nonlinear systems [8]–[26]. 

Many physical systems can be expressed as a linear system with an additive 

nonlinearity in the form �̇� = 𝐴𝑥 + 𝜙(𝑥) + 𝑤, 𝑦 = 𝐶𝑥 + 𝜈. Here, a linear feedback observer 

in the form �̇� = 𝐴𝑥 + 𝜙(𝑥) + 𝐿(𝑦 − 𝐶𝑥) can be designed. For cases where the 

nonlinearity satisfies a Lipschitz condition (|𝜙(𝑥2) − 𝜙(𝑥1)| < 𝛾|x2 − 𝑥1|), linear feedback 

observers have been developed for disturbance-free nonlinear systems (𝑤 = 0, 𝜈 = 0) 

(DFNS)[27]–[31]. These observers utilize the robustness of the linear observer to satisfy 

the algebraic Riccati equation (ARE),  (𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) + 𝜀𝛾2𝐼 + 𝜖−1𝑃𝑃 < 0 and 

there is an inherent limit on the size of the Lipschitz constant. Observers for DFNS 

Lipschitz systems have even been extended to sensor fault detection[32], to actuator 

fault detection [33]and to unknown parameter estimation[34], [35]. DFNS observer 

design has been extended to nonlinearities with bounded Jacobian (Matrix Lipschitz) 

condition (|𝜙(𝑥2) − 𝜙(𝑥1)| < |𝐺(x2 − 𝑥1)|)  [36], [37] wherein the observer is able to 

accommodate an equivalent Lipschitz constant particularly when G is a sparsely 

populated. For DFNS with a monotonically increasing nonlinearity ([x2 − 𝑥1]
𝑇𝐺[𝜙(𝑥2) −

𝜙(𝑥1)] > 0), observers have been designed using an extension of the circle criterion[38], 

[39]. In the presence of sensor noise and input disturbances, observers cannot 

guarantee stability in the traditional sense. Some nonlinear observers in the presence of 

noise rely on linearizing the system dynamics about their estimates. 
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A variety of methods are available for the design of nonlinear observers, of which 

some of the most popular are: Geometric, Lie-Algebraic, Backstepping, Unscented 

Kalman filter approach, Lyapunov-based, High gain and sliding mode observers. Various 

cases of Lyapunov-based observers are discussed in literature[8], [9], [11], [17], [20], 

[22], [23], [40], [41].  Thau [40] , presents a method to analyze the stability of the state 

estimation error, however, it fails to suggest a correct approach to design the observer 

gain for the system. Thus, making it infeasible for higher-order systems since selecting 

the appropriate gain makes it a trial and error process. Kou et al [42] provides conditions 

for the existence of a Lyapunov like function, although they are very difficult to satisfy. 

This method is further generalized in [9], nonetheless the system fails to satisfy some 

fundamental restrictive conditions. A design algorithm is proposed in  [22] to develop an 

appropriate observer gain by using Lyapunov auxiliary theorem, but it is restricted to the 

condition that the system should be locally asymptotically stable at the origin. Further, 

Deutscher [8] provides a Linear matrix equation to solve for the conditions provided in 

[22] numerically. The authors in [17] provide a solution to solve for a special class of 

nonlinear systems (where the nonlinearity satisfies a certain multivariable sector 

condition) using convex optimization. Similarly, an observer design for a class of 

nonlinear discrete-time systems is presented in [23].  

In many cases, geometric methods [12]–[14], [19], [43] are used where the 

observer design is achieved by transforming the nonlinear system into a linear one. An 

extended linearization technique for observer design is proposed in [14]. It uses a 

method of linearizing in which the nonlinear system is specified by constant operating 

points. An extended Luneberger observer is proposed in [19] where the system is 

transformed into the nonlinear observer canonical form and an extended linearization 

technique is implemented on a MIMO (Multiple-Input Multiple-Output) system. 

Another eminent technique known as the Lie Algebraic approach [10], [24], [44], 

[45] is also used to design observers for nonlinear systems. The main objective of this 

approach is to transform the nonlinear system to a linear system and then design a 

suitable linear observer for the new system. Also, an alternative approach [44] is to 

transform the nonlinear system into a system where all the nonlinearities are 

measurable. Hence, for a case where the nonlinearity solely depends on the output, the 

observer is fairly easy to design by using various output injection and pole placement 
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techniques. Although, there are some shortcomings to this approach since the 

nonlinearity is assumed to be precisely known. This may introduce various modelling 

errors, which may in turn affect the state estimation error. It is also very complex to 

calculate the appropriate transformation for the system. Also, using this[44] approach for 

higher order systems is impractical since it introduces various partial differential 

equations. The results of [44] are extended in [10], making it simpler to solve, although 

some restrictions still exist. Also the results of [44] are further extended to a multi-input 

multi-output systems in [24]. The authors of [45] present an approach for the 

transformation of Single-Input Single-Output systems for designing adaptive observers. 

  In addition to the various classes of observers discussed above, High gain 

observes are utilized for their robust nature in error and disturbance rejection[46]. Here, 

the gain matrix is switched between two gain values. By using a higher gain value during 

the transient phase, the state estimates are quickly recovered. Once the state estimation 

error reaches to its minimum, the gain is switched to smaller value to reduce the effect of 

sensor noise. Khalil in [47] provides a detailed study on high-gain observer and their 

implementation in robust controller design. It also explicitly examines the peaking 

phenomenon in high gain observers which is observed to eliminate disturbances in the 

form of modelling errors. However, this phenomenon can also make the closed loop 

system unstable by directly transforming the erratic behavior from the observer to the 

actual system. Hence, the controller needs to be globally bounded in order to remain 

unaffected by the peaking behavior while designing the high gain observer. These 

observers are further explored in the domain of adaptive nonlinear observer which are 

discussed below. 

 

 Nonlinear adaptive observers 

Many adaptive observer design techniques have been proposed to deal with 

unknown inputs to systems. Some of the earliest research was based on viewing the 

uncertainty in parameters as nonlinearities  [48], [49] (other types of system 

uncertainties are not weighed). Polycarpou et al. [50] developed a robust adaptive 

observer for nonlinear uncertain systems, where the uncertainty was a result of both 
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unknown nonlinear functions and parameters. The observer is based on the assumption 

that the unknown function satisfies a certain triangular bounds condition homologous to 

the ones seen in [51][52]. Here, the unknown nonlinearities conform to some conditions 

defined by ‘bounding’ functions (�̇� =  𝑓𝑜(𝑥) + 𝑔𝑜(𝑥)𝑢 + 𝜙 ∗ 𝜁(𝑥) + Δ(𝑥, 𝑦)) which consist 

of the product of known functions (𝜁(𝑥)) and unknown parameters (𝜙).  Later Bastin et 

al. [53] presented an adaptive observer for a noise-free system of the form �̇� = 𝐴𝑥 +

𝐵(𝑡)µ , where the unknown parameter µ is unaffected by the system states and 

measurements. Besançon et al. [54] presents a stable adaptive observer for noise free 

systems where the nonlinearity is a function of input and measurable outputs and 

transformable to an output nonlinear form given by �̇� = 𝐴𝑥 + 𝐵(𝑦, 𝑡)𝑢. The results are 

further extended to systems with an input disturbance (𝑤), �̇� = 𝐴𝑥 + 𝐵(𝑦, 𝑡)µ + 𝑤 by 

Jung et al.[55]. Rajamani et al. [56] study systems where the nonlinearity depends on 

the entire state vector. These results have been further extended by Cho and Rajamani 

[57] for a noise-free Lipschitz nonlinear system of the form �̇� = 𝐴𝑥 + 𝐵(𝑢, 𝑥)µ +

Φ(𝑥, 𝑢);  𝑦 = 𝐶𝑥, where the nonlinearity isn’t necessarily a stringent function of the 

measurement. These results are further expanded to include bounded input noise and 

other disturbances affecting the observer gain in [58]. However, most of the literature 

presented above [56][28][55], requires the Lyapunov matrix used in establishing the 

Lyapunov stability and uncertain parameters to fulfil a strictly positive-real type condition, 

𝑃 > 0, 𝑏𝑇𝑃𝐶⊥ = 0. Subsequently, the design of the observer error dynamics is confined 

to systems where 𝑏 lies in the range space of 𝐶𝑇(since 𝑃 ≠ 0, 𝑏 ⊂ ℛ(𝐶𝑇)), which is a 

strict condition for finding a P such that  𝑏𝑇𝑃𝐶⊥ = 0. Vijayaraghavan [59] addresses this 

issue by proposing an observer design  for simultaneous state and multiple unknown 

parameter estimation but limited to classes of Lipschitz nonlinearity with no 

measurement noise.  Vijayaraghavan et al [60] has also developed an adaptive observer 

based on 𝐻∞ observer for the simultaneous estimation of state and unknown parameters 

by minimizing a cost function composed of a sum of the square integrals of the 

estimation error.  

Elsewhere, observers have been developed to deal with parameter estimation in 

noisy systems. Many observers have used Extended Kalman Filter (EKF) based 

methods [61][62], unscented kalman filter(UKF) based methods [63][64][65] and some 

other recursive least squares method [66][67]. However, EKF and UKF observers are 

computationally intensive since they require an online calculation to solve the Ricati 
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equation and Jacobian. These observers also need to consider a virtual disturbance 

parameter (VPD) for the Kalman filter, for which the observers do not provide any 

suitable methods. Also, EKF and UKF require initial parameter and state estimates to 

generate precise estimates. However, it still does not yield any conditions that can 

guarantee the existence of the observer. Ahrens et al. [68]  presents a high-gain 

observer  design that tansitions between two gain values to retrive the system states and 

to minimize the effect of measurement noise in the neighborhood of the estimation error. 

Also, Esfandiari et al[69] presents the appropriate choice of the observer gain 𝐻 in order 

to stabilize the homogenous error. This allows for the output feedback control to redeem 

the performance achieved by the state feedback control. However, high gain observers 

are not ideal for noisy systems since these observers become very sensitive to noise as 

the gain increases. Additionally, they also suffer from the ‘peaking phenomenon’ as 

mentioned in Khalil et al [69], [70]. This ‘phenomenon’ is a result of the high gain which 

causes an initial spike in the response of the state estimates. This results in high 

instability in certain types of systems. It is important to note that adaptive observers are 

usually only efficient for overcoming linear parametric uncertainty whereas recent 

geometric approaches tend to require strict geometric conditions on the systems 

considered. 

 

 

 Sliding mode observers 

Sliding mode control is more suitable for disturbance rejection particularly when 

the disturbance vector lies in the range space of the output. Observers utilizing sliding 

mode control tend to be more robust and are completely insensitive to the nominal 

matched uncertainty [71][72]. A discontinuous feedback signal is added to the observer 

dynamics to drive it onto a sliding manifold (a subspace of the state-space) within a finite 

amount of time[71]. Once a suitable sliding manifold is designed, the closed loop system 

is nearly insensitive to external disturbances and parametric uncertainties because of 

the confined motion of the state trajectories within the sliding surface, which eventually is 

directed to the origin.  
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Previously, Edwards et al [73] presented an approach using the notion of 

equivalent output injection in which the observer signal can estimate the fault to a 

desired level of accuracy. The results were later extended to include sensor faults [74]. 

However, these early results do not account for any uncertainties. Since sliding mode 

observers force the observer error in the range space of the output to converge to zero 

in finite time, this transforms some classes of non-Lipschitz nonlinearities into Lipschitz 

nonlinearities. Additionally, for some Lipschitz systems, sliding mode observers will alter 

the Jacobian of the nonlinearity and aid with the observer design. Hence compared to 

linear finite gain observers such as 𝐻∞ observers, sliding mode observer can extend the 

observer design. Alessandri [75] proposed a sliding mode observer for a Lipschitz 

nonlinear systems. When the disturbance and the noise are bounded, the observer is 

shown to be non-divergent. It must be noted that the paper fails to clearly identify the 

advantage of using both continuous and sliding mode feedback terms. The paper makes 

use of the Lyapunov criterion to demonstrate the feasibility of the observer. It determines 

an upper bound on the sliding mode feedback term and designs the linear gain to 

compensate this upper bound. Hence, the sliding mode term would serve to restrict 

rather than aid the observer design. Further, the existence of the observer cannot be 

established for Gaussian noise. Elsewhere sliding mode is used to estimate faults [76], 

[77], reject unknown input [78] and design observer for high relative degree nonlinear 

systems with no sensor noise [79]. However previous sliding mode observers have not 

adequately considered unknown inputs and sensor noises. 

For a simple linear system given by:  

 

 
�̇� = 𝐴𝑥 + 𝐻𝑢 

𝑦 = 𝐶𝑥 
 (1.1) 

 
where 𝐴 ∈ ℝ𝑛×𝑛 , 𝐻 ∈ ℝ𝑛×𝑞 , 𝐶 ∈ ℝ𝑚×𝑛 are the system matrices of the appropriate 

dimensions and where 𝑚 ≤ 𝑛. 𝑥 ∈ ℝ𝑛, 𝑦 ∈ ℝ𝑚 and 𝑢 ∈ ℝ𝑞 are the state vector, system 

output and control input respectively, 

The sliding mode observer is written as:  
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 �̇� = 𝐴𝑥 + 𝐻𝑢 + 𝐷𝑢�̃�  (1.2) 

 𝑢�̃� =  𝜌 × 𝑠𝑖𝑔𝑛(𝑦 − 𝐶𝑥)  (1.3) 

 

Where  𝑥  represents the estimated state of the observer and 𝑢�̃� is a sliding mode input.   

The discontinuous sliding mode signal given by 𝑢�̃� is typically analyzed using the 

average value of the applied observer injection signal. This average value of injection 

signal contains useful information about the mismatch between the model used to define 

the observer and the actual plant[80]. 

Previous research on sliding mode observers has only considered a bounded 

disturbance to the system. We will examine Walcott et.al. [81]  to illustrate this approach. 

The system model is of the form  

 

 
�̇� = 𝐴𝑥 + 𝐻𝑢 + 𝐷𝑑(𝑥, 𝑢, 𝑡) 

 𝑦 = 𝐶𝑥 

 
(1.4) 

 

where 𝐷 ∈ ℝ𝑛×𝑝 is the direction matrix thorough which the disturbances acts on the 

system and 𝑑(𝑥, 𝑢, 𝑡) ∈ ℝ𝑝 , is the unknown disturbance vector with 𝑝 ≤ 𝑚. When d is 

bounded with |𝑑(𝑥, 𝑢, 𝑡)| ≤ �̅�, ∀ 𝑥, 𝑢 , t>0 and 𝑟𝑎𝑛𝑘(𝐶𝐷) = 𝑝. Hence, a sliding mode 

observer can be constructed as  

 

 
 �̇� = 𝐴𝑥 + 𝐻𝑢 + 𝐿(𝑦 − 𝐶𝑥) + 𝐷𝑢�̃� (1.5) 

 
𝑢�̃� = −𝜌(𝐶1𝐷)−1 × 𝑠𝑖𝑔𝑛(𝐶1(�̂� − 𝑥)) 

(1.6) 

   

Where 𝐿 is the linear feedback gain, 𝑢�̃� is a sliding mode input, 𝐶1 ∈ ℝ𝑚×(𝑛−𝑝) represents 

the matrix in the transformed space where the output measurements are available. The 

resulting observer dynamics are given by 
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 �̇̃� = (𝐴 − 𝐿𝐶)�̃� + 𝐷(𝑑 − 𝑢�̃�) (1.7) 

 

Using a Lyapunov function 𝑉 =
1

2
(𝐶1�̃�)𝑇(𝐶1�̃�) the authors demonstrated that the 

observer rejects the disturbance 𝑑 when 𝜌 > ||𝐶1(𝐴 − 𝐿𝐶)𝑒 − 𝐶1𝐷𝑑|| [82].   

However, previous literature does not analyze the effect of Gaussian noise on a 

sliding mode observer when the error approaches zero. The first part of this thesis 

analyzes the effect of Gaussian noise on sliding mode observer over the entire error 

state space using an alternative Lyapunov candidate defined as a “Time-averaged 

Lyapunov function”. A similar concept had been proposed in Michel et al. [83] for scalar 

switched system. However, the author averages out the derivative and further does not 

consider the effect of noise.  

 Time averaged Lyapunov  

The TAL provides a procedure for analysing the stability of the observer that is in 

line with the traditional concept of Lyapunov stability. The TAL averages the Lyapunov 

analysis over a small finite time interval, allowing for intuitive analysis of noises and 

disturbances.  While similar time-averaging is proposed in the form of time-averaged 

Lyapunov function derivatives (TALFD) in Michel et al.[83], the TALFD requires the 

system to be continuous and the results do not apply to noisy sliding mode observer 

systems. The TAL bears some resemblance to Lyapunov–Krasovskii (LK) functionals 

[84], [85]. LK functionals analysis has been limited to analyzing stability of time delay 

functions. Here LK functionals have a quadratic term and a term that is integrated over 

the delay period. When the time derivative of the LK is calculated, the integral term is 

integrated by parts and an additional matrix product gets appended to the quadratic 

term. The analysis then requires both the augmented quadratic term as well as the term 

within the integral to be negative. Unlike LK analysis, the TAL aims to analyze the time-

averaged stability of the observer. To the best of the authors’ knowledge, LK functionals 

have not been used to average the effect of the sensor noise or input disturbance.  
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 Purpose and Motivation of this work 

This thesis presents a sliding mode observer design that uses a novel Time-

Averaged Lyapunov functional to analyse the effect of external Gaussian noise on the 

system. The observer also serves as a state and unknown parameter estimator based 

on an optimal approach as demonstrated in the upcoming chapters.  The proposed 

observer is further developed for different types on nonlinear systems which include 

Lipschitz, Bounded Jacobian, Sector Bounded and Dissipative nonlinearities. An 

extensive method for checking the existence conditions and computing the observer 

gains is presented in the form of Linear Matrix Inequality (LMI). 

In chapter 2, a novel Time Averaged Lyapunov functional is proposed. The TAL 

is shown to satisfy all the requirements of a Lyapunov candidate function. To utilise the 

idea of the proposed functional on a sliding mode observer, a simple autonomous 

system is developed. The convergence rate of the system error dynamics is determined 

and later plotted with respect to different values of covariance  𝜌 and 𝑄. Later, a sliding 

mode observer is developed for a linear system in the presence of system and external 

sensor disturbances. The conditions for existence of the observer are provided and 

supported by a numerical example. 

In chapter 3, the results of the previous chapter are extended to a nonlinear case 

with an additive nonlinearity 𝜙. A sliding mode observer design for a Lipschitz nonlinear 

system is presented. The observer is developed by taking into consideration the effect of 

covariance (noise) affecting the system. A systematic approach to design the 

appropriate observer gains and existence conditions are presented. The minimum 

performance conditions are presented in the form of LMIs which can be solved offline 

using MATLAB. The conditions provided are less conservative and are compared with 

other linear gain observer designs to further demonstrate its effectiveness. The robust 

and less conservative behaviour of this observer are established using various numerical 

examples. 

In chapter 4, the observer design is extended to a wider class of nonlinear 

systems which include sector bounded and dissipative nonlinearities. The design also 

estimates unknown system parameters along with the system states. A systematic 

approach to design the appropriate observer gains which also include the unknown 
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parameter gain values is developed. The minimum performance conditions are 

presented in the form of LMIs which can be solved offline using MATLAB. Later, 

conditions for the existence of the observer for a dissipative case are presented. 

Numerical examples are provided to demonstrate the effectiveness of the observer for 

each case.  

Finally, the thesis is concluded in chapter 5 followed by future recommendations 

that will extend the scope of the work presented here. 
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Chapter 2.  
  
Analysis of Sliding Mode Observers Using a Novel 
Time-Averaged Lyapunov Functional 

Sliding mode observers are desirable for their robust nature towards parameter 

uncertainty, parameter variation, disturbance rejection and simple implementation. As 

compared to other observers, the sliding mode observer utilizes a signum function of the 

state estimate error in the feedback correction term. This allows for error dynamics to be 

confined along the sliding surface where the motion of the state trajectories are 

restricted within the sliding manifold. As seen in literature, previous work on sliding mode 

observers does not take into account the effect of external Gaussian noise on a 

nonlinear system [75], [79], [81], [82] 

Hence, we first introduce a novel scheme to examine the stability of a linear 

system in the presence of such external disturbance on the system using a Time-

averaged Lyapunov functional. Then, we develop a sliding mode observer for this linear 

system using the same functional and observe its stability. Later, an illustrative example 

is presented to show the effectiveness of the proposed observer.     

             The stability of a system in the presence of noise cannot be determined using 

traditional Lyapunov methods. To demonstrate this, we consider the following general 

linear system with input disturbance and sensor noise, which is assumed to be Gaussian 

in nature 

 

 
�̇� = 𝐴𝑥 + 𝐹𝑤 + 𝐻𝑢
𝑦 = 𝐶𝑥 + 𝜈

 
 
(2.1) 

 

In this system, 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 ∈ ℝ𝑞 is the vector of known inputs, 𝑤 is a 

vector of unknown input disturbances, 𝑦 ∈ ℝ𝑚 is the output vector and 𝑣 is a vector of 

unknown measurement noise. 𝐴, 𝐹, 𝐻, 𝐶 are known system matrices of appropriate 

dimensions. Without loss of generality, we can partition the system into two subsytems 

such that,  
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�̇� = [
�̇�1

�̇�2
],    𝐶 = [𝐼𝑚 0],     𝐴 = [

𝐴11 𝐴12

A21 A22
]  

 (2.2) 

 

Where the 1-subspace given by �̇�1, represents the set of states that have an output 

measurement available, whereas the 2-subspace given by �̇�2 spans the other states of 

the system that have no measurements available at the output. 𝐼𝑚 is a 𝑚 × 𝑚 identity 

matrix. 

 

The observer is constructed as  

 

 �̇� = 𝐴𝑥 + 𝐻𝑢 + [
𝐼𝑚
𝐿2

] 𝑢�̃�  (2.3) 

 

With a sliding observer signal given by  

 
 𝑢�̃� = 𝜌 × 𝑠𝑖𝑔𝑛(𝑦 − 𝑐𝑥)    (2.4) 

 

The dynamics of the estimation error for this observer becomes 

 
 �̇̃� = A�̃� + 𝐹𝑤 − [𝐼𝑚 𝐿2]

𝑇𝑢�̃�  (2.5) 

 
Where,  �̇̃� = �̇� − �̇� 

 

In the absence of noise (i.e  𝑤 = 0 and 𝜈 = 0) the system can be written as   

 

 
�̇� = A𝑥 + 𝐻𝑢
𝑦 = 𝐶𝑥

  (2.6) 

 

The dynamics of the estimation error for this observer becomes  
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 �̇̃� = A�̃� − [
𝐼𝑚
𝐿2

] 𝑢�̃�  (2.7) 

 

Where 𝐿2 is the observer gain that acts on the 2-subspace of the system. 

The �̃�1-dynamics of the observer can be written as,  

 
 �̇̃�1 = A11�̃�1 + A12�̃�2 − 𝑢�̃� (2.8) 

 

If we choose a sufficiently large 𝜌, s.t 𝜌 > max(A11�̃�1 + A12�̃�2),by using an 

appropriate sliding mode input, we can drive �̃�1 → 0, �̇̃�1 → 0 and 𝑢�̃� → 𝑢�̃�−𝑒𝑞, in finite 

time with the equivalent average value of 𝑢�̃� given by [72], [82] 

 
 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 (2.9) 

 

Hence, the �̃�2- dynamics can be written as 

 
 �̇̃�2 = (A22 − 𝐿2𝐴12)�̃�2 (2.10) 

 

If we begin with a quadratic Lyapunov candidate function 

 
 𝑉 = �̃�𝑇𝑃�̃� > 0 (2.11) 

 

The derivative of the function is given by 

 
 �̇� = 2�̃�2

𝑇𝑃22(A22 − 𝐿2𝐴12)�̃�2 (2.12) 
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Hence, the Lyapunov can be made negative by making A22 − 𝐿2𝐴12 Hurwitz. However, 

in the presence of noise,  

 

 
�̇� = �̃�𝑇(𝐴𝑇𝑃 + 𝑃𝐴)�̃� + 2𝜌�̃�𝑇𝑃 [

𝐼𝑚
𝐿2

] 𝑠𝑖𝑔𝑛(𝑦 − 𝑐𝑥)

+2�̃�𝑇𝑃𝐹𝑤

 (2.13) 

 

As seen from Eq(2.13), an additional terms gets appended to the original 

Lyapunov derivative where the noise term given by: 2�̃�𝑇𝑃𝐹𝑤, cannot be ensured to be 

negative. Therefore, the system cannot be shown to be stable. Hence, we introduce a 

time averaged Lyapunov (TAL). 

 Time averaged Lyapunov  

We will introduce a time-averaged Lyapunov function (TAL) candidate as follows 

𝑃 > 0 

 𝑉:=
1

𝑇
∫ 𝑉𝐼(𝜏)𝑑𝜏

𝑡

𝑡−𝑇

=
1

𝑇
∫ �̃�𝑇(𝜏)𝑃�̃�(𝜏)𝑑𝜏

𝑡

𝑡−𝑇

 (2.14) 

 

where T is an arbitrary time window. Notice that for a constant 𝑑𝑡,  

 

 

𝑉(𝑡 + 𝑑𝑡) =
1

𝑇
∫ 𝑉𝐼(𝜏)𝑑𝜏

𝑡+𝑑𝑡

(𝑡+𝑑𝑡)−𝑇

 

  

(2.15) 

 

By replacing 𝜏 with 𝜏 + 𝑑𝑡 inside the integral, and noting that 𝑑𝑡 is constant we find 
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�̇� =
𝑉(𝑡 + 𝑑𝑡) − 𝑉(𝑡)

𝑑𝑡

=
1

𝑇
∫

𝑉𝐼(𝜏 + 𝑑𝑡) − 𝑉𝐼(𝜏)

𝑑𝑡

𝑡+𝑇

𝑡

𝑑𝜏

=  
1

𝑇
∫ �̇�𝐼𝑑𝜏

𝑡+𝑇

𝑡

 

 

(2.16)          

Hence, the derivative of the TAL is equal to the time-averaged derivative of the 

underlying Lyapunov function. Compared to a quadratic Lyapunov function, the TAL is 

also positive definite. Hence if we can show that �̇� < 0, ∀ �̃� ∉ 𝔻, �̇� = 0, ∀ �̃� ∈ 𝔻, then the 

system converges to a subspace in 𝔻. Further, like the quadratic Lyapunov function, the 

TAL is radially unbounded as 𝑉(�̃�) → ∞ when ‖�̃�‖ → ∞. The quadratic Lyapunov 

function has a zero value only when �̃� = 0. However, the TAL is zero only when �̃�(𝜏) =

0 ∀𝜏 ∈ [𝑡 − 𝑇, 𝑡]. Hence the TAL may impose a stronger constraint on �̃�. The TAL will be 

used to study observer stability in the presence of sensor noise and input disturbances.  

 

 Sliding mode using the time averaged Lyapunov (TAL) 
function on a simple diagonal system 

 

From eq(2.8) and eq(2.10) it can be seen that the time scale of the �̃�1-dynamics 

of the observer  is significantly faster than the time scale of the �̃�2-dynamics .To better 

understand the observer (2.3), we will first consider a simple autonomous system 

corresponding to the �̃�1-dynamics. Consider 

 
 �̇�𝑖 = −𝜌𝑠𝑖𝑔𝑛(𝜒𝑖 + 𝜈𝑖), 𝜈𝑖~(0,𝑄𝑖) (2.17) 

 

Where, 𝜈𝑖 is the zero mean Gaussian noise with a covariance defined by 𝑄𝑖 

If we define  
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 𝑉𝐼 = 𝜒𝑇𝜒 (2.18) 

 

Then  

 
 𝑉�̇� = −2𝜌𝜒𝑇𝑠𝑖𝑔𝑛(𝜒 + 𝜈) (2.19) 

 

Notice that  

 

 

1

𝑇
∫ 𝜒𝑖𝑠𝑖𝑔𝑛(𝜒𝑖 + 𝜈𝑖)𝑑𝜏

𝑡+𝑇

𝑡

=
1

𝑇
∫ 𝜒𝑖(1 − 2𝑝𝜒𝑖

)𝑠𝑖𝑔𝑛(𝜒𝑖)𝑑𝜏

𝑡+𝑇

𝑡

 

 

 

 

(2.20) 

 

Where, 𝑝𝜒𝑖
 denotes the probability of an event given by 𝑝𝜒𝑖

= 𝑃(𝜈𝑖 > |𝜒𝑖|) =

1
2⁄ [1 − erf(|𝜒𝑖|/√2𝑄𝑖)].  

Hence, 

 

 𝑉�̇� = −2𝜌∑(1 − 2𝑝𝜒𝑖
)|𝜒𝑖| (2.21) 

 

Since 𝑝𝜒𝑖
> 0.5 ∀𝜒𝑖 > 0, 𝑉�̇� < 0 ∀𝜒 > 0. To determine the convergence rate in the 

neighbourhood of |𝜒𝑖| = 0, we expand 𝑝𝜒𝑖
 in this neighbourhood |𝜒𝑖| = 0 using Taylor 

expansion and find 

 

 𝑝𝜒𝑖
=

1

2
−

|𝜒𝑖|

√2𝜋𝑄𝑖

  (2.22) 

 

Hence 
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 𝑉�̇� ≈
2𝜌

√2𝜋
𝜒𝑇𝑄−

1
2𝜒 = 2 × 0.3989𝜌𝜒𝑇𝑄−1 2⁄ 𝜒  (2.23) 

 

Hence, in the neighbourhood of |𝜒𝑖| = 0 the system behaves as  

 
 �̇� ≈ −0.3989𝜌𝑄−1 2⁄ 𝜒 (2.24) 

 

This behaviour is illustrated using Figure 2.1- Figure 2.4 (using 𝑑𝑡 = 10−6) 

 

 

Figure 2.1. Response of 1-D system with 𝝆 = 𝟏𝟎 and 𝑸 = 𝟎. 𝟎𝟏 
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Figure 2.2. Response of 1-D system with 𝝆 = 𝟏𝟎 and 𝑸 = 𝟏  

 

 

Figure 2.3. Response of 1-D system with 𝝆 = 𝟏𝟎 and 𝑸 = 𝟏𝟎𝟎  
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Figure 2.4. Response of 1-D system with 𝝆 = 𝟏𝟎𝟎 and 𝑸 = 𝟏𝟎𝟎  

 

Theoretically, the effect of noise which shows up in the form of 𝜈𝑖, gets averaged out 

over a period of time, such that the effect is reduced significantly.  

 

2.2.1. Sliding mode observer design 

Based on the covariance of the noise, we will need to make 𝜌 sufficiently large. 

Hence the system time scale can be made arbitrarily small and therefore the system 

exhibits a dual time scale problem. Using Singular perturbation analysis, the slower sub-

system can be viewed as a frozen [46].  

 
 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐹1𝑤 (2.25) 
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It must be noted that 𝑢�̃�−𝑒𝑞 would be a filtered version with a time constant 

(0.3989𝜌𝑄−1 2⁄ )
−1

. Since 𝜌 is sufficiently large, we can ignore this filter time constant. 

Hence the �̃�2-dynamics can be written as 

 
 �̇̃�2 = (A22 − 𝐿2𝐴12)�̃�2 + (𝐹2 − 𝐿2𝐹1)𝑤 (2.26) 

 
Theorem 2.1 

 

For a system (2.1) in the form of the observer (2.3), for a choice of 𝜌 > 0 with  

𝜌𝑄−1 2⁄ √2𝜋⁄ ≫ A11 𝑎𝑛𝑑 time scale of �̃�2-dynamics, and 𝜌 > A11�̃�1 + A12�̃�2, the �̃�1-

dynamics of the observer  can be approximated as  

 

 �̃�1 ≈
√2𝜋

𝜌
𝑄1 2⁄ [A12�̃�2] + wfilt (2.27) 

 

Where wfilt is the filtered noise  

 

 ẇfilt +
1

√2𝜋
𝜌𝑄−1 2⁄ wfilt = F1w 

(2.28) 

 

and on the time scale of the �̃�2-dynamics,  

 

 𝑢�̃� ≔ 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 
(2.29) 

 

Proof: Now the �̃�1-dynamics is given by 

 



22 
 

 �̇̃�1 = A11�̃�1 + A12�̃�2 + 𝐹1𝑤 − 𝑢�̃� 
(2.30) 

 

Since 𝜌 > A11�̃�1, the system will be driven towards the origin. Now in the 

neighbourhood of |�̃�1| = 0, the effective �̃�1-dynamics becomes  

 

 
�̇̃�1 = A11�̃�1 + A12�̃�2 + 𝐹1𝑤

−
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ �̃�1

 
 (2.31) 

 

Since 𝜌 is arbitrarily large, we can choose 
𝜌

√2𝜋
⁄ 𝑄−1 2⁄  to be much larger than 

the time scale of �̃�2-dynamics. Using Singular perturbation analysis, the slower �̃�2-

subsystem can be viewed as a frozen (constant) system from the time scale of the �̃�1-

dynamics [70]. Further since 
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ ≫ A11 ,   

 

 𝑢�̃� ≔ 𝑢�̃�−𝑒𝑞 ≈
1

√2𝜋
𝜌𝑄−1 2⁄ �̃�1 

(2.32) 

 

And 

 

 �̇̃�1 +
1

√2𝜋
𝜌𝑄−1 2⁄ �̃�1 ≈ [A12�̃�2 + 𝐹1𝑤] 

(2.33) 

 

The solution of (2.33) yields  

 

 �̃�1 ≈
√2𝜋

𝜌
𝑄1 2⁄ [A12�̃�2] + wfilt (2.34) 
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From the time scale of the �̃�2-dynamics,  

 

 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐹1𝑤 
(2.35) 

 

Q.E.D. ■ 

 

Theorem 2.2 

For a system (2.1) in the form (2.3) for a choice of 𝜌 > 0 with  
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ ≫

A11 𝑎𝑛𝑑 𝐴22 − 𝐿2𝐴12, and 𝜌 > A11�̃�1 + A12�̃�2, if ∃ 𝑃22 > 0, 𝑊22 ≥ 0 and 𝑋2 such that  

 

 [

(2𝑊22 + 𝑃22𝐴 + 𝐴𝑇𝑃22

       −𝑋2𝐴12 − 𝐴12
𝑇 𝑋2

𝑇)
𝑃22𝐹 − 𝑋2𝐹

𝐹𝑇𝑃22 − 𝐹𝑇𝑋2
𝑇 𝑅−1

] < 0 

 

 

(2.36) 

 

by choosing 𝐿2 = 𝑃22
−1𝑋2, the observer (2.3) drives the states to ∃𝑊∞ 

 
1

𝑇
∫ �̃�2

𝑇𝑊22�̃�2𝑑𝜏

𝑡

𝑡−𝑇

→ 𝑊∞ < 1 

 

 

(2.37) 

Proof: Using (2.29)(2.28) from Theorem 2.2 in the �̃�2-dynamics, Eq(2.5) can be 

written as, 
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 �̇̃�2 = (A22 − 𝐿2𝐴12)�̃�2 + (𝐹2 − 𝐿2𝐹1)𝑤 
(2.38) 

 

If we consider a TAL candidate function 

 

 𝑉:=
1

𝑇
∫ 𝑉𝐼𝑑𝜏

𝑡+𝑇

𝑡

=
1

𝑇
∫ �̃�2

𝑇(𝜏)𝑃22�̃�2(𝜏)𝑑𝜏

𝑡+𝑇

𝑡

> 0 
 

(2.39) 

  

It is evident that 𝑉�̇� < 0 if  

 

 
1

𝑇
∫ �̃�2

𝑇𝑊22�̃�2𝑑𝜏

𝑡

𝑡−𝑇

> 1 
(2.40) 

 

Hence, the observer drives the states  

 

 
1

𝑇
∫ �̃�2

𝑇𝑊22�̃�2𝑑𝜏

𝑡

𝑡−𝑇

→ 1 
(2.41) 

 

Q.E.D. 

 ■ 

 Numerical Example 

2.3.1. Example 1: Rössler Attractor System   

To demonstrate the broad implementation of the proposed system, we consider 

the Rössler Attractor System, which is a highly nonlinear system with chaotic system 



25 
 

dynamics corresponding to its fractal properties [86], [87]. The system is defined using 

the following set of equations: 

 �̇� = −𝑦 − 𝑧 (2.42) 

 �̇� = 𝑥 + 𝑎𝑦 (2.43) 

 �̇� = 𝑏𝑥 − 𝑐𝑧 + 𝑥𝑧 (2.44) 

Where x,y and z are the three variables that evolve in continuous time and a,b 

and c are the variable parameters. Oscillations in variables 𝑥 and 𝑦 are generated by the 

linear terms present in the first two equations (2.42)(2.43) of the system. Now, if 𝑎 > 0, 

then these oscillations are amplified which results in a spiraling-out motion in x and y. 

This motion is coupled with variable 𝑧 from eq(2.44) which contains the nonlinear term 

‘xz’. This brings about the reinjection back to the beginning of the spiraling-out 

motion[88] as seen in Figure 2.5. This system is formed from another set of Navier-

Strokes equation which is found in chemical reactions in the form of oscillations. It is 

similar to a Lorenz attractor, however, it has only one manifold.  

Using parameters from earlier literature[89], 𝑎 = 0.2, 𝑏 = 0.2 and 𝑐 = 5.7 

(Standard Rössler Attractor), we model the linearized dynamics of the  Rössler system. 

 

Figure 2.5. Rössler Attractor  
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The system is defined as: 

 
�̇� = [

0 −1 −1
1 0.2 0
0 0 −5.7

] 𝑥 + [
1
0
0
]𝑢 

𝑦 = [
1 0 0
0 1 0

] 𝑥 

 

 

(2.45) 

Hence, the system matrices are given by: 

 

 𝐴 = [
0 −1 −1
1 0.2 0
0 0 −5.7

] , 𝐹 = 𝐻 = [
1
0
0
] , 𝐶 =  [

1 0 0
0 1 0

] , 𝐸 =  [
0
0
0
]  

 

For the simulation, the system is divided into different subsystems to satisfy the 

proposed LMI (2.36). The above mentioned system matrices are divided into the 

following subsystems:  

𝐴12 = [
−1
0

],   𝐴22 = [−5.7] , 𝐸1 = [
0
0
] , 𝐸2 = [0],  

𝐹1 = [
1
0
] , 𝐹2 = [0] 

 

Using an initial condition 𝑥(0) =  [5 5 5]𝑇 and an input 𝑢 = sin (6𝜋𝑡), we model 

the Rössler system dynamics in the presence of an external disturbance 𝑣 with 

covariance 𝑄 = 1 and 𝑅 = 1. The system is simulated in MATLAB to solve for �̅�2 using 

LMI (2.36). The given observer design yields: 

 

 

�̅�2 = [−1.0614 −4.1573] 

𝑋2 = [−0.3647 −1.4328] 

𝑃22 = 0.3436 

 

 

(2.46) 
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The sub gain matrix �̅�2 is used as we are only observing the effect on the 22 

subsystem. Using Simulink the above system is modeled and simulated for a time period 

of  𝑇_𝑒𝑛𝑑 = 10 secs. Figures Figure 2.6 to Figure 2.9 explicitly demonstrate the 

convergence of the estimated states and the parameters to their true values. The 

timescale for each plot is suitably adjusted to give comprehensive information about the 

state behaviour. The plots given below, demonstrate how the estimated state converges 

to its actual/true state value. 

 

 

Figure 2.6. State 𝑿𝟏 and its estimation 

 



28 
 

 

Figure 2.7. State 𝑿𝟐 and its estimation 

 

 

Figure 2.8. State 𝑿𝟑 and its estimation 
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Figure 2.9. State Estimation error 

 

Hence, the TAL function helps analyze the choice of covariance and sliding 

mode gain parameters so that the convergence rate can be improved. The effectiveness 

of the proposed observer is shown above in the form of state convergence plots and an 

estimation error plot. 

To see the effect of the sensor noise ‘𝑣’ on the system, we plot figures for the 

system and observer outputs (𝑦 and �̂� respectively). The outputs represent the values at 

the sensors of the system (plant) and observer respectively.  Figure 2.10 and Figure 

2.11 represent the values of outputs of the plant and the observer of the system 

respectively. The Rössler Attractor system analysed here has two sensors at the output. 

Hence, the figures represent the values of the two sensors of the system, which give us 

the measurement of states 𝑥1 and 𝑥2 of the system. Figure 2.11 demonstrates the 

effectiveness of the proposed observer on the sensor noise affecting the system. The 

effect of the noise is significantly reduced as compared to the plant. Hence, the state 

estimates of the observer are not affected by the external sensor noise acting on the 

system, which makes the observer design robust to external disturbances.   
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Figure 2.10. System (Plant) Output  

 

 

Figure 2.11. Observer Output  

�̂�1 

�̂�2 

 

𝑦1 

 
𝑦2 
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Chapter 3.  
 
Sliding Mode Observer Design for a Lipschitz 
Nonlinear System 

Typically, complex real world systems are nonlinear in nature and hence in order 

to estimate the states of these systems, a nonlinear observer is necessary. Furthermore, 

these real world systems are also subject to system noise and external disturbances. 

This chapter serves as an extension of the previous chapter. It explains the design of a 

sliding mode observer for a system with an added Lipschitz nonlinearity.  

The chapter initially presents the design of the observer dynamics using the TAL 

functional as discussed previously, followed by various existence conditions to ensure 

the stability of the nonlinear system. A systematic approach to design the appropriate 

observer and sliding mode gains is presented. Furthermore, the LMI conditions 

presented here are less conservative and hence the observer functions robustly even in 

the presence of large Lipschitz constants. Later, the LMI conditions are compared to that 

of a Luenberger-like observer designed using the TAL technique. Finally, various results 

are presented and conclusions are made regarding its conservativeness.   

 System Model 

Consider a general nonlinear system  

 
�̇� = A𝑥 + 𝐸𝜙(𝑢, 𝑥) + 𝐹𝑤 + 𝐻𝑢
𝑦 = 𝐶𝑥 + 𝜈

𝑤~(0, 𝑅),   𝜈~(0,𝑄)
 

(3.1) 

 

In this system, 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 ∈ ℝ𝑞 is the vector of known inputs, 𝑤 

is a vector of unknown input disturbances, 𝑦 ∈ ℝ𝑚 is the output vector and 𝑣 is a vector 

of unknown measurement noise (zero mean Gaussian noise). 𝐴,𝐻, 𝐶, 𝐸, 𝐹 are known 

system matrices of appropriate dimensions. We consider all the nonlinearities in the 

system as a whole and represent it in terms of an additive nonlinearity 𝜙(𝑢, 𝑥) ∈ (ℝ𝑞 ×

ℝ𝑛) → ℝ𝑝, which is assumed to satisfy a matrix Lipschitz condition, given by 
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 |𝜙(𝑢, 𝑥) − 𝜙(𝑢, 𝑥)| ≤ 𝛾|𝐺(x − 𝑥)| (3.2) 

Where 𝛾 is a Lipschitz constant and G is assumed to be a sparsely populated matrix 

Without loss of generality, we can also assume that,  

 𝐶 = [𝐼𝑚 0], 𝐴 = [
𝐴11 𝐴12

A21 A22
], 𝐺 = [𝐺1   𝐺2], Q is a diagonal matrix (3.3) 

Where the 1-subspace represents the outputs, and the 2-subspace spans the other 

states of the system and 𝐼𝑚 is a 𝑚 × 𝑚 identity matrix. 

 Observer design 

We will construct the sliding mode observer as  

 �̇� = 𝐴𝑥 + 𝐸𝜙(𝑢, 𝑥) + 𝐻𝑢 + [𝐼𝑚 𝐿2]
𝑇𝑢�̃� (3.4) 

With a sliding observer signal given by  

 𝑢�̃� = 𝜌 × 𝑠𝑖𝑔𝑛(𝑦 − 𝐶𝑥) (3.5) 

Where 𝜌 is an arbitrarily large sliding mode gain and 𝑠𝑖𝑔𝑛(∘) is the sign function. 

For this observer, the dynamics of the estimation error becomes  

 �̇̃� = A�̃� + 𝐸�̃� − [𝐼𝑚 𝐿2]
𝑇𝑢�̃� + 𝐹𝑤 (3.6) 

Where  �̃� = 𝑥 − 𝑥 , �̃� = 𝜙 − �̂� and 𝐿2 is the observer gain. 

The �̃�1-dynamics of the observer can be written as, 

 �̇̃�1 = A11�̃�1 + A12�̃�2 + 𝐸1�̃� + 𝐹1𝑤 − 𝑢�̃� (3.7) 

Theorem 3.1 

 For a system (3.1) in the form (3.3) with a zero mean Gaussian sensor noise, 

the �̃�1-dynamics of the observer (3.4) can be approximated as 
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 �̃�1 ≈
√2𝜋

𝜌
𝑄1 2⁄ [A12�̃�2 + 𝐸1�̃�2] + wfilt (3.8) 

for a choice of a sufficiently large 𝜌 > 0. Where �̃�2 = �̃�|
�̃�1=0

= 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T) −

𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T) and wfilt is the filtered noise  

 ẇfilt +
1

√2𝜋
𝜌𝑄−1 2⁄ wfilt = 𝐹1𝑤 (3.9) 

and on the time-scale of the �̃�2-dynamics, the equivalent control 

 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐸1�̃�2 + 𝐹1𝑤 

 

(3.10) 

Proof: We shall begin by first examining the stability of an autonomous system  

 �̇̅̃�1 = 𝐴11�̅̃�1 − �̅��̃� + 𝐸1�̅̃� (3.11) 

Where �̅̃�1 are the states �̃�1 in  (3.10)(3.7) when �̃�2 = 0 and 𝑤 = 0, �̅��̃� = 𝜌 × 𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈) 

and �̅̃� = 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T) − 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T). To analyse the stability of  (3.10) we will treat �̃�2 

and 𝑤 as inputs to (3.11). From (3.2) we find 

 |�̅̃�| ≤ |𝐺1�̅̃�1| (3.12) 

Consider a TAL candidate for the above system with 

 �̅�𝐼 = �̅̃�1
𝑇 �̅̃�1 (3.13) 

For an arbitrarily small Δ𝑡 

 �̅�𝐼(𝑡 + Δ𝑡) = �̅̃�1
𝑇(𝑡 + Δ𝑡)�̅̃�1(𝑡 + Δ𝑡) (3.14) 

Or 
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�̅�𝐼(𝑡 + Δ𝑡) = (�̅̃�1 + 𝐴11�̅̃�1 Δ𝑡 − 𝜌 ∫ 𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈𝑖)𝑑𝜏1

𝑡+Δ𝑡

𝑡

+ 𝐸1�̅̃� Δ𝑡)

𝑇

           × (�̅̃�1 + 𝐴11�̅̃�1 Δ𝑡 − 𝜌 ∫ 𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈𝑖)𝑑𝜏2

𝑡+Δ𝑡

𝑡

+ 𝐸1�̅̃� Δ𝑡)

= �̅�𝐼 + 2�̅̃�1
𝑇 [𝐴11�̅̃�1 Δ𝑡 − 𝜌 ∫ 𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈𝑖)𝑑𝜏

𝑡+Δ𝑡

𝑡

+ 𝐸1�̅̃� Δ𝑡] +

+(𝐴11�̅̃�1 + 𝐸1�̅̃�)
𝑇
(𝐴11�̅̃�1 + 𝐸1�̅̃�) Δ𝑡2

+𝜌2 ∫ ∫ 𝑠𝑖𝑔𝑛(�̅̃�1(𝜏1) + 𝜈𝑖(𝜏1))𝑠𝑖𝑔𝑛(�̅̃�1(𝜏2) + 𝜈𝑖(𝜏2))𝑑𝜏1𝑑𝜏2

𝑡+Δ𝑡

𝑡

𝑡+Δ𝑡

𝑡

 (3.15) 

Notice that 𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈) is bounded. As a result  

 ∫ ∫ 𝑠𝑖𝑔𝑛(�̅̃�1(𝜏1) + 𝜈𝑖(𝜏1))𝑠𝑖𝑔𝑛(�̅̃�1(𝜏2) + 𝜈𝑖(𝜏2))𝑑𝜏1𝑑𝜏2

𝑡+Δ𝑡

𝑡

𝑡+Δ𝑡

𝑡

~𝒪(Δ𝑡2) (3.16) 

Where 𝒪(∘) indicates the order of magnitude of a term. Hence by taking the limit Δ𝑡 → 0, 

and noting that �̅�𝐼 is averaged over a time window T we find 

 �̇̅�𝐼 = 2�̅̃�1
𝑇 (𝐴11�̅̃�1 − 𝜌ℰ[𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈)] + 𝐸1�̅̃�) (3.17) 

Where ℰ(∘) denotes the expected value function. Hence, although �̅̃�1 is driven by 

𝑠𝑖𝑔𝑛(�̅̃�1 + 𝜈), the term �̅̃�1
𝑇𝑢�̃� gets averaged over a time window T. Now let �̅̃�1−𝑖 denote 

the the i-th component of �̅̃�1. When |�̅̃�1−𝑖| is sufficiently large, ℰ[𝑠𝑖𝑔𝑛(�̅̃�1−𝑖 + 𝜈𝑖)] ≈

𝑠𝑖𝑔𝑛(�̅̃�1−𝑖), and when |�̅̃�1−𝑖| = 0, ℰ[𝑠𝑖𝑔𝑛(�̅̃�1−𝑖 + 𝜈𝑖)] = ℰ[𝑠𝑖𝑔𝑛(𝜈𝑖)] = 0. Since 𝑠𝑖𝑔𝑛(0) =

0, we will define the correction term 0 < 𝜌𝑐−𝑖(�̅̃�1−𝑖) ≤ 1  

 ℰ[𝑠𝑖𝑔𝑛(�̅̃�1−𝑖 + 𝜈𝑖)] ≔ 𝜌𝑐−𝑖(�̅̃�1−𝑖)𝑠𝑖𝑔𝑛(�̅̃�1−𝑖) (3.18) 

Defining 𝛹𝑐(�̅̃�1) ≔ 𝑑𝑖𝑎𝑔(𝜌𝑐−𝑖(�̅̃�1−𝑖)), (3.17) can be written as 

 �̇̅�𝐼 = 2�̅̃�1
𝑇 (𝐴11�̅̃�1 − 𝜌𝛹𝑐(�̅̃�1)𝑠𝑖𝑔𝑛(�̅̃�1) + 𝐸1�̅̃�) (3.19) 

Using (3.12), 

 �̇̅�𝐼 ≤ 2�̅̃�1
𝑇(𝐴11�̅̃�1 − 𝜌𝛹𝑐(�̅̃�1)𝑠𝑖𝑔𝑛(�̅̃�1) + 𝐸1

𝑇𝐸1�̅̃�1 + 𝐺1
𝑇𝐺1�̅̃�1) (3.20) 
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Suppose 𝜌 > |𝐴11�̅̃�1 + 𝐸1
𝑇𝐸1�̅̃�1 + 𝐺1

𝑇𝐺1�̅̃�1|, notice that �̇̅�𝐼 < 0. Hence the system 

gets driven to the origin. As �̅̃�1 approaches �̅̃�1 = 0,  

 �̇̅�𝐼 ≈ −2𝜌�̅̃�1
𝑇𝛹𝑐(�̅̃�1)𝑠𝑖𝑔𝑛(�̅̃�1) (3.21) 

From the perspective of convergence, the system (3.11) is equivalent to  

 �̇̅̃�1−𝑖 = −𝜌𝜌𝑐−𝑖(�̅̃�1−𝑖) × 𝑠𝑖𝑔𝑛(�̅̃�1−𝑖) (3.22) 

To determine the convergence rate near |�̅̃�1| = 0, we will consider the first term 

in the Taylor series expansion of 𝜌𝑐−𝑖(�̅̃�1−𝑖) giving 

 �̇̅̃�1−𝑖 ≈ −𝜌𝜌𝑐−𝑖
0′

�̅̃�1−𝑖 (3.23) 

Where, 

 𝜌𝑐−𝑖
0′

: =
𝑑

𝑑�̅̃�1−𝑖

𝜌𝑐−𝑖(�̅̃�1−𝑖)|
�̅̃�1−𝑖=0+

 (3.24) 

To determine 𝜌𝑐−𝑖
0′

, we will first determine an expression for 𝜌𝑐−𝑖(�̅̃�1−𝑖). Notice that 

 𝑠𝑖𝑔𝑛(|�̅̃�1−𝑖| + 𝜈𝑖) = {
+1 𝑖𝑓 𝜈𝑖 > −|�̅̃�1−𝑖| 

−1 𝑖𝑓 𝜈𝑖 < −|�̅̃�1−𝑖|
 (3.25) 

If 𝒫(∘) denotes probability of an event,  

 

𝜌𝑐−𝑖(�̅̃�1−𝑖) = ℰ[𝑠𝑖𝑔𝑛(|�̅̃�1−𝑖| + 𝜈𝑖)]

= 𝒫(𝜈𝑖 > −|�̅̃�1−𝑖|) − 𝒫(𝜈𝑖 < −|�̅̃�1−𝑖|)

= [1 − 𝒫(𝜈𝑖 < −|�̅̃�1−𝑖|)] − 𝒫(𝜈𝑖 < −|�̅̃�1−𝑖|)

= 1 − 2 × 𝒫(𝜈𝑖 < −|�̅̃�1−𝑖|)

 (3.26) 

Since the sensor noise is Gaussian,  
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𝒫(𝜈𝑖 < −|�̅̃�1−𝑖|) = 𝑃(𝜈𝑖 > |�̅̃�1−𝑖|)

=
1

√2𝑄𝑖𝜋
∫ exp(−𝜈2 2𝑄𝑖⁄ ) 𝑑𝜈

𝑣=∞

𝑣=|�̅̃�1−𝑖|

=
1

√𝜋
∫ exp(−𝜈2) 𝑑𝜈

𝑣=∞

𝑣=
|�̅̃�1−𝑖|

√2𝑄𝑖

=
1

2
−

1

√𝜋
∫ exp(−𝜈2) 𝑑𝜈

𝑣=
|�̅̃�1−𝑖|

√2𝑄𝑖

0

=
1

2
(1 − erf(|�̅̃�1−𝑖|/√2𝑄𝑖))

 (3.27) 

Where erf(∘) denotes the error function. This yields 

 𝜌𝑐−𝑖(𝜒1−𝑖) = erf (
|�̅̃�1−𝑖|

√2𝑄𝑖

) (3.28) 

Hence 

 𝜌𝑐−𝑖
0′

=
𝑑

𝑑�̅̃�1−𝑖

erf (
|�̅̃�1−𝑖|

√2𝑄𝑖

)|

�̅̃�1−𝑖=0+

=
2

√𝜋
× √

1

2𝑄𝑖
= √

2

𝜋
𝑄𝑖

−1 2⁄
 (3.29) 

Hence, in the neighborhood of |�̅̃�1−𝑖| = 0 the system behaves as  

 �̇̅̃�1 ≈ −𝑢�̃� (3.30) 

 𝑢�̃� ≈ 𝜌√
2

𝜋
𝑄−1 2⁄ �̅̃�1 (3.31) 

Applying (3.30) to  (3.10) in the neighborhood of  |�̃�1| = 0, the effective �̃�1-dynamics 

becomes  

 

�̇̃�1 = 𝐴11�̃�1 − 𝜌√
2

𝜋
𝑄−1 2⁄ �̃�1 + A12�̃�2 + 𝐹1𝑤

𝐸1 {[𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]𝑇) − 𝜙(𝑢, [𝑥1
𝑇 �̂�2

𝑇]𝑇)] +
𝜕𝜙

𝜕𝑥1
�̃�1}

 (3.32) 
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Since 𝜌 is arbitrarily large, we can choose 𝜌√2
𝜋⁄ 𝑄−1 2⁄  to be much larger than 

the time scale of �̃�2-dynamics. Using Singular perturbation analysis [90], the slower �̃�2-

subsystem can be viewed as a frozen (constant) system from the time scale of the �̃�1-

dynamics.We can further assume 𝜌√2
𝜋⁄ 𝑄−1 2⁄ ≫ |𝐴11 + 𝐸1

𝜕𝜙
𝜕𝑥1

⁄ | giving,  

 �̇̃�1 + 𝜌√
2

𝜋
𝑄−1 2⁄ �̃�1 ≈ [A12�̃�2 + 𝐸1�̃�2 + 𝐹1𝑤] (3.33) 

Where �̃�2 = �̃�|
�̃�1=0

= 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T) − 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T). The solution of (3.33) yields  

 �̃�1 ≈ 𝜌−1√
𝜋

2
𝑄1 2⁄ [A12�̃�2 + 𝐸1�̃�2] + 𝐹1wfilt (3.34) 

If 𝑢�̃�−𝑒𝑞 is the equivalent control from the time scale of the �̃�2-dynamics,  

 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐸1�̃�2 + 𝐹1𝑤 
(3.35) 

 

Note 1: In order to ensure �̃�1 approaches the origin when |�̃�1| is large, we would require 

𝜌 ≫ |A11�̃�1 + A12�̃�2 + 𝐸1�̃�|. In order to ensure Singular perturbation analysis is valid, we 

would require 
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ ≫ the time scale of �̃�2-dynamics. 

We will now formulate a linear matrix inequality to solve for the observer gain. 

Lemma 3.2 (S-Procedure Lemma[67]): If 𝑉1:  ℝ
𝑟 → ℝ and 𝑉2:  ℝ

𝑠 → ℝ be such that 𝑉2 ≤

0, then 𝑉1 < 0 iff ∃𝜀 > 0 such that  

 𝑉1 − 𝜀𝑉2 < 0 (3.36) 

Theorem 3.3 

 For a system (3.1) in the form (3.3) with a Gaussian sensor noise, suppose ∃𝑇 such that 

zero mean Gaussian processes 𝑤~(0, 𝑅) satisfies 
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 1

𝑇
∫ 𝑤𝑇𝑅−1𝑤𝑑𝜏

𝑡

𝑡−𝑇

= 1 (3.37) 

Let 𝜌 > 0 with  𝜌√2
𝜋⁄ 𝑄−1 2⁄ ≫ Λ(𝐴22 − 𝐿2𝐴12),  𝜌√2

𝜋⁄ 𝑄−1 2⁄ ≫ |𝐴11 + 𝐸1
𝜕𝜙

𝜕𝑥1
⁄ | and 

𝜌 ≫ A11�̃�1 + A12�̃�2 + 𝐸1�̃�,  (where Λ(∘) denotes the eigenvalue function).The error 

dynamics (3.6) is stable iff ∃ 𝑃22 > 0, 𝑊22 ≥ 0 𝜖 > 0 and 𝑋2 such that  

 

[
 
 
 
 
(𝑊22 + 𝑃22𝐴22 + 𝐴22

𝑇 𝑃22

       −𝑋2𝐴12 − 𝐴12
𝑇 𝑋2

𝑇 + 𝜖𝛾2𝐺2
𝑇𝐺2)

𝑃22𝐸2 − 𝑋2𝐸1 𝑃22𝐹2 − 𝑋2𝐹1

𝐸2
𝑇𝑃22 − 𝐸1

𝑇𝑋2
𝑇 −𝜖𝐼 0

𝐹2
𝑇𝑃22 − 𝐹1

𝑇𝑋2
𝑇 0 𝑅−1 ]

 
 
 
 

< 0 
(3.38) 

By choosing the observer gain as 𝐿2 = 𝑃22
−1𝑋2 , the observer (3.4) drives the states to  

 1

𝑇
∫ �̃�2

𝑇𝑊22�̃�2𝑑𝜏

𝑡

𝑡−𝑇

≤ 1 
(3.39) 

Proof: Notice that by using  (3.10) from Theorem 3.1, the �̃�2-dynamics from (3.6) 

can be written as, 

 

 �̇̃�2 = (A22 − 𝐿2𝐴12)�̃�2 + (𝐸2 − 𝐿2𝐸1)�̃�2 + (𝐹2 − 𝐿2𝐹1)𝑤 
(3.40) 

Where, �̃�2 = �̃�|
�̃�1=0

= 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T) − 𝜙(𝑢, [𝑥1
𝑇 𝑥2

𝑇]T).  

Consider a TAL candidate with 𝑃22 > 0, 

 𝑉:=
1

𝑇
∫ 𝑉𝐼𝑑𝜏

𝑡

𝑡−𝑇

=
1

𝑇
∫ �̃�2

𝑇(𝜏)𝑃22�̃�2(𝜏)𝑑𝜏

𝑡

𝑡−𝑇

 (3.41) 

Hence  

 𝑉�̇� = �̃�2
𝑇[(A22 − 𝐿2𝐴12)

𝑇𝑃22 + 𝑃22(A22 − 𝐿2𝐴12)]�̃�2

+2�̃�2
𝑇𝑃22[(𝐸2 − 𝐿2𝐸1)�̃�2 + (𝐹2 − 𝐿2𝐹1)𝑤]

 
(3.42) 
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Since 𝜙 satisfies (3.2), we choose 

 𝑉𝜙: =
1

𝑇
∫(�̃�2

𝑇�̃�2 − 𝛾2�̃�2
𝑇𝐺2

𝑇𝐺2�̃�2)𝑑𝜏

𝑡

𝑡−𝑇

≤ 0 
(3.43) 

From Lemma 3.2 (ie S-Procedure Lemma [67]), �̇� < 0 iff ∃𝜖 > 0, 𝑉𝜙 ≤ 0 such that 

 �̇� − 𝜖𝑉𝜙 < 0 (3.44) 

Using the equality (3.37), we conclude that �̇� < 0 iff 

 

1

𝑇
∫{�̃�2

𝑇[(A22 − 𝐿2𝐴12)
𝑇𝑃22 + 𝑃22(A22 − 𝐿2𝐴12)]�̃�2

𝑡

𝑡−𝑇

     

+2�̃�2
𝑇𝑃22[(𝐸2 − 𝐿2𝐸1)�̃�2 + (𝐹2 − 𝐿2𝐹1)𝑤]         

             +𝜖𝛾2�̃�2
𝑇𝐺2

𝑇𝐺2�̃�2 − 𝜖�̃�2
𝑇�̃�2 − 𝑤𝑇𝑅−1𝑤 + 1}𝑑𝜏 < 0

 
(3.45) 

Suppose ∃ 𝑃22 > 0,𝑊22 ≥ 0, 𝜖 > 0 and 𝑋2 such that  

 

[
 
 
 
 
(𝑊22 + 𝑃22𝐴22 + 𝐴22

𝑇 𝑃22

       −𝑋2𝐴12 − 𝐴12
𝑇 𝑋2

𝑇 + 𝜖𝛾2𝐺2
𝑇𝐺2)

𝑃22𝐸2 − 𝑋2𝐸1 𝑃22𝐹2 − 𝑋2𝐹1

𝐸2
𝑇𝑃22 − 𝐸1

𝑇𝑋2
𝑇 −𝜖𝐼 0

𝐹2
𝑇𝑃22 − 𝐹1

𝑇𝑋2
𝑇 0 𝑅−1 ]

 
 
 
 

< 0 (3.46) 

Then, by taking 𝐿2 = 𝑃22
−1𝑋2, 

 

�̃�2
𝑇[(A22 − 𝐿2𝐴12)

𝑇𝑃22 + 𝑃22(A22 − 𝐿2𝐴12)]�̃�2

    +2�̃�2
𝑇𝑃22[(𝐸2 − 𝐿2𝐸1)�̃�2 + (𝐹2 − 𝐿2𝐹1)𝑤]

+𝜖𝛾2�̃�2
𝑇𝐺2

𝑇𝐺2�̃�2 − 𝜖�̃�2
𝑇�̃�2 − 𝑤𝑇𝑅−1𝑤 < −�̃�𝑇𝑊22�̃�

 (3.47) 

Comparing (3.45) and (3.47) we can conclude that �̇� < 0 if  

 
1

𝑇
∫ �̃�𝑇𝑊22�̃�𝑑𝜏

𝑡

𝑡−𝑇

> 1 (3.48) 

Hence, the observer drives the states to  
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1

𝑇
∫ �̃�𝑇𝑊22�̃�𝑑𝜏

𝑡

𝑡−𝑇

≤ 1 (3.49) 

Notice that for every choice of 𝐿2 that stabilizes the observer, ∃𝑋2 = 𝑃22𝐿2. Hence if ∄ 

𝑃22 > 0,𝑊22 ≥ 0, 𝜖 > 0  and 𝑋2 such that (3.38) is satisfied, then there is no stable 

observer. Hence the condition is also necessary. ■ 

Hence, by minimizing |𝑊22| we can find the tightest bound on the observer error. 

 Comparing Luenberger-like observer design using TAL 
with sliding mode observers 

In this section, we will use the TAL to design a linear gain observer for a 

nonlinear system using a TAL function. This will serve both, to demonstrate the utility of 

the TAL, as well as allow this work to compare the sliding mode observer design with the 

linear gain observer. The observer is assumed to be of the form 

 �̇� = A𝑥 + 𝐸𝜙(𝑢, 𝑥) + 𝐿(𝑦 − 𝐶𝑥) + 𝐵𝑢 
(3.50) 

 

Theorem 3.4 

For the system (3.1) with zero mean Gaussian white noise 𝜈~(0,𝑄) and 𝑤~(0, 𝑅) ∃𝑇 

such that  

 

1

𝑇
∫ 𝑤𝑇𝑅−1𝑤𝑑𝜏

𝑡

𝑡−𝑇

= 1 

1

𝑇
∫ 𝜈𝑇𝑄−1𝜈𝑑𝜏

𝑡

𝑡−𝑇

= 1 

(3.51) 

the observer of the form (3.50) drives the observer error �̃� ≔ 𝑥 − 𝑥 to 
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 1

𝑇
∫ �̃�𝑇𝑊�̃�𝑑𝜏

𝑡

𝑡−𝑇

≤ 1 (3.52) 

iff ∃ 𝑃 > 0, 𝑊 ≥ 0 and 𝑋 such that 

  

[
 
 
 
2𝑊 + 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑋𝐶 − 𝐶𝑇𝑋𝑇 + 𝜖𝛾2𝐺𝑇𝐺 𝑃𝐸 𝑃𝐹 𝑋

𝐸𝑇𝑃 −𝜖𝐼 0 0
𝐹𝑇𝑃 0 −𝑅−1 0
𝑋𝑇 0 0 −𝑄−1]

 
 
 
< 0 (3.53) 

and the observer gain is given by 𝐿 = 𝑃−1𝑋. 

Proof: The proof follows along the lines of the proof of Theorem 3.3. We would 

consider a TAL candidate with 𝑃 > 0, 

 𝑉:=
1

𝑇
∫ 𝑉𝐼𝑑𝜏

𝑡

𝑡−𝑇

=
1

𝑇
∫ �̃�𝑇(𝜏)𝑃�̃�(𝜏)𝑑𝜏

𝑡

𝑡−𝑇

 (3.54) 

Then the error dynamics can be written as 

 �̇̃� = (𝐴 − 𝐿𝐶)�̃� + 𝐸�̃� + 𝐹𝑤 + 𝐿𝜈 (3.55) 

where, �̃� = 𝜙(𝑢, 𝑥) − 𝜙(𝑢, 𝑥).  

When compared to the proof of Theorem 3.3, notice that the error dynamics 

(3.55) resembles (3.40) when 𝐸1 = 0, 𝐹1 = 0, 𝐴12 = 𝐶, the subscripts 2 and 22 are 

dropped, and the term 𝐿𝜈 is added. Using the equality (3.51), we conclude that �̇� < 0 iff 

 

1

𝑇
∫ {�̃�𝑇[(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃 (𝐴 − 𝐿𝐶)]�̃�

𝑡

𝑡−𝑇

+ 2�̃�𝑇𝑃[𝐸�̃� + 𝐹𝑤 + 𝐿𝑣]  

          +𝜖𝛾2�̃�𝑇𝐺𝑇𝐺�̃� − 𝜖𝜙�̃�𝑇�̃� − 𝑤𝑇𝑅−1𝑤 + 1 − 𝑣𝑇𝑄−1𝑣 + 1}𝑑𝜏 < 0

 
(3.56) 

Defining 𝑃𝐿 ≔ 𝑋 we can conclude that if (3.53) is satisfied, the error dynamics is driven 

to (3.52). ■ 

Note: The above observer would correspond to a 𝐻∞ filter with  
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 𝐽 =
∫ �̃�𝑇𝑊�̃�𝑑𝜏

𝑡1

𝑡0

∫ 𝑤𝑇𝑅−1𝑤𝜏
𝑡1

𝑡0
+ ∫ 𝜈𝑇𝑄−1𝜈𝑑𝜏

𝑡1

𝑡0

≤
1

2
 

(3.57) 

Maximizing the smallest singular value of W would minimize the effect of the noise. 

While the sliding mode observer reduces the size of the state-space, it adds 

terms to the off-diagonal elements of the LMI. We will now show that the sliding mode 

observer design is indeed less conservative than the linear gain observer.   

Lemma 3.5: In the absence of sensor noise, (3.53), the LMI for the existence of a linear 

observer, is equivalent to (3.38), the LMI for the existence of a sliding mode observer. 

Proof: In the absence of sensor noise, (3.45) in Theorem 3.4 would become  

 

1

𝑇
∫ {�̃�𝑇[(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃 (𝐴 − 𝐿𝐶)]�̃�

𝑡

𝑡−𝑇

+ 2�̃�𝑇𝑃[𝐸�̃� + 𝐹𝑤]  

          +𝜖𝛾2�̃�𝑇𝐺𝑇𝐺�̃� − 𝜖𝜙�̃�𝑇�̃� − 𝑤𝑇𝑅−1𝑤 + 1}𝑑𝜏 < 0

 
(3.58) 

Hence, (3.53) would become  

 [
𝑊 + 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑋𝐶 − 𝐶𝑇𝑋𝑇 + 𝜖𝛾2𝐺𝑇𝐺 𝑃𝐸 𝑃𝐹

𝐸𝑇𝑃 −𝜖𝐼 0
𝐹𝑇𝑃 0 −𝑅−1

] < 0 
(3.59) 

Or 

 𝑊 + 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑋𝐶 − 𝐶𝑇𝑋𝑇 + 𝜖𝛾2𝐺𝑇𝐺 +
1

𝜖
𝑃𝐸𝐸𝑇𝑃 + 𝑃𝐹𝑅𝐹𝑇𝑃 < 0 (3.60) 

Following the argument made in Theorem 2 in Phanomchoeng et al. 

(Phanomchoeng & Rajamani, 2010), we can show an observer exists iff ∃𝛽,  𝑋 = 𝑃𝐿 =

𝛽2 2⁄ × 𝐶𝑇. Notice that  

 𝑃𝐴 = [
P11𝐴11 + 𝑃12𝐴21 P11𝐴12 + 𝑃12𝐴22

P21𝐴11 + 𝑃22𝐴21 P21𝐴12 + 𝑃22𝐴22
] (3.61) 

 𝐶𝑋 = [
𝛽2

2
⁄ 𝐶1

𝑇𝐶1 0

0 0
] (3.62) 
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 𝐺𝑇𝐺 = [
𝐺1

𝑇𝐺1 𝐺1
𝑇𝐺2

𝐺2
𝑇𝐺1 𝐺2

𝑇𝐺2

] (3.63) 

 

𝑃𝐸𝐸𝑇𝑃

=

[
 
 
 
 
(𝑃11𝐸1𝐸1

𝑇𝑃11 + 𝑃12𝐸2𝐸1
𝑇𝑃11)

+(𝑃11𝐸1𝐸2
𝑇𝑃21 + 𝑃12𝐸2𝐸2

𝑇𝑃21)
 

(𝑃12𝐸1𝐸1
𝑇𝑃11 + 𝑃12 𝐸2𝐸1

𝑇𝑃12)

+ (𝑃11𝐸1𝐸2
𝑇𝑃22 + 𝑃12𝐸2𝐸2

𝑇𝑃22)

∗
(𝑃12𝐸1𝐸1

𝑇𝑃21 + 𝑃12𝐸2𝐸1
𝑇𝑃22)

+ (𝑃21𝐸1𝐸2
𝑇𝑃22 + 𝑃22𝐸2𝐸2

𝑇𝑃22)]
 
 
 
 

 

(3.64) 

 

𝑃𝐹𝑅𝐹𝑇𝑃

=

[
 
 
 
 
(𝑃11𝐹1𝑅 𝐹1

𝑇𝑃11 + 𝑃12𝐹2𝑅 𝐹1
𝑇𝑃11)

+(𝑃11𝐹1𝑅 𝐹2
𝑇𝑃21 + 𝑃12𝐹2𝑅 𝐹2

𝑇𝑃21)
 

(𝑃12𝐹1𝑅 𝐹1
𝑇𝑃11 + 𝑃12 𝐹2𝑅 𝐹1

𝑇𝑃12)

+ (𝑃11𝐹1𝑅 𝐹2
𝑇𝑃22 + 𝑃12𝐹2𝑅 𝐹2

𝑇𝑃22)

∗
(𝑃12𝐹1𝑅 𝐹1

𝑇𝑃21 + 𝑃12𝐹2𝑅 𝐹1
𝑇𝑃22)

+ (𝑃21𝐹1𝑅 𝐹2
𝑇𝑃22 + 𝑃22𝐹2𝑅 𝐹2

𝑇𝑃22)]
 
 
 
 

 

 

 

(3.65) 

 

Since 𝛽 is arbitrary, we can set 𝛽 → ∞. Hence (3.60) can be written as 

 

𝑊22 + (P21𝐴12 + 𝑃22𝐴22)
𝑇 + (P21𝐴12 + 𝑃22𝐴22) + 𝜖𝛾2𝐺2

𝑇𝐺2 +

𝜖−1(𝑃21𝐸1𝐸1
𝑇𝑃12 + 𝑃22𝐸2𝐸1

𝑇𝑃12) + 𝜖−1(𝑃21𝐸1𝐸2
𝑇𝑃22 + 𝑃22𝐸2𝐸2

𝑇𝑃22)

(𝑃12𝐹1𝑅 𝐹1
𝑇𝑃21 + 𝑃12𝐹2𝑅 𝐹1

𝑇𝑃22) + (𝑃21𝐹1𝑅 𝐹2
𝑇𝑃22 + 𝑃22𝐹2𝑅 𝐹2

𝑇𝑃22) < 0

 (3.66) 

Or 

 

[
 
 
 
 
(𝑊22 + 𝑃22𝐴 + 𝐴𝑇𝑃22

       −P21𝐴12 − 𝐴12
𝑇 𝑃21

𝑇 + 𝜖𝛾2𝐺2
𝑇𝐺2)

𝑃22𝐸2 + 𝑃21𝐸1 𝑃22𝐹2 + 𝑃21𝐹1

𝐸2
𝑇𝑃22 + 𝐸1

𝑇𝑃21
𝑇 −𝜖𝐼 0

𝐹2
𝑇𝑃22 + 𝐹1

𝑇𝑃21
𝑇 0 𝑅−1 ]

 
 
 
 

< 0 (3.67) 

The above equation is identical to (3.38) with 𝑋2 = 𝑃22𝐿2 = −P21. ■ 

Note 2: For a given Lipchitz constant, the sliding mode observer offers the performance 

as a noise-free linear gain observer. In the presence of noise, it will not be possible to 

set 𝛽 → ∞ in (3.62). Since LMI (3.53) uses 𝜖𝛾2𝐺𝑇𝐺 compared to 𝜖𝛾2𝐺2
𝑇𝐺2 in LMI (3.38), 

we can conclude that the sliding mode observer makes the design less conservative. 

Note 3: When the nonlinearity has an unbounded Jacobian (for instance 𝜙 = 𝑥1𝑥3 as in 

the Rössler Attractor System [86] ,[87] discussed later in the paper) an equivalent 

Lipschitz constants is chosen based on the maximum anticipated values of 𝑥1, 𝑥3, �̃�1 and 

�̃�3. In such cases, the sliding mode observer will only need to consider the 𝑥1 which can 
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reduce the effective equivalent Lipschitz constants and make the observer design 

significantly less conservative.   

 Illustrative examples 

3.4.1. Example 1: Double Spring-Mass System  

We consider a variant of the robotic arm as used in Vijayaraghavan et al [60] 

originally discussed by Spong [91]. Originally, the system is a flexible link robot where 

the elasticity of the arm is represented by a linear torsional spring. The states of this 

system represent the motor position and velocity (defined by 𝑥1and 𝑥2) , link position and 

velocity (𝑥3 and 𝑥4). Vijayaraghavan et al [60]  uses a simplified version of this system in 

the form of a double spring-mass system to implement the observer design. The system 

is illustrated in Figure 3.1 as given below: 

 

 

Figure 3.1. Double Spring-Mass System 

  

The system is a simple second order system with 

𝐴 = [

0 1 0 0
−25 −1 15 0.3
0 0 0 1
15 0.3 −15 −0.3

],   𝐹 = 𝐵 = [

0
0
0
1

],   𝐶 = [

1 0
0 0
0 1
0 0

]

𝑇

,   𝐸 = [

0
1
0
0

], 𝜙 = 0.1sin (𝑥2), 

𝒌𝟏 

𝒌𝟐 

𝒄𝟏

𝝓  

𝒎𝟏 

𝒄𝟐 

 
𝒎𝟐 

 𝑭 

𝒙𝟏 

𝒙𝟐 
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 Using covariance  R=1; Q=1 and the assuming W = 0. Notice that the 

nonlinearity satisfies (3.2) with 𝐺 = [0 1 0 0] and 𝛾 = 0.1. In order to get the system 

in the form (3.3), we apply a state transformation matrix of the form   

𝑇 = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

],  �̅� = 𝑇−1𝐴𝑇, �̅� = �̅� = 𝑇−1𝐵, 𝐶̅ = 𝐶𝑇, �̅� = 𝑇−1𝐸 and �̅� = 𝐺𝑇 

Given the above system, MATLAB is used to solve the LMI (3.38) and determine 

the value of �̅�2. The calculations yield, 

 �̅�2 = [
0.5110 0.0203
0.3550 0.7210

] (3.68) 

Using Simulink, the above system is simulated for a period of 𝑇𝑒𝑛𝑑 =  10 

seconds. 

 

Figure 3.2. Convergence of State 𝒙𝟏  
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Figure 3.3. Convergence of State 𝒙𝟐 

 

Figure 3.4. Convergence of State 𝒙𝟑  
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Figure 3.5. Convergence of State 𝒙𝟒 

 

As seen in Figure 3.2-Figure 3.5, the states (in the original basis) are unaffected 

by the sensor noise, and they converge to their true state values. The sensor noise is 

minimized to such an extent that it doesn’t show up in the plots unless one were to 

enlarge the y-axis to the order of 10−4. Hence, the proposed observer is seen to 

significantly reduce the external sensor noise such that its effect on the system is 

negligible, and the system converges effectively. 

3.4.2. Example 2: Rössler Attractor System   

To demonstrate the broad implementation of the proposed system, we again 

consider the Rössler Attractor System from Section 2.3.1 of Chapter 2, 
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Figure 3.6. Rössler Attractor  

 

The system is defined using the following set of equations: 

 �̇� = −𝑦 − 𝑧 
(3.69) 

 �̇� = 𝑥 + 𝑎𝑦 
(3.70) 

 �̇� = 𝑏𝑥 − 𝑐𝑧 + 𝑥𝑧 
(3.71) 

The system is defined as: 

�̇� = [
0 −1 −1
1 𝑎 0
0 0 −𝑐

] 𝑥 + [
1
0
0
] 𝑢 + [

0
0
1
] (𝑥1𝑥3 + 𝑏) 

𝑦 = [1 0 0]𝑥 

The nonlinear conditions, given by 𝜙 = 𝑥1𝑥3 + 𝑏, can be expressed in terms of its 

nonlinear error dynamics as 

 �̃� =  𝑥1𝑥3 − (𝑥1𝑥3) = −[𝑥1�̃�3 + 𝑥3�̃�1 + �̃�1�̃�3] (3.72) 

Using parameters from earlier literature [89], we dynamics of the  Rössler system 

using parameters 𝑎 = 0.2 , 𝑏 = 0.2 and 𝑐 = 5.7 .  
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Taking 

 𝐴 =  [
0 −1 −1
1 𝑎 0
0 0 −𝑐

] , 𝐻 = [
1
0
0
] , 𝐶 =  [1 0 0], 𝐸 = [

0
0
1
] and a disturbance matrix 𝐹 = [

1
0
0
] 

By assuming |𝑥1|, |𝑥3| < 10, |�̃�1|, |�̃�3| < 10, one can choose 𝐺 = [1 0 1] and 

assume 𝛾 = 15 for the design of Luenberger-like observer. We assume W = 0 for this 

system. We find that the general observer design is not feasible as the maximum value 

of 𝛾 for which LMI (3.53) is feasible, is found to be 5.72. However for the sliding mode 

observer, the value of the Lipchitz constant we use is 𝛾 = 10 since the maximum value 

of 𝛾 for which LMI (3.38) is feasible is found to be 10.88. Hence the observer deign 

becomes more feasible as the sliding mode observer has the dual advantage of 

increasing the maximum allowable 𝛾 while simultaneously reducing the maximum 

effective 𝛾.  

Using an initial condition 𝑥(0) =  [5 5 5]𝑇 and an input 𝑢 = sin (6𝜋𝑡), we model 

the Rössler system dynamics in the presence of an external disturbance 𝑣 with 

covariance 𝑄 = 1 and 𝑅 = 1. The system is simulated in MATLAB to solve for �̅�2 using 

LMI (3.38). The calculations yield the following, 

 �̅�2 = [−0.9445 −3.7780] (3.73) 

The sub gain matrix �̅�2 is then used to formulate the observer gain matrix 𝐿 given as, 

𝐿 =  [
1 0
0 1

−0.9445 −3.7780
], as we are only observing its effect on the 22-subsystem.  

Using Simulink the above system is modeled and simulated for a time-period of  𝑇_𝑒𝑛𝑑 =

5 secs. Figure 3.7- Figure 3.9 explicitly demonstrate the convergence of the estimated 

states and the parameters to their true values. This illustrates how the proposed 

observer works with highly nonlinear chaotic systems even in the presence of external 

disturbances. 
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Figure 3.7. Convergence of State 𝒙𝟏 

 

Figure 3.8. Convergence of State 𝒙𝟐 
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Figure 3.9. Convergence of State 𝒙𝟑 

 

Hence, this demonstrates that the effect of a Gaussian noise can be effectively 

reduced by utilizing a sliding mode observer and that the LMI used for the design of the 

observer can be made less conservative. It also additionally applies the TAL function to 

analyze the stability of linear gain Lipschitz nonlinear observer, the results of which are 

used to compare the LMIs for the two observers. The illustrative examples demonstrate 

the effectiveness of the proposed observer and its ability to discard the external sensor 

noise. 
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Chapter 4.  
 
Adaptive Sliding Mode Observers for Sector-
Bounded Nonlinear Systems 

 

When modelling certain dynamic systems, whilst the various elementary 

dynamics of the system may be established, some of the parameters of the model are 

not readily available. For example, while modelling a mechanical spring mass system, 

the nonlinear model for damping can be assumed with sufficient accuracy. However, the 

actual value of the damping parameter used in that nonlinear model in unknown.  Hence, 

the observer for the system should be capable of estimating these unknown parameter 

along with the sates simultaneously. Furthermore, the observer should also be robust. 

This chapter expands on the design of a robust sliding mode observer which is capable 

of estimating unknown system parameters whilst simultaneously estimating the system 

states.  To further extend the design, we consider a nonlinear system that satisfies a 

generalized sector bounded (GSB) condition as proposed in [92] given as, 

 �̃�𝑇�̃� + (𝛾1 − 𝛾2)�̃�
𝑇𝐺�̃� − 𝛾1𝛾2�̃�

𝑇𝐺𝑇𝐺�̃� ≤ 0 (4.1) 

The GSB condition encircles a broad range of nonlinearities that include 

dissipative, Lipschitz and positive real nonlinearity. Hence, the proposed observer 

encompasses a large area of nonlinear systems. 

 System Model 

We begin with the following general nonlinear system without input disturbance 

and sensor noise 

 
�̇� = A𝑥 + 𝜇𝐵𝐷𝑥 + 𝐸𝜙(𝑢, 𝑥) + 𝐹𝑤 + 𝐻𝑢
𝑦 = 𝐶𝑥 + 𝜈

 (4.2) 
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In this system, 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 ∈ ℝ𝑞 is the vector of known inputs, 𝑤 

is a vector of unknown input disturbances, 𝑦 ∈ ℝ𝑚 is the output vector and 𝑣 is a vector 

of unknown measurement noise. 𝐴, 𝐸, 𝐹, 𝐻, 𝐶 are known system matrices of appropriate 

dimensions. The unknown parameter of the system is denoted by  𝜇  and matrices 𝐵,𝐷 

represent the direction matrix of the parameter in which it affects the states of the 

system. The nonlinearity 𝜙(𝑢, 𝑥) ∈ (ℝ𝑞 × ℝ𝑛) → ℝ𝑝, is assumed to satisfy a generalized 

sector bounded condition (4.1) as proposed in [92].  

The modelling of the above system (4.2) using the unknown parameters ‘𝜇’ is 

illustrated using the following example:  

If we analyze a second order spring mass system given by, 

 

𝐹(𝑡) = 𝑘𝑥(𝑡) + 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑐.

𝑑𝑥(𝑡)

𝑑𝑡
 

 

Where,  𝑘 and 𝑐 are the spring and damping constants respectively. 

This can also be represented by the following state space model: 

 

[
�̇�1

�̇�2
] =  [

0 1
−𝑘/𝑚 −𝑐/𝑚

] [
𝑥1

𝑥2
] + [

0
1/𝑚

]𝐹 

 

If we assume the damping constant 𝑐 to be the uncertain parameter in the system, then, 

𝑐 is be replaced by 𝑐∗ + 𝛥𝑐 . Here, 𝑐∗ is the nominal value of the parameter and  𝛥𝑐 is the 

deviation of the true damping value from its nominal value. Therefore, the above system 

can be rewritten as:  

 

[
�̇�1

�̇�2
] =  [

0 1
−𝑘/𝑚 −𝑐∗/𝑚

] [
𝑥1

𝑥2
] + Δ𝑐 [

0
−1/𝑚

] [0 1] [
𝑥1

𝑥2
] + [

0
1/𝑚

]𝐹 
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Now, this new representation gives us the values for matrices 𝐵 and 𝐷. Where Δ𝑐 

denotes our unknown parameter of the system ‘𝜇’ as given in our system model, and the 

direction matrix 𝐵 = [
0

−1/𝑚
] and matrix 𝐷 = [0 1]. 

 

 Observer Design 

We will construct the observer as  

 

�̇� = 𝐴𝑥 + �̂�𝐵𝐷𝑥 + 𝐸𝜙(𝑢, 𝐺𝑥) + 𝐻𝑢 + [𝐼𝑚 𝐿2]
𝑇𝑢�̃� 

�̇̂� = 𝐿𝜇𝑢�̃� 

 

(4.3) 

The dynamics of the estimation error for this observer becomes  

 

�̇̃� = A�̃� + 𝐵𝒟�̃�𝜇 + 𝐵𝒟�̂��̃� + 𝐸�̃� − [𝐼𝑚 𝐿2]
𝑇𝑢�̃� +  𝐹𝑤  

�̇̃� = −𝐿𝜇𝑢�̃� 

 

(4.4) 

Where, 𝐿𝜇 denotes the gain for the unknown parameter estimate. 

With a sliding observer signal given by  

 𝑢�̃� = 𝜌 × 𝑠𝑖𝑔𝑛(𝑦 − 𝑐𝑥) (4.5) 

Where 𝒟𝑥:= 𝐷𝑥 

Without loss of generality, we can assume that,  

 𝐶 = [𝐼𝑚 0], 𝐴 = [
𝐴11 𝐴12

A21 A22
], 𝐺 = [𝐺1   𝐺2] (4.6) 

If we examine the dynamics,  
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 �̇̃�1 = A11�̃�1 + A12�̃�2 + 𝐵1𝒟�̃�𝜇 + 𝐵1𝒟�̂��̃� + 𝐸1�̃� + 𝐹1𝑤 − 𝑢�̃� (4.7) 

Theorem 4.1 

For a system (4.2) in the form (4.6) ,  for a choice of 𝜌 > 0 with  
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ ≫ A11,

𝐺1 𝑎𝑛𝑑 time scale of �̃�2-dynamics, and 𝜌 > A11�̃�1 + A12�̃�2 + 𝐸1�̃�, the �̃�1-dynamics of the 

observer (4.3) can be approximated as 

 �̇̃�1 ≈
√2𝜋

𝜌
𝑄1 2⁄ [A12�̃�2 + 𝐸1�̃�2 + 𝐵1𝒟�̃�2

𝜇 + 𝐵1𝒟x̂2
�̃�] + wfilt 

(4.8) 

Where �̃�2 = �̃�|
�̃�1=0

= 𝜙(𝑢, [𝑦𝑇 𝑥2
𝑇]T) − 𝜙(𝑢, [𝑦𝑇 𝑥2

𝑇]T) and wfilt is the filtered noise  

 ẇfilt +
1

√2𝜋
𝜌𝑄−1 2⁄ wfilt = F1w 

(4.9) 

and on the time scale of the �̃�2-dynamics,  

 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐸1�̃�2 + 𝐵1𝒟�̃�2
𝜇 + 𝐵1𝒟�̂�2

�̃� + 𝐹1 
(4.10) 

Proof: Now the �̃�1 error dynamics is given by 

 �̇̃�1 = A11�̃�1 + A12�̃�2 + 𝐵1𝒟�̃�𝜇 + 𝐵1𝒟�̂��̃� + 𝐸1�̃� + 𝐹1𝑤 − 𝑢�̃� 
(4.11) 

Since 𝜌 > A11�̃�1 + 𝐸1�̃�, the system will be driven towards the origin. Now in the 

neighbourhood of |�̃�1| = 0, the effective �̃�1-dynamics becomes  

 
�̇̃�1 = A11�̃�1 + A12�̃�2 + 𝐸1 [

𝜕𝜙

𝜕𝑥1
�̃�1 +

𝜕𝜙

𝜕𝑥2
�̃�2]

+𝐵1𝒟�̃�2
𝜇 + 𝐵1𝒟�̂�2

�̃� + 𝐹1𝑤 −
𝜌

√2𝜋
⁄ 𝑄−1 2⁄

�̃�1 
(4.12) 

Since 
𝜌

√2𝜋
⁄ 𝑄−1 2⁄  is very large, the observer error dynamics exhibits dual time 

scale problem. Using Singular perturbation analysis, the slower �̃�2-subsystem can be 
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viewed as a frozen system from the time scale of the �̃�1-dynamics [92]. Further 

since 
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ ≫ A11 𝑎𝑛𝑑 𝐺1,  

 𝑢�̃� ≔ 𝑢�̃�−𝑒𝑞 ≈
1

√2𝜋
𝜌𝑄−1 2⁄ �̃�1 

(4.13) 

and 

 (𝑠 +
1

√2𝜋
𝜌𝑄−1 2⁄ ) �̃�1 ≈ [A12�̃�2 + 𝐸1�̃�2 + 𝐵1𝒟�̃�2

𝜇 + 𝐵1𝒟�̂�2
�̃� + 𝐹1𝑤] 

(4.14) 

The solution of (4.14) yields  

 �̃�1 ≈
√2𝜋

𝜌
𝑄1 2⁄ [A12�̃�2 + 𝐸1�̃�2 + 𝐵1𝒟�̃�2

𝜇 + 𝐵1𝒟�̂�2
�̃�] + wfilt 

(4.15) 

From the time scale of the �̃�2-dynamics,  

 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐸1�̃�2 + 𝐵1𝒟�̃�2
𝜇 + 𝐵1𝒟�̂�2

�̃� + 𝐹1𝑤 
(4.16) 

Based on the covariance of the noise, we will need to make 𝜌 sufficiently large. 

Hence, the system time scale can be made arbitrarily small, the system will exhibits dual 

time scale problem. Using Singular perturbation analysis, the slower sub-system can be 

viewed as a frozen [46].  

 𝑢�̃�−𝑒𝑞 = 𝐴12�̃�2 + 𝐸1�̃�2 + 𝐵1𝒟�̃�2
𝜇 + 𝐵1𝒟�̂�2

�̃� + 𝐹1 (4.17) 

It must be noted that 𝑢�̃�−𝑒𝑞 would be a filtered version with a time 

constant (0.3989𝜌𝑄−1 2⁄ )
−1

as demonstrated in eq(3.30) and (3.31). Since 𝜌 is sufficiently 

large, we can ignore this filter time constant. 

For a general sector bounded nonlinear system, the LMI is formulated as follows: 
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Lemma 4.2: For the system (4.2) in the form (4.6), a stable observer exists given a 

choice of 𝜌 > 0 with  
𝜌

√2𝜋
⁄ 𝑄−1 2⁄ ≫ A11, 𝜌 > A11�̃�1 + A12�̃�2 + 𝐸1�̃�, if ∃ 𝑃22 > 0, 𝑊22 ≥ 0 

, 𝑋2 and |𝐷�̇�| < 𝜎′|𝐷𝑥| ∀𝜎′ at every time instance, such that 

 

[
 
 
 
 

�̃�2

𝒟�̂�2
𝜇

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 
𝑇

[
 
 
 
 
𝑀11 𝑀12 𝑀13 𝑀14 𝑀15

𝑀21 𝑀22 𝑀23 𝑀24 𝑀25

𝑀31 𝑀32 −𝜖𝜙𝐼 0 0

𝑀41 𝑀42 0 −𝜖𝑖𝐼 0

𝑀51 𝑀52 0 0 𝑅−1]
 
 
 
 

[
 
 
 
 

�̃�2

𝒟�̂�2
𝜇

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 

< 0 

 

 

(4.18) 

 

Where, 

𝑋2 = 𝑃22𝐿2 + 𝑃2𝜇𝐷�̂�2
𝐿𝜇  

𝑋𝜇 = 𝒟�̂�2
𝑃2𝜇

𝑇 𝐿2 + 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

𝐿𝜇 

𝑀11 = 𝑃22A22 + A22
𝑇 𝑃22 − A12

𝑇 X2
𝑇 − X2A12 − 𝜇𝑖−𝑚𝑎𝑥

2 𝜖𝑖𝐷2−𝑖
𝑇 𝐷2−𝑖 + 𝜖𝜙𝛾1𝛾2𝐺2

𝑇𝐺2 

𝑀12 = 𝑃22𝐵2 + 𝐴22
𝑇 𝑃2𝜇 − X2𝐵1 − 𝐴12

𝑇 𝑋𝜇
𝑇 + 𝜎′𝑃2𝜇 

𝑀13 = 𝑃22𝐸2 − X2𝐸1 − (𝛾1 − 𝛾2)𝜖𝜙𝐺2 

𝑀14 = 𝑃22𝐵2 − X2𝐵1 

𝑀15 = 𝑃22𝐹2 − 𝑋2𝐹1 

𝑀22 = 𝐵2
𝑇𝑃2𝜇

𝑇 + 𝑃2𝜇
𝑇 𝐵2 − 𝐵2

𝑇𝑋𝜇
𝑇 − 𝑋𝜇𝐵1 + 2𝜎′𝑃𝜇𝜇 

𝑀23 = 𝑃2𝜇
𝑇 𝐸2 − 𝑋𝜇𝐸1 

𝑀24 = 𝑃2𝜇
𝑇 𝐵2 − 𝑋𝜇𝐵1 

𝑀25 = 𝑃2𝜇
𝑇 𝐹2 − 𝑋𝜇𝐹1 

The observer can be chosen by using , the gains 𝐿2 and 𝐿𝜇 given by : 
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𝐿2 = [𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝐴12
𝑇 𝒬 (4.19) 

𝐿𝜇 = −[𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝑃2𝜇𝑃𝜇𝜇
−1(𝒟�̂�2

)
−1

𝐴12
𝑇 𝒬 (4.20) 

Proof :  

Equation (4.4) can be written as, 

 

�̇̃�2 = (A22 − 𝐿2𝐴12)�̃�2 + (𝐸2 − 𝐿2𝐸1)Φ̃2 + (𝐵2 − 𝐿2𝐵1) 𝒟�̃�2
𝜇

+(𝐵2 − 𝐿2𝐵1)𝒟�̂�2
 �̃� + 𝐹2𝑤 − 𝐿2𝐹1𝑤

�̇̃� = −𝐿𝜇(𝐴12�̃�2 + 𝐸1Φ̃2 + 𝐵1𝒟�̃�𝜇 + 𝐵1𝒟�̂�2
�̃� + 𝐹1𝑤)

 (4.21) 

Consider the Lyapunov candidate function, 

 𝑉 = [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�𝑃𝜇𝜇𝒟�̂�2

] [
�̃�2

�̃�
] (4.22) 

Assuming |𝐷�̇�| < 𝜎′|𝐷𝑥| ∀𝜎′ at every time instance 

Now as per the Lyapunov stability theorem 

�̇� < 0 

Lemma 4.3 (S-procedure lemma[67])  

 �̇� < 0 ⇔ �̅� ≔ �̇� − 𝜖𝑖𝑉𝑖 − 𝜖𝜙𝑉ϕ < 0 (4.23) 

Assuming 𝜇𝑖 < 𝜇𝑖−𝑚𝑎𝑥, on the sliding surface  

 𝑉𝑖 = 𝜇𝑖
2�̃�𝑇𝐷𝑖

𝑇𝐷𝑖�̃� − 𝜇𝑖−𝑚𝑎𝑥
2 �̃�𝑇𝐷𝑖

𝑇𝐷𝑖�̃� ≤ 0 
(4.24) 

 𝑉ϕ = Φ̃2
TΦ̃2 + (𝛾1 − 𝛾2)Φ̃2

T𝐺�̃�2 − 𝛾1𝛾2�̃�2
𝑇𝐺𝑇𝐺�̃�2 ≤ 0 

(4.25) 

Now, 
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�̇� = [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟𝑥2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
]

+ [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇�̇��̂�2

�̇��̂�2
𝑃2𝜇

𝑇 �̇��̂�2
𝑃𝜇𝜇𝒟�̂�2

+ 𝒟�̂�2
𝑃𝜇𝜇�̇��̂�2

] [
�̃�2

�̃�
] 

 

 

(4.26) 

Hence, defining 

 [
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] × [
𝐿2

𝐿𝜇
] = [

𝑋2

𝑋𝜇
] (4.27) 

We find 

 

[
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
] = [

�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] ×

([
A22 𝐵2𝒟�̂�2

0 0
] [

�̃�2

�̃�
] + [

𝐸2Φ̃2 + 𝐵2𝒟�̃�2
𝜇 + 𝐹2𝑤

0
])

− [
𝑋2

𝑋𝜇
] {[𝐴12 𝐵1𝒟�̂�2

] [
�̃�2

�̃�
] + 𝐸1Φ̃2 + 𝐵1𝒟�̃�2

𝜇 + 𝐹1𝑤}

 

 

 

 

(4.28

) 

Hence, 

 

[
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
] =

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 
𝑇

[
 
 
 
 
𝑃22A22 𝑃22𝐵2 𝑃22𝐸2 𝑃22𝐵2 𝑃22𝐹2

𝑃2𝜇
𝑇 A22 𝑃2𝜇

𝑇 𝐵2 𝑃2𝜇
𝑇 𝐸2 𝑃2𝜇

𝑇 𝐵2 𝑃2𝜇
𝑇 𝐹2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 

−

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 
𝑇

[
 
 
 
 
X2A12 X2𝐵1 X2𝐸1 X2𝐵1 𝑋2𝐹1

𝑋𝜇A12 𝑋𝜇𝐵1 𝑋𝜇𝐸1 𝑋𝜇𝐵1 𝑋𝜇𝐹1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 

 

 

 

 

(4.29) 
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Where, 

 𝑋2 = 𝑃22𝐿2 + 𝑃2𝜇𝐷𝑥2
𝐿𝜇 and 𝑋𝜇 = 𝒟�̂�2

𝑃2𝜇
𝑇 𝐿2 + 𝒟�̂�2

𝑃𝜇𝜇𝒟�̂�2
𝐿𝜇 

Hence, 

 

[
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟𝑥2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
]

=

[
 
 
 
 

�̃�2

𝒟�̂��̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 
𝑇

[
 
 
 
 
𝑀11 𝑀12 𝑀13 𝑀14 𝑀15

𝑀21 𝑀22 𝑀23 𝑀24 𝑀25

𝑀31 𝑀32 −𝜖𝜙𝐼 0 0

𝑀41 𝑀42 0 −𝜖𝑖𝐼 0

𝑀51 𝑀52 0 0 𝑅−1]
 
 
 
 

[
 
 
 
 

�̃�2

𝒟�̂��̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 

 

 

 

 

 

(4.30) 

Where, 

𝑋2 = 𝑃22𝐿2 + 𝑃2𝜇𝐷�̂�2
𝐿𝜇  

𝑋𝜇 = 𝒟�̂�2
𝑃2𝜇

𝑇 𝐿2 + 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

𝐿𝜇 

𝑀11 = 𝑃22A22 + A22
𝑇 𝑃22 − A12

𝑇 X2
𝑇 − X2A12 − 𝜇𝑖−𝑚𝑎𝑥

2 𝜖𝑖𝐷2−𝑖
𝑇 𝐷2−𝑖 + 𝜖𝜙𝛾1𝛾2𝐺2

𝑇𝐺2 

𝑀12 = 𝑃22𝐵2 + 𝐴22
𝑇 𝑃2𝜇 − X2𝐵1 − 𝐴12

𝑇 𝑋𝜇
𝑇 + 𝜎′𝑃2𝜇 

𝑀13 = 𝑃22𝐸2 − X2𝐸1 − (𝛾1 − 𝛾2)𝜖𝜙𝐺2 

𝑀14 = 𝑃22𝐵2 − X2𝐵1 

𝑀15 = 𝑃22𝐹2 − 𝑋2𝐹1 

𝑀22 = 𝐵2
𝑇𝑃2𝜇

𝑇 + 𝑃2𝜇
𝑇 𝐵2 − 𝐵2

𝑇𝑋𝜇
𝑇 − 𝑋𝜇𝐵1 + 2𝜎′𝑃𝜇𝜇 

𝑀23 = 𝑃2𝜇
𝑇 𝐸2 − 𝑋𝜇𝐸1 

𝑀24 = 𝑃2𝜇
𝑇 𝐵2 − 𝑋𝜇𝐵1 

𝑀25 = 𝑃2𝜇
𝑇 𝐹2 − 𝑋𝜇𝐹1 
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As seen from (4.30) , the LMI gives the complete condition for the convergence 

of observer (4.3).  

Hence, the gains 𝐿2 and 𝐿𝜇 can be calculated from (4.27) after solving the LMI 

above. However, this makes the gains functions of  𝒟�̂�2
 . In order to simplify the solution 

and decouple the gains from  𝒟�̂�2
, we choose 𝑃𝐿 = [

𝑋2

𝑋𝜇
] = [𝐴12

𝑇

0
]𝒬 by extending 

Phanomchoeng et al [93]. 

Now, if 𝑃𝐼 = [
P22 𝑃2𝜇𝒟�̂�2

𝒟�̂�2
𝑃2𝜇

𝑇 𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

]

−1

,  

 [
𝑃22

𝐼 𝑃𝜇2
𝐼 𝑇

𝑃𝜇2
𝐼 𝑃𝜇𝜇

𝐼  
] [𝐴12

𝑇

0
]𝒬 = [

𝑃22
𝐼 𝐴12

𝑇 𝒬

𝑃𝜇2
𝐼 𝑇

𝐴12
𝑇 𝒬

] (4.31) 

Or 

 �̅� = [
𝑃22

𝐼 𝑃𝜇2
𝐼 𝑇

𝑃𝜇2
𝐼 𝑃𝜇𝜇

𝐼  
] [𝐴12

𝑇

0
]𝒬 = [

𝑃22
𝐼 𝐴12

𝑇 𝒬

𝑃𝜇2
𝐼 𝑇

𝐴12
𝑇 𝒬

] (4.32) 

Since 

 
𝑃22

𝐼 = [𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

 
(4.33) 

 𝑃𝜇2
𝐼 𝑇

= −[𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝑃2𝜇𝑃𝜇𝜇
−1(𝒟�̂�2

)
−1

 (4.34) 

We find 

 𝐿2 = [𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝐴12
𝑇 𝒬 (4.35) 

 𝐿𝜇 = −[𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝑃2𝜇𝑃𝜇𝜇
−1(𝒟�̂�2

)
−1

𝐴12
𝑇 𝒬 (4.36) 

Where the value of 𝒬 can be determined by solving the LMI (4.30) 
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Note 1 : Since, the observer design reduces the size of 𝒟 matrix,  it  presents an LMI 

which is more easier to solve mathematically as compared to the one proposed in [60] . 

This added advantage is very useful for solving complex systems where the unknown 

term affects more than one state. This is distinctly demonstrated in the example given 

below. 

4.2.2. Example 1:  4th order nonlinear system 

Consider the following 4th order nonlinear two-mass spring system with damping from 

Section 3.4.1 in Chapter 3 . The system is represented in Figure 4.1 as follows: 

 

 

Figure 4.1. Two-mass spring system 

 

The figure represents a two-mass spring system where 𝑘1, 𝑘2 are the spring 

constants, 𝑐1, 𝑐2 are the damping coefficients and 𝑚1,𝑚2 are the masses suspended by 

the springs. In this system, the second mass ‘𝑚2’, is assumed to be unknown. Hence it 

is modeled as 𝑚2 = 𝑚2 + 𝜟𝑚2, in order to represent it in the form of the proposed 

system model (4.2). Here,  The 𝑚2 is the nominal mass and 𝜟𝑚2 represented the 

deviation of this nominal mass from the real value. The unknown parameter assumed, 

models some uncertainty to one of the masses. The system can be represented by the 

following general nonlinear state space model: 

𝒎𝟏 

𝒎𝟐 + 𝜟𝒎𝟐 

 

𝒌𝟏 

𝒌𝟐 

𝒄𝟏

𝝓  

𝒄𝟐 

 

𝑭 

𝒙𝟏 

𝒙𝟐 
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�̇� = 𝐴𝑥 + µ𝐵𝐷𝑥 + 𝐸𝜙(𝑢, 𝑥) + 𝐹𝑤 + 𝐻𝑢 

𝑦 = 𝐶𝑥 + 𝑣 

 

 

Where, 

𝐴 = [

0 1 0 0
−25 −1 15 0.3
0 0 0 1
15 0.3 −15 −0.3

],   𝐵 = [0 0 0 1]𝑇,  

𝐶 = [
1 0 0 0
0 0 1 0

],  𝐷 = [−0.25 −0.0033 0.25 0.0033], 

𝐸 = [0 1 0 0]𝑇,  𝐹 = [0 0 0 1]𝑇,  𝐺 = [0 1 0 0],    

𝐻 = [0 0 0 1]𝑇 ,    𝜙 = sin (𝑥2),   𝑢 = 35sin (2𝜋𝑡)  

The parameters provide the complete state space representation of the system. 

The observer proposed estimates the states and the unknown parameter of the system 

simultaneously.  

Using an initial condition 𝑥(0) =  [10 20 20 40]𝑇 and an input 𝑢 =

35sin (2𝜋𝑡), the mass spring system dynamics were modelled in the presence of an 

external disturbance 𝑣 with covariance 𝑄 = 1 and 𝑅 = 1. We choose the unknown 

parameter µ = 1 and assume the Lipschitz constant 𝛾 = 0.1 for the simulation. 
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Figure 4.2. Convergence of State 𝒙𝟏 

 

Figure 4.3. Convergence of State 𝒙𝟐 
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Figure 4.4. Convergence of State 𝒙𝟑 

 

Figure 4.5. Convergence of State 𝒙𝟒 
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Figure 4.6. Unknown Parameter ‘𝝁’ Estimation  

 

Figure 4.2 - Figure 4.5 show the evolution of the actual state values and their 

estimations, while figure Figure 4.6 shows the evolution of the parameter estimate to its 

true value 𝜇 = 1. 

 

4.2.3. Comparing EKF based observers with proposed observer 
design 

In order to compare the two observer designs, we construct an EKF based 

observer to evaluate its performance on the previous example (4.2.2).  

In order to estimate the unknown parameters of the system, we augment the 

unknown parameters of the system to the states as seen in literature [61],[62].Similarly, 

for our continuous time system we define the augmented state vector as: 



67 
 

 

�̇̅� = 𝑓(�̅�, 𝑢) + 𝑤  

𝑦 = ℎ(�̅�) + 𝑣 

The EKF is given by, 

�̇̅̂� = 𝑓(�̅̂�, 𝑢) + 𝐿(𝑦 − ℎ(�̅̂�)) 

Where,  

𝐿 = 𝑃𝐻𝑇𝑄−1 

�̇� = 𝐹𝑃 + 𝑃𝐹𝑇 − 𝐿𝐻𝑃 + �̅� 

And  

𝐹 =
∂𝑓

∂�̅�
|
�̂̅�,𝑢

, 𝐻 =
∂ℎ

∂�̅�
|
�̂̅�
 

Hence for example 4.2.2, we can write the system as, 

𝐹 =
∂𝑓

∂�̅�
|
�̂̅�,𝑢

=

[
 
 
 
 

0 1 0 0 0
−25 −1 + cos (𝑥2) 15 0.3 0
0 0 0 1 0

15 − 0.25𝜇1 0.3 − 0.0033𝜇1 −15 + 0.25𝜇1 −0.3 + 0.0033𝜇1 𝑆
0 0 0 0 0]

 
 
 
 

 

 

Where, 𝑆 = −0.25�̂�1 − 0.0033�̂�2 + 0.25�̂�3 + 0.0033�̂�4 

 

And  𝐻 =
∂ℎ

∂�̅�
|
�̂̅�

= [
1 0 0 0 0
0 0 1 0 0

] 

 

In order for the EKF to estimate the unknown parameter of the system, it requires 

the knowledge of the Virtual Parameter Disturbance (VPD). However, since there is no 
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defined method to select the VPD-covariance, we assume the value to be equal to the 

VPD-covariance of the disturbance 𝑤.  

Therefore, 

�̅� = 

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 𝑅 0
0 0 0 0 𝑅]

 
 
 
 

 

 

Using the system parameters mentioned above, the system is simulated for a time 

period of 𝑇=20 seconds. The simulation is performed under the same initial conditions 

(𝑥(0) =  [10 20 20 40]𝑇) as the previous example for the proposed observer design. 

The state estimation results obtained are plotted along side the proposed observer 

design to compare the convergence rate error of the two methods. Figure 

 

 

Figure 4.7. Estimation error in state 𝒙𝟏 



69 
 

 

Figure 4.8. Estimation error in state 𝒙𝟐 

 

 

Figure 4.9. Estimation error in state 𝒙𝟑 
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Figure 4.10. Estimation error in state 𝒙𝟒 

 

 

Figure 4.11. Unknown Parameter ‘𝝁’ Estimation using EKF  

E
s
ti
m

a
te

d
 𝜇
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As seen from the results, the proposed observer outperforms the EFK in terms of 

initial state estimation errors. Since an EKF demands for the initial state estimates to be 

close to the true state values, any large deviation in the initial state estimates can 

strongly influence the convergence rate. As the EKF relies on linearizing the nonlinear 

system before constructing a linear gain observer for the dynamics, any linearization 

errors can have an effect on initial estimation error. Hence, the proposed observer 

converges faster with much smaller initial state estimation errors as seen in Figure 4.7 - 

Figure 4.10 .  

The EKF performs better when it comes to attenuating noise during steady state. 

However, this is because of the optimal nature of the extended Kalman filter which relies 

on the availability of precise noise covariance values. Hence, in cases where an 

accurate noise covariance matrix is unavailable, the EKF would yield poor noise 

attenuation characteristics. Also, the EKF requires an online solution to the matrix 

differential Ricatti equation and hence can be computationally intensive.  

4.2.4. Dissipative nonlinear case 

A dissipative nonlinear system is a specific case of the generalised sector 

bounded nonlinear system given by  

(𝑥 − 𝑥)𝑇𝐺(𝜙(𝑢, 𝑥) − 𝜙(𝑢, 𝑥)) 

Where the bounds are given by 𝛾1 → ∞ and 𝛾2 = 0  

For the specific case of a dissipative nonlinear system, the LMI can be 

formulated as follows:  

Lemma 4.4: For the system (4.2) in the form (4.6), a stable observer (4.4) exists given a 

choice of 𝜎′, such that, if 𝛾2 ≥ |𝐷𝑥| ≥ 𝛾1 , max (|(𝐷�̇� )(𝐷𝑥)−1|)= 𝜎′ , the observer can 

guarantee a performance  

J =
∫ �̃�𝑇𝑊�̃�𝑑𝑡

T

0
+ ∫ 𝜇𝑇𝒟�̂�𝑊𝜇𝒟�̂��̃�𝑑𝑡

T

0

�̃�0
𝑇𝑃0�̃�0 + 𝜇0

𝑇𝑃𝜇0�̃�0 + ∫ 𝜈𝑇𝑄−1𝜈𝑑𝑡 
T

0
+ ∫ 𝑤𝑇𝑅−1𝑤𝑑𝑡 

T

0

<
1

α
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∀𝑥, 𝑥 after a sufficiently large time T, iff 𝑃22 > 0 , 𝑒𝑡𝑎 > 0, and 𝑃2𝜇
𝑇  such that ∀|𝜎′| ≤

 𝜎′
𝑚𝑎𝑥 

𝑃22𝐸2 = 𝑒𝑡𝑎 ∗ 𝐺2′ 

𝑃2𝜇
𝑇 𝐸2 = 0 

[
 
 
 
 
𝑀11 𝑀12 𝑀13 𝑀14

𝑀12
𝑇 𝑀22 𝑀23 𝑀24

𝑀13
𝑇 𝑀23

𝑇 −𝜖𝑖 0

𝑀14
𝑇 𝑀24

𝑇 0 𝑅−1]
 
 
 
 

< 0 

Where, 

𝑀11 = 𝑃22A22 + A22
𝑇 𝑃22 − A12

𝑇 𝑄𝑇A12 − A12
𝑇 𝑄A12 − 𝜇𝑚𝑎𝑥

2 𝜖𝑖𝐷2
𝑇𝐷2 

𝑀12 = 𝑃22𝐵2 + 𝐴22
𝑇 𝑃2𝜇 − A12

𝑇 Q𝐵1 + 𝜎′𝑃2𝜇 

𝑀13 = 𝑃22𝐵2 − X2𝐵1 

𝑀14 = 𝑃22𝐹2 − 𝑋2𝐹1 

𝑀22 = 𝐵2
𝑇𝑃2𝜇

𝑇 + 𝑃2𝜇
𝑇 𝐵2 + 2𝜎′𝑃𝜇𝜇 

𝑀23 = 𝑃2𝜇
𝑇 𝐵2 

𝑀24 = 𝑃2𝜇
𝑇 𝐹2 

When the observer gains are chosen as  

𝐿2 = [𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝐴12
𝑇 𝒬 

𝐿𝜇 = −[𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝑃2𝜇𝑃𝜇𝜇
−1(𝒟�̂�2

)
−1

𝐴12
𝑇 𝒬 

Proof : 

Equation (4.4) can be written in terms of �̇̃�2-dynamics , 
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�̇̃�2 = (A22 − 𝐿2𝐴12)�̃�2 + (𝐸2 − 𝐿2𝐸1)Φ̃2 + (𝐵2 − 𝐿2𝐵1) 𝒟�̃�2
𝜇

+(𝐵2 − 𝐿2𝐵1)𝒟�̂�2
 �̃� + 𝐹2𝑤 − 𝐿2𝐹1𝑤

�̇̃� = −𝐿𝜇(𝐴12�̃�2 + 𝐸1Φ̃2 + 𝐵1𝒟�̃�𝜇 + 𝐵1𝒟�̂��̃� + 𝐹1𝑤)

 (4.37) 

Consider the Lyapunov candidate function, 

 𝑉 = [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] [
�̃�2

�̃�
] (4.38) 

From lemma 1 given in [67], J1 < 0 iff ∃𝜀𝑖, 𝜂 > 0 s.t 

 J2: = J1 − ∫ (∑𝜀𝑖𝑉𝑖 + 𝜂𝑉ϕ)𝑑𝑡
T

0

 < 0 (4.39) 

Assuming 𝜇𝑖 < 𝜇𝑖−𝑚𝑎𝑥, on the sliding surface  

 𝑉𝑖 = 𝜇𝑖
2�̃�𝑇𝐷𝑖

𝑇𝐷𝑖�̃� − 𝜇𝑖−𝑚𝑎𝑥
2 �̃�𝑇𝐷𝑖

𝑇𝐷𝑖�̃� ≤ 0 (4.40) 

 𝑉ϕ = 2�̃�𝑇𝐺Φ̃ ≤ 0 (4.41) 

Now, 

 

�̇� = [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟𝑥2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
]

+ [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇�̇��̂�2

�̇��̂�2
𝑃2𝜇

𝑇 �̇��̂�2
𝑃𝜇𝜇𝒟�̂�2

+ 𝒟�̂�2
𝑃𝜇𝜇�̇��̂�2

] [
�̃�2

�̃�
] 

 

 

(4.42) 

Hence, defining 

 [
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] × [
𝐿2

𝐿𝜇
] = [

𝑋2

𝑋𝜇
] 

 

(4.43) 

We find 
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[
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
] = [

�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] ×

([
A22 𝐵2𝒟�̂�2

0 0
] [

�̃�2

�̃�
] + [

𝐸2Φ̃2 + 𝐵2𝒟�̃�2
𝜇 + 𝐹2𝑤

0
])

− [
𝑋2

𝑋𝜇
] {[𝐴12 𝐵1𝒟�̂�2

] [
�̃�2

�̃�
] + 𝐸1Φ̃2 + 𝐵1𝒟�̃�2

𝜇 + 𝐹1𝑤}

 

 

 

 

(4.44) 

Hence, 

 

[
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
] =

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 
𝑇

[
 
 
 
 
𝑃22A22 𝑃22𝐵2 𝑃22𝐸2 𝑃22𝐵2 𝑃22𝐹2

𝑃2𝜇
𝑇 A22 𝑃2𝜇

𝑇 𝐵2 𝑃2𝜇
𝑇 𝐸2 𝑃2𝜇

𝑇 𝐵2 𝑃2𝜇
𝑇 𝐹2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 

−

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 
𝑇

[
 
 
 
 
X2A12 X2𝐵1 X2𝐸1 X2𝐵1 𝑋2𝐹1

𝑋𝜇A12 𝑋𝜇𝐵1 𝑋𝜇𝐸1 𝑋𝜇𝐵1 𝑋𝜇𝐹1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

[
 
 
 
 

�̃�2

𝒟�̂�2
�̃�

Φ̃2

𝒟�̃�2
𝜇

𝑤 ]
 
 
 
 

 

 

 

 

  

 

(4.45) 

Where, 

𝑋2 = 𝑃22𝐿2 + 𝑃2𝜇𝐷𝑥2
𝐿𝜇 and 𝑋𝜇 = 𝒟�̂�2

𝑃2𝜇
𝑇 𝐿2 + 𝒟�̂�2

𝑃𝜇𝜇𝒟�̂�2
𝐿𝜇 

However, For the dissipative case , 𝛾2 ≥ |𝐷𝑥| ≥ 𝛾1 , max (|(𝐷�̇� )(𝐷𝑥)−1|)= 𝜎′ and 

 

𝑃22𝐸2 = 𝑒𝑡𝑎 ∗ 𝐺2′ 

𝑃2𝜇
𝑇 𝐸2 = 0 

(4.46) 

Where  𝑃22 > 0 , 𝑒𝑡𝑎 > 0, and 𝑃2𝜇
𝑇  such that ∀|𝜎′| ≤  𝜎′

𝑚𝑎𝑥 

Hence substituting condition (4.46) in   
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(4.45) and choosing 𝑃𝐿 = [
𝑋2

𝑋𝜇
] = [𝐴12

𝑇

0
]𝒬 

We get, 

 [
�̃�2

�̃�
]
𝑇

[
P22 𝑃2𝜇𝒟�̂�2

𝑃2𝜇
𝑇 𝒟�̂�2

𝒟�̂�2
𝑃𝜇𝜇𝒟�̂�2

] [
�̇̃�2

�̇̃�
] =

[
 
 
 
 
𝑀11 𝑀12 𝑀13 𝑀14

𝑀12
𝑇 𝑀22 𝑀23 𝑀24

𝑀13
𝑇 𝑀23

𝑇 −𝜖𝑖 0

𝑀14
𝑇 𝑀24

𝑇 0 𝑅−1]
 
 
 
 

< 0 

 

 

 

 

(4.47) 

Where, 

𝑀11 = 𝑃22A22 + A22
𝑇 𝑃22 − A12

𝑇 𝑄𝑇A12 − A12
𝑇 𝑄A12 − 𝜇𝑚𝑎𝑥

2 𝜖𝑖𝐷2
𝑇𝐷2 

𝑀12 = 𝑃22𝐵2 + 𝐴22
𝑇 𝑃2𝜇 − A12

𝑇 Q𝐵1 + 𝜎′𝑃2𝜇 

𝑀13 = 𝑃22𝐵2 − X2𝐵1 

𝑀14 = 𝑃22𝐹2 − 𝑋2𝐹1 

𝑀22 = 𝐵2
𝑇𝑃2𝜇

𝑇 + 𝑃2𝜇
𝑇 𝐵2 + 2𝜎′𝑃𝜇𝜇 

𝑀23 = 𝑃2𝜇
𝑇 𝐵2 

𝑀24 = 𝑃2𝜇
𝑇 𝐹2 

 

Hence, the gains 𝐿2 and 𝐿𝜇 can be calculated from  (4.43) by following the same 

procedure given in the proof of Lemma 4.2. 

 𝐿2 = [𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝐴12
𝑇 𝒬 (4.48) 
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 𝐿𝜇 = −[𝑃22 − 𝑃𝜇2
𝑇 𝑃𝜇𝜇

−1𝑃𝜇2]
−1

𝑃2𝜇𝑃𝜇𝜇
−1(𝐷𝑥2

)
−1

𝐴12
𝑇 𝒬 (4.49) 

Where the value of 𝒬 can be determined by solving LMI (4.47) .  

4.2.5. Example 2: Dissipative nonlinear system 

A dissipative nonlinear system consisting of two rotating masses bridged 

together by a gear train are represented below. The second rotating mass with rotational 

inertia  𝐽2, is influenced by a nonlinear viscous drag. Whereas, the linear damping affects 

both the masses and the gear train .  

 

Figure 4.12. Gear train dissipative system   

 

The system dynamics are modeled below 

𝐽1𝜔1̇ = 𝑇 − 𝑘𝑑𝑡𝛥𝜃 − (𝑏1 + 𝑏𝑑𝑡)𝜔1 +
𝑏𝑑𝑡

𝑁𝑔
𝜔2 

𝐽2𝜔2̇ =
𝑘𝑑𝑡

𝑁𝑔
𝛥𝜃 +

𝑏𝑑𝑡

𝑁𝑔
𝜔1 − (𝑏2 +

𝑏𝑑𝑡

𝑁𝑔
2)𝜔2 − 𝑠𝑔𝑛(𝜔2) × 𝜔2

2 

𝛥�̇� = 𝜔1 −
1

𝑁𝑔
𝜔2   

 

  Where,  

𝐽1, 𝐽2 denote the rotational inertia of the two masses  

𝜔1, 𝜔2 denote the angular velocities of the two masses  

𝑱𝟏 

𝑱𝟐 

𝒃𝟏

𝝎𝟏

𝑻
 

𝒃𝟐

𝝎𝟐

𝝓
 

 

𝒃𝒅𝒕

𝒌𝒅𝒕

𝑵𝒈
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𝑏1, 𝑏2 denote the linear viscous drag acting on the two masses, 

𝑏𝑑𝑡     denotes the linear viscous drag at the interface gearbox  

𝑘𝑑𝑡     denotes the spring constant of the interface gearbox  

𝑁𝑔      denotes the gear ratio  

 

The above system is characterized by the following parameters as show in [60], 

𝐽1 = 𝐽2 = 1 𝑘𝑔.𝑚2,   𝑏1 = 𝑏2 = 0.1, 𝑏𝑑𝑡 = 1, 𝑘𝑑𝑡 = 5
𝑁

𝑚
, 𝑁𝑔 = 0.5, 𝜔~(0,0.01), 

𝜈~(0,0.04 × 𝐼) and represented in its state space form given by: 

𝐴 = [
−1.1 2 −5

2 −2 10
1 −2 0

] , 𝐵 = [
0
0
1
] , 𝐶 = [

1 0 0
0 1 0

] , 𝐷 = [0 1 0] 

𝐸 = [
0
1
0
] , 𝐻 =  [

1
0
0
]  ,   𝑅 = 0.001, 𝑢 = 0.1sin(2𝜋𝑡) , 𝑟 = 1, 𝜇 = 0.15  

𝐹 = [
0.1
0
0

] , 𝑄 = [
0.04 0
0 0.04

] 

𝐺 = [0 1 0],Φ = −𝑠𝑔𝑛(𝑥2) × 𝑥2
2  

Using an initial condition 𝑥(0) =  [5 5 5]𝑇 and an input = 0.1sin (2𝜋𝑡) , the 

simulation is performed using MATLAB for a time period of 𝑇𝑒𝑛𝑑 = 10𝑠𝑒𝑐𝑠 . An external 

disturbance 𝑣 is also taken into account with a covariance 𝑅 = 0.001 and 𝑄 = 0.004. The 

unknown input 𝜇 is assumed to have an actual value of 𝜇 = 0.15 and the initial value for 

the 𝜇 estimate is taken as  𝜇(0) = 0. The calculations yield the following results: 

�̅�2 = [ −0.1709 0.0105] 
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Figure 4.13. Estimation of state 𝑿𝟏   

 

Figure 4.14. Estimation of state 𝑿𝟐 
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Figure 4.15. Estimation of state 𝑿𝟐 
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Figure 4.16. Unknown Parameter ‘𝝁’ Estimation  

 

Form the above simulations, we can see that the both the states and the 

unknown system parameters are estimated and rapidly converge to their true values 

(For unknown parameter = 0.15 ). The convergence rate is improved considerably as 

compared to the rate seen in [60] for the same system with the same parameters as 

seen above.  
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Chapter 5.  
 
Conclusion and Future work 

Having a highly robust and efficient adaptive observer can be very effective in 

solving issues related to state and parameter estimation in nonlinear systems. This 

dissertation presents a sliding mode observer design for wide range of nonlinear 

systems. With the use of the proposed time averaged Lypunov functional, the observer 

design tends to be highly robust against system noise and external disturbances acting 

on the system.  

The time averaged Lyapunov functional is initially used to analyze the choice of 

covariance and sliding mode gain parameters so that the convergence rate of the 

estimation error can be improved. The simulation results provide a detailed look at the 

behaviour of the observed states and the how the system noise affects the convergence 

rate. For a Lipschitz nonlinear system, the observer design provides an existence 

condition which is significantly less conservative as compared to linear gain observers 

given in literature. The results of the proposed observer are compared with those of the 

linear gain observer to further validate the case. Since the observer design is formulated 

as a dynamic constrained optimization problem, suitable cost functions are defined to 

guarantee minimization of the state estimation errors. Hence, the observer is able to 

accurately estimate the states and efficiently converge to its true state value. 

Furthermore, the observer developed for the generalized sector bounded case, 

successfully predicts an unknown system parameter whilst simultaneously estimating 

the system states. Since the observer design reduces the size of the 𝒟 matrix, it makes 

it significantly easier to solve mathematically. This can be used as an added advantage 

to solve mathematically complex systems where the unknown parameter affects multiple 

states. Later, the design is extended to a dissipative nonlinear case where again the 

observer performs robustly and estimates both the unknown parameters and states 

accurately. The design is implemented to both a 4th order nonlinear system and a highly 

dissipative nonlinear gear train system respectively, where the effect of noise and 

disturbances on the system model is substantial. 
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The universality of the nonlinearities considered for the observer design allows 

us to extend this design to a wide class of physical systems. All the observer existence 

conditions and gain selection approaches have been presented in the form of Linear 

Matrix Inequalities (LMIs) which can be explicitly solved offline using commercial LMI 

solvers (MATLAB). This makes the design computationally less intensive as compared 

to an EKF which requires an online solution. Also, the proposed observer presents 

smaller initial state estimation errors as compared to the extended Kalman filter based 

observer. Furthermore, the observer design doesn’t require precise knowledge of noise 

covariance matrices as compared to Extended Kalman Filters. Overall, the sliding mode 

observer design presented in this dissertation is very robust to external disturbances and 

can effectively estimate the unknown parameter and state variables present in the 

system.  

For future research, the following extensions can be made to this work: 

 Extending the results for fault detection , estimation and fault tolerant 

control 

 Extending the results to systems with time-varying parameters 

 Design the Sliding mode observer using a fractional order super-twisting 

algorithm to deal with phenomenon the chattering  
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