
Development of A Smart Multi-Device SCADA (Supervisory Control and

Data Acquisition) System for Household Appliances

by

Muhammad Ali Amin Vellani

B.Eng., NED University of Engineering & Technology, 2012

Project Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering

in the

School of Engineering Science

Faculty of Applied Sciences

© Muhammad Ali Amin Vellani 2018

SIMON FRASER UNIVERSITY

Spring 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Approval

Name: Muhammad Ali Amin Vellani

Degree: Masters in Engineering Science

Title:  Development of A Smart Multi-Device SCADA

(Supervisory Control and Data Acquisition) System for

Household Appliances.

Examining Committee: Chair: Mr. Steve Whitmore

 Senior Lecturer

 Dr. Ash M. Parameswaran, PhD, P.Eng

 Senior Supervisor

 Mr. Bob Gill, P.Eng 

 Supervisory Committee Member

Date Defended/Approved: April 13th, 2018___________________________

iii

Abstract

Power consumption and electrical appliances are growing rapidly as technology advances, so does

the need to identify which appliances are consuming how much energy for the benefit of both

environment and economic point of view. Based on the current smart home systems present in the

market that can monitor power and have a proper infrastructure but have poor data analytics at the

user end. In this project, we developed a device that measures, logs and represents the measurement

to the power consumption data of the Electrical appliances to the user in a proper user-friendly

manner by connecting to the same Wi-Fi of the smart plugs. The developed device, acts as a server

to communicate with the energy measuring devices to extract the data, records and logs it in a

database, and provides it to the user on-demand in a simple Graphic User Interface.

iv

Acknowledgements

I would like to thank Dr. Ash M. Parameswaran for accepting the supervision of the project and

always be supportive towards me.

I would also like to thank Mr. Bob Gill for providing me with the idea of the project and

encouraged me to bring my own innovative ideas and implement them to make this happen.

This project would just be a concept if it weren’t for Dr. Ash and Mr. Bob.

A special thanks to Simon Fraser Engineering sciences department for making it all happen.

Also, Thankyou Mr. Steve Whitmore for agreeing to chair the committee on such short notice.

v

Table of Contents

Approval ... ii

Abstract .. iii

Acknowledgements .. iv

Table of Contents .. v

List of Tables .. vii

List of Figures .. viii

Chapter 1. Introduction .. 1

1.1. Background .. 1

1.2. Project Summary .. 2

Chapter 2. Energy Measuring Smart Plugs Literature Review .. 4

2.1. Belkin WeMo Insight ... 4

2.2. TP-Link Smart-Plug Wi-Fi Hs-110 .. 5

2.3. Ihome ISP8: .. 6

2.4. D-Link Wi-Fi Smart Plug: ... 6

2.5. Summary Of All Devices ... 6

2.6. Conclusion:... 7

Chapter 3. Belkin WeMo Insight Switch with Energy Monitoring Literature Review 7

3.1. Product Features ... 7

3.2. App Features .. 8

Chapter 4. Project Development: Smart Multi-Device SCADA (Supervisory Control and Data

Acquisition) System for Household Appliances ... 11

4.1. Node.js.. 11

4.2. Data-Fetching Server.. 12

vi

4.3. Python: ... 14

4.4. Graphical Representation Unit: .. 15

4.4.1. Multiple Devices ... 16

4.4.2. Monitoring Window .. 17

4.4.3. Bar Graphs: ... 19

4.4.4. Styles And Designs ... 20

4.4.5. Sampling Rate: .. 20

Chapter 5. System Testing ... 21

5.1. System Response .. 22

5.2. Sampling Rate Response .. 23

5.3. Bar Graph Real-Time Response ... 25

Chapter 6. Future Work ... 27

Chapter 7. Conclusions .. 27

References ... 28

Appendix A ... 29

vii

List of Tables

Table 1- Summary of All Smart Devices .. 6

viii

List of Figures

Figure 1- WeMo app data representation.. 1

Figure 2- WeMo android app interface ... 4

Figure 3- T-PLINK android app ... 5

Figure 4- WeMo app front page.. 8

Figure 5- WeMo multiple devices .. 9

Figure 6- WeMo name and description .. 9

Figure 7- WeMo away mode .. 10

Figure 8 – WeMo Rules support ... 10

Figure 9- WeMo 3rd party integration support ... 11

Figure 10- Function for network device detection .. 13

Figure 11- Function for device detection .. 13

Figure 12- Database maintaining script .. 13

Figure 13- Expansion of devices script ... 14

Figure 14- Code for time sync .. 16

Figure 15- Data retrieval script ... 16

Figure 16- Single device vs Multiple devices ... 17

Figure 17- Axis unifier.. 17

Figure 18- Monitoring window 300 seconds .. 18

Figure 19- Monitoring window implementation code .. 18

Figure 20- Whole day monitoring window ... 19

Figure 21- Whole day power graph .. 19

Figure 22- Bar graph representation ... 20

Figure 23- CSS style implementation ... 20

Figure 24- Lower sampling rate .. 21

Figure 25- Higher sampling rate ... 21

Figure 26- Before device power-on .. 22

Figure 27- After device power on ... 23

Figure 28- 1 second sampling ... 24

Figure 29- 10 second sampling ... 24

ix

Figure 30- 1 second sampling rate .. 25

Figure 31- 10 second sampling rate .. 25

Figure 32- Bar graph of the energy consumed.. 26

1

Chapter 1. Introduction

1.1. Background

There are many devices present in the market right now capable of promising a better smart home

for the consumers, For example Nest, Alexa, T-P-link Belkin etc. They provide control and

automation for lights, thermostats, television, audio systems, security systems which include door

locks and cameras, etc. Some of them also have options which include remote control through a

distant site and voice commands recognition with a wide variety of different system integration

like Google Home and voice assistant, amazon Alexa, Nest, and IFTTT. But they fall short when

it comes to energy consumption data management and representation.

Systems developed to measure the energy are surely capable of doing so very accurately but

unfortunately do not provide power consumption data to the user if a very sophisticated manner.

The data that is presented at the user end is either data in the form of number i.e. how much the

device connected to the smart socket is driving right now or in the form of an average of how much

it was collected over the whole day.

Figure 1- WeMo app data representation

2

In the same way, there is no way for the user to compare the data for the whole day minute by

minute or device by device. Also that the data protocol is locked by vender and the capability of

exporting the data is not even present in most of the devices, this means, that the data collected by

the system remains within the system and the user is limited by the options provided by the vendor

and if more options for better data representation can only be achieved if and when the vender

decides to add the option.

The users require more sophisticated form of visual representation of the data and have features

which include visually distinguishing charts representing which device drives what amount of

energy at which time and when and where the energy consumption could be minimized.

1.2. Project Summary

Here we have proposed a system which attaches to the same network infrastructure already present

and listens to the devices for the data recorded and present it a better manner. The product

developed has the following features:

a. Automatic detection of smart plugs (WeMo) present/connected on/to the same local Wi-Fi

network capable of calculating the power consumed.

b. Node Server: Creates a local server (which is still on the local Wi-Fi) to access all the smart

plugs present on the network.

c. Extract the energy consumption data of the whole household devices attached to the smart

plugs using a server fetch.

d. Maintains a continuous fetch cycle that saves the power consumption data in real time from

the smart power socket.

e. Saves all the data fetched real-time continuously on a locally maintained database.

f. Visual GUI on a remote device connected to the same wireless system capable of showing

the power consumption data to the user in a sophisticated manner where the options include

comparing one device to another, finding total data curve of all the devices present, minute

by minute real time as well as post collected data.

The project is distributed in 3 parts. The research on the smart plug that is used for our project.

This smart plug is the main device that measures the energy consumed by the household device

attached to it. The second part of the project is node.js server that is created using the WeMo client

3

libraries, [5]. The data measured by the smart plug is kept to itself until the Node.JS server

communicates with the smart plug and extracts it. This server is runs on a JavaScript engine

raspberry pi 3 device and saved on the same device in a database form.

The third part of the project is the visual representation of the data which is also ran on the same

raspberry pi and is based on a python. That part takes the data being saved and show to the user in

a graphical manner.

The report is distributed in 7 major sections, in the beginning introduction and motivation of the

project and explanation of what needed to be done, then the literature review 1 where research is

conducted about different devices capable of calculating the energy consumption and selection of

the device for this project. After that the secondary literature review conducted on WeMo switches

and its software in detail is presented. Followed by the project product development, which

includes the background of technology, implementation, and testing scenarios of the product along

with data collected, results and graphs which were results of the testing scenarios followed by

conclusion and future considerations.

4

Chapter 2. Energy Measuring Smart Plugs Literature Review

2.1. Belkin WeMo Insight

When compared with other smart plugs, it is one of the best smart plugs out in the market in terms

of features and accuracy. It works with many different platforms and can be integrated with Alexa,

nest, google home, SmartThings and IFTTT and is decent looking in terms of product design as

well. The setup of the device requires a little work in the beginning but once setup, the app works

smoothly. App features in1cludes the power being consumed right now; the total power consumed

all day and turn on and off features. The app requires a lot of work in terms of the data’s visual

representation

Figure 2- WeMo android app interface

5

2.2. TP-Link Smart-Plug Wi-Fi Hs-110

The setups on iOS and android is quite easy. Feature wise it has most of the features required by

common users, but the app protocol is locked to the app Kasa with limited data representation

options:

Figure 3- T-PLINK android app

 The TP-link smart Wi-Fi plug HS-110 is rich in features including

• Remote Access: Control devices connected to the Smart Plug from anywhere, if you are

connected to the internet using the Kasa app provided by TP-LINK.

• Smart scheduling feature which enables the user to set timers on turning the devices on and

off. Away feature is also available which is an Extension of scheduling feature, devices can

be set to turn on and off at desired times to give the appearance that someone is home.

• Easy to Use and Install. the user can connect the Smart Plugs to your Wi-Fi network and

control using the free Kasa App on your smartphone.

6

• Compatible with Amazon Alexa and the Google Assistant, giving you the ability to control

devices connected to the Smart Plugs with voice commands.

• Analyze a device’s real-time and historical power consumption.

2.3. Ihome ISP8:

iHome has all the features like the other ones but the app gives issues when tried with android 7.0

and above but works well with iOS devices. Its reliable and one of the most good-looking

producers out there. The device works with most of the smart home platforms is reliable, but the

integration is highly limited. For example, the user in unable to make IFTTT scripts which enables

the user to create simple programming basics for example “open home when I reach home”.

2.4. D-Link Wi-Fi Smart Plug:

D-LINK smart plug look bulky and have a box like feeling but is feature packed as compared to

others. Energy monitoring is also present in the app but as mentioned before, the data is not nicely

represented in the app. One of the most important features that’s lacking is IFTTT integration

which allows users to automate and schedule switches.

2.5. Summary Of All Devices

Table 1- Summary of All Smart Devices

Dlink Wi-Fi Smart

Plug

T-Plink Smart Wi-Fi

Plug with Energy

Monitoring

Ihome Smart

Plug

WeMo Insight

Switch

Model Number Dsp-W215 Hs110 Isp8 F7c029fc

Manufacturer Dlink TP-link Ihome Belkin

Remote Control Yes Yes Yes Yes

Energy Monitoring Yes Yes Yes Yes

Wifi Yes Yes Yes Yes

Max. Power Rating 1800w 1800w 1800w 1800w

Android App Yes Yes Yes Yes

Web View No No No No

7

Protocol Locked Yes Yes Yes Yes

IFTTT Support Yes No No Yes

Price $30 $30 $60 $70

Expansion

Capabilities No No No Limited

Communication

Protocol Lock Yes Yes Yes Yes

Recommended No No No Yes

Accuracy Good Good Good Excellent

2.6. Conclusion:

Looking at the features, accuracy and the protocol used, the device that was chosen was WeMo

insight switch.

Chapter 3. Belkin WeMo Insight Switch with Energy Monitoring

Literature Review

3.1. Product Features

Belkin WeMo insight switch and app has many features

Some of the features of the product include:

• Turn switch on or off — from anywhere even if you are not on the local network.

• Monitor device energy consumption.

• Calculate the costs of the bill for the appliance.

• Set a schedule for lights/appliances turn on and off.

• Works with Amazon Alexa and Google Voice for hands-free voice control.

• Works with Nest Thermostat for automatic home and away modes.

• Works with your existing home Wi-Fi network and mobile Internet (3G/4G), no hub or

subscription required.

• Modular system. You can add additional WeMo Insight smart plugs easily, any time.

• Intuitive, easy set up and easy to use.

8

• Works with the entire family of WeMo products.

• Works with IFTTT, connecting you to a whole world of Web apps.

• Free WeMo App for Android and iOS operating systems.

But unfortunately, it falls short on the web-interface where the data and control options should be

present for the user on the web where the user can log in and view the status, turn device on/off

and view and analyse the data.

3.2. App Features

• Compressive: Summary of all the data in one place which includes the costs when the

switched was turned on, for how long has It been running, estimated monthly and cost.

Figure 4- WeMo app front page

9

• Multiple device control: multiple device can be turned on and off with on the single page.

Figure 5- WeMo multiple devices

• Name and description: description of the device can be added along with a photo for

easier recognition and use.

Figure 6- WeMo name and description

10

• Away mode: away mode is present to schedule easy turn on and off to give the look as if

someone is living

Figure 7- WeMo away mode

• Rules creation: rules can be created inside the app without the need of advanced IFTTT

Figure 8 – WeMo Rules support

11

• 3rd Party Integration: easy 3rd party integration options are present in the app options to

connect to IFTTT, NEST, Alexa etc.

Figure 9- WeMo 3rd party integration support

Chapter 4. Project Development: Smart Multi-Device SCADA

(Supervisory Control and Data Acquisition) System for Household

Appliances

4.1. Node.js

Node.js [1] is used to create a webserver that talks to all the smart WeMo plug devices on the Wi-

Fi network. just like the devices talk to the android app, the devices also communicate to the

custom node.js server that mimics communication protocol.

Node is designed to build scalable network applications, where connections can be handled

concurrently [1]. Upon each connection the callback is fired, but if there is no work to be done,

Node remains idle. [2]

12

This contrasts with today's more common concurrency model where OS threads are employed [3].

Thread-based networking is relatively inefficient and very difficult to use. Furthermore, users of

Node are free from worries of dead-locking the process, since there are no locks [3]. Almost no

function in Node directly performs I/O, so the process never blocks. Because nothing blocks,

scalable systems are very reasonable to develop in Node.js. [3]

4.2. Data-Fetching Server

All the WeMo devices have a specific MAC address and when connected to a Wi-Fi network,

those devices are allotted a unique IP address along with a specific port which acts like a tunnel

for the device communication to the server. When a device is turned on and connected to the Wi-

Fi, it is discoverable on the network through that port and IP address.

The data-fetching server serves two purposes. First it detects all the smart plug WeMo devices on

the local Wi-Fi network. For every device detected, the ID address, friendly name assigned by the

user to device, mac address and serial address is received.

Along with the basic network device information that is gathered, it is also detected if the device

is capable of measuring energy consumption of the household device attached to it using the

function:

13

Figure 10- Function for network device detection

Figure 11- Function for device detection

“WeMo Client Library” [4] was used for the basic discovery of the devices present on the network

which uses the same protocol used by the android app server built on node.js [2]. Further the

extraction of the data, parsing, and saving it in the database is done by the following JavaScript

code which uses the variables initialized and loaded by the previous function

Figure 12- Database maintaining script

14

The JavaScript function saves the following in the database for the graphical code to read:

a) Time stamp,

b) Device ID (0,1,2….),

c) Serial number of the devices,

d) Name of the device set by the user,

e) Power being consumed by the device at that time instance,

f) Total power consumed by the device throughout the day real time updating.

Multiple Device Capability: As soon as a new device is added to the network, the web-server has

the capability to automatically adding the device in the database being maintained, with the name

assigned to it if any, serial number, and the power being consumed.

Figure 13- Expansion of devices script

4.3. Python:

Python is an interpreted high-level programming language for general-purpose programming [6].

Python has a design philosophy that makes code readable, by making use of whitespace [7]. It

provides easy and clear programming for small and large scales. [8]

Python features a dynamic type system and automatic memory management [9]. It supports

multiple programming paradigms, including object-oriented, imperative, functional and

procedural, and has a large and comprehensive standard library [10], with a wide range of

functionality which includes:

• Graphical user interfaces

• Web frameworks

• Multimedia

15

• Databases

• Networking

• Test frameworks

• Automation

• Web scraping

• Documentation

• System administration

• Scientific computing

• Text processing

• Image processing

4.4. Graphical Representation Unit:

The graphical interface unit is built on python. The python code takes the data saved from the

server into a database and then is extracted to create a graphical representation for the user.

For the graphing visualization option, the settings can be change between

1) Monitoring window: last 5mins/30mins/300mins power consumption of the devices in real

time can be selected for view in the GUI.

2) Power consumption of the whole current day and previous days.

3) Bar graph and time graph.

4) View data for any date.

Python libraries used in this project:

1. Matplotlib [11]: Matplotlib library is a 3rd party library used to create the graphs and figures.

It is rich in graphical representation options and supports different styles.

2. Dates, localtime, strftime [12]: is time stamp providing library used to import the dates and

time data either from computer or the world clock server to provide accurate ticks. These time

stamps are saved with the power consumption data in the database.

3. Animation_api[13] : animation is the API provided by Matplotlib to update the figures in a

continuous loop as the data in the server database is changed or updated.

4. Style_api [14]: style API is provided by Matplotlib to support different styles and formatting

options for graphs created.

16

The data saved in the database using the node.js server is then extracted by secondary python script

running which is monitoring data saved in the database in real time and updates the graphs as soon

as the database updates.

Initially the database is scanned for the current day data and fetched using the date stamps on both

the database writer and reader. This feature keeps both database reader and writer on the same part

of the database and serves as a synchronization tool.

Figure 14- Code for time sync

While reading the database, every line is processed separately and not as a whole since every line

is for one smart plug and has its respective value. The data is read and saved in variables time,

‘dnum’ is the device number, ‘snum’ is the serial number, name is the name given to the device by

the user, power is the instantaneous power and ‘powerused’ is the energy consumed throughout

the day till t(the present time).

Figure 15- Data retrieval script

Some of the other features of the graphical unit which are hardcoded are given below:

4.4.1. Multiple Devices: If there are more than one device, then the x and the y axis are on

different values and they need to be brought on the same data points which is done by the

following where it selects the most length of the array most flexible with all the arrays (each

array representing a device) to be the dominant one which is used to be the guider for others

17

Figure 16- Single device vs Multiple devices

For multiple devices, a white line which represents the total is also added which represents the

total amount of power consumed.

Figure 17- Axis unifier

4.4.2. Monitoring Window: for observation different monitoring window can be selected as

mentioned above.

For the case of last T mins of data, a chunk of data from the array is selected to be shown. This

reduces the processing power when processing data as well as when showing the graph. Here

is shown a picture for a selected window of time.

P
o

w
er

 i
n

 w
at

t

 P
o

w
er

 i
n

 w
at

t

Time in seconds

Time in seconds

18

Figure 18- Monitoring window 300 seconds

Figure 19- Monitoring window implementation code

When the whole day data is to be shown on the device, case 0 is selected where all the data from

the beginning of the data is processed and is played as graph.

P
o

w
er

 i
n
 w

at
t

Time in seconds

19

Figure 20- Whole day monitoring window

Figure 21- Whole day power graph

4.4.3. Bar Graphs: User is also provided the data in terms of a bar graph. The bar graph includes

all the devices detected side by side for the comparison which one

P
o

w
er

 i
n
 w

at
t

Time in seconds

20

Figure 22- Bar graph representation

4.4.4. Styles And Designs: Matplotlib [11] support different styling options which resemble that

of CSS styling pattern. Here we can see color change options and background was changed.

Figure 23- CSS style implementation

4.4.5. Sampling Rate:

Sampling of the data from the database is a very crucial part depending on what accuracy is

required of the visual representation. Unlink the bar graph, the simple graphs don’t take an average

P
o

w
er

 i
n

 K
W

H

P
o

w
er

 i
n
 w

at
t

Time in seconds

21

or summation. When taking the data out of database, it selects sampling points after a particular

number of dataset. Following is the image of different data rates and its effects.

Figure 24- Lower sampling rate

Figure 25- Higher sampling rate

Here we can see the peaks are only visible when the sampling rate is higher, but the time it takes

to process higher sampling rates with whole day data points is roughly 10 secs more, which is a

lot while running in real-time.

Chapter 5. System Testing

For system response testing purposes, data was collected in different conditions. Most common

monitoring windows chosen were 300 seconds/30 mins/3 hours/whole day of energy consumption

by 3 different devices attached to the smart plug real time. the devices attached to the smart plug

device ID are given by:

P
o

w
er

 i
n
 w

at
t

P
o

w
er

 i
n
 w

at
t

Time in seconds

Time in seconds

22

1- Device 0 – Fridge.

2- Device 1 – Television.

3- Device 2 – cellphone chargers and hair dryer

For long term testing, the server and the graphing unit has run for a couple of days without and

errors besides the ones in which the raspberry pi froze due to some technical issue not connected

to the node server or the graphical interface.

During the experimentation window, many different scenarios were chosen in which the graph

was being observed for long and then a device was either turned on or off to see the change in the

real time graph which was reflected on the graphical interface as well.

5.1. System Response

A scenario where a high-power hairdryer was turned on, a peak representing the energy consumed

by the hairdryer can be seen in the graph in figure 23.

Figure 26- Before device power-on

23

Figure 27- After device power on

5.2. Sampling Rate Response

Different sampling rates options are provided. The different sampling rates that can be chosen

from in the code are 1-10 second, 1 min and 5 mins. The data sampling rate has a direct effect on

the processing power, but lower sampling rate results in some data to be lost which can result in

inaccuracy if the user is looking for power peaks

More data points mean more time taken to process the data. since we are using a raspberry pi 3, it

takes substantial amount of time to create the graph, for that particular device, it was recommended

to use lower sampling rate.

24

Figure 28- 1 second sampling

Figure 29- 10 second sampling

Time in seconds

Time in seconds

P
o
w

er
 i

n
 w

at
t

P
o
w

er
 i

n
 w

at
t

25

Figure 30- 1 second sampling rate

Figure 31- 10 second sampling rate

5.3. Bar Graph Real-Time Response

The bar graph collects data from the database, shows the power consumed by each device

throughout the day. The graphs and the labels are real time and the label changes along

P
o
w

er
 i

n
 w

at
t

Time in seconds

Time in seconds

P
o
w

er
 i

n
 w

at
t

26

with the increment in the length of the bars as soon as the more power is consumed by the

respective device.

Figure 32- Bar graph of the energy consumed

P
o
w

er
 i

n
 K

W
H

27

Chapter 6. Future Work

Future consideration

1. Inclusion of more products other than WeMo smart plugs can be added to the system to

remove vender dependency.

2. Feature enhancement: more features can be added in which not only the data is read but also

commands to shut down the switch or timers can be added.

3. A better user interface can be added instead of the hard-coded options to give the user more

power and flexibility.

4. Household device recognition algorithm can be implemented by making use of device

signature matching to detect which appliance is plugged in automatically, which will remove

the dependency of user labeling the appliances.

Chapter 7. Conclusions

Home automation and smart home system is every growing. This industry has just started to tap

into its potential and has miles and miles to go. Venders locking their protocol and not making

things open source is a big hurdle in fast evolution of technology.

If all the vendors would work together and let others also openly communicate with their devices,

a great infrastructure can be built from which we all can benefit.

The implementation of the system for WeMo Belkin insight switch up to 3 devices was

successfully loaded in the system and the system was able to observe and maintain the real time

server running for data logging without any errors. If other vendors also had the capability of their

devices able to communicate to their server, more devices can be added.

28

References

[1] Sanaulla, Mohamed. “Node.js : Reading and Writing File in Node.js.” JavaBeat, 1 July

2015, www.javabeat.net/nodejs-read-write-file/

[2] “About Node.js.” Node.js, www.nodejs.org/en/about/

[3] Burnett, Kristine K. “Node.js – Kristine K Burnett – Medium.” Medium, Medium, 21

Sept. 2016, medium.com/@kristinekburnett/node-js-4fda4c1b0462.

[4] Hardill, Ben. “JavaScript client library for controlling and subscribing to WeMo

devices” https://github.com/timonreinhard/wemo-client

[5] Hardill, Ben. “Wemo Client for Node.js” , npm @octoblu/wemo-client ,

https://www.npmjs.com/package/@octoblu/wemo-client

[6] “What Is Python? Executive Summary.” Python.org,

www.python.org/doc/essays/blurb/.

[7] “Topic: Python.” DevHub.io, www.devhub.io/topic/python

[8] Kuhlman, Dave. "A Python Book: Beginning Python, Advanced Python, and Python

Exercises", 23 June 2012.

[9] Python Programming Tutorials, www.pythonprogramming.net/natural-language-api-

google-cloud-tutorial/

[10] “Python Programming Language - An Overview.” | Vizteams, 31 Aug. 2015,

www.vizteams.com/blog/python-programming-language-an-overview/ x

[11] Hunter et al (2007) Matplotlib: A 2D graphics environment, Computing In Science &

Engineering , Python for application development, interactive scripting, and

publication-quality image generation across user interfaces and operating systems”

, IEEE COMPUTER SOC, 2007 , https://matplotlib.org/

[12] Python Software Foundation https://docs.python.org/2/library/datetime.html

[13] Animation API for Matplotlib, A 2D graphics environment, Computing In Science &

Engineering , Python for application development, interactive scripting, and

publication-quality image generation across user interfaces and operating systems”

, https://matplotlib.org/api/animation_api.html

[14] Styling API for Matplotlib, , A 2D graphics environment, Computing In Science &

Engineering , Python for application development, interactive scripting, and

publication-quality image generation across user interfaces and operating systems”

, https://matplotlib.org/api/style_api.html

http://www.javabeat.net/nodejs-read-write-file/
http://www.nodejs.org/en/about/
https://github.com/timonreinhard/wemo-client
http://www.python.org/doc/essays/blurb/
http://www.devhub.io/topic/python
http://www.pythonprogramming.net/natural-language-api-google-cloud-tutorial/
http://www.pythonprogramming.net/natural-language-api-google-cloud-tutorial/
http://www.vizteams.com/blog/python-programming-language-an-overview/
http://doi.org/10.1109/MCSE.2007.55
https://matplotlib.org/
https://docs.python.org/2/library/datetime.html
https://matplotlib.org/api/animation_api.html
https://matplotlib.org/api/style_api.html

29

Appendix A

Python code for graphical representation:

import matplotlib

#matplotlib.use('TkAgg')

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

import matplotlib.dates as mdates

#from matplotlib.backends import *

#from pyplot import *

#import matplotlib.pyplot as plt

import matplotlib.animation as animation

from matplotlib import style

from time import localtime , strftime

fig = plt.figure(1)

ax1 = fig.add_subplot(1,1,1)

#fig.patch.set_facebolor('black')

#ax1.plt.gca()

#style.use('fivethirtyeight')

#style.use('ggplot')

ax1 = plt.gca()

ax1.set_facecolor('black')

cbar=1

totP1 =0

totP2 =0

totP3 =0

def animate(i):

 # filename = (strftime("%d-%b-%Y",localtime()))

 # filename = ("25:2:2018.txt")

 # filename = ("2_3_2018.txt")

 filename = ("maybe.txt")

 graph_data = open(filename,'r').read()

 lines = graph_data.split('\n')

 P1 = []

 P2 = []

 P3 = []

 Pt = []

 time1 = []

 time2 = []

 time3 = []

30

 timet = []

 snum = []

 lttime = int(0)

 lttime1 = int(0)

 lttime2 = int(0)

 lttime3 = int(0)

 lasttime = 0 # value to give to the time axes so that we can set a maximum

 b1 = 1 #get rid of seconds when sampling - higher the number, lower the samples

 b2 = 1 # min 10 parse by ten b1s (b1 will give us either seconds or minutes or whatever)

 # the sampling will be the miltuolle pf both, b1*b2 so here, b1 makes it minutes and then when its b2 is

ten minutes

 minsel = 300

 #pastT =int(minsel*1.667) #past mins #0 for unlimited , 1 for 5 mins, 2 for 30 mins , 3 for 300 mins

 pastT = int(minsel*120/((b1)*b2)) #number of samples to create minsel

 #the above formula holds for b1=1, b2 = 1

 caseo = 4

 for line in lines:

 if len(line) > 1:

 time, dnum, snum, name, power , powerused = line.split(',')

 if(((int(int(time)/b1))%b2)==0):

 # timet.append(time)

 #fridge

 if ((snum == "231625K1200B2C") & (int(int(time)/b1) > int(int(lttime1)/b1))) :

 P1.append(int(power))

 time1.append(int(time))

 lttime1 = time

 totP1 = powerused

 lasttime = time

 #tv

 if ((snum == "231614K120073E") & (int(int(time)/b1) > int(int(lttime2)/b1))) :

 P2.append(int(power))

 time2.append(int(time))

 lttime2 = time

 totP2 = powerused

 lasttime = time

 #print(power)

31

 #chargers

 if ((snum == "231701K12003E6") & (int(int(time)/b1) > int(int(lttime3)/b1))) :

 P3.append(int(power))

 lttime3 = time

 time3.append(int(time))

 totP3 = powerused

 lasttime = time

 lttime = time

 #print(pastT)

 # print(time2[len(time2)-2],P2[len(P2)-2])

 # print(len(time1),len(time2),len(time3),len(timet))

 # print(totP1)

 # print(int(totP1)/(10000*60),int(totP2)/(10000*60),int(totP3)/(10000*60))

 #print(P1)

 #for calcall in range(0,len(P1)):

 # Pt.append(int(int(P1[calcall]) + int(P2[calcall]) + int(P3[calcall])))

 # print(time1[calcall],calcall)

 minsize = min(len(time1),len(time2),len(time3))

 maxsize = max(len(time1),len(time2),len(time3))

 sizediff = maxsize-minsize

 for calcall in range(0,minsize):

 # Pt.append(int(int(P1[calcall]) + int(P2[calcall]) + int(P3[calcall])))

 # Pt.append(int(int(P1[len(P1)-minsize]) + int(P2[len(P2)-minsize]) + int(P3[len(P3)-minsize])))

 Pt.append(int(int(P1[len(P1)-minsize+calcall]) + int(P2[len(P2)-minsize+calcall]) + int(P3[len(P3)-

minsize+calcall])))

 if len(time1)<len(time2):

 ptime=time1

 if len(time1)>len(time3):

 ptime= time3

 elif(len(time2)<len(time3)):

 ptime=time2

 else:

 ptime = time3

 print(len(P1),len(P2),len(P3))

 print(len(Pt),minsize,sizediff,maxsize)

 #ax1.plot(time3[((minsize)-int(pastT)):(minsize)],Pt[(minsize-int(pastT)):minsize],'w',label=

'total',linewidth = 2)

32

 if caseo == 0: #show all from start

 ax1.clear()

 ax1.plot(time1,P1, 'b', label ='Fridge',linewidth = 2)

 ax1.plot(time2,P2,'g', label ='TV' ,linewidth = 2)

 ax1.plot(time3,P3,'r',label='chargers',linewidth = 2)

 ax1.plot(ptime[sizediff:(minsize)],Pt[sizediff:minsize],'w',label= 'total',linewidth = 2)

 # ax1.set_xlim([200000,202000])

 #ax1.set_xlim(left=200000)

 #ax1.set_xlim(xmin=200000)

 plt.title('powergraph live')

 plt.legend()

 plt.grid(True,color='w')

 # ax1.plot(time3,Pt,'w',label='total',linewidth = 2)

 if caseo == 1: #last 5/300 mins

 ax1.clear()

 maxsize = max(len(time1),len(time2),len(time3))

 ax1.clear()

 ax1.plot(time1,P1, 'b', label ='Fridge',linewidth = 2)

 ax1.plot(time2,P2,'g', label ='TV' ,linewidth = 2)

 ax1.plot(time3,P3,'r',label='chargers',linewidth = 2)

 ax1.plot(ptime[sizediff:(minsize)],Pt[sizediff:minsize],'w',label= 'total',linewidth = 2)

 ax1.set_xlim([int(lasttime)-(minsel*100),int(lasttime)])

 plt.title('powergraph live')

 plt.legend()

 plt.grid(True,color='w')

 if caseo == 2: #good for nothing

 ax1.clear()

 # ax1.plot(time1[(len(time1)-int(pastT*100/(b2*b1))):len(time1)],P1[(len(time1)-

int(pastT*100/(b2*b1))):len(time1)],'b',label ='Fridge',linewidth = 2)

 # ax1.plot(time1[(len(time1)-int(pastT*100/(b2*b1))):len(time1)],P2[(len(time1)-

int(pastT*100/(b2*b1))):len(time1)],'g',label ='TV' ,linewidth = 2)

 # ax1.plot(time2[(len(time1)-int(pastT*100/(b2*b1))):len(time1)],P3[(len(time1)-

int(pastT*100/(b2*b1))):len(time1)],'r',label= 'chargers',linewidth = 2)

 # ax1.plot(time3[(len(time1)-int(pastT*100/(b2*b1))):len(time1)],Pt[(len(time1)-

int(pastT*100/(b2*b1))):len(time1)],'w',label= 'total',linewidth = 2)

 maxsize = max(len(time1),len(time2),len(time3))

 #print(power)

 #still select the data range that falls in the one under so that you can make it less heavy

33

 ax1.clear()

 ax1.plot(time1,P1, 'b', label ='Fridge',linewidth = 2)

 ax1.plot(time2,P2,'g', label ='TV' ,linewidth = 2)

 ax1.plot(time3,P3,'r',label='chargers',linewidth = 2)

 ax1.plot(ptime[sizediff:(minsize)],Pt[sizediff:minsize],'w',label= 'total',linewidth = 2)

 ax1.set_xlim([int(lasttime)-(minsel*1000),int(lasttime)])

 if caseo ==4: #bar graph

 ax1.clear()

 #fig = plt.figure(2)

 # ax2 = fig2.add_subplot(1,1,

 x=[1,2,3]

 #print('eh')

 totP1 = int(totP1)/(1000000*60)

 # print(totP1)

 totP2= int(totP2)/(1000000*60)

 totP3 = int(totP3)/(1000000*60)

 y = [(totP1),(totP2),(totP3)]

 # y = [100,200,300]

 #ax1.bar(x,y,align='center')

 pm,pc,pn = ax1.bar(x,y,align='center')

plt.xticks(x,('Fridge='+str(round(totP1,2))+'KWH','TV='+str(round(totP2,2))+'KWH','Chargers='+str(roun

d(totP3,2))+'KWH'))

 ax1.set_facecolor('white')

 if caseo == 10: #thresholdiung but old style

 ax1.clear()

 minsize = min(len(time1),len(time2),len(time3))

 # ax1.plot(time1[(len(time1)-int(pastT)):len(time1)],P1[(len(time1)-int(pastT)):len(time1)],'b',label

='Fridge',linewidth = 2)

 # ax1.plot(time1[(len(time2)-int(pastT)):len(time2)],P2[(len(time2)-int(pastT)):len(time2)],'g',label

='TV' ,linewidth = 2)

 # ax1.plot(time3[(len(time3)-int(pastT)):len(time3)],P3[(len(time3)-int(pastT)):len(time3)],'r',label=

'chargers',linewidth = 2)

ax1.plot(time1[(len(time1)-int(pastT/b2)):len(time1)],Pt[(len(time1)-

int(pastT/b2)):len(time1)],'w',label= 'total',linewidth = 2)

 ax1.plot(time3[((minsize)-int(pastT)):(minsize)],P1[(minsize-int(pastT)):minsize],'b',label

='Fridge',linewidth = 2)

 ax1.plot(time3[((minsize)-int(pastT)):(minsize)],P2[(minsize-int(pastT)):minsize],'g',label ='TV'

,linewidth = 2)

 ax1.plot(time3[((minsize)-int(pastT)):(minsize)],P3[(minsize-int(pastT)):minsize],'r',label=

'chargers',linewidth = 2)

34

 # ax1.plot(minsize[((minsize)-int(pastT)):(minsize)],Pt[(minsize-int(pastT/b2)):minsize],'w',label=

'total',linewidth = 2)

 #print(maxsize)

for calcall in range(minsize-int(pastT),len(time1)):

Pt.append(int(P1[calcall]))

for calcall in range(minsize-int(pastT),len(time2)):

Pt.append(Pt[calcall] + int(P2[calcall]))

for calcall in range(minsize-int(pastT),len(time3)):

Pt.append(Pt[calcall] + int(P3[calcall]))

 for calcall in range(0,minsize):

 Pt.append(int(int(P1[calcall]) + int(P2[calcall]) + int(P3[calcall])))

 ax1.plot(time3[((minsize)-int(pastT)):(minsize)],Pt[(minsize-int(pastT)):minsize],'w',label=

'total',linewidth = 2)

 #= P1[calcall]+P1[calcall]

 # Pt[calcall] = P1[calcall] + P2[calcall] + P3[calcall]

 #print(len(time1),len(time2),len(time3),len(timet))

 # print(len(P1),len(P2),len(P3),len(Pt))

 # print(Pt[0:len(P1)])

 # ax1.plot(time1,P2[len(P2)-len(time1):len(P2)])

 #ax1.plot(time1,P3[len(P3)-len(time1):len(P3)])

 # ax1.plot(time1,P1)

 #ax1.plot(time1[(len(time1)-25):len(time1)],P1[(len(time1)-25):len(time1)]);

 # ax1.plot(time2[(len(time2)-50):len(time2)],P2[(len(time2)-50):len(time2)]);

 #ax1.plot(time3[(len(time3)-500):len(time3)],P3[(len(time3)-500):len(time3)]);

ax3.clear()

ax3.plot(time3,P3)

 #ax3.clear()

 #ax3.plot(time3,P3)

 #axes.set_xlim([20000,80000])

35

ani = animation.FuncAnimation(fig, animate, interval=1000)

#print("hi")

##def animate(j):

ax2.clear()

#ax2.plot(time2,P2)

ax2.plot(time2[(len(time2)-50):len(time2)],P2[(len(time2)-50):len(time2)]);

##ani2 = animation.FuncAnimation(fig2, animate, interval=1000)

#def animate(j):

ax3.clear()

#ax2.plot(time2,P2)

ax3.plot(time3[(len(time3)-50):len(time3)],P3[(len(time3)-50):len(time2)]);

##ani3 = animation.FuncAnimation(fig3, animate, interval=1000)

#ani = animation.FuncAnimation(fig2, animate, interval=1000)

#ani = animation.FuncAnimation(fig3, animate, interval=1000)

#plt.legend()

#plt.grid(True,color='k')

plt.show()

36

JavaScript code for server

node.js code

// properly implemented

//1) data taken out from node

//date and time has been split, date is name, time is t

var Wemo = require('wemo-client');

var wemo = new Wemo();

var fs = require('fs');

var array = [];

function foundDevice(err, device) {

 if (device.deviceType === Wemo.DEVICE_TYPE.Insight) {

 console.log('Wemo Insight Switch found: %s', device.friendlyName);

 var client = this.client(device);

 client.on('insightParams', function(state, power,powerused) {

 var now = new Date();

 var dateFormat = require('dateformat');

 // t = dateFormat(now,"dd:m:yyyy H:MM:ss");

 t = dateFormat(now,"HMMss");

 var f = dateFormat(now,"dd:m:yyyy");

 if (array.includes(this.device.serialNumber))

 {

 //console.log('HAHAHAHAHAHAHAHAH');

 // console.log('%s %d',this.device.friendlyName);

37

 for(i=0;i<10;i++)

 {

 if(array[i] == (this.device.serialNumber))

 {

 console.log('name = %s, device numbeer = %d , power = %s,

powerused = %s',

 this.device.friendlyName,

 // this.device.serialNumber,

 i,

 Math.round(power / 1000),

 powerused);

 //insert append to file

 //fs.appendFile('somethignnew.txt', 'name = %s, device numbeer =

%d , power = %s',

 //fs.appendFile('somethignnew.txt' , t + '\t'+ i + '\t' +

this.device.serialNumber + '\t' + this.device.friendlyName + '\t' + Math.round(power / 1000) + '\n',

 //fs.appendFile(f+'.txt' , t + '\t'+ i + '\t' + this.device.serialNumber

+ '\t' + this.device.friendlyName + '\t' + Math.round(power / 1000) + '\n',

 //as requested by the new system

 fs.appendFile(f+'.txt' , t + ','+ i + ',' + this.device.serialNumber + ','

+ this.device.friendlyName + ',' + Math.round(power / 1000) + ',' + powerused +'\n' ,

 //'\n power = %s ', num.toString(i) ,

 //this.device.friendlyName, i , Math.round(power / 1000),

 function (err) {

 if (err) throw err;

38

 console.log('Updated!');

 });

 break;

 }

 }

 }

 if (!array.includes(this.device.serialNumber))

 {

 // console.log(array.includes(this.device.serialNumber));

 array.push(this.device.serialNumber);

 }

//console.log(array);

 // console.log('%s %s %d',this.device.friendlyName,this.device.serialNumber) ;

 });

 }

}

wemo.discover(foundDevice);

