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Abstract

Tuberculosis ranks alongside HIV/AIDS as one of the deadliest infectious diseases in the
world, killing 1.4 million people in 2015. The World Health Organization and the Stop TB
Partnership set targets to achieve a 90% reduction in incidence and a 95% reduction in
mortality from the 2015 values by 2035.

We investigate the global dynamics of a compartmental system of ordinary differential
equations that models tuberculosis. A more detailed model is then calibrated to the HIV
negative TB endemic in South Africa and used to evaluate the 2035 reduction targets. Op-
timal care and control strategies for fixed budgets are also identified.

Model projections for South Africa show the mortality targets can be met through com-
bined interventions, however due to relapse and latent progression the incidence targets are
unrealistic. To minimize incidence in 20 years, funding should be prioritized into linking
drug susceptible cases (over multi-drug resistant cases) onto care.

Keywords: Tuberculosis, South Africa, Compartmental Disease Models
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0 otherwise

.
∂Ω The boundary of the set Ω.

dom(f) The domain of the function f .
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}
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Chapter 1

Introduction

1.1 The Biology and Development of Tuberculosis

Tuberculosis (TB) is an airborne infectious disease which is caused by Mycobacterium tuber-
culosis. If M. tuberculosis is inhaled into the lungs some of the infection will be eliminated
by the innate immune system but a proportion will be able to survive and replicate. In
response, the immune system will form granulomas around the surviving mycobacterium
to contain the infection. As the granulomas break down the infection will spread and more
granulomas will form to contain the outbreak.

At the early stages of infection the host is noninfectious and asymptomatic. With the
continued effort to contain the infection the lung tissue is gradually destroyed. This de-
struction eventually causes the host to develop a persistent cough which will allow them to
expel droplets containing Mycobacterium tuberculosis into the surrounding environment.

Progression of TB from the latent (noninfectious) phase into the active (infectious) phase
is highly dependent on the state of the host’s immune system. If the host can mount an
effective immune response, TB may remain in the noninfectious stage for significant periods
of time. In a healthy population 5-25% of infections will develop active TB within 5 years,
while the remaining infections have a 10% chance of developing active TB over the rest of
their lives. Individuals who develop a long term latent infection do not acquire a complete
immunity against reinfection and as a result, the long term latent population may develop
active TB through re-exposure to the disease.

The long latency period separates tuberculosis from other infectious diseases as it means
a TB endemic will be able to persist within a population with low incidence rates. This
long latency period also makes TB endemics very stable within populations. Through the
use of phylogenetic tree analysis the Mycobacterium tuberculosis complex has been mapped
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back to the expansion of humans from Africa. These phylogenetic trees have also linked the
spread of Tuberculosis around the world with the development of trade and migration.

1.2 Treatment and the Current State of the Tuberculosis En-
demic

Historically two of the most common methods used to diagnosis active TB have been spu-
tum smear microscopy and sputum cultures. Although smear microscopy is faster, it is also
a much less sensitive diagnostic test. This means if the patient produces a sputum sample
which has a low prevalence of Mycobacterium, the smear microscopy may produce a neg-
ative result. As low prevalence infections are still considered to be infectious, individuals
with active TB are classified as being sputum smear positive or sputum smear negative.
The sputum smear negative infections are typically diagnosed through bacterial cultures.
Recently molecular tests for TB have been developed. These diagnostic tests are much
faster and yield much more sensitive results than the bacterial cultures.

The primary first line drugs (isoniazid and rifampicin) for the treatment of tuberculosis
were introduced in the 1950s . Treatment of sputum smear positive tuberculosis with com-
bined drug therapy lasts for six months and with proper drug adherence, success rates1

of over 90% can be achieved. Without proper drug adherence patients may develop drug
resistant tuberculosis. Treatment of multi-drug-resistant (MDR) TB2 requires a combined
regime of second line drugs3 which have a higher toxicity. This, combined with the fact
that MDR treatment can take 2 years, means the treatment success rates are often much
lower.

Although tuberculosis has largely been eradicated in developed countries, TB still remains
as a significant health crisis for a large part of the world. Tuberculosis ranks alongside of
HIV/AIDs as one of the deadliest infectious diseases in the world, killing 1.4 million people
in 2015. Globally in 2015 there was an estimated 10.4 million incidence cases of TB, with
87% of the cases occurring in the 30 highest TB burden counties as designated by the World
Health Organization [15, Table 2.2. Page 13]. The WHO estimated that 580,000 of these
incidence cases were either multi-drug resistant (83%) or rifampicin-resistant (17%).

1A patient is said to have a successful treatment if no mycobacterium is detectable by sputum smear
microscopy at the end of the treatment program.

2MDR TB is defined to be resistance to both isoniazid and rifampicin.
3Some of the second line drugs include: aminoglycosides, polypeptides, fluoroquinolones, and thioamides.
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1.3 Thesis Outline

Chapter 2 is focused on compartmental systems of ordinary differential equations. In Section
2.1, the existing theory for compartmental disease models is reviewed and an explanation is
provided on how this theory can be applied to tuberculosis models that include secondary
reinfections. In Section 2.2, a toy model for tuberculosis is constructed and global stability
results are derived in the physically relevant region for different scenarios. In Section 2.3,
we introduce the Tuberculosis Incidence and Mortality Estimates (TIME) model [8] which
is used by the Spectrum modelling suite to help make disease burden predictions. In the
final section of this chapter the toy model and the TIME model are compared.

In Chapter 3 the TIME model is used to numerically investigate the HIV negative TB
endemic in South Africa. In Section 3.1 the relation between HIV/AIDs and TB is dis-
cussed. The death rates for TB are calculated by numerically solving a pair of algebraic
equations. The remaining 13 unknown parameters in the TIME model are then calibrated
against 17 data points from the 2012 HIV negative TB endemic in South Africa. In Section
3.2 the calibrated model is used to investigate incidence and mortality reduction strategies
for South Africa.

Chapter 4 investigates the optimal control strategies for reducing the HIV negative TB
incidence in South Africa over a 20 year time period at a fixed budget. This investigation
shows that treatment resources should be directed into linked non-MDR cases onto care.
Once 100% of non-MDR cases are being linked onto care, then funding should be directed
into increasing the diagnosis rate.
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Chapter 2

Compartmental Models of
Tuberculosis

2.1 Homogenous Compartmental Disease Models

Homogeneous compartmental disease models use systems of differential equations to model
the spread and control of infectious diseases. To model the dynamics of a particular dis-
ease, the total population is first partitioned into compartments, which are assumed to be
homogenous. Once the total population has been partitioned, the growth of the subpopu-
lations is determined by the average flows between compartments.

One of the most important concepts in epidemiology is the basic reproduction number (R0).
This is a threshold parameter which determines whether or not a susceptible population is
at risk of a disease outbreak. If a single infection is introduced into a susceptible population
when R0 < 1, then the disease will not be able to sustain itself and the initial infection
will die off. On the other hand, if the single infection is introduced when R0 > 1, then the
disease will be able to sustain itself and the infection will spread throughout the population.

The basic reproduction number is defined to be the expected number of secondary in-
fections a single infected individual will cause in a completely susceptible population over
the entire infectious period. Diekmann et al. [3] showed that for infectious disease models
in heterogenous populations, the basic reproduction number corresponds with the spectral
radius of a positive linear operator.

Driessche and Watmough [16] developed a general structure for a large class of homogenous
compartmental disease models and derived a closed form expression for the positive linear
operator introduced in [3]. Driessche and Watmough proved the basic reproduction number
defines a threshold parameter for the local stability of the disease free equilibrium. In this
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Section we will review the class of homogenous compartmental disease models introduced
in [16] and explain how relaxing some of the structural assumptions allow for the theory to
be applied to a wider class of disease models.

In the disease models considered by Driessche and Watmough, each compartment is classi-
fied as being a susceptible or an infected state. By definition individuals in the susceptible
states may only move into an infected state through transmission of the disease. Given an
n state disease model with m infected states, then the compartmental model takes the form

dxi

dt
= Fi(~x)− Vi(~x) for i = 1, 2, . . . ,m

dxi

dt
= gi(~x) for i = m+ 1,m+ 2, . . . , n

(2.1)

where Fi(~x) is the rate of disease transmissions entering/exiting the ith compartment, Vi(~x)
is the rate of disease transitions entering/exiting the ith compartment and gi(~x) describes the
dynamics of the ith compartment. We are specifically interested in studying compartmental
disease models in which ~F , ~V , and ~g satisfy the following list of conditions:

1) The region {0}m × Rn−m is invariant with respect to (2.1).

2) The system of equations (2.1) has a positive equilibrium point which is globally stable
within {0}m × Rn−m.

3) ~V (~x) =
[
V 0

]
~x where:

(a) V is an m×m matrix which can be rewritten as V = sI−A for some nonnegative
matrix A and some s > 0.

(b) For every j ∈ {1, 2, . . . ,m},
n∑
i=1
Vij > 0.

4) If xi = 0, then there exists some ε-neighbourhood of ~x such that Fi(~y) ≥ 0 for all
y ∈ B(ε, ~x) ∩ Rn≥0.

5) If xi = 0 for every 1 ≤ i ≤ m, then Fi(~x) = 0.

6) For each i ∈ {m+ 1, . . . , n}, if xi = 0 then gi(~x) ≥ 0.

The first two conditions guarantee any disease free population will remain disease free for all
time t > 0 and eventually converge to a steady state solution. This steady state is referred
to as the disease free equilibrium.

The third condition describes how individuals transition through the various infectious
states. Biologically condition 3a) implies that the transitions out of a given state only de-
pend on the current state of the individual. Condition 3b) guarantees that in the absence
of transmission (~F = 0) the net outflow from the infected compartments is always positive
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and as a result transmission is required to sustain an infected population.

In the general disease model presented by Driessche and Watmough [16] they made the
assumption that for every 1 ≤ i ≤ m, Fi(~x) ≥ 0 for all ~x ∈ Rn≥0. Their justification was
that the function ~F (~x) represents an inflow of infections coming from the susceptible com-
partments. This assumption holds true for a large class of disease models, however it does
not hold for models of tuberculosis which include bilinear infection terms between infected
states. As Driessche and Watmough only used the positivity condition in a neighbourhood
of the disease free equilibrium, the established results still hold for models which only satisfy
condition 4).

Combining conditions 3), 4), and 6) guarantees that for each i ∈ {1, 2, . . . , n}, if xi = 0
then ẋi ≥ 0. As a result the cone Rn≥0 is a forward invariant region of (2.1). Physically this
means that any nonnegative solution will remain nonnegative for all time t ≥ 0.

2.1.1 The Next Generation Matrix

Diekmann et al. [3] introduced the next generation operator to calculate the expected num-
ber of secondary infections produced by introducing an initial distribution of individuals
throughout the infectious state space.

As homogenous compartmental disease models have a finite state space the next gener-
ation operator corresponds with a finite dimensional matrix Θ. The (i, j)th entry of Θ is
defined to be the expected number of secondary infections produced in compartment i by
an index case introduced in compartment j over the entire period of infectiousness1. Given
an initial population of people ~ygen distributed over the infected compartments then the
expected number of secondary infections introduced into the next generation is

~ygen+1 = Θ~ygen.

In this framework the local stability of the disease free equilibrium is determined by the
spectral radius of Θ.

To find the next generation matrix for the homogenous compartmental disease models dis-
cussed above, (2.1) is linearized around the disease free equilibrium. As individuals in the
susceptible compartments may only move into the infected compartments through bilinear
infection terms, the linearization gives

d~x

dt
=
(
F − V 0
J3 J4

)
~x, (2.2)

1This measures how many people an index case infects before they transition out of the infected states
through either treatment or death.
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where: F is a nonnegative matrix which describes the inflow of disease transmissions from
the susceptible states, V is the matrix defined in conditions 3a and 3b which describes the
transitionary flows between the infectious states, and the matrices J3 and J4 describe the
growth of the susceptible compartments.

From the block diagonal form of (2.2) it follows that the growth of the infected com-
partments can be approximated near the disease free equilibrium by the m × m linear
system:

d~y

dt
= (F − V)~y. (2.3)

As the (i, j)th entry of F is the rate of secondary infections produced in compartment i by
an index case in compartment j, the (i, j)th entry of the next generation matrix is

Θij =
m∑
k=1
Fik · ϑkj (2.4)

where ϑkj is defined to be the mean time an index case introduced into compartment j
spends in compartment k over the course of the infection.

From the assumptions 3a) and 3b) made on the transition rates, the only positive ele-
ments of the matrix V are the diagonal elements. This combined with the fact that V has
strictly positive column sums, means that the matrix

Q =
(
−VT VT ·~1
~0T 0

)

defines the transition rate matrix2 for a continuous time Markov chain {X(t), t ≥ 0} which
has the finite state space {1, 2, 3, . . . ,m + 1}. This Markov chain describes how a single
individual transitions through the various infected states. The (m+1)th state is an absorbing
state that tracks individuals who have either died or recovered and are no longer in the
infected state space. We can now use this Markov chain to calculate ϑkj . By defining the
transition probability functions

Pjk(t) = P{X(s+ t) = k|X(s) = j}

the forward Kolmogorov equations give us that for all (j, k) pairs

P ′jk(t) =
m+1∑
h=1

qjhPhk.

2For each i ∈ {1, 2, . . . ,m + 1}, qii defines the rate that an individual transitions out of state i; and for
each pair (i, j) with i 6= j, qij defines the rate at which an individual in state i transitions into state j.

7



Consequently the row vector ~P T
j (t) = (Pj1(t), . . . , Pj m+1(t)), will have the solution

~P T
j (t) = ~e Ti e

tQ

where ~ej is the jth standard basis vector. Now the mean total time an index case introduced
into the jth compartment spends in the kth compartment (1 ≤ k ≤ m) is

ϑkj =
+∞∫
0

P{X(s) = k|X(0) = j}ds

=

 +∞∫
0

(eQs)T~ejds


k

=

 +∞∫
0

e−Vsds


kj

= (V−1)kj .

Assumptions 3a) and 3b) made on the transition matrix guarantee that V is a nonsingular
M -matrix (these matrices are discussed in the next subsection). As a result all eigenvalues
of V have a positive real part and V has a nonnegative inverse. This guarantees that the last
integral is convergent and that the next generation matrix Θ = FV−1 is a positive linear
operator.

2.1.2 Nonsingular M-matrices

If a matrix B can be rewritten as B = sI−A for some nonnegative matrix A, then B is said
to be a Z-sign pattern matrix. If this can be done for some s and A where s is strictly larger
than the spectral radius of A, then B is said to be a nonsingular M−matrix. Nonsingular
M-matrices have a wide area of applications and there are 50 equivalent definitions for a
nonsingular M -matrix [1, Chapter 6].

Lemma 2.1.1. Given B is a Z-sign pattern matrix, det(B) will be positive if B has positive
row sums; moreover if B is a Z-sign pattern matrix then the conditions i), ii), and iii) all
all equivalent to the statement "B is a nonsingular M-matrix".

i) All principle minors of B are positive.

ii) Every eigenvalue of B has a positive real part.

iii) B has a nonnegative inverse.

From conditions (3a) and (3b), VT is a Z-sign pattern matrices which has positive row
sums. Consequently every principle submatrix of VT also has this property. This means all
principle minors of VT are positive and as a result V is a nonsingular M -matrix.

Nonsingular M -matrices are central to Driessche and Watmough’s stability proof of the
disease free equilibrium in [16]. They proved that if F is a nonnegative matrix and V is
a nonsingular M-matrix then the linear system ~̇y = (F − V)~y will be locally stable if and
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only if ρ(FV−1) < 1. Since this stability result is local to the disease free equilibrium some
of the assumptions made on the structure of the disease transmissions could be relaxed to
included models with bilinear infection terms between infected states.

2.2 The Sputum Smear Model

The sputum smear TB model is a compartmental disease model that we constructed to un-
derstand the dynamics of a Tuberculosis endemic. This model divides the total population
into a susceptible compartment S, a latent compartment L, and two active TB compart-
ments: the sputum smear positive (SSpos) compartment Ip, and the sputum smear negative
(SSneg) compartment In.

Historically two of the most common methods used to diagnosis pulmonary TB have been
sputum smear microscopy and sputum cultures. Although the smear microscopy is a much
faster test, testing the sputum cultures yields much more sensitive results and consequently
individuals with a negative sputum smear may still be culture positive. This splits the
active TB compartment into a sputum smear positive and a sputum smear negative pop-
ulation. As the survival rates, infection rates, and diagnosis rates all differ between these
two populations; they each play a different role in the disease dynamics.

This model assumes that σ · 100 percent of all flows entering the active TB compartments
will initially develop SSpos TB while the other (1 − σ) · 100 percent initially develops SS-
neg TB. As SSneg individuals may develop sputum smear positive TB later on, this model
assumes individuals transition from the SSneg compartment to the SSpos compartment at
the rate θ. As diagnosis rates depend on smear status, we also assume the SSpos and SS-
neg individuals are treated at the respective rates of γp and γn. In this model treatment
is assumed not to provide a full cure to the disease. Consequently all treated individuals
move back into the latent compartment once they are treated.

In the sputum smear model we assume that TB in transmitted by SSpos and SSneg in-
dividuals with a standard incidence force of infection rate. This means we assume that on
average an SSpos individual will make β sufficient contacts3 per unit time. We also assume
the SSneg individuals will on average make cβ sufficient contacts per unit time. Since β
sufficient contacts are made by each SSpos individual, on average the SSpos population will
generate βIp · SN new infection from the susceptible population per unit time where N is
defined to be the total size of the population.

To capture the high variability in the latent progression rate α ·100 percent of all infections
3to transmit the disease
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proceed directly into the Active TB compartments, while the other (1 − α) · 100 percent
of infection proceed into the latent compartment. Individuals with latent tuberculosis are
assumed to have only acquired a partial immunity against reinfection and as a result they
may undergo a secondary infection event (exogenous reinfection). The degree of protection
offered by a latent infection is defined to be 1− x where x ∈ [0, 1]. Latent individuals may
also transition into the active TB compartments through latent progression at the rate v.

This model assumes no vertical transmission TB so all births Λ(t) are born into the suscep-
tible compartment. The natural death rate for all individuals in the model is δ. Individuals
with SSpos and SSneg TB die at the respect rates δ + δp and δ + δn, where δp and δn are
the death rates due to SSpos and SSneg TB.

S L Ip InΛ(t)

δS
δL

(δ + δp)Ip (δ + δn)In

(1− α) β
N
S(Ip + cIn)

(1− σ)α β
N
S(Ip + cIn)

σα β
N
S(Ip + cIn)

σ
[
αx β

N
L(Ip + cIn) + vL

]
γpIp

(1− σ)
[
αx β

N
L(Ip + cIn) + vL

]
θIn

γnIn

Figure 2.1: The flow diagram for the SLIpIn model

Parameter Definition
β Infectivity of SSpos individuals (infections per person per year)
c Relative infectiousness of SSneg individuals

1− x Degree of protection provided by a priori infection
v Latent progression rate (progressions per person per year)
α Proportion of infections that immediately develop active TB
σ Proportion of people entering the active TB states who initially develop

SSpos TB
θ Sputum smear conversion rate (conversions per person per year)
γp SSpos treatment rate (per person per year)
γn SSneg treatment rate (per person per year)
δ Natural death rate (per person per year)
δp SSpos death rate (per person per year)
δn SSneg death rate (per person per year)

Λ(t) Birth Rate

Table 2.1: The SLIpIn model parameters
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From Figure 2.1, the SLIpIn equations are:

Ṡ = Λ(t)− β
N
S(Ip + cIn)− δS

L̇ = (1− α) β
N
S(Ip + cIn)− αx β

N
(Ip + cIn)L+ (γpIp + γnIn)− (v + δ)L

İp = σ
[
α β
N
S(Ip + cIn) + αx β

N
(Ip + cIn)L+ vL

]
+ θIn − (γp + δ + δp)Ip

İn = (1− σ)
[
α β
N
S(Ip + cIn) + αx β

N
(Ip + cIn)L+ vL

]
− (γn + θ + δ + δn)In

(2.5)

By making the assumption that at time t ≥ 0

Λ(t) = δS + δL+ (δ + δp)Ip + (δ + δn)In,

then the total population (S + L + Ip + In = N) is constant. Under this assumption
the susceptible compartment can be eliminated and the SLIpIn equations reduce to the
three-dimensional system:

L̇ = (1− α) β
N

[N − L− Ip − In](Ip + cIn)− αx β
N

(Ip + cIn)L+ (γpIp + γnIn)− (v + δ)L

İp = σ
[
α β
N

[N − (1− x)L− Ip − In](Ip + cIn) + vL
]

+ θIn − (γp + δ + δp)Ip

İn = (1− σ)
[
α β
N

[N − (1− x)L− Ip − In](Ip + cIn) + vL
]
− (γn + θ + δ + δn)In.

(2.6)

2.2.1 The Basic Reproduction Number

The basic reproduction number for the reduced SLIpIn equations can be calculated from
following the methods outlined by Driessche and Watmough in [16]; however as the nonlinear
flows entering the active TB compartments in the reduced SLIpIn model are proportionally
split between the SSpos and SSneg compartments, the calculation of the next generation
from (2.6) is unnecessary. As{

İp = 0

İn = 0
=⇒ In = (1− σ)(γp + δ + δp)

θ + σ(γn + δ + δn) Ip

by defining the constant

g = (1− σ)(γp + δ + δp)
θ + σ(γn + δ + δn) ,

(L, Ip, gIp) will be an equilibrium point of the reduced SLIpIn equations if and only if (L, Ip)
is an equilibrium point of the R2 dynamical system

L̇ = (1− α) β
N

[N − L− (1 + g)Ip](1 + cg)Ip − αx βN (1 + cg)IpL+ (γp + gγn)Ip − (v + δ)L

İp = σ
[
α β
N

[N − (1− x)L− (1 + g)Ip](1 + cg)Ip + vL
]

+ θgIp − (γp + δ + δp)Ip.

(2.7)

This means (2.6) and (2.7) undergo the transcritical bifurcation at R0 = 1 together, and as
a result the basic reproduction number of the reduced SLIpIn equations can be calculated
from (2.7).
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Linearizing (2.7) at the origin gives J = F − V where

F =

(
0 (1− α)(1 + cg)β
0 ασ(1 + cg)β

)
and V =

(
(v + δ) −(γp + gγn)
−σv (γp + δ + δp)− θg

)
.

Since V is a Z-sign pattern matrix (reference subsection 2.1.2), if all eigenvalues of V have
a positive real part then V will be a nonsingular M-matrix. As a result the origin would be
locally stable with respect to (2.7) if and only if ρ(FV−1) < 1.

Applying the Routh-Hurwitz stability criterion to the polynomial p(λ) = det(V + λI) gives
us that all roots of p(λ) must have a negative real part as

Tr(V) = (v + δ) + (γp + δ + δp)− θ
(1− σ)(γp + δ + δp)
θ + σ(γn + δ + δn)

= (v + δ) + (γp + δ + δp)
[

1− θ

θ + σ(γn + δ + δn) (1− σ)
]

> 0

and det(V) = (v + δ)[(γp + δ + δp)− θg]− σv(γp + gγn)

= (v + δ)
{

(γp + δ + δp)−
(
θ + σ

v

v + δ
γn

)
g − σ v

v + δ
γp

}
= (v + δ)(γp + δ + δp)

{
1−

[
(1− σ)

θ + σ v
v+δγn

σ(γn + δ + δn) + θ
+ σ

v

v + δ

γp
γp + δ + δp

]}
> 0.

This means all eigenvalues of V have a positive real part and as a result R0 can be determined
by calculating the spectral radius of FV−1. Since

FV−1 =
(

0 (1− α)(1 + cg)β
0 ασ(1 + cg)β

)
·

1
det(V)

(
(γp + δ + δp)− θg γp + gγn

σv (v + δ)

)
=

1
(v + δ)[(γp + δ + δp)− θg]− σv(γp + gγn)

(
σv(1− α)(1 + cg)β (1− α)(1 + cg)β(v + δ)
σ2vα(1 + cg)β (v + δ)ασ(1 + cg)β

)
.

is an 2× 2 matrix with det(FV−1) = 0,

R0 = ρ(FV−1) = Tr(FV−1)

= [v(1− α) + (v + δ)α]σ(1 + cg)β
(v + δ)[(γp + δ + δp)− θg]− σv(γp + δ + δp)

=
[

v

v + δ
(1− α) + α

] (1 + cg)σβ
(γp + δ + δp)− θg − σ v

v+δ (γp + gγn) .

12



2.2.2 Dynamic Analysis

To study the dynamic behaviour associated with the reduced SLIpIn equations (2.6), we
will assume individuals in the SSpos compartment are treated at the rate

γε = γp + θ + σ(γn + δ + δn)
σ

ε, (2.8)

where γε ≥ 0 and γp is fixed such that
σ(γp + δ + δp)

θ + σ(γn + δ + δn) = 1. (2.9)

By introducing the variable W = In − 1−σ
σ Ip,

Ẇ = −(γn + θ + δ + δn)In −
1− σ
σ

[θIn − (γε + δ + δp)Ip]

= −θ + σ(γn + δ + δn)
σ

In + 1− σ
σ

(γε + δ + δp)Ip

= −θ + σ(γn + δ + δn)
σ

In + 1− σ
σ

[
(γp + δ + δp) + θ + σ(γn + δ + δn)

σ
ε

]
Ip

= −θ + σ(γn + δ + δn)
σ

[
In −

1− σ
σ

(
σ(γp + δ + δp)

θ + σ(γn + δ + δn) + ε

)
Ip

]
= −θ + σ(γn + δ + δn)

σ

[
In −

1− σ
σ

(1 + ε)Ip
]

= −θ + σ(γn + δ + δn)
σ

[
W − ε1− σ

σ
Ip

]
.

Consequently when ε = 0, the {W = 0} plane is a global attractor for the reduced SLIpIn
equations. As

g = (1− σ)(γε + δ + δp)
θ + σ(γn + δ + δn) =

(1− σ) · θ+σ(γn+δ+δn)
σ

[
σ(γp+δ+δp)

θ+σ(γn+δ+δn) + ε
]

θ + σ(γn + δ + δn) = 1− σ
σ

(1 + ε),

conditioning ε = 0 is equivalent to conditioning g = 1−σ
σ . This means when ε = 0, the

restriction of the SLIpIn equations to the {W = 0} plane produces the R2 dynamic system
which was used to calculate the basic reproduction number. This breaks the dynamic
analysis into two separate scenarios: the case where ε = 0 and the case where ε 6= 0. In this
section we will study the LIpW equations

L̇ = (1− α) β
N

[
N − L−

(
1 + 1− σ

σ

)
Ip −W

]
·
[(

1 + c
1− σ
σ

)
Ip + cW

]
− αx β

N
L
[(

1 + c
1− σ
σ

)
Ip + cW

]
+ γεIp + γn

(
W + 1− σ

σ
Ip

)
− (v + δ)L

İp = σ
{
α
β

N

[
N − (1− x)L−

(
1 + 1− σ

σ

)
Ip −W

]
·
[(

1 + c
1− σ
σ

)
Ip + cW

]
+ vL

}
+ θ
(
W + 1− σ

σ
Ip

)
− (γε + δ + δp)Ip

Ẇ = −(γp + δ + δp)
[(1− σ

σ
− g
)
Ip +W

]
.

(2.10)

for both scenarios. Before these cases are studied we will introduce the physical relevant
region for the LIpW equations and discuss some preliminary results about the endemic
equilibrium points.
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The Physically Relevant Region and the Endemic Equilibrium Points

Since (L, Ip, In, N − L− Ip − In) ∈ R4
≥0 if and only if (L, Ip,W ) is contained in the set

Ωσ =
{

(L, Ip,W ) ∈ R2
≥0 × R

∣∣∣W + 1− σ
σ

Ip ≥ 0 and N − L−
(

1 + 1− σ
σ

)
Ip −W ≥ 0

}
,

Ωσ defines the physically relevant region for the LIpW equations.

Theorem 2.2.1. The physically relevant region Ωσ defines a compact trapping region for
the LIpW equations.

Proof. To prove Ωσ defines a compact trapping region for (2.10), we need to show that the
inward normal flow on ∂Ωσ is always positive.

Given a point (L, Ip,W ) ∈ ∂Ωσ,

If L = 0:

(1, 0, 0) · (L̇, İp, Ẇ ) = (1− α) β
N

≥0 because (L,Ip,W )∈Ω︷ ︸︸ ︷[
N −

(
1 + 1− σ

σ

)
Ip −W

] [(
1 + c

1− σ
σ

)
Ip + cW

]
+ γpIp + γn

(1− σ
σ

Ip +W
)
≥ 0,

If Ip = 0 then we must have W ≥ 0 and as a result:

(0, 1, 0) · (L̇, İp, Ẇ ) = σ
{
α
β

N
[N − (1− x)L−W ]cW + vL

}
+ θW ≥ 0,

If 1−σ
σ Ip +W = 0 then because

g(γp + δ + δp) = 1− σ
σ

(1 + ε)(γp + δ + δp)

= 1− σ
σ

(
1 + θ + σ(γn + δ + δn)

σ(γp + δ + δp)
ε

)
(γp + δ + δp)

= 1− σ
σ

[
(γp + δ + δp) + θ + σ(γn + δ + δn)

σ
ε

]
= 1− σ

σ
(γε + δ + δp)

we must have(
0, 1− σ

σ
, 1
)
· (L̇, İp, Ẇ ) = (1− σ)

{
α
β

N
[N − (1− x)L− Ip]Ip + vL

}
+
[
g(γp + δ + δp)−

1− σ
σ

(γε + δ + δp)
]
Ip

4
= (1− σ)

{
α
β

N
[N − (1− x)L− Ip]Ip + vL

}
≥ 0,

If N − L−
(
1 + 1−σ

σ

)
Ip −W = 0 then:(

−1,−
(

1 + 1− σ
σ

)
,−1

)
· (L̇, İp, Ẇ ) = −L̇−

(
1 + 1− σ

σ

)
İp − Ẇ

= −L̇− İp − İn
= δL+ (δ + δp)Ip + (δ + δn)In

14



Biologically this is an important result as it means any solutions with initial conditions in
Ωσ will remain in Ωσ for all time t ≥ 0.

As the LIpW equations are linear with respect to the L variable, the equilibrium points of
(2.10) correspond to the points(

(1− α)β(1+cg)
N

[N − (1 + g)Ip] + γε + gγn

[(1− α) + αx]β(1+cg)
N

Ip + (v + δ)
Ip, Ip,

(
g −

1− σ
σ

)
Ip

)

in the (L, Ip,W ) space where Ip solves{
σ

[
α(x− 1)

β(1 + cg)
N

Ip + v

]
L(Ip)
Ip

+ σα
β(1 + cg)

N
[N − (1 + g)Ip] + θg − (γε + δ + δp)

}
Ip = 0. (2.11)

Substituting L(Ip) into the above equation gives us that the equilibrium points are deter-
mined by the roots of the cubic equation[

A1

(
β(1 + cg)

N
Ip

)2
+B1

(
β(1 + cg)

N
Ip

)
+ C1

]
Ip = 0 (2.12)

where

A1 = −(1 + g)σαx

B1 = σαxβ(1 + cg)− σ(1 + g)(v + αδ) + σ(x− 1)α(γε + gγn) + [(1− α) + αx] · [θg − (γε + δ + δp)]

C1 = σβ(1 + cg)(v + αδ) + σv(γε + gγn) + (v + δ)[θg − (γε + δ + δp)]

= {(v + δ)[(γε + δ + δp)− θg]− σv(γε + gγn)}
(

σβ(1 + cg)(v + αδ)
(v + δ)[(γε + δ + δp)− θg]− σv(γε + gγn)

− 1
)

= {(v + δ)[(γε + δ + δp)− θg]− σv(γε + gγn)}︸ ︷︷ ︸
det(V)>0

·

( [
v
v+δ (1− α) + α

]
(1 + cg)σβ

(γε + δ + δp)− θg − σ v
v+δ (γε + gγn)

− 1

)
︸ ︷︷ ︸

R0−1

.

4g(γp + δ + δp) = 1−σ
σ

(ε+ 1)(γp + δ + δp) = 1−σ
σ

(γε + δ + δp)
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When R0 ≥ 1, |B1| ≤
√
B2

1 − 4A1C1 and as a result there can only be one endemic equilib-
rium point in R3

>0. When R0 ≤ 1 the number of equilibrium points in R3
>0 depends on the

sign of the B1 coefficient. By examining the case where R0 ≤ 1 we find that

.

R0 ≤ 1 =⇒ σαβ(1 + cg) ≤−
v

v + δ
(1− α)(1 + cg)σβ + (γε + δ + δp)− θg − σ

v

v + δ
(γε + gγn)

=⇒ B1 ≤ x

[
−
v(1− α)
v + δ

(1 + cg)σβ + (γε + δ + δp)− θg − σ
v

v + δ
(γε + gγn)

]
− σ(1 + g)(v + αδ)

− σ(1− x)α(γε + gγn) + [(1− α) + αx] · [θg − (γε + δ + δp)]

= x

[
−
v(1− α)
v + δ

(1 + cg)σβ − σ
v

v + δ
(γp + gγn)

]
− σ(1 + g)(v + αδ)

− σ (1− x)α(γε + gγn) + (1− α)(1− x) · [θg − (γε + δ + δp)] .

Consequently as (α, x) ∈ [0, 1] × [0, 1], when Ro ≤ 1 the LIpW equations will never have
endemic equilibrium points in R3

>0. Referring to the proof of the compact trapping region,
we showed that if (L, Ip,W ) ∈ ∂Ωσ\{0} then the inwards normal flow is never equal to zero.
As a result, when R0 > 1 the endemic equilibrium points of the LIpW equations must be
contained within the interior of Ωσ.

Global Stability When ε = 0

Under the condition that ε = 0, the W = 0 plane is invariant with respect the LIpW
equations and as a result the long term dynamics in this plane can be analyzed using the
Poincare-Bendixson Theorem and the Bendixson-Dulac Criterion. These are standard the-
orems for R2 dynamical systems which can be referenced in Perko [13, Chapter 3. Sections:
7 and 9].

Given that φ(t, ~x0) is the solution curve of an autonomous C1(Rn) system of ordinary
differential equations with the initial condition ~x = ~x0, then the forward trajectory of the
solution curve is defined to be the set of points

Γ+(~x0) = {~y ∈ Rn|~y = φ(t, ~x0) for some t ≥ 0}

and the ω−limit set of Γ+(~x0) is defined to be the set of point

ω(~x0) =
{
~p ∈ Rn

∣∣∣∣ There exists a sequence of times {tn}∞n=1 such that
lim
n→∞

tn = +∞ and lim
n→∞

φ(tn, ~x0) = ~p.

}
.

16



The Poincare-Bendixson Theorem for analytic systems states that if the R2 autonomous
analytic system

~̇x = f(~x) (2.13)

has a forward trajectory Γ+(~x0) which is contained in a compact subset F of R2, then
provided F only contains a finite number of critical points, ω(~x0) is either:

1) a critical point of (2.13),

2) a periodic orbit of (2.13),

or 3) a finite union of seperatrix cycles of (2.13)5

As Ωσ ∩ {W = 0} is a compact trapping region of the LIpW equations, given any ~x0 ∈
Ωσ ∩ {W = 0} then ω(~x0) must be a Poincare-Bendixson ω−limit set6 of (2.10). By using
the Poincare Dulac Criterion, we can further limit the possible ω−limit sets of any solution
starting with an initial condition in Ωσ ∩ {W = 0}.

The Poincare Bendixson Dulac Criterion states if there exists a function g(L, Ip) such that
∂L(L̇ · g) + ∂Ip(İp · g) is sign invariant over Int(Ωσ) ∩ {W = 0}, then this region will not
be able to contain any closed orbits. If a closed trajectory C with interior D existed within
Int(Ωσ) ∩ {W = 0}, then by Greens theorem

∫ ∫
D

(
d(gL̇)
dL

+ d(gİp)
dIp

)
dLdIp =

∮
C

g · (İpdL− L̇dIp).

Since the line integral on the right hand side vanishes, the volume integral must evaluate
to zero. This contradicts the fact that ∂L(L̇ · g) +∂Ip(İp · g) has a constant sign over D, and
as a result no closed orbits can exits within Int(Ωσ) ∩ {W = 0}.

5A seperatrix cycle is a continuous image of a circle which is composed of a finite number of critical points
{p1}ni=1 and a finite set of oriented orbits {φ(t, ~xi)}ni=1 such that for each ~xi:

lim
t→−∞

φ(t, ~xi) = pi and lim
t→+∞

φ(t, ~xi) =
{
pi+1 if i 6= n

p1 if i = n.

Examples:

•
p1

Homoclinic Cycle

•
p1

•
p2

Heteroclinic Cycle

61) a critical point, 2) a periodic orbit, or 3) a finite union of seperatrix cycles
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Theorem 2.2.2. When ε = 0
(

1−σ
σ = g

)
, (2.10) has a Dulac function over Int(Ωσ)∩{W =

0}7.

Proof. Let Fσ be the class of differentiable functions f : Int(Ωσ)∩{W = 0} → R which have
a constant sign. Since Fσ is closed under multiplication, if there exists a pair (c, h) ∈ Fσ×Fσ
such that (c, h) solves

L̇
∂h

∂L
+ İp

∂h

∂Ip
= h ·

(
c−
[
∂L̇

∂L
+ ∂İp
∂IP

])
(2.14)

then h is a Dulac function of (2.10). Since

∂L̇

∂L
+ ∂İp
∂Ip

=−
[

[(1− α) + αx]β(1 + cg)
N

Ip + (v + δ)
]

+ σ

{
α
β(1 + cg)

N
[N − (1− x)L− 2(1 + g)Ip]

}
+ θg − (γε + δ + δp)

by defining

c(L, I) = −
[

[(1− α) + αx]β(1 + cg)
N

Ip + (v + δ)
]
− σv L

Ip
− σαβ(1 + cg)

N
(1 + g)Ip,

c ∈ Fσ and moreover

c−
[
∂L̇
∂L

+ ∂İ
∂I

]
İp

= −
σ
{
αβ(1+cg)

N
[N − (1− x)L− (1 + g)Ip] + v L

Ip

}
+ θg − (γε + δ + δp)

İp

= − 1
Ip
.

If we now assume h = h(Ip), (2.14) gives us that

1
h

∂h

∂Ip
=
c−

[
∂L̇
∂L + ∂İp

∂Ip

]
İp

=⇒ ∂ ln(h)
∂Ip

= − 1
Ip

=⇒ h(Ip) = 1
Ip
.

Since h ∈ Fσ, h(Ip) = 1
Ip

is a Dulac function for the LIpW equation over Int(Ωσ)∩{W = 0}.

7This proof technique was introduced by Osvaldo Osuna et al. [12], and works for a large class of R2

compartmental disease models.
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Since Int(Ωσ)∩{W = 0} cannot support a closed orbit, given any ~x0 ∈ Ωσ ∩{W = 0} then
ω(~x0) is either

1) a critical point of (2.10)

or 2) a compound seperatrix cycle of (2.10) which contains the disease free equilibrium.

When R0 < 1 the disease free equilibrium is locally stable and as a result it will not be able
to support a compound seperatrix cycle. This means the disease free equilibrium is globally
stable in Ωσ ∩ {W = 0} whenever R0 < 1.

Because g = 1−σ
σ , by defining J0 to be the Jacobian matrix of the LIpW equations at

the disease free equilibrium,

det(J0) =

∣∣∣∣∣∣∣
∂L̇
∂L

∂L̇
∂Ip

∂L̇
∂W

∂İp
∂L

∂İp
∂Ip

∂İp
∂W

0 0 −(γp + δ + δp)

∣∣∣∣∣∣∣ = −(γp + δ + δp) det(F − V)

where F − V is the Jacobian matrix of the (2.7) at the origin. Now by factoring the V
matrix out of the determinant, we have that

det(J0) = −(γp + δ + δp) det(FV−1 − λI)
∣∣
λ=1

det(V)

= −(γp + δ + δp)(1−R0) det(V).

This shows the disease free equilibrium is a nondegenerate critical point whenever R0 6= 1.

Theorem 2.2.3. If R0 > 1, then the disease free equilibrium cannot support a compound
seperatrix cycle.

Proof. If the disease free equilibrium were to support a compound seperatrix cycle in Ωσ

when R0 > 1, then disease free equilibrium would have to be a nondegenerate saddle node.
This means that J0 must have eigenpairs (λ+, ~v+) with λ+ > 0 and (λ−, ~v−) with λ− < 0.

Moreover since Ωσ is a trapping region and since the disease free equilibrium is the only
critical point located on ∂Ωσ, the seperatrix cycle cannot leave Ωσ. This means we must
have ~v− ⊆ Ωσ.

Applying the Hartman-Grobman Theorem8 guarantees the existence of two open neigh-
bourhoods V and V ∗ of the origin and a homeomorphism h : V → V ∗ such that~x0 ∈ V

φ(~x0, t) ∈ V
=⇒ h ◦ φ(~x0, t) = eJ0th(~x0).

8This requires the equilibrium point to be nondegenerate.
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As ~v+ and ~v− are eigenvectors of J0, h−1(span{~v+, ~v−}) is an invariant manifold of the non-
linear LIpW equations, whose dynamics are completely determined by the linear subsystem

(
v̇+

v̇−

)
=
(
λ+ 0
0 λ−

)(
v+

v−

)

in V ∗.

As the disease free equilibrium is located at the corner of the physical region, the disease
free equilibrium must be a boundary point of both h(Ωσ)∩span{~v+} and h(Ωσ)∩span{~v−}.
From this there are only two configurations of h(Ωσ) in V ∗ that need to be considered.

~v−

~v+

h(Ω)

~v−

~v+

h(Ω)

In either case the global asymptotic stability of span{~v+} guarantees outflow on a section
of h(∂Ωσ). This contracts the fact that Ωσ is a trapping region.

As a result of the above theorem, the ω−limit set of any physical solution starting in
Ωσ ∩ {W = 0} must be a critical point of (2.10) whenever R0 > 1. This proves global
stability of the endemic equilibrium point in Ωσ ∩ {W = 0}\{0} when R0 > 1.
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Stability Results for the general LIpW model (ε 6= 0)

When ε 6= 0, the disease free equilibrium remains globally stable within Ωσ whenever R0 < 1.
This result follows from Chavez et. al. [2] who proved the global stability of the disease free
equilibrium for a general class of compartmental disease models. Since the reduced SLInIp
equations can be rewritten as  L̇

İp

İn

 = J0

L

Ip

In

− ~f(L, Ip, In)

where J0 is the Jacobian matrix at the disease free equilibrium and ~f(L, Ip,W ) > 0 for all
(L, Ip, In) ∈ {R3

≥0|L+ Ip + In ≤ N} (this is the trapping region for the SLIpIn equations),
the variation of parameters formula gives:L(t)

Ip(t)
In(t)

 = eJ0t

L(0)
Ip(0)
In(0)

− ∫ t

0
e(t−s)J0 ~f(L(s), Ip, (s),W (s))ds.

Since −J0 is a nonsingular M-matrix when R0 < 1, etJ0 is a nonnegative matrix. and as a
result for all times t ≥ 0, 0

0
0

 ≤
L(t)
Ip(t)
In(t)

 ≤ eJ0t

L(0)
Ip(0)
In(0)

 .

Hence the disease free equilibrium will be globally stable inside the physically relevant re-
gion whenever R0 ≥ 1.

To determine the stability of the endemic equilibrium point for general values of ε 6= 0
we need to determine when all eigenvalues of the Jacobian matrix

J =


∂L̇
∂L

∂L̇
∂Ip

∂L̇
∂W

∂İp
∂L

∂İp
∂Ip

∂İp
∂W

∂Ẇ
∂L

∂Ẇ
∂Ip

∂Ẇ
∂W

 (2.15)

have a negative real part. As J has the characteristic equation

det(J − λI) = −λ3 + c2λ
2 − c1λ+ c0 where


c0 = det(J)

c1 =

∣∣∣∣∣J11 J12

J21 J22

∣∣∣∣∣+

∣∣∣∣∣J11 J13

J31 J33

∣∣∣∣∣+

∣∣∣∣∣J22 J23

J32 J33

∣∣∣∣∣
c2 = Trace(J),

(2.16)

all eigenvalues of J will have a negative real part if and only if: c0 < 0, c2 < 0, and c1c2 <

c0. These are the three Routh-Hurwitz stability conditions for the above characteristic
polynomial. Because of the number of coefficients in this model, it is too cumbersome to
determine the local stability of the endemic equilibrium points.
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Theorem 2.2.4. When ε ≥ 0, the endemic equilibrium point will exchange stability with
the disease free equilibrium as R0 passes through one. Moreover if R0 ≥ 1:

1) the trace of the Jacobian matrix (2.15) will be negative whenever ε ≥ 0,

and 2) the determinant of the Jacobian matrix (2.15) will be negative regardless of ε.

Proof. By defining J to be the Jacobian matrix (2.15) and det(J−λI) = −λ3+c2λ
2−c1λ+c0

it follows that,

c1 =

∣∣∣∣∣∣∣
∂L̇
∂L

∂L̇
∂Ip

(
1−σ
σ
− g
)
∂L̇
∂W

∂İp
∂L

∂İp
∂Ip

(
1−σ
σ
− g
)
∂İp
∂W

0 −(γp + δ + δp) −(γp + δ + δp)

∣∣∣∣∣∣∣ = −(γp + δ + δp)

∣∣∣∣∣∣∣∣
∂L̇
∂L

[
∂

∂Ip
−
(

1−σ
σ
− g
)
∂
∂W

]
L̇

∂İp
∂L

[
∂

∂Ip
−
(

1−σ
σ
− g
)
∂
∂W

]
İp

∣∣∣∣∣∣∣∣ .
Since the LIpW equations were created by making the substituting In = 1−σ

σ Ip −W into
the reduced SLIpIn model, the W terms in the L̇ and İp equation always appear in the
linear combination: 1−σ

σ Ip −W . Now since

1− σ
σ

Ip −W
∣∣∣
W=(g− 1−σ

σ )Ip
= gIp and

[
∂

∂Ip
−
(1− σ

σ
− g
)
∂

∂W

](1− σ
σ

Ip −W
)

= ∂

∂Ip
gIp,

at the endemic equilibrium point det(J) = −(γp + δ+ δp) det(J∗) where J∗ is the Jacobian
matrix of the R2 system:{

L̇ = (1− α)β(1+cg)
N

[N − L− (1 + g)Ip]Ip + (γε + γng)Ip − (v + δ)L

İp = σ
{
αβ(1+cg)

N
[N − L− (1 + g)Ip]Ip + vL

}
+ θgIp − (γε + δ + δp)Ip.

(2.17)

As the (2.17) is the restriction of the LIpW equation to W =
(
g − 1−σ

σ

)
Ip plane, at the

endemic equilibrium point we haveL = (1−α) β(1+cg)
N

[N−(1+g)Ip]+γε+gγn
[(1−α)+αx] β(1+cg)

N
Ip+(v+δ)

IP

σ
[
α(x− 1)β(1+cg)

N
Ip + v

]
L
Ip

+ σαβ(1+cg)
N

[N − (1 + g)Ip] + θg − (γε + δ + δp) = 0,
(2.18)

and consequently

det(J∗) =

∣∣∣∣−[(1− α) + αx]β(1+cg)
N

Ip − (v + δ) (1− α)β(1+cg)
N

[N − L− 2(1 + g)Ip]− αxβ(1+cg)
N

L+ γε + gγn

σα(x− 1)β(1+cg)
N

Ip + σv σα
β(1+cg)

N
[N − (1− x)L− 2(1 + g)Ip] + θg − (γε + δ + δp)

∣∣∣∣
=

∣∣∣∣−[(1− α) + αx]β(1+cg)
N

Ip − (v + δ) (1− α)β(1+cg)
N

[N − (1 + g)Ip] + γε + gγn

σα(x− 1)β(1+cg)
N

Ip + σv σα
β(1+cg)

N
[N − (1 + g)Ip] + θg − (γε + δ + δp)

∣∣∣∣
+ σ

∣∣∣∣−[(1− α) + αx]β(1+cg)
N

Ip − (v + δ) −(1− α)β(1+cg)
N

[L+ (1 + g)Ip]− αxβ(1+cg)
N

L

α(x− 1)β(1+cg)
N

Ip + v −αβ(1+cg)
N

[L+ (1 + g)Ip] + αx
β(1+cg)

N
L

∣∣∣∣
9
= σ

∣∣∣∣−[(1− α) + αx]β(1+cg)
N

Ip − (v + δ) −(1− α)β(1+cg)
N

[L+ (1 + g)Ip]− αxβ(1+cg)
N

L

α(x− 1)β(1+cg)
N

Ip + v −αβ(1+cg)
N

[L+ (1 + g)Ip] + αx
β(1+cg)

N
L

∣∣∣∣
= σ

{[
αx

β(1 + cg)
N

Ip + (v + αδ)
]
β(1 + cg)

N
[L+ (1 + g)Ip]−

[
αx

β(1 + cg)
N

Ip + αxδ

]
β(1 + cg)

N
L

}
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Since αxδ < v + δ, it follows that det(J) < 0 whenever R0 > 1. This analysis also shows
that the sign of det(J) changes as R0 passes through one.

Provided that ε ≥ 0, then if R0 ≥ 1 it follows that

c2 = −[(1− α) + αx]
β

N

[(
1 + c

1− σ
σ

)
Ip + cW

]
− (v + δ)

+ σα
β

N

[
N − (1− x)L− 2

(
1 +

1− σ
σ

)
Ip −W

](
1 + c

1− σ
σ

)
− σα

β

N
c

(
1 +

1− σ
σ

)
W

+ θ
1− σ
σ
− (γε + δ + δp)− (γp + δ + δp)

= −[(1− α) + αx]
β

N

[(
1 + c

1− σ
σ

)
Ip + cW

]
− α

β

N

[(
1 + c

1− σ
σ

)
Ip + cW

]
+ σα

β

N

[
N − (1− x)L−

(
1 +

1− σ
σ

)
Ip −W

](
1 + c

1− σ
σ

)
+ θ

1− σ
σ
− (γε + δ + δp)

− (γp + δ + δp)− (v + δ)

10
= −[(1− α) + αx]

β

N

[(
1 + c

1− σ
σ

)
Ip + cW

]
− α

β

N

[(
1 + c

1− σ
σ

)
Ip + cW

]
− σ
{
α
β

N

[
N − (1− x)L−

(
1 +

1− σ
σ

)
Ip −W

]
c
W

Ip
+ v

L

Ip

}
− θ

W

Ip

− (γp + δ + δp)− (v + δ)

= −(1 + αx)
β(1 + cg)

N
Ip − σ

{
α
βc

N
[N − (1− x)L− (1 + g)Ip]

(
g −

1− σ
σ

)
+ v

L

Ip

}
− θ
(
g −

1− σ
σ

)
− (γp + δ + δp)− (v + δ)

< 0.

9By factoring −
(
[(1− α) + αx]β(1+cg)

N
+ (v + δ)

)
out of the top row in the first determinant, the a12

entry becomes − L
IP

. As a result the evaluation of this determinant produces the second equation from
(2.18).

10Using the fact that İp = 0 (2.10).
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When R0 = 1, [
v

v + δ
(1− α) + α

]
σβ(1 + cg) = (γε + δ + δp)− θg − σ

v

v + δ
[γε + gγn]

and consequently

c1 =

∣∣∣∣∣ ∂L̇∂L ∂L̇
∂Ip

∂İp
∂L

∂İp
∂Ip

∣∣∣∣∣+

∣∣∣∣∣ ∂İp
∂Ip

∂İp
∂W

−
(

1−σ
σ
−m

)
(γp + δ + δp) −(γp + δ + δp)

∣∣∣∣∣+

∣∣∣∣ ∂L̇∂L ∂L̇
∂W

0 −(γp + δ + δp)

∣∣∣∣
=

∣∣∣∣∣ ∂L̇∂L ∂L̇
∂Ip

∂İp
∂L

∂İp
∂Ip

∣∣∣∣∣− (γp + δ + δp)
{
∂L̇

∂L
+
[
∂

∂Ip
−
(1− σ

σ
− g
)

∂

∂W

]
İp

}

=

∣∣∣∣−(v + δ) (1− α)β
(

1 + c 1−σ
σ

)
+ γε + γn

1−σ
σ

σv σαβ
(

1 + c 1−σ
σ

)
+ θ 1−σ

σ
− (γε + δ + δp)

∣∣∣∣
− (γp + δ + δp) {−(v + δ) + σαβ(1 + cg) + θg − (γε + δ + δp)}

=

∣∣∣∣−(v + δ) (1− α)β
(

1 + c 1−σ
σ

)
+ γε + γn

1−σ
σ

σv σαβ
(

1 + c 1−σ
σ

)
+ θ 1−σ

σ
− (γε + δ + δp)

∣∣∣∣
− (γp + δ + δp)

{
−(v + δ)−

v

v + δ
(1− α)β(1 + cg)−

v

v + δ
[γε + gγn]

}

>

∣∣∣∣−(v + δ) (1− α)β
(

1 + c 1−σ
σ

)
+ γε + γn

1−σ
σ

σv σαβ
(

1 + c 1−σ
σ

)
+ θ 1−σ

σ
− (γε + δ + δp)

∣∣∣∣
=

∣∣∣∣−(v + δ) (1− α)β (1 + cg) + γε + gγn

σv σαβ (1 + cg) + θg − (γε + δ + δp)

∣∣∣∣+

∣∣∣∣−(v + δ) [(1− α)cβ + γn]
(

1−σ
σ
− g
)

σv [σαβc+ θ]
(

1−σ
σ
− g
) ∣∣∣∣

=
(
g −

1− σ
σ

) ∣∣∣∣(v + δ) (1− α)cβ + γn

−σv σαβc+ θ

∣∣∣∣
If ε ≥ 0 and R0 = 1,

c0 = 0 and

c1 < 0

c1c2 − c0 < 0.

This guarantees that c1 and c1c2 − c0 are both less than zero in some neighbourhood of
R0 = 1. Since the sign of c0 flips as R0 passes through one, the endemic equilibrium point
will exchange stability with the disease free equilibrium whenever ε ≥ 0.
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The above analysis shows that as R0 passes through one the LIpW equations exhibits a
transcritical bifurcation. The bifurcation diagram for the transcritical bifurcation is illus-
trated in Figure (2.3). The solid red line indicates the equilibrium point is local stability
and the dashed blue line indicates the equilibrium point is unstable. It should be noted the
local stability of the endemic equilibrium point is only known in a neighbourhood of the
transcritical bifurcation.

Ip

Ip = 0 R0•
R0 = 1

Figure 2.3: The transcritical bifurcation

25



2.3 The TIME Model

The Tuberculosis Incidence and Mortality Estimates (TIME) model is a compartmental
disease model which was developed for the Spectrum modelling suite to help make disease
burden predictions [8]. The TIME model separates the population into fifteen different
compartments to capture a more realistic view of TB control measures. The latent and
active TB compartments are both stratified by treatment history and multi-drug resistance
(MDR) status. This model also makes the distinction between sputum smear positive
(SSpos) and sputum smear negative (SSneg) infections.

Drug Resistant Status Compartments Symbol
Susceptible S

Drug Susceptible Latent Treatment Naive LSN
(treatable with first line
drugs)

Latent Previously Treated LSP

Active Smear Positive Treatment Naive ISN
Active Smear Positive Previously Treated ISP
Active Smear Negative Treatment Naive NSN
Active Smear Negative Previously Treated NSP

Multi-Drug Resistant MDR Latent Treatment Naive LMN
(Resistant to both Ri-
fampicin

MDR Latent Previously Treated LMP

and Isoniazid) MDR Active Smear Positive Treatment Naive IMN
MDR Active Smear Positive Previously Treated IMP
MDR Active Smear Negative Treatment Naive NMN
MDR Active Smear Negative Previously Treated NMP

Table 2.2: The TIME model compartments

Figure 2.4 illustrates the basic flow between the various compartments of the TIME model.
It should be noted that this figure does not include the cross reinfections in the TIME model
between the drug susceptible and multi-drug resistant strains.

As in the sputum smear model, the TIME model assumes that TB is transmitted by SSpos
and SSneg individuals with a standard incidence force of infection. Drug susceptible sputum
smear positive individuals have an infectivity rate of β sufficient contacts per year, whereas
drug susceptible individuals with sputum smear negative TB have a reduced infectivity rate
of βc sufficient contacts per year. The infectiousness of the MDR strain is reduced by the
relative fitness parameter ζ. This mean that at any time t the infection rates for the drug
susceptible and MDR populations are defined to be

λS = β(ISN + ISP ) + βc(NSN +NSP )
Tpop

and λM = β(IMN + IMP ) + βc(NMN +NMP )
Tpop

ζ

respectively where Tpop is defined to be the size of the total population.
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To capture the high variability in the latent progression rate the TIME model assumes
α · 100 percent of all infections proceed directly into the active TB compartments while the
other (1−α) ·100 percent of infections proceed into the respective latent compartments. In-
dividuals with latent tuberculosis are assumed to have acquired a partial immunity against
reinfection and as a result they may undergo exogenous reinfection. The degree of protec-
tion offered by a latent infection is determined by the parameter x11.

As in the sputum smear model, σ ·100 percent of all individuals entering the active TB com-
partments develop a sputum smear positive infection, while the other (1− σ) · 100 percent
develop a sputum smear negative infection. The TIME model also assumes that individuals
in the sputum smear negative compartments convert to the sputum smear positive com-
partments at the rate θ regardless of treatment history or drug resistant status.

In the TIME model individuals may undergo cross reinfection between the drug suscep-
tible and MDR strains from the latent compartments. The degree of protection offered by
a latent infection is also assumed to protect individuals against cross reinfections. If a drug
susceptible latent individual makes sufficient contact with someone with active MDR but
they do not proceed into the MDR active TB compartment, it is assumed they have an
ι · 100 percent chance of developing latent MDR TB where ι ≡ ζ

ζ+1 . Similarly if an MDR
latent individual makes sufficient contact with an active drug susceptible TB individual but
they do not proceed into the drug susceptible TB compartment, it is assumed they have a
(1− ι) · 100 percent chance of developing latent drug susceptible TB. The cross reinfections
between drug susceptible TB and MDR TB are illustrated in Figure 2.5.

Individuals who are infected with active TB may spontaneously recover back into the latent
phase. This self-recovery is assumed to occur at the same rate r for all individuals with
active TB. The TIME model also assumes treatment naive latent individuals develop active
TB, independently from secondary reinfection events, at the rate v (the latent progression
rate) and that previously treated latent individuals relapse back into the active TB phase
at the rate v0.

Regardless of treatment history or drug resistance status, sputum smear positive and spu-
tum smear negative individuals are diagnosed at the respective rates of γ and dγ. The initial
diagnostic tests are assumed to only identify people as having active TB. To determine if
a diagnosed cases has MDR TB the individual must take a drug susceptibility test (DST)
which has a known specificity SpM , and a known sensitivity SeM 12. The TIME model also

11Therefore, only α(1 − x) · 100 percent of the exogenous reinfections proceed onto the active TB com-
partments.

12The specificity of a test is defined to be the percentage of negative cases which are correctly diagnosed.
The sensitivity of a test is defined to be the percentage of positive cases which are correctly diagnosed.
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Figure 2.4: The flow diagram for the TIME model

Latent Drug
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λS(1− x)(1− α)(1− ι)LM

λM (1− x)αLS

λS(1− x)αLM

Figure 2.5: Cross reinfections in the TIME model

assumes the proportion of diagnosed cases which take a DST is dependent on the treatment
history so that ΨN · 100 percent of treatment naive cases and ΨP · 100 percent of the previ-
ously treated cases take a DST. Individuals who test positive for MDR TB are linked onto
second line care with the probability of ηM · 100 and everyone else is linked onto first line
care with the probability of ηS · 100 (this includes individuals who have not taken a DTS).

Compartments First Line Care Second Line Care
Tr. Naive. FSN = [ΨNSpM + (1−ΨN )] · ηS SSN = [ΨN (1− SpM )] · ηM
Prev. Tr. FSP = [ΨPSpM + (1−ΨP )] · ηS SSP = [ΨP (1− SpM )] · ηM
MDR Tr. Naive FMN = [ΨN (1−SeM )+(1−ΨN )]·ηS SMN = [ΨNSeM ] · ηM
MDR Prev. Tr. FMP = [ΨP (1−SeM )+(1−ΨP )]·ηS SMP = [ΨPSeM ] · ηM

Table 2.3: Proportion of cases linked onto first and second line care

First line treatment with Rifampicin or Isoniazid for drug susceptible TB is assumed to have
a treatment success rate of τn · 100 percent for treatment naive individuals and τp · 100 for
previously treated individuals13. When first line care is used on an MDR patient, then the
treatment success rates drop by (1−Rn) ·100 percent. Second line treatment is assumed to

13The TIME model originally assumed that drug susceptible individuals were treated at the same rate
regardless of treatment history. As this information was provided by the WHO, the TIME model was altered
to include different treatment naive and previously treated treatment success rates.
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have a treatment success rate of τm · 100 percent regardless the patients treatment history.
The TIME model also assumes that because of the genetic instability of TB, ξ · 100 percent
of all drug susceptible cases treated with first line drugs will develop MDR TB.

This model assumes no vertical transmission TB so all births Λ(t) are born into the sus-
ceptible compartment. Everyone is assumed to die at the natural death rate δ. Individuals
with SSpos and SSneg TB die at the respective rates δ+ δp and δ+ δn, where δp and δn are
the death rates due to SSpos and SSneg TB.

Non-MDR Compartments



dS

dt
= Λ(t)− (λS + λM + u)S

dLSN
dt

=−
(
v + λS(1− x)a+ λM (1− x)[a+ (1− a)ι] + δ

)
LSN + r(ISN +NSN )

+ λS(1− x)(1− a)(1− ι)LMN + λS(1− a)S

dISN
dt

= σ

(
[v + λS(1− x)a]LSN + λSa(1− x)LMN + λSaS

)
+ θNSN

− (δ + δI + r)ISN − (FSN + SSN )γISN

dNSN
dt

=(1− σ)
(

[v + λS(1− x)a]LSN + λSa(1− x)LMN + λSaS

)
− (r + θ + δ + δN )NSN − (FSN + SSN )dγNSN

dLSP
dt

=−
(
v0 + λS(1− x)a+ λM (1− x)[a+ (1− a)ι] + δ

)
LSP + r(ISP +NSP )

+ λS(1− x)(1− a)(1− ι)LMP
+ [FSP (1− ξ)τS + SSP τM ](γISP + dγNSP ) + [FSN (1− ξ)τS + SSN τM ](γISN + dγNSN )

dISP
dt

= σ

(
[v0 + λS(1− x)a]LSP + λS(1− x)aLMP

)
+ θNSP

+ [FSN (1− ξ)(1− τS) + SSN (1− τM )]γISN

− (r + δ + δI)ISP−
(
FSP [ξ + (1− ξ)τS ] + SSP τM

)
γISP

dNSP
dt

= (1− σ)
(

[v0 + λS(1− x)a]LSP + λS(1− x)aLMP

)
+ [FSN (1− ξ)(1− τS) + SSN (1− τM )]dγNSN

− (r + θ + δ + δN )NSP−
(
FSP [ξ + (1− ξ)τS ] + SSP τM

)
dγNSP
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dLMN
dt

=−
(
v + λM (1− x)a+ λS(1− x)[α+ (1− a)(1− ι)] + δ

)
LMN + r(IMN +NMN )

+ λM (1− x)(1− a)ιLSN + λM (1− a)S

dLMP
dt

=−
(
v0 + λM (1− x)a+ λS(1− x)[α+ (1− a)(1− ι)] + δ

)
LMP + r(IMP +NMP )

+ λM (1− a)(1− x)ιLSP
+ (FMP τSR+ SMP τM )(γIMP + dγNMP ) + (FMN τSR+ SMN τM )(γIMN + dγNMN )

dIMN
dt

=σ
(

[v + λM (1− x)a]LMN + λM (1− x)aLSN + λMaS

)
+ θNMN

− (FMN + SMN )γIMN − (r + δ + δI)IMN

dIMP
dt

=σ
(

[v0 + λM (1− x)a]LMP + λM (1− x)aLSP

)
+ θNMP

+ [FMN (1− τSR) + SMN (1− τM )]γIMN + ξ(FSN γISN + FSP γISP )

− (FMP τSR+ SMP τM )γIMP − (r + δ + δI)IMP

dNMN
dt

=(1− σ)
(

[v + λM (1− x)a]LMN + λM (1− x)aLSN + λMaS

)
− (FMN + SMN )dγNMN − (r + θ + δ + δN )NMN

dNMP
dt

=(1− σ)
(

[v0 + λM (1− x)a]LMP + λM (1− x)aLSP

)
+ [FMN (1− τSR) + SMN (1− τM )]dγNMN + ξ(FSN dγNSN + FSP dγNSP )

− (FMP · τSR+ SMP τM )dγNMP − (r + θ + δ + δN )NMP
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Parameter Definition
β Standard incidence rate of SSpos individuals (per year)
c Relative infectiousness of SSneg individuals
ζ Relative fitness of the MDR Strain
x Degree of protection provided by a latent infection
α Proportion of infections that immediately develop active TB
v Latent progression rate (per year)
v0 Relapse rate (per year)
σ Proportion of people entering the active TB states who develop SSpos TB
θ Sputum smear conversion rate
γ SSpos treatment rate (per year)
d Relative treatment rate of SSneg individuals (per year)
ηS Proportion of diagnosed drug susceptible cases linked onto care
ηM Proportion of diagnosed MDR cases linked onto care
ΨN Proportion of treatment naive cases that take a DST
ΨP Proportion of previously treated cases that take a DST
SpM Specificity of the drug susceptibility test
SeM Sensitivity of the drug susceptibility test
δ Natural death rate (per year)
δI SSpos death rate (per year)
δN SSneg death rate (per year)

Λ(t) Birth Rate

Table 2.4: The TIME model parameters

2.3.1 Screening Rates

To understand how screening rates for the active TB populations depend on the various
parameters in the TIME model we need to consider a joint exponential process which
models individuals leaving a compartment through different processes. Given Y1, Y2, . . . , Yn

are independent exponential random variables which respectively determines the time until
an individual leaves the compartment through process i (i=1,2,. . . ,n), we would like to
calculate the mean time an individual spends in the compartment conditioned on the fact
that they leave through treatment. By defining Yi ∼ exp(µi) for each i, the random variable
Xk = min

i 6=k
(Yi) will have the cumulative distribution function:

FXk (x) = P (Xk ≤ x) = 1− P (Xk > x) = 1−
n∏
i 6=k

P (Yi > x) = 1− e
−

n∑
i6=k

µix

and as a result Xk ∼ exp
(

n∑
i 6=k

µi

)
. It now follows that

P (Yk = min(Y1, . . . , Yn)) = P (Yk ≤ Xk)

=

y∫
0

+∞∫
y

µke
−µky ·

(
n∑
i 6=k

µi

)
e
−
(∑n

i6=k
µi

)
x
dxdy = µk

µ1 + µ2 + · · ·+ µn
.
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If Y :=
n∏
i=1

Yi, then by definition the indicator function

I(a, b) =

1 if a ≤ b

0 otherwise

we have

E[Y |I(Yk, Xk) = 1] =
+∞∫
0

yk
fY,I(yk,Xk)(yk)
P (Yk ≤ Xk) dyk

= µ1 + µ2 + · · ·+ µn
µk

·
+∞∫
0

ykµke
−µkyk

 n∏
i6=k

+∞∫
yk

µie
−µiyidyi

 dyk

= µ1 + µ2 + · · ·+ µn
µk

·
+∞∫
0

ykµke
−(µ1+µ2+···+µn)ykdyk

= 1
µ1 + µ2 + · · ·+ µn

.

Therefore the mean time an individual spends in the compartment conditioned on the fact
that they leave through treatment will always be one over the sum of the outflow rates. To
ensure a population is being diagnosed at the desired average rate, the individuals in the
population must be screened for TB at twice the conditional mean time.

Table 2.3.1 shows the required screening rates for the drug susceptible treatment naive
and previously treated active TB populations in the TIME model under the assumption of
perfect DSTs14. As an individual’s smear status is unknown before they are tested, a convex
combination of the SSpos and SSneg screening rates was used to obtain the screening rate
for the combined population.

Compartment Conditional mean time (years) Screening rate (tests per person per year)
ISN

1
r+γηs+δ+δI r+γηs+δ+δI

2 σ + r+θ+dγηs+δ+δN
2 (1− σ)

NSN
1

r+θ+dγηs+δ+δN

ISP
1

r+γηs[ξ+(1−ξ)τp]+δ+δI
r+γηs[ξ+(1−ξ)τp]+δ+δI

2 σ

+ r+θ+dγηs[ξ+(1−ξ)τp]+δ+δN
2 (1−σ)NSP

1
r+θ+dγηs[ξ+(1−ξ)τp]+δ+δN

Table 2.5: Screening rates for the drug susceptible active TB populations

14This assumes the drug susceptibility tests have a specificity of SpM = 1 and a sensitivity of SeM = 1.
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Compartment Conditional mean time (years) Screening rate (tests per person per year)
IMN

1
r+γ[(1−ΨN )ηs+ΨNηm]+δ+δI

r+γ[(1−ΨN )ηs+ΨNηm]+δ+δI
2 σ

+ r+θ+dγ[(1−ΨN )ηs+ΨNηm]+δ+δN
2 (1−σ)NMN

1
r+θ+dγ[(1−ΨN )ηs+ΨNηm]+δ+δN

IMP
1

r+γ[(1−ΨP )ηsRnτp+ΨP ηmτm]+δ+δI
r+γ[(1−ΨP )ηsRnτp+ΨP ηmτm]+δ+δI

2 σ

+ r+θ+dγ[(1−ΨP )ηsRnτp+ΨP ηmτm]+δ+δN
2 (1−σ)NMP

1
r+θ+dγ[(1−ΨP )ηsRnτp+ΨP ηmτm]+δ+δN

Table 2.6: Screening rates for the MDR active TB populations

2.4 Model Summary

In this chapter we introduced the sputum smear TB model and the TIME compartmental
disease model which is an expansion of the sputum smear model that incorporates treat-
ment history and drug resistance.

The size and structure of the sputum smear model allowed us to derive analytical results
pertaining to the global dynamics of the system. We proved the disease free equilibrium
of the SLIpIn model was global stable when R0 < 1. We were also able to prove global
stability of the unique endemic equilibrium point when R0 > 1 under an exact parameter
constraint. However since the sputum smear model does not included treatment history or
drug resistant status, it does not have enough detail to analyze treatment strategies.

In the next chapter we will calibrate the TIME model to the HIV negative TB endemic in
South Africa. This calibration will be used to examine incidence and mortality reduction
targets set by the World Health Organization.
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Chapter 3

South Africa

3.1 Modelling the Underlying HIV Negative TB Endemic

Co-infection with HIV drastically effects the population dynamics of tuberculosis. Because
HIV is highly prevalent in South Africa, modelling TB requires an understanding of how
the HIV positive and HIV negative TB endemics interact. Upon infection individuals with
HIV progress rapidly progress into the active TB phase and without treatment 90%-95%
would die within a few months [6]. Since individuals with HIV have a much higher chance of
developing sputum smear negative TB [10], on average they will generate far few infections.

In The Population Biology of Tuberculosis, Christopher Dye fits a TB model stratified by
HIV status to time series data of the HIV TB endemics in South Africa [4, Chapter 6]. The
model fits of the time series data in Figure 3.1 indicates a large growth in HIV positive TB
cases since 1990, but only a slight increase to the HIV negative TB case. Dye found the
HIV positive TB epidemic had a basic reproduction number of 0.43. This indicates that
the HIV positive TB incidence could be decreased by decreasing the prevalence of TB in
the HIV negative population. Corbett et. al. [5] found similar TB incidence trends in the
South African gold mines. They observed that the TB incidence in the HIV negative worker
population remained constant even as the TB incidence double among HIV positive workers.

In this chapter we will use the TIME model to analyze care and control strategies for
the underlying HIV negative TB endemic in South Africa. To model the endemic we as-
sume the dynamics of the HIV negative TB endemic are independent from the HIV positive
population. Moreover, we also assume the HIV negative population is in a quasi-static
state, so that any changes to the HIV negative population will not effect the TB dynamics.
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little more often than, HIV- negative cases. In contrast older, HIV- positive TB 
cases are found in clusters more frequently than HIV- negative cases (Houben 
et al. 2009, 2011).

Because genotypes change by mutation, selection and drift (Chapter 5), genetic 
similarity is a measure of proximity in time and its correlate, distance in space. 
The model in Figure 6.5 takes South Africa to be a closed, homogenously mix-
ing population and, therefore, has nothing to say about spatial genetic variation. 
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Figure 6.5. Anatomy of a TB-HIV epidemic, illustrated with reference to South 
Africa.

A. The rise in TB cases/100,000 population/year, depicted by case reports 
(points) and model calculations (lines) and separating HIV-positive (grey) and 
negative (black) cases.
B. The proportion of TB cases that is HIV-positive in model (line) and data 
(points).
C. HIV-positive (grey) and negative (black) cases disaggregated by etiologi-
cal origin.
D. As in (A), but for TB deaths. The TB-HIV model is an extension of the 
standard model in Appendix 2. MTB = M. tuberculosis. Data from WHO (World 
Health Organization 2013a). 

Figure 3.1: Time series model fits for the HIV positive and HIV negative TB endemics in
South Africa [4, Chapter 6. Reproduced with permission of Princeton University Press]

Some of the TIME model parameters were provided in the TIME technical appendix. To
determine the unknown parameters two computations were performed. The first compu-
tation solved a pair of algebraic equations which were based on the case fatality ratios to
determine the TB death rates. The second computation minimized a nonlinear objective
function to calibrate the remaining 13 parameters at equilibrium to 17 data points from
the 2012 HIV negative TB endemic in South Africa. This optimization used Matlab’s sim-
ulated annealing algorithm [11] to locate the basin of attraction for the global minimum.
As the simulated annealing algorithm only converges as t→∞, this algorithm will not find
the global minimum in finite time. Consequently once the simulated annealing algorithm
terminated, Matlab’s pattern search algorithm was used to locate the basin minimum.

3.1.1 Estimation of TB Death Rates

The least squares objective function (3.1) was used to calibrate the SSpos and SSneg death
rates (δI and δN ) against the case fatality ratios for the sputum smear positive and sputum
smear negative populations in the absence of treatment.

The case fatality ratio measures the proportion of deaths which occur in a given com-
partment over the course of the disease. If µj is the mean time an individual spends in a
compartment j over the course of the disease and δj is the death rate attributed to individ-
uals in compartment j, then at equilibrium the case fatality ratio for that compartment is
µjδj .

To approximate the mean time spent in the SSpos and SSneg compartments in the ab-
sence of treatment, we neglect the bilinear transmission terms and consider the finite state
Markov chain in Figure 3.2. As the population of the Markov chain scales to infinity then
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the average flows between the compartments will match the sputum smear model solution
neglecting reinfection (assuming the degree of protection offered by a latent infection is
100%).

Latent

SSneg SSposθ
r+θ+δ+δN

r
r+θ+δ+δN

r
r+δ+δI

σ v
v+δ(1− σ) v

v+δ

latent
progression

latent
progression

self-cure self-cure

smear conversion

Figure 3.2: The sputum smear Markov Chain for treatment naive individuals in the absence
of treatment.

Calculating the expected mean times spent in the SSpos compartment gives,

µI = 1
r + δ + δI

·

[
1 +

∞∑
n=1

P{Returning n times to the SSpos compartment}

]

= 1
r + δ + δI

·

[
1 +

∞∑
n=1

(
P
{Transitioning from

SSpos to latent
}
· P
{Transitioning from

latent to SSpos
})n]

1
= 1
r + δ + δI

·

[
1 +

∞∑
n=1

(
r

r + δ + δI
·

v
v+δ

[
σ + (1− σ) θ

r+θ+δ+δN

]
1− (1− σ) v

v+δ
r

r+θ+δ+δN

)n]
= 1
r + δ + δI

· 1

1− r
r+δ+δI

·
v
v+δ

[
σ+(1−σ) θ

r+θ+δ+δN

]
1−(1−σ) v

v+δ
r

r+θ+δ+δI

Similarly the mean time spent in the SSneg compartment is,

µN = 1
r + θ + δ + δN

·

[
1 +

∞∑
n=1

(
r + θ r

r+δ+δI
r + θ + δ + δN

·
(1− σ) v

v+δ

1− σ v
v+δ

r
r+δ+δI

)n]
= 1
r + θ + δ + δN

· 1

1−
r+θ r

r+δ+δI
r+θ+δ+δN

·
(1−σ) v

v+δ
1−σ v

v+δ
r

r+δ+δI

To model the TB endemic in South Africa we assume a life expectancy of 72 years for indi-
viduals in the HIV negative population2. This gives a natural death rate of δ = 1

72 . With
a value for the natural death rate, assuming only 10% of latent individuals will develop
active TB over the course of their lives ( v

v+δ = 0.1) gives us a latent progression rate of
v = 0.0015. The technical appendix of the TIME Impact paper [8] also provides values for

1

P
{Transitioning from

latent to SSpos
}

= v

v + δ
σ + v

v + δ
(1− σ)

[
θ

r + θ + δ + δN
+ r

r + θ + δ + δN
P
{Transitioning from

latent to SSpos
}]

2The WHO estimates a life expectancy of 60 years in South Africa, however this life expectancy includes
HIV/AIDs.
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the self cure rate (r = 0.2), the smear conversion rate (θ = 0.015), and the proportion of
infections which develop SSpos TB (σ = 0.45).

With the above information the mean time an individual spends in the SSpos and SS-
neg compartments over the course of the disease is now explicitly dependent on the TB
death rates. This allowed us to calibrate the TB death rates by minimizing the objective
function

F (δI , δN ) = [µI(δI , δN ) · δI − 0.54]2 + [µN (δI , δN ) · δN − 0.15]2 (3.1)

using Matlab’s pattern search algorithm. The case fatality ratios for SSpos individuals in
the absence of treatment (µI = 0.54) and for SSneg individuals in the absence of treatment
(µN = 0.15) were obtained from The Population Biology of Tuberculosis [4, Appendix 2].
The final resulting death rate for SSpos (δI = 0.23931) and SSneg TB (δn = 0.038346) were
similar to the TB deaths rates used in [4].

3.1.2 Calibration of the TIME model to the 2012 Endemic

In 2012, 90% of the TB patients in South Africa had a known HIV status and 36% of these
cases were HIV negative. As we assumed the population could be partitioned by HIV sta-
tus without effecting the dynamics of the TB endemic in the HIV negative population, we
removed the HIV positive population and adjusted the observed data points appropriately.
The only data points which were not adjusted were the MDR prevalence in new cases, the
MDR prevalence in retreatment cases and the MDR prevalence in all cases. In these situ-
ations we assumed that the MDR prevalences occurred independently from the prevalence
of HIV.

To calibrate the remaining TIME model parameters to the HIV negative TB endemic the
objective function (3.2) was minimized by using Matlab’s simulated annealing and pattern
search algorithms. The definitions for (3.2) are documented in Table 3.1. The objective
function minimized in the model calibration is a combination of squared normalized resid-
uals and a sum of normalized special functions. The normalized residuals were used so
that the order of magnitude of the observations would not bias the minimization. Special
functions were used for five data points3 instead of squared normalized residuals as these
data point were estimates which came with an associated 95% confidence interval. For each

of these data points we define the function fi(~u) =
(
yi(~u)−y∗i
ai−y∗i

)4/[
3 +

(
yi(~u)−y∗i
ai−y∗i

)2]
where

y∗i is the observed data point, yi(~u) is the model output for the observed data point, and
(y∗i − ai, y∗i + ai) defines the 95% confidence interval. An illustration of this function is in
Figure 3.3.

3TB mortality, HIV negative TB incidence, MDR prevalence in new cases, MDR prevalence in retreatment
cases, and MDR prevalence in all cases.
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By design these fi(~u) functions are relatively flat inside the 95% confidence interval. As
a result, once the optimization algorithm finds a parameter regime in which of one the
model output falls inside it’s associated 95% confidence interval, a greater emphasis will be
directed towards minimizing other quantities in the objective function.

y∗i y∗i + aiy∗i − ai

0.25

fi(~u) =

(
yi(~u)−y∗

i
ai−y∗i

)4

3+
(
yi(~u)−y∗

i
ai−y∗i

)2

Figure 3.3: Graph of the special functions used in the model calibration.

The WHO estimated that 65% of treatment naive cases and that 71% of previously treated
individuals took a drug susceptibility test in 2015. As these percentages were not docu-
mented in 2012, we made the assumption that that the 2012 values would be similar to the
values in 2015. To reflect this in the model calibration, the proportion of treatment naive
and previously treated cases that take a DST (ΨN and ΨP ) were left as free parameters
and their approximate values were included into the objective function.

In 2012, the WHO provided treatment success rates for treatment naive cases (77%), previ-
ously treated cases (66%), MDR cases (49%), and HIV positive cases (73%). As the WHO
included the development of MDR TB in the definition of treatment failure for first line
drugs, the treatment success rate for the treatment naive and previously treated cases are
respectively defined to be (1 − ξ)τn and (1 − ξ)τp where ξ is the proportion of drug sus-
ceptible cases linked on to first line care which develop MDR TB. The treatment success
rates as well as the ξ parameter were all left as free parameters in the model calibration,
and their appropriate values were included into the objective function.

The TIME technical appendix gives a value for the relative fitness of MDR TB, however
as this is a difficult parameter to measure ζ was left as a free parameter and the estimated
relative fitness was included into the objective function.

With the definitions in Table 3.1 the objective function is defined to be the function

Obj(~u) =
5∑
i=1

fi(~u) +
10∑
i=6

(
y∗i − yi(~u)

y∗i

)2

+
2∑
j=1

(
u∗j − (1− u12)uj

u∗j

)2

︸ ︷︷ ︸
treatment success rates
for treatment naive and
previously treated cases

+
6∑
j=3

(
u∗j − uj
u∗j

)2

.︸ ︷︷ ︸
MDR treatment success (τm)
DST testing (ΨP & ΨN )

Relative fitness (ζ)

(3.2)
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Measurement Model Output Data Value
TB Mortality y1(~u) y∗1

HIV negative TB incidence y2(~u) y∗2

MDR prevalence in new cases y3(~u) y∗3

MDR prevalence in new retreatment cases y4(~u) y∗4

MDR prevalence in all cases y5(~u) y∗5

Confirmed MDR cases y6(~u) y∗6

New SSpos cases y7(~u) y∗7

New SSneg cases y8(~u) y∗8

Relapse cases y9(~u) y∗9

Previously treated cases (excluding relapse) y10(~u) y∗10

Cases tested for MDR TB (Not included in fit) y11(~u) y∗11

Treatment success rate for drug susceptible treatment naive
cases (τn)

u1 u∗1

Treatment success rate for drug susceptible previously treated
cases (τp)

u2 u∗2

Treatment success rate for MDR cases (τm) u3 u∗3

Proportion of treatment naive cases which take a DST (ΨN ) u4 u∗4

Proportion of previously treated cases which take a DST (ΨP ) u5 u∗5

Relative fitness of the MDR strain (ρ) u6 u∗6

Standard incidence rate of SSpos individuals (β) u7

Diagnosis rate of SSpos TB (γ) u8

Relative diagnosis rate of SSneg TB (d) u9

Relapse rate (v0) u10

Proportion of drug susceptible cases linked onto care (ηS) u11

Proportion of drug susceptible cases linked onto first line care
that develop MDR TB (ξ)

u12

Specificity of the drug susceptibility test (Sp) u13

Table 3.1: Objective function definition
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Definitions of the Data Values and Model Output

The WHO estimated 31,000 (Conf. Int. [3,700-86,000]) HIV negative died from tuber-
culosis in 2012 [14, page 131]. In the model output TB mortality is defined to be the
quantity:

y1(~u) := δI(ISN + ISP + IMN + IMP ) + δN (NSN +NSP +NMN +NMP ). .

In 2012, the WHO estimated 200,000 (Conf. Int. [160,000-240,000]) new incidence cases of
TB [14, page 131]. This estimate includes all new active TB cases arising from: infection,
reinfection, cross infection, latent progression, or relapse. The model output definition of
incidence is:

y2(~u) := vLSN + v0LSP + λSa [S + (1− x)(LSN + LSP ) + (1− x)(1− ι)(LMN + LMP )]

+ vLMN + v0LMP + λMa [S + (1− x)(LMN + LMP ) + (1− x)ι(LSN + LSP )] .

The National Institute for Communicable Diseases produced a tuberculosis drug resistant
survey for 2012-2014. They estimated the MDR prevalence in new cases to be 2.1% (Conf.
Int. [1.5%-2.7%]), the MDR prevalence in old cases to be 4.6% (Conf. Int. [3.2%-6.0%]), and
the MDR prevalence in all cases to be 2.8% (Conf. Int. [2.0%-3.6%]) [9]. As prevalences were
all estimated through cohort studies, these prevalences are all condition on the diagnosed
individual taking a drug susceptibility test. The model output is defined such that

y3(~u) = P
{

A new case is
diagnosed with

MDR TB

∣∣∣The new case
took a DST

}
= γ[(1− SpM )ISN + SeMIMN ] + dγ[(1− SpM )NSN + SeMNMN ]

γ[ISN + IMN ] + dγ[NSN +NMN ]

y4(~u) = P
{

A retreatment
case is diagnosed
with MDR TB

∣∣∣ The retreatment
case took a DST

}
= γ[(1− SpM )ISP + SeMIMP ] + dγ[(1− SpM )NSP + SeMNMP ]

γ[ISP + IMP ] + dγ[NSP +NMP ]

y5(~u) = P
{

A case is
diagnosed with

MDR TB

∣∣∣ The case
took a DST

}
= γ[(1− SpM )(ISN + ISP ) + SeM (IMN + IMP )] + dγ[(1− SpM )(NSN +NSP ) + SeM (NMN +NMP )]

γ[ISN + ISP + IMN + IMP ] + dγ[NSN +NSP +NMN +NMP ] .

In 2012 the WHO reported 15,419 laboratory confirmed cases of MDR TB [14, page 131]. To
remove the HIV positive case this number was multiplied by reduced by 64% (the percentage
of HIV positive TB case). The model outpout for laboratory confirmed cases of MDR TB
is defined to be all cases who were tested and diagnosed as having MDR TB:

y6(~u) = (1− SpM ) [γ(ΨNISN + ΨP ISP ) + dγ(ΨNNSN + ΨPNSP )]

+ SeM [γ(ΨNIMN + ΨP IMP ) + dγ(ΨNNMN + ΨPMSP )]

In 2012, the WHO reported new pulmonary tuberculosis cases for three different categories:
new SSpos cases (119,898), new SSneg cases (63,210), and new smear not done cases (71,421)
[14, page 131]. To account for the unknown sputum smear cases in the model fit, the sputum
smear not done cases were distributed between the new SSpos cases and the new SSneg cases
under the assumption that unknown cases had the same sputum smear distribution as the
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known cases. The new sputum smear cases were also reduced by 64% to separate the HIV
negative infections. This gives:

y∗7 =
(

119, 898 + 119, 898
119, 898 + 63, 210 · 71, 421

)
· 0.36 = 59, 999

and y∗8 =
(

63, 210 + 63, 210
119, 898 + 63, 210 · 71, 421

)
· 0.36 = 31, 631.

For these data points we also have the corresponding model outputs:

y7(~u) = γ(ISN + IMN ) and y8(~u) = dγ(NSN +NMN ).

In 2012, the WHO reported four different types of retreatment cases. The retreatment cases
were classified as being a patient previously treated for TB who: (1) is started on a retreat-
ment regimen after previous treatment has failed (treatment after failure), (2) returns to
treatment after having previously defaulted4 (treatment after default); (3) were previously
declared cured or treatment complete and is diagnosed with bacteriologically-positive5 TB
(relapse), or (4) do not have a documented treatment outcome (other) [14, Box 3.1 page 30].

As the TIME model does not distinguish between treatment after failure and treatment
after default, we defined the previously treated excluding relapse class to combine these
two categories. It should be noted that the WHO also defines previously treated excluding
relapse class, however, their definition includes individuals who do not have a documented
treatment outcome [14, Box 3.2 page 131]. To distribute the unknown cases appropriately
we make the assumption that the unknown retreatment cases have the same distribution
as the known cases. This gives

y∗9 =
(

26, 668 + 26, 668
26, 668 + 10, 811 · 15, 007

)
· 0.36 = 13, 444

and y∗10 =
(

10, 811 + 10, 811
26, 668 + 10, 811 · 15, 007

)
· 0.36 = 5, 450.

To calculate relapse and previously treated excluding relapse quantities in the model output,
we define fSpos and fSneg to be the fraction of inflows due to relapse entering the respective
drug susceptible previously treated SSpos and SSneg compartments. We will also need to
define fMpos and fMneg to be the fraction of inflows due to relapse entering the respective
MDR previously treated SSpos and SSneg compartments. With these definitions, the model
output for relapse and previously treated excluding relapse are

y9(~u) = γ(fSposISP + fMposIMP ) + dγ(fSnegNSP + fMnegNMP )

and y10(~u) = γ[(1− fSpos)ISP + (1− fMpos)IMP ] + dγ[(1− fSneg )NSP + (1− fMneg )NMP ].

4The treatment outcome for a patient is classified as defaulted if the patients treatment was interrupted
for two consecutive months or more.

5This means that the individual is diagnosed as having active TB.
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Measurement Model Output Data Value Relative Difference
Mortality (Conf. Int. [3,700 - 86,000]) 54,559 31,000 0.76
Incidence (Conf. Int. [16,000 - 240,000]) 187,323 200,000 0.0634
New SSpos cases 66,415 59,999 0.1069
New SSneg cases 33,387 31,631 0.0555
Cases tested for MDR (not included in fit) 89,658 13,431 5.6755
Confirmed MDR cases 2,595 5,550 0.5323
Relapse cases 14,132 13,444 0.0512
Previously treated cases excluding relapse 5,558 5,450 0.02
MDR prevalence in new cases (Conf. Int.
[0.015 - 0.027])

0.02426 0.021 0.1537

MDR prevalence in old cases (Conf. Int.
[0.032 - 0.06])

0.052384 0.046 0.138

MDR prevalence in all cases (Conf. Int. [0.02
- 0.036])

0.028895 0.028 0.0317

Relative fitness of the MDR strain (ζ) 0.730 0.73 0.0005
Proportion of treatment naive cases which
take a DST (ΨN )

0.748 0.65 0.1507

Proportion of previously treated cases which
take a DST (ΨP )

0.760 0.71 0.0705

Treatment success rate of second line drugs
(τm)

0.490 0.49 0.0003

Treatment success rate of first line drugs on
drug susceptible treatment naive cases (τn)

0.782 0.77 0.0243

Treatment success rate of first line drugs on
drug susceptible previously treated cases (τn)

0.671 0.66 0.0183

Standard incidence rate of SSpos TB (β) 7.79
Diagnosis rate of SSpos TB (γ) 0.472
Relative diagnosis rate of SSneg TB (d) 0.228
Relapse rate (v0) 0.0276
Proportion of drug susceptible cases linked
onto care (ηS)

0.215

Proportion of first line cases which develop
MDR TB (ξ)

0.0160

Specificity of the DST (Sp) 0.984

Table 3.2: The best fit ( 0.34245) for the calibration of the TIME model to the HIV negative
TB endemic in South Africa.
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Source Parameter Definition Point Value
TIME c Relative infectiousness of SSneg TB 0.22
Technical σ Proportion of individuals which develop SSpos TB 0.45
Appendix α Proportion of infections that develop active TB 0.115

x Protection provided by a prior infection 0.650
θ sputum smear conversion rate 0.015
r Self cure rate 0.2

Estimated v Latent progression rate
(
fit so v

v+δ = 0.1
)

0.015
δ Natural death rate (excluding HIV and TB) 0.0139

Fit to case δI Death rate of SSpos TB (for HIV - individuals ) 0.239
fatality ratios δN Death rate of SSneg TB (for HIV - individuals ) 0.0383
Calculated
directly from
[14, page 131]

τm Proportion of MDR Cases linked onto care 0.421

No Reference Rn Relative treatment success of first line drugs on MDR
cases

0.05

Table 3.3: Other TIME model parameters.

In the model calibration the mortality, incidence, and MDR prevalences all fit within the
given 95% confidence intervals. The proportion of drug susceptible cases linked onto first
line care that develop MDR TB also fit within the confidence interval provided by the TIME
technical appendix (0.014 ≤ ξ ≤ 0.017).

Florian Marx et al. [7] examined the relapse and reinfection rates of successfully treated
cases between 1996 and 2008 for a suburban setting in Cape Town, South Africa. They
found that the relapse rate peaked at 3.93% per annum with the 95% confidence interval
ranging from 2.35% to 5.96%. The relapse rate obtained from the TIME model calibration
(v0 = 2.89% per year) fits within this confidence interval.

In the model calibration the confirmed cases of MDR evaluates at approximately half of the
observed data point. This discrepancy appears as the number of cases and the number of
MDR cases are inconsistent with the estimated MDR prevalences.

In 2012, the WHO also provided the number of diagnosed cases tested for MDR [14, page
131]. This data point was intentionally left out of the calibration. Since re-exposure can
cause secondary infections TB is often transmitted via close contacts. This combined with
the low prevalence of MDR means that the spread of MDR TB can be controlled effectively
through contact tracing. One of the fundamental assumptions of compartmental disease
models is that any two individuals in a given compartment are indistinguishable from one
another. As a result, by using a compartmental disease models we are assuming that all
individuals in a given compartment undergo uniformly random testing. Comparing the
model output with the number of diagnosed cases tested for MDR, indicates that the tar-
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geted MDR testing in South Africa is approximately 6.7 times more efficient than uniform
random testing.

3.2 The 2035 Stop TB Targets

The Stop TB Partnership set targets for 2035 to achieve a 90% reduction in TB incidence
and a 95% reduction in TB mortality from the 2015 values [15, Box 2.3. Page 9]. In this
section we will use the TIME model to investigate if the 20 year reduction targets can be
achieved for the HIV negative population in South Africa.

As individuals who die with both HIV and TB are classified as HIV deaths [14, page 9],
the percentage reduction in TB mortality can be examined by studying the HIV negative
TB endemic. Moreover since the TB endemic in the HIV negative population drives the
HIV positive TB incidence, the percentage reduction in total TB incidence can be roughly
approximated by studying the HIV negative TB endemic.

3.2.1 Incidence Reduction

To discuss incidence projections we separate TB incidence into the two subcategories: new
incidence and TB recurrence. We define new incidence to be the number of all new infec-
tion entering the treatment naive active TB compartments (drug resistant or MDR) as a
result of infection, reinfection, or latent progression; and TB recurrence to be the number
of previously treated individuals who relapse or undergo reinfection.

We used Matlab’s ode45 function to numerically solve the TIME model equations from
the 2012 calibration for different diagnosis rates (γ). The incidence was then calculated
from the numerical solutions as a function of γ for different periods of time. Since we are
interested in examining the percent reductions relative to 2012, these incidence γ functions
were normalized with respect to the 2012 calibrated incidence (186,803) and expressed as a
percentage.

Figure 3.4 illustrates the percentage of TB incidence (relative to the TB incidence in 2012)
for different periods of time as a function of the diagnosis rate. To visualize the long term
trends, the percentage of TB incidence at equilibrium as a function of the diagnosis rate
is also included into Figure 3.4. The equilibrium incidences were approximated by using
Matlab’s ode15s function to run the to TIME model equations to equilibrium (10 million
years). The steady state incidence plot indicates that if γ ≥ 20, then the TIME model
solutions will converge to the disease free equilibrium.
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Figure 3.4: Incidence plots (expressed as a percentage relative to the 2012 incidence) for
different time periods as functions of the diagnosis rate.

One of the most striking features in Figure 3.4 is that slight increases to γ will cause the
incidence to increase in the long term. Increasing the diagnosis rate causes the TB cases
fatality ratio to fall, and as a result fewer people are dying from TB. If γ is not sufficiently
increased, the long term benefits of having a reduction in new incidence are lost to the
growth of TB recurrence. The percentage of new incidence and the percentage of TB
recurrence (relative to the new incidence and the TB recurrence in 2012) for different time
periods have been plotted as a function of the diagnosis rate in Figure 3.5.

(a) (b)

Figure 3.5: New incidence and TB recurrence plots (expressed as a percentage relative to
the new incidence and TB recurrence in 2012) for different time periods as a function of
the diagnosis rate.

Figure 3.4 clearly shows the 20 year incidence targets cannot be achieved by only increasing
the diagnosis rate. Even over the next 50 years the incidence will not drop below 40% of the
calibrated incidence. By increasing the diagnosis rate a larger previously treated population
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will develop; consequently this causes an increase in TB relapse. At the current state of the
endemic, decreasing TB recurrence requires a high diagnosis rate and significant periods
of time for the latent previously treated population to be diminished. With the current
definition of incidence this makes hitting the 90% reduction targets in 20 years unrealistic.

To have a greater impact on incidence reduction, targets for the management of TB re-
currence need to be established. Decreasing the relapse rate for previously treated latent
individuals either through treatment advances or treatment of latent TB will significantly
reduce the burden of TB recurrence. Figure 3.6a plots contours of the incidence in 20 years
(expressed as a percentage relative to the 2012 incidence) with respect to the diagnosis rate
(γ) and the relapse rate (v0)6. In Figure 3.6b the same contours are plotted under the
assumption that the treatment success rate for all individuals has been increase to 100%.
Comparing these two figures shows that decreasing the relapse rate will have a much larger
effect on the 20 year percent incidence reduction than improving treatment success rates.

(a) (b)

Figure 3.6: Contour plots of the incidence in 20 years (expressed as a percentage relative
to the 2012 incidence) assuming the current treatment success rate (a) and assuming 100%
treatment success rates (b).

Even if the relapse rate is reduced to zero, the incidence will not drop below 15% of the 2012
incidence in 20 years. As improving the diagnosis rate or the relapse rate will not effect
treatment naive individuals who currently have latent TB, further declines in incidence
require more time for the latent treatment naive population to diminish.

6The model calibrated relapse rate for South Africa is v0 = 0.0276.
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3.2.2 Mortality Reduction

To investigate if the 95% mortality reduction targets could be achieved in South Africa, we
used Matlab’s ode45 function to numerically solve the TIME model equation and calculate
the percentage of mortality (relative to the mortality in 2012) in 20 years for various inter-
ventions.

In this analysis we consider combined interventions between: increasing the diagnosis rate
(γ), decreasing the relapse rate (v0), and increasing the proportion of diagnosed cases linked
onto first line care (ηs). For a selection of ηs values between 0.215 (the current ηs value)
and 1, a grid of points was created in the γ− v0 plane. Once the percentage of mortality in
20 years was calculated at each grid-point, Matlab’s contourc function was used to identify
the 5% contours. Through combined interventions it is possible for South Africa to achieve
a 95% reduction in mortality in 20 years. Figure 3.7 shows the required diagnosis rates and
the required relapse rates to achieve a 95% reduction in mortality for different levels of drug
susceptible care engagement (0.215 ≤ ηS ≤ 1).

Figure 3.7: Required (γ, v0) pairs to reach a 95% reduction in mortality for different levels
of drug susceptible care engagement.
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Chapter 4

Optimizing Care between Drug
Susceptible and MDR Cases

4.1 Comparing Drug Susceptible and MDR Care Engage-
ment

In this chapter we investigate optimal control strategies for reducing the HIV negative TB
incidence in South Africa over a 20 year time period at a fixed treatment budget. The WHO
estimates that cost per patient treated in South Africa is approximately $2, 000 US for drug
susceptible cases and $40, 000 US for MDR cases [15, page 120]. To run the optimizations
we assume that treatment costs are permanently set at $2, 000 per drug susceptible cases
and $40, 000 per MDR cases. At the 2012 TIME model calibration this gives South Africa
an annual treatment budget of 50.046 million US dollars for drug susceptible cases and
43.610 million US dollars for MDR cases. These costs were calculated by weighting the
total number of drug susceptible cases and the total number of MDR cases linked onto care
over a period of one year. With this annual budget, treatment for the HIV negative TB
cases will cost South Africa 1.90542 billion US dollars over the next 20 years.

Cost per Case Current Annual Budget Total Projected 20 Year Budget
Drug Susceptible $2,000 US $50.046 million US $1.90542 billion US

MDR $40,000 US $45.225 million US

Table 4.1: Budget assumptions

As the ηs and ηm parameters determine the proportion of drug susceptible and MDR cases
linked onto care, by varying these parameters the treatment budget can be reallocated be-
tween funding drug susceptible cases and funding MDR cases.

The constrained optimization for this problem was done through a direct search. Mat-
lab’s ode45 function was used to numerically solve the TIME model over a period of 20
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years for a grid of (ηs, ηm) pairs in the unit square. At each point the TIME model solu-
tions were integrated using the trapezoid rule and weighted appropriately to produce the
total 20 year treatment budgets. The budgets were normalized by 1.90542 billion US as
this corresponds to the total projected 20 year budget for South Africa.

Treatment
Budget : = 2000

20∫
0

(
[ΨNSpM+(1−ΨN )](γISN+dγNSN )+[ΨP SpM+(1−ΨP )](γISP +dγNSP )

+[ΨN (1−SeM )+(1−ΨN )](γIMN+dγNMN )+[ΨP (1−SeM )+(1−ΨP )](γIMP +dγNMP )

)
ηs dt

+ 40000
20∫

0

(
ΨN (1−SpM )(γISN+dγNSN )+ΨP (1−SpM )(γISP +dγNSP )

+ΨNSeM (γIMN+dγNMN )+ΨP SeM (γIMP +dγNMP )

)
ηm dt

Matlab’s contourc function was then used to produce budget level sets in the (ηs, ηm)
plane. Some of these budget level sets for drug susceptible and MDR care engagements are
illustrated in Figure 4.1.

Figure 4.1: Budget level sets

Once the budget level curves were identified, the TB incidence was minimized over each
set. The optimal care engagement parameters to minimize incidence in 20 years at a fixed
budget are plotted in Figure 4.2a as a function of the normalized budget. The correspond-
ing minimum incidence for each budget (expressed as a percentage relative to the 2012
incidence) is plotted in Figure 4.2b.

Figure 4.2a indicates all available funding should be prioritized into linking the drug sus-
ceptible population onto care. Comparing Figure 4.2a and Figure 4.2b shows that directing
funding into MDR care engagement has a negligible effect on incidence reduction in 20 years.
This is due to the fact that MDR TB has a much lower prevalence than drug susceptible TB
in South Africa. Because of the lower MDR prevalence, this bang-bang behaviour between
linking drug susceptible and MDR cases onto care should be unaffected by changes in cost
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or changes to the treatment parameters provided that the drug susceptible cases remain
less expensive to treat.

(a) (b)

Figure 4.2: Optimal care engagement parameters to minimize incidence in 20 years at a
fixed budget as a function of normalized budget.

The contour plots in Figure 4.3a and Figure 4.3a display the optimal drug susceptible and
MDR care engagement parameters to minimize incidence in 20 years at a fixed budget as a
function of the diagnosis rate and the normalized budget. Contour plots of the corresponding
minimum incidence (expressed as a percentage relative to the 2012 incidence) are plotted
in Figure 4.4.

(a) (b)

Figure 4.3: Optimal care engagements to minimize incidence in 20 years at a fixed budget
as functions of the normalized budget and the diagnosis rate (γ).
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Figure 4.4: Minimum incidence for the corresponding optimal engagement parameters in
Figure 4.3.

Figure 4.3a and Figure 4.3b display the same bang-bang behaviour as Figure 4.2a. This
bang-bang behaviour breaks γ-budget plane into two distinct regions. The first region is
defined to be the set of point where ηm = 0 and 0 ≤ ηs < 1, and the second region is defined
to be the set of points where ηs = 1 and 0 < ηm ≤ 1.

The boundaries of these two regions have been included into Figure 4.4 as solid black
lines. As ηm = 0 in the first region, the only way to increase the diagnosis rate at a fixed
budget is to decrease ηs so that γηs is held constant1. This causes the appearance of the
vertical contours in Figure 4.4. Because ηm > 0 in the second region, decreasing ηm will
allow γ to be increased at a fixed budget without decreasing ηs. Comparing Figure 4.4 and
Figure 4.3b shows this comprise will improve the drop in incidence over 20 years.

The contour plot of current level of MDR care engagement (ηM = 0.4212) from figure
4.3b has been plotted in the second region to indicate the minimal cost required to achieve
a maximal incidence reduction over 20 years without compromising MDR care engagement.
This analysis shows that at least a fivefold increase to the projected 20 year treatment bud-
get would be required to reduce the incidence by 45% in 20 years without compromising
MDR care engagement.

1When ηm = 0, then the ηs and γ parameters always appear together as the product ηsγ in the TIME
model.
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Chapter 5

Conclusion

In the first part of the thesis we studied a four dimensional compartmental model for tu-
berculosis. Under the assumption of a constant population we proved that the disease free
equilibrium is globally stable in the physically relevant region when the basic reproduction
number is less than unity. If the model parameters satisfy an exact condition when the
basic reproduction number is greater than one, then the unique endemic equilibrium point
contained within the physically relevant region is globally stable in the physically relevant
region.

In the second part of the thesis we used the Tuberculosis Incidence and Mortality Estimates
model to analyze the TB endemic in South Africa. The TIME model is a compartmental
disease model which captures many of the dynamic processes important to TB (variation
in the latent progression rate, secondary reinfections, and sputum smear status). As the
TIME model is also stratified treatment history and drug resistant status, it can be used
to realistically simulate control measure for tuberculosis.

Two computations were performed to determine the TIME model parameters. The first
computation solved a pair algebraic equations to determine the deaths rates for the spu-
tum smear positive and the sputum smear negative populations. The second computation
minimized a nonlinear objective function to calibrate the TIME model at equilibrium to
the 2012 HIV negative TB endemic in South Africa. This calibration was constructed to
be overdetermined.

The calibrated TIME model was used to analyze the Stop TB incidence and mortality
reduction targets. Due to post-treatment relapse and latent progression, South Africa can-
not achieve a 90% incidence reduction in 20 years. If the relapse rate is not improved then
even over the next 50 years, South Africa will not be able to achieve a 60% reduction in
incidence through increasing the diagnosis rate. If the relapse rate is improved, combined
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interventions could reduce incidence by up to 80%.

Although the Stop TB incidence reduction targets cannot be met for the HIV negative
population in South Africa, we found that through combined interventions TB mortality
could be reduced by 95% over the next 20 years. With the current relapse rate this would
require increasing the diagnosis rate and the proportion of drug susceptible cases linked
onto care so that γηs ≈ 9. This means South Africa would need to screen individuals for
TB approximately every 2.6 months.

To optimize the reduction in incidence over 20 years at a fixed budget, funding needs
to be directed into linking drug susceptible cases (over MDR cases) onto care. Reducing
incidence by 45% in the next 20 years without compromising MDR care engagement will
cost South Africa five times the current projected 20 year treatment budget. This does does
not included the cost of screening programs.

5.1 Model Limitations and Future Work

As the HIV negative endemic is independent from the HIV positive population we were able
to accurately analyze TB control strategies for the HIV negative population in South Africa.
Moreover since the TB endemic in the HIV negative population drives the HIV positive TB
endemic, the incidence reductions achieved in the HIV negative population should reflect
incidence reduction in the HIV positive population. To quantify the projected incidence
reductions in the HIV positive population, the TIME model would have to be expanded to
include the HIV dynamics. By expanding the TIME model to include the HIV dynamics,
the steady state assumption may no longer be valid. Thus modelling the co-endemic could
require fitting the TIME model to time series data.

A drawback of the TIME model is that the treatment process is assumed to be instan-
taneous. This could be improved incorporating new compartments for individuals on treat-
ment. By making this expansion to the TIME model individuals would be less likely to
relapse multiple time in a single year as treatment takes approximately six months for drug
susceptible individuals. Incorporating treatment stages into the model, would allow us to
simulate targeted MDR testing for individuals failing first line treatment.
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