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Abstract

Visual data such as images and videos contain a rich source of structured semantic labels
as well as a wide range of interacting components. Visual content could be assigned with
fine-grained labels describing major components, coarse-grained labels depicting high level
abstractions, or a set of labels revealing attributes. Such categorization over different, inter-
acting layers of labels evinces the potential for a graph-based encoding of label information.
In this thesis, we exploit this rich structure for performing graph-based inference in label
space for a number of tasks: multi-label image and video classification and action detection
in untrimmed videos. We consider the use of the Bidirectional Inference Neural Network
(BINN) and Structured Inference Neural Network (SINN) for performing graph-based in-
ference in label space and propose a Long Short-Term Memory (LSTM) based extension
for exploiting activity progression on untrimmed videos. The methods were evaluated on (i)
the Animal with Attributes (AwA), Scene Understanding (SUN) and NUS-WIDE datasets
for multi-label image classification, (ii) the first two releases of the YouTube-8M large scale
dataset for multi-label video classification, and (iii) the THUMOS’14 and MultiTHUMOS
video datasets for action detection. Our results demonstrate the effectiveness of structured
label inference in these challenging tasks, achieving significant improvements against base-
lines.

Keywords: Computer vision, multi-label classification, image classification, video recogni-
tion, action detection, structured inference.
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Chapter 1

Introduction

Visual content is a rich source of high-dimensional structured data, with a wide range of
interacting components at varying levels of abstractions. With the proliferation of large-
scale image [41, 3, 30, 54] and video [1, 20, 57] datasets, advances in visual understanding
were facilitated for the exploration and enhancement of intelligent reasoning techniques for
modelling structured concepts. In this thesis, we exploit these rich structures for modelling
concept interactions in a number of different tasks and levels of complexity: multi-label im-
age classification, multi-label video classification and action detection in untrimmed videos.

Standard image classification is a fundamental problem in computer vision – assigning
category labels to images. It can serve as a building block for many different computer
vision tasks including object detection, visual segmentation, scene parsing and concept
localization. Successful deep learning approaches [28, 42, 44, 47] typically assume labels to
be semantically independent and adapt either a multi-class or binary classifier to target
labels. In recent work [4, 6], deep learning methods that take advantage of label relations
have been proposed to improve classification performance. However, in realistic settings,
these label relationships could form a complicated graph structure. Take Figure 1.1 as an
example. Various levels of interpretation could be formed to represent such visual content.
This image of a baseball scene could be described as an outdoor image at coarse level, or
with a more concrete concept such as sports field, or with even more fine-grained labels such
as batter’s box and objects such as grass, bat, person.

Models that incorporate semantic label relationships could be utilized to generate better
classification results. The desiderata for these models include the ability to model label-label
relations such as positive or negative correlation, respect multiple concept layers obtainable
from sources such as WordNet, and to handle partially observed label data - given a subset
of accurate labels for this image, infer the remaining missing labels.

In our previous work [15], we developed a structured inference neural network that per-
mits modeling complex relations between labels, ranging from hierarchical to within-layer
dependencies. We achieve this by defining a network in which a node is activated if its
corresponding label is present in an image. We introduce stacked layers among these label
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Figure 1.1: This image example has visual concepts at various levels, from sports field at
a high level to baseball and person at lower levels. Our model leverages label relations
and jointly predicts layered visual labels from an image using a structured inference neural
network. In the graph, colored nodes correspond to the labels associated with the image,
and red edges encode label relations.
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nodes. These encode layer-wise connectivity among label classification scores, representing
dependencies from top-level coarse labels to bottom-level fine-grained labels. Activations
are propagated bidirectionally and asynchronously on the label relation graph, passing in-
formation about the labels within or across concept layers to refine the labeling for the
entire image.

The similarity between multi-label classification on images and videos suggests exploita-
tion of structured data to be beneficial for both tasks. As demonstrated in [38], our method
extends beyond its applicability on images and is robust to higher dimensional structured
data such as videos. A more challenging problem than multi-label video classification con-
sists of handling a sequential input of frames and inferring the corresponding sequence of
dense annotations. Our exploration of this setting for the task of dense action detection [57]
is two-fold: performing static frame structured inference and spatio-temporal structured
inference.

The static frame inference can be reduced to a standard image classification problem.
However, spatio-temporal structured inference requires modelling cross-temporal relation-
ships between labels. A natural way of extending [38] to support this feature is allowing
communication between concept layers in the hierarchical structure for forward propagat-
ing learned label correlations and exploring labels’ progression on untrimmed videos. We
achieve this by enriching the hidden state of Long Short-Term Memory (LSTM) [14] units
with extracted information from our structured inference method along the frame sequences.

The contribution of this thesis is binding together the proposed model presented in [15]
for performing hierarchical inference on image datasets (AwA [30] and SUN397 [54]) and
its video extension previously implemented in [38]. In addition, we include novel results for
the two recent releases of Youtube-8M [1], including partially observed labels and propose
a temporal extension for the bidirectional and structured inference models, demonstrat-
ing that adding cross-temporal information in label space (i.e. propagation across concept
layers) provides superior performance against a traditional technique for incorporating tem-
poral dependencies (i.e. LSTM). The validation of the proposed models was carried out on
THUMOS [20] and MultiTHUMOS [57] for the task of action detection.

This thesis is organized as follows. Chapter 2 presents prior knowledge, covering previ-
ous related work. In Chapter 3, we bind together the bidirectional and structured inference
models formulated in [15] with its video extension presented in [38] and derive the proposed
formulation for temporal extension of our bidirectional and structured inference methods.
Chapters 4 and 5 present the work done on multi-label image and video classification re-
spectively. Chapter 6 describes the work done on the action detection task. We conclude in
Chapter 7 with a brief discussion.
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1.1 Contribution

The thesis is based on a paper co-authored by Hexiang Hu, Guang-Tong Zhou, Zhiwei
Deng, Zicheng Liao, and Greg Mori. Learning structured inference neural networks with
label relations. In CVPR, 2016.

My contributions to this work were to develop the extensions to video and run all
experiments on the two releases of Youtube-8M, including experiments for baselines, BINN,
SINN and the partially observed settings. In addition, I was responsible for developing
the temporal extensions for action detection denoted biLSTM and siLSTM, plus validating
these models on THUMOS’14 and MultiTHUMOS, which included reporting quantitative
and qualitative results.
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Chapter 2

Related Work

Structured labeling information has been incorporated in numerous frameworks through-
out previous literature. In this section, we review some prominent related works and the
algorithms implemented for the various tasks studied in this thesis.

2.1 Label Relations and External Structured Concepts

The incorporation of label relations is often explored by modelling graphical structures on
the training data (e.g. [5]) or constraining a loss function for jointly predicting structured
labels [49, 50]. This work investigates the ability to model label relations such as positive and
negative correlations, building on top of the bidirectional and structured inference neural
network previously proposed in [15].

When external structured concepts are available it is advantageous to incorporate them
to conduct traditional supervised approaches. For instance, Grauman et al. [10] and Hwang
et al. [16] exploit the WordNet taxonomy for learning a discriminative tree of metrics of vi-
sual representations hierarchically structured. Johnson et al. [21] and McAuley and Leskovec
[35] exploited social-network metadata, taking into account its interdependencies for apply-
ing structured learning and enhancing image classification against methods relying solely
on image content.

2.2 Multi-task Joint Learning

The intuition behind structured label prediction is closely related to multi-task learning,
with the distinction that multiple correlated tasks are jointly estimated. Common jointly
modeled tasks include segmentation and detection [29, 53], segmentation and pose estima-
tion [26], or segmentation and object classification [31]. An emerging topic of joint learning
lies in image understanding and text generation by leveraging intra-modal correspondences
between visual data and human language [27, 22].

The method presented in [15] might also be extended to multi-task learning. A natural
way of achieving this is considering each concept layer to be a different task, whose labels do
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not necessarily contain a layered structure. Thus, the existing multi-task learning methods
might also benefit from prior knowledge of intra-task relations.

2.3 Deep Visual Recognition

The use of deep learning for applications in videos has advanced in lockstep with the field’s
success in images. A traditional deep learning framework for extracting spatial descriptions
comprises using convolutional neural networks (CNNs) such as AlexNet [28], VGG-16 [44]
or InceptionV3 [48], pre-trained on a diverse and large image collection (e.g. ImageNet
[41]). Recently, deep residual networks [12] built on these successes, and pushed the image
classification performance of deep CNNs to impressive performance levels on benchmark
datasets. In this thesis, we leverage those recent progresses for structured label inference.

2.4 Video Classification

Traditional approaches for video recognition [52, 51] build classifiers on top of hand-crafted
features such as Histograms of Oriented Gradients (HOG), Histograms of Optical Flow
(HOF) and Motion Boundary Histograms (MBH). On the contrary, common deep learning
strategies for improving recognition consist of automatically learning descriptors that cap-
ture discriminative appearance and motion features via implementation of spatio-temporal
networks [23, 18, 2] or exploitation of temporal dependencies using recurrent neural net-
works [39, 7]. Instead our approach intends to leverage structured label information for
performing stronger video-level label predictions. For this reason, we adopt the simple frame-
level feature aggregation from [1], which consists of average pooling spatial features across
untrimmed YouTube videos [1] for performing video classification.

2.5 Action Detection

More challenging than performing video-level recognition is localizing concepts at a frame-
level. In this thesis, we address the problem of dense multi-label action detection. We utilize
a recent dataset [57], which requires inferring multiple frame-level labels across videos. A
classic approach before deep learning [24] tackles the problem of detection by matching
volumetric representations of events against oversegmented videos. Aligned more closely to
our approach are [45, 37, 34], which analyze label progression, operating on short clips or
single frames for inferring actions for each time step using recurrent neural networks. In
contrast, we consider label progression over a structured collection of labels.

6



2.6 Recurrent Temporal Modeling

Early attempts of modelling time-sequential images in computer vision rely on hidden
Markov models for obtaining representations in order to recognize action classes consid-
ering evolution of actions or even multiple view-points [56, 33, 43]. A stronger presence of
deep learning in recent years along with its eminent success in the field, shifted attention to
recurrent neural network (RNN) approaches for modelling time dependent correlations in se-
quential data. In particular for frame sequences, LSTM based models have been extensively
explored recently [39, 7, 57] due to their capacity of efficiently transmitting information
across time. In this thesis, we leverage such successes of temporal modelling techniques for
extending our structured label inference framework across time.

7



Chapter 3

Structured Inference Framework

Our model jointly classifies images or videos in a layered label space with external label
relations. The goal is to leverage the label relations to improve inference over the layered
visual concepts and extend our approach for modelling temporal dependencies for action
detection.

We build our model on top of a state-of-the-art deep learning platform: given a collection
of training images I (i.e. {Ii}|I|i=1) or a collection of videos V (i.e. {V j}|V|j=1), where the j-
th video is composed by frames {F jk}

|V j |
k=1, we first reduce spatial dimensions by extracting

CNN features as visual activations. For example, a feature vector xi for the i-th image in
the collection is obtained by CNN(Ii), or a feature vector xjk for the j-th video and k-th
frame is obtained by applying CNN(F jk ).

Figure 3.1: The label prediction pipeline. Given an input image, we extract CNN features at
the last fully-connected layer as activation (in blue box) at different visual concept layers. We
then propagate the activation information in a label (concept) relation graph through our
structured inference neural network (in red box). The final label prediction (in green box)
is made from the output activations (in yellow box) obtained after the inference process.

In the particular case of inputting single images or frames (i.e. Ii or F jk ), spatial rep-
resentations xi or xjk, can be fed directly to our model. For an entire video {F jk}

|V j |
k=1, we

deal with inputs in either of two ways: providing a summarized feature vector x̄j for the en-
tire video or a sequence of feature vectors {xjk}

|Vj |
k=1 extracted from the corresponding input

frames. For video classification, we apply the former case by including an intermediate aver-
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aging pooling across the entire video [1] and the latter case serves as input to our temporal
extension model.

In Chapter 3.1 and Chapter 3.2, we formulate our models for tagging with multiple labels
yi a single image Ii, or with multiple video-level labels yj an entire video V j . In Chapter
3.3, we describe our proposed temporal extension method for outputting multiple per-frame
actions as continuous confidence scores {yjk}

|Vj |
k=1 in a video Vj , using a temporal sequence

of spatial feature vectors {xjk}
|Vj |
k=1 as input. In Chapter 3.4, we present our approach for

performing structured predictions and including partial observations in our models.

3.1 Bidirectional Inference Neural Network (BINN)

Our model is inspired by the recent success of RNNs [11, 32], which make use of dynamic
sequential information in learning. RNNs are called recurrent models because they perform
the same computation for every time step, with the input dependent on the current inputs
and previous outputs. Applying a similar idea to our layered label prediction problem: we
consider each concept layer as an individual time step, and model the label relations within
and across concept layers in the recurrent learning framework.

The learning of structured label relations is seen as a hierarchical distribution of labels in
our architecture, where each level is defined as a concept layer and represents the degree of
granularity for the label space. In the implementation for the BINN, the labels are separated
into a set M of concept layers, with varying granularity, totalling m layers. For example,
a coarse-grained label for a scene could be outdoors, whereas a fine-grained label would be
tree.

From now on, we denote a single input feature vector x ∈ RD with ground-truth labels
as a binary vector t` at concept layer ` ∈M, where t`k = 1, if the k-th concept is present and
t`k = 0, otherwise. This feature vector will be treated as input separately for each concept
layer. The concept layers are represented as activations obtained by performing inference in
the graph – for each concept layer `, we have an activation vector a` ∈ Rn` associated with
the labels at concept layer `, where n` is the number of labels at concept layer `. In order
to perform inference, the dimension of the input x should be regressed to the label space.
Thus, the input x` for each concept layer ` and an input feature vector x is given by:

x` = W ` · x + b`, (3.1)

where W ` ∈ Rn`×D and b` ∈ Rn`×1 are learnable parameters.
The bidirectional message passing consists of two steps: a top-down inference and a

bottom-up inference. The former captures inter-layer and intra-layer label relations in the
top-down direction computing intermediate activations represented by −→a `. The latter per-
forms the same computation in the bottom-up direction and are represented by ←−a `. The

9



aggregation parameters
−→
U ` and

←−
U ` are defined for combining both directions and obtaining

final activations a` for concept layer `.
The entire formulation for a feature vector x, after obtaining x` for all concept layers

using Eq. (3.1), is the following:

−→a ` = −→V `−1,` · −→a `−1 +−→H ` · x` +−→b `, (3.2)
←−a ` =←−V `+1,` · ←−a `+1 +←−H ` · x` +←−b `, (3.3)

a` = −→U ` · −→a ` +←−U ` · ←−a ` + ba,`, (3.4)

where V i,j ∈ Rnj×ni , H i ∈ Rni×ni , U i ∈ Rni , and ba,i,bi ∈ Rni are all learnable parameters.
The V’s and H’s weights capture the inter-layer and intra-layer dependencies, respectively.
Since these parameters exhaust all pairwise relationships between labels, this step can be
thought of as propagating activations across a fully-connected directed label graph.

In order to obtain concept-specific probabilities for making predictions, the activations
a`k are passed through a sigmoid function (i.e. σ(z) = 1

1+e−z ), for concepts k ∈ ` and concept
layers ` ∈ M, yielding normalized activations y`k = σ(a`k), used as probabilities. To learn
the layer parameters, the model is trained end-to-end with backpropagation, minimizing
logistic cross-entropy loss for a given batch of activations {a`k}, as follows:

E({a`k}) = −
N∑
i=1

m∑
`=1

n∑̀
k=1

(
t`k,i · log

(
σ(a`k,i)

)
(3.5)

+ (1− t`k,i) · log
(
1− σ(a`k,i)

))
,

where N denotes the batch size selected as a hyperparameter, t`k,i and σ(a`k,i) correspond
to the ground-truth label and output score, respectively, for the k-th concept in layer ` for
the i-th sample in the batch.

3.2 Structured Inference Neural Network (SINN)

The fully-connected bidirectional model is capable of representing all types of label relations.
In practice, however, it is hard to train a model on limited data due to the large number of
free parameters. To avoid this problem, we use a structured label relation graph to restrict
information propagation.

We use structured label relations of positive correlation and negative correlation as prior
knowledge to refine the model. The intuition is as follows: since we know that office is an
indoor scene, beach is an outdoor scene, and indoor and outdoor are mutually exclusive,
a high score on indoor should increase the probability of label office and decrease the
probability of label beach. Labels that are not semantically related, e.g. motorcycle and
shoebox, should not affect each other. The structured label relations can be obtained from
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sources such as semantic taxonomies, or by parsing WordNet relations [36]. We introduce
the notation Vp, Vn, Hp and Hn to explicitly capture structured label relations in between
and within concept layers, where the subscripts p and n indicate positive and negative
correlation, respectively. These model parameters are masked matrices capturing the label
relations. Instead of learning full parametrized matrices Vp, Vn, Hp and Hn, we freeze some
elements to be zero if there is no semantic relation between the corresponding labels. For
example, Vp models the positive correlation in between two concept layers: only the label
pairs that have positive correlation have learnable model parameters, while the rest are
zeroed out to remove potential noise. A similar setting goes to Vn, Hp and Hn. Figure 3.2
shows an example positive correlation graph and a negative graph between two layers.

V 
p
<l - 1, l >

V 
n
<l - 1, l >

Figure 3.2: An example showing the model parameters Vp and Vn between the animal layer
and the attribute layer. Green edges in the graph represent positive correlation, and red
edges represent negative correlation.

To implement the positive and negative label correlation, we implement the following
structured message passing process:
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−→a ` = γ(−→V `−1,`
p · −→a `−1) + γ(−→H `

p · x`) (3.6)

− γ(−→V `−1,`
n · −→a `−1)− γ(−→H `

n · x`) +−→b `,

←−a ` = γ(←−V `+1,`
p · ←−a `+1) + γ(←−H `

p · x`) (3.7)

− γ(←−V `+1,`
n · ←−a `+1)− γ(←−H `

n · x`) +←−b `,

a` = −→U ` · −→a ` +←−U ` · ←−a ` + ba,`. (3.8)

Figure 3.3: The label prediction pipeline with partial observation. The pipeline is similar
to Figure 3.1 except that we now have a partial observation that this image is outdoor
man-made. The SINN is able to take the observed label into consideration and improve the
label predictions in the other concept layers.

Here γ(.) stands for a ReLU activation function. It is essential for SINN as it enforces that
activations from positive correlation always make positive contribution to output activation
and keeps activations from negative correlation as negative contribution (notice the minus
signs in Eqs. (3.6) and (3.7)). To learn the model parameters V’s, H’s, and U’s, we optimize
the cross-entropy loss in Eq. (3.5).

3.3 Modeling Cross-temporal Relations

In order to model temporal dependencies between frames benefiting from the inclusion
of structured label relationships, we extend BINN to allow message passing across time.
Since this temporal extension is built on top of a LSTM model (Chapter 2.6) and benefits
from bidirectional inference in label space, we refer to it as bidirectional inference LSTM
(biLSTM) from now on. Thus, considering an input sequence {xt}Tt=1, we can rewrite Eq.
(3.1) as follows:

x`t = W ` · xt + b`, (3.9)

where W ` and b` are parameters shared across time.
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Using the same notation for the bidirectional message passing presented in Chapter 3.1,
Eq. (3.2), (3.3) and (3.4) can be extended as follows:

−→a `
t = −→V `−1,` · −→a `−1

t +−→H ` · x`t +−→b `, (3.10)
←−a `
t =←−V `+1,` · ←−a `+1

t +←−H ` · x`t +←−b `, (3.11)

a`t = −→U ` · −→a `
t +←−U ` · ←−a `

t + ba,`, (3.12)

where V i,j ∈ Rnj×ni , H i ∈ Rni×ni , U i ∈ Rni , and ba,i,bi ∈ Rni are shared across time.
Next, we combine the output a`t with the hidden state of a LSTM after each time step.

Assuming σ(·) and tanh(·) are the sigmoid and hyperbolic tangent functions, we rewrite
the LSTM unit definition from [57], as follows:

i`t = σ(W `
xi · xt +W `

hi · h`t−1 + b`i), (3.13)

f `t = σ(W `
xf · xt +W `

hf · h`t−1 + b`f ), (3.14)

o`t = σ(W `
xo · xt +W `

ho · h`t−1 + b`o), (3.15)

g`t = tanh(W `
xc · xt +W `

hc · h`t−1 + b`c), (3.16)

c`t = ft � c`t−1 + i`t � g`t , (3.17)

h`t = o`t � tanh(c`t), (3.18)

where � denotes point-wise multiplication. This formulation is equivalent to appending
one LSTM unit for each concept layer `. Intuitively, we allow the model to accumulate
information about each concept layer separately, which empirically provided better results
than assigning one memory unit for all concept layers.

The concept layer’s activations a`t are then combined with its memory unit’s hidden
state h`t at time step t, as follows:

y`t = σ(Ma · a`t +Mh · h`t + ba,h), (3.19)

where Ma, Mh and ba,h are parameters shared across time, y`t corresponds to normalized
activations for concept layer ` at time step t used as confidence scores and σ(·) is the sigmoid
function.
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Similarly, we extend the SINN model to allow the flow of information across time as
well, by rewriting Eqs. (3.6) and (3.7), as follows:

−→a `
t = γ(−→V `−1,`

p · −→a `−1
t ) + γ(−→H `

p · x`t) (3.20)

− γ(−→V `−1,`
n · −→a `−1

t )− γ(−→H `
n · x`t) +−→b `,

←−a `
t = γ(←−V `+1,`

p · ←−a `+1
t ) + γ(←−H `

p · x`t) (3.21)

− γ(←−V `+1,`
n · ←−a `+1

t )− γ(←−H `
n · x`t) +←−b `,

using the same notation as for the previously formulated models. Note that the aggregation
equation stays the same as in Eq. (3.12). In order to distinguish this model from the biLSTM,
we refer to it as structured inference LSTM (siLSTM). The output activations y`t serve as
confidence scores for each concept at layer ` being assigned to the frame at time step t and
is used for outputting the detections.

3.4 Prediction Framework

Now we introduce the method of predicting labels during test time. As the model is trained
with multiple concept layers, it is straightforward to recognize a label at each concept layer
for the provided test sample. This mechanism is called label prediction without observation
(the default pipeline shown in Figure 3.1).

Another interesting application is to make predictions with partial observations – we
want to predict labels in one concept layer given labels in another concept layer. Figure
3.3 illustrates the idea. Given an image shown in the left side of Figure 3.3, we have more
confidence to predict it as batter’s box once we know it is an outdoor image with attribute
sports field.

To make use of the partially observed labels in our SINN framework, we need to trans-
form the observed binary labels into soft activation scores for SINN to improve the label
prediction on the target concept layers. Recall that SINN minimizes cross-entropy loss which
applies sigmoid functions on activations to generate label confidences. Thus, we reverse this
process by applying the inverse sigmoid function (logit) on the binary ground-truth labels
to obtain activations. Formally, we define the k-th observed concept activation a`k in concept
layer ` obtained from a ground-truth label t`k as:

a`k =


log

t`k+ε
1−(t`

k
+ε) , if t`k = 0,

log
t`k−ε

1−(t`
k
−ε) , if t`k = 1.

(3.22)

Note that we put a small perturbation ε on the ground-truth label t`k for numerical stability.
In our experiments, we set ε = 0.001.
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Chapter 4

Multi-label Classification on
Images

We start by describing our evaluation benchmarks for the task of multi-label classification
on images (Chapter 4.1) as well as the corresponding metrics used for evaluation (Chapter
4.2). Next, we present our experimental setup and implementation details in Chapter 4.3
and 4.4, respectively. Finally, we report the results for this task in Chapter 4.5.

�������������������������������

CNN
Inference

Model

Output
Activation

a

a
m

Figure 4.1: The inference model is applied directly on a feature vector extracted by a CNN
for performing multi-label image classification.
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4.1 Evaluation Benchmarks

4.1.1 Animal with Attributes (AwA)

The Animals with Attributes (AwA) dataset was first introduced in [30] for validating
attribute-based classification performed in a zero-shot fashion. The AwA dataset consists
of 30,475 images of animals queried from image search engines of Microsoft, Google, Yahoo
and Flickr. The annotations comprises 50 animal classes and 85 and semantic attributes. In
addition to the original annotations a 28-taxonomy-term layer was included [15] by parsing
WordNet.

4.1.2 Scene Understanding (SUN)

The Scene Understanding (SUN) database [54] contains a total of 908 categories and 131,072
images. The final set of scene categories was obtained by parsing WordNet for collecting
commonly found scenes. For the task of scene categorization only 397 categories (SUN397),
for which there are at least 100 unique photographs were used for benchmarking. The
SUN397 database contains an intrinsic hierarchical structure in label space defined by three
levels of granularity annotated by Amazon’s Mechanical Turk (AMT) workers. In increas-
ing order of granularity SUN397 (from top to bottom) contains on the top layer 3 coarse
categories, 16 general scene categories and 397 fine-grained scene categories on the bottom
layer.

4.1.3 Real-World Web Images (NUS-WIDE)

The original NUS-WIDE [3] dataset consists of a large scale web image collection containing
unique associated tags from Flickr checked against WordNet concepts. Over 300,000 images
were randomly crawled together with their tags through the Flickr public API. After filtering
duplicates, a total of 269,648 images remain, which include 5,018 associated unique tags and
81 ground-truth concepts.

4.2 Evaluation Metrics

Here we define the metrics used for the multi-label image classification. All formulations are
derived for a collection of images I with candidate classes C. For each image sample I ∈ I
with a ground-truth vector ti are assigned multiple labels represented by a vector yi.

4.2.1 Multiclass Accuracy (MC Acc)

The MC Acc metric is a standard metric used for image classification and consists of aver-
aging the per-class accuracies for all classes in the problem:
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MC Acc = 1
|C|
∑
c∈C

TPc(I)
|I|

, (4.1)

where TPc(I) denotes the true positives predictions for class c, considering all images in I.

4.2.2 Intersection over Union Accuracy (IoU Acc)

Another widely used metric is the IoU Acc, which is based on the Hamming distance between
predictions and the ground-truth labels:

IoU Acc = 1
|I|

|I|∑
i=1

HammingDistance(yi , ti). (4.2)

4.2.3 Average Precision (AP)

In order to summarize the area under the precision-recall curve, the AP can be computed
by averaging the precision weighed by increments in recall at each element in a list of
annotation scores ranked by the model scores, as follows:

AP =
N∑

i=1
P(i)∆R(i), (4.3)

where N is the number of predictions, P (i) and ∆R(i) are precision and increment recall
at the i-th element in the ranked list.

4.2.4 Per-label Mean Average Precision (mAPL)

The mAPL is obtained by computing separately, the average precision (AP) for each label
across all the samples in the target dataset. Given a list of annotation scores ranked by the
model scores, we compute APc for each class using Eq. (4.3) and calculate the mean over
all classes:

mAPL = 1
|C|
∑
c∈C

APc. (4.4)

4.2.5 Per Image Mean Average Precision (mAPI)

As opposed to mAPL, the mAPI considers the ranking of predictions for each image sample
and compute the average across all samples in the dataset:

mAPI = 1
|I|

∑
I∈I

API , (4.5)

where API is computed using Eq. (4.3) for each image disregarding the classes.

17



4.3 Experimental Setup

The default validation framework on the image datasets (i.e. AwA, NUS-WIDE and SUN397)
consists of comparing our method against baselines and state-of-the-art methods. In addi-
tion, for all experiments the spatial feature extraction is done by applying a pre-trained
CNN underneath the classification algorithm.

4.3.1 AwA: Layered Prediction with Label Relations

This experiment demonstrates the label prediction capability of our SINN model and the
effectiveness of adding structured label relations for label prediction. We run each method
five times with five random splits – 60% for training and 40% for test. We report the average
performance as well as the standard deviation of each performance measure. Note that there
is very little related work with layered label prediction on AwA. The most relevant one is
work by Hwang and Sigal [17] on unified semantic embedding (USE). The comparison is
not strictly fair, as the train/test splits are different. Further, we include our BINN model
without specifying the label relation graphs (see Chapter 3.1) as a baseline method in this
experiment, as it can verify the performance gain in our model from including structure.

4.3.2 NUS-WIDE: Multi-label Classification with Partial Human Labels
of Tags and Groups

This experiment shows our model’s capability to use noisy tags and structured tag-label
relations to improve multi-label classification. As previous work used various evaluation
metrics and experiment settings, and there are no fixed train/test splits, it is hard to make
direct comparisons. Also note that a fraction of previously used images are unavailable now
due to Flickr copyright.

In order to make our result as comparable as possible, we tried to set up the experiments
according to previous work. We collected all available images and discard images with
missing labels as previous work did [9, 21], and got 168,240 images of the original dataset.
To make our result comparable with [21], we use 5 random splits with the same train/test
ratio as [21] – there are 132,575 training images and 35,665 test images in each split. To
compare our method with [21, 35], we also used the tags and metadata groups in our
experiment. Different from their settings, instead of augmenting images with 5000 tags, we
only used 1000 tags, and augment the image with 698 group labels obtained from image
medatada to form a three-layer group-concept-tag graph. Instead of using the tags as sparse
binary input features (as in [21, 35]), we convert them to observed labels and feed them to
our model.

We report our results on this dataset with two settings for our SINN, the first using
1k tags as the only observations to a bottom level of the relation graph. This method
provides a good comparison to the tag neighborhood + tag vector [14], as we did not use
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extra information other than tags. In the second setting, we make both group and tag levels
observable to our SINN, which achieves the best performance. We also compared our results
with that of McAuley et al. [35], Gong et al. [9].

4.3.3 SUN397: Improving Scene Recognition with and without partially
Observed Labels

We conducted two experiments on the SUN397 dataset. The first experiment is similar to the
study on AwA: we applied our model to layered image classification with label relations, and
compare our model with CNN + Logistics and CNN + BINN baselines, as well as a state-
of-the-art approach [55, 54]. For fair comparison, we used the same train/test split ratio
as [55, 54], where we have 50 training and test images in each of the 397 scene categories.
To migrate the randomness in sampling, we also repeat the experiment 5 times and report
the average performance as well as the standard deviations. In the second experiment, we
considered partially observed labels from the top (coarsest) scene layer as input to our
inference framework. In other words, we assume we know whether an image is indoor,
outdoor man-made, or outdoor natural.

4.4 Implementation Details

To optimize our learning objective, we use stochastic gradient descent with mini-batch size of
50 images and momentum of 0.9. For all training runs, we apply a two-stage policy as follows.
In the first stage, we fixed pretrained CNN networks, and train our SINN with a learning
rate of 0.01 with fixed-size decay step. In the second stage, we set the learning rate as 0.0001
and fine-tune the CNN together with our SINN. We set the gradient clipping threshold to
be 25 to prevent gradient explosion. The weight decay value for our training procedure is set
to 0.0005. In the computation of visual activations from the CNN, as different experiment
datasets describe different semantic domains, we adopt different pretrained CNN models:
ImageNet pretrained model [19] for experiments 4.3.1 and 4.3.2, placenet pretrained model
[58] for experiment 4.3.3.

4.5 Experimental Results

For all image benchmarks, the experimental results show that the inclusion of label relation
graphs effectively boost performance on the three datasets tested in [15] (i.e. AwA, SUN397
and NUS-WIDE). From Table 4.1, 4.2 and 4.4, we can see that SINN consistently improves
performance significantly in most experiments executed.

Table 4.1 shows that our method outperforms the baseline methods (CNN + Logistics
and CNN + BINN variants) as well as the USE method, in terms of each concept layer
and each performance metric. It validates the efficacy of our proposed model for image
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Concept Layer Model MC Acc IoU mAPL
28

taxonomy
terms

CNN + Logistics - 80.41±0.09 90.16±0.10
CNN + BINN - 79.85±0.13 89.92±0.07
CNN + SINN - 84.47±0.38 93.00±0.29

50
animal
classes

USE [17] + DECAF [8] 46.42 ±1.33 - -
CNN + Logistics 78.44±0.27 62.75±0.26 78.35±0.19
CNN + BINN 79.00±0.43 62.80±0.25 78.88±0.35
CNN + SINN 79.36±0.43 66.60±0.43 81.19±0.14

85
attributes

CNN + Logistics - 81.29±0.10 93.29±0.12
CNN + BINN - 80.64±0.13 93.04±0.13
CNN + SINN - 86.92±0.18 96.05±0.07

Table 4.1: Layered label prediction results on the AwA dataset.

classification. Note that for the results in Table 1, we did not finetune the first seven layers
of the CNN [28] for fairer comparison with Hwang and Sigal [16] (which only makes use
of DECAF features [8]). Fine-tuning the first seven CNN layers further improves IoUAcc at
each concept layer to 86.06 ±0.72 (28 taxonomy terms), 69.17 ±1.00 (50 animal classes),
88.22 ±0.38 (85 attributes), and mAPL to 94.17 ±0.55 (28 taxonomy terms), 83.12 ±0.69
(50 animal classes), 96.72 ±0.20 (85 attributes), respectively.

The results on SUN397 are summarized in Table 4.2, showing that our proposed method
again achieves a considerable performance gain over all the compared methods. In Table
4.3, we compare the 397 fine-grained scene recognition performance. We compare to a set
of baselines, including CNN + Logistics + Partial Labels that considers the partial labels
as an extra binary indicator feature vector for logistic regression. Results show that our
method combined with partial labels (i.e., CNN + SINN + Partial Labels) improves over
baselines, exceeding the second best by 4% MCAcc and 6% mAPL.

The results on NUS-WIDE are shown in Table 4.4. We can see that SINN outperformed
all the baseline methods and existing approaches (i.e.[21, 9, 35]) by a large margin on NUS-
WIDE dataset, considering different settings. The results on SUN397 are summarized in
Table 4.4 and present consistent improvements when using SINN.
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Concept Layer Model MC Acc IoU mAPL

3 coarse
scene categories

CNN + Logistics - 83.67±0.18 95.19±0.07
CNN + BINN - 83.63±0.24 95.19±0.03
CNN + SINN - 85.95±0.44 96.40±0.18

16 general
scene categories

CNN + Logistics - 64.30±0.27 83.30±0.19
CNN + BINN - 63.40±0.35 82.93±0.14
CNN + SINN - 66.46±1.10 84.97±0.96

397 fine-grained
scene categories

Image features
+ SVM [55, 54] 42.70 - -

CNN + Logistics 57.86±0.18 35.97±0.37 55.31±0.30
CNN + BINN 57.52±0.29 35.44±1.02 55.57±0.63
CNN + SINN 57.60±0.38 37.71±1.13 58.00±0.33

Table 4.2: Layered label prediction results on the SUN397 dataset.

Model MC+Acc mAPL
Image features + SVM [55, 54] 42.70 -

CNN + Logistics 57.86±0.38 55.31±0.30
CNN + BINN 57.52±0.29 55.57±0.63
CNN + SINN 57.60±0.38 58.00±0.33

CNN + Logistics + Partial Labels 59.08±0.27 56.88±0.29
CNN + SINN + Partial Labels 63.46±0.18 64.63±0.28

Table 4.3: Recognition results on the 397 fine-grained scene categories. Note that the last
two compared methods make use of partially observed labels from the top (coarsest) scene
layer, i.e. indoor, outdoor man-made, and outdoor natural.

21



Model mAPL mAPI RL PL RI RI
Graphical Model [35] 49.00 - - - - -
CNN + WARP [9] - - 35.60 31.65 60.49 48.59

5k tags
+ Logistics [21] 43.88

±0.32
77.06
±0.14

47.52
±2.59

46.83
±0.89

71.34
±0.16

51.18
±0.16

5k tags
+ Tag neighbors [21] 61.88

±0.36
80.27
±0.08

57.30
±0.44

54.74
±0.63

75.10
±0.20

53.46
±0.09

CNN + Logistics 46.94
±0.47

72.25
±0.19

45.03
±0.44

45.60
±0.35

70.77
±0.21

51.32
±0.14

1k tags
+ Logistics 50.33

±0.37
66.57
±0.12

23.97
±0.23

47.40
±0.07

64.95
±0.18

47.40
±0.07

1k tags + Groups
+ Logistics 52.81

±0.40
68.04
±0.12

25.54
±0.24

49.26
±0.15

65.99
±0.15

48.13
±0.05

1k tags + Groups
+ CNN + Logistics 54.67

±0.57
77.81
±0.22

50.83
±0.53

49.36
±0.30

75.38
±0.16

54.61
±0.09

1k tags
+ CNN + SINN 67.20

±0.60
81.99
±0.14

59.82
±0.12

57.02
±0.57

78.78
±0.13

56.84
±0.07

1k tags + Groups
+ CNN + SINN 69.24

±0.47
82.53
±0.15

60.63
±0.67

58.30
±0.33

79.12
±0.18

57.05
±0.09

Table 4.4: Results on NUS-WIDE for from [15]. We also included the results for per-label
recall and precision (RL and PL) and per-image (RI and PI), considering the top 3 labels
for each image.
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Chapter 5

Multi-label Classification on
Videos

In this section, we describe the work done for multi-label classification on videos. In Chapter
5.1 and 5.2, we present details on the two YouTube-8M benchmarks as well as the metrics
used for this task, respectively. Chapter 5.3 and 5.4, present our experimental setup and
implementation details, in this order. Lastly, we report the results obtained in Chapter 5.5.
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Figure 5.1: The video-level representation x̄ is obtained by pooling per-frame feature vec-
tors xt (using a CNN) and fed to the inference model for performing multi-label video
classification.
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5.1 Evaluation Benchmarks

5.1.1 YouTube-8M (YT-8M)

The YouTube-8M dataset consists of approximately 8 million YouTube videos, each anno-
tated with 4800 Google Knowledge Graph entities, functioning as classes. With each entity
label is associated up to 3 verticals (i.e. coarse-grained labels). The dataset is derived from
roughly 500K hours of untrimmed videos, with an average of 1.8 labels per video. Each
video is decoded as a set of features extracted by passing the RGB frame through the In-
ceptionV3 model from Szegedy et al. [48], a deep CNN pretrained on ImageNet [41], and
Principal Component Analysis (PCA) is applied to reduce feature dimension. The scale
of this dataset in both label space and data space is unprecedented in the field of video
datasets, surpassing previous benchmarks such as UCF-101 and Sports1M.

5.1.2 YouTube-8M V2 (YT-8M V2)

The YouTube-8M V2 dataset represents the frame and audio features from approximately
7 million YouTube videos. The dataset is an updated version of YouTube-8M, with an
increased number of labels per video and a smaller number of entities. On average, the
videos in YT-8M V2 have 3.4 labels each, and there are only 4716 Google Knowledge
Graph entities forming the label space. The preprocessing for this dataset is the same as
YT-8M, but the audio features are also included, calculated using the CNN method in [13].

5.2 Evaluation Metrics

The metrics formulated in this section considers a collection of videos V, such that for each
video v ∈ V, a model predicts a set of labels Pv ∈ C and the metric is computed against a
set of ground-truth labels Gv ∈ C. We start by defining the indicator function for a generic
set A and an element x, used in further formulations, as follows:

1A(x) =

1, if x ∈ A,

0, otherwise.
(5.1)

5.2.1 Hit at Top K (Hit@k)

The Hit@k corresponds to the portion of samples whose top k predictions contain at least
one ground-truth label and can be written as follows:

Hit@k(V) = 1
|V|

∑
v∈V
∨e∈top(Pv ,k)1Gv (e), (5.2)

where ∨ is the logical OR operator.
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5.2.2 Precision at Equal Recall Rate (PERR)

The definition for this metric is the same as in [1] and consists of the precision computed
for each sample when retrieving the same number of labels as the ground-truth labels:

PERR(V) = 1
|V ′|

∑
v∈V ′

[
1
|Gv |

∑
e∈top(Pv ,|Gv |)

1Gv (e)
]
, (5.3)

where V ′ ⊆ V is the subset of test videos containing at least one ground-truth label.

5.2.3 Global Average Precision (gAP)

The gAP metric defined in [1] is computed similarly to the mAPL(Chapter 4.2.4) defined
earlier, with the distinction that the gAP is computed agnostically to the top k (i.e. k=20)
classes as for a binary problem:

gAP =
kNv∑
i=1

P(i)∆R(i), (5.4)

where Nv is the number of videos in the test set, P(i) and ∆R(i) are defined as for Eq. (4.3)

5.2.4 Per Video Mean Average Precision (mAPV)

As is [1], buckets of length 10−4 are used for discretizing the precision-recall threshold τ for
each class. All the non-zero annotations are then sorted (ascending order) according to the
prediction scores. The precision Pc(τ) and recall Rc(τ) at a given threshold τ for class c is
defined as follows:

Pc(τ) =
∑Nv

i=1 (yic ≥ τ)tic∑Nv
i=1 (yic ≥ τ)

, (5.5)

Rc(τ) =
∑Nv

i=1 (yic ≥ τ)tic∑Nv
i=1 yic

, (5.6)

where yic and tic are prediction and ground-truth for the i-th video for class c and Nv is
the total number of videos.

The APc for a specific class c is given by:

APc =
10 4∑
j=1

Pc(τj)[Rc(τj)− Rc(τj+1 )], (5.7)

where τj = j
104 . The mAPV is obtained by taking the unweighted mean across all classes in

C (as in Eq. (4.4)).
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5.3 Experimental Setup

In order to validate our method on multi-label video classification, we follow a similar
framework to the one used for multi-label image classification (Chapter 4.3). Firstly, we
reproduce the logistic baseline from [1] and compare against our models for both releases
of YouTube-8M. For YT-8M V2, we conduct experiments with spatial features only and
spatial plus audio features, comparing our method against the logistic baseline. Addition-
ally, following the same intuition from the partially observed experiments for multi-label
image classification. We run experiments providing the partial observations of the verticals
for both datasets to our model and validate against the logistic baseline including the par-
tial observations as input features. Note that including partial observations to the logistic
regression is important to demonstrate that partial labels are not the discriminative feature
for these experiments. All experiments were executed following the guidelines presented in
[1] and the official Kaggle competition.

5.4 Implementation Details

The dataset labels were organized into a fully-connected graph (intra- and inter-layer con-
nections) with two concept layers – entities (i.e. fine-grained labels), and verticals (i.e.
coarse-grained labels). We minimize the cross-entropy loss function using the Adam opti-
mizer [25]. For all models, mini-batches of size 1024 were used, and a weight decay of 10−8

was applied. The logistic regression model was trained for 35k iterations with a learning
rate of 0.01, and the BINN was trained for 90k iterations, starting with a learning rate of
0.001 with a decay factor of 0.1 at every 40k iterations. All models were implemented with
the Caffe deep learning framework [19].

5.5 Experimental Results

In Table 5.1, results on YT-8M are presented on the validation set, where the first group
of results refers to the baseline models reported in [1]. To ensure consistency with [1], the
results for the logistic regression baseline trained by us is shown in the second group of
models in Table 5.1. It is worth to mention that the inclusion of Z- and L2-normalization
were crucial for duplicating the baseline results and boosting results for the other models.
As can be verified from Table 5.1, the best SINN model for YT-8M achieved significant
improvements on all metrics. More precisely, a 3.2% improvement was seen on mAP using
exclusively video-level features, against the leading baseline. The SINN also demonstrated
measurable success on the PERR, Hit@1 and gAP metrics, with respective improvements
of 4.69%, 4.4% and 7.41%.

The results shown in Table 5.2 follow the same sequence as the previous results, save for
the inclusion of audio features available for YT-8M V2. The best results were obtained using
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Model mAPV PERR Hit@1 gAP
LSTM [1] 26.60 57.30 64.50 -

Mixture-of-Experts [1] 30.00 55.80 63.30 -
Logistics [1] 28.10 53.00 60.50 -
Logistics [38] 27.98 52.89 60.34 49.04
BINN [38] 30.17 57.40 64.48 55.76

SINN 31.18 57.58 64.74 56.39
Logistics + Partial labels 54.47 68.77 75.53 71.46
SINN + Partial labels 57.71 72.82 78.85 75.80

Table 5.1: YouTube-8M (YT-8M) results for mAPV, Precision at Equal Recall Rate (PERR),
Hit at 1 and gAP on the validation set.

Model mAPV PERR Hit@1 gAP
Logistics + RGB [38] 36.84 64.38 78.62 70.31

Logistics + RGB + Audio [38] 38.61 69.28 82.75 75.83
BINN + RGB [38] 39.12 69.01 82.27 75.99

SINN + RGB 40.19 69.11 82.35 76.33
BINN + RGB + Audio [38] 40.91 72.27 84.96 79.29

SINN + RGB + Audio 42.32 72.92 85.49 80.09
Logistics + Partial labels 50.28 78.52 89.82 84.94
SINN + Partial labels 51.88 80.55 90.99 86.51

Table 5.2: YouTube-8M V2 (YT-8M V2) results for mAPV, Precision at Equal Recall Rate
(PERR), Hit at 1 and gAP on the validation set.

RGB and audio features, with Z- and L2-Normalization. The most effective SINN model
obtained 42.32%, 72.92%, 85.49% and 80.09% for mAP, PERR, Hit@1 and gAP respectively,
which corresponds to improvements of 3.71%, 3.64%, 2.74% and 4.26%, against the leading
baseline results. Additionally, our results indicate that our method for combining partial
labels also achieves significant improvements over baselines on both releases of YouTube-8M.

27



Chapter 6

Dense Action Detection

Here we introduce the work done on dense action detection. Details about THUMOS’14 and
MultiTHUMOS benchmarks are presented in Chapter 6.1 and metrics used for this task in
Chapter 6.2. Our experimental setup is discussed in Chapter 6.3 and implementation details
in Chapter 6.4. The results are reported in Chapter 6.5.
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Figure 6.1: Snapshot at time step t for the action detection model, where per-frame repre-
sentations xt were extracted using a CNN, fed to the inference model and tom concept-layer
specific LSTM units at each time step t. The concept layer outputs {a`t}m`=1 are combined
(aggregation step denoted by σ and formulated in Eq. (3.19)) with the corresponding LSTM
hidden states {h`t}m`=1 for obtaining the final predictions {y`t}m`=1. The output activations
(y`t) for the concept layer ` are interpreted as confidence scores for a given concept being
assigned to the frame at time step t.
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6.1 Evaluation Benchmarks

6.1.1 THUMOS’14

The THUMOS’14 [20] dataset contains 13,320 single-labeled trimmed videos from UCF101
[46] and an extra 2,584 multi-labeled untrimmed videos, from which 1,010 belong to the
validation set and 1,574 to the test set. In addition to the entire set of trimmed videos,
around 400 untrimmed videos (out of 2,584) are utilized for the temporal action detection
task. On average these videos (i.e. trimmed and untrimmed) used for action detection,
contain approximately a single label per video and 20 different action classes.

6.1.2 MultiTHUMOS

In order to study the problem of densely annotated unconstrained videos, Yeung et al.
introduced the MultiTHUMOS dataset [57]. This dataset consists of an augmented version
of the untrimmed videos for action detection from THUMOS’14, corresponding to around
30 hours of temporal action annotation. More precisely, the MultiTHUMOS dataset extends
the annotation from 6,365 over 20 action classes in THUMOS’14 to 38,690 annotations over
65 action classes, including 32,325 annotations over the 45 introduced action classes. In
addition, the density of annotations increases from 0.3 to 1.5 action classes per frame in
average and from 1.1 to 10.5 action classes per video.

6.2 Evaluation Metrics

Analogously to Chapter 4.2.4, we use mAPL to evaluate our method, with the difference
that for this task each sample corresponds to one single frame and the mAPL is computed
across all videos as in a long global list of predictions for a binary problem. As in [57],
this metric is utilized in order to avoid aggregating frame-level predictions for obtaining
activities segments.

6.3 Experimental Setup

As a standard approach for this dataset, we train our model on the untrimmed validation
set and validate on the test set, since the training set is the same from UCF101 and consists
of short clipped videos. We executed experiments to validate the inclusion of structured an-
notation in two scenarios: our inference modules versus CNN in static frames and structured
temporal inference versus LSTM baseline, allowing message propagation across time.

Firstly, we reproduce the single-frame CNN baseline presented in [57], to certify that
we are extracting competitive features. This baseline is compared against our single-frame
models, i.e. BINN and SINN. Next, we train a LSTM baseline to compare against our
temporal extention models, i.e. biLSTM and siLSTM. As in [57], we report mAPL scores
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for MultiTHUMOS and the subset of classes from THUMOS on the untrimmed test set
from MultiTHUMOS.

6.4 Implementation Details

The single-frame CNN baseline was pretrained on Imagenet and then fine-tuned on Mul-
tiTHUMOS. We extracted 4096-dimensional features from individual frames at fc-7 in the
base model similar procedure done in [57].

In order to obtain structured annotations for our models, we augment the original set of
labels L by manually converting each l ∈ L to an approximate word sense from WordNet,
generating a new set L′. The new concept layer added to the dataset consists of selected
synsets for each l′ ∈ L′ that surpass a certain relatedness score (e.g. vector score [40])
threshold (e.g. 0.5) against all synsets from WordNet. We filtered out from the new con-
cept layer the synsets that were only related to one or most of the original labels (precise
number were determined by cross-validation). We used a fully-connected graph structure
with connections between all pairs of concepts for intra-layer and inter-consecutive-layer
concepts.

Parsing WordNet provided us an extra layer containing 32 new concepts whose connec-
tions to the original MultiTHUMOS labels were determined by the relatedness score. The
single-frame BINN and SINN models were trained with a batch size of 1024 frames for 8500
iterations, step size of 5000 iterations, learning rate of 10−3 and decay of 0.1.

For the LSTM baseline, we use the same feature vectors extracted for the single-frame
CNN baseline. Differently from [57], our LSTM based models are fed with randomly sampled
contiguous sequences of 32 frames ( 3.2s) from each video sample. In particular, the LSTM
baseline was trained using ADAM with a learning rate of 10−3, step size of 1500 iterations,
batch size of 512 and learning rate decay of 0.1 for 1500 iterations.

Our proposed models biLSTM and siLSTM were designed to include temporal depen-
dencies as LSTM plus, hierarchically structured labels. For these models we use the same 32
extra concepts extracted from WordNet. Also, we use a similar approach as for the LSTM
model for feeding frame sequences to these models. The best model (i.e. siLSTM) obtained
was trained using ADAM, batch size of 1024, learning rate of 7 × 10−4 for 900 iterations,
decaying 0.1 every 700 iterations.

6.5 Experimental Results

As shown in Table 6.1, the inclusion of structured labels parsing WordNet using the single-
frame SINN provides a gain of 2.7% on THUMOS and 2.4% on MultiTHUMOS against
the single-frame CNN baseline implemented by us. In Figure 6.2, we show a comparison
between the single-frame SINN and the single-frame CNN using per-class AP computer for
each model.
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Model THUMOS MultiTHUMOS
Single-frame CNN [57] 34.7 25.4

Single-frame CNN [Ours] 35.5 24.6
Single-frame BINN 37.6 26.8
Single-frame SINN 38.2 27.0

LSTM [57] 39.3 28.1
LSTM [Ours] 41.8 30.5

MultiLSTM [57] 41.3 29.7
biLSTM 42.8 30.6
siLSTM 43.9 31.5

Table 6.1: THUMOS and MultiTHUMOS results for mAPL.

As observed in [57], the inclusion of temporal dependencies clearly provides substantial
improvements in activity detection as we can also conclude from results shown in Table 6.1.
The LSTM model implemented by us provides 6.3% THUMOS and 5.9% on MultiTHUMOS
over our single-frame CNN baseline. The APs breakdown is shown in Figure 6.3.

The results from our proposed models (i.e. biLSTM and siLSTM) show some gain in
performance over the LSTM baseline as show in Table 6.1. More precisely, biLSTM and
siLSTM are benefiting from both inclusion of structured labels and temporal label depen-
dencies. According to our experiments, the siLSTM provides a boost of 2.1% on THUMOS
and 1.0% on MultiTHUMOS over the LSTM baseline as we can see from Table 6.1. In
Figure 6.4, we present class-specific APs comparison between the siLSTM and LSTM. In
Figure 6.5, we present the detailed overall improvement achieved, using siLSTM over the
single-frame CNN baseline.

The significant difference obtained between our LSTM baseline and the LSTM results
from [57] impede a direct and fair comparison with MultiLSTM. However, analyzing the
relative gain between siLSTM and MultiLSTM over the corresponding baselines indicate
that siLSTM is competitive with MultiLSTM. As presented before the relative gain provided
by siLSTM is 2.1% and 1.0% against 2.0% and 1.6% for MultiLSTM on THUMOS and
MultiTHUMOS, respectively. It is worth to mention that siLSTM and MultiLSTM explore
different ideas for improving over LSTM, which are not mutually exclusive thus, they can
possibly be combined for obtaining a potentially stronger model.

Figure 6.6 shows a timeline comparison for four different videos in their entirety, com-
paring a set of key models covered in this work (i.e. single-frame CNN and SINN, LSTM,
siLSTM). The series points for prediction in this plot were obtained by thresholding the
prediction at 0.5, similar procedure was done in [57].
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Figure 6.2: Per-class APs for Single-frame SINN versus Single-frame CNN (VGG).

Figure 6.3: Per-class APs for LSTM versus Single-frame CNN (VGG).
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Figure 6.4: Per-class APs for siLSTM versus LSTM.

Figure 6.5: Per-class APs for siLSTM versus Single-frame CNN (VGG).
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Figure 6.6: Timeline comparison for single-frame models (CNN and SINN) and sequential
models (LSTM and siLSTM) in multi-label action detecion for four different videos. The
verical axis represents the ground-truth labels appearing at least once in the target video
and the horizontal axis corresponds to the duration of the target video in minutes. (Best
view in color)
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Chapter 7

Conclusion

In this thesis we bind together previous successes in performing inference in structured
graphs (i.e. BINN and SINN), present new results for partially observed prediction on
both releases of YouTube-8M and propose an extension for propagating concepts through
time, based on the LSTM formulation. We consistently show significant improvements of
performance in multi-label image classification, multi-label video classification and action
detection tasks across a number of public datasets, achieving considerable gains against
baselines and existing approaches at the cost of an additional computational overhead by
performing structured inference.

From our experiments, the structured inference performed by BINN and SINN can lead
to impressive boosts in accuracy. The results obtained for multi-label image and video
classification are strongly positive and even without explicitly defining the graph structure
as prior knowledge in the SINN model we were able to obtain substantial improvements on
the YouTube-8M benchmarks. Additionally, the results presented using partially observed
labels indicate that our method processes partial observations more effectively than the
baselines and is able to predict missing labels with higher confidence.

The proposed action detection method also provides some improvements however, we
believe that the lack of a more atomic structure of actions, person-centric spatial annotations
and higher confidence structured annotations pose challenges for the learning of less noisy
relations in label space.
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