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Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that causes memory loss
and decline in cognitive abilities; it is the sixth leading cause of death in the United States,
affecting an estimated 5 million Americans and 747,000 Canadians. A recent study of
AD pathogenesis (Szefer et al., 2017) used the RV coefficient to measure linear association
between multiple genetic variants and multiple measurements of structural changes in the
brain, using data from Alzheimer’s Disease Neuroimaging Initiative (ANDI). The authors
decomposed the RV coefficient into contributions from individual variants and displayed
these contributions graphically. In this project, we investigate the properties of such a
“contribution plot” in terms of an underlying linear model, and discuss estimation of the
components of the plot when the correlation signal may be sparse. The contribution plot is
applied to genomic and brain imaging data from the ADNI-1 study, and to data simulated
under various scenarios.

Keywords: Alzheimer’s disease; Alzheimer’s Disease Neuroimaging Initiative; RV coeffi-
cient; Genetic association; Multivariate linear association

iii



Dedication

To my beloved parents and older brother, who are always supportive of me with their un-
conditional and eternal love.

iv



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Brad McNeney, for
his thoughtful guidance and academic support, without which this project would not have
been able to be possibly done. At the same time, my thank goes to Dr. Jinko Graham for
providing me with an interesting idea about the contribution plot and the ADNI-1 genomic
and brain imaging data for this project. Without them, I could not have even initiated this
project in the first place.

I extend my gratitude to Dr. Boxin Tang and Dr. Joan Hu for their generously agreeing
to spend their valuable time to be examining committees for my defense. Also, I deeply
thank to all staffs and faculty members in Department of Statistics and Actuarial Science
for their passionate dedication and commitment to the department and students, expecially
the professors whose course greatly broadened my insight and knowledge in statistics.

In addition, I cannot be more grateful to all my friends and academic sisters and brothers,
especially Trevor Thomson, Yuping Yang, Khalif Halani, Tian Li, Charlie Zhou, Jiying Wen,
Dilshani Induruwage, Lillian Lin, Michelle Thiessen, and Grace G. Hsu, for their being with
me throughout my time at SFU, which has been the most memorable and academically
productive chapter in my life.

Last but foremost, I want to deliver my deepest appreciation to my beloved family that
was always there to make my life brighter everyday with their unconditional support and
eternal love.

v



Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Methods 3
2.1 The Multivariate Correlation and RV Coefficients . . . . . . . . . . . . . . . 3
2.2 Contributions to the RV Coefficient . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Estimation, Sparse Correlation and Sum of Powered Correlations . . . . . . 6

2.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Application 9
3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 ADNI-1 Cohort Study . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Genotype Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Imaging Phenotype Data . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Contribution Plot for ADNI-1 Data . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Discussion of rs16871157 and NEDD9 . . . . . . . . . . . . . . . . . . . . . 13

4 Contribution Plots for Simulated Data Sets 16
4.1 Description of Simulation Configurations . . . . . . . . . . . . . . . . . . . . 16
4.2 Analyses of Simulated Data Sets . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



4.3.1 Summary of Simulated Example Data Analyses . . . . . . . . . . . . 26

5 Conclusion 27
5.1 Project Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 29

Appendix A Alternative RV Coefficient Forms 32
A.1 Equally-Weighted Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1.1 Inner Products and Squared Covariances . . . . . . . . . . . . . . . 32
A.1.2 Inner Products and Gower-Centred Distances . . . . . . . . . . . . . 34

A.2 Unequally-Weighted Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2.1 Testing the Distance-Based Formula . . . . . . . . . . . . . . . . . . 36

Appendix B Properties of the Multivariate Correlation and RV Coefficients 38
B.1 Properties of ρV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2 Properties of RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.3 Dependence of the RV Coefficient on Sample Size and Dimension . . . . . . 39

B.3.1 Sensitivity to Sample Size . . . . . . . . . . . . . . . . . . . . . . . . 39
B.3.2 Sensitivity to Dimensionality . . . . . . . . . . . . . . . . . . . . . . 39

B.4 Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.4.1 Permutation Distribution . . . . . . . . . . . . . . . . . . . . . . . . 42
B.4.2 Pearson Type III Distribution . . . . . . . . . . . . . . . . . . . . . . 42

Appendix C Names of SNPs in analyzed genes 45

vii



List of Tables

Table 3.1 Summary of the number of SNPs in analyzed genes. . . . . . . . . . . 10
Table 3.2 Phenotype IDs and descriptions of 28 brain regions from a hemisphere,

from Table 2.1 of Szefer (2014). Baseline structural MRI measurements
of a total of 56 (= 28 × 2) regions from left and right hemispheres were
estimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 3.3 Summary of the p-values of SPCs with α = 1, 2, 3, or 4, and the adap-
tive SPC test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table C.1 Names of 493 SNPs in analyzed genes . . . . . . . . . . . . . . . . . . 47

viii



List of Figures

Figure 2.1 Example contribution plots of standardized genomic data of 493
SNPs and simulated neuroimaging data of 56 brain regions at α = 1
(upper) and α = 3 (lower). The horizontal line indicates the 95th
percentile of the maximum contributions under the permutation null
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.1 Contribution plot of standardized genomic data of 493 SNPs and
56 brain regions with α = 4. The horizontal line indicates the 95th
percentile of the maximum contributions under the permutation null
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3.2 Contributions of rs16871157 to brain regions in the left hemisphere
(upper) and the right hemisphere (lower). The horizontal line indi-
cates the 95th percentile of the maximum contributions under the
permutation null distribution. . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.3 Violin plots of the distribution of the mean cortical thickness changes
in MeanTemp (upper) and MeanLatTemp (lower) for each genotype
of rs16871157. The left and right plots respectively represent the left
and right hemispheres. The relative frequency of the minor allele in
the CN subjects was 11.45%. Violin plots for genotype = 2 were not
done because there is only one CN subject who is homozygous for
the minor allele. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 4.1 Simulation results of Setting 0 (B=0, p=130, q=25, Σp×p=Ip×p,
Σq×q=Iq×q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 4.2 Simulation results of Setting 1 (B30,1=B70,10=1, p=130, q=25, Σp×p ̸=Ip×p,
Σq×q=Iq×q). The horizontal line indicates the 95th percentile of the
maximum contributions under the permutation null distribution. . 20

Figure 4.3 Simulation results of Setting 2 (B30,1=B70,10=1, p=130, q=25, Σp×p=Ip×p,
Σq×q ̸=Iq×q). The horizontal line in the lower panel indicates the 95th
percentile of the maximum contributions under the permutation null
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 4.4 Squared correlations of X∗
.,100 and Y ∗

.l (upper) and X∗
.,30 and Y ∗

.l (lower). 22

ix



Figure 4.5 Simulation results of Setting 3 (B30,1=B70,10=1, p=2600, q=25, Σp×p=Ip×p,
Σq×q=Iq×q). The horizontal line indicates the 95th percentile of the
maximum contributions under the permutation null distribution. . 23

Figure 4.6 Simulation results of Setting 4 (B30,1=B70,10=1, p=130, q=500, Σp×p=Ip×p,
Σq×q=Iq×q). The horizontal line in the lower panel indicates the 95th
percentile of the maximum contributions under the permutation null
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4.7 Simulation results of Setting 5 (B30,1=B70,10=1, p=2600, q=500,
Σp×p ̸=Ip×p, Σq×q ̸=Iq×q). The horizontal line indicates the 95th per-
centile of the maximum contributions under the permutation null
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure B.1 RV coefficient with different sample sizes. . . . . . . . . . . . . . . . 40
Figure B.2 RV coefficient with the different numbers of variables. . . . . . . . . 40
Figure B.3 RV coefficient change at different levels of the sample size and num-

ber of variables in two simulation sets without (left) and with (right)
a linear association. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure B.4 Pearson type III approximation and Normal approximation of the
standardized RV coefficient. . . . . . . . . . . . . . . . . . . . . . . 44

x



Chapter 1

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder. As a type of dementia, it is
a neurological dysfunction that is irreversible, neurodegenerative and progressive, causing
memory loss and the decline of cognitive function. The disease is considered a complex
disease driven by a combination of genetic and environmental factors, and it usually occurs
in older people. The Alzheimer’s Association reported that more than 5 million Americans
may suffer from the disorder and AD is ranked as sixth as a cause of mortality in the United
States of America (Alzheimer’s Association, 2017).

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal, multi-site
study that started in 2004 to understand the onset, progression, and etiology of AD. The
ADNI objectives are: (1) the development of optimized and uniform standards for obtaining
longitudinal magnetic resonance imaging (MRI) and positron emission tomography (PET)
data on subjects who have AD and mild cognitive impairment (MCI) as well as cognitively
normal (CN) elderly controls across multiple centers, (2) the development of methods to
assess treatment effects in these subjects, (3) the establishment of accessible data reposito-
ries with diverse types of information including longitudinal changes in brain structure and
metabolism, cognitive function, and biomarkers in these subjects, and (4) the acquirement
of biological and pathogenic interpretation of MCI and AD through statistical analysis using
the aforementioned data with genetic data as predictors (Weiner et al., 2013).

Association studies using the cohort data from ADNI have been conducted on a genome-
wide scale to investigate genetic variants that are associated with AD. In 2011, two large
genome-wide association studies (GWAS) that included ADNI data in their analyses re-
ported candidate susceptibility genes (MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP)
for AD using meta-analyses that systematically combined results from multiple studies
(Hollingworth et al., 2011; Naj et al., 2011). In addition, a recent GWAS (Lee et al., 2017)
found 6 genes associated with AD, including PDS5B, ADARB2, BDH1, ST6Gal1, RAB20,
and SPSB1. The study stated that PDS5B and ADARB2 are directly related to AD, and
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identified two single nucleotide polymorphisms (SNPs) within these genes as possible influ-
ences of cognitive function. The other four genes, ADARB2, BDH1, ST6Gal1, RAB20, and
SPSB1, are thought to be indirectly related to AD with significant SNPs linked to other
risk factors relevant to AD like aging.

Many different correlation coefficients have been introduced to measure the association
between two multivariate datasets. One of the most popular coefficients is the R Vector (RV)
coefficient that measures the linear relationship between two data sets. It can be viewed as
a unifying tool for linear multivariate statistical methods, since many major multivariate
data analytic applications, such as multivariate regression, canonical correlation analysis,
and principal component analysis, can be construed as the search for linear transformations
of two original matrices that maximize the RV coefficient under certain constraints. It is
an estimate of a population quantity called the vector correlation coefficient (Josse and
Holmes, 2014).

Szefer et al. (2017) used the RV coefficient to summarize the relationships between
SNPs in AD linkage regions and rates of change for 28 brain regions of interest. The
analyses included a SNP selection phase and a validation phase. On the validation data
they performed a test of the null hypothesis that the multivariate correlation coefficient,
ρV (see equation 2.1), is equal to 0 vs the alternative hypothesis ρV ̸= 0 and rejected the
null hypothesis. Following the significance test, they decomposed the RV coefficient into
contributions from each SNP and plotted the result to explore the relative contribution of
each SNP to the RV coefficient. In this project, we further develop this “contribution plot”
to evaluate the linear effect of each predictor variable to the overall linear dependence with
multiple response variables, and to identify predictor variables that drive the multivariate
linear association with response variables of interest in high-dimensional data.

An outline of the project is as follows. In Chapter 2, we define the RV coefficient and
the contribution plot. In Chapter 3, we describe the ADNI-1 data and the results of our
analysis. In Chapter 4, we summarize simulations to further explore the characteristics and
behaviors of the contribution plot under a variety of circumstances. Finally, we conclude
with summaries and discussions in Chapter 5. Calculation of the RV coefficient when
subjects are unequally weighted (e.g., to account for biased sampling) are given in Appendix
A. Supplementary descriptions of the RV coefficient including properties, problems, and
hypothesis test, are encompassed in Appendix B along with our additional comments on
the RV coefficient.
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Chapter 2

Methods

In this chapter, we define the RV coefficient and its population counterpart, the multivari-
ate correlation coefficient ρV . We also decompose ρV into contributions from each SNP
marker, and study the form of such contributions under a multivariate linear model for
brain phenotypes given genomic data. Finally, we discuss shrinkage estimation that may
be useful when the correlation signal is sparse. By sparse we mean few non-zero pairwise
correlations between genotypes and phenotypes.

2.1 The Multivariate Correlation and RV Coefficients

Our development follows Section 2 of Josse and Holmes (2016). Let X = (X1, . . . , Xp)
denote a random vector of p genotypes and Y = (Y1, . . . , Yq) denote a random vector of q

phenotypes. Contrary to the convention in Statistics, we define these as row vectors. A
measure of population correlation between X and Y is (Escoufier, 1973)

ρV (X, Y ) =

p∑
k=1

q∑
l=1

Cov2(Xk, Yl)√√√√ p∑
k=1

p∑
l=1

Cov2(Xk, Xl)
q∑

k=1

q∑
l=1

Cov2(Yk, Yl)

(2.1)

where Cov() denotes population covariance. The coefficient ρV may be viewed as an exten-
sion of the squared population correlation to the multivariate setting. It can be shown that
0 ≤ ρV ≤ 1. This and other properties of ρV are discussed in Appendix B.

Suppose we have n independent and identically distributed realizations of X and Y ,
arranged row-wise as column centred data matrices X(n × p) and Y(n × q), respectively.
Let X·k denote the kth column of X; i.e., the vector of genotypes for marker k. Similarly,
let Y·l denote the lth column of Y; i.e., the vector of measurements for phenotype l. The
multivariate correlation coefficient in equation (2.1) can be estimated by the RV coeffi-
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cient, obtained by replacing population covariances such as Cov(Xk, Yl) by their sample
counterparts cov(X·k, Y·l):

RV (X, Y) =

p∑
k=1

q∑
l=1

cov2(X.k, Y.l)√√√√ p∑
k=1

p∑
l=1

cov2(X.k, X.l)
q∑

k=1

q∑
l=1

cov2(Y.k, Y.l)

(2.2)

Appendix A discusses alternative forms of the RV coefficient.

In addition to estimation of ρV (X, Y ), we may test the hypothesis H0 : ρV (X, Y ) = 0
versus H1 : ρV (X, Y ) > 0. A common approach to testing is to reject H0 for large values
of RV, with p-values obtained by comparing RV to an approximate permutation null distri-
bution. Approximations to the permutation null distribution may be obtained analytically
(Kazi-Aoual et al., 1995), or by Monte Carlo. In the case of Monte Carlo approximation,
the estimated permutation null distribution is obtained by randomly permuting either the
genotypes or the phenotypes of the n subjects and re-calculating RV for each permutation.

2.2 Contributions to the RV Coefficient

Szefer et al. (2017) found a significant association between the genotypes and phenotypes
in their validation study. After the significant finding, they decomposed the RV coefficient
into components due to each genetic marker and plotted these contributions versus marker
location, to look for markers that might be driving the association. From equation (2.2),
the contribution of the kth marker to the RV coefficient is proportional to

Ĉk =
q∑

l=1
cov2(X.k, Y.l). (2.3)

The notation Ĉk reflects the fact that the contribution of marker k to the RV coefficient
is an estimate of a corresponding contribution to ρV (X, Y):

Ck =
q∑

l=1
Cov2(Xk, Yl). (2.4)

The covariances that comprise Ck can be derived under a linear model for the association
between X and Y . Such a model is consistent with the fact that the RV coefficient measures
the linear relationship between two multidimensional data sets. Assume the multivariate
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multiple regression model

Y = XB + E (2.5)

where B is a p × q matrix of regression parameters, and E is a row vector of q error
terms assumed to be independent of X. The errors are assumed to follow a multivariate
normal distribution, MV N(0, Σq×q) where Σq×q is the covariance matrix. Component-wise,
equation (2.5) is

Yl =
p∑

k′=1
βk′lXk′ + El (2.6)

for 1 ≤ l ≤ q.

Using equation (2.6), and the fact that Cov(Xk, El) = 0 for all k and l, by independence
of X and E, we can rewrite

Cov(Xk, Yl) = Cov(Xk,
p∑

k′=1
βk′lXk′ + El)

=
p∑

k′=1
βk′lCov(Xk, Xk′) + Cov(Xk, El)

=
p∑

k′=1
βk′lCov(Xk, Xk′)

= βklVar(Xk) +
∑
k′ ̸=k

βk′lCov(Xk, Xk′), (2.7)

where Var() denotes variance, and hence

Ck =
q∑

l=1
Cov2(Xk, Yl)

=
q∑

l=1

βklVar(Xk) +
∑
k′ ̸=k

βk′lCov(Xk, Xk′)


2

. (2.8)

Equation (2.8) shows that Ck depends on not only the regression coefficients, but also
the variance of Xk and the covariances between Xk and the other components of X. Some
simplification of the contributions is obtained by scaling each Xk by its standard deviation,
so that the variance terms become one and covariances become correlations. In what follows
we assume such scaling and use the notation SD() for population standard deviation, sd() for
sample standard deviation, Cor() for population correlation and cor() for sample correlation.
Dividing both sides of equation (2.6) by SD(Yl), and defining Y ∗

l = Yl/SD(Yl) and X∗
k =
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Xk/SD(Xk) yields

Y ∗
l =

p∑
k=1

β∗
klX

∗
k + E∗

l (2.9)

where E∗
l = El/SD(Yl) and β∗

kl = βklSD(Xk)/SD(Yl), k = 1, . . . , p, l = 1, . . . , q, are the
regression coefficients of the model for the standardized data. The interpretation of β∗

kl

is the expected change in Y ∗
l for a one unit change in X∗

k holding all other X∗
k′ fixed, or

the expected SD change in Yl for a one SD change in Xk holding all other Xk′ fixed. The
contribution of marker k to ρV (X∗, Y ∗) is then

C ∗
k =

q∑
l=1

β∗
kl +

∑
k′ ̸=k

β∗
k′lCor(X∗

k , X∗
k′)


2

, (2.10)

which depends on the regression coefficients and the correlations between the genetic vari-
ants. Genetic variant k makes a non-zero contribution to ρV (X∗, Y ∗) if it is directly as-
sociated with one or more Yl (i.e., βkl ̸= 0 for some ls) or if it is correlated with one or
more Xk′ ’s that are directly associated with one or more Yl (i.e., there is a k′ such that
Cor(Xk, Xk′) ̸= 0 and an l such that βk′l ̸= 0).

2.3 Estimation, Sparse Correlation and Sum of Powered Cor-
relations

We now turn to estimation of the contributions to the RV coefficient. The contribution
from the kth marker is

Ĉ ∗
k =

q∑
l=1

cor2(X∗
.k, Y ∗

.l ), (2.11)

a sum of squared sample correlations. Our studies of simulated data suggest that when the
correlation signal is sparse, in the sense that there are few truly non-zero correlations, and
the sample size is modest compared to the number of phenotypes, sampling error in the
many estimates of truly zero correlations can obscure the signal of the few truly non-zero
correlations. A solution is to raise the squared correlations to a power, α; i.e., we consider
the contributions

Ĉ ∗
k (α) =

q∑
l=1

cor2α(X∗
.k, Y ∗

.l ) (2.12)
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to a modified RV coefficient

RV (X∗, Y∗|α) ∝
p∑

k=1

q∑
l=1

cor2α(X∗
.k, Y ∗

.l ) (2.13)

for α ≥ 1. Raising correlations to powers larger than 2 has the effect of differentially
shrinking all estimates toward zero, with estimates near zero shrunken more than those
near one. Independently, Xu et al. (2017) arrived at the same modified RV coefficient
in the context of testing the null hypothesis H0 : ρV (X∗, Y ∗) = 0 versus the alternative
hypothesis H1 : ρV (X∗, Y ∗) > 0. They suggest the sum of powered correlation (SPC) test,
in which RV (X∗, Y∗|α) is employed as a test statistic and its significance is assessed with
a Monte Carlo permutation test. Xu et al. (2017) also suggest an adaptive sum of powered
correlation (aSPC) test, in which the test statistic is a minimum p-value for the SPC test
over a grid of powers. Though testing is not the focus of this project, we make use of
their minimum-p-value idea to select the power α. In particular, our contribution plot is
of contributions Ĉ ∗

k (α) for the power α that minimizes the p-value of the test based on
RV (X∗, Y∗|α), for values of α on a grid. In our study we chose α = 1, 2, 3 or 4.

2.3.1 Example

In this subsection, we present contribution plots using standardized (X∗ and Y∗) data sets.
The vertical axis of the contribution plot is Ĉ ∗(α) where α is either 1 or the optimal value
that minimizes the p-value of the RV (X∗, Y∗|α) test based on 5,000 permutations. The
horizontal axis represents SNPs of the ADNI-1 genomic data sorted by chromosome number
and base-pair location. A multivariate multiple regression model, Y= XB+E, is used to
simulate a matrix of responses. The description of each component is as follows.

• Xn×p is the matrix of the ADNI-1 genomic data on 493 SNPs (p) in 179 CN subjects
(n).

• Yn×q is a matrix of simulated response variables.

• En×q is an error matrix generated from MV N(0, Iq×q).

• Bp×q is a coefficient matrix.

The choice of an identity matrix for the covariance of the error terms is for simplicity.
The number of response variables (q) is set to be 56 to generate neuroimaging data of 56
brain regions for simulation. We set B30,1 = 1 and B70,10 = 1, to designate the 30th and
70th SNPs as causal markers on the 1st and 10th brain regions, respectively, and all other
Bi,j = 0.
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The results are given in Figure 2.1. The contribution plots at α = 1 and α = 3 are
displayed in the upper and lower panels, respectively. The two spikes above the horizontal
line in the each plot are the contributions corresponding to the 30th and 70th SNPs. The
horizontal line is the estimated 95th percentile of the distribution of the maximum contri-
butions, where the maximum is over all markers across the region. The estimate is based
on an empirical null distribution from 5,000 data sets in which the rows of X are permuted.
Individual contributions that exceed the 95% threshold are considered noteworthy. When
α increases from 1 to 2, noise from non-causal variables in the background is reduced.

Figure 2.1: Example contribution plots of standardized genomic data of 493 SNPs and
simulated neuroimaging data of 56 brain regions at α = 1 (upper) and α = 3 (lower).
The horizontal line indicates the 95th percentile of the maximum contributions under the
permutation null distribution.
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Chapter 3

Application

In this chapter we apply the contribution plot to the ADNI-1 data set mentioned in the
Introduction. We first describe how these data were obtained and what their features are.

3.1 Data Description

3.1.1 ADNI-1 Cohort Study

Both SNP and brain image data considered in this analysis were from the ADNI-1 study
that was run from 2004 to 2009. One of the goals of the ADNI study is to identify biomarkers
that predict AD. Our focus is on the 200 CN subjects collected in this study. The rationale
for studying the CN subjects is that we are interested in genetic variation that predicts
structural changes in the brain before subjects experience memory loss. Further details
about the ADNI-1 study design is available on the ADNI website http://adni.loni.usc.
edu/study-design/.

3.1.2 Genotype Data

Genotypes were measured as described in Saykin et al. (2010) and were subjected to quality
control and imputation to fill in missing values as described in Szefer (2014). After data
processing, 179 subjects with data on 493 SNPs in 33 genes remained for analysis. Table
3.1 gives a summary of gene names and the numbers of SNPs from each gene. SNP names
are given in Appendix C.

3.1.3 Imaging Phenotype Data

The phenotypes were derived from baseline MRI scans taken for the ADNI-1 study for self-
reported non-Hispanic white subjects. The MRI measurements were of volumes or cortical
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Chromosome Gene No. Chromosome Gene No.
1 CHRNB2 1 10 SORCS1 94
1 CR1 15 10 TFAM 6
1 ECE1 39 11 GAB2 19
1 MTHFR 10 11 PICALM 23
1 TF 3 11 SORL1 33
2 BIN1 12 15 ADAM10 19
2 IL1A 2 17 ACE 7
2 IL1B 1 17 GRN 1
6 NEDD9 69 17 THRA 3
6 PGBD1 6 17 TNK1 3
6 TNF 1 19 APOE 1
8 CLU 2 19 EXOC3L2 2
9 DAPK1 82 19 GAPDHS 3
9 IL33 14 19 LDLR 9
10 CALHM1 3 20 CST3 1
10 CH25H 1 20 PRNP 4
10 ENTPD7 4 Total 493

Table 3.1: Summary of the number of SNPs in analyzed genes.

thicknesses of 56 brain regions (Table 3.2), adjusted for covariates such as age, gender,
education level, handedness and baseline intracranial volume (Wang et al., 2011).
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Phenotype ID Measurement Cerebral region
AmygVol Volume Amygdala
CerebCtx Volume Cerebral cortex
CerebWM Volume Cerebral white matter
HippVol Volume Hippocampus
InfLatVent Volume Inferior lateral ventricle
LatVent Volume Lateral ventricle
EntCtx Thickness Entorhinal cortex
Fusiform Thickness Fusiform gyrus
InfParietal Thickness Inferior parietal gyrus
InfTemporal Thickness Inferior temporal gyrus
MidTemporal Thickness Niddle temporal gyrus
Parahipp Thickness Parahippocampal gyrus
PostCing Thickness Posterior cingulate
Postcentral Thickness Postcentral gyrus
Precentral Thickness Precentral gyurs
Precuneus Thickness Precuneus
SupFrontal Thickness Superior frontal gyrus
SupParietal Thickness Superior parietal gyurs
SupTemporal Thickness Superior temporal gyrus
Supramarg Thickness Supramarginal gyrus
TemporalPole Thickness Temporal pole
MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingu-

late, and rostral anterior cingulate
MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal, lateral

orbitofrontal, and medial orbitofrontal gyri and frontal pole
MeanLatTemp Mean thickness Inferior temporal, middle temporal, and superior temporal gyri
MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole and

transverse temporal pole
MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus, and

precuneus
MeanSensMotor Mean thickness Precentral and postcentral gyri
MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform,

parahippocampal, and lingual gyri, temporal pole and trans-
verse temporal pole

Table 3.2: Phenotype IDs and descriptions of 28 brain regions from a hemisphere, from
Table 2.1 of Szefer (2014). Baseline structural MRI measurements of a total of 56 (= 28 ×
2) regions from left and right hemispheres were estimated.

SPC (α=1) SPC (α=2) SPC (α=3) SPC (α=4) aSPC
P-value 0.6834 0.3234 0.0624 0.0080 0.0154

Table 3.3: Summary of the p-values of SPCs with α = 1, 2, 3, or 4, and the adaptive SPC
test.
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3.2 Contribution Plot for ADNI-1 Data

We initially standardize the genomic data of 493 SNPs and the neuroimaging data of 56
brain regions by subtracting column-wise means and dividing by column-wise SDs. The
adaptive SPC test (Xu et al., 2017) of association between the genetic and phenotypic
variables gives a p-value of 0.0154. The contribution plot may therefore be viewed as a
post hoc investigation of the significant overall association. To select the power α for the
contribution plot we calculate p-values for SPC tests with α = 1, 2, 3 and 4 and find a
minimum at α = 4; see Table 3.3.

Figure 3.1: Contribution plot of standardized genomic data of 493 SNPs and 56 brain
regions with α = 4. The horizontal line indicates the 95th percentile of the maximum
contributions under the permutation null distribution.

Figure 3.1 shows the contribution plot with α = 4. SNPs on the x-axis are sorted
by chromosome number and base-pair location. The spike above the permutation-based
threshold is a strong signal of a linear association that comes from the SNP rs16871157
within the NEDD9 gene on chromosome 6.

We can further decompose the contribution of rs16871157 by brain region. The results
are shown in Figure 3.2 where the y-axis represents the individual sample correlation to the
power of 8 between rs16871157 and the 56 brain regions. Comparing the two panels of the
figure, we can see that in general the correlations in the right hemisphere are stronger than
those in the left hemisphere, but that the patterns of associations are very similar. Overall,
it appears that rs16871157 is associated with measures of cortical thickness, particularly
in the temporal lobe of the brain (phenotype MeanTemp). The temporal lobe is involved
in processing sensory input and memory.

Violin plots of the estimated MeanTemp and MeanLatTemp thickness by rs16871157
genotypes are shown in Figure 3.3 for both the left and right hemisphere. In both hemi-
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spheres the distribution of adjusted cortical thickness in CN subjects with the variant allele
at rs16871157 is shifted towards negative values compared to the distribution for CN sub-
jects with two copies of the wild type allele, which is centred at zero. Thus, the presence of
the variant allele at rs16871157 is associated with reduced cortical thickness in CN subjects.

3.3 Discussion of rs16871157 and NEDD9

rs16871157 is in an intron of the NEDD9 gene and has no known function. Our analysis
suggests that presence of the variant allele at rs16871157 is associated with reduced cortical
thickness in CN subjects. Reduced cortical thickness is associated with symptom severity
in MCI and early AD patients, and has been observed in CN patients with amyloid binding
(Dickerson et al., 2008).

NEDD9 stands for Neural Precursor Cell Expressed, Developmentally Down-Regulated
9. Much of the research to date on NEDD9 has focussed on the association between
variation in the gene and different cancers (e.g., Izumchenko et al., 2009), but, as the name
suggests, the protein product of NEDD9 is also involved in brain development. For example
Vogel et al. (2009) found that the NEDD9 protein plays a role in neuronal differentiation.
In AD research, the SNP rs760678 in NEDD9 was found to be associated with late-onset
AD (Wang et al., 2012). However, we note that the phenotypes associated with rs760678
and rs16871157 are quite different (late-onset AD versus baseline cortical thickness) and
the two SNPs are in linkage equilibrium in Caucasian populations (estimated R2 < 0.01 in
Caucasian populations according to the online tool LDlink; Machiela and Chanock, 2015).
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Figure 3.2: Contributions of rs16871157 to brain regions in the left hemisphere (upper)
and the right hemisphere (lower). The horizontal line indicates the 95th percentile of the
maximum contributions under the permutation null distribution.
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Figure 3.3: Violin plots of the distribution of the mean cortical thickness changes in Mean-
Temp (upper) and MeanLatTemp (lower) for each genotype of rs16871157. The left and
right plots respectively represent the left and right hemispheres. The relative frequency of
the minor allele in the CN subjects was 11.45%. Violin plots for genotype = 2 were not
done because there is only one CN subject who is homozygous for the minor allele.
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Chapter 4

Contribution Plots for Simulated
Data Sets

In Chapter 2 we presented a simple example of the contribution plot using the ADNI-1
genetic data and simulated response variables. In this chapter, we display contribution
plots for six additional simulated data sets. Our goal is to investigate the behaviour of
the contribution plot under (i) different forms of dependence between explanatory variables
and between response variables, and (ii) different numbers of explanatory and response
variables.

4.1 Description of Simulation Configurations

This section describes the six different simulation settings. In all cases, data are simulated
from the multivariate multiple regression model Y= XB+E in which:

• Xn×p is a matrix of explanatory variables generated from MV N(0, Σp×p) where n =
100 is the sample size,

• Yn×q is a matrix of response variables,

• En×q is an error matrix generated from MV N(0, Σq×q), and

• Bp×q is a coefficient matrix.

The simulation parameters are p, q, Σp×p, Σq×q, and B. We first give a brief overview of the
different simulation settings, labelled setting 0, setting 1, ..., setting 5. In setting 0, data are
simulated under the null hypothesis of no association between X and Y; i.e., Bij = 0 for all i

and j. In settings 1 through 5 data are simulated under a sparse alternative, with B30,1 = 1,
B70,10 = 1 and all other Bij = 0. Simulation setting 1 specifies dependent explanatory
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variables and setting 2 specifies dependent response variables. Simulation setting 3 specifies
a large number of explanatory variables and setting 4 specifies a large number of response
variables. Finally, setting 5 incorporates the most challenging features of settings 1 through
4: dependence among both explanatory and response variables, and large numbers of both
explanatory and response variables. Further details about the simulation settings are as
follows.

Setting 0 : No association.

• n = 100, p = 130, and q = 25

• Σp×p = Ip×p

• Σq×q = Iq×q

• B = 0

Setting 1 : The 25th to 35th X variables are correlated.

• n = 100, p = 130, and q = 25

• Letting Σp×p(i, j) be the (i, j)th entry of the matrix,

Σp×p(i, j)=0.9 (i ̸= j, 25 ≤ i, j ≤ 35)

All diagonal entries of Σp×p are 1, and the other entries are 0.

• Σq×q = Iq×q

• B(30, 1) = B(70, 10) = 1

Setting 2 : The 1st to 15th Y variables are correlated.

• n = 100, p = 130, and q = 25

• Σp×p = Ip×p

• Σq×q(i, j)=0.9 (i ̸= j, 1 ≤ i, j ≤ 15)

All diagonal entries of Σq×q are 1, and the other entries are 0.

• B(30, 1) = B(70, 10) = 1

Setting 3 : There are 20 times more X variables.

• n = 100, p = 2600, and q = 25

17



• Σp×p = Ip×p

• Σq×q = Iq×q

• B(30, 1) = B(70, 10) = 1

Setting 4 : There are 20 times more Y variables.

• n = 100, p = 130, and q = 500

• Σp×p = Ip×p

• Σq×q = Iq×q

• B(30, 1) = B(70, 10) = 1

Setting 5 : All settings from 1 to 4 are adopted.

• n = 100, p = 2600, and q = 500

• Σp×p(i, j)=0.9 (i ̸= j, 25 ≤ i, j ≤ 35)

The other diagonal entries of Σp×p are 1, and the other entries are 0.

• Σq×q(i, j)=0.9 (i ̸= j, 1 ≤ i, j ≤ 15)

The other diagonal entries of Σq×q are 1, and the other entries are 0.

• B(30, 1) = B(70, 10) = 1

4.2 Analyses of Simulated Data Sets

Throughout, we standardize the explanatory variables and response variables and use X∗

and Y∗ to denote the standardized data matrices. The aSPC test is applied to each stan-
dardized data set and the p-value is reported. Contribution plots are of the contributions
Ĉ ∗

k (α) =
∑q

l=1 cor2α(X∗
.k, Y ∗

.l ) for explanatory variables k = 1, . . . , p. Results are presented
in figures with two panels; the top panel is for α = 1 (i.e., contributions to the standard RV
coefficient) and the bottom panel is for the α that minimizes the p-value of the test based
on RV (X∗, Y∗|α) (see Chapter 2 for details). For settings 3 and 5 where a large number
of explanatory variables are generated, plots are zoomed in a neighborhood of the causal
variables to make it easier to see the correlation signal. A significance threshold is added to
each plot to indicate the 95th percentile of the estimated distribution of maximum contri-
butions, where the maximum is over all markers across the region. The estimate is based
on an empirical null distribution from 5,000 data sets in which the rows of X are permuted.
Individual contributions that exceed the 95% threshold are considered noteworthy.
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4.3 Results

Setting 0 : None of X variables are associated with Y variables.

The p-value for the aSPC test on this simulated data set is 0.5055, correctly suggesting
no association. Figure 4.1 displays the contribution plots. The significance threshold for the
top panel is 0.5498 and the threshold for the bottom panel is 0.0059; both are outside the
range of the vertical axes on the plots. In both panels there are no contributions that meet
or exceed the significance thresholds. Thus, all contributions are considered true-negatives.

Figure 4.1: Simulation results of Setting 0 (B=0, p=130, q=25, Σp×p=Ip×p, Σq×q=Iq×q).
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Setting 1 : The 25th to 35th X variables are correlated.

The p-value for the aSPC test on this simulated data set is 0.0006, reflecting the true
association between the 30th explanatory variable, X30, and the first response variable, Y1,
and between the 70th explanatory variable, X70, and the 10th response variable, Y10. The
contribution plots are shown in Figure 4.2. The broad peak of signal toward the left end
of the horizontal axes of the plots reflects the truly-associated X30. In addition to a signal
at X30, other explanatory variables that are correlated with X30 have comparably-sized
contributions, as predicted by equation (2.10). In particular, from equation (2.10),

C ∗
i =

25∑
l=1

β∗
il +

∑
k′ ̸=i

β∗
k′lCor(X∗

i , X∗
k′)


2

= {Cor(X∗
i , X∗

30)}2,

because β∗
il = 0 for l = 1, . . . , 25 and β∗

k′l = 0 except when k′ = 30 and l = 1, in which
case β∗

30,1 = 1. The contributions of Xi that are correlated with X30 should be roughly
proportional to the squared correlation between Xi and X30 when α = 1. Indeed, Ĉ ∗

30(α =
1) = 0.7517, Ĉ ∗

28(α = 1) = 0.5619, and cor(X.30, X.28) = 0.8837, so that 0.5619 ≈ 0.5870(=
0.7517 × (0.8837)2). The narrow peak near the middle of the horizontal axes reflects the
truly-associated X70, which is not correlated with any of the other explanatory variables.
There are two take-away messages here: (i) The contribution plots can identify the true
signals, and (ii) correlation between explanatory variables can widen the peak signal.

Figure 4.2: Simulation results of Setting 1 (B30,1=B70,10=1, p=130, q=25, Σp×p ̸=Ip×p,
Σq×q=Iq×q). The horizontal line indicates the 95th percentile of the maximum contributions
under the permutation null distribution.
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Setting 2 : The 1st to 15th Y variables are correlated.

The p-value for the aSPC test on this simulated data set is 0.0008, reflecting the true
association between X30 and Y1 and between X70 and Y10. The contribution plots are shown
in Figure 4.3. For contributions to the RV coefficient (α = 1) the significance threshold is
1.7055. In the top panel we see that none of the contributions to the RV coefficient exceed
this threshold. The increased threshold in setting 2 compared to setting 1 is a consequence
of the increased variance in the contributions Ĉ ∗

k (α) =
∑q

l=1 cor2α(X∗
.k, Y ∗

.l ) resulting from
positive dependence between response variables. In the top panel, the peak signal is at X100,
which is not truly associated with any of the response variables. By contrast, in the bottom
panel the contributions of the two truly-associated variables do exceed the threshold.

The top panel in Figure 4.4 breaks down the signal at X100 into its squared sample-
correlation components, cor2(X∗

.100, Y ∗
.l ). X100 appears to be modestly associated with the

first 15 (correlated) Yi’s, even though the true population correlations between X100 and
these Yi’s are zero. What we have is essentially one modest sample correlation between
X100 and the first-15 Y variables repeated by chance due to the population correlation
in the error terms for the first-15 Y variables. The accumulation of these modest sample
correlations with X100 across the first-15 response variables leads to the relatively large
contribution for X100 in the top panel of Figure 4.3. The bottom panel of Figure 4.4
shows the squared sample correlations cor2(X∗

.30, Y ∗
.l ), where cor2(X∗

.30, Y ∗
.1) reflects a true

association. The main take-away message based on the result of setting 2 is that correlated
response variables lead to more variable contributions for explanatory variables that can
obscure the signal of truly-associated explanatory variables. However, we see that raising
the squared sample correlations to a power reduces the variance of the contributions and
may allow us to identify the truly-associated explanatory variables.
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Figure 4.3: Simulation results of Setting 2 (B30,1=B70,10=1, p=130, q=25, Σp×p=Ip×p,
Σq×q ̸=Iq×q). The horizontal line in the lower panel indicates the 95th percentile of the
maximum contributions under the permutation null distribution.

Figure 4.4: Squared correlations of X∗
.,100 and Y ∗

.l (upper) and X∗
.,30 and Y ∗

.l (lower).
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Setting 3 : 20 times more X variables.

The p-value for the aSPC test on this simulated data set is 0.0008, reflecting the true
association between X30 and Y1 and between X70 and Y10. The contribution plots are shown
in Figure 4.5. The increase in the number of explanatory variables has little impact on the
ability of the contribution plots to identify the source of the correlation signal.

Figure 4.5: Simulation results of Setting 3 (B30,1=B70,10=1, p=2600, q=25, Σp×p=Ip×p,
Σq×q=Iq×q). The horizontal line indicates the 95th percentile of the maximum contributions
under the permutation null distribution.
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Setting 4 : There are 20 times more Y variables.

The p-value for the aSPC test on this simulated data set is 0.0008, reflecting the true
association between X30 and Y1 and between X70 and Y10. The contribution plots shown in
Figure 4.6 are qualitatively similar to those for setting 2 (Figure 4.3), which involved corre-
lated response variables. Increasing the number of response variables increases the variance
of the contributions for the explanatory variables because the contributions are a sum of
a large number of squared sample correlations between the targeted explanatory variable
and responses. Thus, we have increased the variance of the contributions by adding more
response variables. In setting 2, we also increased the variance of the contributions, but by
adding correlated response variables. Here again, raising squared correlations to a power
reduces variance and allows us to identify the source of the significant aSPC test. The
inclusion of more response variables that are truly unassociated with any of the explana-
tory variables has no obvious effect on our ability to identify the truly-associated response
variables.

Figure 4.6: Simulation results of Setting 4 (B30,1=B70,10=1, p=130, q=500, Σp×p=Ip×p,
Σq×q=Iq×q). The horizontal line in the lower panel indicates the 95th percentile of the
maximum contributions under the permutation null distribution.
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Setting 5 : All settings from 1 to 4 are adopted.

The p-value for the aSPC test on this simulated data set is 0.0008. The contribution
plots, shown in Figure 4.7, illustrate all of the main features of the previous examples.
Correlation between a truly-associated explanatory variable and other explanatory vari-
ables widens the peak signal around X30. Correlation between response variables increases
the variance of the contributions, which can obscure true associations, but this increased
variance can be mitigated by raising squared correlations to higher powers.

Figure 4.7: Simulation results of Setting 5 (B30,1=B70,10=1, p=2600, q=500, Σp×p ̸=Ip×p,
Σq×q ̸=Iq×q). The horizontal line indicates the 95th percentile of the maximum contributions
under the permutation null distribution.
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4.3.1 Summary of Simulated Example Data Analyses

The contribution plot is intended as a post hoc investigation of an association between multi-
ple explanatory variables and multiple response variables, to identify particular explanatory
variables that may be responsible for the linear association with response variables. Our
simulated data examples illustrate two main points about the contribution plot. First, cor-
relation between explanatory variables can widen the peak of a signal, making it difficult to
pin-point the particular variable(s) driving an association. Second, increasing the variance
of the contributions, either through correlation between the responses or through increasing
the number of responses, can obscure the signal. However, raising squared correlations to a
power can counteract this increase in variance and may allow us to identify the explanatory
variables that are responsible for an association.
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Chapter 5

Conclusion

5.1 Project Summary

Measures of multivariate correlation are used in fields such as neurogenetics to find an
association between a multivariate phenotype and a vector of explanatory variables. After
an association is found, it may be of interest to identify the explanatory variables that
are primarily responsible for the signal. In this project we have developed such a post hoc
procedure and applied it to data from the ADNI-1 study. The contribution plot decomposes
the RV coefficient into contributions from each explanatory variable and displays them
graphically. A significance threshold for the maximum contribution under no association,
determined by a permutation procedure, may be added to the plot. Signals above the
threshold are considered noteworthy.

Chapter 2 introduced a population measure of correlation, ρV , and its estimator, the
RV coefficient. Contributions to the population correlation were defined as sums of squared
population covariances between individual explanatory variables (genotypes) and response
variables (phenotypes). Formulas for these contributions were derived under a multivariate
regression model and were seen to simplify if the response and explanatory variables are
standardized, in which case covariances become correlations. We then discussed the esti-
mation when the correlation signal is sparse and the idea of raising squared correlations
to a power α. A method for selecting α was described, motivated by the adaptive sum of
powered correlations (aSPC) test (Xu et al., 2017), and the approach was illustrated on a
simulated data set.

In Chapter 3, we applied the methods of Chapter 2 to the ADNI-1 data. The aSPC
test for correlation between SNP genotypes and phenotypes of brain regions of interest
was significant (p=0.0154). The contribution plot suggested a sparse signal, driven by a
single SNP, rs16871157, within the NEDD9 gene on chromosome 6. Further investigation
suggested that carriers of the variant allele at rs16871157 had a tendency toward reduced
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cortical thickness, whereas those with two copies of the wild type allele did not. Reduced
cortical thickness has been observed to be associated with symptom severity in MCI and
early AD patients.

Chapter 4 summarized the analyses of six data sets simulated under different scenarios.
The two main conclusions from this investigation were that (i) correlation between explana-
tory variables can widen the peak of a signal, making it difficult to pin-point the particular
variable(s) driving an association and (ii) correlation between response variables increases
the variance of signal. Raising squared correlations to a power was found to reduce the
variance of the contributions, allowing us to identify the explanatory variables responsible
for the simulated associations.

5.2 Limitations and Future Work

Though the sample of CN subjects analyzed in this project were an ethnically homogeneous
group of non-hispanic whites, it is still possible that the significant aSPC test was due to
confounding by population stratification. Following Szefer et al. (2017), we intend to adjust
both the phenotypes and genotypes for the genome-wide principal components and analyze
the adjusted data to account for confounding by hidden ancestry. Further investigation of
the role of rs16871157 in the gene product of NEDD9 is ongoing.

Finally, we note that the contribution plot can be extended to the case where study
subjects are differentially weighted. The sample for our study was a population sample of
CN subjects, and were all equally weighted. If we used the entire ADNI-1 sample instead,
which is enriched for MCI and AD subjects, we would need to correct for the sampling
bias by computing weighted covariances or correlations, where the weights are inversely
proportional to the probability that each subject is included in the sample (Horvitz and
Thompson, 1952). The contribution plot in terms of weighted covariance would be of the
same form. See Appendix A for details. Investigating the properties of the contribution
plot for unequally weighted subjects is an item for future work.
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Appendix A

Alternative RV Coefficient Forms

This appendix derives the connections between three different forms of the RV coefficient:
(i) in terms of inner-product matrices XXT and YYT , (ii) in terms of squared covariances,
as in equation (2.2) (repeated below as equation A.2), and (iii) in terms of Gower-centred
distance matrices (defined below). We start with simple derivations that illustrate the
connections between the forms of the RV coefficient, assuming all subjects are weighted
equally. We then extend these results to unequally weighted subjects, using more abstract
notation and results from linear algebra.

A.1 Equally-Weighted Subjects

Let X(n × p) and Y(n × q) denote data matrices in which each column has been centred by
its ordinary arithmetic mean. Let Xi· and Yi· be the ith rows of X and Y, respectively and
let xij and yij denote the (i, j)th elements of X and Y, respectively. Due to the column
centring,

∑n
i=1 xij = 0.

A.1.1 Inner Products and Squared Covariances

The inner-product form of the RV coefficient is

RV (X, Y) = tr(XXT YYT )√
tr(XXT XXT )tr(YYT YYT )

(A.1)

and the squared covariance form is
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RV (X, Y) =

p∑
k=1

q∑
l=1

cov2(X.k, Y.l)√√√√ p∑
k=1

p∑
l=1

cov2(X.k, X.l)
q∑

k=1

q∑
l=1

cov2(Y.k, Y.l)

, (A.2)

where X.k and Y.k are the kth columns of X and Y, respectively.

The key steps to show equality of the two forms are to (i) expand the traces in the inner-
product formula into sums, (ii) reorder summations, and (iii) multiply numerator and de-
nominator by an appropriate constant. To simplify writing traces as sums, let S = XXT =
ST and T = YYT = TT be the inner-product matrices with elements sij and tij , respec-
tively. We call these inner-product matrices because each matrix element can be shown to
be an inner product between rows of the data matrices: sij =

∑p
k=1 xikxjk = ⟨Xi·, Xj·⟩;

yij =
∑p

k=1 yikyjk = ⟨Yi·, Yj·⟩. From the basic properties of the trace operator we can de-
duce that for matrices A and B, tr(AB) =

∑
i

∑
j ajibij . Thus the numerator of equation

(A.1) is

tr(XXT YYT ) = tr(ST)

=
n∑

i=1

n∑
j=1

sjitij

=
n∑

i=1

n∑
j=1

{ p∑
k=1

xjkxik

} { q∑
l=1

yilyjl

}
.

The denominator may be expanded into sums analogously and we obtain

RV (X, Y) =
∑n

i=1
∑n

j=1
{∑p

k=1 xjkxik

} {∑q
l=1 yilyjl

}√∑n
i=1

∑n
j=1

{∑p
k=1 xjkxik

}2 ×
∑n

i=1
∑n

j=1
{∑q

k=1 yjkyik

}2
(A.3)

Now reorder the summations; e.g.,

n∑
i=1

n∑
j=1

{ p∑
k=1

xjkxik

} { q∑
l=1

yilyjl

}
=

p∑
k=1

q∑
l=1

{
n∑

i=1
xikyil

} 
n∑

j=1
xjkyjl

 =
p∑

k=1

q∑
l=1

{
n∑

i=1
xikyil

}2

.

Since the data matrices have been column centred, the last expression is equal to
∑p

k=1
∑q

l=1(n−
1)2cov2(X.k, Y.l). Similar rearrangements of the sums in the denominator give

n∑
i=1

n∑
j=1

{ p∑
k=1

xjkxik

}2

=
p∑

k=1

p∑
l=1

(n − 1)2cov2(X.k, X.l)
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and
n∑

i=1

n∑
j=1

{ q∑
k=1

yjkyik

}2

=
q∑

k=1

q∑
l=1

(n − 1)2cov2(Y.k, Y.l).

Inserting these reordered sums into equation (A.3) and cancelling the constant (n − 1)2

terms gives the covariance form of the RV coefficient in equation (A.2).

A.1.2 Inner Products and Gower-Centred Distances

Define the Gower-centred distance matrices as follows. Let dX
ij =

∑p
k=1(xik − xjk)2 be

the squared Euclidean distance between Xi· and Xj·, d̄X
i· = 1

n

∑n
j=1 dX

ij , d̄X
·j = 1

n

∑n
i=1 dX

ij

and d̄X
·· = 1

n2
∑n

i=1
∑n

j=1 dX
ij . Then the Gower-centred distance matrix for X, ∆X , is the

symmetric matrix with (i, j) element

δX
ij = dX

ij − d̄X
i· − d̄X

·j + d̄X
·· .

The Gower-centred distance matrix for the Y, ∆Y , is defined analogously.

The form of the RV coefficient in terms of Gower-centred distances is

RV (X, Y) = tr(∆X∆Y )√
tr(∆X∆X)tr(∆Y ∆Y )

,

which can be expanded to sums as

RV (X, Y) =
∑n

i=1
∑n

j=1 δX
ij δY

ij√∑n
i=1

∑n
j=1(δX

ij )2 ×
∑n

i=1
∑n

j=1(δY
ij )2

(A.4)

Equality of equations (A.3) and (A.4) follows from the equalities
∑p

k=1 xikxjk = −δX
ij /2,

shown as follows. Briefly, we start by writing

dX
ij =

p∑
k=1

(xik − xjk)2 =
p∑

k=1
x2

ik − 2
p∑

k=1
xikxjk +

p∑
k=1

x2
jk. (A.5)

From Section A.1.1 we recognize
∑p

k=1 xikxjk as the (i, j) element of XXT . Expressions for∑p
k=1 x2

ik and
∑p

k=1 x2
jk in terms of distances are derived as follows. By averaging equation

(A.5) over index j, we obtain

d̄X
i· = 1

n

n∑
j=1

{ p∑
k=1

x2
ik − 2

p∑
k=1

xikxjk +
p∑

k=1
x2

jk

}

=
p∑

k=1
x2

ik − 2
n

p∑
k=1

xik

n∑
j=1

xjk + 1
n

n∑
j=1

p∑
k=1

x2
jk

=
p∑

k=1
x2

ik + 1
n

n∑
j=1

p∑
k=1

x2
jk.
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Similarly, averaging over index i yields

d̄X
·j =

p∑
k=1

x2
jk + 1

n

p∑
i=1

p∑
k=1

x2
ik

and averaging over i and j yields

d̄X
·· = 2

n

n∑
j=1

p∑
k=1

x2
jk.

Rearranging these expressions gives
p∑

k=1
x2

ik = d̄X
i· − d̄X

·· /2 and
p∑

k=1
x2

jk = d̄X
·j − d̄X

·· /2.

Substituting into (A.5) and further rearranging leads to

p∑
k=1

xikxjk = −(dX
ij − d̄X

i· − d̄X
·j + d̄X

·· )/2 = −δX
ij /2, as desired.

A.2 Unequally-Weighted Subjects

We can generalize the RV coefficient for unequally weighted subjects with weights w1, . . . , wn

that sum to one. Such an approach might be used to correct for sampling bias if sampling
is stratified and some population subgroups are oversampled relative to others. Both X and
Y are now column centred by weighted averages, so that, for example,

∑n
i=1 wixik = 0 for

all k = 1, . . . , p.

Of the three expressions for the RV coefficient, the squared covariance form is the most
obvious for generalization. We assign weights to sample covariances and variances; e.g.,
cov(X.k, Y.l) =

∑n
i=1 wixikyil. The RV coefficient becomes

RV (X, Y) =

p∑
k=1

q∑
l=1

{
n∑

i=1
wixikyil

}2

√√√√ p∑
k=1

p∑
l=1

{
n∑

i=1
wixikxil

}2 q∑
k=1

q∑
l=1

{
n∑

i=1
wiyikyil

}2

An implementation of this formula in R is:

RV.cov = function(X,Y,wts){
S = cov.wt(cbind(X,Y),wt=wts)$cov
p = ncol(X); q = ncol(Y)
SXX = S[1:p,1:p]
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SYY = S[(p+1):(p+q),(p+1):(p+q)]
SXY = S[1:p,(p+1):(p+q)]
return(sum(SXY^2)/sqrt(sum(SXX^2) * sum(SYY^2)))

}

Replacing the equal weights over subjects with unequal weights in (A.3) and (A.4) gives

RV (X, Y) =
∑n

i=1
∑n

j=1 wiwj
{∑p

k=1 xjkxik

} {∑q
l=1 yilyjl

}√∑n
i=1

∑n
j=1 wiwj

{∑p
k=1 xjkxik

}2 ×
∑n

i=1
∑n

j=1 wiwj
{∑q

k=1 yjkyik

}2

and

RV (X, Y) =
∑n

i=1
∑n

j=1 wiwjδX
ij δY

ij√∑n
i=1

∑n
j=1 wiwj(δX

ij )2 ×
∑n

i=1
∑n

j=1 wiwj(δY
ij )2

,

respectively. One can use the calculations in Section A.1 as a template to verify the equality
of the above formulae.

The distance-based RV calculation can be implemented as

RV.dist = function(X,Y,wts){
D.X = as.matrix(dist(X))^2
D.Y = as.matrix(dist(Y))^2
n = nrow(X)
H = diag(rep(1,n)) - outer(rep(1,n),wts)
Delta.X = H %*% D.X %*% t(H)
Delta.Y = H %*% D.Y %*% t(H)
WW = outer(wts,wts) # matrix whose i,j element is w_i w_j
return(sum(WW*Delta.X*Delta.Y)/sqrt(sum(WW*Delta.X^2)*sum(WW*Delta.Y^2)))

}

A.2.1 Testing the Distance-Based Formula

For data sets with p and/or q larger than n, the distance-based formula may be faster to
compute. This is illustrated below.

# Test RV stat by distances on a small problem with p>n
n = 60; p = 2200; q = 54
set.seed(123)
wts = (1:n) ; wts = wts/sum(wts) # Make up some wts; must sum to 1
X = matrix(rnorm(n*p),nrow=n)
Y = matrix(rnorm(n*q),nrow=n)
system.time({val1 = RV.cov(X,Y,wts)})
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## user system elapsed
## 0.64 0.06 0.70

val1

## [1] 0.7252929

system.time({val2 = RV.dist(X,Y,wts)})

## user system elapsed
## 0.06 0.00 0.06

val2

## [1] 0.7252929
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Appendix B

Properties of the Multivariate
Correlation and RV Coefficients

B.1 Properties of ρV

Recall the definition of the multivariate correlation coefficient

ρV (X, Y ) =

p∑
k=1

q∑
l=1

Cov2(Xk, Yl)√√√√ p∑
k=1

p∑
l=1

Cov2(Xk, Xl)
q∑

k=1

q∑
l=1

Cov2(Yk, Yl)

, (B.1)

where Cov() denotes population covariance. ρV has the following properties (Josse and
Holmes, 2016):

1. 0 ≤ ρV (X, Y ) ≤ 1. Geometrically, if X and Y are mean-zero random vectors, then
ρV (X, Y ) is a cosine of the angle between them in an appropriately defined inner-
product space.

2. Given p = q = 1, ρV (X, Y ) = ρ2
X,Y , where ρX,Y is the population Pearson correlation

coefficient.

3. ρV (X, Y ) = 0 if and only if X and Y are uncorrelated.

4. ρV (X, X) = 1

5. ρV (X, Y ) = ρV (aX + c, bY + d) where a and b are non-zero constants, c and d are
constant vectors. In addition, ρV (X, Y ) is invariant to permutation of the elements
of X and Y .

6. if B is an orthonormal matrix, ρV (X, Y ) = ρV (X, Y B).
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B.2 Properties of RV

RV (X, Y) has the same properties as those listed above for ρV .

B.3 Dependence of the RV Coefficient on Sample Size and
Dimension

Despite the reasonable geometrical interpretation, it has been pointed out that the RV
coefficient has underlying problems triggered by two factors, sample size and dimensionality
of data. Consequently, the RV coefficient should not be used directly as a measure of linear
association between two data matrices.

B.3.1 Sensitivity to Sample Size

The main defect of the RV coefficient is its dependence on sample size. Such dependence is
evident in the approximation (Smilde et al., 2008):

RV (X, Y) ≈ pq√
{p2 + (n + 1)p}{q2 + (n + 1)q}

, (B.2)

and in the first moment of the RV coefficient under the the permutation distribution (Kazi-
Aoual et al., 1995):

E(RV ) =
√

βX × βY

n − 1
where βX = (tr(XT X))2

tr(XT X)2 . (B.3)

Figure B.1 visualizes the change of the RV coefficient by sample size while the total number
of variables remains 200. The left-hand plot shows the mean, 95% confidence interval,
and the RV coefficient approximation of equation (B.2) under the null hypothesis of no
association. As the sample size increases, the RV coefficient monotonically decreases. The
right-hand plot illustrates that the vertical location of the approximation line varies at
different proportions of the number of variables in X and Y.

B.3.2 Sensitivity to Dimensionality

The RV coefficient is also affected by increases in the dimensions p and q, holding the sample
size n fixed. The dependence on p and q is not obvious from (B.2) and (B.3). Adams (2016)
showed an upward trend in the RV coefficient as the total number of variables increases.
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Figure B.1: RV coefficient with different sample sizes.

Figure B.2: RV coefficient with the different numbers of variables.
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Figure B.3: RV coefficient change at different levels of the sample size and number of
variables in two simulation sets without (left) and with (right) a linear association.

This is illustrated by the left-hand plot of Figure B.2. The right-hand plot illustrates that
the rate of increase depends on how the dimensionality is increased (p and q together versus
p fixed and q increasing). At p+ q = 400, the RV cofficient is approximately 0.6 if p=q=200
(black line), whereas it is approximately 0.3 if p = 20 and q = 380 (red dashed line).

Additional notes on unexpected behaviour of the RV coefficient is as follows. First, we
can see from Figure B.3 that the RV coefficient can either increase or decrease in the
number of variables depending on whether there is or is not a linear association between
data matrices. The left-hand plot in Figure B.3 (no linear association) shows an increase
in RV for each sample size, while the right-hand plot shows a monotonic decrease in RV
for some sample sizes and a curvelinear relationship in the number of variables for other
sample sizes. Second, we note that the RV coefficient is not always affected by sample size
and variable number. In particular, the RV coefficient remains constant in the exceptional
case in which data matrices are artificially augmented by their duplications; for example,
RV (X, Y) = RV (rbind(X, ..., X), rbind(Y, ..., Y)) = RV (cbind(X, ..., X), cbind(Y, ..., Y)).

B.4 Hypothesis Test

Due to the dependence of the RV coefficient to both sample size and variable number, a
hypothesis testing is usually conducted as a valid inferential method to test the significance
of the association between two data matrices. As a test statistics, the standardized RV
coefficient
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ZRV = RV (X, Y) − E(RV (X, Y))√
var(RV (X, Y))

(B.4)

is computed for a hypothesis testing under the null H0 : ρV (X, Y ) = 0 versus the alternative
: Ha : ρV (X, Y ) > 0. E() denotes the mean of RV (X, Y).

B.4.1 Permutation Distribution

The exact distribution of ZRV is unknown, but approximations to the permutation distribu-
tion of ZRV have been developed. The permutation distribution under the null hypothesis
of no association is formulated by calculating all possible ZRV s under rearrangment of the
row labels of one of the data matrices. However, as the number of permutations increases
factorially, it is extremely time costly and often even not feasible computationally to take
into account all the possible cases. For example, if there are 30 units, then there are
30!=2.652529e+32 permutations and it is not feasible to enumerate them all.

B.4.2 Pearson Type III Distribution

The permutation distribution may be approximated by either Monte Carlo sampling, as
discussed in the main text of this project, or by a continuous distribution, as follows. The
approximating distribution is chosen from a parametric family to match the first three
moments of (B.4). Kazi-Aoual et al. (1995) showed that the first moment is (B.3) and the
second moment is

V (RV ) = 2αXαY

(n + 1)(n − 1)2(n − 2)

{
1 + n − 3

2n(n − 1)
ΓXΓY

}

where αX = (n − 1 − βX)

and ΓX = n − 1
(n − 3)(n − 1 − βX)

{
n(n + 1)Σi(XT X)2

ii

tr(XT X)2 − (n − 1)(βX + 2)
}

.

The third moment can be found in Appendix of Kazi-Aoual et al. (1995).

The parametric family used for the approximation is the Pearson type III distribution,
also known as a gamma distribution with the mean of 0 and the variance of 1. This
approximating family allows for better approximation than the Normal distribution (Josse
et al., 2008). The Pearson type III distribution is expressed by

f(z) = (2/γ)4/γ2

Γ(4/γ2)
{(2 + zγ)/γ}(4−γ2)/γ2

e−2(2+zγ)/γ2
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where γ is the skewness of ZRV . Correspondingly, ZRV + β ∼ Γ(α, β) where α = 4
γ2 and

β = 2
γ

. The distribution is always right-skewed with β > 0.

The p-value

P [RV (X, Y) ≤ RV ] = 1 −
∫ ZRV

−∞
f(z)dz

may be approximated using Simpson’s rule (Mielke Jr et al., 1981).

Approximation of the permutation distribution by the Pearson type III and Normal distri-
butions are illustrated in Figure B.4. We see that the shape of the sampling distribution
does not significantly depend on the sample size, but does depend on the number of vari-
ables. The left plot in the first row shows a histogram of the standardized RV coefficients
based on 5,000 resamples using the Monte Carlo method for X10×2 and Y10×2. The red line
and the blue line represent the standard Normal approximation and the Pearson type III
approximation respectively. The right-hand plot in the first row is for data matrices X10×10
and Y10×10. The left-hand plot in the second row is for X1000×2 and Y1000×2. Compar-
ing the left-hand plots in the both rows we see similar skewness despite the difference in
sample size. The bottom-left plot shows the Pearson type III approximation with different
dimensionalities of data matrices.
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Figure B.4: Pearson type III approximation and Normal approximation of the standardized
RV coefficient.
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Appendix C

Names of SNPs in analyzed genes

Chr Gene SNPs
1 CHRNB2 rs3811450

CR1 rs10127904, rs10779339, rs11117959, rs11118131, rs12734030, rs1408077, rs1571344,
rs2025935, rs3737002, rs3818361, rs4310446, rs650877, rs6691117, rs6701713,
rs677066

ECE1 rs1076669, rs10916958, rs10916959, rs11590928, rs12562197, rs12756690, rs12758257,
rs212515, rs212524, rs212525, rs212531, rs212534, rs212539, rs212540, rs212541,
rs213010, rs213022, rs213023, rs213025, rs213028, rs213037, rs213039, rs213045,
rs213052, rs213058, rs2282714, rs2282715, rs2745251, rs3026841, rs3026845,
rs3026868, rs3026883, rs3026886, rs3026913, rs4654916, rs4654918, rs471359, rs84853,
rs9426748

MTHFR rs1476413, rs1572151, rs17367504, rs1801131, rs1801133, rs2184226, rs3737964,
rs4846048, rs6541003, rs9651118

TF rs696619, rs762484, rs762485
2 BIN1 rs10194375, rs10200967, rs11678252, rs13426725, rs13430599, rs17014873, rs17014923,

rs2276575, rs6709337, rs749008, rs873270, rs880436
IL1A rs17561, rs3783526
IL1B rs1143634

6 NEDD9 rs1009667, rs1012503, rs1018374, rs10484451, rs10484453, rs10947009, rs10947021,
rs11757904, rs11964334, rs11967989, rs12209631, rs1465131, rs1475345, rs16871072,
rs16871157, rs16871166, rs16871236, rs16871247, rs16871253, rs17496723, rs1883235,
rs1883238, rs2018334, rs2025676, rs2025677, rs2064111, rs2064112, rs2072834,
rs2142739, rs2142741, rs2142742, rs2146342, rs2179179, rs2182335, rs2182337,
rs2327389, rs2327394, rs2950, rs3734404, rs3798729, rs3798731, rs4713379, rs4713432,
rs6457131, rs6457160, rs6457200, rs6905101, rs6908326, rs6912916, rs744970,
rs760680, rs7738900, rs7741863, rs7748486, rs7769173, rs7775262, rs9295823,
rs9295828, rs9296000, rs9348868, rs9368621, rs9380149, rs9393992, rs9393994,
rs943008, rs9468690, rs9468793, rs967473, rs9791189

PGBD1 rs1150724, rs13211507, rs1997660, rs2281043, rs2743554, rs9461448
TNF rs3093662

8 CLU rs11136000, rs9314349

45



9 DAPK1 rs10125534, rs1014306, rs1015477, rs10512186, rs10512188, rs1056719, rs10746816,
rs10780849, rs10868609, rs10868644, rs1105384, rs11141878, rs11141879, rs11141889,
rs11141899, rs11141914, rs11141915, rs11141918, rs11141937, rs12001404, rs12378686,
rs12685372, rs1316489, rs13283404, rs13288561, rs1329600, rs1421001, rs1473180,
rs1475524, rs1475525, rs1554, rs1558889, rs1571515, rs17399090, rs17477673,
rs17477827, rs1861828, rs1861832, rs1927976, rs1964911, rs1983973, rs2058882,
rs2111554, rs2274606, rs3028, rs3095747, rs3095748, rs3118846, rs3118853, rs3118860,
rs3118862, rs3124236, rs3124237, rs3124238, rs3128471, rs3128477, rs3128479,
rs3128495, rs3128519, rs3128521, rs3739784, rs3793647, rs4877367, rs4877368,
rs4878089, rs4878094, rs4878104, rs4878112, rs4878115, rs4878117, rs6560006,
rs7025760, rs7027958, rs7036598, rs7036781, rs7046290, rs721936, rs7855635,
rs913778, rs913782, rs943855, rs981292

IL33 rs10815388, rs10975516, rs12551256, rs1330383, rs16924159, rs17498196, rs1891385,
rs2066362, rs2210463, rs4740840, rs7025417, rs7033258, rs7037276, rs928413

10 CALHM1 rs11191692, rs2986018, rs729211
CH25H rs4933497

ENTPD7 rs1057490, rs11190245, rs3740078, rs6584307
SORCS1 rs1023024, rs10491052, rs10509823, rs10509825, rs10509826, rs10748924, rs10748932,

rs10786972, rs10786978, rs10786998, rs10786999, rs10787010, rs10787011, rs10884339,
rs10884374, rs10884381, rs10884387, rs10884399, rs10884402, rs10884409, rs11192997,
rs11192998, rs11193007, rs11193130, rs11193190, rs11193198, rs11814111, rs11814145,
rs11815967, rs12240854, rs12240947, rs12248379, rs12248564, rs1251753, rs1269918,
rs12781860, rs1336978, rs1415020, rs1556758, rs17195022, rs17209374, rs1885352,
rs1887635, rs1890457, rs2149196, rs2152676, rs2184796, rs2243454, rs2243581,
rs2245123, rs2418811, rs2418828, rs2418834, rs2486154, rs2756251, rs4918255,
rs4918274, rs4918282, rs596577, rs607437, rs610785, rs6584766, rs6584777, rs661319,
rs669061, rs685316, rs7068978, rs7073924, rs7074484, rs7078098, rs7079264,
rs7083707, rs7089127, rs7089234, rs7091546, rs7095427, rs7097380, rs717751,
rs719965, rs7897726, rs7897974, rs7903481, rs7910584, rs7920985, rs821925, rs821927,
rs821936, rs822094, rs822095, rs822097, rs822326, rs878183, rs911580, rs950809

TFAM rs1049432, rs11006130, rs11006132, rs11006133, rs12245545, rs2306604
11 GAB2 rs10501426, rs10899469, rs10899496, rs11237451, rs11601726, rs1318241, rs1893447,

rs1981405, rs2292572, rs2450129, rs2511175, rs4944196, rs4945261, rs6592772,
rs7107174, rs7112234, rs731600, rs7927923, rs7941639

PICALM rs10501602, rs10501604, rs10501608, rs10792820, rs10792821, rs10898427, rs11234495,
rs11234532, rs17745273, rs1941375, rs2077815, rs475639, rs510566, rs527162,
rs618679, rs642949, rs664629, rs666682, rs669556, rs677909, rs680119, rs713346,
rs7938033

SORL1 rs1010158, rs10502262, rs11218301, rs11218322, rs1133174, rs11600875, rs11601559,
rs11605969, rs1503415, rs1614735, rs1620003, rs1699102, rs1699105, rs1790213,
rs2070045, rs2276346, rs2298525, rs3781827, rs3781832, rs4420280, rs4631890,
rs4935774, rs4935775, rs4936632, rs4936637, rs556349, rs661057, rs666004, rs676759,
rs689021, rs7124060, rs726601, rs7945931

15 ADAM10 rs11854073, rs12439189, rs12441313, rs12906705, rs12908165, rs1427281, rs1427282,
rs2081703, rs2305421, rs28455654, rs383902, rs4238331, rs4275799, rs6494029,
rs653765, rs7174386, rs7182060, rs8027998, rs8043406

17 ACE rs4305, rs4309, rs4311, rs4329, rs4343, rs4353, rs4362
GRN rs3785817

THRA rs1568400, rs3744805, rs7502966
TNK1 rs2075760, rs6503018, rs7219773

19 APOE rs405509
EXOC3L2 rs10422797, rs346763
GAPDHS rs11882238, rs12151019, rs2239942

LDLR rs1433099, rs1799898, rs2228671, rs2569537, rs2569538, rs4508523, rs5930, rs6511720,
rs688

20 CST3 rs2424577
PRNP rs12625444, rs2756271, rs6084833, rs6107516
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Table C.1: Names of 493 SNPs in analyzed genes
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