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Abstract

Cops and Robbers is a well-known pursuit game played on a graph. There are two players,
one controls the cops and the other controls the robber, who take turns moving along edges
of the graph. The goal of the cops is to capture the robber, which is accomplished if a cop
occupies the same vertex as the robber. The main question is to determine the minimum
number of cops that can guarantee the robber’s capture on the given graph. This problem
has been widely studied for the case of undirected graphs, but very little attention has
been given to finding the cop number of digraphs. In the thesis we focus on this game
on Eulerian digraphs, viewed as an extension of the game on undirected graphs. Some
preliminary results, which were obtained for the special case of 4-regular quadrangulations
of the torus and the Klein bottle, show that there is a possibility to develop rich results in
this area.
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Chapter 1

Introduction

Cops and Robbers is one of the most well-known games on graphs which was first introduced
by Nowakowski and Winkler [28] and Quilliot [30]. There are several versions of this game
and the most famous one (and the one that we are interested in) is as follows.

There are two players, one of them will control the cops and the other one will control
the robber. The game is played on the vertices of a graph G. At the beginning of the
game each cop will choose a vertex as his initial position and then the robber will choose
his position. In each further step of the game, first each cop moves, where to move means
either staying at the same position or changing the position to a neighbor of its current
position. After that, the robber moves. Several cops can occupy the same position at any
time. This is a perfect information game, meaning that each player has full knowledge
about the playground (G) and all possible moves of himself and the other player.

The cops win the game if, for every strategy of the robber of selecting the initial position
and his moves, they catch the robber, meaning that after their move some cop has the same
position as the robber. Otherwise the robber wins the game.

The smallest number k of cops for which the cops win the game is called the cop number
of G and is denoted by c(G). Also when c(G) = k, then G is k-cop-win.

Let G be a finite graph with k cops moved to block the robber’s access to a set B of
vertices. We define the robber territory to be the set of vertices that the robber can reach
without begin captured by any of the cops blocking B [1, 31].

If we place a cop on each vertex of G, then the robber will be caught at the very
beginning of the game. Therefore c(G) ≤ n, where n is the number of vertices of G. In
a graph G, a set of vertices S is dominating if every vertex of G not in S is adjacent to
some vertex in S. The domination number of a graph G is the minimum cardinality of a
dominating set in G. Observe that c(G) is upper bounded by the domination number of
G; however, this bound is far from tight. For example, trees are 1-cop-win but can have
domination number that is linear in their order (this is the case for paths).
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Aigner and Fromme [1] first considered the class of graph with cop number greater than
one and got the following important and inspiring theorem.

Theorem 1.1 ([1]). If G is a planar graph, then c(G) ≤ 3.

In order to prove this theorem, they proved the following lemma which is one of the
main tools in studying the game of Cops and Robbers in graphs. We say that a set of cops
guards a subgraph S ⊆ G if (after some number of moves) whenever the robber enters S,
he will be caught by one of the cops.

Lemma 1.2 ([1]). If P is an isometric path in G, then one cop can guard P .

Meyniel’s conjecture is considered to be the main open problem in this area.

Conjecture 1.3 (Meyniel’s conjecture). If G is a graph of order n, then

c(G) = O(
√
n).

Note that there exist graphs with c(G) = Θ(
√
n). In order to see this, we will need the

following theorem.

Theorem 1.4 ([16]). Suppose the minimum degree of G is greater than d and its girth is
at least 8t− 3. Then

c(G) > dt.

When t = 1 (girth is 5), one cop cannot guard more than one neighbour of the robber’s
position. Therefore, we will need at least δ(G) cops to catch the robber.

Proposition 1.5. The cop number of the incidence graph of a projective plane on n vertices
is Θ(

√
n).

Proof. Note that the incidence graph of a projective plane of order k is a (k + 1)-regular
bipartite graph which has n = 2(k2 +k+1) vertices. And since the girth of this graph G is 6
(≥ 5), the cop number of G is at least the minimum degree, which is c(G) ≥ k+ 1. It is not
difficult to see that c.

√
n cops can actually catch the robber. Therefore c(G) = Θ(

√
n).

The best known result on general undirected graphs is due to Lu and Peng [25] (and
independently Scott and Sudakov [32]). They proved the following theorem by using random
positioning of cops.

Theorem 1.6. The cop number of any connected graph on n vertices is at most

n2−(1+o(1))
√

logn.

Note that this bound is still far from weak Meyniel’s Conjecture.
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Conjecture 1.7 (Weak Meyniel’s conjecture). There exist an ε > 0 such that every graph
G of order n, has

c(G) = O(n1−ε).

Random graphs have been considered in [6, 29] and Meyniel’s conjectured has been
proved for this class of graphs.

Characterization of k-cop-win graphs [13, 10] and digraphs [18], topological directions
[11], computational complexity of the game [22] and capture time [8] are some other direc-
tions that recently received lots of attentions.

1.1 Directed Graphs

The game of Cops and Robbers can be played on directed graphs in an analogous way with
the exception that we must move in the direction of oriented edges. As the first observation,
note that if the robber occupies a source (which has no cop on it), then the cops cannot
reach him and the robber wins the game. Therefore the number of sources of a digraph is
a lower bound for its cop number. In order to avoid these difficulties we will only consider
strongly connected digraphs.

Consider a digraph D obtained from a graph G by replacing each edge of G by a
symmetric pair of inversely directed arcs. Playing the game on D is equivalent to playing
the game on G. Note that D is Eulerian and hence playing the game on Eulerian digraphs
is a natural generalization. We will mainly focus on Eulerian digraphs in this thesis.

One of the first results on the cop number of directed graphs is due to Hamidoune [19].
He considered the game on Abelian Cayley digaphs. It is proved that if the generating set
has size d, then d + 1 cops are sufficient to catch the robber. This bound is often best
possible.

One of the main challenges in directed graphs is the fact that Lemma 1.2 cannot be
used. As mentioned before, this lemma is the base of several important results in undirected
graphs and most of those results cannot (at least not easy to) be generalized.

In [24], it was proved that c(D) = O(
√
n) if D is strongly connected and planar. To

prove this they have used the Separator Theorem of Lipton and Tarjan [23]. The same
result holds for directed graphs of bounded genus.

The best known result for strongly connected directed graphs uses the probabilistic
method and shows that [17]

c(D) = O

(
n(log logn)2

logn

)
.

Another natural question that someone might ask is the relation between the cop number
of a digraph and its underlying graph. It is easy to see that the cop number of a complete
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graph is one. In [34], tournaments (orientated version of a complete graph) have been
studied and they showed the following interesting result.

Theorem 1.8 ([34]). For each k ∈ N there exists a tournament G with c(G) > k.

The proof in [34] can be improved to k = loge n. Also it is easy to see that dlog2 ne
is an upper bound for the dominating number of a tournament. So, we have the following
corollary.

Corollary 1.9. There exists a tournament G that c(G) = Θ(logn).

On the other hand, consider a graph G with c(G) = k. The following result shows that
we can orient edges of G to obtain a digraph D in a way that c(D) ≤ 2.

Proposition 1.10. Orienting edges of a graph can arbitrarily decrease its cop number.

Proof. Consider a graph G with c(G) = k. Let v ∈ V (G) and orient all the edges away from
it (one can consider a breadth-first search ordering to do this). Observe that the obtained
digraph has no directed cycle and by starting one cop on v we can capture the robber. But
this orientation is not strongly connected.

There are some sinks in this digraph. Obtain D by adding a long directed path from
each of these sinks to v. The length of each of these long directed paths is sufficient to be
more than the diameter of G. Note that D is strongly connected.

First note that c(D) ≤ 2; place two cops on v and move one of them towards the robber.
If the robber does not use any of these long paths, he will be caught as in the previous case.
If he uses these long paths, since one of the cops is forcing him to move and there is another
cop on v, he is forced to go to v or get captured. This shows that c(D) ≤ 2.

Since we have added some new edges, we need to show that the underlying graph of D,
G′, has the same cop number, k. First note that c(G′) ≥ k because the robber can avoid
using edges of long paths and escape from k− 1 cops. Observe that using the edges of long
paths will not be beneficial to the cops (because they are too long and the robber will have
enough time to adjust his position). To see that c(G′) ≤ k note that if the robber does not
use any of newly added edges (edges of long paths), then k cops (by playing the winning
strategy on G) can win the game. Therefore in order to escape from k cops the robber needs
to use these long paths (going into one of these paths and coming back will be a waste of
time for the robber, so he might only use these paths to get to the other side). Since the
length of these paths are more than the diameter of G, any of the cops will have time to
get himself to the other side of the path before the robber. Therefore the robber cannot
get to the other side of these long paths and using these long paths will be helpful for him.
So, he k cops can eventually capture him.

Note that by using this technique (adding some directed long paths), we can show that
this result holds when we want D to be an Eulerian digraph as well.
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1.2 Goals and Outline

In Chapter 2, we will show that the game of cops and robbers on directed graphs can be
inspiring and challenging. We will analyze some natural orientations of 4-regular quadran-
gulations. Interestingly, in one of these cases, three cops cannot capture the robber. Results
of this chapter have been published in [21].

In Chapter 3, we will consider some more general orientations of 4-regular quadrangu-
lations. We show another striking fact that the cop number of arbitrary “straight-ahead
orientations” of 4-regular quadrangulations is bounded (the proved upper bound is 404).
This provides evidence that studying the game in (Eulerian) digraphs is of sufficient sig-
nificance. Results of this chapter is a joint work with Sebastian Gonzalez Hermosillo de la
Maza, Fiachra Knox, Bruce Reed and Bojan Mohar [14].

Graphs of bounded diameter is considered in Chapter 4. We will improve the upper
bound on the cop number of these graphs. This chapter is the result of a joint work with
Fiachra Knox and Bojan Mohar.

In Chapter 5, we will study the affect of some graph operations on the cop number of
graphs. The main result of this chapter shows that the cop number of graphs with bounded
degree is not bounded. Also we show that for every ε and large enough n, there are sub-cubic
graphs on n vertices with cop-number O(n1/2−ε).

In Chapter 6, smallest k-cop-win graphs is studied. We show that the order of smallest
k-cop-win graphs is monotone increasing. This confirms Bonato’s conjecture and the result
is published in [20]. Some properties of the smallest planar graph with cop number equal
to three is also determined.
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Chapter 2

Oriented Grid I

2.1 Introduction

The main goal of this Chapter is to show that the game of Cops and Robbers in directed
graphs (digraphs) can be as natural and as inspiring as the game on undirected graphs. It
is known (see [12]) that the cop number of any (connected) planar graph is at most 3. It
is also known that it is at most 4 for every graph embedded in the torus (and is currently
not known whether four cops are ever needed). More generally, the cop number is bounded
for graphs of bounded genus and, in fact, is bounded in any proper minor-closed family of
graphs (see [4]). A natural question arises:

Problem 2.1. Is the cop number of planar Eulerian digraphs bounded by a constant?

The same question can be asked for Eulerian digraphs of bounded genus (Here we restrict
our attention to Eulerian digraphs since the game on any undirected graph G is equivalent
to the game on the Eulerian digraph obtained from G by replacing each edge with a pair
of oppositely oriented arcs joining the same pair of vertices.). While the main tool (that of
“guarding a geodesic path", see [12]) used for undirected graphs is no longer available for
digraphs, there is some hope for Problem 2.1 to have positive answer. As we show in this
paper, the game can be analyzed on arbitrary 4-regular quadrangulations of the torus and
the Klein bottle, at least when some “regularity" about orientations of the edges is assumed.
In all treated cases, the cop number is at most 4 (see Theorems 2.3, 2.4, and 2.5) and four
cops are necessary for one kind of orientation (Theorem 2.5).

2.1.1 Quotients of vertex-transitive orientations of the integer grid

Consider a 4-regular quadrangulation of a surface. It follows by Euler’s formula that the
surface is either the torus or the Klein bottle and it can be shown by using the Gauss-
Bonnet Theorem that the SAW (straight-ahead walks) partition the edges into cycles, all
of which are noncontractible on the surface. These cycles can be split into two classes, each
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class consisting of pairwise disjoint cycles (we call them vertical cycles and horizontal cycles,
respectively) such that each vertical and each horizontal cycle intersect (possibly more than
once). By giving each of these cycles an orientation, we obtain an Eulerian digraph in
which, at each vertex, the two incoming edges and two outgoing edges are consecutive in
the local rotation around the vertex. This kind of orienting the edges is said to be of type
(1). We will also consider type (2) orientations, where at each vertex, the two incoming
and the two outgoing edges are opposite to each other in the local rotation. See Figure 2.1.
Under this orientation, each facial quadrangle is a directed 4-cycle.

(a) Vertex of type 1 (b) Vertex of type 2

Figure 2.1: Type 1 and type 2 orientation around a vertex.

The universal cover of a 4-regular quadrangulation is the 4-regular tessellation of the
plane with square faces (the integer grid), and every finite quotient of the integer grid is a
4-regular quadrangulation of the torus or the Klein bottle. An orientation of the edges of
such quadrangulations is said to be special if its lift to the universal cover gives a vertex-
transitive digraph. It is not hard to see that this means one of the cases shown in Figure
2.2. They are classified being of type (1) (subtypes (1a), (1b), (1c)) or (2), as indicated in
the figure.

Type (1a) Type (1b) Type (1c) Type (2)

Figure 2.2: Vertex-transitive orientations of the integer grid.

Four-regular quadrangulations of the torus admit a simple description. Each such quad-
rangulation is of the form Q(r, s, t), where r, s, t are arbitrary positive integers, 0 ≤ t < r,
and Q(r, s, t) is obtained from the (r+ 1)× (s+ 1) grid with underlying graph Pr+1 �Ps+1

(the cartesian product of paths on r + 1 and s + 1 vertices) by identifying the “leftmost"
path of length s with the “rightmost" one (to obtain a cylinder) and identifying the bottom
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r-cycle of this cylinder with the top one after rotating the top clockwise for t edges. More
precisely, the left-most bottom vertex of the path Pr+1 is identified with the tth vertex
in the top-side path; See Figure 2.3. In other words, the quadrangulation Q(r, s, t) is the
quotient of the integer grid Z�Z determined by the equivalence relation generated by all
pairs (x, y) ∼ (x + r, y) and (x, y) ∼ (x + t, y + s). See Figure 2.3. This classification can
be derived by considering appropriate fundamental polygon of the universal cover (which
is isomorphic to the tessellation of the plane with squares). In graph theory, this was ob-
served by Altschuler [2]; several later works do the same (e.g. [33]). Quadrangulations of
the Klein bottle are a bit more complicated (see [26], [27], [33], or [15]). While all toroidal
quadrangulations Q(r, s, t) are vertex-transitive maps, this is no longer true for the Klein
bottle. For our purpose it will suffice to know that the orientable double cover of such a
quadrangulation Q is of the form Q(r, s, t) and since it is a double cover it has |V (Q)| = 1

2rs.

h1

h2

h3

h4

h1

h2

h3

h4

v1 v2 v3 v4 v5 v6 v1

v1 v2 v3 v4v5 v6 v5

Figure 2.3: Toroidal quadrangulation Q(6, 4, 2) and its drawing on the torus. One of its
two vertical cycles is drawn with thick edges.

2.1.2 Some general strategies for Cops and Robbers

Here we describe two fundamental strategies that can be used on directed and undirected
graphs when playing the game of Cops and Robbers.

Playing the game on a quotient. We will consider the game of k cops and a
robber on Eulerian orientations of Q(r, s, t). As discussed above, this covers the torus
case. Any 4-regular Klein bottle quadrangulation has the orientable double cover which is
a quadrangulation on the torus. Consequently, the Klein bottle case can be dealt with by
the use of the following lemma. First note that a (di)graph Q̂ is a cover over a (di)graph
Q if there is a (di)graph homomorphism π : Q̂ → Q (called the covering projection) which
maps the edges incident with any vertex v bijectively onto the edges incident with π(v) in
Q.

Lemma 2.2. Suppose that a graph or digraph Q̂ is a cover over a (di)graph Q. If k cops
have winning strategy on Q̂, then they also win on Q, that is c(Q) ≤ c(Q̂).

Proof. The proof is easy: Just project the winning strategy from Q̂ to Q. The only thing
to observe is that the starting position of R in Q lifts to Q̂ in different ways, and we select
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any of these to invoke the cops’ strategy in Q̂, while from then on, every move of the robber
in Q has a unique lift into Q̂.

Forcing the robber to move. In some strategies for the cops, we need to make sure
that the robber does not stay at the same position. This is achieved as follows. We dedicate
one of the cops to force the robber to move. The cop, say C, will choose a shortest path from
p(C) to p(R). If the robber moves to a new position, then the cop moves along the path and
thus keeps the same distance from R; if R stays in the same position, then C moves along
the path closer to R. Since the distance decreases every time when R does not move, R will
stay at the same position at most d− 1 times (where d is the initial distance from p(C) to
p(R)) all together, or he will be caught. This scenario will be assumed whenever we take, as
part of the strategy, to have one cop dedicated to force the robber to move. Note that the
strategy works as long as one of the cops can reach the vertex p(R). As our digraphs will
always be connected and Eulerian (and hence strongly connected), this condition is clearly
satisfied.

In the next two sections we will analyze the game on orientations of type (1) and (2) as
depicted in Figure 2.2. In Section 2 we treat the orientations of type (1a), (1b) and (1c). It
is shown that the cop number is always at most 3 in these cases (see Theorems 2.3 and 2.4).
The orientation of type (2) is considered in Section 3. The main result here is Theorem 2.5
which shows an interesting dichotomy for this kind of orientation – the cop number is 3 or
4; the cop number 3 occurs if and only if either s ≤ 4 or s′ = gcd(r, t) ≤ 4 or when s and s′

are both odd.

2.2 Orientations of type (1)

2.2.1 Horizontal cycles all oriented from left to right

Suppose that all horizontal cycles of Q(r, s, t) are oriented from left to right, while the
vertical cycles have orientations in any direction (these can be arbitrary). In particular,
this covers both types (1a) and (1b).

We will call the horizontal cycles rows and the vertical cycles columns. Note that a
column intersects each row precisely r/ gcd(r, t) times and thus its length is rs/ gcd(r, t).
The minimum number of steps that is needed to catch the robber in a (di)graph G with k
cops when both players play optimally is called capture time (for k cops).

Claim. Three cops suffice to capture the robber and the capture time is O(r(s+ log r)).

Proof. First, by using two cops we will get one of the cops in the robber’s column. To
achieve this, two cops will start in the same column. One of the cops (C1) will stay in his
position and the other one (C2) will keep moving right. Since we are on a torus and the
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grid is finite, after at most O(r) moves either the robber will come to C1’s column or C2

will get to the robber’s column.
Note that, after one of the cops and the robber are in the same column, the cop can

always make the same move in the horizontal direction as the robber, so they will be in the
same column from now on.

Using the other two cops, we can place another cop in robber’s column. Note that
the column is oriented cyclically, and therefore there exists an oriented path (or the whole
cycle) from one of the cops to the other one which contains p(R). We will call this path the
interval of the robber. Let d (0 ≤ d ≤ rs) be the length of this interval. From now on:

1. If the robber moves horizontally, then the two cops will move horizontally as well.
The direction of the interval of the robber may change, but d will stay unchanged.

2. If the robber moves vertically, then the cop who is in front of the robber will stay and
the one who is behind the robber will move vertically as well, so the distance from
the robber and the cop who is in front of him will decrease and the distance from the
robber to the cop who in behind him stays the same, so the value of d will decrease.

3. And if the robber chooses to stay where he is, then the cop who is in front of him will
stay in his position and the one who is behind him will move forward and get closer
to the robber, again decreasing d.

Therefore, if the robber moves vertically d times, then he will be caught. So he can
make at most rs vertical moves all together.

In order to catch him in O(r log(rs)) additional “horizontal” steps, we bisect the interval
of the robber by using the third cop C3. We position him in the row that will bisect the
interval. After at most r horizontal steps, the robber will come to the position where p(C3)
will bisect robber’s original interval (Note that the interval may have shrunk because of
some vertical moves of the robber. If this makes it shrink to a half, then we no longer need
C3 for bisection and we proceed with him to bisect the new interval). The interval of the
robber will thus shrink by factor of 2. After reaching this, we can release one of the other
two cops and use him to continue with bisection of the interval. The total number of steps
is O(rs+ r log(rs)) = O(r(s+ log r)).

The analysis for lower bounds on the capture time would be more demanding since the
results may depend on the orientations of vertical cycles. The previous analysis gives the
following result.

Theorem 2.3. Suppose that Q is an orientation of Q(r, s, t) in which all horizontal cycles
are oriented from left to right (while each vertical cycle has any straight-ahead orientation).
Then c(Q) ≤ 3. Moreover, if Q(r, s, t) has no cycles of length at most four except for the
facial quadrangles, then c(Q) = 3.
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Proof. The first part follows from the last claim above. It remains to argue that two cops
do not suffice if Q(r, s, t) has no nonfacial short cycles. Note that this assumption implies
that r ≥ 5, and if s = 1, then r ≥ 8. In particular, Q has at least 8 vertices.

Suppose that we only have two cops, C1 and C2. The strategy of R is as follows. Initially,
R selects his position that is not occupied or attacked by any of the cops. Since |Q| > 6,
such a position exists. During the game, R stays where he is if he is not attacked by one
of the cops. Otherwise, suppose that p(R) is an out-neighbor of p(C1). The assumption on
short cycles implies that the two out-neighbors a, b of p(R) are not attacked by C1. Also, a
and b are diagonally opposite on a facial quadrangle of Q(r, s, t). If C2 would attack both
of them, then we would have a cycle of length at most four and different from the facial
quadrangle. Thus, R can move to a vertex which is not attacked by the cops. So, the two
cops cannot win the game.

2.2.2 Vertical cycles all oriented upward

This can be dealt with in exactly the same way as in the previous subsection. Note that
Q(r, s, t) is isomorphic to Q(r′, s′, t′), where

r′ = rs

gcd(r, t) and s′ = gcd(r, t).

This isomorphism interchanges horizontal and vertical cycles, so three cops can catch the
robber in O(r′(s′ + log r′)) steps.

2.2.3 Orientations of Type (1c)

In this case all edges in one row (or column) will have the same direction and the rows
(columns) alternate their direction towards right and left (up and down). See Figure 2.4.
In this figure, as well in the rest of them, we consider this to be a local picture in the
universal cover of Q(r, s, t), so that some of the vertices in the figure may actually represent
the same vertex in Q(r, s, t).

Figure 2.4: An orientation of type (1c).

Claim. If Q(r, s, t) has orientation of type (1c), then three cops can catch the robber.
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Proof. First note that if a cop can get himself to a position that is shown in Figure 2.5,
then the robber cannot move or he will be caught. We will call this position a trap for the
robber.

R

C

Figure 2.5: A trap, the robber cannot move anymore.

Consider Figure 2.6. If we have two cops in positions S1 and S3, respectively, then as
soon as R moves, he will be in a trap: if he moves up, then S1 will move left and the robber
will be in a trap; and if he moves left, then S3 will move up and there will be another trap.
Note that if our two cops are in S2 and S4, then the cops will do what the robber does
in the first move and after that the robber can not move or he will be in a trap (same as
above). We will call S1, S2, S3 and S4 the shadows of R, because they can do whatever R
does and can follow him and thus stay in the shadow of the current position of the robber.

R

S1S2

S3 S4

Figure 2.6: Shadows of R.

Now we define further shadows of R as follows. We start with S0 = {p(R)}. For
i = 0, 1, 2, . . . , let Si+1 be the vertices in the shadows of vertices in Si (not containing those
that are in some Sj for j ≤ i). Using the following strategy involving three cops, we can
place one of them in some Sk (k ≥ 0) at the beginning of the game. We say that we capture
the shadow of the robber.

By placing two cops, C1 and C2, as shown in Figure 2.7, they can cover the vertices
shown by empty circles by either moving onto them or having them in a trap. It is clear
that there is always at least one shadow vertex among these vertices. If the robber moves,
then the shadow vertices move accordingly. If one comes to the position of C1 or C2 or to
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one of its out-neighbors, then we can stay or make a move to come to a shadow vertex.
If this is not the case, then the shadow is among one of the two vertices that are trapped
by C1 or C2. Now we can use the third cop to force the robber to move (or to catch his
shadow) and thus we are able to get C1 or C2 into the shadow.

C1 C2

Figure 2.7: The starting position of cops to capture a shadow.

Now assume that one of the cops, say C1, is in a shadow sk ∈ Sk, for some k ≥ 0. We
are done if k = 0, so we may assume that k ≥ 1. One of the shadows of sk is in Sk−1, call
it sk−1. Without loss of generality we can assume that it is the vertex two squares to the
right and two squares above. As explained above, with possible exception of the first move,
whenever the robber moves down or left, then so moves its shadow sk−1 and C1 can get
sk−1 into a trap and therefore capture sk−1 in the next move. Otherwise C1 will move with
the robber to stay in Sk until another cop gets into Sk−1.

C1

C2

sk−1

Sm

L

sk

Figure 2.8: The line that connects sk to sk−1.

Consider the diagonal line L that connects sk to sk−1. (Note that this line may “wrap
around” the torus handle more than once, but we consider its lift in the universal cover,
where it looks like shown in the figures.) We want to get another cop on this line at an
even row distance. To do this, we move C1 as described above and at the same time we
get the two remaining cops in the same column and in two consequent rows such the upper
one can move left and the lower one can move right. Moving left and right (respectively),
one of these two cops will get on L and if the robber stays where he is, then both cops will
get it. It is clear that if both of them arrive onto the line L, then one of them will be at
even row distance from sk. If the cop, C2, gets on the line and he has even row distance
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from sk, then we are done and we will move into the next stage of the strategy that will
be presented below. So we may assume that C2 will get to the line at an odd row distance
from sk. Moreover, since the third cop has not arrived to L, the robber has been moving,
i.e., has not stayed at his position.

(1) (2) (3) (4)

Figure 2.9: Four types of vertices.

We have four types of vertices as indicated in Figure 2.9. Note that C2 has not arrived
to a vertex of type (1), because this would mean that the robber is at a vertex of type (3)
which can only move down or left. Recall that we already argued that the robber is forced
to move right or up, otherwise C1 will get to Sk−1. If C2 is at a vertex of type (3), then a
vertex on L at even row distance from sk is in his trap, so he can get himself into an even
row distance from sk. The arguments for type (2) and (4) are the same and it is clear that
the cop who is moving right can not get himself in a vertex of type (4). So without loss of
generality we may assume that the cop who is moving right gets to the line L at a vertex
of type (2). Let us consider the last moves of C2. There are two cases here which we shall
consider. Note that C2 is moving right, so he will alternate his position between vertices of
type (1) and (2).

Case 1. C2 is at a vertex of type (1) and moves right and will get himself on the line at
a vertex of type (2). In this case, before doing the last move, C2 was at distance 1 from L.

Case 2. C2 is at a vertex of type (1) and moves right and will get himself at a vertex
of type (2) which is not on L but the robber moves in a way that C2 will get on the line.
In this case before doing the last move, C2 was at distance 2 from L.

In each of these cases (when C2 is at distance 1 or 2 from L), C2 will stay at a vertex
of type (1). If the robber moves in a way that C2 gets on the line, then he is at a vertex of
type (1) and we are done. If the robber moves such that the distance between C2 and the
line becomes greater than 2, then C2 will start moving right again. Since the third cop is
moving left and becomes closer to the line, the robber can not stay where he is and can not
move away from C2 forever.

The above strategy will end up by catching L at an even row distance vertex from Sk

or in one of the two cases shown in Figure 2.10.
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C2

C3

v1

v2

C3

C2

v1

v2

(1) (2)

Figure 2.10: Two cases of ending the strategy.

Case 1. One of v1 or v2 is at even row distance from sk, so one of the cops can catch
the one which is at even distance from sk.

Case 2. If v1 is at even row distance from sk, then since the robber can not move down
or left and he is at a vertex of the same type as v1, he will move up or will stay where he
is. Now C3 can move left. If the robber does not move, then C3 will catch v1 as desired
and if the robber moves up, then by moving left one more time we will be in case 1. If v2 is
at even row distance from sk, then the robber is forced to move right. In this case, C2 can
move right. If the robber stays where he is, then C2 will catch v2 and we are done. And if
the robber moves right, then C2 will move right one more time and we will be in case 1.

Now we can assume that we are in the situation indicated in Figure 2.8. If the robber
moves down or left, then C1 will catch sk−1 and if he moves up or right, then C2 will get
to a shadow vertex in some Sm. Now we use the third cop to force the robber to move and
therefore after some step we will have a cop in Sk′ where k′ < k. Continuing this strategy,
we will get to S0 and catch the robber. Therefore three cops suffice to catch the robber.

Claim. If Q(r, s, t) has orientation of type (1c) and r, s > 4, then two cops cannot catch
the robber.

Proof. Note that r and s must be even, thus r ≥ 6 and s ≥ 6. In particular, |Q(r, s, t)| ≥ 36.
Suppose that two cops have a strategy to capture the robber. Note that each cop guards

precisely four vertices of one of the facial quadrangles: his position, two of its out-neighbors
and the fourth vertex on the quadrangle is in a trap. Let Q(C) be the corresponding
quadrangle guarded by the cop C. Also note that each of the two out neighbors of p(C)
puts another vertex in a trap. In effect, this means that C “guards” up to two additional
vertices; see Figure 2.11. We will denote these six vertices by Q̂(C).
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C

Figure 2.11: Vertices in Q̂(C) shown as white squares.

The strategy of the robber is the following. He selects its initial position at a vertex
that is not in Q̂(C1) ∪ Q̂(C2) and he keeps this condition throughout the game. The size
condition implies that |Q(r, s, t)| ≥ 36 and therefore R has such a position to start with.
Also the robber will not move unless he is at a vertex of Q̂(C1) ∪ Q̂(C2) after the move
of the cops. Now, let us look at the last moves of the game before the robber gets caught
or trapped. Note that by the definition of Q̂(C), the cop C cannot put the robber in a
trap if R was not in Q̂(C) in the previous move. Now assume that the cop C1 has moved
and placed the robber into Q̂(C1). Figure 2.12 indicates this situation. More precisely the
robber is in one of the empty square vertices. By symmetry we may assume that the robber
is in a position marked as R or R′. We want to show that the robber has a move to a vertex
outside of the set Q̂(C1) ∪ Q̂(C2). The out-neighbors of R and R′ are the same (a and b)
and therefore the argument for these two cases will be exactly the same.

R′

R

b

a

d

C2

C1

Figure 2.12: When the robber is in R or R′, he will have a move to escape.

Note that a and b cannot be in Q̂(C1) since r, s > 4. Since the robber cannot move to
b, the vertex b must be in Q̂(C2). Since R cannot be in a trap, C2 cannot be in positions
R,R′ and thus he is positioned at one of the four gray diamond vertices shown in Figure
2.12. In any of the four cases, Q̂(C2) cannot include a because of the size condition (the
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vertex denoted by d may be in Q̂(C2) and d can be the same as a only if s ≤ 4). Thus, the
second cop cannot threaten both out neighbors of the robber and therefore the robber can
move out of Q̂(C1) ∪ Q̂(C2).

The claims proved above imply the following.

Theorem 2.4. If Q is an orientation of Q(r, s, t) of type (1c), then c(Q) ≤ 3; if r, s > 4,
then c(Q) = 3.

2.3 Orientation of type (2)

In this section we will discuss the orientation of type (2) of 4-regular quadrangulations.
When arguing for the upper bound on the number of cops, we may assume (by Lemma 2.2)
that we have the torus grid Cn�Cn = Q(n, n, 0) where each face is an oriented cycle. See
Figure 2.13. Note that n must be even; and in Q(r, s, t), r and s − t must be even, since
a graph admitting type (2) orientation is bipartite. The bipartition is given by classifying
the vertices as vertices of type LR, whose out-neighbors are left and right form the vertex,
and those of type UD, whose out-neighbors are up and down on the same vertical cycle. See
Figure 2.14.

Figure 2.13: Each face is an oriented cycle.

We will prove that four cops can always capture the robber. In the first stage of the
game we will put two cops in the same row as the robber, both at even distance from the
robber. This can be done as described in the next claim by first bringing one cop to the
same row (and following the robber after that) and then using the remaining three cops to
bring the second cop into position.

(LR) (UD)

Figure 2.14: Two types of vertices.
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Claim. Three cops can achieve that one of them gets into the same row as R and is at
even distance from R in that row.

Proof. To do this, we start with two cops at the same vertex. One of them will move up
and the other one will move down. They can not move up (or down) at each step, they
need to repeat a pattern like up-left-up-right (or down-left-down-right). Note that there
are only two types of vertices, LR and UD. First we wait, if necessary, that p(R) is of the
same type as the position of C1 and C2. Of course we use a third cop to force the robber
to move. Once p(R) and p(C1) = p(C2) are of the same type, C1 and C2 move with the
robber to stay at the same type ever since.

The cops move as described. At each step of the robber in the vertical direction, one
of them keeps the vertical distance from the row of R, while the other one decreases his
vertical distance by 2. If the vertical distance becomes zero after the move of the cops, then
we have reached our goal. However, if it becomes zero after the move of R (in which case
R is at an LR-vertex), then the cop stays at his position. In the next move, R will have to
move in horizontal direction. The cop stays at his position again, and we have reached our
goal in this case as well.

Claim. Four cops can catch the robber.

Proof. By the previous claim, one of the cops can move into the same row as R at even
distance form him and can stay at such a position ever since. Doing the same strategy with
the remaining three cops we can get another cop in the same row at even distance from the
robber.

Now one of the cops (say C1) is (cyclically) at the right side of the robber, while C2 is
on the left side. We also have a third cop who will force the robber to move. If the robber
moves up or down, then since the cops are at an even distance from him, they are at the
same type of vertex and they can repeat his move and stay in the same row and keep their
distances. If the robber moves right or left, then C1 will move left and C2 will move right.
This will decrease the distance from the robber for one the cops by 2 and the other cop will
remain at the same distance. Since the robber can not avoid moving both left and right,
these two cops will capture him after at most 2n steps.

For a strategy of the robber we may assume that he always moves if he is being attacked
by one of the cops (even when both of its out-neighbors are also attacked by cops). We say
that this is a normal strategy.

Claim. Suppose that Q(r, s, t) has no cycles of length 2 and its only cycles of length
four are the facial cycles. If Q is a type (2) orientation of Q(r, s, t), then two cops cannot
win the game. If the robber uses a normal strategy, then three cops win the game if and
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only if they can achieve that after one of their moves, two cops are in the same row (or the
same column) as the robber and both are at the same type of vertices as the robber.

Proof. Achieving the described situation, the two cops can follow the robber and get closer
and closer to him until they catch the robber as described at the end of the proof of the
previous claim. Of course, we use the third cop to force the robber to move.

Suppose now that the cops have winning situation. Of course, the robber can prevent
being caught in the first move of the cops. Consider the situation after the move of the
cops one step before he was caught. One cop must have attacked him, otherwise, he could
have stayed at the same position and not being caught. We may assume the attacking cop
C is above him on the vertical cycle. Thus R is at a vertex of type LR and he can go either
left or right. The condition on cycles of length 4 shows that each of the out-neighbors is
either occupied with another cop or attacked from the other side by another cop. This,
in particular, implies that three cops are needed. Since R uses normal strategy, he moves
left or right, and now the two cops in his row can move so that both are at even distance
(possibly 0) from R.

Claim. Suppose that Q(r, s, t) has no cycles of length 2 and its only cycles of length
four are the facial cycles. Suppose that Q is a type (2) orientation of Q(r, s, t) and that
either s ≤ 4 or s′ = gcd(r, t) ≤ 4. Then c(Q) = 3.

Proof. By the previous claim, it suffices to show that three cops can achieve the situation
described in the claim. We may assume that s ≤ 4; if s′ ≤ 4, then we just switch the roles of
vertical and horizontal cycles since Q(r, s, t) is isomorphic to Q(r′, s′, t′) with s′ = gcd(r, t).
Denote the horizontal cycles by D1, . . . , Ds.

Now the cops take the following strategy. One cop is used to force the robber to move.
The remaining two position themselves onto D1 in vertices of type UD. If R ever enters D1,
then they wait for another move of the robber to achieve the situation from the previous
claim. So, the robber will try to escape this. However, if the robber enters D2 (the row
above D1), then the two cops can move up and achieve the winning situation. Similarly, if
the robber moves to the row Ds below. Thus the robber is confined to the remaining row
(only when s = 4). But eventually, when the third cop will force him to move, he will have
to leave that row. This proves that the cops win the game.

Let D be a row or a column. If a cop is in D or can enter D, then we say that the cop
is threatening D. We say that D is guarded if there are two cops, each of which threatens
D. If R ever enters a guarded row or column, then he will lose the game. Thus, we may
assume that R never enters a guarded column.

Claim. Suppose that Q is a type (2) orientation of Q(r, s, t) and that s ≥ 5 and
s′ = gcd(r, t) ≥ 5 are both odd. Then c(Q) = 3.
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Proof. By the previous claims it suffices to see that c(Q) ≤ 3. Below we will describe the
strategy of three cops that win the game.

Let D1, . . . , Ds be the consecutive rows. Note that for each i, Di is adjacent to Di−1 and
Di+1 (where indices are treated modulo s) and that rows Di−2, Di−1, Di, Di+1 and Di+2 are
all different. Similarly, we can enumerate the columns asQ1, . . . , Qs′ andQj−2, Qj−1, Qj , Qj+1

and Qj+2 (indices modulo s′) are all different.
It will be convenient to assume that in the current step of the game, p(R) ∈ V (Di) ∩

V (Qj). As the robber moves, the values of i and j will change (so i and j should be treated
as being dependent on the step of the game we are looking at).

The strategy of the cops is divided into four phases. In phase 1, three cops achieve that
one of them, say C1, is in the row Di (the row of the robber) at even distance from him, say
he is 2k steps to the left from R. After that, C1 keeps this property by making the same
moves as the robber. However, if the robber ever moves left, then C1 moves to the right
and therefore decreases the distance 2k by 2. When this happens, we start the strategy of
the second phase all over again (even if we were already in a further phase). Since this can
be done at most k times before the robber is caught, we may assume from now on that the
robber never moves to the left. We may also assume that the robber never moves into a
guarded row since then the cops can catch him.

The second phase of the strategy achieves in placing another cop, say C2, to a vertex
in Di−1 ∪ Di+1 of the same type as the position of the robber. To achieve this, cops C2

and C3 approach Di, one from above, one from below. Clearly, at some point, either one
of them enters the neighboring row, say C2 enters Di−1, or R changes his row by going up
or down and its new row Di is next to the row of C2 or C3 (and we may assume that C2

is in Di−1). Note that if R is at a vertex of type UD, so is C1 when the robber is to move
again, and thus Di−1 is guarded in any of the above cases how C2 came into Di−1. Now, if
the robber stays in the same row, then C2 can adjust his position to a vertex of the same
type in Di−1 and achieve the goal of phase 2. If the robber goes up, then C2 can enter Di−1

in next 2 steps again and thus the row distance from R and C3 will decrease. When the
robber would be able to enter the row of C3, that row will be guarded, so it is clear that the
goal of phase 2 can be achieved. So we will assume that C2 is in row Di−1 and at a vertex
of the same type as p(R) ever since (unless we have a clear situation to catch the robber).

The third phase of the strategy achieves in placing C2 to a vertex in Di−1 ∩ Qj of the
same type as the position of the robber. Since s′ is odd, such a vertex exists: go s′ steps to
the right from the robber and one step down. To achieve this, the cop C3 forces R to move.
Since R cannot move left, C2 moves to the left any time when R moves right. Thus, he will
eventually reach the desired position and will stay at that relative position henceforth.

In the fourth phase of the strategy, C3 will approach Di from above. Once he is in Di+1

or in a UD vertex in Di+2 the row Di+1 is guarded and the robber needs to stay in Di.
Then C3 repeats the following steps. If he is in Di+2, then he moves left to a UD position,
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and in the next move to Di+1. When he is in Di+1 in an LR position, he moves left to the
UD position. And when he is in Di+1 in a UD position, he goes up. At this moment, Di+1

is no longer guarded and R can enter it. Nevertheless, it is evident that in this way, C3 can
visit vertices in Di+1 that are t steps to the left of the vertex one row above the robber, for
every t = 0, 1, 2, . . . , r. In particular, he can get to the vertex that is two steps above and
one step to the right from C2. In that step, R must stay in Di but can possibly move to
the right. If R is at a vertex of type UD after his turn, then C2 is also at a UD vertex and
C3 is at an LR vertex. Now C3 can enter Qj by stepping to the left and we have two cops,
C2 and C3 in Qj at even distance from R in that column. On the other hand, if R is at a
vertex of type LR, then C3 is in type UD, and he can enter Di and the cops C1 and C3 will
be in the row Di at even distance from R.

Claim. Suppose that Q is a type (2) orientation of Q(r, s, t) and that s and s′ = gcd(r, t)
are both even and s > 5 and s′ > 5. Then c(Q) > 3.

Proof. Since s ≥ 5 and s′ ≥ 5, Q(r, s, t) has no cycles of length 2 and its only cycles of
length four are the facial cycles. By the previous claims, it suffices to prove that the robber
R can avoid that two of the three cops are in the same row or column as R and at even
distance from him. As in the proof above, we will denote by D1, . . . , Ds the consecutive
rows and by Q1, . . . , Qs′ the columns.

Note that if the robber moves to a row (column) containing a cop C, then R ends up at
a vertex of type LR (UD), and his next move will have to be horizontal (vertical). Thus,
C can adjust his position (either by moving or staying where he is) to be in the same row
(column) and have even distance from the robber after the next move of R (and ever since).
But if a cop moves into the robber’s row (column), then we have two cases. These cases
are depicted in Figure 2.15. In Case A, R is at a vertex of type UD and can move up or
down and escape. But in Case B, the cop will be in the same row as the robber and at even
distance from him, and he can maintain this condition ever since.

Case B. The robber cannot escape.

. . .

. . . C

R
. . .

. . . C

R

Case A. The robber can escape.

Figure 2.15: When a cop is about to move to the row of the robber.

Note that each cop is in precisely one row and in one column and that, additionally,
he threatens either two adjacent rows or two adjacent columns, but not both. This implies
that the number r of pairs (i,D) such that the cop Ci threatens the row D is either 3, 5,
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7 or 9. The same holds for the number c of pairs (i,D) such that the cop Ci threatens
the column D. Moreover, r + c = 12. This implies that the number of guarded rows is at
most four (It is easy to see that four rows can be guarded only when s = 5. For example,
this occurs when the cops are at vertices of type UD in rows D1, D2 and D4, in which case
all rows except D4 are guarded), and if there are four, then there is at most one guarded
column. If there are three guarded rows, then there are at most 2 guarded columns, etc. If
R ever enters a guarded row or column, then he will lose the game. Thus, the strategy of
the robber will use the following rules:

(1) Do not move to a vertex that is threatened by one of the cops and do not move into
a guarded row or column.

(2) Suppose that R is in a guarded row (column) after the move of cops. (It will be argued
that this situation occurs either for a row or a column but not for both at the same
time.) First, if R is at a vertex of type LR (UD), then move to a vertex of type UD
(LR). If a cop C is in the same row (column), and he threatens the column (row) to
the left/right (up/down) of R, then make the move away from the column (row) of
C. Second, if R is at a vertex of type UD (LR), then move out of the row (column)
unless rule (1) would need to be violated.

(3) The robber will not move unless he is attacked or rule (2) has to be followed.

Using the discussion above, it is easy to see that R can make its first move so that his
row and column will not be guarded and no cop will threaten him.

Rule (1) of the robber’s strategy is that he never moves to a guarded row or column.
Let us show that this is possible to obey as long as neither his row nor his column are
guarded. Suppose this is the case and that a cop C1 threatens him from the column Qj−1.
Then C1 is in the same row and R is at a vertex of type UD. Since C2 and C3 are not both
threatening the column Qj of the robber, he can move either up or down to a safe position.
Since C1 does not threaten rows Di−1 and Di+1, the two rows cannot be both guarded, and
the robber can safely move to one of the two vertices following the rules of the strategy.

As for the continuation of the game, suppose that in the current step of the game,
p(R) ∈ V (Di) ∩ V (Qj). (The value of i and j will therefore change depending on which
step of the game we are looking at.) Let us assume for a contradiction that two of the three
cops (say C1 and C2) placed themselves in the same row or column as the robber (without
loss of generality, say it is the row Di), that they are at even distance from him and that
such a situation occurred for the first time. Rule (1) of the robber’s strategy is that he
never moves to a guarded row or column. This means that the row became guarded after
the move of the cops, either at this stage or a few moves earlier and let us consider that
situation. At that time, R was in Di and at most one cop threatened the row. After the
cops moved, Di was guarded but at most one of the threatening cops was in the row, since
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otherwise the row would be guarded already the step before. Suppose that C2 was not yet
in the row Di, say he was in Di−1. In this case, the strategy of the robber is to move to
a vertex of type UD. We may also assume that C1 is not threatening the row Qj+1 to the
right of R. Then, we claim, R can move to the right (and also to the left if Qj−1 is not
threatened by C1). Since s and s′ are even, the cop C2 which threatens Di from his position
in Di−1 cannot be in the column Qj+1 and cannot threaten that column. Thus, Qj+1 is
not guarded and R can move to the right according to his strategy. So, R can move to an
unguarded column (Qj+1) to a vertex of type UD. As we assumed (for contradiction) at
the beginning of this discussion, R stayed in the guarded row Di until two cops are in this
row and at even distance from him. So, it must happen that the second cop stepped into
the row at some point (and possibly at the same time other cops stepped into Di). But at
that point, since R was in a guarded row, by rule (2) of the strategy, he has moved and is
already at a UD vertex and therefore he can escape from the row (see Figure 2.15, Case A)
by entering either Di−1 or Di+1. Note that at least one of them is not guarded. This is a
contradiction which completes the proof when s and s′ are even.

The above claims give us the exact value of the cop number on toroidal grids with type
(2) orientation. Let us just observe that Q(r, s, t) admits a type (2) orientation if and only
if s and s′ have the same parity. Now we have:

Theorem 2.5. Suppose that Q is a type (2) orientation of Q(r, s, t). Suppose that Q(r, s, t)
has no cycles of length 2 and its only cycles of length four are the facial cycles. If either
s ≤ 4 or s′ = gcd(r, t) ≤ 4 or s and s′ are both odd, then c(Q) = 3. Otherwise, c(Q) = 4.
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Chapter 3

Oriented Grid II

In this chapter we will consider some other orientations of 4-regular quadrangulations. First
we will need some definitions.

3.1 Streams, confluxes, and traps

The grid we are working on is Cn�Cn. For a vertex v = (x, y) ∈ Cn�Cn, the digraph
induced by {(x, z) : z ∈ Cn} will be called the row of v, and the subdigraph induced by
{(z, y) : z ∈ Cn} will be called the column of v. A line containing a vertex v is either
a row or a column of v. We say that two lines in Cn�Cn are consecutive if one of their
coordinates correspond to consecutive vertices in one of the factors of Cn�Cn. A set S of
consecutive lines oriented in the same direction will be called a stream and its width w(S)
is the number of lines in the stream. If S and S′ are streams such that S′ ⊆ S, we say that
S′ is a substream of S.

If S1 and S2 are disjoint streams and the set K = V (S1) ∩ V (S2) is not empty, we
will call K a conflux (see Figure 3.1). The vertices in a conflux K with the minimum
number of neighbours in K are called corners. Notice that the set of corners of a conflux
K = S1 ∩ S2 is never empty, and if V (K) 6= V (Cn�Cn), then it can have four vertices (if
w(S1), w(S2) ≥ 2), two vertices (w(Si) = 1 and w(Sj) ≥ 2 with {i, j} = {1, 2}) or one
vertex (w(S1) = w(S2) = 1).

If K has four corners, then a corner is main if it has an odd number of outneighbours
in K and secondary otherwise (see Figure 3.2). However, if K has one or two corners, they
will all be referred to as main.

We will always assume that the robber is forced to move from its current position. We
can make sure this happens by chasing him with a cop. For Lemma 3.1 and Lemma 3.2, we
will assume that one cop is chasing the robber so the robber is forced to move. We will use
p(R) to denote the current position of the robber, and p(Ci) for the position of the cop Ci.
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Figure 3.1: The black vertices form a conflux. The vertices inside the dashed rectangle form
a maximal conflux.

Lemma 3.1. Let K be a conflux with one cop on each main corner. If p(R) ∈ V (K) and
N−(p(R)) * V (K), then the robber will be captured or his movements will be restricted to
a stream.

Proof. Notice that when the robber enters K using a column (row), there will be a cop on
the same row (column) as he is. Let us call this cop C1 and the other one C2. We may
assume the robber enters K from above due to the symmetry of the argument. In order to
leave K, the robber must step on the column where C1 is or leave through the bottom.

The strategy for C1 and C2 will be the following: If the robber moves towards C1’s
column, then C1 stays where he is and C2 copies the robber’s move. If the robber moves
down, then C1 copies the robber’s move, and C2 stays in the same place if it is in the same
column but different row as the robber, copies the robber’s move if he is in the same row,
and moves towards the robber’s column otherwise.

By following this strategy, the robber and C1 are always on the same row, so the robber
cannot leave K crossing C1’s column or he will be captured. This means that the robber
can move horizontally at most w(S) times, where S is the stream formed by the columns
containing vertices of K. Therefore, the robber’s movements are restricted to S.

Notice that in the case where the streams that form K have the same width, two cops
guarantee the capture of the robber. However, once the robber’s movements have been
restricted to a stream, one extra cop will guarantee the capture (see Chapter 2). Note that
for Lemma 3.1 to work, we need to set up the trap before the robber enters it. It is possible
to set a slightly different trap that works regardless of where the robber’s in-neighbors are,
but we need one more cop to do this.

25



Lemma 3.2. Let K be a conflux with one cop on each main corner and one cop in the
secondary corner of K without out-neighbors in K if such corner exists. If the robber is in
K, then he will be captured or his movements will be restricted to a stream.

Proof. Let S1 and S2 be the streams such that S1∩S2 = K. If we have that min{w(S1), w(S2)} =
1, then all the corners of K are main and by Lemma 3.1 we are done. Ifmin{w(S1), w(S2)} >
1 and v is the secondary corner of K with a cop, take S′1 and S′2 the minimal substreams of
S1 and S2 respectively that contain the vertex v. After at most max{w(S1), w(S2)} moves
the robber will be on a vertex of K1 = V (S1) ∩ V (S′2) or K2 = V (S′1) ∩ V (S2). Since the
main corners of both K1 and K2 are covered by cops, then an application of Lemma 3.1
gives us the desired result.

Figure 3.2: The black vertices indicate the main corners of K, and the gray ones are the
secondary corners.

Given a grid G(V,A), we can define the conflux digraph of G, which we will denote
by DG, as the digraph whose vertex V (DG) consists of all maximal confluxes of G, and
where (K1,K2) is an edge of DG whenever there exist vertices u ∈ K1 and v ∈ K2 such that
(u, v) ∈ A.

There is a natural correspondence between Cn�Cn and the elements of Zn × Zn. This
correspondence allows us to represent each move of the robber or a cop by the addition of
a vector in {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)} to its current position.

Given a vertex v ∈ Zn × Zn with N+(v) = {u,w}, we can define the sets

SD(v) = {x ∈ Zn × Zn : x− v = r(u+ w − 2v), for some r ∈ Z},

MD(v) = {x ∈ Zn × Zn : x− v = r(u− w), for some r ∈ Z}.
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Observation 3.3. For any vertex v and any line L in G, SD(v)∩L 6= ∅ andMD(v)∩L 6=
∅.

The sets SD(v) andMD(v) will be called the secondary diagonal and main diagonal of
v, respectively. Geometrically speaking, if we think of the arcs of the digraph as vectors,
SD(v) is the set of all the vertices of G in the diagonal line through v defined by the sum
of the arcs leaving v, and MD(v) is the set of vertices in the line orthogonal to that one.
Notice that for every vertex v ∈ V with N+(v) = {u,w}, we have that u + w − 2v is an
element of {1,−1}2. This value will be called the type of the vertex, τ(v), and two vertices
will be of opposite types if their types are additive inverses in Z2. Elements of {1,−1}2 will
be refered to as types. Notice that all the vertices in a conflux K have the same type, so we
can define τ(K) = τ(v) where v ∈ K.

Let v be a vertex in G and K the maximal conflux containing v. We define the horizontal
escape distance of v, HE(v) as the length of the shortest directed path starting at v and
ending at a vertex outside of K using only horizontal arcs (adding (±1, 0)). Analogously,
we define the vertical escape distance v and denote it with VE(v). The escape distance of
v is E(v) = min{HE(v),VE(v)}.

Lemma 3.4. Let K1,K2,K3 and K4 be confluxes of G such that N+(K1) ∪ N+(K3) ⊆
K2 ∪K4. If there are cops in the main corners of K2 and K4, and the robber is in K1 ∪K3,
then the robber will be captured or its movements will be restricted to a stream.

Proof. It is easy to see that if the robber is in K1 ∪ K3 and is forced to move, then he will
enter K2 ∪ K4. Since the main corners of K2 and K4 are covered, the result follows from
Lemma 3.1.

3.2 The k-regularly oriented grid

We say that a grid G = Cn�Cn is k-regularly oriented if w(S) = k for every maximal stream
S in G. The cases where k ∈ {1, n} have been covered in Chapter 2, so in this section we
will assume that G is a k-regularly oriented grid with k < n. Let v and w be vertices in G.
We say w is a main shadow of v if:

i) w ∈MD(v).

ii) τ(v) = τ(w).

iii) VE(v) = HE(w).

We say that w is a secondary shadow of v if:

i) w ∈ SD(v).
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ii) τ(v) = −τ(w).

iii) VE(v) = HE(w).

Notice that we get equivalent definitions by changing condition iii for

iii’) HE(v) = VE(w).

to get an equivalent definition.
In the case where p(R) = v, we will call w a main (or secondary) shadow of the robber.
We say a vertex w is a diagonal shadow of a vertex v if w is a secondary shadow of v or

a main shadow of v. Again, if p(R) = v we will use the term diagonal shadow of the robber.
The following result states that if a cop is in a diagonal shadow of the robber and the robber
moves, there is always a move that the cop can make that keeps him in a diagonal shadow
of the robber. Notice that if the type of the vertex the robber is in changes when he moves,
the diagonal that the cop must be in will change from secondary to main, or vice versa.

Lemma 3.5. Let v, u, x ∈ V (G) be vertices such that N+(v) = {u,w} and take d = u− v.

• If x is a secondary shadow of v, then y = x+τ(x)+d is a shadow of u and y ∈ N+(x).

• If x is a main shadow of v, then y = x+ τ(x)− d is a shadow of u and y ∈ N+(x).

Proof. Notice that τ(u) = τ(v) if and only if τ(y) = τ(x) because of condition iii in the
definitions of diagonal shadows, and that y − x is orthogonal to d.

If x ∈ SD(v), there is an integer r such that x− v = r(u+ w − 2v). If τ(u) = τ(v), by
substituting x = y − τ(x)− d and v = u− d we get

x− v = r(u+ w − 2v)

(y − τ(x)− d)− (u− d) = r(u+ w − 2(u− d))

y − u = r(u+ d+ w + d− 2u) + τ(x)

y − u = (r − 1) [(u+ d) + (w + d)− 2u)] ,

where the last equality follows from condition ii in the definition of secondary shadow.
If τ(u) 6= τ(v), notice that τ(v) + τ(u) = 2d and τ(x) + τ(y) = 2(τ(x) + d), from where

τ(u) = τ(y). Also, u− w = ±τ(u), so

x− v = r(u+ w − 2v)

(y − τ(x)− d)− (u− d) = rτ(v)

y − u = rτ(v) + τ(x)

y − u = (r − 1)τ(v),

y − u = r′(u− w),
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where r′ = r − 1 if u− w = τ(u) and −r′ = r − 1 if u− w = τ(u).
In both cases, the escape distances equalities are given by the fact that we are in a

k-regularly oriented grid and the orthogonality of y− x and d. This shows y is a shadow of
u.

If x ∈MD(v), there is an integer r such that x− v = r(u+w− 2v). If τ(u) = τ(v), by
substituting x = y − τ(x) + d and v = u− d we get

x− v = r(u− w)

(y − τ(x) + d)− (u− d) = r [(u+ d)− (w + d)]

y − u = r [(u+ d)− (w + d)] + τ(x)− 2d

y − u = (r − 1) [(u+ d) + (w + d)] ,

where τ(x)− 2d = (u− w).
If τ(u) 6= τ(v), we also get that τ(v) + τ(u) = 2d and τ(x) + τ(y) = 2(τ(x) + d), from

where τ(u) = −τ(y). Again, u− w = ±τ(u), so

x− v = r(u− w)

(y − τ(x)− d)− (u− d) = rτ(v)

y − u = rτ(v) + τ(x)

y − u = (r + 1)τ(v),

y − u = r′(u− w).

Condition iii in definitions of shadows is also given by the fact that we are in a k-
regularly oriented grid and the orthogonality of y − x and d. This shows y is a shadow of
u.

This next lemma will give us another way of restricting the robber’s moves in the case
of a k-regularly oriented grid.

Lemma 3.6. Let u, v, s, t, x, y be vertices such that u 6= v, v is a diagonal shadow of u,
s ∈ N+(u), t ∈ N+(v) and is a shadow of s, x is the intersection of the row of u and the
column of v, and y is the intersection of the row of s and the column of t. If d ∈ {1,−1}2

is orthogonal to v − u, then there exists an integer r such that x = y + rd.

Proof. Let A = {(1, 0), (−1, 0)} and B = {(0, 1), (0,−1)}. If u − s ∈ A, then v − t ∈ B,
and therefore x = y and k = 0. If u− s ∈ B, then v − t ∈ A. In this case, we can see that
y = x+ (u− s) + (v − t). Since (u− s) + (v − t) ∈ {1,−1}2, we get that there is an integer
r such that x = y + rd.

The geometric interpretation of Lemma 3.6 is key: If a cop moves in such a way that he
remains in a diagonal shadow of the robber, then there exists a set of vertices that touches

29



Figure 3.3: The robber (white) is not able to cross the mirror line (dashed line) or he will
be caught by the cop (black).

every line in G (Observation 3.3) that the robber cannot step on (and therefore, cross)
without being captured. This set corresponds to the vertices in the orthogonal bisector of
the “line segment” from u to v. We will refer to this line as the mirror of the corresponding
shadow of the robber. Two mirrors ` and `′ are parallel if the types of their vertices are
parallel.

Recall that we are working on a k-regularly oriented grid. Given two parallel mirror
lines ` and `′, and d a type orthogonal to the type of a vertex in `, the distance between `
and `′ , denoted by A(`, `′), is the minimum positive integer m such that ` = `′ + mkd or
` = `′ −mkd. Notice that A(`, `′) ≥ 2 for any two different parallel mirrors, ` and `′.

Let v be a vertex of G, s ∈ N and d a type orthogonal to τ(v). We define

MDs(v, d) = {x ∈ V (G) : x− s(τ(v) + d)
2 ∈MD(v)}.

Because of Observation 3.3, we know that every vertex u ∈ G is inMDr(v, d) for some r ∈ N.
Given two vertices of opposite types, u and v, the diagonal distance, which we will denote
by d(u, v), between u and v is the minimum t ∈ N such that v ∈ MDt(u, d) ∪MDt(u,−d)
(or equivalently, u ∈MDt(v, d)∪MDt(v,−d)). Notice that if v ∈MDt(u, d) if and only if
u ∈MDt(v,−d). We define

B(u, v) =
t⋃
i=0
MDi(u, d),

where d has been chosen so that v ∈ MDt(u, d). Notice that if K and K′ are confluxes of
G such that τ(K) = −τ(K′), then B(K,K′) and d(K,K′) are defined in DG.
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Observation 3.7. If K and K′ are maximal confluxes of a k-regularly oriented grid G, and
τ(K) = −τ(K′), then we have d(K,K′) < n

k and d(K,K′) ∈ 2Z.

For the rest of the section, all the confluxes will be assumed to be maximal. For the
Lemmas 3.8, 3.9, 3.10 and 3.11, Ki will denote a conflux whose main corners are covered
by cops.

Lemma 3.8. Suppose τ(K1) = −τ(K2) and that the robber is in a conflux in V (DG) −
B(K1,K2) whose type is orthogonal to τ(K1). If the robber enters B(K1,K2), then the cops
can capture a main shadow of the robber.

Proof. If the robber is in V (DG)−B(K1,K2), in order to enter B(K1,K2) the robber must
enter a conflux K such that K ∈ MD(K1) ∪MD(K2). In either case, a main shadow of
the robber will enter K1 ∪ K2. Since the main corners of both K1 and K2 are covered by
cops, we capture a main shadow of the robber by applying Lemma 3.1 to the corresponding
shadow.

Lemma 3.9. Let d be a type orthogonal to τ(K1), and suppose that K2 satisfies τ(K1) =
−τ(K2) and d(K1,K2) = 2. If the robber is in B(K1,K2), then we can force him to move to
a conflux in B(K1,K2)c.

Proof. We can assume the robber is in a vertex of type d or −d. If the robber is in B(K1,K2),
then by forcing him to move he must enter a conflux K whose type is parallel to τ(K1). If
τ(K) = τ(K1), then K ∈ MD(K2), and so by forcing him to move he will exit B(K1,K2).
If τ(K) = −τ(K1), then we have K ∈MD(K1), so he will exit B(K1,K2) if we force him to
move.

Lemma 3.10. Let K1,K2 and d be the same as in the hypothesis of Lemma 3.9 and take
K3 such that τ(K3) = τ(K1) and K3 = K2 + τ(K1) + r′d in DG for some r′ ∈ Z.

If the robber is in B(K1,K3)−B(K1,K2), then we can force him to move to a vertex in
B(K1,K3)c or we capture a main shadow.

Proof. Again, we can assume that the robber is in a vertex of type d or −d. By forcing him
to move he will enter a conflux K of type parallel to τ(K1). If K ∈MD(K3), the robber is
forced to move to B(K1,K3)c. Otherwise, an Lemma 3.8 guarantees the capture of a main
shadow of the robber.

Lemma 3.11. Let K1,K2 be such that d(K1,K2) = |V (G)|
k −2. If the robber is in B(K1,K2)c,

then we will capture a main shadow.

Proof. This follows directly from the fact that by forcing the robber to move he must enter
a conflux whose type is parallel to τ(K1), all of which are contained in B(K1,K2).
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All the previous results in this section either assume that we already captured a diagonal
shadow of the robber or include some assumption about the current position of the robber
in their statements. The following will be the first result that makes no such assumptions.

Lemma 3.12. Seven cops can capture a main diagonal shadow of the robber in G.

Proof. First, one of the cops will be chasing the robber in order to force him to move, so
we only need to show that six cops can capture the robber if he is forced to move. Let K1

and K2 be confluxes whose main corners are covered by cops, such that d(K1,K2) ≥ 2 and
the robber is in B(K1,K2)c (the existence of such confluxes is given by Lemma 3.9 and the
fact that 2k < |V (G)|). The proof will be by induction on t = |V (G)|

k − 1
2d(K1,K2).

The case t = 1 is solved by applying Lemma 3.11, so we can assume t = m ≥ 2. Let K3

be a conflux such that d(K1,K3) = d(K1,K2) + 2 and cover its main corners with two cops.
Notice that an application of Lemma 3.10 guarantees that either we capture a diagonal
shadow of the robber (in which case we are done) or that the robber is in B(K1,K3)c. In
the latter case, the cops in K2 can be released and we can rename K3 as K2, in which case
we reduce m by one and the result follows by induction.

The basic idea of the proof of Theorem 3.14 is to successively capture diagonal shadows
of the robber such that their mirrors get closer until the distance between them is two,
and then use the remaining cops to capture the robber between those mirrors. However, it
is clear that in order to effectively restrict the robber’s movements we need two different
mirrors. However, there is no way to guarantee that if we have a cop in a diagonal shadow
of the robber and we use Lemma 3.12 again we won’t capture the shadow where we already
have a cop. A simple way around this problem is to use Lemma 3.12 twice at the same
time. This is what the following result deals with.

Lemma 3.13. Thirteen cops can capture two main diagonal shadows of the robber simul-
taneously. Moreover, we can actually guarantee that the distance between the mirrors of the
diagonal shadows is two.

Proof. Like in the proof of Lemma 3.12, a cop will force the robber to move, so we only need
to show that twuelve cops can archive the desired result if the robber is forced to move.
For each cop C used in the strategy of Lemma 3.12, we will use one more cop C ′ in the
following way: If p(C) = v, we will choose p(C ′) = v′, where v′ ∈ SD(v) ∩MD(v) − {v}.
Notice that τ(v) = τ(v′), so we can move C ′ in such a way that he stays in the shadow
of C. In this way, by using the strategy of Lemma 3.12 with the first set of six cops and
maintaining the copies of the cops in their shadows, we will capture two main shadows of
the robber simultaneously. Let ` and `′ be the mirrors of these shadows, and C and C ′ the
cops moving in these shadows.

If A(`, `′) ≤ 2 we are done, so we can assume it is greater than two. Suppose the type
of the confluxes that we used in the application of Lemma 3.12 is d. Notice that whenever
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A(`, `′) ≥ 4, there exist maximal confluxes K1,K2 and K3 whose types are parallel to ` such
thatMD(K1),MD(K2) andMD(K3) are mutually disjoint.

Since we are using one cop to guard each mirror, we have ten free cops. By using
six of those ten cops to repeat the strategy moving positioning the cops in confluxes in
MD(K1) ∪MD(K2) ∪MD(K3) of type d we will capture a new diagonal shadow. If `′′

is the mirror corresponding to this new shadow and C ′′ is the cop guarding it, notice that
max{A(`, `′′),A(`′, `′′)} < A(`, `′) and the robber is either between `′′ and ` or between
`′′ and `′, so we can release either C or C ′. Since the robber’s movements are restricted
to a strictly smaller set, induction over the distance between the mirrors gives us that the
distance between mirrors is two.

With this we are ready to prove the main theorem of this section:

Theorem 3.14. For every k ≥ 2, if G is a k-regularly oriented grid, then c(G) ≤ 13.

Proof. Since we have 13 cops, we can use one to chase the robber and force him to move.
That means we have twelve free cops. By Lemma 3.13, we can assume 10 of those cops are
free and that the robber is restricted to the vertices between two mirrors at distance two.
If we manage to capture a main diagonal shadow of the robber between the mirrors whose
type is parallel to the mirrors, then we capture the robber.

Let K1,K2,K3 and K4 be confluxes such that d(K1,K2) = 2, d = K1 − K2, and K3 =
K1 + 2d and K4 = K2 + 2d and guard the main diagonals of each of these four confluxes
with two cops. We can assume the robber is in a vertex of type orthogonal to τ(K1). Notice
that d(K2,K3) = |V (G)|

k − 2. An application of Lemma 3.11 to K2 and K3 guarantees that
the robber is in B(K2,K3). By Lemma 3.9 applied to K1 and K2, and to K3 and K4, we can
guarantee that the robber is in (B(K1,K2) ∪ B(K2,K3)c ∪ B(K3,K4))c = B(K1,K4)c.

Let t = |V (G)|
k − 1

2d(K1,K4). The proof will be by induction on t. If t = 1, Lemma 3.11
guarantees the capture of the robber, so we can assume t ≥ 2. Suppose t = m. Since the
robber is in B(K1,K4)c, we can release the cops in K2 and K4 and move them to the main
corners of the confluxes K5 = K1 + 4d and K6 = K1 + 4d. Again, an application of Lemma
3.9 with K5 and K6 guarantees that the robber is in B(K5,K6)c, and using Lemma 3.11
with K4 and K5 gives that the robber is in B(K4,K5). This now gives us that the robber
is in B(K1,K6)c, so if we rename K6 as K4 we get that t = m− 1, so the result follows by
induction.

It is important to mention that the only part of the proof were we use 13 cops is during
the application of Lemma 3.13. The rest of the proof only uses 11 cops, so finding a more
efficient way of capturing two diagonal shadows simultaneously would improve the bound
for the cop number of G.
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3.3 Paddles

We begin by establishing more general conditions which guarantee that the robber is con-
fined to a stream. As before, we assume that the robber is forced to move.

Lemma 3.15. Let S be a stream and let `1 and `2 be the lines which form the boundary
of S. Suppose that the robber is in S, at distance d1 from `1 and at distance d2 from `2.
Let v1, v2 be the closest vertices (using distances in the undirected grid) of `1, `2 to p(R),
respectively. Suppose further that there are distinct cops C1 and C2, such that C1 can move
to v1 in m1 ≤ d1 moves and C2 can move to v2 in m2 ≤ d2 moves. Then by committing C1

and C2 we can ensure that the robber will be caught or confined to S.

Proof. If d1 = 0 or d2 = 0 then the robber is already caught. Otherwise, whatever the
robber’s move, we update v1, v2, d1 and d2 accordingly. Now for each i ∈ {1, 2}, if Ci
is at vi then he remains in place; otherwise, he moves towards vi. We will show that the
conditions of the lemma are maintained. If the robber moved in the direction of the stream,
then v1 and v2 each move in the direction of the stream and d1 and d2 are unchanged.
In this case the robber’s move increases m1 and m2 by at most 1, and the cops’ moves
immediately decrease m1 and m2 by 1, to a minimum of 0; thus m1 ≤ d1 and m2 ≤ d2. If
the robber moved towards `1, then d1 decreases by 1 and d2 increases by 1. The cops’ moves
now decrease m1 and m2 by 1, to a minimum of zero, and again m1 ≤ d1 and m2 ≤ d2.
The case in which the robber moved towards `2 is similar.

Given a conflux K, we refer to the secondary corner with no outneighbours in K as
the terminal corner of K. Let v be the main corner of K with a vertical (respectively,
horizontal) edge leaving K (but no other edge leaving K, unless K has only one vertex);
then we refer to the vertical (respectively, horizontal) outneighbour of v as the vertical guard
post (respectively, horizontal guard post) of K. If K is maximal, then we refer to the vertex
outside K with the same outneighbours as the terminal corner as the terminal guard post
of K.

Lemma 3.16. Let S1 be a vertical stream, S2 be a horizontal stream and let K be the conflux
S1 ∩ S2. For each i ∈ {1, 2}, let di and d′i be the distance from p(R) to the boundary of K
in the direction of Si and in the opposite direction, respectively. Suppose that the robber is
in K, and that there are distinct cops CV , CH and CT such that CV can reach the vertical
guard post of K in mV ≤ d1 + d′2 + 1 moves, CH can reach the horizontal guard post of K
in at most mH ≤ d2 + d′1 + 1 moves, and CT can reach either the terminal corner or, if K
is maximal, the terminal guard post of K in mT ≤ d1 + d2 moves. Then by committing CV ,
CH and CT we can ensure that the robber will be caught or confined to either S1 or S2.

Proof. If the robber does not leave K on his move, then with the cops’ moves we will decrease
mV , mH and mT by 1, to a minimum of zero; then it is clear that the conditions of the
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lemma still hold. Since the robber can make only finitely many such moves, we may assume
that the robber leaves K on his move. Suppose without loss of generality that he leaves S2

and remains in S1. In this case, before the robber’s move we must have had d1 = 0, and
hence mV ≤ d′2 + 1 and mT ≤ d2 + 1. Let `1 and `2 be the boundary lines of S1, such that
there is a directed path in K from `2 to `1. Let v1 and v2 be the closest vertices of `1 and
`2, respectively, to p(R). Now observe that CT can move to v1 in at most d2 + 1 moves (by
first moving to the terminal corner or terminal guard post of K), while CV can move to v2

in at most d′2 + 1 moves (since v2 is the vertical guard post of K). We move each cop one
step along the appropriate directed path; now Lemma 3.15 implies that we can ensure the
robber will be caught or confined to S1.

Our strategy to catch the robber will be based on blocking streams of maximum width
and sections of maximal streams which do not intersect streams of greater width, which we
refer to as brooks.

Lemma 3.17. Let S be either a stream of maximum width or a brook, and let m =
bw(S)/3c + 1. Let S′ be formed by the lines of S at distance at least m − 1 from the
boundary lines of S. Then by committing 64 cops, and temporarily using a further 64 cops,
we can ensure that after some finite time, if the robber enters S′ then he will be caught or
confined to a stream.

Proof. Without loss of generality we may assume that S is a vertical stream or brook, and
that edges of its lines are all directed upwards. Let `1 and `2 be the boundary lines of S,
and let `′1 and `′2 be the lines outside S adjacent to `1 and `2 respectively. We use two
formations of cops, which we call paddles: an inner paddle (respectively, outer paddle) is a
formation of cops evenly spaced at distance m (or distance 1, if m = 0) along each of `1 and
`2 (respectively, `′1 and `′2), where each horizontal line has either two or zero cops. Given
a paddle, let H be the convex hull of all of the cops in the paddle excluding the six cops
which are furthest in the upwards direction. Then the domain of the paddle is the union of
the rows intersecting H.

Claim 3.18. If the robber enters the intersection of the domain of a paddle with S′ along
a horizontal edge, then he will be caught or confined to a stream.

To prove the claim, we first observe that if the paddle is an inner paddle then there is
a pair of cops below p(R) at a vertical distance of at most m− 1; now Lemma 3.15 implies
that the robber will be caught or confined to S. Hence we may assume that the paddle
is an outer paddle. If m ≤ 1 then the robber must have been at the same vertex as a
cop on the previous move, which is a contradiction; hence, m ≥ 2. Let K be the maximal
conflux containing the robber; then K has height at most w(S). Suppose without loss of
generality that the horizontal edges in K are directed from `2 to `1. Then the robber is at
distance m− 1 from `2 and at distance w(S)−m from `1. There is a cop CT on `′1 above
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the top row of K, at a distance of at most m; this cop can reach the terminal guard post
of K in at most m − 1 moves. Further, there is a pair of cops above or level with p(R) at
a vertical distance at most m − 1. Let CV be the cop in this pair which is on `′2, and let
C be the cop in this pair which is on `′1. We let CH = C if CT 6= C; otherwise, we let CH
be the closest cop above C on `′1. Let d1 and d′1 be the distances from p(R) to the top and
bottom rows of K, respectively. Then CV can reach the vertical guard post of K in at most
(m − 1) + 1 + d1 + 1 = (m − 1) + d1 + 2 moves, while CH can reach the horizontal guard
post of K in at most (2m − 1) + d′1 ≤ (w(S) − m) + d′1 + 2 moves, where the inequality
follows from the definition of m. Now CV , CH and CT each make their first moves along
their respective paths, and the claim follows by Lemma 3.16.

Claim 3.19. The cops forming an inner paddle can reform to form an outer paddle with
the same domain in at most 2w(S) + 1 moves, and vice versa.

To prove the claim, we observe that for any vertex of `1 there is a directed path of
length at most 2w(S)+1 to the horizontally adjacent vertex of `′1: move up d ≤ w(S) times
until there is an edge to `′1, move to `′1, and then move down d times. Similarly there is a
directed path of length at most 2w(S) + 1 from any vertex of `′1, `2 or `′2 to the horizontally
adjacent vertex of `1, `′2 or `2 respectively; the claim now follows immediately.

Now suppose we have formed the cops into two paddles, each consisting of 32 cops.
Observe that the domains P1 and P2 of these paddles each contain at least 12m + 1 ≥
4w(S) + 2 rows. Since having a larger domain only helps us, we may assume that P1 and
P2 contain 4w(S) + 2 rows each.

We first show that once we have set up the appropriate circumstances, we can make sure
that the robber remains within either P1 or P2 indefinitely. To achieve this we define four
states, and show that regardless of the robber’s move we can either stay in the same state
or go to one of the other three. We say that a domain is moving up (respectively moving
down) if the correpsonding paddle is an inner (respectively outer) paddle. We say that a
domain has t steps to start moving up or down if it is in the process of reforming and will
complete this process in t moves, and that it is active otherwise. We say that we switch the
domain when we reform the corresponding paddle to move in the opposite direction. Note
that everything we say will be equally true if we reverse the vertical directions or relabel
the paddles, so that we may do that at any time.
State 1: P1 is moving up, P2 is moving down, P1 and P2 occupy the same rows and the
robber is on one of these rows.

In this state the robber can only force us out of State 1 by leaving the occupied rows.
If he does so, without loss of generality he moves above the top row of P1; then we move
P1 up, switch P2 and enter State 2. Otherwise we remain in State 1.
State 2: P1 is moving up, P2 has t steps to start moving up, P1 is d1 rows above P2 and
the robber is d2 rows below the top row of P1, where d1 + d2 + t ≤ 2w(S).
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In this state if the robber moves above the top row of P1 then we move P1 up; then d1

increases by at most 1 and d2 = 0. Otherwise we keep P1 stationary; then d2 increases by
at most 1 and d1 remains the same. Hence d1 + d2 increases by at most 1; since t decreases
by 1 the inequality still holds and we stay in State 2 until t = 0, when we enter State 3.
State 3: P1 and P2 are both moving up, P1 is d1 ≥ 1 rows above P2 and the robber is d2

rows below the top row of P1, where d1 + d2 ≤ 2w(S) + 1.
In this state if the robber moves above the top row of P1 then we move both P1 and P2

up; then d1 remains the same and d2 = 0. Otherwise we move only P2 up; then d1 decreases
by 1 while d2 increases by at most 1. So the inequality still holds and we stay in State 3
unless d1 = 0, when we enter State 4.
State 4: P1 and P2 are both moving up and occupy the same rows, and the robber is
d ≤ 2w(S) + 1 rows below the top row of P1.

If d = 2w(S) + 1 and the robber moves down then we switch P2 and enter State 5.
Otherwise we move P1 and P2 only if the robber goes above their top row, and remain in
State 4.
State 5: P1 is moving up, P2 has t steps to start moving down, P1 and P2 occupy the
same rows and the robber is d rows below the top row of P1, where d+ t ≤ 4w(S) + 2 and
d− t ≥ 2.

In this case we keep both P1 and P2 stationary and stay in State 5 until t = 0, when we
enter State 1.

We next show that we can reach one of these states. We form our cops into four paddles
of 32 cops each, with domains P1, P2, P ′1 and P ′2. If S is a stream of maximum width then
initially all of these domains occupy the same rows; otherwise, P1 and P2 will start just
below the bottom row of S and P ′1 and P ′2 will start just above the top row of S. In either
case we begin with P1 and P2 moving up and P ′1 and P ′2 moving down. At some finite time
the robber will occupy either the top row of P1 and P2 or the bottom row of P ′1 and P ′2.
Without loss of generality he occupies the top row of P1 and P2. At this point we enter
State 3, and release the cops from P ′1 and P ′2.

Now if at any point the robber is outside S′, Claim 3.18 implies that he cannot re-enter
S′ without being caught or confined to a stream. To force the robber to leave S′, we choose
an arbitrary row of S and place two cops at either end of the intersection of this row with
S. One cop on each end remains stationary, while the remaining two cops move in the
direction of S. If the robber does not leave S′, then after some finite time he will be on the
same row as one of the pairs of cops, at which point he is confined to a stream.

Theorem 3.20. If G is any straight ahead orientation of a grid, then c(G) ≤ 404.

Proof. For each stream or brook Si mentioned below, S′i is formed by the lines of Si at
distance at least m from the boundary lines of S (or all the lines of S, if m ≤ 1), where
m = b(w(S) + 1)/3c. For any rectangular subgraph H of G, we define S(H) to be either
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a stream of maximum width which is wider than any brook, or a brook, in H (making
arbitrary choices where necessary).

We first aim to obtain a situation in which S1 and S2 are streams, S3 is a brook, S1, S2

and S3 are all wider than any other stream which the robber can access and the robber is
caught between S′1, S′2 and S′3 (all of which are blocked) in G2 = G \ (V (S1) ∪ V (S3)). To
achieve this we will commit 202 cops. Let S1 = S(G) and let G1 = G \ V (S1).
Case 1: S(G1) is a stream. Then we set S2 = S(G1) and G′2 = G1 \ V (S2). We commit
132 cops to block S′1 and S′2, as per Lemma 3.17. G′2 falls into two components; we let G2

be the component in which the robber lies. If S(G2) is a stream then we label it S∗2 and
commit an additional 64 cops to block it; then G2 \ V (S∗2) falls into two components. We
relabel the component containing the robber as G2, release the cops blocking either S′1 or
S′2 and relabel S∗2 as either S2 or S1, as appropriate.

By repeating this process we arrive at a situation in which S(G2) is a brook. We label it
S3, commit 64 cops to block S′3 and commit a further 6 cops to block the confluxes formed
by the intersections of the stream containing S3 with S1 and S2.
Case 2: S(G1) is a brook. Then we set S∗1 = S(G1) and G∗1 = G1 \ S∗1 . Let S2 be the
stream of which S(G∗1) is a section. If S∗1 and S2 are either both horizontal or both vertical
streams then we relabel S1 as S∗1 and set S1 to be the stream of which S∗1 is a section. So
we may assume that S1 and S2 are either both horizontal or both vertical streams, and
that S∗1 is the other of horizontal or vertical. Let G′2 = G \ (V (S1) ∪ V (S2)). We block S′1
and S′2 and let G2 be the component of G′2 to which the robber is confined. Let S3 be the
intersection of S∗1 with G2. We block S′3 and the intersections of the stream containing S3

with S1 and S2.
Without loss of generality S1 and S2 are vertical streams. let G3 = G2 \ V (S3). As

long as S(G3) is a vertical brook we perform the following procedure to further confine the
robber: Set S∗2 to be the stream containing S(G3). Block S′(G3) and the intersection of S∗2
with S3. Let G′3 = G3 \ V (S(G3)) and relabel the component of G′3 containing the robber
as G3. Relabel S∗2 as S1 or S2 and release the cops blocking S′1 or S′2, whichever no longer
borders on G3.

Thus we may assume that S(G3) is a horizontal brook, and label it S4. We commit
64 cops to block S′4 and a further 6 to block the intersections of the stream containing S4

with S1 and S2. Let G′4 = G3 \ V (S4) and let G4 be the component of G′4 containing the
robber. We relabel the brooks which border on G4 as S1, S2, S3 and S4 (this means each
Si is now a brook, whereas previously S1 and S2 were streams). So far we have committed
272 cops. Using the remaining 132 cops, we will shrink the robber’s territory according to
the following procedure.

Let S5 = S(G4). Without loss of generality S5 is a vertical brook. We commit 64 cops
to block S′5 and then a further 6 to block the intersections of the stream containing S5 with
S3 and S4. Let G′5 = G4 \V (S4) and let G5 be the component of G′5 containing the robber.
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Now either S1 or S2 does not border on G5; without loss of generality it is S1. We release
the 70 cops blocking S′1 and the intersections of the stream containing S1 with S3 and S4,
relabel S5 as S1 and relabel G5 as G4.

Eventually, the robber’s territory is empty and he will be caught or confined to a stream.
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Chapter 4

Graphs of Bounded Diameter

In this chapter we will try to improve the upper bound for the cop number of graphs with
bounded diameter.

Lu and Peng [25] (and independently Scott and Sudakov [32]) proved the following
theorem which gives the best known result on the upper bound of the cop number of
general graphs.

Theorem 4.1. The cop number of any connected n-vertex graph is at most n2−(1+o(1))
√

logn.

The following is a direct corollary of their approach.

Corollary 4.2. The cop number of any connected n-vertex graph of diameter d is at most
n

1− 1
dlog de+1 +o(1).

They have used random positioning of cops to analyze the game and here is the main
tool that they have used. We will restate their starting tool in a more general language.

Let C = C(V, p) be a random subset of a set V with |V | = n, where v ∈ V is in
C with probability p. Since |C| is binomially distributed with expectation µ = n · p, by
the standard Chernoff-type estimate, we have that the probability that C has more than
2µ = 2n · p vertices is at most e−µ/3.

For every subset A of vertices of G and integer i let B(A, i) be the ball of radius i around
A, that is all the vertices of G which can be reached from some vertex in A by a path of
length at most i. For simplicity, when A is a single vertex v, we write B(v, i). We need the
following lemma.

Lemma 4.3. Let C = C(V (G), p), where G is a connected graph of order n. For every
n ≥ 561, the following statement holds with probability at least 0.9: for every A ⊂ V (G)
and every i such that |B(A, i)| ≥ |A|. log2 n

p , we have

|B(A, i) ∩ C| ≥ |A|.
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Proof. Let a = |A|. Note that for any fixed A and i the number of vertices from C in B(A, i)
is binomially distributed with expectation at least a log2 n

p · p = a log2 n and by the standard
Chernoff-type estimate we have that the probability that |B(A, i)∩C| is smaller than a (for
fixed A and i) is at most e−a log2 n/3. The number of sets of size a is

(n
a

)
and the number of

different choices of i is at most the diameter of the graph, d(G). Therefore the statement
is true with probability at least

1− d(G)
∑
a

(n
a

)
e−a log2 n/3.

Using Stirling’s approximation we have(n
a

)
≤ ( e·na )a = eana

aa = ea

aan
a ≤ e · 2a·logn ≤ e · ea·logn.

For the second inequality above, note that for a = 1 or 2, 1 < ea

aa ≤ e, but for a ≥ 3 we
have that ea

aa < 1. Therefore we have

1− d(G)
∑
a

(n
a

)
e−a log2 n/3 ≥ 1− e · d(G)

∑
a e

a logn−a log2 n/3 ≥ 1− e · d(G)
∑
a e
−a log2 n/6.

The last inequality holds when logn − log2 n/3 ≤ − log2 n/6 which is true for n ≥ 26. So
the statement is true with probability at least

1− e · d(G)
∑
a(e− log2 n/6)a ≥ 1− e · d(G) e− log2 n/6

1−e− log2 n/6 = 1− e · d(G) 1
elog2 n/6−1

.

Note that d(G) < n and elog2 n/6 > 2log2 n/6 = nlogn/6. Thus, in order to guarantee the
truth of the statement with probability at least 0.9, we need to have

1− e · d(G) 1
elog2 n/6−1

> 1− e · n
nlogn/6−1 > 0.9.

which is true for n ≥ 561.

4.1 When the diameter is at most 4

Let G be a graph of diameter at most 4 on n vertices. As discussed in the previous chapter,
Lu and Peng have proved that the cop number of graphs with diameter up to 4 is at most
n

2
3 +o(1). In this section we will first improve this result to n

5
8 +o(1) and then to n

3
5 +o(1).

Let C be a random subset of vertices of G, where a vertex v is in C with probability
p = n−

3
8 . As discussed above, C will have with high probability (1− e−n·p/3 = 1− e−n

5
8 /3)

less than 2µ = 2n · p = 2n
5
8 vertices. We will put one cop on each of the vertices in C.

Let r be the position of the robber. If the size of the neighborhood of r (|B(r, 1)|) is
greater than n

3
8 · log2 n, then (by Lemma 4.3) with probability at least 0.9 (we can actually

prove the lemma for probability 1− o(1)) there is a cop in the robber’s neighborhood who
will capture the robber at the very beginning. So we may assume that |B(r, 1)| < n

3
8 · log2 n.

Consider the bipartite graph H with partition classes B(r, 1) and B(r, 3)∩ C. The edge
uv exists in H if and only if there is a path of length at most 2 between (the corresponding
vertices) u and v in G. If we can move some cops from B(r, 3) in at most 2 moves to occupy
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all vertices of B(r, 1), then there is a matching in H that covers all vertices of B(r, 1).
This means that in one move, the cops can guard B(r, 1) and the robber cannot move and
therefore will be captured.

So we may assume that this matching does not exist. Therefore, by Hall’s Theorem,
there is a set S1 ⊆ B(r, 1) such that |S1| > |NH(S1)| = |B(S1, 2) ∩ C|. The vertices in
B(r, 1)\S1 will be guarded by cops in at most one move and the robber cannot use them or he
will get caught. As a consequence |B(S1, 2)∩C| < |B(r, 1)|. If |B(S1, 2)| ≥ n

3
8 |B(r, 1)|·log2 n,

then by Lemma 4.3, |B(S1, 2) ∩ C| ≥ |B(r, 1)| (with probability at least 0.9). This would
be a contradiction. So we may assume that |B(S1, 2)| < n

3
8 |B(r, 1)| · log2 n ≤ n

6
8 · log4 n.

r

S1
S3

B(r, 1)
B(r, 2)

B(r, 3)

B(S1, 2)

B(S1, 3)

B(S3, 2)

B(S1, 4)

Figure 4.1: Neighbors of r.

Let us mention that this basically proves that c(G) ≤ n
3
4 +o(1). Note that since the

diameter is 4, the cops can occupy a vertex of B(S1, 2) in 4 moves and also can guard it
(get to one of its neighbors) in 3 moves. Therefore, since |B(S1, 2)| < n

3
4 +o(1), we can move

our (another set of n
3
4 +o(1)) cops and in 3 moves guard all vertices of B(S1, 2) and with

probability at least 0.9 catch the robber. Also if we consider p = n−
1
3 , then we can prove

that c(G) < n
2
3 +o(1). This strategy has been used in the work of Lu and Peng [25] and

Scott and Sudakov [32], as well. However, there is some improvement possible that was not
discovered in [25, 32].

We may assume that the robber does not stay in r and moves to a vertex in S1 (we can
send one cop to force the robber to move). Again, we would like to send some cops from
B(S1, 4) to occupy vertices in B(S1, 2).

Let I be a random subset of vertices of G, where a vertex v is in I with probability
n−

1
8 · log8 n. So the probability that |I| is smaller than n

7
8 · log6 n is at most e−n

7
8 ·log8 n/3.

Also let C′ be a random subset of vertices of I, where a vertex v is in C′ (independently
uniformly at random) with probability p′ = n−

1
4 . We would like to put one cop on each

vertex of C′ and we would call vertices of I imaginary cops. Note that the (real) cops that
we are using in this step are different from the ones in the first step.
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If there is a matching between vertices in B(S1, 2) and the imaginary cops in B(S1, 4)
then we can occupy B(S1, 2) with imaginary cops in two moves. Otherwise, using the
previous argument and Hall’s Theorem, there is a set S3 ⊆ B(S1, 2) such that |S3| >
|B(S3, 2)∩I|. Thus, |B(S3, 2)∩I| < |B(S1, 2)| and therefore (with probability at least 0.9)
we have |B(S3, 2)| < n

1
8 |B(S1, 2)| · log2 n < n

7
8 · log6 n.

Note that since we have at least n
7
8 · log6 n imaginary cops and the set B(S3, 2) is at

distance at least 3 from r, we will have enough time to get our (imaginary) cops to occupy
all vertices in B(S3, 2). Therefore after two or four moves, the robber’s entire neighborhood
will be occupied by imaginary cops.

Let us discuss these two cases separately. At the very beginning of the game, the robber
is forced to move to S1 and then to a vertex r′ in B(S1, 1). Now he has two options. If
he wants to move to B(S1, 2) \ S3, then, since it is occupied by imaginary cops and with
probability n−

1
4 these cops are real cops, by Lemma 4.3,

|B(r′, 1) ∩ (B(S1, 2) \ S3)| < n
1
4 · log2 n.

On the other hand, if he decides to move to S3 and then to a vertex r′′ in B(S3, 1), then,
since B(S3, 2) is occupied by imaginary cops, with the same argument,

|B(r′′, 1)| < n
1
4 · log2 n.

So in both cases, we get to a point where the first neighborhood of the robber (with prob-
ability at least 0.9) is of size at most n

1
4 · log2 n. Repeating the argument of the first step

for r′ or r′′ (instead of r), shows that |B(S′1, 2)| (or |B(S′′1 , 2)|) < n
5
8 · log4 n and since we

have enough time, we can move another set of n
5
8 +o(1) (real) cops to occupy B(S′1, 2) (or

B(S′′1 , 2)) and therefore with high probability we can capture the robber. Therefore the cop
number of graph with diameter at most 4 is bounded above by n

5
8 +o(1).

In the next part we will repeat this argument to improve this bound to n
3
5 +o(1). For

simplicity, we will drop the poly-log terms and we will assume that n is sufficiently large
(the exponent of logn will not depend on n and these terms will get covered by the o(1) in
the exponent of the final answer).

4.1.1 Repeating the argument to improve the result

In the previous section we introduced an approach to catch the robber with n
5
8 +o(1) cops

in a graph with diameter 4. In this section we want to improve this result to n
3
5 +o(1) and

in order to do that let us repeat the same process in a more general manner. Assume that
we have n1−α cops and they are randomly positioned throughout the graph. Therefore the
probability that a vertex contains a cop is p = n−α. Using the same argument as above, it
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is easy to see that |B(r, 1)| < nα or with high probability we will catch the robber in the
first round.

Define S1 and B(S1, 2) as above and similarly conclude that |B(S1, 2) ∩ C| < |B(r, 1)|
and therefore |B(S1, 2)| < n2α.

Now consider n1−γ imaginary cops (with probability n−γ) where each imaginary cop
is a real cop with probability nα−γ . Again by using the same strategy, conclude that
|B(S3, 2)| < n2α+γ and if 2α+γ < 1−γ, then we can occupy the whole B(S3, 2) by imaginary
cops. Therefore, the robber will face a neighborhood which is occupied by imaginary cops
and hence the density of real cops in his neighborhood is nα−γ .

Now we can repeat the strategy again to get a better density of cops. Assuming that
we have n1−β (new) imaginary cops, we will have:

|B(r, 1)| < nα−γ , |B(S1, 2)| < n2α−γ , |B(S3, 2)| < n2α−γ+β

and if 2α− γ + β < 1− β, then the new set of imaginary cops can occupy B(S3, 2) to get a
better density. We can continue doing this until γ = β which means that γ < 1− 2α. After
improving the density we need to capture the robber with real cops.

In this phase of our strategy we have |B(r, 1)| < nα−γ , |B(S1, 2)| < n2α−γ and we want
|B(S1, 2)| < n1−α to be able to occupy B(S1, 2) with real cops. So we have the following
two conditions to hold:

γ < 1− 2α and 2α− γ < 1− α.

Combining these conditions we get α < 2
5 which means that we need n

3
5 +o(1) cops and

therefore c(G) ≤ n
3
5 +o(1) when G is a graph with diameter at most 4.

4.2 When the diameter is 3

In this section we will consider graphs with diameter 3. Note that the argument in the
previous section works and we already know that c(G) < n

3
5 +o(1) when G is a graph of

diameter 3. In this section we will try to improve this result.
We will repeat the first phase of the strategy for graphs of diameter 4 to increase the

density of cops in the first neighborhood of the robber. As mentioned in the previous section,
we can increase the density of cops up to n−(2α−γ+β) and we calculated that γ < 1− 2α.

Now consider n1−η imaginary cops and repeat the strategy but instead of occupying
B(S3, 2) with imaginary cops we will occupy B(S3, 1) and B(S3, 2) (note that B(S3, 1) ⊆
B(S3, 2)). We need |B(S3, 2)| < n1−η and we know that |B(S3, 2)| < n4α+β−1. So we have
4α+ β − 1 < 1− η.

Then we will have the robber in a position, r, that both his first and second neighborhood
is occupied by n1−η imaginary cops and therefore the density of real cops in the first and
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second neighborhood are nη−α. We have:

|B(r, 1)| < nα−η, |B(r, 2)| < n2α−2η

Now we can assign one (real) cop to each vertex of B(r, 2) and since the diameter of the
graph is 3 the cops will guard the vertices of B(r, 2) before the robber can enter it. So
the only condition that we need is |B(r, 2)| < n1−α, which means 2α − 2η < 1 − α. To
summarize, we need the following conditions:

4α+ β − 1 < 1− η, 2α− 2η < 1− α, 2α− β < 1− α

Combining these inequalities we can get α < 7
17 and therefore c(G) = O(n

10
17 +o(1)) when

diameter of G is 3.

4.3 General case

Now let us consider the general case where the diameter of the graph is d. We would like
to find an upper bound for the cop number of these graphs.

Theorem 4.4. Let G be a graph of diameter d, then

c(G) ≤ n1− 2
2dlog de+1 +o(1)

.

Proof. Assume that we have we have n1−α cops randomly positioned throughout vertices
of G.

Using a similar argument as in section 4.1 we will get (note that we are ignoring the
logn factors):

|B(r, 1)| < nα, |B(S1, 2)| < n2α, . . . , |B(S2k−1, 2k)| < n(k+1)α for k = 1, . . . , dlog de.

Now assume that we have a set of n1−γ imaginary cops where each of them is a real cops
with probability nγ−α.

Let k = dlog de − 1. If there is a matching between vertices in B(S2k−1, 2k) and the
imaginary cops in B(S2k−1, 2 · 2k) then we can occupy B(S2k−1, 2k) with imaginary cops in
2k moves. Otherwise, using the previous argument and by Hall’s Theorem, there is a set
S2k+1−1 ⊆ B(S2k−1, 2k+1) such that |S2k+1−1| > |B(S2k−1, 2k+1) ∩ I|. Thus

|B(S2k+1−1, 2k+1) ∩ I| < |B(S2k−1, 2k)|,

and therefore |B(S2k+1−1, 2k+1)| < nγ |B(S2k−1, 2k)| < n(k+1)α+γ . Note that since we have
n1−γ (real or imaginary) cops and the set B(S2k+1−1, 2k+1) is at distance more than d from r,
if 1− γ > (k+ 1)α+ γ, then we can get our cops to occupy all vertices in B(S2k+1−1, 2k+1).
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Therefore after 2k or 2k+1 moves, the robber’s entire neighborhood will be occupied by
imaginary cops and the density of real cops will improve from n−α to nγ−α. Thus, for the
new position of the robber, with probability at least 0.9, we have:

|B(r, 1)| < nα−γ , |B(S1, 2)| < n2α−γ , . . . , |B(S2k−1, 2k)| < n(k+1)α−γ .

Repeating the argument with a new set of n1−β imaginary cops can improve the density
of real cops in the first neighborhood of the robber and we can get

|B(S2k+1−1, 2k+1)| < n(k+1)α−γ+β.

And if (k+ 1)α− γ + β < 1− β, then the new imaginary cops can improve the density. We
can continue this until γ = β which means that γ = β < 1− (k + 1)α.

Combining (k+ 1)α− γ < 1− α and γ < 1− (k+ 1)α, we have α < 2
2k+3 . Therefore,

when d is the diameter of G, then, c(G) = O(n1− 2
2dlog de+1 +o(1)).

4.4 Graphs of high girth

In this section we will use girth of graphs to improve the strategy of cops and decrease the
cop number. Recall that for every subset A of vertices of G and integer i we define B(A, i)
to be the ball of radius i around A, that is all the vertices of G which can be reached from
some vertex in A by a path of length at most i. Also define N(A, i) = B(A, i) \B(A, i− 1).

Let G be a graph with girth g, we define ρ = bg+1
4 c. The following lemma is our main

tool.

Lemma 4.5. For every vertex u, two cops can guard B(u, ρ).

Proof. For ρ = 1 the proof is clear. So we may assume that ρ ≥ 2 and therefore g ≥ 7.
Let us first assume that two cops are in u but the robber is already in B(u, 2ρ − 1). To
start our strategy we need to push the robber out of B(u, 2ρ − 1). Since the robber is in
B(u, 2ρ − 1), there is a unique shortest path from u to the robber’s position and there is
no cycle in B(u, 2ρ − 2). Sending a cop to follow the robber will force him to move either
towards u and eventually get captured or to get out of B(u, 2ρ− 1) (or enters N(u, 2ρ− 1)
from another vertex). Note that the cop that we need to send to follow the robber can be
one of the cops in u but to avoid unnecessary complications (in Theorem 4.6 having one
more cop is not important) we have used an extra cop.

Now let us assume that C1 and C2 are in u and the robber has entered N(u, 2ρ − 1)
and it is the cops’ turn. Because of the girth condition, there is a unique vertex in N(u, ρ)
that the robber can enter in ρ − 1 moves. Therefore C1 will move one step towards that
vertex to be able guard it in ρ− 1 moves. From now on, C1 will copy the movements of the
robber, if he gets closer to N(u, ρ), then C1 will get closer to it as well and if the robber
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changes his mind and gets away from that vertex in N(u, ρ), then C1 will get back (step
by step) to u. Note that when the robber is in N(u, 2ρ− 1), he can change the vertex that
he is attacking in N(u, ρ) in one move. In this case, the other cop, C2, will move one step
towards the robber and C1 will get back to u. So if the robber is in N(u, 2ρ−k), then there
is a cop in N(u, k). Therefore by using this strategy the two cops can prevent the robber
from entering N(u, ρ) and therefore can guard B(u, ρ).

Now we have the tool to improve the result from the previous section.

Theorem 4.6. Let G be a graph of diameter d and girth g and let ρ = bg+1
4 c. Then

c(G) ≤ n1− 2
2dlog (d/ρ)e+1 +o(1)

.

Proof. Let G be a graph of diameter d and girth g. We will play the same strategy as in
the previous section with the exception that instead of having a stationary cop in a vertex
u, we will put two cops in it and will make them guard B(u, ρ), as shown in Lemma 4.5.

In the first step of our previous strategy, we used the probability of existing a cop in the
first neighborhood of the position of the robber to bound the size of the first neighborhood
of the position of the robber. To get a better result, assume that we have 2n1−α cops and
place two cops (instead of one) randomly on each vertex with probability p.

Let r be the position of the robber. We will send a cop to follow the robber and force
him to move to fulfill the requirement of Lemma 4.5. After some steps, if there is a vertex
in B(r, ρ) that was selected to contain (two) cops, then it means that r ∈ B(u, ρ) where u
contains two cops. By Lemma 4.5, the robber should have been captured by now. So by
Lemma 4.3 (and ignoring the logn term) we may assume that |B(r, ρ)| < nα.

In the next step (in the previous approach) we defined the set S1 to be (roughly) the set
of vertices that cannot be guarded by the cops in B(r, 3). We can redefine S1 to be the set
of vertices in B(r, ρ) that cannot be guarded by the cops in B(r, 2ρ). Note that although
the cops are moving first, we cannot bring cops from B(r, 3ρ) to cover S1 and the reason is
that ρ can be more than 1. As usual, we can see that not only |S1| > |B(S1, ρ)∩C|, but also
with high probability we have B(S1, ρ) < n2α. Note that in the next step we can define S3

in B(S1, ρ) and calculate the upper bound for |B(S3, 2ρ)|. The radius of the ball around Si
will grow exponentially and we have

|B(S2k+1, 2kρ)| < n(k+1)α for k = 0, . . . , dlog d
ρ
e.

Now we can follow the previous strategy to get α < 2
2k+3 and therefore (by replacing k

with dlog d
ρe − 1) the cop number is at most n1− 2

2dlog (d/ρ)e+1 +o(1).
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4.5 Digraphs of bounded diameter

In this section we will consider digraphs of diameter two and bipartite digraphs of diameter
three, which are the digraphs that between any two vertices u and v there is a directed
path of length at most two (for the first case) or three (for the second case). Note that the
digraph will automatically be strongly connected.

We will basically generalize the method that was introduced in [35] to digraphs.

Lemma 4.7. Let k > 0 be an integer, D be a digraph of diameter 2 or a bipartite digraph
of diameter 3, and let H be a sub-digraph of D, such that the maximum out-degree of H is
at most k. Suppose the robber is restricted to move on the edges of H, while the cops can
move on D as usual. Then k + 1 cops can catch the robber.

Proof. Let r be the position of the robber, a vertex of out-degree l ≤ k with out-neighbors
v1, . . . , vl and let c1, . . . , ck+1 be our set of cops.

Let us first assume that D is a digraph of diameter 2. Assign ci to cover vi (for i =
1, . . . , l). Since the diameter of D is 2 (the diameter of H can be different), each ci can get
to vi in at most two moves and therefore in one move can get to an in-neighbor of it. Thus,
in one move, the cops can position themselves in a way that the robber cannot use any of
its out-neighbors. So the robber cannot move. Now send another cop (we have at least one
cop more than the number of out-neighbors) to capture the robber.

Now let D be a bipartite digraph of diameter 3 and let V (D) = L∪R be the bipartition
of vertices of D. Move k cops to R and let the last cop to follow the robber and force him
to move. Consider the position of the robber, r, when r ∈ L. Now the out-neighbors of r,
v1, . . . , vl are in R. Assign ci to control vi. Since the diameter of the digraph is 3, there is
a directed path of length at most 2 between the position of ci and vi. So each ci by moving
once towards vi can guard it. Therefore the robber cannot use any of vi’s (without being
caught) and the cop who is following the robber will catch him.

Theorem 4.8. Let D be a digraph of diameter 2, or a bipartite digraph of diameter 3, of
order n. Then

c(D) ≤
√

2n.

Proof. The proof will go by induction on m, the size of H ⊆ D. It is clear that c(H) = 1
when |H| = 1 or 2. Now let m ≥ 3 and assume that there is no vertex of out-degree greater
than or equal to b

√
2mc. Then by Lemma 4.7 we are done and c(H) ≤ b

√
2mc. Now assume

that there is a vertex v of out degree at least b
√

2mc. Put a stationary cop on v to protect
v and its out-neighborhood. From now on the robber cannot use these vertices or he will
be captured by the stationary cop. Therefore, we can remove v and its out-neighbor from
H to make H ′. Note that |H ′| ≤ m − b

√
2mc − 1. By the inductive hypothesis, we have

c(H) ≤ 1 + c(H ′) ≤ 1 +
√

2(m− b
√

2mc − 1) ≤ b
√

2mc.
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Since this inequality holds for all subgraphs H of D, then, c(D) ≤
√

2n.
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Chapter 5

Graph Operations

In this chapter, we will first consider different graph operations and their effect on the cop
number of graphs and then we will use them to construct sub-cubic graphs with high cop
number.

5.1 Graph Operations

In this section, we will first consider the effect of subdividing an edge on the cop number of
graphs and then we will briefly consider deleting an edge, contracting an edge and deleting
a vertex.

5.1.1 Subdividing an edge

Let Gs be a graph obtained from subdividing an edge uv of a graph G and let the new
added vertex be x. See Figure 5.1.

u v u vx

G Gs

Figure 5.1: Subdividing the edge uv.

Lemma 5.1. For every graph G, c(Gs) ≥ c(G)− 1, in other words, by splitting an edge the
cop number might decrease at most by one.

Proof. Let us assume for contradiction that c(Gs) < c(G)− 1. Put a cop on u, this cop will
prevent the robber to use the edge uv. Consider the strategy of cops in Gs, they can win
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by c(Gs) cops. Apply the same strategy in G (by c(Gs) cops). Note that the robber cannot
use the edge uv in G (which is equivalent to the path uxv in Gs) but the cops can use them.
This restriction for the robber might decrease the cop number but cannot increase it. So
we can win by c(Gs) cops in G \ {uv} and therefore c(G) ≤ c(Gs) + 1, contradiction.

Lemma 5.2. For every graph G, c(Gs) ≤ 2c(G), in other words, by splitting an edge the
cop number might increase but it cannot become more than twice of the cop number of the
original graph.

Proof. Put c(G) cops on the new vertex in Gs (vertex x in Figure 5.1) and consider the
strategy of c(G) cops to capture the robber in G. Repeat this strategy on Gs and whenever
k cops are using the edge from u to v, in Gs, k cops will move from u to x and k cops that
are already in x will move to v and therefore the cops can keep up with their strategy in G
to catch the robber.

Lemma 5.3. If G is a smallest k-cop-win graph, then c(Gs) ≤ c(G).

Proof. Since G is a minimum k-cop-win graph, then removing an edge will decrease the cop
number exactly by one. So, in Gs put a cop on x, then the robber cannot use uxv which is
equivalent to uv in G. Since c(G)− 1 cops can capture the robber on G \ uv, then c(G)− 1
cops can capture him in Gs \ uxv and therefore c(Gs) ≤ c(G).

Conjecture 5.4. If G is a graph of the smallest order that is k-cop-win with k ≥ 3, then
c(Gs) = c(G)− 1.

Conjecture 5.5. For every graph G, c(G)− 1 ≤ c(Gs) ≤ c(G) + 1.

We have some examples to support the above conjectures. C3 is a graph with cop
number 1, but when we subdivide an edge it becomes a C4 and therefore the cop number
increases to 2. On the other hand, Petersen is the smallest graph that needs 3 cops (see
Theorem 6.1) but when we subdivide an edge the cop number decreases to 2. See Lemma
5.6. Let Ps be the graph obtained from Petersen by subdividing an edge, then we have the
following lemma.

Lemma 5.6. c(Ps) = 2.

Proof. One of the properties of minimum k-cop-win graph is that k − 1 cops can force the
robber to use any of the vertices and any of the edges while cops can avoid using that edge
or vertex. Otherwise, removing the edge or vertex will not affect the cop number which is
a contradiction to minimality.

Now consider the strategy of two cops to force the robber to use edge uv and repeat
the strategy on Ps. So the robber will be forced to move from u (v) to x and then from x

to v (u). Since the diameter of Petersen graph is 2, cops can guard any vertex by just one
move. So when the robber is in x, one of the cops will move to guard u and the other one
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will move to guard v and the robber will be in a trap and will get captured in the next two
moves.

5.1.2 Subdividing all edges at the same time

Let Ga be the graph obtained from G by subdividing all edges of G the same number of
times at the same time.

Lemma 5.7. For every graph G, c(Ga) ≥ c(G).

Proof. Let us assume for contradiction that c(Ga) < c(G) and let k be the number that we
have subdivided each edge of G to get Ga. So when we have c(Ga) cops the robber can
escape in G. Consider the escaping strategy of the robber in G. We will use this strategy to
escape in Ga. If v is a non-subdivided vertex in Ga we will define the shadow of v ∈ Ga to be
the corresponding vertex v ∈ G. Also if v is a subdivided vertex and is closer than bk2c to a
non-subdivided vertex, u, then v will have the same shadow as u. Note that when k is even
this definition is well defined but when k is odd and v is the middle vertex of a subdivided
edge, then the definition of shadow will depend on the direction of the movement of the
robber (cop) and the shadow of this vertex will be the same as the shadow of the previous
position of the robber (cop) in Ga. Also at the beginning of the game if a cop or robber is
in such a vertex, we can define the shadow arbitrarily between one of the end points of the
subdivided edge.

At the beginning of the game if a cop chooses vertex v (in Ga), the robber will assume
that the cop has picked the shadow of v in G and he will play the escaping strategy in G.
Note that in each k + 1 moves in Ga, the shadow of each cop or the robber in G will move
at most once.

Every k + 1 moves in Ga will move each of the cops in G at most once and according
to this move, the robber will move once in G. This robber’s move in G can be mapped to
Ga by at most k + 1 moves. So there was a way for the robber in Ga to move in such a
way that his shadow follows the escaping strategy of the robber in G. Note that since the
robber in G was not captured in his last move, the robber will not get captured in Ga in
his last k + 1 moves.

Therefore since the robber can escape in G from c(Ga) cops, by copying this strategy,
the robber can escape from c(Ga) cops in Ga, which is a contradiction.

Lemma 5.8. For every graph G, c(Ga) ≤ c(G) + 1.

Proof. Using c(G) cops we, can capture the robber in G. Consider this winning strategy
in G. We will use the extra cop to force the robber to move forward. One of the cops will
move directly towards the robber and since his distance from the robber is finite, the robber
can stay where he is or move backward (use the edge that he has used in his last move)
finite number of times. So we may assume that the robber will always move forward.
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At the beginning of the game, put all cops in non-subdivided vertices in Ga. If the
robber chooses a subdivided vertex, we wait for him to get to a non-subdivided vertex (the
extra cop will force him to get there). When the robber gets to a non-subdivided vertex,
the position of the shadow of the robber will be fixed in G. from now on, the cops will
follow the winning strategy in G and will catch the robber.

Example. Subdividing all edges of C3 once will give us C6 and we know that c(C6) =
2 = c(C3) + 1. On the other hand, we know that cop number of any tree is one and
subdividing each edge will give us another tree. So the cop number will stay the same. For
a more challenging example one can consider Petersen graph. It is not difficult to show that
the cop number of subdivided Petersen graph is 3.

5.1.3 Contracting an edge

Let uv be the edge that we want to contract to make Gc. Let the vertex that got created
after contracting the edge uv be w. We have the following easy proposition.

Proposition 5.9. For every graph G, c(Gc) ≤ c(G) + 1.

Proof. Place a cop on w on Gc and play the game on G. Note that a cop can easily use
the vertex w instead of the edge uv on G (and actually save one step). Also note that the
robber cannot use the edge uv on G which is equivalent to the vertex w on Gc and therefore
this contraction will not help him. So in the remaining graph c(G) cops can win the game
and therefore in Gc we will need at most c(G) + 1 cops.

As an example, consider the Petersen graph and subdivide one of its edges once. We
proved that this graph is 2-cop-win. But contracting the subdivided edge will give us the
Petersen graph which is 3-cop-win.

5.1.4 Deleting an edge

Let uv be an edge that we want to remove from the edge-set of G to make Gd.

Proposition 5.10. For every graph G, c(Gd) ≥ c(G)− 1.

Proof. Assume that c(Gd) < c(G)− 1. Then place a cop on u and play on G′. The robber
cannot use the edge uv and the cops can play their strategy on G′. Therefore by using at
most c(G)− 2 + 1 cops we can win the game which is a contradiction.

Since deleting an edge can make the graph disconnected, the best that we can hope
for the upper bound is 2c(G). As an example, consider two Petersen graphs attached by a
single edge. This graph needs 3 cops but deleting the connecting edge will increase the cop
number to six.
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Proposition 5.11. For every graph G, c(Gd) ≤ 3c(G).

Proof. If the deleted edge is a cut edge, then it is clear that 2c(G) cops can capture the
robber. Place c(G) cops on u and the other c(G) cops on v. The robber will be in one of
the components, use the corresponding c(G) cops to capture the robber.

Now assume that uv is not a cut edge. Place c(G) number of cops on u and c(G) number
of cops on v. Then if we need k cops to go from u to v (or similarly from v to u), when
these k cops reach u then k of the cops on v will continue their move and will play their
roles afterwards. Now we will start moving k cops (on a shortest path) from u to v. Note
that these k cops will get to v before (or at the same time as) one or some of the cops that
“used” the edge uv want to go from u to v again and we will have c(G) number of cops on
u and v ready to be used. Therefore c(Gd) ≤ 3c(G).

5.1.5 Deleting a vertex

Deleting a vertex can increase the cop number arbitrarily. To see this, consider an arbitrary
graph G and add a vertex v and connect it to all vertices of G and make G′. It is easy to
see that c(G′) = 1 but removing one vertex can increase it to c(G).

We will discuss the lower bound of this operation in the next chapter.

5.2 Graphs of bounded degree

In this section, we will show that the cop number of graphs of bounded degree is not
bounded. This result was previously known [3], but our new approach is less restrictive.

Let G be a graph and v a vertex of degree k in G. Also let w1, w2, . . . , wk be neighbors
of v in G. We want to build a gadget, Av, that can be replaced with v without affecting
the cop number. Consider new vertices x1, x2, . . . , xk and connect xi to wi (i = 1, 2, . . . , k)
with a single edge.

k
4

k
4

k
4

k
4

Figure 5.2: Partitioning vertices into 4 sets of size k
4 and considering each pair of them to

get six sets of size k
2 .
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Partition xi’s into four almost equal sets and consider each pair of them to get six sets
of size (almost) k

2 . See Figure 5.2. Add six (which is
(4

2
)
) new vertices, y1, y2, . . . , y6 and

attach all xi’s in each of these 6 sets to the corresponding yj (j = 1, . . . , 6).
Replace each vertex v of G with Av to get G′. The main property of this gadget is that

one can get from xi to xj (i 6= j) in exactly two moves. Also degree of each xi is exactly 4
and degree of each of yi is (almost) k

2 .
Also for vertices of degree k ≤ 4 we can use the gadgets shown in Figure 5.3.

v

w1

w2

w3

w4

w1

w2w4

w3

x1

x2

x3

x4

y1y2

y3

w1

w2w3

w1

w2w3

x1

x2x3

v

v w1w2 x1 w1w2

y1y2

y3

y1y2

Figure 5.3: The gadget used for vertices of degree 2, 3 or 4.

Now to optimize this idea, instead of partitioning vertices into 4 parts, let’s use m
partitions and apply the same technique. We would like to consider every pair of these
parts and attach them to a yi. So we will have m(m−1)

2 pairs (and therefore m(m−1)
2 y-

vertices). Degree of each yi will become 2k
m and degree of each xi becomes m. So the

optimum value of m is when the degree of xi’s and yi’s are almost equal to each other. So
2k
m = m and therefore m =

√
2k. So instead of one vertex of degree k we will have less than

2k vertices (x1, . . . , xk and y1, . . . , y d√2ke(d
√

2ke−1)
2

) of degree d
√

2ke. Using this approach and
repeating it, we can decrease the degree of each vertex down to 3.

Lemma 5.12. For every graph G, c(G′) ≥ c(G).
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Proof. Let us assume for a contradiction that c(G′) < c(G). Therefore c(G′) cops cannot
capture the robber in G. Consider this escaping strategy, we will use it to show that the
robber can escape from c(G′) cops in G′.

At the beginning of the game each cop will choose a vertex (in G′) as their initial
position. Each vertex is in a unit, Av, which corresponds to the vertex, v, in G. The robber
will assume that each cop is in the corresponding vertex in G and plays the winning strategy
in G. Since the robber has a vertex v to pick in G, the robber can pick a xi in Av in G′.
From now on, the robber will move based on the movements of (the shadow of) cops in G.
Whenever shadows of cops have moved in G, the robber will have an escaping move in G
which can be translated into a series of at most 3 moves in G′. Note that since the robber
won’t get captured in the next move of cops in G, the robber won’t get captured in G′ in
the next 3 moves. Also note that the difference between the position of shadow of each cop
in G before and after 3 moves (in G′) is at most 1 and after that it will be the robber’s turn
to move, so he can continue the escaping strategy. Therefore the robber in G′ can copy the
strategy of the robber in G and escape from c(G′) cops in G′ which is contradiction.

Another way of looking at it is that whenever the robber is captured in G′, his shadow
in G has been captured as well. So if we can capture the robber in G′ by using c(G′) cops,
then we can capture the robber in G with c(G′) cops, which is a contradiction.

Now we give a new proof of a result of Andreae [3]. In this approach we will decrease the
degree of vertices of the graph and by repeating it we will get Corollary 5.14 and Theorem
5.15. These results are also applicable to digraphs, see Section 5.3.

Theorem 5.13. For any constant c and k there exist graphs of degree at most k whose cop
number is at least c.

Proof. We know that for any c there is a graph G that c(G) ≥ c. Build G′ from G (as
described above) and decrease the degree of each vertex. Lemma 5.12 shows that the cop
number cannot decrease. Therefore by repeating this strategy (at most log log ∆(G) times)
we will get a graph of maximum degree k whose cop number is at least c.

Let us assume that G is a graph on n vertices with c(G) = c and ∆(G) = d, then we
have:

Graph # vertices ∆ cop number
G n d c

G′ ≤ 2dn d
√

2de ≥ c

By repeating the strategy to get G′′ from G′ we will have:

G′′ ≤ 22dd
√

2den d
√

2d
√

2dee ≥ c
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If 22k−2+1 < d ≤ 22k−1+1, then in k steps the maximum degree of the graph will become
3. In other words, by repeating the argument k ≤ log log d

2 + 2 times, degrees of all vertices
will be at most 3 and the number of vertices of the graph will be at most

2k21/2+1/4+...1/2k−1
d1+1/2+1/4+...+1/2kn ≤ 2k · 22 · d2 · n ≤ O(d2n log d).

We have essentially proved the following corollary.

Corollary 5.14. Let G be a graph on n vertices with maximum degree d, then there exist
a sub-cubic graph H on O(d2n log d) vertices such that c(H) ≥ c(G).

5.2.1 Sub-cubic graphs

The goal of this part is to build sub-cubic graphs with high cop number. Let G be the
incidence graph of a projective plane. As shown in Proposition 1.5, c(G) = ∆(G) = Θ(

√
n),

where n is the number of vertices of G. Applying the above technique we will gain a
sub-cubic graph on O(n2 logn) vertices with cop number at least Θ(

√
n). Now by a simple

change of variable we can see that there are sub-cubic graphs on n vertices with cop number
≥ Θ(n1/4−ε).

As another example, let ω : N → N be any function such that limn→∞ ω(n) = ∞ and
let G ∈ Gn,p for p = ω(n)

n . It has been proved in [6, 29] that as long as pn → ∞, we have
a.a.s.,

c(G) ≥ 1
(pn)2n

1
2−

9
2 log log pn = 1

(ω(n))2n
1
2−

9
2 log logω(n) = Θ(n1/2−ε).

In this graph the maximum degree is also a.a.s. ≤ 2pn = 2ω(n). Applying the above
approach we will get G′, a graph on O(nω2(n) logω(n)) vertices with c(G′) ≥ Θ(n1/2−ε).
Therefore, by a change of variable it is easy to check that if G′ is a (sub-cubic) graph on n
vertices then c(G′) ≥ Θ(n1/2−ε).

Theorem 5.15. For every value of ε and large enough n, there are sub-cubic graphs on n
vertices with cop number at least Θ(n1/2−ε).

5.3 Digraphs of bounded degree

In this section we will use the same technique as in the previous section to find Eulerian
digraphs of bounded degree of high cop number. The gadget that we are going to get is
different but will have the same properties.

Let the maximum out-degree of the digraph be ∆+ = o and the maximum in-degree
∆− = i. Consider x−1 , . . . , x

−
i and x+

1 , . . . , x
+
o . Now find the smallest k such that 2k ≥ i

and make a complete binary tree where x−j ’s are the leaves of the tree and direct all edges
towards the root. Also find the smallest l such that 2l ≥ o and make a complete binary tree
where x+

j ’s are the leaves of the tree and direct all the edges away from the root. Now merge
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the roots of these directed trees. Note that this gadget has less than 2k+1 + 2l+1 ≤ 4(o+ i)
vertices and the distance from any x−s to any x+

e is fixed and equal to k + l (for 1 ≤ s ≤ i

and 1 ≤ e ≤ o).
Now for any vertex v where w−1 , . . . , w

−
d−(v) and w

+
1 , . . . , w

+
d+(v) are in and out-neighbors

of v, connect (with a directed edge) w−j to x−j (j = 1, . . . , d−(v)) and similarly connect x+
j

to w+
j (j = 1, . . . , d+(v)). See Figure 5.4. Note that we can delete the unnecessary vertices.
If we replace all vertices of a digraph D with this gadget to get D′, it is easy to see that

in and out-degree of vertices of D′ is bounded by 2, number of vertices of D′ is at most
4(∆− + ∆+) times the number of vertices of D and by a similar lemma as Lemma 5.14 we
have c(D′) ≥ c(D).

w− x− x+ w+

Figure 5.4: The gadget when ∆− = 6 and ∆+ = 5 (after deleting extra vertices).
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Chapter 6

Minimum k-cop-win Graphs

In this chapter we will consider the smallest graphs with a given cop number. First we will
see some properties of smallest general graphs and then we will discuss some properties of
the smallest 3-cop-win planar graph and digraphs.

Let mk be the minimum order of a connected graph with cop number at least k and
let Mk be the minimum order of a connected graph with cop number equal to k. Clearly,
mk ≤Mk andmk is monotone increasing in k. It is known thatM1 = m1 = 1,M2 = m2 = 4
and recently, it was proved thatM3 = m3 = 10, and more importantly the following theorem
is also known (see [5], [9]).

Theorem 6.1. Petersen is the unique graph on at most 10 vertices with cop number 3 .

Bonato [7] proposed the following.

Conjecture 6.2. Mk = mk for all k. In other words, Mk is monotone increasing in k.

6.1 Bonato’s conjecture

The purpose of this section is to confirm Bonato’s conjecture.

Lemma 6.3. For every graph G and every v ∈ V (G), c(G \ v) ≥ c(G)− 1.

Proof. Let us assume that v is a vertex of a graph G such that c(G \ v) < c(G)− 1. Place a
cop on v in the entire game and play with c(G \ v) cops on G \ v. Hence, the robber cannot
occupy v throughout the game. Therefore, by c(G \ v) + 1 < c(G) cops we can capture the
robber on G which is a contradiction.

Observation 6.4. For every connected graph G, there is an ordering of vertices of G such
that if we remove the vertices one by one in this order, in each step the remaining graph is
connected.
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This is an easy exercise which follows by considering a spanning tree of G and in each
step removing a leaf vertex.

Theorem 6.5. The values Mk are monotone increasing.

Proof. We will show that Mk−1 < Mk for every k ≥ 2.
Consider a graph G on Mk vertices with c(G) = k. By Lemma 6.4 there exists a vertex

v such that G \ v is connected. If c(G \ v) = c(G), then this is a contradiction to the choice
of G (we have a smaller graph with the same cop number).

If c(G \ v) < c(G), then we are done because we have found a smaller graph with cop
number equal to k − 1 (see Lemma 6.3) and therefore Mk−1 < Mk.

Now assume that c(G \ v) > c(G). Using the ordering in Lemma 6.4, we can keep
removing vertices and the remaining graph will stay connected. By Lemma 6.3, removing
a vertex can decrease the cop number by at most one. Since we have started from G \ v
(which has a higher cop number than G) and after removing all vertices but one we will get
a graph that has cop number 1, then we will get to a graph whose cop number is equal to
c(G), which is again a contradiction to the choice of G.

This confirms Conjecture 6.2 and will give a corollary for which we need the following
lemma.

Lemma 6.6. If G is a graph of order Mk with c(G) = k, then G is 2-connected.

Proof. Assume that G is a k-cop-win graph of order Mk that has a cut vertex v. Let
G1, G2, . . . , Gl be the components of G \ v. First note that at least one of the components
has cop number equal to k − 1, otherwise, by starting the game with k − 1 cops on v

and moving k − 2 of them to the robber’s component we can win the game which is a
contradiction. Without lose of generality assume that G1 is (k − 1)-cop-win and all other
components have cop number smaller than k − 1. Start the game by placing k − 1 cops
on v, if the robber chooses a vertex in a component with cop number smaller than k − 1,
then by moving k− 2 of the cops to that component we can capture the robber. Therefore,
we may assume that the robber chooses G1. Note that by the minimality of G, the graph
induced on V (G1) ∪ v is also (k − 1)-cop-win. So with k − 1 cops we can either capture
the robber or he will move to another component through v. When the robber is in v or
in other components we will aim to capture (his shadow on) vertex v. Therefore, we can
occupy v when the robber is in other components and by moving the other k − 2 cops to
his component, we can capture him with k − 1 cops which is a contradiction. Therefore,
there is another component which is also (k − 1)-cop-win.

Consider an escaping strategy of the robber on G when we have k − 1 cops and all of
them start from v. The robber needs to start in a component of cop number equal to k− 1,
say G1. He can escape from k−2 cops in G1 \N(v) and even if the last cop joins G1 \N(v),
the robber has a strategy to go to one of the vertices in N(v), then use v to go to another
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component of cop number equal to k−1, say G2. Note that he also has a strategy to escape
from G2 as well.

Consider the graph G′ obtained by disjoint union of G1 and G2 and adding a complete
bipartite graph between G1∩N(v) and G2∩N(v). We claim that k−1 cops cannot capture
the robber in G′.

In G′ he will select a vertex in G1 and uses an escaping strategy as above until all the
k − 1 cops are in G1 \ N(v) and then he will use the same strategy to go to one of the
vertices in N(v) and (without using v) goes to G2. Therefore, the robber can escape by
using the same strategy as in G which is a contradiction to minimality of G. Thus G is
2-connected.

We have essentially proved the following corollary.

Corollary 6.7. If G is a graph on Mk vertices with c(G) = k, then c(G \ v) = c(G)− 1 for
every vertex v of G.

Proof. Lemma 6.6 shows that G \ v is connected and as mentioned in the proof of Theorem
6.5, c(G \ v) < c(G). Applying Lemma 6.3 completes the proof and shows that c(G \ v) =
c(G)− 1 for every vertex v of G.

6.2 Minimum 4-cop-win graphs

In this section we will consider the smallest graphs with cop number equal to 4, G4, and
we will prove the following.

Theorem 6.8. 16 ≤M4 ≤ 19.

Proof. First note that there exist a 4-regular graph on 19 vertices with girth 5 (namely the
Robertson graph) and therefore the cop number of it is 4 and M4 ≤ 19. See Figure 6.1

Figure 6.1: Robertson Graph, a 4-regular graph on 19 vertices with girth 5.
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To get the lower bound, by Theorem 6.1, we have that M4 ≥ 11. It is easy to see that
there are vertices of degree ≥ 3 in G4. Place a cop on a vertex of degree ≥ 3, he will guard
≥ 4 vertices. Therefore if |G4| ≤ 13, then the territory of the robber has at most 9 vertices.
By Theorem 6.1 we can see that the robber will be captured by at most 2 cops and therefore
c(G4) ≤ 3 which is a contradiction. So we way assume that M4 := |G4| ≥ 14.

If M4 = 14 and there exists a vertex of degree ≥ 4, then using a similar strategy we can
show that ≤ 3 cops are enough. So assume that M4 = 14 and ∆ = 3. Removing a vertex of
degree 3, v and its neighborhood leaves 10 vertices. Since ∆ = 3 in the original graph, then
vertices in N2(v) will be of degree ≤ 2. Therefore these vertices cannot form a Petersen
graph. Thus this graph needs at most 3 cops which is a contradiction. Therefore M4 ≥ 15.

First note that if M4 = 15 and ∆ ≥ 5 we are done. Now consider the case that M4 = 15
and ∆ = 3. Note that since number of vertices is odd, then there is a vertex of even degree.
So in this case there is a vertex, v of degree 2 in G4. If there is a vertex of degree 3, u
in N2(v), then removing u will leave 11 vertices. The key point is that in the remaining
graph, the degree of v is at most 1 and therefore it has no effect in the cop number of the
graph. So the robber’s territory will practically have 10 vertices and some of these vertices,
namely N2(u), have degree less than 3 and therefore they cannot form a Petersen graph
and c(G4) ≤ 3, a contradiction.

So if M4 = 15, then ∆ = 4. In order to resolve it we will break the case into some
claims.

Claim 1. If u and v are vertices of degree 4 that are adjacent, then G4 is 4-regular.

Proof of Claim 1. First note that if all neighbors of u and v are vertices of degree 4, then we
will move towards one of the edges to reach a pair of adjacent vertices of degree 4 who have
a vertex of degree at most 3 in their neighborhood. Observe that u (and similarly v) has a
neighbor, wu /∈ N(v) (wv /∈ N(u)). If deg(wu) (deg(wv)) is less than 4, then placing a cop
on v (u) will shrink the territory of the robber to 10 vertices and one of these vertices, wu
(wv) is of degree less than 3 and therefore cannot make a Petersen graph, a contradiction.
Thus, we may assume that deg(wu) = deg(wv) = 4. So u and v will have a neighbor of
degree at most 3, x, in common. If x is not adjacent to wu (wv), then by placing a cop
on wu (wv), the territory of the robber will become 10 vertices while one of them , x, is of
degree at most 2, which makes it impossible to form a Petersen graph. Therefore, we are
done. So we may assume that x is adjacent to both wu and wv. In this case, placing a cop
on u will remove at least two of the neighbors of wv and therefore wv will become a vertex
of degree at most 2 and the remaining 10 vertices cannot form a Petersen graph and we are
done.

Claim 2. If u and v are vertices of degree at most 3, then they are not adjacent.
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Proof of Claim 2. First note that ∆ = 4 which guarantees the existence of a vertex of
degree 4. Let us assume that u and v are vertices of degree at most 3 that are adjacent. If
all neighbors of them are vertices of degree at most 3, then we will move to another pair of
adjacent vertices of degree at most 3. Again, u (v) has a neighbor wu /∈ N(v) (wv /∈ N(u)).
If wu (wv) is a vertex of degree 4, then placing a cop on it will make v a vertex of degree
at most 2 in the territory of the robber. Therefore the remaining 10 vertices cannot form
a Petersen and we are done. So we may assume that deg(wu) = deg(wv) = 3. Now we
can assume that u and v have a neighbor, x, of degree 4 in common. If wu (wv) is not
adjacent to x, then placing a cop on x, will make wu (wv) a vertex of degree at most 2
in the territory of the robber and similar to above, we are done. Also if x is adjacent to
both wu and wv, then placing a cop on wu will remove 4 vertices from the territory of the
robber and will make v a vertex of degree 1 (which does not affect the cop number). In the
remaining 10 vertices, wv will have degree 1 and therefore they cannot form a Petersen and
we are done.

Let us assume that G4 is not a 4-regular graph. Then, by Claim 1 and Claim 2 we have
that G4 is a bipartite graph, one part consists of all vertices of degree 4 and the other part
contains only vertices of degree at most 3. Now placing a cop on a vertex of degree 4 will
leave 10 vertices on the territory of the robber. But since they induce a bipartite graph
they cannot form a Petersen graph and we are done. Therefore G4 is a 4-regular graph.

Claim 3. Girth of G4 is at least 5.

Proof of Claim 3. Assume that there is a C3 or C4 in G4, then there are at most 12 vertices
in the cycle or in the first neighborhood of it. Placing a cop on a vertex other than these,
leaves 10 vertices but since the remaining 10 vertices induce a C3 or C4, then they cannot
form a Petersen and we are done.

Since G4 is 4-regular and by Claim 3 girth of G4 is at least 5, then there should exist
exactly 17 disjoint vertices that are at distance at most 2 from a fixed vertex. Since we
assumed that M4 = 15, this is a contradiction. This completes the proof and we have
M4 ≥ 16.

Theorem 6.9. If there is no vertex of degree 2 in G4, then G4 is 3-connected.

Proof. Let us assume that there is no vertex of degree 2 in G4. Since G4 is the smallest
4-cop-win graph, it is clear that it does not have a vertex of degree 1 as well. Therefore,
δ(G4) ≥ 3. Also, if M4 = 19 we are done, so we may assume that M4 ≤ 18.

Now let us assume that there is a 2-vertex-cut in G4 and let these two vertices be u
and v. Also let S1 and S2 (and maybe S3, . . .) be the components of G4 \ {u, v} where
|V (S1)| ≤ |V (S2)|.

Claim 1. u and v are not adjacent and do not have a neighbor in common.

63



Proof of Claim 1. First note that since we are assuming that M4 ≤ 18, then at most one of
the components (after removing u and v) contains up to 10 vertices and therefore only one
of them can be 3-cop-win.

We will show that we can capture the robber by using only three cops. Let us assume
that u and v are adjacent. We will define the shadow of vertices of the smaller component,
S1, to be u. It means that if the robber is in any vertex of S1, the cops will assume that
he is in u and will play accordingly. Note that if the cops can capture the shadow of the
robber it means that the robber is trapped in S1 and the other two cops can capture him.
Also notice that since we have three cops we can push the robber to use vertices of S1 and
capture his shadow.

If u and v are not adjacent but have a neighbor, w, in common, a similar proof works.
Let w be the shadow of vertices of S1 and apply the same strategy.

Now start the game by placing one cop on u and one cop on v. The robber will choose
a vertex in one of the components (S1, S2, . . .), if u (or v) has only one neighbor, x, in the
robber’s component, the cop can move to x. Note that since x has a degree of at least 3, it
has at least two neighbors in the robber’s component. Also observe that in this case x and
v are another 2-vertex-cut and the robber cannot change his component.

Therefore without loss of generality we can assume that the cop on u (and similarly v)
can guard at least two vertices in each component of G4 \ {u, v}. Since by Claim 1, u and
v are not adjacent and do not have a neighbor in common, the two cops on u and v guard
at least 10 vertices together. See Figure 6.2.

T1 T2

u

v

Figure 6.2: If G4 has no vertex of degree 2 and has a 2-vertex-cut.

Now let T1, T2, . . . be the components of G4 \ (N [u] ∪ N [v]). Note that the smallest
(sub)graph that is 2-cop-win is a 4-cycle. So any subgraph on up to three vertices are
1-cop-win.

We will consider two different cases. The first case is when each of T1 and T2 has
four vertices. Then after the cops positioned themselves on u and v the robber will pick
a vertex in T1 (or T2). The robber can escape from one cop in T1. Let the neighbors of
u (similarly v) on the side of T1 to be xu and yu (xv and yv) where |NT1(xu)| ≥ |NT1(yu)|
(|NT1(xv)| ≥ |NT1(yv)|). The cop on u will move to xu and the cop on v will move to xv.
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By doing this, the cops are still covering u and v but might not cover yu and yv. Also
each of them are covering some new vertices. If |NT1(xu)| = 1 and |NT1(xv)| = 1, then the
territory of the robber will be at most four vertices but since |NT1(yu)| and |NT1(yv)| ≤ 1,
they cannot form a 4-cycle. Therefore the third cop can capture the robber.

In the second case, one of the components, say T1, contains less than 4 vertices and
therefore it is 1-cop-win. We will define the shadow of all vertices of T1 along with xu, yu, xv
and yv to be u.

T1

u

v

T ′

Figure 6.3: T ′ can contain up to 11 vertices.

The situation is depicted in Figure 6.3. In this case we will start the game by placing
one cop on v (assuming that u had at most the same number of neighbors in the right side).
The other two cops will try to catch the robber (or his shadow) in T ′.

If v has only two neighbors on the right side, then T ′ can have up to 11 vertices and
therefore can be 3-cop-win. Let w1 and w2 be neighbors of v in the right side and assume
that |NT ′(w1)| ≥ |NT ′(w2)|. Moving the cop on v to w1 will change the situation. If
|NT ′(w1)| = 1, then although by moving to w1 we cannot guard w2 but since its degree in
T ′ is at most one, w2 cannot affect the cop number of the new territory of the robber and
therefore we can remove them. The remaining territory will have at most 10 vertices but
degree of u is 2 and therefore the new territory cannot form a Petersen graph and thus the
other two cops can capture the robber. If |NT ′(w1)| ≥ 2, then moving the cop on v to w1

will shrink the territory of the robber to 10 vertices. But again u has degree 2 in T ′ and by
a similar argument, we are done.

If v has at least three neighbors on the right side, then T ′ can have up to 10 vertices.
Again, moving the cop on v to his neighbor on the right side (with the most number of
neighbors in T ′) will solve the problem.

6.3 Minimum planar 3-cop-win graphs

In this section we will discuss the properties of smallest planar graph on which we need 3
cops to capture the robber. We know that for planar graphs, having 3 cops is always enough
[1] but might not be necessary. There exist a conjecture that the smallest graph that needs
3 cops is Dodecahedron which has 20 vertices.
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It has been proved that in every planar graph of order at most 19 there exist a winning
vertex for two cops. In other words, in every planar graph of order at most 19, there are
3 vertices r, c1 and c2 such that the closed neighborhood of c1 and c2 contains the closed
neighborhood of r. Therefore if we can place our two cops in c1 and c2 when the robber is
in r, we can capture the robber and win the game.

Theorem 6.10. The minimum planar 3-cop-win graph is 2-connected.

Proof. Let G be a minimum planar graph with c(G) = 3. Let us assume for a contradiction
that v is a cut vertex of G. Removing v from G will make the graph disconnected and we
will have at least two components G1 and G2. A similar argument as in Lemma 6.6 works
here and we can show that there are at least two components in G \ v that are 2-cop-win,
say G1 and G2.

G1 G2

v
u1

u2

ut

ui

w1

w2

wj

ws

...

...

...

...

Figure 6.4: A planar graph with a cut-vertex.

Consider the escaping strategy of the robber in G when we have 2 cops and both of them
start from v. The robber needs to choose a vertex v0 in a component with cop number 2,
say G1. Since v is a cut vertex, as long as there is a cop in v, the robber cannot change his
component and needs to stay in G1. Note that he can escape from 1 cop in G1 and when
the second cop joins G1, the robber will have the strategy to go to a vertex in N(v)∩V (G1)
and then use v to go to another component, say G2. In the escaping strategy, he will use a
vertex in N(v) ∩G2, say wj , to enter G2. Also similarly let ui ∈ G1 be the vertex that the
robber uses when he needs to enter G1.

G1 G2

u1

u2

ut

ui

w1

w2

wj

ws

...

...

...

...

Figure 6.5: G1 and G2 are planar.
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Since G1 and G2 are planar graphs, we can assume that u1, . . . , ut are in a line. We can
draw a circle (centering on the line) that only touches ui and ui−1 and apply an inversion to
get the redrawing of G1 which is still planar. We can apply the same technique to redraw
G2 and get wj the lowest vertex in the line-up. See Figure 6.6.

G1 G2

...

...

...

...

ui
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Figure 6.6: Another planar drawing of G1 and G2.

Obtain G′ by joining ui to all w-vertices and also joining wj to all u-vertices. See Figure
6.7.
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Figure 6.7: Constructing G′ from G1 and G2.

Start the game on G′ by putting both cops on wj and selecting the initial position of
the robber to be v0 in G1. From now on the robber will follow the escaping strategy in G
until both cops enter G1. As mentioned before, in G, when the second cop enters G1, the
robber will have an escaping strategy to go to one of u-vertices and then use v to go to
wj ∈ G2. In G′, the robber can follow the same strategy with a little change. He will get to
one u-vertices and then directly will go to wj . The robber can again continue the escaping
strategy in G and escape from 2 cops for ever. Therefore the cop number of G′ is also at
least 3, which is a contradiction because order of G′ is smaller than G.

6.4 Minimum k-cop-win digraphs

In this section we will try to describe smallest k-cop-win digraphs. The smallest digraph
that is 2-cop-win is a directed triangle. It is easy to see that this is the only digraph on
three vertices with this property.
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Observation 6.11. If a digraph D does not have the following sub-digraphs then

c(D) ≥ δ+(D) + 1.

Figure 6.8: In the absence of these sub-digraphs, no vertex can guard more than one (closed)
out-neighbor of another vertex.

Basically if we do not have these sub-digraphs, then there is no vertex that can guard
more than one (closed) out-neighbor of another vertex. Therefore we will need one cop to
force the robber to move (or capture him) and one cop to cover each out-neighbor of the
robber’s position.

Theorem 6.12. The minimum strongly connected 3-cop-win digraph has 7 vertices.

Figure 6.9: Smallest strongly connected 3-cop-win digraph.

Proof. The digraph shown in Figure 6.9 does not have any of the sub-digraphs shown in
Figure 6.8 and therefore its cop number is at least three. It is easy to see that by placing
three cops we can actually guard all vertices of it and therefore the cop number is equal to
three.

Now we need to show that any digraph with at most 6 vertices is 1 or 2-cop-win. First
observe that there should exist a vertex of out-degree at least 2, otherwise the digraph is a
cycle (or is not strongly connected). If our digraph has at most 5 vertices, then placing a
cop on a vertex of out-degree equal to two will leave only two vertices for the robber. The
second cop can capture the robber then.

Now let us assume that our graph has 6 vertices, v1, v2, . . . , v6. Note that if there is a
vertex of out-degree at least 3, using a similar argument as above, we are done. Assume
that the out-neighbors of v1 is v2 and v3. By placing a cop on v1, v1, v2 and v3 will be
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guarded. The remaining vertices should induce a directed triangle, otherwise the second
cop can capture the robber. Without loss of generality we can assume that the directed
triangle is v4 → v5 → v6 → v4. Since the digraph is strongly connected, then there is a way
to get from {v4, v5, v6} to {v1, v2, v3}. Without loss of generality we can assume that v4 has
an out-neighbor among them. We have to general cases.

Case 1, if v1 is an out-neighbor of v4. Then v2, v3 and v6 should form a directed triangle.
By symmetry we can assume that v3 is the out-neighbor of v6 in the triangle.Therefore by
placing a cop on v6 we can see that v1, v2 and v5 should form another directed triangle and
since v1 has two out-neighbors the directed triangle should follow the direction from v1 to
v2. Now placing a cop on v5, we can see that v2, v3 and v4 should form a directed triangle
but since v2 has it two out-neighbors outside v3 and v4, it is not possible.

Case 2, if v2 (or similarly v3) is the out-neighbor of v4. Then a similar argument as in
case 1 will work and we are done.

Corollary 6.13. The minimum planar strongly connected 3-cop-win digraph has 7 or 8
vertices.

Figure 6.10: Smallest 3-cop-win planar digraph.

Proof. Using Observation 6.11, it is easy to see that the following digraph is 3-cop-win. We
showed in Theorem 6.12 that there are no 3-cop-win digraphs on 6 vertices which gives the
result.
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