
On Some Nonlinear Assignment Problems
by

Vladyslav Sokol

M.Sc., Kyiv Polytechnic Institute, 2012
B.Sc., Kyiv Polytechnic Institute, 2010

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

c© Vladyslav Sokol 2018
SIMON FRASER UNIVERSITY

Spring 2018

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Vladyslav Sokol

Degree: Doctor of Philosophy (Computer Science)

Title: On Some Nonlinear Assignment Problems

Examining Committee: Chair: Faraz Hach
Research Associate

Binay Bhattacharya
Co-Supervisor
Professor

Abraham Punnen
Co-Supervisor
Professor
Department of Mathematics

Ramesh Krishnamurti
Supervisor
Professor

Oliver Schulte
Internal Examiner
Professor

Zhipeng Lu
External Examiner
Full Professor, Director
School of Computer Science
Huazhong University of Science and
Technology

Date Defended: 27 February 2018

ii

Abstract

Linear assignment problem (commonly referred to as just assignment problem) is a funda-
mental problem in combinatorial optimization. The goal is to assign n workers to do n jobs
so that the linear sum of corresponding costs is minimized. The linear assignment problem
is thoroughly studied and has a O(n3) solution with Hungarian algorithm. Nevertheless, a
wide range of applications involving assignments are naturally modeled with more complex
objective functions (for example quadratic sum as in quadratic assignment problem), and
are much more computationally challenging.

In this thesis we discuss our results on the bilinear assignment problem, which generalizes
the quadratic assignment problem, and is also motivated by several unique applications.
The focus is on computational complexity, solvable special cases, approximations, lineariza-
tions as well as local search algorithms and other heuristic approaches for the problem. We
also present our results on few applied projects, where modelling the underlying problem
as a nonlinear assignment was instrumental.

Keywords: assignment problem; quadratic assignment problem; computational complex-
ity; polynomially solvable cases; approximation; PTAS; domination analysis; exponential
neighborhood; heuristic; variable neighborhood search; integer programming; linearization;
ridesharing; vehicle routing

iii

Acknowledgements

I thank Ramesh Krishnamurti for the introduction to integer programming techniques
and research process at SFU Computer Science.

I thank Binay Bhattacharya for the breadth of my theoretical and practical knowledge
and the provided opportunity to advance my studies with a doctorate.

I thank Abraham Punnen for the given ability to study interesting problems to the ex-
tent and detail that i have never had before.

And lastly, thank you to Ante Custic for help with many proofs and for countless
discussions about research and life.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Assignments and linear assignment problem 1
1.2 Overview of nonlinear assignment problems 3

1.2.1 Quadratic assignment and related problems 3
1.2.2 Problems with multiple assignments 7
1.2.3 Multi-dimensional assignment problems 9
1.2.4 Partition assignment problem . 13

1.3 Outline of thesis . 15

2 Bilinear Assignment Problem: Complexity and Polynomially Solvable
Special Cases 16
2.1 Formulation and connection to other nonlinear problems 17
2.2 Complexity and polynomially solvable cases 19

2.2.1 Characterization of linearizable instances 22
2.2.2 Cost array of rank one . 26

2.3 Approximations . 27
2.3.1 A discretization procedure . 28
2.3.2 FPTAS for BAP with fixed rank of Q 29
2.3.3 Domination analysis . 30

2.4 Integer programming linearizations . 34
2.5 Conclusion . 37

v

3 Bilinear Assignment Problem: Theoretical and Experimental Analysis
of Algorithms 38
3.1 Construction heuristics . 39
3.2 Neighborhood structures and properties . 42

3.2.1 The h-exchange neighborhood . 42
3.2.2 [h,p]-exchange neighborhoods . 52
3.2.3 Shift based neighborhoods . 56

3.3 Experimental analysis . 58
3.3.1 Experimental design and test problems 58
3.3.2 Experimental analysis of construction heuristics 59
3.3.3 Experimental analysis of local search algorithms 62
3.3.4 Variable neighborhood search . 69

3.4 Conclusion . 79

4 Partition Assignment Problem and Applications 81
4.1 Partition assignment problem . 81

4.1.1 Complexity . 83
4.1.2 Average cost of solution . 83

4.2 Modelling ridesharing as partition assignment problem 84
4.2.1 Bipartite and weighted matching models 88
4.2.2 Integer linear programming formulation 90
4.2.3 Experimental results . 90

4.3 Conclusion . 93

5 Laboratory Samples Delivery 94
5.1 Modelling the problem as multi-commodity network flow 97

5.1.1 Network Construction . 98
5.1.2 Mathematical Programming Formulation 100

5.2 Implementation and Experimental Results 101
5.2.1 Comparing Solution Quality across Problem Instances 102

5.3 Conclusions and future work . 104

6 Conclusion 105

Bibliography 108

vi

List of Tables

Table 3.1 Solution value and running time in seconds for construction heuristics 61
Table 3.2 Asymptotic running time and neighborhood size per iteration for local

searches . 64
Table 3.3 Solution value, running time in seconds and number of iterations for

local searches . 65
Table 3.4 Solution value and number of starts for time-limited multi-start local

searches . 68
Table 3.5 Solution value, running time in seconds and number of iterations for

Alternating Algorithm and variations (convergence to local optima) . 72
Table 3.6 Solution value, running time in seconds and number of iterations for

2exOpt and variations (convergence to local optima) 73
Table 3.7 Solution value, running time in seconds and number of iterations for

Variable Neighborhood Search and multi-start AA 76

vii

List of Figures

Figure 3.1 Example of shuffle operation on permutation π, with u = 3 57
Figure 3.2 Difference between solution values (to the best) for construction

heuristics; uniform instances . 62
Figure 3.3 Running time for construction heuristics; uniform instances 63
Figure 3.4 Difference between solution values (to the best) for local search; uni-

form instances . 66
Figure 3.5 Running time to converge for local search; uniform instances 66
Figure 3.6 Difference between solution values (to the best) for multi-start algo-

rithms; uniform instances . 69
Figure 3.7 Running time to reach the local optima by algorithms; uniform in-

stances . 74
Figure 3.8 Difference between solution values (to the best) for algorithms; uni-

form instances . 77
Figure 3.9 Objective solution values for RandomXYGreedy+AA metaheuristic;

uniform 100× 100 instance . 77
Figure 3.10 Objective solution values for RandomXYGreedy+AA metaheuristic;

normal 100× 100 instance . 78
Figure 3.11 Objective solution values for RandomXYGreedy+AA metaheuristic;

euclidean 100× 100 instance . 78
Figure 3.12 Improvement over time of best found objective solution value for

multi-start heuristics; uniform 100× 100 instance 79

Figure 4.1 Gadget G(t) for a triple t = (x, y′, y′′) 86
Figure 4.2 Hourly distribution of incoming and outgoing personal vehicle traffic

at SFU Burnaby . 91
Figure 4.3 Provided distribution of carpooling requests by postal zones (FSA

districts) for a typical day . 92
Figure 4.4 An example of the static ridesharing problem solution for an instance

of size 100 . 93

Figure 5.1 Typical map layout for HLCRP . 95

viii

Figure 5.2 Dependence of Average Gap on Discretization for Sparse, and Com-
plete Input Graphs . 103

Figure 5.3 Dependence of Average Relative Gap on Number of Vehicles and
Discretization Time Steps . 103

Figure 5.4 Illustrative example of the routes generated using simulated data . 104

ix

Chapter 1

Introduction

1.1 Assignments and linear assignment problem

Assignment problems are concerned with assigning n jobs (items, facilities) to n workers
(items, locations). Given a n×n matrix of costs cij and n2 binary decision variables, where
xij = 1 stands for assigning job i to worker j, we can write the following:

Minimize
n∑
i=1

n∑
j=1

cijxij (1.1)

subject to
n∑
j=1

xij = 1 i = 1, 2, . . . , n, (1.2)

n∑
i=1

xij = 1 j = 1, 2, . . . , n, (1.3)

xij ∈ {0, 1} i, j = 1, 2, . . . , n. (1.4)

Problem (1.1)-(1.4) is called linear assignment problem (LAP), as (1.1) is a linear sum
w.r.t. variables. (1.2)-(1.3) are called assignment constraints and correspond to permuta-
tions of n-element set. Let Π be the set of all permutations on {1, 2, . . . , n}. Then LAP can
be also written in permutation form:

min
π∈Π

n∑
i=1

ci π(i). (1.5)

If, say, (1.3) is removed from the formulation, we will be dealing with the case where
both xi1j = 1 and xi2j = 1 for i1 6= i2 can be present in a feasible solution. This type
of constraints are semi-assignment constraints, and together with (1.1) define linear semi-

1

assignment problem:

Minimize
n∑
i=1

m∑
j=1

cijxij (1.6)

subject to
m∑
j=1

xij = 1 i = 1, 2, . . . , n, (1.7)

xij ∈ {0, 1} i = 1, 2, . . . , n, j = 1, 2, . . . ,m. (1.8)

This problem admits a trivial O(nm) solution, but the terminology will be useful for later
parts of the survey.

LAP is an important problem in combinatorial optimization with numerous applications
dealing with assignments of discrete objects. The famous Hungarian algorithm provides an
optimal solution to LAP in O(n3) running time [90]. Many applications involving as-
signments require more complicated interactions between variables to correctly capture all
processes in a model. The best example is Quadratic Assignment Problem, which gained
the most attention among nonlinear assignment problems from the practitioners and Oper-
ations Research community. Generally speaking, this additional complexity in the objective
function or/and assignments structures brings the problem into the NP-hard category, and
thus will force an extra effort to find an optimal (or even near optimal) solutions. However,
occasionally, a special information about an input of the problem will allow for a more
efficient solution approach. In this chapter we will try to organize our knowledge about
nonlinear assignment problems and establish connections between them in terms of gener-
alization/special case relations. We will occasionally refer to several other seminal surveys
in the area, as we do not hope for a perfectly detailed review of all the related research that
has been done. However, for several of the nonlinear assignment problems new results have
been recently obtained, and they will be discussed in such survey format for the first time.

An outline of this chapter is like this. Each section will talk about an important problem
or set of problems and will follow the same structure. First a formulation will be presented
to demonstrate the difference with LAP and connections to other assignment problems.
Next we will give a quick overview of applications that sprung interest for the problem.
Following, will be a discussion of results on complexity of the problem together with its
special cases, approximability results, average and worst case analysis of solutions. Finally,
we will mention algorithmic approaches that researchers attempted for those problems.

2

1.2 Overview of nonlinear assignment problems

1.2.1 Quadratic assignment and related problems

Quadratic assignment problem (QAP), introduced in [87], was dealing with assigning n

facilities to n locations. The cost function here, besides the linear costs, also contains a part
that depends on pairs of variables and is proportional to the value of the flow between two
facilities, multiplied by the distance between two locations. Using same decision variables
that we used for describing LAP, this Koopmans-Beckmann form of QAP can be stated like
this:

minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fikdjlxijxkl +
n∑
i=1

n∑
j=1

cijxij , (1.9)

subject to
n∑
j=1

xij = 1 i = 1, 2, . . . , n, (1.10)

n∑
i=1

xij = 1 j = 1, 2, . . . , n, (1.11)

xij ∈ {0, 1} i, j = 1, 2, . . . , n, (1.12)

where F = fik and D = djl are n × n flow and distance matrices respectively. Objective
function depends quadratically on decision variables xij , hence the quadratic in the name
of the problem. Notice that QAP constraints (1.10) - (1.12) are identical to constraints of
the linear assignment problem discussed above.

QAP in more general Lawler’s [94] form is to

minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklxijxkl, (1.13)

subject to
n∑
j=1

xij = 1 i = 1, 2, . . . , n, (1.14)

n∑
i=1

xij = 1 j = 1, 2, . . . , n, (1.15)

xij ∈ {0, 1} i, j = 1, 2, . . . , n. (1.16)

Instead of flow and distance matrices, we are using an array Q of size n × n × m × m.
Koopmans-Beckmann QAP can be transformed into Lawler’s form by setting:

qijkl = fikdjl i, j, k, l = 1, 2, . . . , n; i 6= k, j 6= l (1.17)

qijij = fiidjj + cij i, j = 1, 2, . . . , n. (1.18)

3

The permutation formulation of QAP is

min
π∈Π

n∑
i=1

n∑
k=1

qi π(i) k π(k), (1.19)

where Π is the set of all permutations on {1, 2, . . . , n}.
Note that for QAP we can assume without loss of generality that qijil = 0 when j 6= l

and similarly qijkj = 0 when i 6= k. Also, by reassigning all qijkl = qklij = qijkl+qklij
2 we can

make n2 by n2 matrix Q symmetric, while maintaining equivalence to the original problem.

Numerous real-world applications established QAP as the focus of study for many from
the Operations Research, Combinatorial Optimization and related communities. A non-
exhaustive list of problems that could be modeled as QAP include: campus building plan-
ning, minimizing the number of connections in a backboard wiring problem, hospital and
forest planning, computer manufacturing, scheduling, process communications, turbine bal-
ancing, typewriter keyboard design, turbine runner problem, ranking of archeological data,
ranking of a team in a relay race, scheduling of parallel production lines, analysis of chemical
reactions for organic compounds, arrangement of numbers around a dartboard under risk
maximization, the arrangement of probes on microarray chips, combinatorial data anal-
ysis and shunting of trams in a storage yard. A detailed description and references to
applications can be viewed in a great variety of surveys dedicated to and including QAP
[25, 19, 95, 113, 21, 103].

QAP is also a generalization of several other important problems, such as: traveling
salesman problem, minimum weight feedback arc set problem, graph partitioning and max-
imum clique problem, graph isomorphism and graph packing problems. Hence, it is possible
to model their applications as QAP too.

Complexity and solvable cases

QAP is NP-hard, as TSP is its special case. It is not possible to find a constant factor
approximation for the QAP in polynomial time, unless P = NP [116]. This results holds even
for Koopmans-Beckmann QAP with F,D,C satisfying triangle inequality [110]. However,
maximization version of the QAP in which matrix D satisfies the triangle inequality admits
a 1/4-approximation [9]. A special case of Koopmans-Beckmann QAP called linear dense
arrangement problem, where matrix F is the distance matrix of n points which are regularly
spaced on a line and the number of 1-entries in D is at least kn2 for some constant k, is
shown to have polynomial-time approximation scheme [10].

If we are to minimize the maximum cost instead of the sum (1.13), we would be dealing
with quadratic bottleneck assignment problem [124].

4

It is known [19] that the average value of all solutions to a given QAP instance can be
computed as:

A = 1
n(n− 1)

n∑
i,j=1

∑
k 6=i

∑
l 6=j

qi j k l + 1
n

n∑
i,j=1

qi j i j . (1.20)

With respect to domination analysis, authors of [67] presented a heuristic with no worse
than the average value performance guarantee, that has the domination number at least
n!
βn , for any β > 1. For every prime power n, the domination number of this heuristic is
shown to be at least (n− 2)!.

The time complexity of 2- and 3-exchange methods for the QAP is exponential in the
worst case [100, 103]. Deciding whether a given local optimum solution of the QAP is also
global optimum is NP-complete [101]. It is shown that the optimal value for the 2-exchange
local search will be at most n times larger than the average [6]. The solution with this value
guarantee will be found by 2-exchange local search in polynomial number of steps.

Solution approaches

QAP have been attempted to be solved by majority of the popular exact and heuristic
methods. In terms of branch-and-bound [102, 68, 7, 1, 30] researchers considered different
branching (pair assignment, relative positioning, polytomic branching), bounding and ex-
ploration strategies. A large variety of valid inequalities inducing facets was proposed for
branch-and-cut [14]. See [19] for more details on exact and heuristic solution methods and
an extensive survey on metaheuristics [43] applied to QAP.

Several linearizations were proposed to reformulate quadratic assignment problem as an
integer linear program [79, 48, 94, 1]. Following this route, one can attempt to optimally
solve this (larger in terms of number of variables and/or number of constraints) integer pro-
gramming linearization, or relax the integrality constraints and use the relaxation solution
as a bound for other methods.

Quadratic semi-assignment problem

Similarly to semi-assignment case of its linear counterpart, quadratic semi-assignment prob-
lem [60] does not have constraint (1.15) and is dealing with assigning potentially larger
number n of facilities to m locations, n ≥ m, such that the quadratic cost is minimized:

minimize
n∑
i=1

m∑
j=1

n∑
k=1

m∑
l=1

qijklxijxkl, (1.21)

subject to
m∑
j=1

xij = 1 i = 1, 2, . . . , n, (1.22)

xij ∈ {0, 1} i = 1, 2, . . . , n, j = 1, 2, . . . ,m. (1.23)

5

The quadratic semi-assignment problem is NP-hard, as it generalizes QAP with a simple
transformation. Namely, by adding a large number to all elements qijil where j 6= l of Q,
one can prohibit two facilities to be assigned to the same location. In this way an algorithm
that solves quadratic semi-assignment problem will, therefore obtain an optimal solution to
the original QAP.

This problem has been considered as a model for various applications such as supply
support for space bases, schedule synchronization in transit networks, task scheduling on
distributed computing systems and minimizing the mean flow time in parallel processors
scheduling. Reader is referred to survey [19] for references of applications as well as lower
bounds, polyhedral studies and admissible transformations for this problem.

In [15] author considers a class of polynomially solvable special cases of the quadratic
semi-assignment problem. These cases deal with an input array Q representing a flow graph
(
∑m
j=1

∑m
l=1 qijkl = 1 when i and k are connected with an edge and 0 otherwise). Authors

provide an O(nm2) algorithm to solve such assignment problem when Q represents flow
graph of a tree. If Q represents a flow graph that can be reduced to a single node by means
of tail, series and parallel reductions, then a O(nm3) algorithm to find an optimal solution
is given [28, 96].

In [13] authors propose to solve the quadratic semi-assignment problem using lower-first
branch-and-bound algorithm that relies on Lagrangean relaxation bounds. Computational
results are reported for instances of sizes up to n = 101, m = 10. In terms of heuristics
researchers described adaptations of simulated annealing and tabu search [41, 132, 42].

Cubic and quartic assignment problems

In the beginning of the chapter we considered extending the objective function from linear
in LAP to quadratic in QAP. To generalize we can define m-tic assignment problem [94] as
minimizing:

n∑
i1=1

n∑
i2=1

. . .
n∑

i2m=1
qi1 i2 ... i2mxi1 i2xi3 i4 . . . xi2m−1 i2m , (1.24)

subject to assignment constraints as in (1.2)-(1.4).
To this point only 3- and 4-tic problems (called cubic and quartic or bi-quadratic re-

spectively) have found applications, according to the literature. Cubic assignment problem
appears as a model for finding the minimum shunting of trams in a storage yard, whether,
the quartic assignment problem is useful in VLSI synthesis [26]. Authors of the paper
provide several results on lower bounds and probabilistic behavior of the problem. Both
problems have found use in improving existing lower bounds for QAP [1].

6

Reported solution methods for quartic assignment problem, due to complexity, are lim-
ited to heuristics such as combinations of 2-exchange local searches, simulated annealing
and tabu search [20].

1.2.2 Problems with multiple assignments

Bilinear Assignment Problem

Let Q = (qijk`) be an m×m× n× n array, C = (cij) be an m×m matrix, and D = (dk`)
be an n× n matrix. Then the bilinear assignment problem (BAP) is to

Minimize
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
`=1

dk`yk` (1.25)

subject to
m∑
j=1

xij = 1 i = 1, 2, . . . ,m, (1.26)

m∑
i=1

xij = 1 j = 1, 2, . . . ,m, (1.27)

n∑
`=1

yk` = 1 k = 1, 2, . . . , n, (1.28)

n∑
k=1

yk` = 1 ` = 1, 2, . . . , n, (1.29)

xij , yk` ∈ {0, 1} i, j = 1, 2, . . . ,m, k, ` = 1, . . . , n. (1.30)

Let X be the set of all m×m 0-1 matrices satisfying (1.26) and (1.27) and Y be the set
of all n × n 0-1 matrices satisfying (1.28) and (1.29). Also, let F be the set of all feasible
solutions of BAP. Note that |F| = m!n!. An instance of the BAP is fully defined by the
3-tuple of cost arrays (Q,C,D). LetM = {1, 2, . . . ,m} and N = {1, 2, . . . , n}. Without loss
of generality we assume that m ≤ n. The objective function of BAP is denoted by f(x,y)
where x = (xij) ∈ X and y = (yij) ∈ Y. The quadratic part of the objective function,
i.e.

∑m
i=1

∑m
j=1

∑n
k=1

∑n
`=1 qijk`xijyk`, is denoted by f̄(x,y). It may be noted that in BAP,

constraints (1.30) can be replaced by 0 ≤ xij ≤ 1 and 0 ≤ yk` ≤ 1 for i, j = 1, . . . ,m, and
k, ` = 1, . . . , n.

Being a generalization of the well studied problems QAP and 3AP, applications of these
models translate into applications of BAP. Further, Zikan [134] used a model equivalent to
BAP to solve track initialization in the multiple-object tracking problem, Tsui and Chang
[128, 129] used BAP to model a dock door assignment problem, and Torki, Yajima and
Enkawa [126] used BAP to obtain heuristic solutions to QAP with a small rank Q.

7

Bipartite Quadratic Assignment Problem

Closely related to quadratic semi-assignment problem, bipartite quadratic assignment prob-
lem (BQAP) can be written as the following integer program:

Minimize
m∑
i=1

m∑
j=1

n∑
k=1

n∑
l=1

qijklxijykl +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
l=1

dklykl (1.31)

subject to
m∑
i=1

xij = 1 j = 1, 2, . . . ,m, (1.32)

n∑
l=1

ykl = 1 k = 1, 2, . . . , n, (1.33)

xij , ykl ∈ {0, 1} i, j = 1, . . . ,m, k, l = 1, . . . , n. (1.34)

Here we have real valued four dimensional array Q = (qijkl) of size m×m× n× n, an
m×m matrix C = (cij), and an n× n matrix D = (dkl).

Applications for BQAP predominantly lie in the area of facility location. Moreover,
BQAP is a proper generalization of QAP [109] and can be used as a model for variety of
corresponding applications.

It is shown that BQAP can be considered as a special case of quadratic semi-assignment
problem [109]. However, authors use a more general quadratic programming model to
explore complexity. For this problem constraints are parametrized and may not be of an
assignment kind. Following, NP-hardness is shown for several special cases.

In [37] authors study BQAP from the point of view of complexity, domination analysis
and solvable special cases. The closed formula to calculate the average value A of all
solutions is presented as:

A(Q, c, d) = 1
mn

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk` + 1
m

m∑
i=1

m∑
j=1

cij + 1
n

n∑
i=1

n∑
j=1

dij . (1.35)

Every feasible solution with objective function value at most A has the domination ratio at
least 1

mn . Finding the median objective function value, however, is shown to be NP-hard.
Computing a solution whose objective function value is no worse than that of mmnn −
dmα e

dm
α
ednαe

dn
α
e solutions of BQAP, is NP-hard for any rational number α > 1. However,

a solution with the domination number Ω(mm−1nn−1 +m2nn +mmn2) for BQAP, can be
found in O(m3n3) time.

Although tools for bilinear programming can be used to solve BQAP, authors [109]
look for a better tailored approaches that exploit additional problem structure. Several
neighborhood search structures introduced that are based on chains of swaps in the solution
as well as solving linear assignment sub-problems. Finally, a Tabu Search algorithm is

8

presented to enhance the performance of local search over described neighborhoods. In
[37] it is shown that some heuristics that work well in practice could produce solutions
with objective function value worse than the average value of solutions. However, a simple
polynomial algorithm that guarantee a solution with objective function value no worse than
the average value of solutions is provided in the paper.

1.2.3 Multi-dimensional assignment problems

Axial and planar 3-dimensional assignment problems

Consider the n× n× n cost array A = (aijk). The axial 3-dimensional assignment problem
(3AP) [104] can be written as the following integer linear program:

minimize
n∑
i=1

n∑
j=1

n∑
k=1

aijkxijk (1.36)

subject to
n∑
j=1

n∑
k=1

xijk = 1 (i = 1, 2, . . . , n), (1.37)

n∑
i=1

n∑
k=1

xijk = 1 (j = 1, 2, . . . , n), (1.38)

n∑
i=1

n∑
j=1

xijk = 1 (k = 1, 2, . . . , n), (1.39)

xijk ∈ {0, 1} (i, j, k = 1, . . . , n). (1.40)

Alternatively, the permutation formulation for 3AP is to find

min
π,φ∈Π

n∑
i=1

ai π(i)φ(i). (1.41)

3AP can be viewed as a special case of bilinear integer programming as discussed in
[46], and, in particular, as a special case of BAP. The problem is then to find x,y ∈ Y such
that

n∑
i=1

n∑
j=1

n∑
k=1

aijkxijyjk

is minimized. Now it is easy to see that every 3AP instance with A = (aijk) can be reduced
to a BAP instance (Q,On, On), where qijk` is equal to aij` if j = k, and to 0 otherwise.

Axial 3-dimensional assignment problem has applications in areas such as: investment
of capital into physical locations over time horizon; ingot temperature stabilization via
rolling mill; assembly of printed circuit boards; dynamic facility location; satellite launch-
ing; perishable production planning. The bottleneck version of the problem (minimizing

9

maximum cost) has been considered as a model for some time-cost trade-off problems. For
more applications and references see [19], [122].

3AP is NP-hard [78] and no polynomial time algorithm can achieve a constant approx-
imation ratio, unless P=NP [33]. This statement holds even for two special cases of 3AP
where the cost array A satisfies

aijk = dij + dik + djk (i, j, k = 1, . . . , n) (1.42)

or
aijk = min{dij + dik, dij + djk, dik + djk} (i, j, k = 1, . . . , n) (1.43)

for some n × n array D. However, if every dij , dik, djk satisfy triangle inequality, these
special cases of 3AP admit 3/2 and 4/3 approximations respectively [33]. Authors of [123]
show that if dij , dik, djk correspond to euclidean distances between 3n points in the plane,
then 3AP is NP-hard for both minimizing the perimeter (same as 1.42) as well as min-
imizing the area of the corresponding triangles. The maximization version of 3AP with
cost array satisfying (1.42) is polynomially solvable when dij , dik, djk represent polyhedral
norm distances between 3n points in Rq [35]. The general maximization version of 3AP,
interestingly, allows for a 1/3 approximation based on the results from [72]. As discovered
in [22] 3AP becomes polynomially solvable in case A is a Monge array, where for each fixed
i (and similarly for each j and k):

aiuv + airs ≤ aius + airl for 1 ≤ u < r ≤ n, 1 ≤ v < s ≤ n. (1.44)

This result is also true for the axial 3-dimensional bottleneck assignment problem if the
Monge property of the array is replaced with the bottleneck Monge property [22] or wedge
condition [81] (see references for details). Another special case of 3AP considered in [23]
deals with decomposable costs:

aijk = bicjdk (i, j, k = 1, . . . , n). (1.45)

In this form the minimization problem remains NP-hard and hard to approximate, whereas,
the maximization problem becomes polynomially solvable. Authors [23] also describe few
polynomially solvable special cases of decomposable 3AP based on very restricted structures
of arrays B,C,D.

Several exact and heuristic approaches were proposed for the axial 3-dimensional assign-
ment problem. The former include some variations of the primal-dual method, subgradient
procedures for Lagrangean relaxation of the problem and branch-and-bound with different
branching rules. The later are local search and few popular metaheuristics such as greedy
randomized adaptive search procedure with path relinking and hybrid genetic algorithm.

10

For more detailed review of the polyhedral studies, asymptotic behavior, lower bounds,
exact and heuristic algorithms for 3AP the reader is referred to surveys in [19], [122].

The planar 3-dimensional assignment problem (planar 3AP) can be written as the fol-
lowing integer linear program:

minimize
n∑
i=1

n∑
j=1

n∑
k=1

aijkxijk (1.46)

subject to
n∑
k=1

xijk = 1 (i, j = 1, 2, . . . , n), (1.47)

n∑
i=1

xijk = 1 (j, k = 1, 2, . . . , n), (1.48)

n∑
j=1

xijk = 1 (i, k = 1, 2, . . . , n), (1.49)

xijk ∈ {0, 1} (i, j, k = 1, . . . , n). (1.50)

The permutation formulation for planar 3AP is to find n mutually distinct permutations
π1, π2, . . . , πn to minimize

n∑
i=1

n∑
k=1

ai πk(i) k. (1.51)

Planar 3AP is NP-hard [47], and related to Latin squares. Applications for planar 3AP
include several timetabling and time slot assignment problems.

If the cost array A satisfies aijk = aij for k = 1, . . . , n then the planar 3AP is solvable,
with any set of mutually distinct permutations as the solution. Another variation considered
involves minimization of slightly different objective function:

n∑
k=1

max
1≤i≤n

ai πk(i) k. (1.52)

This version of planar 3AP remains NP-hard [114].
Researchers tackled the planar 3AP with several approaches, namely branch-and-bound

and tabu search. PTAS for planar 3AP is presented in [51]. For more detailed review of the
polyhedral studies, lower bounds and algorithms for planar 3AP and variations see [19].

Two to one assignment problem

Another assignment problem that is somewhat more general than 3AP is two-to-one as-
signment problem (2-1-AP) [56]. Here input is two disjoint sets X, Y (2|X| = |Y | = 2n)
together with costs aijk for all triples (i, j, k) ∈ X × Y × Y , and the goal is to find a set
M of n mutually disjoint triples that minimize

∑
(i,j,k)∈M aijk. The 2-1-AP is NP-hard,

11

even if costs aijk can have only two distinct values. Namely, it contains 3DA as a special
case: Starting from an 3DA instance I ′ = (X ′, Y ′, Z ′, {a′ijk}) where a′ijk ∈ {u, v}, u < v,
one can obtain an equivalent instance of the 2-1-AP I = (X,Y, {aijk}) by setting X := X ′,
Y := Y ′ ∪Z ′ and defining costs aijk to be equal to corresponding a′ijk, extended by setting
the costs of new feasible triples to be equal to v.

Together with approximability analysis authors [56] suggest several practical problems
that can be modeled with 2-1-AP, such as satellite refuelling, chromosome pairing, sports
scheduling and gender matching. Main results are concerned about special case of 2-1-AP.
Namely, when the input costs are decomposable (1.42) and satisfy triangle inequality there
can not be a polynomial time approximation scheme, unless P=NP. Finally, paper presents
4/3-approximation for this version of 2-1-AP, which generalizes the similar result for 3AP.

General multi-dimensional assignment problems

LAP (2 dimensions) and axial 3AP (3 dimensions) could be easily generalized into more
dimensions. Namely, m-dimensional assignment problem is to minimize

n∑
i1=1

n∑
i2=1

. . .
n∑

im=1
ai1 i2 ... imxi1 i2 ... im (1.53)

subject to
n∑

i2=1

n∑
i3=1

. . .
n∑

im=1
xi1 i2 ... im = 1 (i1 = 1, 2, . . . , n), (1.54)

n∑
i1=1

n∑
i3=1

. . .
n∑

im=1
xi1 i2 ... im = 1 (i2 = 1, 2, . . . , n), (1.55)

...
n∑

i1=1

n∑
i2=1

. . .
n∑

im−1=1
xi1 i2 ... im = 1 (im = 1, 2, . . . , n), (1.56)

xi1 i2 ... im ∈ {0, 1} (i1, i2, . . . , im = 1, . . . , n). (1.57)

Alternatively, you can state the problem as finding m− 1 permutations that solve

min
πj∈Π,∀j∈{1,...,m−1}

n∑
i=1

ai π1(i)π2(i) ... πm−1(i). (1.58)

m-dimensional assignment problems most commonly appear during modelling of multi-
target tracking, routing in meshes and data association problems. By exchanging (1.54) -
(1.56) with a larger number of constraints, each with more indices fixed (and so with less
number of summations) one can define planar m-dimensional assignment problem. The
connection of the solution structure to Latin squares is similar as in planar 3AP. This
variant of the problem is useful for the design of tournaments, conflict-free access to parallel

12

memories and the design of error-correcting codes. For more details and references on
applications of multi-dimensional assignment problems see surveys [19, 122].

The dimensionality of the polytop for the m-dimensional assignment problem can be
computed as

∑m−2
i=0

(m
i

)
(n− 1)m−i due to result in [8].

Clearly, the problem is NP-hard for m ≥ 3. Two papers [52, 88] discuss approximation
algorithms and prove that they are asymptotically optimal for special cases of random input
matrices. In case of maximizing the objective value (1/m)-approximation is presented in
[72] and (2/m− ε)-approximation in [73], with the restriction of 0, 1 cost coefficients for the
later. Moreover, for the 0, 1 costs case, authors of [91] show that the ratio between optimal
solution value and LP relaxation is bounded by m− 1.

Special case of m-dimensional assignment problem with cost array satisfying Monge
property (similar to 3AP description) admits trivial solution [22]. If cost coefficients are
sum decomposable (that is ai1 i2 ... im = di1 i2 + di1 i3 + . . . + di1 im + di2 i3 + . . . + dim−1 im),
then there exists (2 − 2/m)-approximation algorithm. Proofs of approximation ratios for
this and several others forms of decomposable cost coefficients are presented in [11]. A
characterization of instances that have every solution with the same objective value for axial
and planar m-dimensional assignment problems can be found in [80] and [34] respectively.

Authors in [62] consider the m-dimensional assignment problem with random cost co-
efficients and bound the expected number of local optimums for the 2-exchange search
neighborhood and its generalizations.

Most of the algorithmic results on these general problems are based on Lagrangean
relaxations and branch-and-cut. With the later, polynomial-time separation algorithm have
been proposed for cuts based on clique, odd-hole, and antiweb inequalities. The only known
metaheuristic developed for the problem is Greedy Randomized Adaptive Search with both
serial and parallel adaptations. See [19] for references to these algorithms and to the analysis
of probabilistic asymptotic behavior and probabilistic bounds on optimal solution value.

1.2.4 Partition assignment problem

Let N = {1, 2, . . . , n} and E = {1, 2, . . . , p} be finite sets and F = {S1, S2, . . . , Sm} be a
family of subsets of E. The index set of elements of F is denoted by M = {1, 2, . . . ,m}.
For each (i, j) ∈ N ×M , a cost cij is prescribed. The value cij can be viewed as the cost
of assigning the set Sj to i. Then the partition assignment problem (PAP) is to find a
partition {Sk1 , Sk2 , . . . , Skr} of E such that Ski ∈ F for i = 1, 2, . . . , r and an assignment of
Sk1 , Sk2 , . . . , Skr to {1, 2, . . . , n} such that the total cost of assignment is as small as possible.

13

An integer programming formulation of this problem can be given as follows. For each
t ∈ E let ∆(t) = {j : t ∈ Sj}. Consider the decision variables xij given by

xij =

1 if i ∈ N is assigned to the subset Sj ,

0 otherwise.

Then PAP can be formulated as a 0-1 integer programming problem:

Minimize
∑
i∈N

∑
j∈M

cijxij

Subject to
∑
i∈N

xij ≤ 1, ∀j ∈M (1.59)

∑
j∈M

xij ≤ 1, ∀i ∈ N (1.60)

∑
j∈∆(t)

∑
i∈N

xij = 1, ∀t ∈ E (1.61)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈M (1.62)

Note that in presence of equation (1.61), equation (1.59) is redundant and can be dis-
carded. It may be advantageous to retain equation (1.59) in the model since it might provide
a tighter continuous relaxation.

PAP can also be viewed as a bilevel program combining set partitioning and weighted
bipartite matching as follows. Let Sα = {Sα1 , Sα2 , . . . , Sαu} be a subfamily of F , such that
Sα is a partition of E. Construct the complete bipartite graph Gα = (V α, Hα) with the
generic bipartition of V α = N ∪ Uα, where Uα = {α1, α2, . . . , αu} and the cost of the edge
(i, αj) = ciαj . A matching in Gα is called pseudo-perfect if all nodes in Uα are matched.
Let Mα be a minimum cost pseudo-perfect matching in Gα. Then the cost of the partition
Sα is C(Sα) =

∑
(i,j)∈Mα cij . Note that C(Sα) is precisely the cost of the minimum cost

pseudo-perfect matching in Gα. Thus PAP can be written as

Minimize C(Sα)

Subject to Sα ∈ F ′

where F ′ is the collection of all partitions of E that are in F , that is, F ′ = {Sα =
{Sα1 , Sα2 , . . . , Sαu} : Sαi ∈ F, 1 ≤ i ≤ u ≤ n, and Sα is a partition of E}.

14

1.3 Outline of thesis

In this thesis we discuss our recent findings for the bilinear assignment problem with the
focus on computational complexity, solvable special cases, approximations, linearizations,
local search methods and related heuristics. We also talk about our results with several
applied problems, where modelling with nonlinear assignment problems was instrumental.

An outline of the write-up is as follows. Chapter 2 is dedicated to theoretical results
on the bilinear assignment problem. First we discuss the issues of the complexity of BAP
and its special cases, and mention results of approximation and domination analysis. We
also present several reformulation linearizations techniques to reformulate the problem as
an integer linear program. Then, in Chapter 3 we discuss the key component in devising
local search algorithms for the problem - search neighborhood structures. This is followed
by the overview of our experimental experience with various local searches and more ad-
vanced heuristics for BAP. In Chapter 4 we present a ridesharing problem and several ways
to model it. One of the possible models is a new variation of nonlinear assignment problem
- partition assignment problem. We mention some preliminary results on this model. The
next chapter (Chapter 5) is dedicated to another optimization problem, which was encoun-
tered during our work on scheduling deliveries for vehicles that carry laboratory samples.
The summary of our modelling and computational experience with multi-commodity net-
work flow formulation for the problem is provided. We summarize results of the thesis and
mention key open problems in Chapter 6.

15

Chapter 2

Bilinear Assignment Problem:
Complexity and Polynomially
Solvable Special Cases

In this chapter we discuss our theoretical results on bilinear assignment problem published
in Mathematical Programming journal from November 2017 [38].

We show that Bilinear Assignment Problem (BAP) cannot be approximated within a
constant factor unless P=NP even if the associated quadratic cost matrix Q is diagonal.
Further, we show that BAP remains NP-hard ifm = O(r

√
n), for some fixed r, but is solvable

in polynomial time if m = O(logn
log logn). When the rank of Q is fixed, BAP is observed to

admit FPTAS and when this rank is one, it is solvable in polynomial time under some
additional restrictions. We then provide a necessary and sufficient condition for BAP to
be equivalent to two linear assignment problems. A closed form expression to compute the
average of the objective function values of all solutions is presented, whereas the median of
the solution values cannot be identified in polynomial time, unless P=NP. We then provide
polynomial time heuristic algorithms that find a solution with objective function value no
worse than that of (m−1)!(n−1)! solutions. However, computing a solution whose objective
function value is no worse than that of m!n!− dmβ e!d

n
β e! solutions is NP-hard for any fixed

rational number β > 1.

This chapter is organized as follows. In Section 2.2 we investigate the complexity of
BAP and prove that it is NP-hard if m = O(r

√
n), for some fixed r, but is polynomially

solvable if m = O(logn
log logn). Note that QAP is polynomially solvable if Q′ is diagonal, but

we show that BAP is NP-hard even if Q is diagonal and n = m. Moreover, such BAP
instances do not admit a polynomial time α-approximation algorithm for any fixed α > 1,
unless P=NP. Section 2.2 also deals with some special classes of BAP that are solvable in
polynomial time. In particular, we provide an algorithm to solve BAP when Q, observed as

16

a matrix, is of rank one, and either C or D is a sum matrix (i.e., either cij ’s or dij ’s are of
the form si+ tj , for some vectors S = (si) and T = (ti)). Furthermore, we show that a BAP
instance is equivalent to two linear assignment problems, if and only if Q is of the form
qijk` = eijk+fij`+gik`+hjk`, for a natural definition of equivalency. In this case, the problem
can be solved in O(n3) time. In Section 2.3, we analyze various methods for approximating
an optimal solution. We show that there is a FPTAS for BAP if the rank of Q is fixed,
and present a discretization procedure that preserves the objective value. Computing a
solution whose objective function value is no worse than that of m!n!− dmβ e!d

n
β e! solutions

is observed to be NP-hard for any fixed rational number β > 1. We also obtain a closed
form expression for computing the average of the objective function values of all feasible
solutions, and present methods for finding a solution with the objective value guaranteed
to be no worse than the average value. Such solutions are shown to have objective function
value no worse than (m− 1)!(n− 1)! alternative solutions. Finally, we note that a median
solution cannot be found in polynomial time, unless P=NP. Here the median denotes a
solution which is in the middle of the list of all feasible solutions sorted by their objective
function value. Concluding remarks are given in Section 2.5.

2.1 Formulation and connection to other nonlinear problems

Let Q = (qijk`) be an m×m× n× n array, C = (cij) be an m×m matrix, and D = (dk`)
be an n× n matrix. Then the bilinear assignment problem (BAP) is to

Minimize
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
`=1

dk`yk` (2.1)

subject to
m∑
j=1

xij = 1 i = 1, 2, . . . ,m, (2.2)

m∑
i=1

xij = 1 j = 1, 2, . . . ,m, (2.3)

n∑
`=1

yk` = 1 k = 1, 2, . . . , n, (2.4)

n∑
k=1

yk` = 1 ` = 1, 2, . . . , n, (2.5)

xij , yk` ∈ {0, 1} i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.6)

Let X be the set of all m ×m 0-1 matrices satisfying (2.2) and (2.3) and Y be the set
of all n × n 0-1 matrices satisfying (2.4) and (2.5). Also, let F be the set of all feasible
solutions of BAP. Note that |F| = m!n!. An instance of the BAP is fully defined by the
3-tuple of cost arrays (Q,C,D). Let M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}. Without
loss of generality we assume that m ≤ n. The objective function of BAP is denoted by

17

f(x,y) where x = (xij) ∈ X and y = (yij) ∈ Y. The quadratic part of the objective
function, i.e.

∑m
i=1

∑m
j=1

∑n
k=1

∑n
`=1 qijk`xijyk`, is denoted by f̄(x,y). It may be noted that

in BAP, constraints (2.6) can be replaced by 0 ≤ xij ≤ 1 and 0 ≤ yk` ≤ 1 for i, j = 1, . . . ,m,
and k, ` = 1, . . . , n. This is because, there always exist an integral optimal solution of the
relaxed version of the problem, which can be shown by applying the analogous property for
the linear assignment problem twice, e.g. see Theorem 10. This justifies the name bilinear
assignment problem [5, 85].

BAP is closely related to the well known quadratic assignment problem (QAP) [25]. Let
Q′ = (q′ijk`) be an n× n× n× n array. Then the QAP is defined as

Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

q′ijk`xijxk`

subject to
n∑
j=1

xij = 1 i = 1, 2, . . . , n,

n∑
i=1

xij = 1 j = 1, 2, . . . , n,

xij ∈ {0, 1} i, j = 1, . . . , n.

Note that Q′ could be viewed as an n2 × n2 matrix. Let Q′′ = Q′ + αI where I is
the n2 × n2 identity matrix. It is well known that the optimal solution set for the QAP
with cost matrix Q′ and Q′′ are identical. By choosing α appropriately, we could make
Q′′ either positive semidefinite or negative semidefinite. Thus without loss of generality we
could assume that Q′ in QAP is symmetric and negative semidefinite [18, 25]. Under this
assumption, if (x∗,y∗) is an optimal solution to the BAP instance (Q′, On, On), where On

is an n × n zero matrix, then both x∗ and y∗ are optimal solutions to the QAP [39, 85].
Thus, if x∗ 6= y∗, they are alternative optimal solutions for the QAP. In this sense, BAP is
a generalization of the QAP. It may be noted that [85] considers maximization of a convex
quadratic function with linear constraints and its linkages to solving a corresponding bilinear
program. Our assumption that Q′ in QAP is negative semidefinite leads to the question
of minimization of a concave quadratic function and its connection to minimization of a
bilinear program. The pertinent results in [85] extend in a natural way to minimization of
a concave quadratic function and the minimization of the corresponding bilinear program.
This establishes the validity of our remarks on BAP as a generalization of QAP.

Another interesting combinatorial optimization problem related to BAP, is the so called
independent QAP, introduced in [21]. It can be reformulated as follows. Given two n × n
matrices A = (aij) and B = (bij), one needs to find x,y ∈ Y such that

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

aikbj`xijyk`

18

is minimized. Then, it is clear that an instance of independent QAP can be reduced to an
instance (Q,On, On) of BAP, where qijk` = aikbj`. Therefore, independent QAP is a special
case of BAP.

Furthermore, the axial three-dimensional assignment problem (3AP) [122] is also a spe-
cial case of BAP. Consider the n × n × n cost array A = (aijk). Then the 3AP is to find
x,y ∈ Y such that

n∑
i=1

n∑
j=1

n∑
k=1

aijkxijyjk

is minimized. Now it is easy to see that every 3AP instance with A = (aijk) can be reduced
to a BAP instance (Q,On, On) where qijk` is equal to aij` if j = k, and 0 otherwise. The
above reduction of 3AP to BAP is a special case of a more general problem considered by
Frieze [46].

2.2 Complexity and polynomially solvable cases

Since BAP is a generalization of QAP, it is clearly strongly NP-hard. It is well known
that for any α > 1 the existence of a polynomial time α-approximation algorithm for QAP
implies P=NP [116]. The reduction from QAP to BAP discussed in the introduction section
need not preserve approximation ratio. Let us now discuss another reduction from QAP to
BAP that partially preserves approximation ratio.

Suppose m = n and impose the additional restriction in BAP that xij = yij for all
i, j. The resulting problem is equivalent to QAP. Constraints xij = yij can be enforced by
modifying the entries of Q, C and D without explicitly stating the constraints or changing
the objective function values of the solutions that satisfy the new constants. For every i, j
we can change cij to cij + L, dij to dij + L and qijij to qijij − 2L, for some large L, e.g.
L = mmaxi,j |cij |+ nmaxk,` |dk`|+mnmaxi,j,k,` |qijk`|+ 1. This will increase the objective
value by

∑n
i,j=1 L(xij − 2xijyij + yij) =

∑n
i,j=1 L(xij − yij)2, which forces xij = yij in an

optimal solution. Since the reduction described above preserves the objective values of the
solutions that satisfy xij = yij , BAP inherits the approximation hardness of QAP. That is,
for any α > 1, BAP does not have a polynomial time α-approximation algorithm, unless
P=NP.

More interestingly we now show that this non-approximability result for BAP extends
to the case even if Q is a diagonal matrix. Note that QAP is polynomially solvable when
Q′ is diagonal.

Theorem 1. BAP is NP-hard even if Q is a diagonal matrix. Further, for any α > 1 the
existence of a polynomial time α-approximation algorithm for BAP when Q is a diagonal
matrix implies P=NP.

19

Proof. To prove the theorem, we reduce the DISJOINT MATCHINGS problem to BAP.
Input of the problem is given by a complete bipartite graph Kn,n = (V1, V2, E) and two sets
of edges E1, E2 ⊆ E. The goal is to decide if there exist M1 ⊆ E1 and M2 ⊆ E2, such that
M1 and M2 are perfect matchings and M1 ∩M2 = ∅. DISJOINT MATCHINGS is shown
to be NP-complete by Frieze [47]. A simpler proof can be found in [45].

Now let us assume that for some α > 1 there exists a polynomial time α-approximation
algorithm for BAP when Q is a diagonal matrix. Consider an instance of DISJOINT
MATCHINGS defined on Kn,n = (V1, V2, E), the edge set E1 and the edge set E2, where
V1 = {v1, v2, . . . , vn} and V2 = {u1, u2, . . . , un}. Let (Q,C,D) be an instance of BAP where
the n × n × n × n array Q = (qijk`) is the identity matrix when observed as an n2 × n2

matrix (i.e., qijk` = 1 if i = k, j = `, and 0 otherwise). Further, let C = (cij) and D = (dij)
be n× n matrices given by

cij =

1

α+1 if (vi, uj) ∈ E1 and i = 1,

0 if (vi, uj) ∈ E1 and i 6= 1,

1 otherwise,

and dij =

0 if (vi, uj) ∈ E2,

1 otherwise.
(2.7)

Now we show that our DISJOINT MATCHINGS instance is a “yes" instance, if and
only if there exists a solution (x∗,y∗) of BAP on the instance (Q,C,D) with the objec-
tive value 1

α+1 . Assume that (x∗,y∗) ∈ F is such that f(x∗,y∗) = 1
α+1 . Since all costs

are non-negative, and c1j ≥ 1
α+1 for all j = 1, . . . , n, it follows that

∑n
i=1

∑n
j=1 cijx

∗
ij =

1
α+1 , which implies that x∗ corresponds to a perfect matching S1 which is a subset of
E1. Similarly, it must be that

∑n
i=1

∑n
j=1 dijy

∗
ij = 0, hence y∗ corresponds to a per-

fect matching S2 which is a subset of E2. Furthermore, f(x∗,y∗) = 1
α+1 implies that∑n

i=1
∑n
j=1

∑n
k=1

∑n
`=1 qijk`x

∗
ijy
∗
k` = 0. Then since Q is an identity matrix, it follows that

S1 and S2 are disjoint, hence our DISJOINT MATCHINGS instance is a “yes" instance.
Conversely, if we assume that our DISJOINT MATCHINGS instance is a “yes" instance,
then by the same arguments but in opposite direction, it follows that an optimal solution
of the BAP instance (Q,C,D) has the objective value equal to 1

α+1 .
For every BAP instance (Q,C,D) obtained from a DISJOINT MATCHINGS instance

using the reduction described above, if the objective value of an arbitrary feasible solution
is not 1

α+1 , it will be at least 1. Since α 1
α+1 < 1, our α-approximation algorithm for

the BAP with diagonal matrices Q can be used for solving the NP-complete DISJOINT
MATCHINGS problem, which implies that P=NP.

If we replace costs 1
α+1 in (2.7) with 0, we get a reduction from DISJOINTMATCHINGS

to BAP instances with 0-1 costs. Therefore, BAP is NP-hard even when restricted to
instances with 0-1 costs where Q is the identity matrix.

Let us now examine the impact of the ratio between m and n on the tractability of BAP.

20

Theorem 2. If m = O(logn
log logn) then BAP can be solved in polynomial time. However, for

any fixed r, if m = O(r
√
n), then BAP is NP-hard.

Proof. For a given x∗ ∈ X , one can find a y ∈ Y which minimizes f(x∗,y) by investing
O(n3) time. This is achieved by solving a linear assignment problem (LAP) [18] with
cost matrix H = (hk`) where hk` = dk` +

∑m
i=1

∑m
j=1 qijk`x

∗
ij . Hence, if |X | = m! is a

polynomial in n, then BAP can be solved in polynomial time by enumerating X and solving
all corresponding LAPs. Assume that m = O(logn

log logn), i.e., m ≤ a logn
log logn for some constant

a ≥ 1. Then, using the fact that log(m!) ≤ m logm, we have

log(m!) ≤ a logn+ a log a logn
log logn − a logn log log logn

log logn ≤ (a+ a log a) logn.

Thus |X | = m! ≤ na+a log a, establishing the first part of the theorem.
Now we prove the second part. Let (Q,C,D) be an arbitrary instance of BAP with size

parameters m and n. Given a constant r, consider the n × n × nr × nr cost array Q̂, the
n× n matrix Ĉ and the nr × nr matrix D̂ defined as follows:

q̂ijk` =

qijk` if i, j ≤ m and k, ` ≤ n,

0 otherwise,
ĉij =

cij if i, j ≤ m,

0 if i, j > m,

L otherwise,

d̂k` =

dk` if k, ` ≤ n,

0 if k, ` > n,

L otherwise,

where L is a large number. It is easy to see that the BAP instances (Q,C,D) and (Q̂, Ĉ, D̂)
are equivalent in the sense that from an optimal solution to one problem, an optimal solution
to other can be recovered in polynomial time. (Q̂, Ĉ, D̂) satisfies the condition of the second
statement of the theorem and it can be constructed in polynomial time, therefore the result
follows.

By analogous arguments as in the proof above, we get that if m = O(loga n
log logn), for some

constant a, then BAP is quasi-polynomial time solvable.

Polynomially solvable special cases of the QAP and the 3AP have been investigated by
many researchers [18, 122]. Since QAP and 3AP are special cases of the BAP, all of their
polynomially solvable special cases can be mapped onto polynomially solvable special cases
for the BAP. Let us now consider some new polynomially solvable cases.

Note that the rows of Q can be labeled using the ordered pairs (i, j), i, j = 1, 2, . . . ,m.
Then the row ofQ represented by the label (i, j) can be viewed as an n×nmatrix P ij = (pijk`)
where pijk` = qijk` for k, ` = 1, 2, . . . , n. A linear assignment problem (LAP) with cost
matrix P ij has constant value property (CVP) if there exists a constant αij such that∑n
k=1

∑n
`=1 p

ij
k`yk` = αij for all y ∈ Y. Characterizations of cost matrices with CVP for

various combinatorial optimization problems have been studied by different authors [12, 34].

21

In the case when LAP with cost matrix P ij has CVP for all i, j = 1, 2, . . . ,m, we define
W = wij to be an m×m matrix where wij = αij + cij .

Theorem 3. If P ij satisfies CVP for all i, j = 1, 2, . . . ,m, x∗ is an optimal solution to the
LAP with cost matrix W , and y∗ is an optimal solution to the LAP with cost matrix D,
then (x∗,y∗) is an optimal solution to the BAP (Q,C,D).

Proof.

min
x∈X ,y∈Y

f(x,y) = min
x∈X ,y∈Y

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
`=1

dk`yk`

= min

x∈X ,y∈Y

m∑
i=1

m∑
j=1

αijxij +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
`=1

dk`yk`

= min

x∈X

m∑
i=1

m∑
j=1

(αij + cij)xij

+ min
y∈Y

{
n∑
k=1

n∑
`=1

dk`yk`

}

Thus, BAP decomposes into two LAPs and the result follows.

An analogous result can be derived using CVP for columns of Q. We omit the details.

A linear assignment problem (LAP) with cost matrix P ij has two value property (2VP)
if there exist some constants αij and βij such that

∑n
k=1

∑n
`=1 p

ij
k`yk` is equal to either αij

or βij , for all y ∈ Y. Tarasov [125] gave a characterization of cost matrices for LAP having
2VP. In view of Theorem 3, it would be interesting to explore the complexity of BAP when
P ij satisfies 2VP, for all i, j. As shown below, the polynomial solvability of BAP does not
extend if CVP of matrices P ij is replaced by 2VP.

Theorem 4. BAP remains strongly NP-hard even if P ij satisfies 2VP for all i, j =
1, 2, . . . ,m.

Proof. If Q is a diagonal matrix with no zero entries on the diagonal, then it is easy to verify
that P ij satisfies 2VP for all i, j = 1, 2, . . . ,m. The result now follows from Theorem 1.

2.2.1 Characterization of linearizable instances

In Theorem 3 we observed that there are special cases of BAP that can be solved by solving
two independent LAPs. We generalize this by characterizing instances of BAP that are
‘equivalent’ to two independent LAPs. Let us first introduce some definitions.

An m×m×n×n cost array Q = (qijk`) associated with a BAP is said to be linearizable
if there exist an m×m matrix A = (aij) and an n× n matrix B = (bij), such that

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` =
m∑
i=1

m∑
j=1

aijxij +
n∑
k=1

n∑
`=1

bk`yk`

22

for every x ∈ X and y ∈ Y. The matrices A and B are called the linearization of Q.
Note that the collection of all linearizable m×m×n×n cost arrays forms a subspace of

Rm2×n2 . If Q is linearizable, and a linearization (i.e. matrices A and B) is given, then the
BAP instance (Q,C,D) is solvable in O(m3 + n3) time for every C and D. I.e., such BAP
instances reduce to two LAPs with respective cost matrices A + C and B + D. Therefore
we say that an instance (Q,C,D) of BAP is linearizable if and only if Q is linearizable.
Linearizable instances of QAP have been studied by various authors [74, 107, 27]. Corre-
sponding properties for the quadratic spanning tree problem (QMST) was investigated in
[37]. Before attempting to characterize linearizable instances of BAP, let us first establish
some preliminary results.

Lemma 5. If the cost array Q = (qijk`) of a BAP satisfies

qijk` = eijk + fij` + gik` + hjk` i, j ∈ N, k, ` ∈M, (2.8)

for some m × m × n arrays E = (eijk), F = (fijk) and m × n × n arrays G = (gijk),
H = (hijk), then Q is linearizable.

Proof. Let Q be of the form (2.8), for some E = (eijk), F = (fijk), G = (gijk) and
H = (hijk). Then for every x ∈ X and y ∈ Y we have that

f̄(x,y) =
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` =
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(eijk + fij` + gik` + hjk`)xijyk`

=
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(eijk + fij`)xijyk` +
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(gik` + hjk`)xijyk`

=
m∑
i=1

m∑
j=1

(
n∑
k=1

n∑
`=1

(eijk + fij`) yk`

)
xij +

n∑
k=1

n∑
`=1

 m∑
i=1

m∑
j=1

(gik` + hjk`)xij

 yk`.
(2.9)

Note that LAP given on a sum matrix T (i.e. of the form tij = ri + sj) has CVP. Moreover,
the constant objective function value for such matrix is precisely

∑
i ri +

∑
j sj . Hence, for

every y ∈ Y and every x ∈ X

n∑
k=1

n∑
`=1

(eijk + fij`) yk` =
n∑
k=1

eijk +
n∑
`=1

fij` = aij (say),

and
m∑
i=1

m∑
j=1

(gik` + hjk`)xij =
m∑
i=1

gik` +
m∑
j=1

hjk` = bkl (say).

23

Then, from (2.9) we have,

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` =
m∑
i=1

m∑
j=1

aijxij +
n∑
k=1

n∑
`=1

bk`yk`,

which proves the lemma.

Later we will show that the sufficient condition (2.8) is also necessary for Q to be
linearizable. Arrays satisfying (2.8) are called sum decomposable arrays with parameters 4
and 3 in [34], where general sum decomposable arrays were investigated.

To establish that condition (2.8) is also necessary for linearizability of the associated
BAP, we use the following lemma.

Lemma 6. If the cost array Q = (qijk`) associated with a BAP satisfies

f̄(x,y) =
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` = K (2.10)

for all x ∈ X , y ∈ Y and some constant K, then Q must be of the form (2.8).

Proof. Let i, j ∈ M and k, ` ∈ N be chosen arbitrary such that i, j, k, ` ≥ 2. Also, let
x1,x2 ∈ X be such that they only differ on index pairs from {1, i} × {1, j}. In particular,
let x1

11 = x1
ij = x2

1j = x2
i1 = 1. Similarly, let y1,y2 ∈ Y be such that they only differ on

index pairs from {1, k} × {1, `} and in particular, let y1
11 = y1

k` = y2
1` = y2

k1 = 1.
Now let us assume that (2.10) is true for every x ∈ X and y ∈ Y. Then it follows that

f̄(x1,y1) + f̄(x2,y2) = f̄(x1,y2) + f̄(x2,y1). (2.11)

If we expand objective value expressions in (2.11) and cancel out identical parts from the
left and right sides, we get

q1111 + q11k` + qij11 + qijk` + q1j1` + q1jk1 + qi11` + qi1k1 =

= q111` + q11k1 + qij1` + qijk1 + q1j11 + q1jk` + qi111 + qi1k`,

from which it follows that

qijk` = qijk1 + qij1` + qi1k` + q1jk`

− qij11 − qi1k1 − qi11` − q1jk1 − q1j1` − q11k`

+ qi111 + q1j11 + q11k1 + q111`

− q1111

(2.12)

24

for every i, j, k, ` ≥ 2. However, note that (2.12) also holds true when some of i, j, k, ` are
equal to 1. Namely, if we replace one of i, j, k, ` with 1, everything cancels out. Hence (2.12)
holds for all i, j ∈M , k, ` ∈ N .

Define the m×m×n arrays A = (aijk), B = (bijk) and the m×n×n arrays C = (cijk),
D = (dijk) as

aijk = qijk1 −
1
2qij11 −

1
2qi1k1 −

1
2q1jk1 + 1

3qi111 + 1
3q1j11 + 1

3q11k1 −
1
4q1111,

bij` = qij1` −
1
2qij11 −

1
2qi11` −

1
2q1j1` + 1

3qi111 + 1
3q1j11 + 1

3q111` −
1
4q1111,

cik` = qi1k` −
1
2qi1k1 −

1
2qi11` −

1
2q11k` + 1

3qi111 + 1
3q11k1 + 1

3q111` −
1
4q1111,

djk` = q1jk` −
1
2q1jk1 −

1
2q1j1` −

1
2q11k` + 1

3q1j11 + 1
3q11k1 + 1

3q111` −
1
4q1111.

Then, from (2.12) if follows that

qijk` = aijk + bij` + cik` + djk`,

which proves the lemma.

We are now ready to prove the characterization of linearization instances of BAP.

Theorem 7. The cost array Q = (qijk`) of a BAP is linearizable if and only if it is of the
form

qijk` = eijk + fij` + gik` + hjk` i, j ∈ N, k, ` ∈M, (2.13)

for some m × m × n arrays E = (eijk), F = (fijk) and m × n × n arrays G = (gijk),
H = (hijk).

Proof. Lemma 5 tells us that (2.13) is a sufficient condition for Q to be linearizable. To
show that this is also a necessary condition we start by following the steps of the proof of
Lemma 5 in reverse.

Let Q be a linearizable cost array. That is, there exist some A = (aij) and B = (bij)
such that

f̄(x,y) =
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` =
m∑
i=1

m∑
j=1

aijxij +
n∑
k=1

n∑
`=1

bk`yk` (2.14)

for every x ∈ X and y ∈ Y. For every i, j ∈ M we can choose 2n numbers êijk, f̂ijk,
k = 1, . . . , n, such that

∑n
k=1(êijk + f̂ijk) = aij . Furthermore, for every k, ` ∈ N we can

choose 2m numbers ĝik`, ĥik`, i = 1, . . . ,m, such that
∑m
i=1(ĝik` + ĥik`) = bk`. Now (2.14)

25

can be expressed as

f̄(x,y) =
m∑
i=1

m∑
j=1

(
n∑
k=1

êijk +
n∑
`=1

f̂ij`

)
xij +

n∑
k=1

n∑
`=1

 m∑
i=1

ĝik` +
m∑
j=1

ĥjk`

 yk`
=

m∑
i=1

m∑
j=1

(
n∑
k=1

n∑
`=1

(
êijk + f̂ij`

)
yk`

)
xij +

n∑
k=1

n∑
`=1

 m∑
i=1

m∑
j=1

(
ĝik` + ĥjk`

)
xij

 yk`
=

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(
êijk + f̂ij`

)
xijyk` +

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(
ĝik` + ĥjk`

)
xijyk`

=
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(
êijk + f̂ij` + ĝik` + ĥjk`

)
xijyk`. (2.15)

Expression (2.15) implies that

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

(
qijk` −

(
êijk + f̂ij` + ĝik` + ĥjk`

))
xijyk` = 0 for all x ∈ X , y ∈ Y.

Now from Lemma 6, it follows that the m ×m × n × n array with entries qijk` − (êijk +
f̂ij`+ ĝik`+ ĥjk`) is of the form (2.13), which implies that Q itself is of the form (2.13). This
concludes the proof.

A natural question that arises is the following: Given a BAP cost array Q, can we
determine whether Q is linearizable, and if so, how can we find its linearization matrices A
and B? The answer is positive. Namely, consider the system of linear equations given by
(2.13) where eijk, fij`, gik` and hjk` are the unknowns. This system has m2n2 equations and
2m2n + 2mn2 unknowns. Then Q is linearizable if and only if our system has a solution.
Furthermore, the linearization is given by

aij :=
n∑
k=1

(eijk + fijk) and bk` :=
m∑
i=1

(gik` + hik`).

Corollary 8. Let Q be a cost array of the BAP. Then deciding whether Q is linearizable
and finding the linearization matrices A and B, can be done in polynomial time.

2.2.2 Cost array of rank one

Recall that the cost array Q of BAP can be viewed as an m2 × n2 cost matrix. The rank
of Q, when Q is viewed as a matrix, is at most r if and only if there exist some m × m
matrices Ap = (apij) and n× n matrices Bp = (bpij), p = 1, . . . , r, such that

qijk` =
r∑
p=1

apijb
p
k` (2.16)

26

for all i, j ∈M , k, ` ∈ N . We say that (2.16) is a factored form of Q. Then solving a BAP
instance (Q,C,D), where matrix Q is of fixed rank r, is the problem of minimizing

f(x,y) =
r∑
p=1

 m∑
i,j=1

apijxij

 n∑
k,`=1

bpk`yk`

+
m∑

i,j=1
cijxij +

n∑
k,`=1

dk`yk`, (2.17)

such that x ∈ X , y ∈ Y.

Theorem 9. If the m2 × n2 matrix Q is of rank one and is given in factored form, and
either C or D is a sum matrix, then the corresponding BAP instance (Q,C,D) is solvable
in O(m3 + n3) time.

Proof. Let Q be of rank one, i.e. qijk` = aijbk` for all i, j ∈ M , k, ` ∈ N . Furthermore,
without loss of generality, assume that D is a sum matrix. Then there exist n-vectors
S = (si) and T = (ti) such that dij = si + tj . Note that the value

∑n
k,`=1 dk`yk` is the same

for all y ∈ Y, hence solving the BAP instance (Q,C,D) is equivalent to solving the BAP
instance (Q,C,On), that is, we need to minimize

f ′(x,y) :=

 m∑
i,j=1

aijxij

 n∑
k,`=1

bk`yk`

+
m∑

i,j=1
cijxij , (2.18)

subject to x ∈ X and y ∈ Y.
Let x∗ ∈ X and y∗ ∈ Y be a solution that minimizes (2.18). Note that if

∑m
i,j=1 aijx

∗
ij >

0, then y∗ is an assignment that minimizes
∑n
k,`=1 bk`yk`. Analogously, if

∑m
i,j=1 aijx

∗
ij < 0,

then y∗ is an assignment that maximizes
∑n
k,`=1 bk`yk`. If

∑m
i,j=1 aijx

∗
ij = 0, then y∗ can

be arbitrary as it does not contributes to the objective value f ′(x∗,y∗). Hence, we only
need to consider assignments ymin,ymax ∈ Y that minimize and maximize

∑n
k,`=1 bk`yk`,

respectively. They are found in O(n3) time. Once y is fixed to ȳ ∈ Y, minimizing f ′(x, ȳ)
reduces to solving the linear assignment problem

f ′(x, ȳ) =
m∑

i,j=1

(
B̄ · aij + cij

)
xij ,

where B̄ :=
∑n
k,`=1 bk`ȳk`. This can be done in O(m3) time, and we do it for ȳ = ymin and

ȳ = ymax. Better of the two will give us an optimal solution.

2.3 Approximations

In the previous section we identified some classes of BAP for which an optimal solution
can be found in polynomial time. In this section we develop and analyze various heuristic
algorithms for BAP. In our analysis, we use approximation ratio [116] and domination
ratio [53] to measure the quality of a heuristic solution.

27

2.3.1 A discretization procedure

Let (x̄, ȳ) be a feasible solution to the bilinear program (BALP) obtained by relaxing
constraints (2.6) of BAP to 0 ≤ xij ≤ 1 for all i, j and 0 ≤ yk` ≤ 1 for all k, `. As indicated
earlier, BALP is equivalent to BAP in the sense that there exists an optimal solution (x,y)
to BALP where x ∈ X and y ∈ Y. But fractional solutions could also be optimal for BALP
(although there always exists an optimal 0-1 solution). We present a simple discretization
procedure such that from any solution (x̄, ȳ) of BALP we can obtain a solution (x∗,y∗) of
BAP such that f(x∗,y∗) ≤ f(x̄, ȳ). (Note that the notation f(x,y) was introduced for 0-1
vectors but naturally extends to any vectors.) This algorithm is useful in developing our
FPTAS.

Given an instance (Q,C,D) and a BALP solution (x̄, ȳ), find an optimal solution x∗ of
the LAP defined by the m×m cost matrix H = (hij) where

hij = cij +
n∑
k=1

n∑
`=1

qijk`ȳk`. (2.19)

Then choose y∗ to be an optimal solution of the LAP defined by the n × n cost matrix
G = (gk`) where

gk` = dk` +
m∑
i=1

m∑
j=1

qijk`x
∗
ij . (2.20)

The above discretization procedure is called discretize-x optimize-y (DxOy), as y∗ is an
optimal 0-1 assignment matrix when x is fixed at x∗, and x∗ is obtained by “discretizing" x̄.
Naturally, discretize-y optimize-x (DyOx) procedure can be defined by swapping the order
of operations on x̄ and ȳ (we omit the details). Since LAP can be solved in cubic running
time, we have that the complexity of DxOy and DyOx procedures is O(m2n2 +m3 + n3).

Similar procedures for the unconstrained bipartite boolean quadratic program and bi-
partite quadratic assignment problem were investigated in [108] and [37], respectively.

Theorem 10. If a feasible solution (x∗,y∗) of BAP is obtained by DxOy or DyOx procedure
from a feasible solution (x̄, ȳ) of BALP, then f(x∗,y∗) ≤ f(x̄, ȳ).

Proof. Let (x̄, ȳ) be a feasible solution of BALP. Then

f(x̄, ȳ) =
∑
i∈M

∑
j∈M

∑
k∈N

∑
`∈N

qijk`x̄ij ȳk` +
∑
i∈M

∑
j∈M

cij x̄ij +
∑
k∈N

∑
`∈N

dk`ȳk`

=
∑
i∈M

∑
j∈M

∑
k∈N

∑
`∈N

qijk`ȳk` + cij

 x̄ij +
∑
k∈N

∑
`∈N

dk`ȳk`

=
∑
i∈M

∑
j∈M

hij x̄ij +
∑
k∈N

∑
`∈N

dk`ȳk`,

28

where hij ’s are defined as in (2.19). Since the constraint matrix of LAP is totally unimod-
ular, an optimal integral solution is no worse than any non-integral solution, and therefore∑
i∈M

∑
j∈M hij x̄ij ≥

∑
i∈M

∑
j∈M hijx

∗
ij . Hence

f(x̄, ȳ) ≥
∑
i∈M

∑
j∈M

∑
k∈N

∑
`∈N

qijk`ȳk` + cij

x∗ij +
∑
k∈N

∑
`∈N

dk`ȳk`

=
∑
i∈M

∑
j∈M

cijx
∗
ij +

∑
k∈N

∑
`∈N

∑
i∈M

∑
j∈M

qijk`x
∗
ij + dk`

 ȳk`
=
∑
i∈M

∑
j∈M

cijx
∗
ij +

∑
k∈N

∑
`∈N

gk`ȳk`

where gij ’s are defined as in (2.20). Again, we have that
∑
k∈N

∑
`∈N gk`ȳk` ≥

∑
k∈N

∑
`∈N gk`y

∗
k`,

hence

f(x̄, ȳ) ≥
∑
i∈M

∑
j∈M

cijx
∗
ij +

∑
k∈N

∑
`∈N

∑
i∈M

∑
j∈M

qijk`x
∗
ij + dk`

 y∗k`
=
∑
i∈M

∑
j∈M

∑
k∈N

∑
`∈N

qijk`x
∗
ijy
∗
k` +

∑
i∈M

∑
j∈M

cijx
∗
ij +

∑
k∈N

∑
`∈N

dk`y
∗
k`

= f(x∗,y∗).

The proof for DyOx works in the same way.

2.3.2 FPTAS for BAP with fixed rank of Q

Recall that BAP does not admit a polynomial time α-approximation algorithm, unless
P=NP. However, we now observe that in the case when the cost matrix Q is of fixed rank,
there exists an FPTAS. This follows from the results of Mittal and Schulz in [99], where
the authors present an FPTAS for a class of related optimization problems.

Theorem 11 (Mittal, Schulz [99]). Let k be a fixed positive integer, and let OPk be an
optimization problem

min g(z) = h(ET1 z, ET2 z, . . . , ETk z)

s.t. z ∈ P,

where P ⊆ Rn is a polytope, and function h : Rk+ → R and vectors Ei ∈ Rn, i = 1, . . . , k,
are such that the conditions

1. h(α) ≤ h(β) ∀α, β ∈ Rk+, s.t. αi ≤ βi for all i = 1, 2, . . . , k,

2. h(λα) ≤ λch(α) ∀α ∈ Rk+, λ > 1 and some constant c,

3. ETi z > 0 for i = 1, 2, . . . , k and z ∈ P,

29

are satisfied. Then there exists an FPTAS for OPk.

For the description of the FPTAS see [99].

Corollary 12. Let r be a fixed integer. Then there exists an FPTAS for the BAP on a cost
matrix Q of rank r (see (2.17)), if

∑m
i,j=1 a

p
ijxij > 0,

∑n
k,`=1 b

p
k`yk` > 0, p = 1, 2, . . . , r, and∑m

i,j=1 cijxij > 0,
∑n
k,`=1 dk`ye` > 0 are satisfied for all x ∈ X , y ∈ Y.

Proof. The relaxations of the problems described in the statement of the corollary fall into
the class of problems OPk described in Theorem 11. Namely, given such instance (Q,C,D)
of BALP, we can express it as an OPk where k := 2r + 1, h(ET1 z, ET2 z, . . . , ET2r+1z) :=∑r
i=1(ET2i−1z)(ET2iz) + ET2r+1z, polytop P ⊂ Rm2+n2 is the convex hull of {x ⊗ y : x ∈
X ,y ∈ Y}, and

Ei :=

A(i+1)/2 ⊗On if i is odd,

Om ⊗Bi/2 if i is even,

C ⊗D if i = 2r + 1,

where Ap = (apij), B
p = (bpij), O` denotes the `×` null-matrix, and ⊗ denotes an operation of

concatenatingm×m and n×n matrices into (m2+n2)-vectors. Furthermore, condition (iii)
is mandated in the corollary, which then implies (i). Condition (ii) can be checked easily.
Hence, according to Theorem 11, there exist an FPTAS that approximates our BALP with
fixed rank matrix Q. Theorem 10 implies that by discretizing fractional FPTAS solutions
using DxOy (or DyOx), we get an FPTAS for the corresponding BAP with fixed rank
Q.

2.3.3 Domination analysis

The negative result of Theorem 1 precludes potential success in developing approximation
algorithms for BAP with constant approximation ratio, unless additional strong assump-
tions are made. We now show that domination ratio [53] can be used to establish some
performance guarantee for BAP heuristics.

Domination analysis has been successfully pursued by many researchers to provide per-
formance guarantee of heuristics for various combinatorial optimization problems [4, 6,
36, 53, 61, 63, 65, 67, 66, 71, 89, 84, 105, 106, 108, 115, 118, 119, 117, 130, 131, 133].
Domination analysis is also linked to exponential neighborhoods [39] and very large-scale
neighborhood search [3, 98]. Domination analysis results similar to what is presented here
have been obtained for the bipartite quadratic assignment problems [37] and the bipartite
boolean quadratic programs [108].

Given an instance (Q,C,D) of a BAP, let A(Q,C,D) be the average of the objective
function values of all feasible solutions.

30

Theorem 13. A(Q,C,D) = 1
mn

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk` + 1
m

m∑
i=1

m∑
j=1

cij + 1
n

n∑
k=1

n∑
`=1

dk`.

The proof of Theorem 13 follows from the observation that a cost qijk` appears in the
objective value sum of (x,y) if and only if xij = 1 and yk` = 1, and there is exactly
(m− 1)!(n− 1)! such solutions (x,y) in F . We omit details. Similar formulas for the QAP
have been investigated by Graves and Whinstone [59].

Consider the fractional solution (x,y) where xij = 1/m for all i, j ∈M , and let yij = 1/n
for all i, j ∈ N . Then (x,y) is a feasible solution to BALP. It is also easy to see that f(x,y) =
A(Q,C,D). From Theorem 10 it follows that a solution (x∗,y∗) of BAP constructed from
(x,y) by applying DxOy or DyOx, satisfies f(x∗,y∗) ≤ A(Q,C,D). Therefore, a BAP
feasible solution (x∗,y∗) that satisfies f(x∗,y∗) ≤ A(Q,C,D) can be obtained in O(m2n2 +
m3 + n3) time using DxOy or DyOx procedure.

A feasible solution (x,y) of BAP is said to be no better than average if f(x,y) ≥
A(Q,C,D). We will provide a lower bound for the number of feasible solutions that are no
better than the average. Establishing corresponding results for QAP is an open problem [6,
36, 67, 117]. Given an instance (Q,C,D) of BAP, define

G(Q,C,D) = {(x,y) ∈ F : f(x,y) ≥ A(Q,C,D)}.

Theorem 14. |G(Q,C,D)| ≥ (m− 1)!(n− 1)!.

Proof. Consider an equivalence relation ∼ on F , where (x,y) ∼ (x′,y′) if and only if there
exist a ∈ {0, 1, . . . ,m − 1} and b ∈ {0, 1, . . . , n − 1} such that xij = x′i(j+a mod m) for all
i, j, and yk` = y′k(`+b mod n) for all k, `. Note that ∼ partitions F into (m − 1)!(n − 1)!
equivalence classes, each of size mn. Fix S to be one such equivalence class. For every
i, j ∈ M and k, ` ∈ N , there are exactly n solutions in S for which xij = 1, and there are
exactly m solutions in S for which yk` = 1. Furthermore, for every i, j ∈ M and k, ` ∈ N ,
there is exactly one solution in S for which xijyk` = 1. Therefore

∑
(x,y)∈S

f(x,y) =
∑

(i,j,k,`)∈
M×M×N×N

qijk` + n
∑

(i,j)∈
M×M

cij +m
∑

(k,`)∈
N×N

dk` = mnA(Q,C,D).

Because |S| = mn, there must be at least one (x,y) ∈ S such that f(x,y) ≥ A(Q,C,D).
There is one such solution for each of the (m−1)!(n−1)! equivalent classes and this concludes
the proof.

An algorithm that is guaranteed to return a solution with the objective function value
at most A(Q,C,D) guarantees a solution that is no worse than (m− 1)!(n− 1)! solutions.
Thus, the domination ratio [53, 37] of such an algorithm is 1

mn .

31

Here and later in the write-up we use the notation of xi(j+a mod m) in a sense that, if
(j+a) mod m = 0, we then assume it to refer to the variable xim. Similar assumptions will
be made for the other index of xij and variables ykl to improve the clarity of presentation.

The bound presented in Theorem 14 is tight. To see this, let cost arrays Q,C,D be such
that all of their elements are 0, except qi′j′k′`′ = 1 for some fixed i′, j′, k′, `′. The tightness
follows from the fact that exactly one element from every equivalence class defined by ∼ is
no better than average.

The proof of Theorem 14 also provides us a way to construct an (x,y) ∈ F such that
f(x,y) ≤ A(Q,C,D). We showed that in every equivalence class defined by ∼ there is
a feasible solution with the objective function value greater than or equal to A(Q,C,D).
By the same reasoning it follows that in every such class there is a feasible solution with
objective function value less than or equal to A(Q,C,D). For example, given a ∈M , b ∈ N
let (xa,yb) ∈ F be defined as

xaij =

1 if j = i+ a mod m,

0 otherwise
and ybk` =

1 if ` = k + b mod n,

0 otherwise.

Then (xa1 ,yb1) ∼ (xa2 ,yb2) for every a1, a2 ∈M and b1, b2 ∈ N , and

f(xa,yb) =
∑

i∈M,k∈N
qi(i+a mod m)k(k+b mod n) +

∑
i∈M

ci(i+a mod m) +
∑
k∈N

dk(k+b mod n).

Corollary 15. For any instance (Q,C,D) of BAP

min
a∈M,b∈N

{f(xa,yb)} ≤ A(Q,C,D) ≤ max
a∈M,b∈N

{f(xa,yb)}.

Note that any equivalence class defined by ∼ can be used to obtain the type of inequal-
ities above. Corollary 15 provides another way to find a feasible solution to BAP with
objective function value no worse than A(Q,C,D) in O(m2n2) time. This is a running time
improvement when compared to the approach using DxOy or DyOx described above.

Interestingly, unlike the average, computing the median of the objective function values
of feasible solutions of BAP is NP-hard.

Theorem 16. Finding a median of the objective function values for the BAP is NP-hard.

Proof. We will describe a reduction from the NP-complete PARTITION problem: Given n
positive integers a1, a2, . . . , an, determine if there exists a partition of N = {1, 2, . . . , n} into
S1 and S2 such that

∑
i∈S1 ai =

∑
i∈S2 ai. From a PARTITION instance I, we will create

a BAP instance (Q,C,D), such that a median of objective values of BAP is
∑
i∈N ai/2 if

and only if the starting PARTITION instance I is a ‘yes’ instance.

32

Without loss of generality we assume than n is even. Let the BAP instance (Q,C,D)
be such that C is the 2× 2 null matrix, D is the n× n null matrix, and the 2× 2× n× n
array Q is given by

qijk` =

ak
2 if i = j and k = `,

ak
2 if i 6= j and k 6= `,

0 otherwise.

We can partition the set of feasible solutions F into pairs of solutions (x,y), (x′,y′) by the
rule xij = x′i(j+1 mod 2) and yk` = y′k`, for all i, j ∈ {1, 2} and k, ` ∈ N . For every such
pair of solutions, either f(x,y) ≤

∑n
i=1 ai/2 ≤ f(x′,y′) or f(x′,y′) ≤

∑n
i=1 ai/2 ≤ f(x,y).

Hence, if there is a solution (x,y) for which f(x,y) =
∑n
i=1 ai/2, then

∑n
i=1 ai/2 is a median

objective value. Value K appears as an objective value of some solution for (Q,C,D) if
and only if there exists S ⊆ {1, 2, . . . , n} such that

∑
i∈S ai = K. Therefore, the theorem

follows from NP-completeness of the PARTITION problem.

For a given instance I of an optimization problem, let xΓ ∈ F(I) be a solution produced
by an algorithm Γ, where F(I) denotes the set of feasible solutions for the instance I. Let
GΓ(I) = {x ∈ F(I) : f(x) ≥ f(xΓ)} where f(x) denotes the objective function value of x.
Furthermore, let I be the collection of all instances of the problem with a fixed instance
size. Then

inf
I∈I

∣∣∣GΓ(I)
∣∣∣ and inf

I∈I

|GΓ(I)|
|F(I)| ,

are called domination number and domination ratio of Γ, respectively [4, 53].
As we discussed above, procedure DxOy (and DyOx) and Corollary 15 give us two BAP

heuristics for which the domination number (m− 1)!(n− 1)! and the domination ratio 1
mn

is guarantied by Theorem 14. Lastly, we give an upper bound on the domination ratio for
any polynomial time heuristic algorithm for the BAP. The result can be shown following
the main idea in [108, 37].

Theorem 17. For any fixed rational number β > 1 no polynomial time algorithm for BAP
can have domination number greater than m!n!− dmβ e!d

n
β e!, unless P=NP.

Proof. Let β be a rational number such that β > 1. We show that a polynomial algorithm
Γ for BAP, with domination number at least m!n!− dmβ e!d

n
β e! + 1, can be used to compute

an optimal solution of BAP. Consider an arbitrary BAP instance (Q,C,D). Let a and b be
two natural numbers such that β = a

b > 1, and let Q∗ = (q∗ijk`) be an abm×abm×abn×abn
array such that

q∗ijk` =

qijk` if i, j ∈M and k, ` ∈ N,

0 otherwise.

33

Furthermore, let L be a large number and let C∗ = (c∗ij) and D∗ = (d∗k`) be abm× abm and
abn× abn matrices respectively, such that

c∗ij =

cij if i, j ∈M,

0 if i, j /∈M,

L otherwise

and d∗k` =

dk` if k, ` ∈ N,

0 if k, ` /∈ N,

L otherwise.

Note that BAP instances (Q∗, C∗, D∗) and (Q,C,D) are equivalent. In particular, from
any optimal solution for (Q∗, C∗, D∗) an optimal solution for (Q,C,D) can be recovered.
Moreover, the number of optimal solutions for (Q∗, C∗, D∗) is at least (abm −m)!(abn −
n)!. Therefore, the number of non-optimal solutions is at most (abm)!(abn)! − (abm −
m)!(abn−n)!. Let (x′,y′) denote the output of Γ, and assume that (x′,y′) is no worse than
(abm)!(abn)!−dabmβ e!d

abn
β e! + 1 = (abm)!(abn)!− (b2m)!(b2n)! + 1 solutions. From a > b, it

follows that (abm−m)!(abn−n)! is greater than or equal to (b2m)!(b2n)!, therefore (x′,y′)
is an optimal solution. Using (x′,y′) we can now find an optimal solution for (Q,C,D),
which contradict the fact that BAP is NP-hard.

2.4 Integer programming linearizations

We now present several linearization reformulations of BAP, where the problem will appear
as a mixed-integer linear program. This enables the usage of MILP solvers to tackle the
problem.

Similar to QAP linearization in [94], we introduce m2n2 binary variables zijk`, such that

zijk` = xijyk`, i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.21)

Now an integer linear program equivalent to BAP (2.1) - (2.6) is:

Minimize
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`zijk` +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
`=1

dk`yk` (2.22)

subject to (2.2)− (2.5),
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

zijk` = mn, (2.23)

zijk` ≤
xij + yk`

2 i, j = 1, . . . ,m, k, ` = 1, . . . , n, (2.24)

xij , yk`, zijk` ∈ {0, 1} i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.25)

Alternatively, we can substitute (2.23) by m2n2 constraints

34

zijk` ≥ xij + yk` − 1 i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.26)

This kind of linearization [49] also introduces m2n2 variables

zijk` = xijyk`, i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.27)

The BAP is rewritten then as the following integer linear program:

Minimize
m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`zijk` +
m∑
i=1

m∑
j=1

cijxij +
n∑
k=1

n∑
`=1

dk`yk` (2.28)

subject to (2.2)− (2.5),
m∑
j=1

zijk` = yk` i = 1, 2, . . . ,m, k, ` = 1, . . . , n, (2.29)

m∑
i=1

zijk` = yk` j = 1, 2, . . . ,m, k, ` = 1, . . . , n, (2.30)

n∑
`=1

zijk` = xij k = 1, 2, . . . , n, i, j = 1, . . . ,m, (2.31)

n∑
k=1

zijk` = xij ` = 1, 2, . . . , n, i, j = 1, . . . ,m, (2.32)

xij , yk` ∈ {0, 1} i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.33)

zijk` ∈ {0, 1} i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.34)

Notice that relaxing (2.34) to 0 ≤ zijk` ≤ 1 maintains equivalence to BAP.

Extending the ideas of the previous linearization we multiply each of (2.29) - (2.32) by
respectively xpq and yrs to get

m∑
j=1

xpqzijk` = zpqk` i, p, q = 1, 2, . . . ,m, k, ` = 1, . . . , n, (2.35)

m∑
i=1

xpqzijk` = zpqk` j, p, q = 1, 2, . . . ,m, k, ` = 1, . . . , n, (2.36)

n∑
`=1

zijk`yrs = zijrs k, r, s = 1, 2, . . . , n, i, j = 1, . . . ,m, (2.37)

n∑
k=1

zijk`yrs = zijrs `, r, s = 1, 2, . . . , n, i, j = 1, . . . ,m. (2.38)

Now we linearize by introducing m4n2 +m2n4 additional real variables:

35

vpqijk` = xpqzijk`, p, q, i, j = 1, . . . ,m, k, ` = 1, . . . , n, (2.39)

wijk`rs = zijk`yrs, i, j = 1, . . . ,m, k, `, r, s = 1, . . . , n. (2.40)

We now get the following MILP equivalent to our original BAP:

Minimize (2.28)

subject to (2.2)− (2.5), (2.29)− (2.32),
m∑
j=1

vpqijk` = zpqk` i, p, q = 1, 2, . . . ,m, k, ` = 1, . . . , n, (2.41)

m∑
i=1

vpqijk` = zpqk` j, p, q = 1, 2, . . . ,m, k, ` = 1, . . . , n, (2.42)

n∑
`=1

wijk`rs = zijrs k, r, s = 1, 2, . . . , n, i, j = 1, . . . ,m, (2.43)

n∑
k=1

wijk`rs = zijrs `, r, s = 1, 2, . . . , n, i, j = 1, . . . ,m, (2.44)

xij , yk` ∈ {0, 1} i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.45)

0 ≤ zijk`, vpqijk`, wijk`rs ≤ 1 p, q, i, j = 1, . . . ,m, k, `, r, s = 1, . . . , n.
(2.46)

Going for linearizations of higher levels will allow for a stronger bounds from the linear
programming relaxation, however, extra computational costs will be induced.

Quadratic term from the objective function (2.1) can be rewritten as

m∑
i=1

m∑
j=1

n∑
k=1

n∑
`=1

qijk`xijyk` =
m∑
i=1

m∑
j=1

xij

n∑
k=1

n∑
`=1

qijk`yk`. (2.47)

Now, following the QAP linearization from [79], we define m2 real variables:

zij = xij

n∑
k=1

n∑
`=1

qijk`yk` i, j = 1, . . . ,m, (2.48)

Moreover, let aij =
∑n
k=1

∑n
`=1 qijk` for i, j = 1, . . . ,m. Note that coefficients qijk`

could be considered positive without loosing generality. The mixed-integer linear program
equivalent to BAP can be written as:

36

Minimize
m∑
i=1

m∑
j=1

zij (2.49)

subject to (2.2)− (2.5),

zij + (1− xij)aij ≥
n∑
k=1

n∑
`=1

qijk`yk` i, j = 1, 2, . . . ,m, (2.50)

xij , yk` ∈ {0, 1} i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.51)

zijk` ≥ 0 i, j = 1, . . . ,m, k, ` = 1, . . . , n. (2.52)

2.5 Conclusion

We presented a systematic study of complexity aspects of BAP defined on the data set
(Q,C,D) and size parameters m and n. BAP generalizes the well known quadratic as-
signment problem, the three dimensional assignment problem, and the disjoint matching
problem. We show that BAP is NP-hard if m = O(r

√
n), for some fixed r, but is solvable

in polynomial time if m = O(logn
log logn). Further, we establish that BAP cannot be approxi-

mated within a constant factor unless P=NP even if Q is diagonal; but when the rank of Q
is fixed, BAP is observed to admit FPTAS. When the rank of Q is one and C or D is a sum
matrix, BAP is shown to be solvable in polynomial time. In contrast, QAP with a diagonal
cost matrix is just the linear assignment problem which is solvable in polynomial time.
We also provide a characterization of BAP instances equivalent to two linear assignment
problems. Same as in the case of QAP, linearizable instances yield a class of polynomially
solvable special cases. Various results leading to performance guarantee of heuristics from
the domination analysis point of view are presented. In particular, we showed that a feasi-
ble solution with objective function value no worse than that of (m− 1)!(n− 1)! solutions
can be identified efficiently, whereas computing a solution whose objective function value is
no worse than that of m!n!− dmβ e!d

n
β e! solutions is NP-hard for any fixed rational number

β > 1. As a by-product, we have a closed form expression to compute the average of the
objective function values of all solutions, but the median of the solution values cannot be
identified in polynomial time, unless P=NP.

37

Chapter 3

Bilinear Assignment Problem:
Theoretical and Experimental
Analysis of Algorithms

In this chapter we discuss the results of our experimentally focused study on the model
[121].

We present various neighborhoods associated with a feasible solution of BAP and analyze
their theoretical properties in the context of local search algorithms, particularly on the
worst case behavior. Some of these neighborhoods are of exponential size but can be
searched for an improving solution in polynomial time. Local search algorithms with such
very large scale neighborhoods (VLSN) proved to be an effective solution approach for many
hard combinatorial optimization problems [2, 3]. We also present extensive experimental
results by embedding these neighborhoods within a variable neighborhood search (VNS)
framework in addition to the standard and multi-start VLSN local search. Some very fast
construction heuristics are also provided along with experimental analysis. Although local
search and variable neighborhood search are well known algorithmic paradigms that are
thoroughly investigated in the context of various combinatorial optimization problems, to
achieve effectiveness and obtain superior outcomes variable neighborhood search algorithms
needs to exploit special problem structures that efficiently link the various neighborhoods
under consideration. In this sense, developing variable neighborhood search algorithms is
always intriguing, especially when it comes to new optimization problems having several well
designed neighborhood structures with interesting properties. Our experimental analysis
shows that the average behavior of the algorithms are much better and the established
negative worst case performance hardly occurs. Such a conclusion can only be made by
systematic experimentation, as we have done. On a balance of computational time and
solution quality, a multi-start based VLSN local search became our proposed approach.

38

Although, by allowing significantly more time, a strategic variable neighborhood search
outperformed this algorithm in terms of solution quality.

Several classes of neigborhood search structures are introduced for the problem along
with some theoretical analysis. These neighborhoods are then explored within a local search
and a variable neighborhood search frameworks with multistart to generate robust heuristic
algorithms. Results of systematic experimental analysis have been presented which divulge
the effectiveness of our algorithms. In addition, we present several very fast construction
heuristics. Our experimental results disclosed some interesting properties of the BAP model,
different from those of comparable models. This is the first thorough experimental analysis
of algorithms on BAP. We have also introduced benchmark test instances that can be used
for future experiments on exact and heuristic algorithms for the problem.

This chapter is organized as follows. In Section 3.1 we describe several construction
heuristics for BAP that generate reasonable solutions, often quickly. In Section 3.2, we
present various neighborhood structures and analyze their theoretical properties. We then
(Section 3.3.1) describe in details specifics of our experimental setup as well as sets of in-
stances that we have generated for the problem. The benchmark instances that we have
developed are available upon request, for other researchers to further study the problem.
The development of these test instances and best-known solutions is yet another contribu-
tion of this work. Sections 3.3.2 and 3.3.3 deal with experimental analysis of construction
heuristics and local search algorithms. Our computational results disclose some interesting
and unexpected outcomes, particularly when comparing standard local search with its multi-
start counterpart. In Section 3.3.4 we combine better performing construction heuristics
and different local search algorithms to develop several variable neighborhood search algo-
rithms and present comparison with our best performing multistart local search algorithm.
Concluding remarks are presented in Section 3.4.

3.1 Construction heuristics

In this section, we consider heuristic algorithms that will generate solutions to BAP using
various construction approaches. Such algorithms are useful in situations where solutions
of reasonable quality are needed quickly. These algorithms can also be used to generate
starting solutions for more complex improvement based algorithms.

Our first algorithm, called Random, is the trivial approach of generating a feasible
solution (x,y). Both x and y are selected as random assignments in uniform fashion. It
should be noted that the expected value of the solution produced by Random is precisely
A(Q,C,D).

Let us now discuss a different randomized technique, called RandomXYGreedy. This
algorithm builds a solution by randomly picking a ‘not yet assigned’ i ∈ M or k ∈ N , and

39

then setting xij or ykl to 1 for a ‘not yet assigned’ j ∈M ′ or l ∈ N ′ so that the total cost of
the resulting partial solution is minimized. A pseudo-code of RandomXYGreedy is presented
in Algorithm 1. Here and later in the paper we will present description of the algorithms by
assuming that the input BAP instance (Q,C,D) has C andD as zero arrays. This restriction
is for simplicity of presentation and does not affect neither the theoretical complexity of
BAP nor the asymptotic computational complexity of the presented algorithms. It is easy
to extend the algorithms to the general case in a straightforward way. The running time of
RandomXYGreedy is O(mn2) as each addition to our solution is selected using quadratic
number of computations. However, just reading the data for the Q matrix takes O(m2n2)
time. For the rest of the paper we will consider running time of our algorithms without
including this input overhead.

Algorithm 1 RandomXYGreedy
Input: integers m,n; m×m× n× n array Q
Output: feasible solution to BAP
xij ← 0 ∀i, j; ykl ← 0 ∀k, l
while not all i ∈M and k ∈ N are assigned do

randomly pick some i ∈M or k ∈ N that is unassigned
if i is picked then

j′ ← random j ∈M that is unassigned; ∆′ ←
∑

k,l∈N qij′klykl
for all j ∈M that is unassigned do

∆←
∑

k,l∈N qijklykl . value change if i assigned to j
if ∆ < ∆′ then

j′ ← j; ∆′ ← ∆
end if

end for
xij′ ← 1 . assign i to j′

else
l′ ← random l ∈ N that is unassigned; ∆′ ←

∑
i,j∈M qijkl′xij

for all l ∈ N that is unassigned do
∆←

∑
i,j∈M qijklxij . value change if k assigned to l

if ∆ < ∆′ then
l′ ← l; ∆′ ← ∆

end if
end for
ykl′ ← 1 . assign k to l′

end if
end while
return (x, y)

Our next algorithm is fully deterministic and is called Greedy (see Algorithm 2). This
is similar to RandomXYGreedy, except that, at each iteration, we select the best available
xij or ykl to be added to the current partial solution. We start the algorithm by choosing
the partial solution xi′j′ = 1 and yk′l′ = 1 where i′, j′, k′, l′ correspond to a smallest element
in the array Q. The total running time of this heuristic is O(n3), considering that the
position of the smallest qi′j′k′l′ is provided.

Theorem 18. The objective function value of a solution produced by the Greedy algorithm
could be arbitrarily bad and could be worse than A(Q,C,D).

40

Algorithm 2 Greedy
Input: integers m,n; m×m× n× n array Q
Output: feasible solution to BAP
xij ← 0 ∀i, j; ykl ← 0 ∀k, l
i′, j′, k′, l′ ← argmini,j∈M,k,l∈N qijkl; xi′j′ ← 1; yk′l′ ← 1
while not all i ∈M and k ∈ N are assigned do

∆′x ←∞; ∆′y ←∞
for all i ∈M that is unassigned do

for all j ∈M that is unassigned do
∆←

∑
k,l∈N qijklykl . value change if i assigned to j

if ∆ < ∆′x then
i′ ← i; j′ ← j; ∆′x ← ∆

end if
end for

end for
for all k ∈ N that is unassigned do

for all l ∈ N that is unassigned do
∆←

∑
i,j∈M qijklxij . value change if k assigned to l

if ∆ < ∆′y then
k′ ← k; l′ ← l; ∆′y ← ∆

end if
end for

end for
if ∆′x ≤ ∆′y then

xi′j′ ← 1 . assign i′ to j′
else

yk′l′ ← 1 . assign k′ to l′
end if

end while
return (x, y)

Proof. Consider the following BAP instance: C and D are zero matrices and elements of
2 × 2 × 3 × 3 matrix Q are all zero except q1111 = −ε, q1122 = q1133 = ε, q2211 = q1123 =
q1132 = 2ε, q2222 = q2233 = L, where ε and L are arbitrarily small and large positive numbers,
respectively. At first the algorithm will assign x11 = y11 = 1, as q1111 is the smallest element
in the array. Next, all indices i, j ∈M such that i, j > 2 and k, l ∈M such that k, l > 3 will
be assigned within their respective groups. This is due to the fact that any assignment in
those sets adds no additional cost to the current partial solution. Following that, y22 = y33 =
1 will be added. And finally, x22 will be set to 1 to complete a solution with the cost 3ε+2L.
However, an optimal solution in this case will contain x11 = x22 = y11 = y23 = y32 = 1 with
an objective value of 5ε. Note that A(Q,C,D) = 7ε+2L

mn and the result follows.

We also consider a randomized version of Greedy, called GreedyRandomized. In this
variation a partial assignment is extended by a randomly picked xij or ykl out of h best
candidates (by solution value change), where h is some fixed number. Such approaches
are generally called semi-greedy algorithms and form an integral part of many GRASP
algorithms [70, 44]. To emphasize the randomized decisions in the algorithm and its linkages
to GRASP, we call it GreedyRandomized.

Finally we discuss a construction heuristic based on rounding a fractional solution. In
[38], a discretization procedure was introduced that computes a feasible solution to BAP
with objective function value no more than that of the fractional solution. Given a fractional

41

solution to BAP (x,y) (i.e. a solution to BAP (2.1)-(2.5) without integrality constrains
(2.6)), we fix one side of the solution (say x) and optimize y by solving a linear assignment
problem to obtain a solution ȳ . Then, fix ȳ and solve a linear assignment problem to find a
solution x̄. Output the solution (x̄, ȳ) as a result. We denote this approach as Rounding.

Theorem 19. A feasible solution (x∗,y∗) to BAP with the cost f(x∗,y∗) ≤ A(Q,C,D),
can be obtained in O(m2n2 + n3) time using the Rounding algorithm.

Proof. Consider the fractional solution (x,y) where xij = 1/m for all i, j ∈ M , and yij =
1/n for all i, j ∈ N . Then (x,y) is a feasible solution to the relaxation of BAP obtained
by removing the integrality restrictions (2.6). It is easy to see that f(x,y) = A(Q,C,D).
One of the properties of Rounding discussed in [38] is that the resulting solution is no worse
than the input fractional solution, in terms of objective value. Apply Rounding to (x,y) to
obtain the desired solution.

Rounding provides us with an alternative way to Corollary 15 for generating a BAP
solution with objective value no worse than the average. Recall, that by Theorem 14 this
solution is guaranteed to be no worse than (m− 1)!(n− 1)! feasible solutions.

It should be noted that this discretization procedure could also be applied to BAP frac-
tional solutions obtained from other sources, such as the solution to the relaxed version of
an integer linear programming reformulation of BAP. Some of the linearization reformula-
tions [79, 48, 94, 1] of the QAP can be modified to obtain the corresponding linearizations
of BAP. Selecting only x and y part from continuous solutions and ignoring other variables
in the linearization formulations can be used to initiate the rounding algorithm discussed
above. However, in this case, the resulting solution is not guaranteed to be no worse than
the average.

3.2 Neighborhood structures and properties

Let us now discuss various neighborhoods associated with a feasible solution of BAP and
analyze their properties. We also consider worst case properties of a local optimum for these
neighborhoods. All these neighborhoods are based on reassigning parts of x ∈ X , parts of
y ∈ Y, or both. The neighborhoods that we consider can be classified into three categories:
h-exchange neighborhoods, [h, p]-exchange neighborhoods, and shift based neighborhoods.

3.2.1 The h-exchange neighborhood

In this class of neighborhoods, we apply an h-exchange operation to x while keeping y
unchanged or viceversa. Let us discuss this in detail with h = 2. The 2-exchange neighbor-
hood is well studied in the QAP literature. Our version of 2-exchange for BAP is related to

42

the QAP variation, but also have some significant differences due to the specific structure
of our problem.

Let (x,y) be a feasible solution to BAP. Consider two elements i1, i2 ∈M , j1, j2 ∈M ′,
such that xi1j1 = xi2j2 = 1. Then the 2-exchange operation on the x-variables produces
(x′,y), where x′ is obtained from x by swapping assignments of i1, i2 and j1, j2 (i.e. setting
xi1j2 = xi2j1 = 1 and xi1j1 = xi2j2 = 0). Let ∆x

i1i2 be the change in the objective value from
(x,y) to (x′,y). I.e.,

∆x
i1i2 =f(x′,y)− f(x,y)

=
m∑
i=1

m∑
j=1

n∑
k=1

n∑
l=1

qijklx
′
ijykl +

m∑
i=1

m∑
j=1

cijx
′
ij +

n∑
k=1

n∑
l=1

dklykl

−
m∑
i=1

m∑
j=1

n∑
k=1

n∑
l=1

qijklxijykl −
m∑
i=1

m∑
j=1

cijxij −
n∑
k=1

n∑
l=1

dklykl

=
n∑
k=1

n∑
l=1

(qi1j2kl + qi2j1kl − qi1j1kl − qi2j2kl)ykl + ci1j2 + ci2j1 − ci1j1 − ci2j2 .

(3.1)

Let 2exchangeX(x,y) be the set of all feasible solutions (x′,y), obtained from (x,y)
by applying the 2-exchange operation for all i1, i2 ∈ M (with corresponding j1, j2 ∈ M ′).
Efficient computation of ∆x

i1i2 is crucial in developing fast algorithms that use this neighbor-
hood. For a fixed y, consider the m×m matrix E such that eij =

∑n
k=1

∑n
l=1 qijklykl + cij .

Then we can write ∆x
i1i2 = ei1j2 + ei2j1 − ei1j1 − ei2j2 . If the matrix E is available, this

calculation can be done in constant time, and hence the neighborhood 2exchangeX(x,y)
can be explored in O(m2) time for an improving solution. Note that the values of E depend
only on y and not on x. Thus, we do not need to update E within a local search algorithm
as long as y remains unchanged.

Likewise, we can define a 2-exchange operation on y by keeping x constant. Consider
two elements k1, k2 ∈ N and let l1, l2 be the corresponding assignments in N ′, such that
xk1l1 = xk2l2 = 1. Then the 2-exchange operation will produce (x,y′), where y′ is obtained
from y by swapping assignments of k1, k2 and l1, l2 (i.e. setting xk1l2 = xk2l1 = 1 and
xk1l1 = xk2l2 = 0). Let ∆y

k1k2
be the change in the objective value from (x,y) to (x,y′).

I.e.,

∆y
k1k2

=f(x,y′)− f(x,y)

=
m∑
i=1

m∑
j=1

(qijk1l2 + qijk2l1 − qijk1l1 − qijk2l2)xij + dk1l2 + dk2l1 − dk1l1 − dk2l2 .
(3.2)

Let 2exchangeY (x,y) be the set of all feasible solutions (x,y′), obtained from (x,y)
by applying the 2-exchange operation on y while keeping x unchanged. As in the previous

43

case, efficient computation of ∆y
k1k2

is crucial in developing fast algorithms that use this
neighborhood. For a fixed x consider an n×n matrix G such that gkl =

∑m
i=1

∑m
j=1 qijklxij+

dkl. Then we can write ∆y
k1k2

= gk1l2 + gk2l1 − gk1l1 − gk2l2 . If the matrix G is available, this
calculation can be done in constant time and hence the neighborhood 2exchangeY (x,y)
can be explored in O(n2) time for an improving solution. Note that the values of G depends
only on x and not on y. Thus, we do not need to update G within a local search algorithm
as long as y remains unchanged.

The 2-exchange neighborhood of (x,y), denoted by 2exchange(x,y), is given by

2exchange(x,y) = 2exchangeX(x,y) ∪ 2exchangeY (x,y).

In a local search algorithm based on the 2exchange(x,y) neighborhood, after each
move, either x or y will be changed, but not both. To maintain our data structure, if y is
changed, we update E in O(m2) time. More specifically, suppose a 2-exchange operation
takes (x,y) to (x,y′), then E is updated as: eij ← eij + qijk1l2 + qijk2l1 − qijk1l1 − qijk2l2 ,
where k1, k2 ∈ N, l1, l2 ∈ N ′ are the corresponding positions where the swap have occurred.
Analogous changes will be performed on G in O(n2) time if (x,y) is changed to (x′,y).

The general h-exchange neighborhood for BAP is obtained by replacing 2 in the above
definition by 2, 3, . . . , h. Notice that the h-exchange neighborhood can be searched for an
improving solution in O(nh) time, and already for h = 3, the running time of the algorithm
that completely explores this neighborhood is O(n3). With the same asymptotic running
time we could instead optimally reassign whole x (or y) by solving the linear assignment
problem with E (or G respectively) as the cost matrix. This fact suggests that any h

larger that 3 potentially leads to a weaker algorithm in terms of running time. Such full
reassignment can be viewed as a local search based on the special case of the h-exchange
neighborhood with h = n. This special local search will be referred to as Alternating
Algorithm and will be alternating between re-optimizing x and y. For clarity, the pseudo
code for this approach is presented in Algorithm 3. Alternating Algorithm is a strategy well-
known in non-linear programming literature as coordinate-wise descent. Similar underlying
ideas are used in the context of other bilinear programming problems by various authors
[86, 76, 108].

Theorem 20. The objective function value of a locally optimal solution for BAP based on
the h-exchange neighborhood could be arbitrarily bad and could be worse than A(Q,C,D),
for any h.

Proof. For a small ε > 0 and a large L, we consider BAP instance (Q,C,D) such that all
of its cost elements are equal to 0, except c11 = c22 = d11 = d22 = −ε, and q1212 = −L.
Let a feasible solution (x,y) be such that x11 = x22 = y11 = y22 = 1. Then (x,y) is a
local optimum for the h-exchange neighborhood. Note that this local optimum can only

44

Algorithm 3 Alternating Algorithm
Input: integers m,n; m×m× n× n array Q; feasible solution (x, y) to BAP
Output: feasible solution to BAP

while True do
eij ←

∑
k,l∈N qijklykl ∀i, j ∈M

x∗ ← argminx′∈X
∑

i,j∈M eijx
′
ij . solving assignment problem for x

gkl ←
∑

i,j∈M qijklx
∗
ij ∀k, l ∈ N

y∗ ← argminy′∈Y
∑

k,l∈N gkly
′
kl . solving assignment problem for y

if f(x∗,y∗) = f(x,y) then
break

end if
x← x∗; y← y∗

end while
return (x, y)

be improved by simultaneously making changes to both x and y, which is not possible for
this neighborhood. The objective function value of (x,y) is −4ε, while the optimal solution
objective value is −L.

Despite the negative result of Theorem 20, we will see in Section 3.3.3 that on aver-
age, 2-exchange and n-exchange (with Alternating Algorithm) are two of the most efficient
neighborhoods to explore from a practical point of view. Moreover, when restricted to non-
negative input array, we can establish some performance guarantees for 2-exchange (and
consequently for any h-exchange) local search. In particular, we derive upper bounds on
the local optimum solution value and the number of iterations to reach a solution not worse
than this value bound. The proof technique follows [6], where authors obtained similar
bounds for Koopmans-Beckman QAP.

Theorem 21. For any BAP instance (Q,C,D) with non-negative Q and zero matrices
C,D, the cost of the local optimum for the 2-exchange neighborhood is f∗ ≤ 2mn

m+nA(Q,C,D).

Proof. In this proof, for simplicity, we represent BAP as a permutation problem. As such,
the permutation formulation of BAP is

min
π∈Π,φ∈Φ

m∑
i=1

n∑
k=1

qi π(i) k φ(k), (3.3)

where Π and Φ are sets of all permutations on {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively.
Cost of a particular permutation pair π, φ is f(π, φ) =

∑m
i=1

∑n
k=1 qi π(i) k φ(k).

Let πij be the permutation obtained by applying a single 2-exchange operation to π on
indices i and j. Define δπij as an objective value difference after applying such 2-exchange:

δπij(π, φ) = f(πij , φ)− f(π, φ) =
m∑
k=1

(
qi π(j) k φ(k) + qj π(i) k φ(k) − qi π(i) k φ(k) − qj π(j) k φ(k)

)
.

45

Similarly we can have φkl and δφkl:

δφkl(π, φ) = f(π, φkl)− f(π, φ) =
n∑
i=1

(
qi π(i) k φ(l) + qi π(i) l φ(k) − qi π(i) k φ(k) − qi π(i) l φ(l)

)
.

Summing up over all possible δπij and δ
φ
kl we get

m∑
i,j=1

δπij(π, φ) =
m∑

i,j=1

n∑
k=1

qi π(j) k φ(k) +
m∑

i,j=1

n∑
k=1

qj π(i) k φ(k) −
m∑

i,j=1

n∑
k=1

qi π(i) k φ(k) −
m∑

i,j=1

n∑
k=1

qj π(j) k φ(k)

= 2
m∑

i,j=1

n∑
k=1

qi π(j) k φ(k) − 2mf(π, φ), (3.4)

n∑
k,l=1

δφkl(π, φ) = 2
m∑
i=1

n∑
k,l=1

qi π(i) k φ(l) − 2nf(π, φ). (3.5)

Using (3.4) and (3.5) we can now compute an average cost change after 2-exchange operation
on solution (π, φ).

∆(π, φ) =
∑m
i,j=1 δ

π
ij(π, φ) +

∑n
k,l=1 δ

φ
kl(π, φ)

m2 + n2

=
2
∑m
i,j=1

∑n
k=1 qi π(j) k φ(k) + 2

∑m
i=1

∑n
k,l=1 qi π(i) k φ(l) − 2(m+ n)f(π, φ)

m2 + n2

=
2
∑m
i,j=1

∑n
k=1 qi π(j) k φ(k) + 2

∑m
i=1

∑n
k,l=1 qi π(i) k φ(l)

m2 + n2 −λf(π, φ)+λ 2mn
m+nA−λ

2mn
m+nA

≤ −λ(f(π, φ)− 2mn
m+ n

A) + µ− λ 2mn
m+ n

A, (3.6)

where λ = 2 m+n
m2+n2 and µ = maxπ∈Π,φ∈Φ

[
2
∑m
i,j=1

∑n
k=1 qi π(j) k φ(k) + 2

∑m
i=1

∑n
k,l=1 qi π(i) k φ(l)

m2 + n2

]
.

Note that both λ and µ do not depend on any particular solution and are fixed for a given
BAP instance.

We are ready to prove the theorem by contradiction. Let (π∗, φ∗) be the local optimum
for 2-exchange local search, with the objective function cost f∗ = f(π∗, φ∗). Assume now
that f(π∗, φ∗) > 2mn

m+nA. Then −λ(f(π∗, φ∗)− 2mn
m+nA) < 0 and

46

µ− λ 2mn
m+ n

A = max
π∈Π,φ∈Φ

[
2
∑m
i,j=1

∑n
k=1 qi π(j) k φ(k) + 2

∑m
i=1

∑n
k,l=1 qi π(i) k φ(l)

m2 + n2

]

− 2 m+ n

m2 + n2
2mn
m+ n

1
mn

m∑
i,j=1

n∑
k,l=1

qijkl

= max
π∈Π,φ∈Φ

[
2
∑m
i,j=1

∑n
k=1 qi π(j) k φ(k)

m2 + n2 +
2
∑m
i=1

∑n
k,l=1 qi π(i) k φ(l)

m2 + n2

]

−
2
∑m
i,j=1

∑n
k,l=1 qijkl

m2 + n2 −
2
∑m
i,j=1

∑n
k,l=1 qijkl

m2 + n2 ≤ 0, (3.7)

which implies ∆(π∗, φ∗) < 0. As ∆ is the average cost difference after applying 2-exchange,
there exists some swap that decreases solution cost by at least −∆(π∗, φ∗), and that con-
tradicts with (π∗, φ∗) being a local optimum.

It is easy to see that the bound µ ≤ λ 2mn
m+nA from Theorem 21 is tight. Consider some

arbitrary bilinear assignment (π, φ), and set all qijkl to zero except qi π(i) k φ(k) = 1, ∀i∀k.

Then µ = 4
∑m
i=1

∑n
k=1 qi π(i) k φ(k)
m2 + n2 = λ 2mn

m+nA = 4mn
m2+n2 .

Theorem 22. For any BAP instance (Q,C,D) with elements of Q restricted to non-
negative integers and zero matrices C,D, the local search algorithm that explores 2-exchange
neighborhood will reach a solution with the cost at most 2mn

m+nA(Q,C,D) in O
(
m2+n2

m+n log
∑
qijkl

)
iterations.

Proof. Inequality (3.6) can be also written as ∆(π, φ) ≤ −λf(π, φ) +µ, and so any solution
with f(π, φ) > µ

λ would yield ∆(π, φ) < 0, and would have some 2-exchange improvement
possible. Note that 2mn

m+nA ≥
µ
λ .

Consider a cost f ′(π, φ) = f(π, φ) − µ
λ . At every step of the 2-exchange local search

f ′(π, φ) is decreased by at least ∆(π, φ) and becomes at most

f ′(π, φ) + ∆(π, φ) ≤ f ′(π, φ) + (−λf(π, φ) + µ) = f ′(π, φ)− λf ′(π, φ) = (1− λ)f ′(π, φ).

47

Since elements of Q are integer, the cost at each step must decrease by at least 1. Then a
number of iterations t for C ′(π, φ) to become less than or equal to zero has to satisfy

(1− λ)t−1(fmax −
µ

λ
)− (1− λ)t(fmax −

µ

λ
) ≥ 1,

(1− λ)t−1(fmax −
µ

λ
)(1− (1− λ)) ≥ 1,

(1− λ)t−1 ≥ 1
(fmax − µ

λ)λ,

(t− 1) log (1− λ) ≥ − log λ(fmax −
µ

λ
),

t ≤ 1 +
− log λ(fmax − µ

λ)
log (1− λ) , (3.8)

where fmax is the highest possible solution value. It follows that

t ∈ O
(1
λ

log λ(fmax −
µ

λ
)
)

= O

(
m2 + n2

m+ n
log m+ n

m2 + n2 (fmax −
µ

λ
)
)
. (3.9)

This together with the fact that fmax − µ
λ ≤ fmax ≤

∑m
i,j=1

∑n
k,l=1 qijkl completes the

proof.

It should be noted that the solution considered in the statement of Theorem 22 may
not be a local optimum. The theorem simply states that, the solution of the desired quality
will be reached by 2-exchange local search in polynomial time. It is known that for QAP,
2-exchange local search may sometimes reach local optimum in exponential number of steps
[103].

In fact, these results can be obtained for the general QAP as well, by modifying the
following proof accordingly.

Theorem 23. For QAP with non-negative qijkl and the average solution value A, the cost
of the local optimum for the 2-exchange neighborhood is C∗ ≤ 2n(n−1)

2n−1 A.

Proof. The permutation formulation of QAP is

min
π∈Π

n∑
i=1

n∑
k=1

qi π(i) k π(k),

where Π is the set of all permutations on {1, 2, . . . , n}. Cost of a particular permutation π
is

C(π) =
n∑
i=1

n∑
k=1

qi π(i) k π(k).

Note that for QAP we can assume without loss of generality that qijil = 0 when j 6= l

and similarly qijkj = 0 when i 6= k. Also, by reassigning all qijkl = qklij = qijkl+qklij
2 we can

make n2 by n2 matrix Q symmetric, while maintaining equivalence to the original problem.

48

We know that an average value of all solutions to a given QAP instance is computed as:

A = 1
n(n− 1)

n∑
i,j=1

∑
k 6=i

∑
l 6=j

qi j k l + 1
n

n∑
i,j=1

qi j i j

= 1
n(n− 1)(

n∑
i,j,k,l=1

qi j k l −
n∑

i,j=1
qi j i j) + 1

n

n∑
i,j=1

qi j i j

=
∑n
i,j,k,l=1 qi j k l + (n− 2)

∑n
i,j=1 qi j i j

n(n− 1) .

Let πij be the permutation obtained by applying 2-exchange to π on indices i and j.
Define δij as an objective value difference after applying such 2ex:

δij(π) = C(πij)− C(π)

=
∑
k 6=i,j

(qi π(j) k π(k) + qj π(i) k π(k) − qi π(i) k π(k) − qj π(j) k π(k)

+ qk π(k) i π(j) + qk π(k) j π(i) − qk π(k) i π(i) − qk π(k) j π(j))

+ qi π(j) i π(j) + qi π(j) j π(i) − qi π(i) i π(i) − qi π(i) j π(j)

+ qj π(i) j π(i) + qj π(i) i π(j) − qj π(j) j π(j) − qj π(j) i π(i)

= 2
∑
k 6=i,j

(qi π(j) k π(k) + qj π(i) k π(k) − qi π(i) k π(k) − qj π(j) k π(k))

+ qi π(j) i π(j) + 2qi π(j) j π(i) − qi π(i) i π(i) − 2qi π(i) j π(j)

+ qj π(i) j π(i) − qj π(j) j π(j)

= 2
n∑
k=1

(qi π(j) k π(k) + qj π(i) k π(k) − qi π(i) k π(k) − qj π(j) k π(k))

−2 qi π(j) i π(i) − 2qj π(i) i π(i) + qi π(i) i π(i) + 2qj π(j) i π(i)

−2 qi π(j) j π(j) − 2qj π(i) j π(j) + qj π(j) j π(j)

+ qi π(j) i π(j) + 2qi π(j) j π(i)

+ qj π(i) j π(i).

49

n∑
i,j=1

δij(π) = 2
n∑

i,j,k=1
qi π(j) k π(k) + 2

n∑
i,j,k=1

qj π(i) k π(k) − 2
n∑

i,j,k=1
qi π(i) k π(k) − 2

n∑
i,j,k=1

qj π(j) k π(k)

− 2
n∑

i,j=1
qi π(j) i π(i) − 2

n∑
i,j=1

qj π(i) i π(i) +
n∑

i,j=1
qi π(i) i π(i) + 2

n∑
i,j=1

qj π(j) i π(i)

− 2
n∑

i,j=1
qi π(j) j π(j) − 2

n∑
i,j=1

qj π(i) j π(j) +
n∑

i,j=1
qj π(j) j π(j)

+
n∑

i,j=1
qi π(j) i π(j) + 2

n∑
i,j=1

qi π(j) j π(i)

+
n∑

i,j=1
qj π(i) j π(i)

= 4
n∑

i,j,k=1
qi π(j) k π(k) − 4nC(π)− 8

n∑
i=1

qi π(i) i π(i) + 2n
n∑
i=1

qi π(i) i π(i) + 2C(π)

+ 2
n∑

i,j=1
qi π(j) i π(j) + 2

n∑
i,j=1

qi π(j) j π(i)

= 4
n∑

i,j,k=1
qi π(j) k π(k) + 2(n− 4)

n∑
i=1

qi π(i) i π(i)

+ 2
n∑

i,j=1
qi π(j) i π(j) + 2

n∑
i,j=1

qi π(j) j π(i) − 2(2n− 1)C(π)

We can now compute an average cost change after 2ex operation on given π.

∆(π) =
∑n
i,j=1 δij(π)
n2

=
4
∑n
i,j,k=1 qi π(j) k π(k) + 2(n− 4)

∑n
i=1 qi π(i) i π(i) + 2

∑n
i,j=1 qi π(j) i π(j) + 2

∑n
i,j=1 qi π(j) j π(i)

n2

− 2(2n− 1)
n2 C(π) + 4n(n− 1)

n2 A− 4n(n− 1)
n2 A

≤ −2(2n− 1)
n2 (C(π)− 2n(n− 1)

2n− 1 A) + 1
n2 (M − 4n(n− 1)A), (3.10)

where M = maxπ∈Π[4
∑n
i,j,k=1 qi π(j) k π(k) + 2(n− 4)

∑n
i=1 qi π(i) i π(i) + 2

∑n
i,j=1 qi π(j) i π(j) +

2
∑n
i,j=1 qi π(j) j π(i)].
We are ready to prove the theorem by contradiction. Let π∗ be the local optimum

permutation for 2ex local search, with the objective function cost C∗ = C(π∗). Assume
now that C(π∗) > 2n(n−1)

2n−1 A. Then −
2(2n−1)
n2 (C(π∗)− 2n(n−1)

2n−1 A) < 0 and

50

M − 4n(n− 1)A

= max
π∈Π

[4
n∑

i,j,k=1
qi π(j) k π(k) + 2(n− 4)

n∑
i=1

qi π(i) i π(i) + 2
n∑

i,j=1
qi π(j) i π(j) + 2

n∑
i,j=1

qi π(j) j π(i)]

− 4
n∑

i,j,k,l=1
qi j k l − 4(n− 2)

n∑
i,j=1

qi j i j

≤ max
π∈Π

[(4
n∑

i,j,k=1
qi π(j) k π(k) + 2

n∑
i,j=1

qi π(j) j π(i) − 2
n∑
i=1

qi π(i) i π(i))− (4
n∑

i,j,k,l=1
qi π(j) k π(l))]

+ max
π∈Π

[(2(n− 4)
n∑
i=1

qi π(i) i π(i) + 2
n∑

i,j=1
qi π(j) i π(j) + 2

n∑
i=1

qi π(i) i π(i))− (4(n− 2)
n∑

i,j=1
qi π(j) i π(j))]

≤ 0,

which implies ∆(π∗) < 0. As ∆ is the average cost difference after applying 2-exchange,
there exists some swap that decreases solution cost by at least −∆(π∗), and that contradicts
π∗ being a local optimum.

Theorem 24. For QAP with non-negative integer valued qijkl, 2ex local search will reach
a solution with the cost at most 2n(n−1)

2n−1 A in O(n log
∑
qijkl).

Proof. Inequality (3.10) can be also written as ∆(π) ≤ −2(2n−1)
n2 C(π) + M

n2 , and so any
solution with C(π) > M

2(2n−1) would yield ∆(π) < 0, and would have some 2ex improvement
possible. Note that 2n(n−1)

2n−1 A ≥
M

2(2n−1) .
Consider a cost C ′(π) = C(π) − M

2(2n−1) . At every step of the 2ex local search C ′(π)
becomes C(π)− M

2(2n−1)+∆(π) ≤ C(π)− M
2(2n−1)+(−2(2n−1)

n2 C(π)+M
n2) = (C(π)− M

2(2n−1))(1−
2(2n−1)
n2) = (1− 2(2n−1)

n2)C ′(π). Also, let C ′max = Cmax − M
2(2n−1) , where Cmax is the solution

with the highest possible cost. Since elements of Q are integer, the cost at each step must
decrease by at least 1. Then a number of iterations t for C ′(π) to become less than or equal

51

to zero has to satisfy

(1− 2(2n− 1)
n2)t−2C ′max − (1− 2(2n− 1)

n2)t−1C ′max ≥ 1,

(1− 2(2n− 1)
n2)t−2C ′max(1− (1− 2(2n− 1)

n2)) ≥ 1,

(1− 2(2n− 1)
n2)t−2 ≥ 1

C ′max
2(2n−1)
n2

,

(t− 2) log (1− 2(2n− 1)
n2) ≥ − log 2(2n− 1)

n2 C ′max,

t ≤ 2 +
− log 2(2n−1)

n2 C ′max

log (1− 2(2n−1)
n2)

∈ O(n log 1
n
C ′max.

This together with the fact that C ′max ≤ Cmax ≤
∑m
i,j=1

∑n
k,l=1 qijkl completes the

proof.

3.2.2 [h,p]-exchange neighborhoods

Recall that in the h-exchange neighborhood we change either the x variables or the y
variables, but not both. Simultaneous changes in x and y could lead to more powerful
neighborhoods, but with additional computational effort in exploring them. With this
motivation, we introduce the [h, p]-exchange neighborhood for BAP.

In the [h, p]-exchange neighborhood, for each h-exchange operation on x variables, we
consider all possible p-exchange operations on y variables. Thus, the [h, p]-exchange neigh-
borhood is the set of all solutions (x′,y′) obtained from the given solution (x,y), such that
x′ differs from x in at most h assignments, and y′ differs from y in at most p assignments.
The size of this neighborhood is Θ(mhnp).

Theorem 25. The objective function value of a locally optimal solution for the [h, p]-
exchange neighborhood could be arbitrarily bad. If h < m

2 or p < n
2 this value could be

arbitrarily worse than A(Q,C,D).

Proof. Let ε > 0 be an arbitrarily small and L be an arbitrarily large numbers. Consider
the BAP instance (Q,C,D) such that all of the associated cost elements are equal to 0,
except qiikk = −ε, qi(i+1 mod m)k(k+1 mod n) = −L, qiik(k+1 mod n) = hL

m−h ∀i ∈ M ∀k ∈ N .
Let (x,y) be a feasible solution such that xii = 1 ∀i ∈ M and ykk = 1 ∀k ∈ N . Note
that f(x,y) = −mnε.

We first show that (x,y) is a local optimum for the [h, p]-exchange neighborhood. If we
assume the opposite and (x,y) is not a local optimum, then there exist a solution (x′,y′)
with x′ being different from x in at most h assignments, y′ being different from y in at
most p assignments, and f(x′,y′)−f(x,y) < 0. Since the summation for f(x,y) comprised
of exactly mn elements of Q with value −ε, the only way to get an improving solution is

52

to get some number of elements with value −L, and therefore to flip some number of xii to
xi(i+1 mod m) and ykk to yk(k+1 mod n). Let 1 < u ≤ h and 1 < v ≤ p be the number of such
elements u = |{i ∈ M |x′i(i+1 mod m) = 1}| and v = |{k ∈ N |y′k(k+1 mod n) = 1}| in (x′,y′).
Then we know that the cost function f(x′,y′) contains exactly uv number of −L. However,
each of the v elements of type y′k(k+1 mod n) = 1 also contributes at least (m−h) hL

m−h = hL

to the objective value (due to remaining m− h elements of type xii = 1 being unchanged).
From this we get that f(x′,y′) > mn(−ε) + uv(−L) + hv(L) = f(x,y) + vL(h − u), and
since u ≤ h we get f(x′,y′) − f(x,y) > 0 which contradicts the fact that (x′,y′) is an
improving solution to (x,y). Hence, (x,y) must be a local optimum.

We also get that an optimal solution for this instance is xi(i+1 mod m) = 1 ∀i ∈ M

and yk(k+1 mod n) = 1 ∀k ∈ N with a total cost of −mnL. The average value of all

feasible solutions is A(Q,C,D) =
mn(−L) +mn(−ε) +mn hL

m−h
mn

= L2h−m
m−h − ε. h <

m
2 and

appropriate choice of ε, L guarantee us that considered local optimum is arbitrarily worse
than A(Q,C,D). The construction of the example for the case p < n

2 is similar, so we omit
the details.

One particular case of the [h, p]-exchange neighborhood deserves a special mention.
If p = n, then for each candidate h-exchange solution x′ we will consider all possible
assignments for y. To find the optimal y given x′, we can solve a linear assignment problem
with cost matrix gkl =

∑m
i=1

∑m
j=1 qijklx

′
ij +dkl, as in the Alternating Algorithm. Analogous

situation appears when we consider [h, p]-exchange neighborhood with h = m.
A set of solutions defined by the union of [h, n]-exchange and [m, p]-exchange neighbor-

hoods, for the case h = p, will be called simply optimized h-exchange neighborhood. Note
that the optimized h-exchange neighborhood is exponential in size, but it can be searched
in O(mhn3 + nhm3) time due to the fact that for fixed x (y), optimal f(x,y′) (f(x′,y))
can be found in O(n3) time. Neighborhoods similar to optimized 2-exchange were used
for unconstrained bipartite binary quadratic program by Glover et al. [54], and for the
bipartite quadratic assignment problem by Punnen and Wang [109].

As in the case of h-exchange, some performance bounds for optimized h-exchange neigh-
borhood can be established, if the input array Q is not allowed to have negative elements.

Theorem 26. There exists a solution with the cost f ≤ (m+n)A(Q,C,D) in the optimized
2-exchange neighborhood of every solution to BAP, for any instance (Q,C,D) with non-
negative Q and zero matrices C,D.

Proof. The proof will follow the structure of Theorem 21, and will focus on the average
solution change to a given permutation pair solution (π, φ) to BAP.

Let πij be the permutation obtained by applying a single 2-exchange operation to π on
indices i and j, and φ∗ be the optimal permutation that minimizes the solution cost for

53

such fixed πij . Define δπij as the objective value difference after applying such operation:

δπij(π, φ) = f(πij , φ∗)−f(π, φ) =
m∑
u=1

n∑
k=1

quπij(u) k φ∗(k)−f(π, φ) ≤ 1
n

m∑
u=1

n∑
k,l=1

quπij(u) k l−f(π, φ).

The last inequality due to the fact that, for fixed πij , the value of the solution with the
optimal φ∗ is not worse than the average value of all such solutions. We also know that for
any k, l ∈ N ,

m∑
u=1

quπij(u) k l =
m∑
u=1

quπ(u) k l + qi π(j) k l + qj π(i) k l − qi π(i) k l − qj π(j) k l.

and, therefore,

δπij(π, φ) ≤ 1
n

n∑
k,l=1

m∑
u=1

quπ(u) k l + 1
n

n∑
k,l=1

(
qi π(j) k l + qj π(i) k l − qi π(i) k l − qj π(j) k l

)
− f(π, φ).

Analogous result can be derived for similarly defined δφkl:

δφkl(π, φ) ≤ 1
m

m∑
i,j=1

n∑
v=1

qi j v φ(v) + 1
m

m∑
i,j=1

(
qi j k φ(l) + qi j l φ(k) − qi j k φ(k) − qi j l φ(l)

)
− f(π, φ).

We can now get an upper bound on the average cost change after optimized 2-exchange
operation on solution (π, φ).

∆(π, φ) =
∑m
i,j=1 δ

π
ij(π, φ) +

∑n
k,l=1 δ

φ
kl(π, φ)

m2 + n2

≤
m2

n

∑m
u=1

∑n
k,l=1 quπ(u) k l + 2

n

∑m
i,j=1

∑n
k,l=1 qi j k l − 2m

n

∑m
i=1

∑n
k,l=1 qi π(i) k l −m2f(π, φ)

m2 + n2

+
n2

m

∑m
i,j=1

∑n
v=1 qi j v φ(v) + 2

m

∑m
i,j=1

∑n
k,l=1 qi j k l − 2n

m

∑m
i,j=1

∑n
k=1 qi j k φ(k) − n2f(π, φ)

m2 + n2

=
(m3 − 2m2)

∑m
i=1

∑n
k,l=1 qi π(i) k l + (n3 − 2n2)

∑m
i,j=1

∑n
v=1 qi j v φ(v)

mn(m2 + n2)

+
2(m+ n)

∑m
i,j=1

∑n
k,l=1 qi j k l

mn(m2 + n2) − f(π, φ)

≤ µ− f(π, φ),

where

µ = max
π∈Π,φ∈Φ

[
m3∑m

i=1
∑n
k,l=1 qi π(i) k l + n3∑m

i,j=1
∑n
v=1 qi j v φ(v) + 2(m+ n)

∑m
i,j=1

∑n
k,l=1 qijkl

mn(m2 + n2)

]
.

54

Note that µ does not depend on any particular solution and is fixed for a given BAP
instance.

For any given solution (π, φ) to BAP, either f(π, φ) ≤ µ or f(π, φ) > µ, which means
that ∆(π, φ) ≤ 0, and so there exists an optimized 2-exchange operation that improves our
solution cost by at least f(π, φ)−µ, thus, making it not worse than µ. We also notice that,

µ− (m+ n)A = µ− m+ n

mn

m∑
i,j=1

n∑
k,l=1

qijkl = µ− (m+ n)(m2 + n2)
mn(m2 + n2)

m∑
i,j=1

n∑
k,l=1

qijkl

= max
π∈Π

[
m3∑m

i=1
∑n
k,l=1 qi π(i) k l

mn(m2 + n2)

]
−
m3∑m

i,j=1
∑n
k,l=1 qijkl

mn(m2 + n2)

+ max
φ∈Φ

[
n3∑m

i,j=1
∑n
v=1 qi j v φ(v)

mn(m2 + n2)

]
−
n3∑m

i,j=1
∑n
k,l=1 qijkl

mn(m2 + n2)

+
2(m+ n)

∑m
i,j=1

∑n
k,l=1 qijkl

mn(m2 + n2) −
(m2n+ n2m)

∑m
i,j=1

∑n
k,l=1 qijkl

mn(m2 + n2) ≤ 0,

(3.11)

and so (m+ n)A ≥ µ, which completes the proof.

We now show that by exploiting the properties of optimized h-exchange neighborhood,
one can obtain a solution with an improved domination number, compared to the result in
Theorem 14.

Theorem 27. For an integer h, a feasible solution to BAP, which is no worse than Ω((m−
1)!(n− 1)! +mhn! + nhm!) feasible solutions, can be found in O(mhn3 + nhm3) time.

Proof. We show that the solution described in the statement of the theorem, can be obtained
in the desired running time by choosing the best solution in the optimized h-exchange
neighborhood of a solution with objective function value no worse than A(Q,C,D).

Let (x∗,y∗) ∈ F be a BAP solution such that f(x∗,y∗) ≤ A(Q,C,D). Solution like that
can be found in O(m2n2) time using Corollary 15. From the proof of Theorem 14 we know
that there exists a set R∼ of (m− 1)!(n− 1)! solutions, with one solution from every class
defined by the equivalence relation ∼, such that f(x,y) ≥ A(Q,C,D) ≥ f(x∗,y∗) for every
(x,y) ∈ R∼. Let Rx denote the [h, n]-exchange neighborhood of (x∗,y∗), and let Ry denote
the [m,h]-exchange neighborhood of (x∗,y∗). Note that Rx∪Ry is the optimized h-exchange
neighborhood of (x∗,y∗). Rx∪Ry can be searched in O(mhn3 +nhm3) time, and the result
of the search has the objective function value less or equal than every (x,y) ∈ R∼∪Rx∪Ry.

Consider R′x ⊂ Rx (R′y ⊂ Ry) to be the set of solutions constructed in the same way as
Rx (Ry), but now only considering those reassignments of h-sets S ∈ M (S ∈ N) that are
different from x∗ (y∗) on entire S. By simple enumerations it can be shown that |R′x| =(m
h

)
(!h)n!, |R′y| =

(n
h

)
(!h)m! and |R′x∩R′y| =

(m
h

)
(!h)

(n
h

)
(!h), where !h denotes the number of

derangements (i.e. permutations without fixed points) of h elements. Furthermore, |R∼ ∩

55

R′x| ≤
(m
h

)
(!h)(n− 1)! and |R∼ ∩ R′y| ≤

(n
h

)
(!h)(m− 1)!. The later two inequalities are due

to the fact that for some fixed x′ (y′), the relation ∼ partitions the set of solutions {x′}×Y
(X × {y′}) into equivalence classes of size n (m) exactly, and each such class contains at
most one element of R∼. Now we get that

|R∼ ∪Rx ∪Ry| ≥ |R∼ ∪Rdx ∪Rdy|

≥ |R∼|+ |Rdx|+ |Rdy| − |R∼ ∩Rdx| − |R∼ ∩Rdy| − |Rdx ∩Rdy|

≥ (m− 1)!(n− 1)! +
(
m

h

)
(!h)n! +

(
n

h

)
(!h)m!

−
(
m

h

)
(!h)(n− 1)!−

(
n

h

)
(!h)(m− 1)!−

(
m

h

)
(!h)

(
n

h

)
(!h)

∈ Ω((m− 1)!(n− 1)! +mhn! + nhm!),

which concludes the proof.

3.2.3 Shift based neighborhoods

Following the equivalence class example in Section 2.3.3, the shift neighborhood of a given
solution (x,y) will be comprised of allm solutions (x′,y), such that x′ij = xi(j+a mod m),∀a ∈
M and all n solutions (x,y′), such that y′kl = yk(l+b mod m),∀b ∈ N . Alternatively, shift
neighborhood can be described in terms of the permutation formulation of BAP. Given a
permutation pair (π, φ), we are looking at all m solutions (π′, φ), such that π′(i) = π(i) +a

mod m,∀a ∈ M , and all n solutions (π, φ′), such that φ′(k) = φ(k) + b mod m,∀b ∈ N .
Intuitively this means that, either π will be cyclically shifted by a or φ will be cyclically
shifted by b, hence the name of this neighborhood. An iteration of the local search algorithm
based on Shift neighborhood will take O(mn2) time, as we are required to fully recompute
each of the m (resp. n) solutions objective values.

Using the same asymptotic running time per iteration, it is possible to explore the
neighborhood of a larger size, with the help of additional data structures eij , gkl (see Section
3.2.1) that maintain partial sums of assigning i ∈M to j ∈M ′ and k ∈ N to l ∈ N ′ given y
and x respectively. Consider Θ(n2) size neighborhood shift+shuffle defined as follows. For
a given permutation solution (π, φ) this neighborhood will contain all (π′, φ) such that

π′(i) = π

(
(i mod bm

u
c)u+ b i

bmu c
c+ a mod m

)
, ∀a ∈M, ∀u ∈ {1, 2, . . . , bm2 c},

(3.12)
and all (π, φ′) such that

φ′(k) = φ

(
(k mod bn

v
c)v + b k

bnv c
c+ b mod n

)
, ∀b ∈ N, ∀v ∈ {1, 2, . . . , bn2 c}.

(3.13)

56

Two of the above equations are sufficient for the case of m mod u = 0 or n mod v = 0.
Otherwise, for all i > m−(m mod u) and all k > n−(n mod v) an arbitrary reassignment
could be applied (for example π′(i) = π(i) and φ′(k) = φ(k)). One can visualize shuffle
operation as splitting elements of a permutation into buckets of the same size (u or v in the
formulas above), and then forming a new permutation by placing first elements from each
bucket in the beginning, followed by second elements of each bucket, and so on. Figure 3.1
depicts such shuffling for a permutation π. By combining shift and shuffle we increase the

π

π′

Figure 3.1: Example of shuffle operation on permutation π, with u = 3

size of the explored neighborhood, at no extra asymptotic running time cost for the local
search implementations.

Local search algorithms that explore shift or shift+shuffle neighborhoods could poten-
tially be stuck in the arbitrarily bad local optimum, following the same argument as in
Theorem 20.

If we allow applying shift simultaneously to both x and y we will consider all mn
neighbors of the current solution, precisely as in equivalence class example from Section
2.3.3. We will call this dual shift neighborhood of a solution (x,y). Notice that a local
search algorithm that explores this neighborhood reaches a local optimum only after a
single iteration, with running time O(m2n2).

A much larger optimized shift neighborhood will be defined as follows. For every shift
operation on x we consider all possible assignments of y, and vice versa, for each shift on y
we will consider all possible assignments of x. Just like in the case of optimized h-exchange,
this neighborhood is exponential in size, but can be efficiently explored in O(mn3) running
time by solving corresponding linear assignment problems.

Theorem 28. For local search based on dual shift and optimized shift neighborhoods, the
final solution value is guaranteed to be no worse than A(Q,C,D).

Proof. The proof for dual shift neighborhood follows from the fact that we are completely
exploring the equivalence class defined by ∼ of a given solution, as in Corollary 15.

For optimized shift, notice that for each shift on one side of (x,y) we consider all
possible solutions on the other side. This includes all possible shifts on that respective side.

57

Therefore the set of solutions of optimized shift neigborhood includes the set of solutions of
dual shift neighborhood, and contains the solution with the value at most A(Q,C,D).

In [38] we have explored the complexity of a special case of BAP where Q, observed as a
m2×n2 matrix, is restricted to be of a fixed rank. The rank of such Q is said to be at most
r if and only if there exist some m×m matrices Ap = (apij) and n× n matrices Bp = (bpij),
p = 1, . . . , r, such that

qijkl =
r∑
p=1

apijb
p
kl (3.14)

for all i, j ∈M , k, l ∈ N .

Theorem 29. Alternating Algorithm and local search algorithms that explore optimized h-
exchange and optimized shift neighborhoods will find an optimal solution to BAP (Q,C,D),
if Q is a non-negative matrix of rank 1, and both C and D are zero matrices.

Proof. Note that in the case described in the statement of the theorem, we are looking
for such (x∗,y∗) that minimizes (

∑m
i,j=1 aijx

∗
ij) · (

∑n
k,l=1 bkly

∗
kl), where qijkl = aijbkl, ∀i, j ∈

M, k, l ∈ N . If we are restricted to non-negative numbers, solutions to corresponding linear
assignment problems would be an optimal solution to this BAP. It is easy to see that, for
any fixed x, a solution of the smallest value will be produced by y∗. And viceversa, for any
fixed y, a solution of the smallest value will be produced by x∗.

Optimized h-exchange neighborhood, optimized shift neighborhood and the neighbor-
hood that Alternating Algorithm is based on, all contain the solution that has one side of
(x,y) unchanged and has the optimal assignment on the other side. Therefore, the local
search algorithms that explore these neighborhoods will proceed to find optimal (x∗,y∗) in
at most 2 iterations.

3.3 Experimental analysis

3.3.1 Experimental design and test problems

In this section we present general information on the design of our experiments and gener-
ation of test problems.

All experiments are conducted on a PC with Intel Core i7-4790 processor, 32 GB of
memory under control of Linux Mint 17.3 (Linux Kernel 3.19.0-32-generic) 64-bit operating
system. Algorithms are coded using Python 2.7 programming language and run via PyPy
5.3 implementation of Python. The linear assignment problem, that appears as a sub-
problem for several algorithms, is solved using Hungarian algorithm [90] implementation in
Python.

58

Test problems

As there are no existing benchmark instances available for BAP, we have created several
sets of test problems, which could be used by other researchers in the future experimental
analysis. Three categories of problem instances are considered: uniform, normal and
euclidean.

• For uniform instances we set cij , dkl = 0 and the values qijkl are generated randomly
with uniform distribution from the interval [0,mn] and rounded to the nearest integer.

• For normal instances we set cij , dkl = 0 and the values qijkl are generated randomly
following normal distribution with mean µ = mn

2 , standard deviation σ = mn
6 and

rounded to the nearest integer.

• For euclidean instances we generate randomly with uniform distribution four sets
of points A,B,U, V in Euclidean plane of size [0, 1.5 2

√
mn] × [0, 1.5 2

√
mn], such that

|A| = |B| = m, |U | = |V | = n. Then C and D are chosen as zero vectors, and
qijkl = ||ai − uk|| · ||bj − vl|| (rounded to the nearest integer), where ai ∈ A, bj ∈
B, uk ∈ U, vl ∈ V .

Test problems are named using the convention “type size number”, where type ∈ {uni-
form, normal, euclidean}, size is of the form m × n, and number ∈ {0, 1, . . .}. For every
instance type and size we have generated 10 problems, and all the results of experiments
will be averaged over those 10 problems. For example, in a table or a figure, a data point
for “uniform 50× 50” would be the average among the 10 generated instances. This applies
to objective function values, running times and number of iterations, and would not be
explicitly mentioned throughout the rest of the paper. Problem instances, results for our
final set of experiments as well as best found solutions for every instance are available upon
request from Abraham Punnen (apunnen@sfu.ca).

3.3.2 Experimental analysis of construction heuristics

In Section 3.1 we presented several construction approaches to generate a solution to BAP.
In this section we discuss results of computational experiments using these heuristics.

The experimental results are summarized in Table 3.1. For the heuristic GreedyRan-
domized, we have considered the candidate list size 2, 4 and 6. In the table, columns
GreedyRandomized2 and GreedyRandomized4 refer to implementations with candidate list
size of 2 and 4, respectively. Results for candidate list size 6 are excluded from the table
due to poor performance.

Here and later when presenting computational results, “value” and “time” refer to ob-
jective function value and running time of an algorithm. The best solution value among all

59

tested heuristics is shown in bold font. We also report (averaged over 10 instances of given
type and size) the average solution value A(Q,C,D) (denoted simply as A), computed using
the closed-form expression from Section 2.3.3.

60

Ta
bl
e
3.
1:

So
lu
tio

n
va
lu
e
an

d
ru
nn

in
g
tim

e
in

se
co
nd

s
fo
r
co
ns
tr
uc

tio
n
he

ur
ist

ic
s

R
an

do
m
X
Y
G
re
ed

y
G
re
ed

y
G
re
ed
yR

an
do

m
iz
ed

2
G
re
ed

yR
an

do
m
iz
ed

4
R
ou

nd
in
g

in
st
an

ce
s

A
va
lu
e

tim
e

va
lu
e

tim
e

va
lu
e

tim
e

va
lu
e

tim
e

va
lu
e

tim
e

un
ifo

rm
20

x2
0

79
97

5
62

98
1

0.
00

11
61

93
0

0.
00

16
61

82
4

0.
00

15
62

99
7

0.
00

23
58

58
7

0.
02

82
un

ifo
rm

40
x4

0
12

80
01

3
10

39
36

5
0.
00

24
10

38
41

0
0.
00

85
10

46
86

2
0.
01

17
10

47
44

4
0.
01

07
10

05
37

5
0.
40

83
un

ifo
rm

60
x6

0
64

80
22

4
53

35
15

7
0.
00

57
53

99
00

4
0.
03

62
54

30
19

0
0.
04

03
54

29
07

7
0.
03

81
53

11
28

7
2.
07

6
un

ifo
rm

80
x8

0
20

48
03

98
17

17
94

10
0.
01

19
17

39
39

75
0.
09

01
17

42
76

49
0.
10

92
17

45
51

12
0.
12

31
17

12
77

45
8.
60

41
un

ifo
rm

10
0x

10
0

50
00

11
81

42
49

22
13

0.
02

05
43

13
46

18
0.
17

97
43

11
57

43
0.
17

55
43

20
92

07
0.
24

31
42

52
16

06
29

.3
03

8
un

ifo
rm

12
0x

12
0

10
36

80
29

1
88

71
06

17
0.
03

34
90

31
74

32
0.
24

59
90

45
00

40
0.
31

27
90

38
88

90
0.
32

08
89

34
29

39
90

.1
24

5
un

ifo
rm

14
0x

14
0

19
20

79
01

2
16

56
56

44
3

0.
05

18
16

86
64

01
8

0.
40

4
16

86
95

61
0

0.
59

22
16

86
83

17
7

0.
58

69
16

69
27

40
9

19
6.
37

66
un

ifo
rm

16
0x

16
0

32
76

79
69

0
28

46
23

31
4

0.
07

68
28

98
19

32
5

0.
93

9
28

98
47

11
2

0.
99

22
29

00
34

50
8

0.
98

62
28

71
48

03
8

33
9.
63

29
un

ifo
rm

18
0x

18
0

52
48

79
09

6
45

83
95

07
5

0.
10

88
46

64
19

21
0

1.
01

35
46

66
52

86
2

1.
10

7
46

69
38

20
3

1.
53

16
46

28
52

25
2

53
9.
69

31
no

rm
al

20
x2

0
79

97
7

69
98

9
0.
00

11
69

03
2

0.
00

13
69

32
2

0.
00

15
69

89
9

0.
00

22
67

36
7

0.
02

75
no

rm
al

40
x4

0
12

80
00

7
11

37
55

0
0.
00

22
11

37
47

8
0.
00

8
11

39
15

0
0.
00

98
11

39
60

8
0.
01

16
11

23
67

0
0.
39

02
no

rm
al

60
x6

0
64

80
14

2
58

25
77

5
0.
00

55
58

47
64

1
0.
02

29
58

41
17

8
0.
02

77
58

60
74

1
0.
04

27
57

95
67

6
2.
02

57
no

rm
al

80
x8

0
20

48
00

28
18

55
59

62
0.
01

08
18

69
69

34
0.
06

13
18

65
85

85
0.
07

72
18

69
74

75
0.
10

2
18

54
40

51
6.
92

08
no

rm
al

10
0x

10
0

50
00

00
62

45
64

75
05

0.
02

45
90

96
21

0.
12

93
45

92
57

99
0.
15

84
45

94
32

20
0.
19

58
45

64
34

47
30

.2
96

9
no

rm
al

12
0x

12
0

10
36

80
64

3
94

95
27

57
0.
03

25
95

76
59

91
0.
24

65
95

71
11

99
0.
29

67
95

75
75

31
0.
33

85
95

33
21

71
80

.9
74

4
no

rm
al

14
0x

14
0

19
20

79
73

2
17

66
56

35
1

0.
05

07
17

82
79

21
2

0.
40

34
17

82
38

83
5

0.
49

36
17

82
33

29
3

0.
55

6
17

75
01

94
0

17
9.
06

39
no

rm
al

16
0x

16
0

32
76

81
53

3
30

24
96

65
0

0.
07

38
30

53
79

40
4

0.
74

6
30

53
33

91
2

0.
69

6
30

53
45

98
3

0.
82

3
30

40
80

79
2

31
0.
91

62
no

rm
al

18
0x

18
0

52
48

80
34

9
48

61
32

47
7

0.
10

56
49

03
45

72
3

0.
88

88
49

04
64

09
3

1.
07

42
49

06
56

41
6

1.
32

11
48

90
77

71
6

54
0.
46

44
eu

cl
id
ea
n
20

x2
0

95
29

7
93

75
6

0.
00

11
98

86
4

0.
00

13
99

02
7

0.
00

14
98

10
4

0.
00

15
85

56
4

0.
02

76
eu

cl
id
ea
n
40

x4
0

15
54

31
3

15
40

49
2

0.
00

24
15

59
82

9
0.
01

11
15

46
89

4
0.
01

16
15

51
88

1
0.
01

23
14

30
06

8
0.
42

18
eu

cl
id
ea
n
60

x6
0

80
03

10
5

78
21

08
2

0.
00

63
80

21
08

9
0.
04

45
80

14
59

4
0.
04

61
79

45
75

1
0.
04

89
73

31
23

6
1.
98

05
eu

cl
id
ea
n
80

x8
0

24
90

62
73

24
19

02
27

0.
01

29
24

87
32

55
0.
06

11
24

79
96

62
0.
09

54
24

85
36

70
0.
08

05
23

14
54

46
6.
14

1
eu

cl
id
ea
n
10

0x
10

0
61

05
32

65
59

34
54

77
0.
02

35
60

30
55

21
0.
10

3
59

88
26

26
0.
12

85
60

05
28

37
0.
12

23
56

84
82

60
31

.8
48

4
eu

cl
id
ea
n
12

0x
12

0
12

61
98

99
9

12
18

16
73

8
0.
03

89
12

36
01

33
8

0.
29

86
12

38
29

25
2

0.
30

5
12

40
53

45
2

0.
32

52
11

77
54

67
5

93
.6
02

4
eu

cl
id
ea
n
14

0x
14

0
23

06
73

44
8

22
17

85
41

7
0.
06

17
22

79
49

03
6

0.
40

82
22

75
08

29
5

0.
46

37
22

78
54

40
3

0.
49

79
21

48
76

62
8

18
3.
09

06
eu

cl
id
ea
n
16

0x
16

0
40

49
12

89
8

39
04

12
11

1
0.
08

97
39

52
60

25
3

0.
89

08
39

83
88

92
4

0.
82

84
39

62
77

52
5

1.
05

51
37

86
08

02
1

30
9.
22

62
eu

cl
id
ea
n
18

0x
18

0
63

57
00

75
6

60
74

70
60

3
0.
12

89
62

30
35

38
4

1.
19

13
62

54
56

12
1

1.
35

6
62

33
93

64
9

1.
43

49
59

38
00

82
8

54
8.
81

53

As the table shows, for smaller uniform and normal instances as well as for all euclidean
instances Rounding produced better quality results, however, using substantially longer
time. For all other problems RandomXYGreedy obtained better results. To our surprise,
the quality of the solution produced by Greedy was inferior to that of RandomXYGreedy. It
can, perhaps, be explained as a consequence of being “too greedy” in the beginning, leading
to worse overall solution, particularly, taking into consideration the quadratic nature of the
objective function. In the initial steps the choice is made based on the very much incomplete
information about solution and the interaction cost of x and y assignments. In addition,
the running time for RandomXYGreedy was significantly lower than that of Rounding and
other algorithms. Thus, we conclude that RandomXYGreedy is our method of choice if a
solution to BAP is needed quickly.

As for the GreedyRandomized strategy, the higher the size of the candidate list, the worse
is the quality of the resulting solution. On the other hand, larger sizes of the candidate
lists provide us with more diversified ways to generate solutions for BAP. That may have
advantages if the construction is followed by an improvement approach as generally done
in GRASP algorithm.

In Figures 3.2 and 3.3 we present solution value and running time results of this section
for uniform instances.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0 1 7 0 1 9 0

SO
LU

TI
O

N
 V

A
LU

E
D

IF
FE

R
EN

C
E

INSTANCE SIZE, M=N

Average Random RandomXYGreedy Greedy GreedyRandomized2 GreedyRandomized4 GreedyRandomized6 Rounding

Figure 3.2: Difference between solution values (to the best) for construction heuristics;
uniform instances

3.3.3 Experimental analysis of local search algorithms

Let us now discuss the results of computational experiments carried out using local search
algorithms that explore neighborhoods discussed in Section 3.2. All algorithms are started
from the same random solution and ran until a local optimum is reached. In addition to

62

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

R
U

N
N

IN
G

 T
IM

E,
 S

EC
O

N
D

S

INSTANCE SIZE, M=N

Random RandomXYGreedy Greedy GreedyRandomized2 GreedyRandomized4 GreedyRandomized6 Rounding

Figure 3.3: Running time for construction heuristics; uniform instances

the objective function value and running time we report the number of iterations for each
approach.

For h-exchange neighborhoods, we selected 2 and 3-exchange local search algorithms
(denoted by 2ex and 3ex) as well as the Alternating Algorithm (AA).

From [h, p]-exchange based algorithms, we have implemented [2, 2]-exchange local search
(named Dual2ex). The [2, 2]-exchange neighborhood can be explored in O(m2n2) time,
using efficient recomputation of the change in the objective value. We refer to the algorithm
that explores optimized 2-exchange neighborhood as 2exOpt. The running time of each
iteration of this local search is O(m2n3). To speed up this potentially slow approach, we
have also considered a version, namely 2exOptHeuristic, where we use an O(n2) heuristic
to solve the underlying linear assignment problem, instead of the Hungarian algorithm with
cubic running time. The running time of each iteration of 2exOptHeuristic is then O(m2n2).
Similarly defined will be 3exOpt.

Shift, ShiftShuffle, DualShift and ShiftOpt are implementations of local search
based on shift, shift+shuffle, dual shift and optimized shift neighborhoods respectively.

In addition, we consider variations of the above-mentioned algorithms, namely 2exFirst,
3exFirst, Dual2exFirst, 2exOptFirst, 2exOptHeuristicFirst, ShiftOptFirst, where
corresponding neighborhoods explored only until the first improving solution is encountered.

We provide a summary of complexity results on these local search algorithms in Table
3.2. Here by I we denote the number of iterations (or “moves”) that it takes for a corre-
sponding search to converge to a local optimum. As I could potentially be exponential in
n and will vary between algorithms, we use this notation to simply emphasize the running
time of an iteration of each approach.

63

Table 3.2: Asymptotic running time and neighborhood size per iteration for local searches

name running time neighborhood size per iteration

2ex O(n3 + In2) Θ(n2)
Shift O(In3) n

ShiftShuffle O(In3) Θ(n2)
3ex O(In3) Θ(n3)
AA O(In3) n!

DualShift O(n4) n2

Dual2ex O(In4) Θ(n4)
ShiftOpt O(In4) n · n!

2exOptHeuristic O(In4) Θ(n2 · n!)∗
2exOpt O(In5) Θ(n2 · n!)
3exOpt O(In6) Θ(n3 · n!)

* 2exOptHeuristic does not fully explore the neighborhood.

Table 3.3 summarizes experimental results for 2ex, 3ex, AA, 2exOpt and 2exOptFirst.
Results for other algorithms are not included in the table due to inferior performance.
However, figures 3.4 and 3.5 provide additional insight into the performance of all the
algorithms we have tested, for the case of uniform instances.

64

Ta
bl
e
3.
3:

So
lu
tio

n
va
lu
e,

ru
nn

in
g
tim

e
in

se
co
nd

s
an

d
nu

m
be

r
of

ite
ra
tio

ns
fo
r
lo
ca
ls

ea
rc
he

s

2e
x

3e
x

A
A

2e
xO

pt
2e
xO

pt
Fi
rs
t

in
st
an

ce
s

A
va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

un
ifo

rm
10

x1
0

49
95

33
78

0.
0

9
32

41
0.
0

9
33

85
0.
0

3
31

03
0.
04

4
31

28
0.
02

11
un

ifo
rm

20
x2

0
80

04
3

59
37

1
0.
0

20
56

59
3

0.
01

18
56

09
7

0.
01

4
54

91
2

0.
68

6
55

05
9

0.
34

25
un

ifo
rm

30
x3

0
40

49
44

31
04

55
0.
02

32
29

75
69

0.
05

28
29

87
87

0.
02

4
29

15
20

3.
96

6
29

12
68

3.
09

46
un

ifo
rm

40
x4

0
12

79
78

5
10

03
73

1
0.
04

45
97

74
98

0.
14

39
97

14
00

0.
06

5
95

46
76

21
.7
1

10
95

73
81

8.
46

56
un

ifo
rm

50
x5

0
31

24
80

9
24

93
82

2
0.
08

57
24

33
66

5
0.
32

49
24

16
83

2
0.
13

5
23

85
23

2
63

.4
9

11
23

89
49

6
24

.9
4

73
un

ifo
rm

60
x6

0
64

79
87

8
52

56
35

7
0.
15

74
51

49
63

4
0.
59

55
50

98
65

3
0.
26

6
50

56
56

6
14

3.
48

11
50

31
36

8
80

.3
2

97
un

ifo
rm

70
x7

0
12

00
56

19
98

44
64

6
0.
24

85
96

82
79

8
1.
1

67
95

87
48

9
0.
38

6
94

69
73

6
32

6.
04

14
94

72
54

9
15

6.
78

11
4

un
ifo

rm
80

x8
0

20
48

02
09

17
02

25
23

0.
37

96
16

69
40

88
1.
81

75
16

51
99

08
0.
66

7
16

38
85

45
50

4.
34

12
16

35
56

58
28

5.
23

13
6

un
ifo

rm
90

x9
0

32
80

39
18

27
47

90
17

0.
52

11
1

26
97

87
15

2.
97

88
26

65
05

08
1.
08

8
26

56
30

51
88

2.
81

13
26

51
48

60
49

7.
74

15
8

un
ifo

rm
10

0x
10

0
49

99
90

78
42

13
82

27
0.
74

12
4

41
36

31
21

4.
96

10
9

41
03

18
42

1.
45

8
40

91
23

67
14

80
.0
3

14
40

76
77

54
86

4.
39

17
2

un
ifo

rm
11

0x
11

0
73

20
69

06
61

98
80

38
1.
06

14
8

61
17

91
21

6.
57

10
9

60
52

99
75

1.
92

7
60

16
27

28
24

06
.2
9

15
60

06
88

24
15

04
.2
7

19
6

un
ifo

rm
12

0x
12

0
10

36
79

90
1

88
60

21
87

1.
23

13
7

87
33

01
65

8.
52

10
9

86
17

46
42

2.
61

8
85

87
22

03
38

65
.6
7

18
85

67
09

06
19

17
.7
6

20
1

no
rm

al
10

x1
0

49
99

40
44

0.
0

10
40

19
0.
0

9
40

40
0.
0

2
39

10
0.
03

4
38

62
0.
02

14
no

rm
al

20
x2

0
79

95
5

67
32

1
0.
0

20
66

52
0

0.
01

16
66

17
9

0.
01

3
64

91
3

0.
79

7
65

36
3

0.
33

25
no

rm
al

30
x3

0
40

49
59

34
80

58
0.
02

34
34

22
38

0.
06

29
34

36
39

0.
03

4
33

87
96

4.
98

8
33

91
62

2.
61

45
no

rm
al

40
x4

0
12

79
97

4
11

19
68

4
0.
04

46
11

11
12

7
0.
14

33
10

99
10

6
0.
07

6
10

89
99

6
23

.2
1

10
10

89
75

2
10

.6
1

60
no

rm
al

50
x5

0
31

24
87

9
27

52
32

6
0.
08

63
27

37
13

7
0.
34

43
27

11
19

1
0.
14

6
26

96
28

7
65

.4
8

11
26

96
06

2
32

.5
7

77
no

rm
al

60
x6

0
64

79
79

4
57

69
52

2
0.
16

73
57

07
10

7
0.
7

53
56

65
02

7
0.
3

7
56

40
41

2
15

1.
84

12
56

33
46

3
81

.9
7

99
no

rm
al

70
x7

0
12

00
49

39
10

73
86

78
0.
24

88
10

64
11

29
1.
3

65
10

59
62

45
0.
42

6
10

54
46

40
31

6.
24

13
10

53
85

13
14

4.
42

11
6

no
rm

al
80

x8
0

20
48

01
06

18
43

43
78

0.
38

10
3

18
28

23
95

2.
35

80
18

17
39

27
0.
71

7
18

12
69

33
53

7.
29

12
18

09
52

24
33

8.
76

13
2

no
rm

al
90

x9
0

32
80

59
72

29
73

65
95

0.
51

10
8

29
40

85
13

3.
79

91
29

24
54

81
0.
92

6
29

17
62

12
10

17
.0
8

14
29

16
59

74
50

0.
62

15
1

no
rm

al
10

0x
10

0
49

99
91

05
45

51
41

17
0.
71

12
2

45
00

92
49

5.
69

10
0

44
79

83
88

1.
45

7
44

63
59

91
16

02
.0
9

15
44

60
32

38
94

0.
19

17
6

no
rm

al
11

0x
11

0
73

20
50

50
66

76
84

99
1.
01

14
2

66
22

45
93

8.
26

11
0

65
81

24
95

2.
69

10
65

71
69

78
22

18
.7
1

13
65

53
97

44
16

32
.3
2

19
3

no
rm

al
12

0x
12

0
10

36
81

33
6

95
00

19
50

1.
32

14
7

94
15

15
07

11
.2
4

11
6

93
70

21
71

2.
16

6
93

32
28

07
46

45
.2
8

20
93

24
81

60
21

30
.6
4

21
5

eu
cl
id
ea
n
10

x1
0

61
86

53
97

0.
0

13
53

79
0.
0

12
54

04
0.
0

3
53

68
0.
05

4
53

75
0.
03

16
eu

cl
id
ea
n
20

x2
0

95
83

4
82

32
5

0.
01

41
82

29
3

0.
01

25
82

24
2

0.
01

3
82

16
0

1.
27

5
81

81
3

1.
52

49
eu

cl
id
ea
n
30

x3
0

49
06

14
41

91
74

0.
02

61
41

89
42

0.
07

40
41

90
00

0.
03

3
41

64
36

9.
13

5
41

73
39

18
.1
9

98
eu

cl
id
ea
n
40

x4
0

15
53

54
4

13
14

65
9

0.
07

87
13

12
64

9
0.
21

59
13

11
13

1
0.
07

3
13

09
70

1
37

.0
8

5
13

11
09

3
90

.9
1

15
6

eu
cl
id
ea
n
50

x5
0

37
61

35
9

31
78

42
4

0.
14

11
2

31
73

91
5

0.
5

78
31

78
00

6
0.
16

4
31

67
77

2
13

4.
77

7
31

68
38

8
31

4.
91

21
1

eu
cl
id
ea
n
60

x6
0

79
99

02
9

67
40

77
9

0.
26

14
1

67
20

56
0

1.
04

98
67

14
40

0
0.
23

4
67

14
68

9
31

4.
14

7
67

16
87

7
10

12
.9
3

29
6

eu
cl
id
ea
n
70

x7
0

14
90

95
50

12
53

39
59

0.
45

18
0

12
50

02
49

1.
92

11
7

12
49

00
34

0.
42

4
12

48
70

21
67

4.
66

7
12

49
92

81
23

54
.6
8

36
6

eu
cl
id
ea
n
80

x8
0

25
21

07
73

21
18

87
06

0.
68

20
0

21
18

22
27

3.
2

13
3

21
16

03
09

0.
55

4
21

15
00

70
12

22
.1
9

6
21

15
64

45
52

50
.0
1

45
6

eu
cl
id
ea
n
90

x9
0

39
49

54
74

33
08

30
33

1.
04

24
0

33
07

20
79

4.
87

14
5

33
08

23
26

0.
98

5
33

04
94

74
20

17
.9
6

6
33

08
92

83
10

48
2.
75

55
6

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 0 3 0 5 0 7 0 9 0 1 1 0

SO
LU

TI
O

N
 V

A
LU

E
D

IF
FE

R
EN

C
E

INSTANCE SIZE, M=N

Average 2ex 2exFirst 3ex 3exFirst AA

 Shift DualShift ShiftShuffle ShiftOpt ShiftOptFirst Dual2ex

Dual2exFirst 2exOpt 2exOptHeuristic 2exOptFirst 2exOptHeuristicFirst

Figure 3.4: Difference between solution values (to the best) for local search; uniform in-
stances

0.001

0.01

0.1

1

10

100

1000

10000

1 0 3 0 5 0 7 0 9 0 1 1 0

R
U

N
N

IN
G

 T
IM

E,
 S

EC
O

N
D

S

INSTANCE SIZE, M=N

 2ex 2exFirst 3ex 3exFirst AA Shift

 DualShift ShiftShuffle ShiftOpt ShiftOptFirst Dual2ex Dual2exFirst

2exOpt 2exOptHeuristic 2exOptFirst 2exOptHeuristicFirst

Figure 3.5: Running time to converge for local search; uniform instances

Even though the convergence speed is very fast for implementations of Shift, ShiftShuffle
and DualShift, the resulting solution values are not significantly better than the average
value A(Q,C,D) for the instance.

The optimized shift versions, namely ShiftOpt and ShiftOptFirst produced better solu-
tions but still are outperformed by all remaining heuristics. This fact together with the
slower convergence speed (as compared to say 2ex) shows the weaknesses of the approach.

Dual2ex and Dual2exFirst are heavily outperformed both in terms of convergence speed
as well as the quality of the resulting solution by AA.

It is also worth mentioning that speeding up 2exOpt and 2exOptFirst by substituting the
Hungarian algorithm with an O(n2) heuristic for the assignment problem did not provide

66

us with good results. The solution quality decreased substantially and, considering that the
running time to converge is still slower than that of AA, we discard these options.

Table 3.3 presents the results for the better performing set of algorithms. The perfor-
mance of both first improvement and best improvement approaches 2exFirst, 3exFirst and
2ex, 3ex respectively are similar so we will consider only the latter two from now on. Inter-
estingly, it is not the case for the optimized neighborhoods. We noticed that, for uniform
and normal instances 2exOptFirst runs faster than 2exOpt, in most cases. However, for
euclidean instances 2exOptFirst takes more time to converge.

As expected, AA is better than 3ex with respect to both solution quality and running
time. We will not include any of the h-exchange neighborhood search implementations for
h > 3 in this study due to relatively poor performance and huge running time.

We focused the remaining experiments in the paper on 2ex, AA and 2exOpt. Among
these 2ex converges the fastest, 2exOpt provides the best solutions and AA assumes a
“balanced” position. It is also clear that even better solution quality could be achieved
by using implementations of optimized h-exchange neighborhood search with higher h.
However, we show in the next sub-section that this is not feasible in terms of efficient
metaheuristics implementation.

Local search with multi-start

Now we would like to see how well our heuristics perform in terms of solutions quality,
when the amount of time is fixed. For this we implemented a simple multi-start strategy for
each of the algorithms. The framework will keep restarting the local search from the new
Random instance until the time limit is reached. The best solution found in the process is
then reported as the result.

Time limit for each instance will be set as the following. Considering the results of the
previous sub-section, we expect 3exOptFirst to be the slowest method to converge for all
of the instances. We run it exactly once, and use its running time as a time limit for other
multi-start algorithms. Together with resulting values we also report the number of restarts
of each approach in Table 3.4. Clearly, the choice of time limit yields 1 as the number of
starts for 3exOptFirst.

67

Ta
bl
e
3.
4:

So
lu
tio

n
va
lu
e
an

d
nu

m
be

r
of

st
ar
ts

fo
r
tim

e-
lim

ite
d
m
ul
ti-

st
ar
t
lo
ca
ls

ea
rc
he

s

3e
xO

pt
Fi
rs
t

2e
xO

pt
2e
xO

pt
Fi
rs
t

A
A

2e
x

2e
xF

irs
t

in
st
an

ce
s

tim
e
lim

it
va
lu
e

st
ar
ts

va
lu
e

st
ar
ts

va
lu
e

st
ar
ts

va
lu
e

st
ar
ts

va
lu
e

st
ar
ts

va
lu
e

st
ar
ts

un
ifo

rm
10

x1
0

0.
1

30
59

1
29

43
3

29
74

5
29

46
97

29
34

22
1

29
80

17
6

un
ifo

rm
20

x2
0

2.
7

54
25

0
1

53
49

6
4

53
28

6
8

53
09

6
42

8
53

98
3

99
7

54
24

4
87

9
un

ifo
rm

30
x3

0
23

.4
29

02
00

1
28

84
01

5
28

56
30

10
28

52
71

91
9

29
29

91
18

59
29

23
63

16
95

un
ifo

rm
40

x4
0

10
3.
2

94
80

29
1

94
39

82
5

94
07

18
10

93
61

13
15

28
96

31
20

28
58

96
00

93
26

79
un

ifo
rm

50
x5

0
53

1.
7

23
70

63
9

1
23

65
47

3
8

23
58

81
1

18
23

46
86

5
36

64
24

10
67

8
65

92
24

01
24

7
63

37
un

ifo
rm

60
x6

0
11

48
.5

50
17

42
2

1
50

03
24

7
7

49
89

21
2

16
49

80
93

0
42

21
51

05
06

4
77

47
50

92
54

4
75

22
un

ifo
rm

70
x7

0
32

91
.3

94
29

46
4

1
94

21
08

5
10

94
04

12
6

21
93

69
94

4
70

17
96

01
89

1
13

49
9

95
83

58
5

13
00

9
un

ifo
rm

80
x8

0
37

63
.3

16
40

66
02

1
16

31
95

88
7

16
24

12
13

13
16

22
98

61
50

31
16

61
21

05
10

01
7

16
58

39
87

95
78

no
rm

al
10

x1
0

0.
1

38
57

1
38

38
2

38
51

5
38

28
91

38
18

20
8

38
47

16
2

no
rm

al
20

x2
0

2.
5

65
01

4
1

64
63

5
4

64
43

3
7

64
02

0
39

6
64

86
7

90
2

64
73

8
76

9
no

rm
al

30
x3

0
23

.4
33

76
26

1
33

65
52

5
33

53
78

10
33

50
42

89
9

33
94

48
18

18
33

88
49

16
23

no
rm

al
40

x4
0

11
3.
3

10
86

08
3

1
10

82
09

4
5

10
81

53
0

12
10

78
75

5
16

75
10

92
92

3
30

63
10

91
80

3
28

40
no

rm
al

50
x5

0
46

9.
3

26
88

59
5

1
26

79
33

4
8

26
77

72
0

16
26

72
48

1
32

17
27

11
91

3
58

07
27

04
94

8
54

75
no

rm
al

60
x6

0
93

3.
4

56
40

72
1

1
56

27
39

1
6

56
12

36
2

13
56

04
22

9
34

13
56

79
03

7
62

16
56

72
74

9
59

79
no

rm
al

70
x7

0
35

93
.3

10
51

24
93

1
10

49
25

91
12

10
48

34
32

25
10

47
43

43
76

85
10

60
46

46
14

55
9

10
59

11
33

13
90

3
no

rm
al

80
x8

0
11

33
9.
0

17
98

99
71

1
17

99
36

43
20

18
01

07
32

42
17

99
58

94
15

43
5

18
22

67
24

29
82

7
18

20
95

32
28

42
5

eu
cl
id
ea
n
10

x1
0

0.
1

54
47

1
54

30
3

54
45

3
54

27
98

54
27

26
6

54
27

16
2

eu
cl
id
ea
n
20

x2
0

5.
1

82
40

9
1

81
71

7
4

81
71

0
4

81
57

3
58

9
81

57
3

12
83

81
57

5
74

7
eu

cl
id
ea
n
30

x3
0

70
.1

41
86

58
1

41
55

29
7

41
54

19
4

41
47

67
23

99
41

47
74

33
82

41
48

08
17

32
eu

cl
id
ea
n
40

x4
0

39
0.
3

13
21

38
5

1
13

17
43

9
9

13
17

94
8

4
13

16
40

9
54

59
13

16
50

9
61

97
13

16
77

1
30

10
eu

cl
id
ea
n
50

x5
0

16
75

.4
31

51
59

1
1

31
36

62
8

13
31

39
86

6
4

31
35

36
2

11
41

1
31

35
72

3
11

99
3

31
36

12
2

53
59

eu
cl
id
ea
n
60

x6
0

46
04

.9
65

63
92

1
1

65
32

78
9

15
65

37
65

7
4

65
29

49
5

17
62

1
65

30
83

5
17

44
8

65
32

24
7

66
41

0

50000

100000

150000

200000

250000

300000

350000

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

SO
LU

TI
O

N
 V

A
LU

E
D

IF
FE

R
EN

C
E

INSTANCE SIZE, M=N

3exOptFirst 2exOpt 2exOptFirst AA 2ex 2exFirst

Figure 3.6: Difference between solution values (to the best) for multi-start algorithms;
uniform instances

The best algorithm in these settings is AA, which consistently exhibited better perfor-
mance for all instance types. The reason behind this is the fact that a local optimum by this
approach can be reached almost as fast as by 2ex, however solution quality is much better.
On the other hand, the convergence of 2exOpt to a local optimum is very time consuming,
and perhaps a better strategy is to do more restarts with slightly less quality of resulting
solution. Similar argument holds for the case why 2exOptFirst outperforms 3exOptFirst in
this type of experiments. This observation is in contrast with the results experienced by
researches of bipartite unconstrained binary quadratic program [54] and bipartite quadratic
assignment problem [109]. The difference can be attributed to the more complex structure
of BAP in comparison to problems mentioned above.

3.3.4 Variable neighborhood search

Variable neighborhood search (VNS) is an algorithmic paradigm to enhance standard local
search by making use of properties (often complementary) of multiple neighborhoods [3, 69].
The 2-exchange neighborhood is very fast to explore and optimized 2-exchange is more
powerful but searching through it for an improving solution takes significantly more time.
The neighborhood considered in the Alternating Algorithm works better when significant
asymmetry is present regarding x and y variables. Motivated by these complementary
properties, we have explored VNS based algorithms to solve BAP.

We start by attempting to improve the convergence speed of AA by the means of the
faster 2ex. The first variation, named 2ex+AA will first apply 2ex to Random starting so-
lution and then apply AA to the resulting solution. A more complex approach 2exAAStep
(Algorithm 4) will start by applying 2ex and as soon as the search converge it will apply
a single improvement (step) with respect to Alternating Algorithm neighborhood. After

69

successful update the procedure defaults to running 2ex again. The process stops when no
more improvements by AA (and consequently by 2ex) are possible.

Algorithm 4 2exAAStep
Input: integers m,n; m×m× n× n array Q; feasible solution (x,y) to given BAP
Output: feasible solution to given BAP

while True do
(x,y)← 2ex(m,n,Q, (x,y)) . running 2-exchange local search (Section 3.2.1)
eij ←

∑
k,l∈N qijklykl ∀i, j ∈M

x∗ ← argminx′∈X
∑

i,j∈M eijx
′
ij . solving assignment problem for x

if f(x∗,y) < f(x,y) then
continue . restarting the procedure while loop

end if
gkl ←

∑
i,j∈M qijklx

∗
ij ∀k, l ∈ N

y∗ ← argminy′∈Y
∑

k,l∈N gkly
′
kl . solving assignment problem for y

if f(x∗,y∗) = f(x,y) then
break . algorithm converged, terminate

end if
x← x∗; y← y∗

end while
return (x, y)

Results in Table 3.5 follow the structure of experimental results reported earlier in the
paper. The number of iterations that we report for 2exAAStep is the number of times the
heuristic switches from 2-exchange neighborhood to the neighborhood of the Alternating
Algorithm. Clearly, this number will be 1 for 2ex+AA by design.

As all these approaches are guaranteed to be locally optimal with respect to Alternating
Algorithm neighborhood, we expect the solution values to be similar. This can be seen in
the table. A main observation here is that the 2ex heuristic does not combine well with
AA. Increased running time for both 2ex+AA and 2exAAStep confirms that AA is more
efficient in searching its much larger neighborhood.

We then explored the effect of combining 2exOptFirst and AA. An algorithm that
first runs AA once and then applies 2exOptFirst until convergence will be referred to as
AA+2exOptFirst. A more desirable variable neighborhood search based on the discussed
heuristics will use the fact that most of the time running AA until convergence is faster
than even a single update of the solutions during the 2exOptFirst run. The algorithm
AA2exOptFirstStep (Algorithm 5) will use AA to reach its local optimum and then will
try to escape it by applying a single first possible improvement of the slower search 2exOpt-
First. If successful, the process will start from the beginning with AA. We will also add to
the comparison variation with best improvement rule, namely AA2exOptStep.

The results of these experiments are reported in Table 3.6. Here, we also report the num-
ber of iterations for AA2exOptStep and AA2exOptFirstStep, which represents the number
of switches from the Alternating Algorithm neighborhood to optimized 2-exchange neigh-
borhood before the algorithms converge.

70

Algorithm 5 AA2exOptF irstStep
Input: integers m,n; m×m× n× n array Q; feasible solution (x,y) to given BAP
Output: feasible solution to given BAP

while True do
(x,y)← AA(m,n,Q, (x,y)) . running Alternating Algorithm (Section 3.2.1)
for all i1 ∈M and all i2 ∈M \ {i1} do

j1 ← assigned index to i1 in x
j2 ← assigned index to i2 in x

x∗ ← x
x∗i1j1

← 0; x∗i2j2
← 0; x∗i1j2

← 1; x∗i2j1
← 1 . applying 2-exchange

gkl ←
∑

i,j∈M qijklx
∗
ij ∀k, l ∈ N

y∗ ← argminy′∈Y
∑

k,l∈N gkly
′
kl . solving assignment problem for y

if f(x∗,y∗) < f(x,y) then
x← x∗; y← y∗
continue while . restarting the procedure while loop

end if
end for
for all k1 ∈ N and all k2 ∈ N \ {k1} do

l1 ← assigned index to k1 in y
l2 ← assigned index to k2 in y

y∗ ← y
y∗k1l1

← 0; y∗k2l2
← 0; y∗k1l2

← 1; y∗k2l1
← 1 . applying 2-exchange

eij ←
∑

k,l∈N qijkly
∗
kl ∀i, j ∈M

x∗ ← argminx′∈X
∑

i,j∈M eijx
′
ij . solving assignment problem for x

if f(x∗,y∗) < f(x,y) then
x← x∗; y← y∗
continue while . restarting the procedure while loop

end if
end for

break . algorithm converged, terminate
end while
return (x, y)

71

Table 3.5: Solution value, running time in seconds and number of iterations for Alternating
Algorithm and variations (convergence to local optima)

AA 2ex+AA 2exAAStep

instances value time value time value time iter

uniform 10x10 3255 0.0 3305 0.0 3322 0.01 1
uniform 20x20 56287 0.01 56136 0.01 56076 0.01 3
uniform 30x30 297819 0.02 298485 0.03 297874 0.05 4
uniform 40x40 965875 0.06 967373 0.08 971010 0.13 5
uniform 50x50 2415720 0.11 2414279 0.18 2419385 0.34 6
uniform 60x60 5077348 0.23 5089275 0.33 5095460 0.77 9
uniform 70x70 9578626 0.32 9561747 0.51 9549687 1.25 10
uniform 80x80 16505833 0.59 16422705 0.93 16474525 1.87 10
uniform 90x90 26650437 0.93 26726070 1.16 26706156 3.04 11
uniform 100x100 41027445 1.12 41001387 1.89 41038180 4.78 14
uniform 110x110 60512662 1.72 60549540 2.37 60508210 6.87 15
uniform 120x120 86397256 2.08 86108044 3.23 86019130 10.47 18
uniform 130x130 119380881 3.02 119421396 4.06 119417016 12.52 16
uniform 140x140 161524589 3.58 161725915 5.6 161535754 16.97 18
uniform 150x150 213377462 5.02 214064556 6.9 213453225 22.48 19
normal 10x10 4037 0.0 3997 0.0 3997 0.0 2
normal 20x20 66006 0.01 66372 0.01 66104 0.01 3
normal 30x30 343319 0.02 342316 0.03 342776 0.05 3
normal 40x40 1096961 0.06 1098741 0.09 1101256 0.17 7
normal 50x50 2712329 0.12 2709929 0.2 2708557 0.38 8
normal 60x60 5668986 0.21 5671907 0.33 5678451 0.72 8
normal 70x70 10561145 0.42 10588835 0.57 10581535 1.29 10
normal 80x80 18172093 0.51 18160338 0.87 18141092 2.22 12
normal 90x90 29222387 0.91 29231041 1.3 29283340 2.84 10
normal 100x100 44751122 1.31 44735031 1.72 44753417 5.22 15
normal 110x110 65809366 1.64 65817524 2.39 65812802 6.97 15
normal 120x120 93529513 2.26 93491028 3.58 93581308 8.65 14
normal 130x130 129150096 3.26 129310194 4.14 129238943 12.84 17
normal 140x140 174245361 3.75 174296950 5.91 174169032 20.14 21
normal 150x150 230484514 4.28 230242366 7.32 230292305 24.21 21
euclidean 10x10 5032 0.0 5015 0.0 5015 0.01 1
euclidean 20x20 81714 0.01 81701 0.01 81701 0.01 2
euclidean 30x30 424425 0.03 424261 0.04 424261 0.06 3
euclidean 40x40 1331726 0.06 1330070 0.11 1330070 0.15 4
euclidean 50x50 3342515 0.13 3337157 0.24 3337157 0.35 4
euclidean 60x60 6637101 0.24 6622844 0.42 6622844 0.63 5
euclidean 70x70 12373648 0.33 12345122 0.7 12345122 1.01 4
euclidean 80x80 21088451 0.55 21060424 1.01 21060424 1.34 3
euclidean 90x90 33842019 0.85 33831315 1.48 33831315 2.01 4
euclidean 100x100 50386904 1.08 50351081 2.19 50350547 3.33 5

72

Ta
bl
e
3.
6:

So
lu
tio

n
va
lu
e,

ru
nn

in
g
tim

e
in

se
co
nd

s
an

d
nu

m
be

r
of

ite
ra
tio

ns
fo
r
2e
xO

pt
an

d
va
ria

tio
ns

(c
on

ve
rg
en

ce
to

lo
ca
lo

pt
im

a)

2E
xO

pt
Fi
rs
t

A
A
+
2e
xO

pt
Fi
rs
t

A
A
2e
xO

pt
St
ep

A
A
2e
xO

pt
Fi
rs
tS
te
p

in
st
an

ce
s

va
lu
e

tim
e

va
lu
e

tim
e

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

un
ifo

rm
10
x1

0
31
56

0.
02

30
59

0.
01

30
54

0.
02

2
30
59

0.
02

3
un

ifo
rm

20
x2

0
54
67
0

0.
35

54
87

7
0.
24

54
71
8

0.
32

3
54
43
1

0.
2

4
un

ifo
rm

30
x3

0
29
19
02

2.
27

29
40
44

1.
12

29
11

84
2.
64

4
29
00
11

1.
17

4
un

ifo
rm

40
x4

0
94
83
44

9.
78

95
85
50

3.
29

95
39
38

5.
61

3
95
82
15

3.
4

3
un

ifo
rm

50
x5

0
23
79
85
6

33
.0
2

23
99

15
1

11
.1
5

23
92
15
1

16
.5
7

3
23
95
31
9

8.
08

3
un

ifo
rm

60
x6

0
50
44
88
3

64
.7
3

50
26

00
0

36
.0
8

50
30
61
8

35
.2
2

3
50
26
86
5

20
.4

5
4

un
ifo

rm
70
x7

0
94
79
09
9

16
8.
6

95
11

75
6

67
.8
5

95
21
22
2

78
.2
7

3
95
01
54
8

28
.8

1
3

un
ifo

rm
80
x8

0
16
41
83
60

25
2.
23

16
40
09
87

12
0.
41

16
39
04
06

13
2.
04

3
16
38
13
73

56
.4

9
3

un
ifo

rm
90
x9

0
26
50
70
00

56
9.
45

26
49
94
81

22
9.
48

26
53
66
87

23
8.
11

3
26
54
61
35

11
3.

07
4

un
ifo

rm
10
0x

10
0

40
75
35
50

87
8.
32

40
89
48

44
29
3.
74

40
94

97
95

18
4.
26

1
40
87
56
53

15
5.

41
3

un
ifo

rm
11
0x

11
0

60
07
93
99

15
39
.8

60
23
16

87
45
8.
67

60
27

73
01

48
7.
4

3
60
19
64
21

31
7.

3
4

un
ifo

rm
12
0x

12
0

85
81
82
78

21
20
.8
5

85
77
47

89
10
90
.3
7

85
99

65
22

52
6.
83

2
86
07
02
39

30
6.

32
2

un
ifo

rm
13
0x

13
0

11
87
73
11
0

35
15
.4
6

11
89
67
90
5

11
05
.4

11
90
34
71
9

82
7.
06

2
11
91
33
27
6

45
2.

11
3

un
ifo

rm
14
0x

14
0

16
07
80
18
5

48
60
.3
2

16
09
56
53
8

13
04
.1
7

16
10
02
00
7

14
79
.9
3

3
16

11
13

80
3

76
4.

84
3

un
ifo

rm
15
0x

15
0

21
35
25
10
3

55
14
.7
4

21
33
72
56
9

53
8.

34
21
33
72
56
9

74
8.
16

1
21
33
72
56
9

55
3.
21

1
no

rm
al

10
x1

0
38

66
0.

02
38
95

0.
01

38
86

0.
02

2
39
17

0.
01

2
no

rm
al

20
x2

0
65
26

2
0.

3
65
13
7

0.
28

65
16
6

0.
36

3
65
25
8

0.
21

4
no

rm
al

30
x3

0
33
85

69
2.
9

34
00
96

1.
19

34
02
40

1.
52

2
34
05
34

0.
86

3
no

rm
al

40
x4

0
10
87
00

6
10
.2
8

10
87
56
9

6.
04

10
90
32
3

6.
93

3
10
89
41
2

3.
46

4
no

rm
al

50
x5

0
26
95
00

7
26
.3
9

26
97
74
7

14
.4
4

26
97
12
4

19
.1
3

3
26
96
86
0

7.
45

3
no

rm
al

60
x6

0
56
37
60

8
71
.6
4

56
39
46
9

34
.1
8

56
34
80
2

45
.6
9

4
56
38
74
1

18
.7

5
3

no
rm

al
70
x7

0
10
53
88

91
15
9.
53

10
52
77
51

61
.8
5

10
52
49
31

80
.2
2

3
10
53
24
94

33
.8

1
3

no
rm

al
80
x8

0
18
10
28

61
29
2.
68

18
10
21
61

14
5.
45

18
12
33
79

14
8.
5

4
18
12
53
19

62
.5

6
3

no
rm

al
90
x9

0
29
16
22

43
44
7.
82

29
16
74
87

16
6.
29

29
17
65
75

19
3.
61

3
29
16
70
84

10
2.

4
3

no
rm

al
10
0x

10
0

44
61
01

76
95
3.
0

44
64
45
32

27
2.
9

44
62
62
68

37
6.
46

4
44
64
52
46

15
3.

74
3

no
rm

al
11
0x

11
0

65
58
93

78
14
04
.2
3

65
63
50
27

56
1.
99

65
66
97
69

42
3.
52

3
65
64
61
06

23
3.

42
3

no
rm

al
12
0x

12
0

93
31
57

66
20
71
.3
5

93
32
11
38

69
7.
7

93
33
80
52

69
2.
75

3
93
30
09
33

34
6.

7
3

no
rm

al
13
0x

13
0

12
88
72
34

2
33
29
.5
4

12
90
05
51
8

63
0.
07

12
89
78
04
6

78
4.
53

2
12
90
30
22
8

36
1.

45
2

no
rm

al
14
0x

14
0

17
38
77
15

3
46
69
.4
7

17
40
04
55
8

13
79
.7

17
41
04
00
9

85
7.
84

2
17
41
17
70
5

56
5.

83
2

no
rm

al
15
0x

15
0

22
98
79
80

8
65
72
.9
2

22
99
85
79
8

21
61
.1
9

23
02
86
56
6

14
81
.5
9

3
23
02
54
07
7

75
7.

09
3

eu
cl
id
ea
n
10
x1

0
49
88

0.
04

49
95

0.
02

49
92

0.
02

1
49
96

0.
02

1
eu
cl
id
ea
n
20
x2

0
81
83
3

1.
46

81
64
4

0.
33

81
64
4

0.
31

1
81
64
4

0.
28

1
eu
cl
id
ea
n
30
x3

0
42
42
27

17
.8
2

42
44
25

1.
63

42
44
25

1.
65

1
42
44
25

1.
64

1
eu
cl
id
ea
n
40
x4

0
13
30
11
4

84
.2
5

13
31
59
2

7.
63

13
31
59
2

7.
28

1
13
31

59
2

7.
24

1
eu
cl
id
ea
n
50
x5

0
33
44
10
6

34
7.
38

33
42
20
8

22
.6
1

33
42
20
8

20
.4
9

1
33

42
20

8
18

.7
8

1
eu
cl
id
ea
n
60
x6

0
66
28
78
4

96
8.
15

66
37
10
1

43
.8

1
66
37
10
1

43
.9
1

1
66
37
10
1

43
.8
1

1
eu
cl
id
ea
n
70
x7

0
12
34
33
42

24
04
.7
5

12
37
36
48

90
.1

2
12
37
36
48

90
.3
4

1
12
37

36
48

90
.1

1
eu
cl
id
ea
n
80
x8

0
21
09
82
60

55
79
.3
2

21
08
84
51

17
4.

46
21
08
84
51

17
4.
94

1
21
08

84
51

17
4.
98

1
eu
cl
id
ea
n
90
x9

0
33
89
24
98

11
44
0.
65

33
84
19
98

33
3.
66

33
84
19
98

33
8.
05

1
33
84
19
98

32
6.

42
1

eu
cl
id
ea
n
10
0x

10
0

50
31
35
28

19
80
8.
73

50
38
69
04

51
4.

2
50
38

69
04

51
5.
13

1
50
38
69
04

51
4.
74

1

We have noticed that incorporating Alternating Algorithm into optimized 2-exchange
yields a much better performance, bringing the convergence time down by at least an order
of magnitude. Among variations, AA2exOptFirstStep is consistently faster for uniform and
normal instances. However, for euclidean instances performance of all variable neighbor-
hood search algorithms is similar. In fact, for euclidean instances of all sizes the average
number of switches between neighborhoods is 1, which implies that there is no possible
improvement from the optimized 2-exchange neighborhood after the Alternating Algorithm
has converged. Thus, the special structure of instances must be always considered when
developing metaheuristics for BAP.

Results on convergence time for all described algorithms from this sub-section, for uni-
form instances, are given in Figure 3.7.

0.001

0.01

0.1

1

10

100

1000

10000

1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0

R
U

N
N

IN
G

 T
IM

E,
 S

EC
O

N
D

S

INSTANCE SIZE, M=N

AA 2ex+AA 2exAAStep 2exOptFirst AA+2exOptFirst AA2exOptStep AA2exOptFirstStep

Figure 3.7: Running time to reach the local optima by algorithms; uniform instances

Our concluding set of experiments is dedicated to finding the most efficient combi-
nation of variable neighborhood search strategies and construction heuristics. We con-
sider a variation of the VNS approach with the best convergence speed performance -
AA2exOptFirstStep. Namely, let h-AA2exOptFirstStep be the algorithm that first gen-
erates h starting solution, using RandomXYGreedy strategy. It then proceeds to apply
AA to each of these solutions, selecting the best one and discarding the rest. After that h-
AA2exOptFirstStep will follow the description of AA2exOptFirstStep (Algorithm 5) and will
alternate between finding an improving solution using optimized 2-exchange neighborhood
and applying AA, until the convergence to local optima. In this sense, AA2exOptFirstStep
and 1-AA2exOptFirstStep are equivalent implementations.

The single iteration of AA requires O(n3) running time, whereas, a full exploration
of the optimized 2-exchange neighborhood will take O(m2n3). From the experiments in
Section 3.3.3 we also know that it usually takes AA less than 10 iterations to converge.

74

Based on these observations, for the following experimental analysis we have chosen h for
h-AA2exOptFirstStep as h ∈ {4, 10, 100}.

In addition to versions of h-AA2exOptFirstStep we consider a simple multi-start AA
strategy that performed well in previous experiments (see Section 3.3.3), denoted msAA.
Now however, the starting solution each time is generated using RandomXYGreedy con-
struction heuristic. As the time limit for this multi-start approach we select the highest
convergence time among all h-AA2exOptFirstStep variations. As it often happens during
the time-limited multi-start procedures, the best solution will be found before the final it-
eration. Hence, in addition to the total number we also report the average iteration (best
iter) at which the finally reported solution was found, and the standard deviation of this
value.

See the results of these experiments in Table 3.7 and Figure 3.8.

75

Ta
bl
e
3.
7:

So
lu
tio

n
va
lu
e,

ru
nn

in
g
tim

e
in

se
co
nd

s
an

d
nu

m
be

r
of

ite
ra
tio

ns
fo
r
Va

ria
bl
e
N
ei
gh

bo
rh
oo

d
Se

ar
ch

an
d
m
ul
ti-

st
ar
t
A
A

A
A
2E

xO
pt
Fi
rs
tS
te
p

4A
A
2E

xO
pt
Fi
rs
tS
te
p

10
A
A
2E

xO
pt
Fi
rs
tS
te
p

10
0A

A
2E

xO
pt
Fi
rs
tS
te
p

m
sA

A

in
st
an

ce
s

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

va
lu
e

tim
e

ite
r

be
st

ite
r

σ
(b
es
t
ite

r)

un
ifo

rm
10

x1
0

31
62

0.
02

3
31

26
0.
01

1
30

25
0.
01

1
29

83
0.
06

1
29

95
0.
07

11
6

47
41

un
ifo

rm
20

x2
0

55
13

1
0.
15

2
54

60
1

0.
17

2
54

29
4

0.
19

2
53

28
1

0.
58

1
53

62
0

0.
59

13
1

54
37

un
ifo

rm
30

x3
0

29
33

85
0.
89

3
29

20
39

0.
83

2
28

94
83

0.
92

2
28

65
42

2.
42

1
28

71
69

2.
44

13
0

57
49

un
ifo

rm
40

x4
0

95
52

95
3.
03

3
95

06
08

2.
77

3
95

19
47

2.
87

2
94

28
49

6.
82

1
93

90
52

6.
85

13
8

89
32

un
ifo

rm
50

x5
0

23
80

81
7

11
.3
5

5
23

79
83

5
11

.8
8

4
23

75
55

1
7.
42

2
23

70
80

5
15

.3
5

1
23

60
52

9
16

.5
6

16
5

83
52

un
ifo

rm
60

x6
0

50
38

93
4

19
.9
6

3
50

30
08

2
15

.2
8

2
50

15
75

6
18

.1
6

2
49

90
86

8
35

.3
6

2
49

93
77

4
38

.4
2

20
8

11
2

35
un

ifo
rm

70
x7

0
94

79
82

5
34

.2
1

4
94

36
97

4
43

.3
2

3
94

45
50

2
39

.8
5

3
94

13
89

3
54

.2
9

1
93

99
73

6
61

.7
6

20
3

11
5

67
un

ifo
rm

80
x8

0
16

38
96

32
61

.4
7

3
16

35
71

68
55

.6
1

2
16

30
33

48
59

.1
2

2
16

26
12

95
95

.2
1

1
16

26
48

48
10

4.
0

21
7

95
54

un
ifo

rm
90

x9
0

26
50

58
94

11
0.
55

3
26

45
67

00
94

.5
3

26
40

70
75

80
.0
8

1
26

35
61

16
15

1.
23

2
26

34
29

19
16

0.
45

22
6

83
64

un
ifo

rm
10

0x
10

0
40

78
24

92
14

1.
59

3
40

71
29

49
18

0.
44

3
40

63
35

67
16

5.
63

3
40

54
04

38
20

8.
3

1
40

50
64

23
24

1.
3

24
1

11
6

96
un

ifo
rm

12
0x

12
0

85
82

59
30

34
2.
18

3
85

57
91

39
27

4.
87

2
85

47
15

30
33

3.
39

3
85

33
52

39
44

1.
49

1
85

28
32

42
50

9.
31

27
3

12
2

71
un

ifo
rm

14
0x

14
0

16
06

05
65

7
69

3.
67

3
16

04
15

34
9

55
5.
54

3
16

02
92

92
4

47
4.
41

1
16

00
35

00
9

71
9.
05

1
15

99
12

99
0

92
7.
88

28
6

13
1

12
4

un
ifo

rm
16

0x
16

0
27

71
29

40
2

90
9.
79

2
27

65
65

75
1

91
8.
66

2
27

61
59

58
8

90
8.
23

2
27

57
21

03
8

13
86

.9
1

27
57

25
33

4
16

57
.7
1

30
2

15
4

10
0

no
rm

al
10

x1
0

38
94

0.
02

3
38

55
0.
01

2
38

55
0.
01

1
38

08
0.
07

1
38

09
0.
07

11
7

40
37

no
rm

al
20

x2
0

65
71

2
0.
15

2
65

07
7

0.
17

2
64

80
3

0.
2

1
64

29
3

0.
58

1
64

47
7

0.
58

13
0

73
48

no
rm

al
30

x3
0

33
85

47
1.
17

5
33

76
93

0.
95

3
33

81
38

0.
79

1
33

51
13

2.
75

2
33

57
56

2.
76

14
5

74
42

no
rm

al
40

x4
0

10
90

67
0

2.
81

3
10

88
35

7
3.
1

3
10

85
51

9
2.
69

2
10

81
37

5
7.
56

1
10

82
91

5
7.
58

15
4

81
46

no
rm

al
50

x5
0

26
96

36
8

8.
24

3
26

92
03

5
8.
33

2
26

82
12

1
8.
66

3
26

78
34

5
17

.5
2

2
26

80
27

1
17

.5
8

17
5

71
55

no
rm

al
60

x6
0

56
47

24
7

17
.0
6

3
56

33
19

4
14

.7
7

1
56

27
67

5
17

.0
7

2
56

16
89

9
31

.5
6

2
56

17
12

5
32

.1
8

17
3

83
55

no
rm

al
70

x7
0

10
54

97
68

26
.8
9

1
10

51
99

22
34

.7
3

10
50

92
05

30
.1
9

2
10

49
38

09
57

.3
7

2
10

49
45

03
61

.8
6

20
1

10
4

64
no

rm
al

80
x8

0
18

09
54

04
72

.0
5

3
18

06
94

06
59

.6
4

2
18

06
73

47
55

.4
6

2
18

03
20

81
86

.6
1

1
18

02
34

97
10

0.
11

20
9

11
2

62
no

rm
al

90
x9

0
29

11
52

17
10

7.
77

3
29

10
35

38
10

3.
37

2
29

09
71

91
95

.2
9

2
29

04
59

78
16

5.
73

2
29

02
72

50
18

7.
3

26
4

12
0

71
no

rm
al

10
0x

10
0

44
61

86
97

13
0.
7

2
44

57
89

18
13

8.
0

2
44

55
67

29
16

2.
61

3
44

48
47

47
24

5.
72

3
44

48
22

31
27

9.
76

27
4

17
2

62
no

rm
al

12
0x

12
0

93
29

34
38

34
3.
2

3
93

16
22

43
31

3.
92

2
93

11
23

00
30

9.
4

2
93

02
30

46
50

6.
08

2
92

98
48

65
54

0.
0

28
2

14
9

93
no

rm
al

14
0x

14
0

17
38

20
62

4
53

5.
5

2
17

36
53

51
0

51
0.
49

2
17

35
94

26
6

48
1.
53

1
17

34
34

71
8

81
5.
2

2
17

34
30

86
9

90
0.
03

27
9

14
4

76
no

rm
al

16
0x

16
0

29
84

34
20

2
96

7.
33

2
29

78
40

80
6

89
9.
65

2
29

78
16

15
0

10
30

.8
4

2
29

75
40

22
0

12
11

.8
9

1
29

74
80

02
3

15
67

.9
3

29
4

12
6

62
eu

cl
id
ea
n
10

x1
0

50
37

0.
02

1
50

26
0.
02

1
50

27
0.
02

1
50

26
0.
11

1
50

26
0.
11

11
6

6
7

eu
cl
id
ea
n
20

x2
0

82
67

5
0.
25

1
82

00
8

0.
26

1
81

84
2

0.
31

1
81

71
8

1.
0

1
81

71
8

1.
0

12
9

12
11

eu
cl
id
ea
n
30

x3
0

41
10

14
1.
78

1
40

87
39

1.
72

1
40

73
79

1.
91

1
40

69
70

4.
23

1
40

69
70

4.
24

16
2

32
43

eu
cl
id
ea
n
40

x4
0

13
48

30
2

6.
68

1
13

42
15

9
6.
99

1
13

39
68

3
7.
09

1
13

37
79

2
12

.6
9

1
13

37
73

8
12

.7
2

20
4

48
58

eu
cl
id
ea
n
50

x5
0

32
31

06
0

21
.0
5

1
32

19
20

7
20

.3
9

1
32

14
86

7
19

.9
4

1
32

10
44

2
30

.7
4

1
32

10
28

0
31

.9
7

25
4

37
36

eu
cl
id
ea
n
60

x6
0

65
48

90
1

44
.4
2

1
65

19
07

5
44

.8
2

1
65

15
80

0
46

.2
4

1
65

07
83

3
65

.2
6

1
65

07
81

3
65

.4
1

30
4

32
23

eu
cl
id
ea
n
70

x7
0

12
31

52
35

93
.9
3

1
12

28
32

39
10

0.
51

1
12

26
41

97
96

.2
8

1
12

25
76

19
12

6.
03

1
12

25
64

35
12

8.
94

38
8

74
76

eu
cl
id
ea
n
80

x8
0

21
24

01
64

18
7.
89

1
21

14
33

16
18

3.
3

1
21

10
45

71
18

5.
35

1
21

09
62

55
22

9.
53

1
21

09
53

65
23

2.
0

45
9

14
4

13
2

eu
cl
id
ea
n
90

x9
0

33
38

53
22

33
5.
48

1
33

32
38

60
31

9.
99

1
33

29
65

02
32

6.
28

1
33

27
95

88
38

8.
9

1
33

27
74

17
39

8.
29

55
8

81
12

6
eu

cl
id
ea
n
10

0x
10

0
51

52
44

24
53

0.
7

1
51

38
25

52
53

5.
98

1
51

30
32

27
53

8.
1

1
51

28
91

00
63

2.
49

1
51

28
65

65
63

3.
16

59
7

15
8

13
3

eu
cl
id
ea
n
12

0x
12

0
10

51
92

86
8

12
91

.2
7

1
10

50
92

43
3

12
84

.2
1

10
50

37
75

6
14

04
.0
1

1
10

49
69

85
0

14
56

.4
1

10
49

65
46

2
15

56
.4
5

90
8

93
11

2

0

200000

400000

600000

800000

1000000

1200000

1400000

1 0 3 0 5 0 7 0 9 0 1 1 0 1 3 0 1 5 0

SO
LU

TI
O

N
 V

A
LU

E
D

IF
FE

R
EN

C
E

INSTANCE SIZE, M=N

AA2ExOptFirstStep 4AA2ExOptFirstStep 10AA2ExOptFirstStep 100AA2ExOptFirstStep msAA

Figure 3.8: Difference between solution values (to the best) for algorithms; uniform in-
stances

Under this considerations, multi-startAA once again performed the best. h-AA2exOptFirstStep
variations were the more efficient, the higher the number h was. Interestingly, for several
instance sizes, the average iteration of finding the best solution by msAA is substantially
bellow 100. However, the observed standard deviation is very high, which hints towards
the variability of the solutions produced by AA. To confirm this, we present in Figures 3.9,
3.10 and 3.11 the spread of solution values produced by applying AA to the solution of
RandomXYGreedy (denoted as RandomXYGreedy+AA). All three instances in these charts
are of size m = n = 100, and we perform 100 runs of this metaheuristic.

40500000

40600000

40700000

40800000

40900000

41000000

41100000

41200000

41300000

41400000

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

SO
LU

TI
O

N
 V

A
LU

E

START #

Figure 3.9: Objective solution values for RandomXYGreedy+AA metaheuristic; uniform
100× 100 instance

At this point, we conclude that optimized 2-exchange neighborhood is too costly to
explore, in comparison to the neighborhood that AA is based on. For the general case it
is more effective to do several more restarts of AA from RandomXYGreedy solutions then
to spend time escaping local optima with even a single step of 2exOpt. It is suggested to

77

44450000

44500000

44550000

44600000

44650000

44700000

44750000

44800000

44850000

44900000

44950000

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

SO
LU

TI
O

N
 V

A
LU

E

START #

Figure 3.10: Objective solution values for RandomXYGreedy+AA metaheuristic; normal
100× 100 instance

51550000

51600000

51650000

51700000

51750000

51800000

51850000

51900000

51950000

52000000

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

SO
LU

TI
O

N
 V

A
LU

E

START #

Figure 3.11: Objective solution values for RandomXYGreedy+AA metaheuristic; euclidean
100× 100 instance

only use efficient implementations of VNS that explore optimized 2-exchange neighborhood
as the final step of any metaheuristic. In this way you can improve your solution quality
without excessive time spending, while leaving all the heavy work for Alternation Algorithm.

Our previous experiments that involve multi-start strategies (in this section and Section
3.3.3) have reasonable time limit restrictions. This considerations are important when
developing algorithms to run on real-life instances. However, we are also interested in
behavior of multi-start AA and multi-start VNS in the case of unlimited (or unreasonably
large) running time constraints. Figure 3.12 presents results of running multi-start AA,
multi-start 1-AA2exOptFirstStep and multi-start 100-AA2exOptFirstStep, for a single 100×
100 uniform instance, for an exceedingly long period of time. All starts are made from the
solutions generated by RandomXYGreedy heuristic. Here we report the change of the best
found solution value, depending on time.

We can see that after 50000 seconds (0.58 days of running) multi-start VNS strategies
begin to dominate the multi-start AA, even though the later approach is much more efficient

78

40200000

40300000

40400000

40500000

40600000

40700000

40800000

40900000

41000000

41100000

1 10 100 1000 10000 100000

SO
LU

TI
O

N
 V

A
LU

E

RUNNING TIME, SECONDS

AA AA2exOptFirstStep 100AA2exOptFirstStep

Figure 3.12: Improvement over time of best found objective solution value for multi-start
heuristics; uniform 100× 100 instance

in solution space exploration for short running times. This observation is consistent with
optimized h-exchange being a more powerful neighborhood in terms of solutions quality.

3.4 Conclusion

We have presented the first systematic experimental analysis of heuristics for BAP along
with some theoretical results on local search algorithms worst case performance.

Three classes of neighborhoods - h-exchange, [h, p]-exchange and shift based - are intro-
duced. Some of the neighborhoods are of an exponential size but can be searched for an
improving solution in polynomial time. Analysis of local optimums in terms of domination
properties and relation to average value A(Q,C,D) are presented.

Several greedy, semi-greedy and rounding construction heuristics are proposed for gener-
ating reasonable quality solution quickly. Experimental results show that RandomXYGreedy
is a good alternative among the approaches. The built-in randomized decision steps make
this heuristic valuable for generating starting solutions for improvement algorithms within
a multistart framework.

Extensive computational analysis has been carried out on the searches based on de-
scribed neighborhoods. The experimental results suggest that the very large-scale neigh-
borhood (VLSN) search algorithm - Alternating Algorithm (AA), when used within multi-
start framework, yields a more balanced heuristic in terms of running time and solution
quality. A variable neighborhood search (VNS) algorithm, that strategically uses optimized
2-exchange neighborhood and AA neighborhood, produced superior outcomes. However,
this came with the downside of a significantly larger computational time.

79

We hope that this study inspires additional research work on the bilinear assignment
model, particularly in the area of design and analysis of exact and heuristic algorithms.

80

Chapter 4

Partition Assignment Problem and
Applications

In this chapter we present a previously unexplored model, named Partition Assignment
Problem, and its connection to NSERC Engage project with the industrial partner, on the
topic of ridesharing.

We first introduce this theoretical model that is based on combining assignments and
set partitioning. We mention preliminary analysis of general Partition Assignment Prob-
lem (PAP) and variations, observed in practice. In later sections of the chapter we talk
about the process of understanding the issues and challenges, presented to us by indus-
trial partner. Next we describe the first approach we have tried to tackle the problem -
matching. We discuss the shortcomings of the method and the reasoning behind shifting
towards mathematical programming. In the later section we talk about how we extended
the model to incorporate innate dynamism of the problem. We explain the origins of our
data and some experimental outcomes, and conclude with potential directions to improve
the performance.

4.1 Partition assignment problem

Let N = {1, 2, . . . , n} and E = {1, 2, . . . , p} be finite sets and F = {S1, S2, . . . , Sm} be a
family of subsets of E. The index set of elements of F is denoted by M = {1, 2, . . . ,m}.
For each (i, j) ∈ N ×M , a cost cij is prescribed. The value cij can be viewed as the cost
of assigning the set Sj to i. Then the partition assignment problem (PAP) is to find a
partition {Sk1 , Sk2 , . . . , Skr} of E such that Ski ∈ F for i = 1, 2, . . . , r and an assignment of
Sk1 , Sk2 , . . . , Skr to {1, 2, . . . , n} such that the total cost of assignment is as small as possible.

81

An integer programming formulation of this problem can be given as follows. For each
t ∈ E let ∆(t) = {j : t ∈ Sj}. Consider the decision variables xij given by

xij =

1 if i ∈ N is assigned to the subset Sj ,

0 otherwise.

Then PAP can be formulated as a 0-1 integer programming problem:

Minimize
∑
i∈N

∑
j∈M

cijxij

Subject to
∑
i∈N

xij ≤ 1, ∀j ∈M (4.1)

∑
j∈M

xij ≤ 1, ∀i ∈ N (4.2)

∑
j∈∆(t)

∑
i∈N

xij = 1, ∀t ∈ E (4.3)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈M (4.4)

Note that in presence of equation (4.3), equation (4.1) is redundant and can be discarded.
It may be advantageous to retain equation (4.1) in the model since it might provide a tighter
continuous relaxation.

PAP can also be viewed as a bilevel program combining set partitioning and weighted
bipartite matching as follows. Let Sα = {Sα1 , Sα2 , . . . , Sαu} be a subfamily of F , such that
Sα is a partition of E. Construct the complete bipartite graph Gα = (V α, Hα) with the
generic bipartition of V α = N ∪ Uα, where Uα = {α1, α2, . . . , αu} and the cost of the edge
(i, αj) = ciαj . A matching in Gα is called pseudo-perfect if all nodes in Uα are matched.
Let Mα be a minimum cost pseudo-perfect matching in Gα. Then the cost of the partition
Sα is C(Sα) =

∑
(i,j)∈Mα cij . Note that C(Sα) is precisely the cost of the minimum cost

pseudo-perfect matching in Gα. Thus PAP can be written as

Minimize C(Sα)

Subject to Sα ∈ F ′

where F ′ is the collection of all partitions of E that are in F , that is, F ′ = {Sα =
{Sα1 , Sα2 , . . . , Sαu} : Sαi ∈ F, 1 ≤ i ≤ u ≤ n, and Sα is a partition of E}.

82

4.1.1 Complexity

We now show that PAP is strongly NP-hard. The bottleneck version of PAP is obtained by
replacing the objective function Minimize

∑
i∈N

∑
j∈M

cijxij in PAP with Minimize max
i∈N,j∈M

{cijxij}.

The resulting problem is called bottleneck partition assignment problem (BPAP).

Theorem 30. BPAP is strongly NP-hard.

Proof. Follows from NP-hardness of the 3-partition problem.

Corollary 31. PAP is strongly NP-hard.

Proof. It is well known that a bottleneck problem can be solved in polynomial time if the
corresponding minsum problem can be solved in polynomial time [64]. Thus a polynomial
time algorithm for PAP would yield a polynomial time algorithm for BPAP. The result now
follows from Theorem 30.

An alternative proof of Theorem 30 and Corollary 31 will be available from the NP-
hardness of a different special case, presented in Section 4.2.

4.1.2 Average cost of solution

The number of different ways to partition a set of p elements is determined by the p-th Bell
number Bp. The following summation formula represents Bp:

Bp =
p∑

k=0

{
p

k

}
=

p∑
k=0

1
k!

k∑
g=0

(−1)k−g
(
k

g

)
gp (4.5)

where
{
p

k

}
- Stirling number of the second kind, is the number of different ways to

partition a set of p elements into exactly k nonempty subsets.
Notice that given the partition Sα = {Sα1 , Sα2 , . . . , Sαu}, the number of different ways

to assign Sα1 , Sα2 , . . . , Sαu to {1, 2, . . . , n} is simply the number of u-permutations of n.
Since we only consider partitions with u ≤ n, we will need to substitute p in the summation
by min{n, p}. Hence, it is possible to count the number of different solutions to PAP by
extending (4.5):

Dn,p =
min{n,p}∑
k=0

{
p

k

}
n!

(n− k)! =
min{n,p}∑
k=0

1
k!

k∑
g=0

(−1)k−g
(
k

g

)
gp

n!
(n− k)! =

=
min{n,p}∑
k=0

(
n

k

)
k∑
g=0

(−1)k−g
(
k

g

)
gp

(4.6)

83

Consider some particular assignment (i, j) of i ∈ N to Sj ∈ F . Then, the number of
different solutions to contain this assignment is exactly Dn−1,p−|Sj |. It can be derived as
the number of different solutions to a smaller PAP with N ′ = N \ {i} and E′ = E \ Sj .
Using this fact, the total cost of all different solutions to PAP is as follows:

T =
∑
sj∈F

n∑
i=1

cijDn−1,p−|sj | =
∑
sj∈F

cjDn−1,p−|sj | (4.7)

where cj =
∑n
i=1 cij - sum of possible assignment costs for a particular subset Sj ∈ F .

Now, it is possible to find the average cost of a solution to PAP:

A = T

Dn,p
=
∑
sj∈F cjDn−1,p−|sj |

Dn,p
(4.8)

4.2 Modelling ridesharing as partition assignment problem

Several combinatorial optimization problems of interest can be formulated under this general
framework. This include allocation of customers to facilities, bus route allocation, less-
than-truckload trailer truck assignment, multiprocessor scheduling problems, ride sharing
problem, etc. Depending on the specific application scenario, minor changes from this
general model may be required to represent the real application and to handle additional
constraints. Our interest in PAP was primarily due to its application in ride sharing.

Let us first consider a simplified version of the problem called the simple rideshar-
ing problem (SRP). We will see that SRP can be modeled as PAP. We have a set N =
{1, 2, . . . , n} of drivers and a set E = {1, 2, . . . , p} of passengers. The drivers and passen-
gers are traveling to the same destination. Each driver has a small capacity vehicle (eg.
a car) and is willing to accommodate some passengers so that the capacity of the vehicle
is not exceeded. We assume that the number of drivers are sufficiently large so that all
passengers can be accommodated and the capacity of each vehicle is less than 5. The po-
tential passenger groups are given by nonempty subsets of E with cardinality at most 3
(capacity excluding the driver) and we denote this family by F = {S1, S2, . . . , Sm}, say.
Thus, |F | =

(p
1
)

+
(p
2
)

+
(p
3
)

= O(p3). Given a subset, say Sj ∈ F and a driver i ∈ N , the
minimal travel time aij required to pick up all the passengers by driver i and drive them
to the destination can be calculated in constant time by simple enumeration. Additionally,
let bi be the minimal required travel time for driver i to get from origin to destination by
himself. The corresponding cost of assigning driver i to subset of passengers Sj is then
determined as cij = aij − bi. Intuitively, not assigning any passengers to driver results in
him going alone, and by defining cij in this way we incorporate the cost of this solo trip
into objective function.

84

Theorem 32. The SRP is NP-hard, even if maximal vehicle capacity is 3 and distances
satisfy triangle inequality.

It is shown by direct reduction from a special case of the two-to-one assignment problem.
NP-hardness of this special two-to-one assignment problem is proven in Lemma 33 by
reduction from the general two-to-one assignment problem, using a modification of the
gadget found in several papers dealing with similar assignment problems, see [33, 56].

Before the proofs, definitions of three-dimensional and two-to-one assignment problems
is presented.

Three dimensional assignment problem (3DA)
Input: Three disjoint sets X, Y , Z (|X| = |Y | = |Z| = n), and the costs cijk for all triples
(i, j, k) ∈ X × Y × Z.
Goal: Find a set M of n mutually disjoint triples that minimize

∑
(i,j,k)∈M cijk.

The 3DA is NP-hard, even if the costs cijk can take only two distinct values. See [50]
for a proof.

Two-to-one assignment problem (2-1AP)
Input: Two disjoint sets X, Y (2|X| = |Y | = 2n), and the costs cijk for all triples (i, j, k) ∈
X × Y × Y .
Goal: Find a set M of n mutually disjoint triples that minimize

∑
(i,j,k)∈M cijk.

The 2-1AP is also NP-hard, even if the costs cijk can take only two distinct val-
ues. Namely, it contains the 3DA as a special case: Starting from an 3DA instance
I ′ = (X ′, Y ′, Z ′, {c′ijk}) where c′ijk ∈ {a, b}, a < b, one can obtain an equivalent instance of
the 2-1AP I = (X,Y, {cijk}) by setting X := X ′, Y := Y ′ ∪ Z ′ and defining costs cijk to
be equal to corresponding c′ijk, extended by setting the costs of new feasible triples to be
equal to b. Approximability of the 2-1AP is investigated in [56].

Next we proof NP-hardness of a special case of the 2-1AP. Let there be a (symmetric)
distance dij between any two points from X ∪ Y , and let the cost of a triple be defined by

cijk := min{dij + djk, dik + djk} i ∈ X, j, k ∈ Y.

We denote this problem by S2-1AP.

Lemma 33. The S2-1AP is NP-hard, even if the distances dij can take only values 1 and
2.

Proof. We prove the lemma by reducing 2-1AP to S2-1AP. Let I ′ = (X ′, Y ′, {c′ijk}) with
c′ijk ∈ {1, 2}, be an instance of 2-1AP. Let T be a set of triples (x, y′, y′′) for which c′xy′y′′ = 1,
and let m := |T |. For every t = (x, y′, y′′) ∈ T we define a gadget G(t) to be a set

85

of six auxiliary points {x1(t), x2(t), y1(t), y2(t), y3(t), y4(t)} and corresponding eight edges
depicted by Figure 4.1.

y3(t)

y1(t)

y′

x1(t)

x y′′

y4(t)

x2(t) y2(t)

Figure 4.1: Gadget G(t) for a triple t = (x, y′, y′′)

Now we build an instance I = (X,Y, {dij}) of the S2-1AP as follows: X = X ′∪{xi(t) : t ∈
T, i = 1, 2}, Y = Y ′ ∪ {yi(t) : t ∈ T, i = 1, 2, 3, 4}, and dij is equal to 1 if there is an edge
between i and j in some G(t), t ∈ T , and 2 otherwise. Note that |X ∪ Y | = 3n+ 6m.

It is not hard to see that the optimal solution value for I is 2n+ 4m if and only if the
optimal solution value for I ′ is n. Namely, note that points in a gadget G(t = (x, y′, y′′))
can be partitioned into triples of cost 2 only in two ways: by triples (x1(t), y′, y1(t)),
(x2(t), y′′, y2(t)), (x, y3(t), y4(t)) or by triples (x1(t), y1(t), y3(t)), (x2(t), y2(t), y4(t)). The
first case corresponds to taking triple (x, y′, y′′) into the solution of I ′, and the second case
in not taking it into the solution.

G(t) is a modification of the gadget (first) used in [50] to establish NP-hardness of the
PARTITION INTO TRIANGLES.

A SRP instance is given by set of drivers R, set of passengers P , and the destination
t. Every driver r ∈ R has its capacity q(r), which is the number of passengers that he/she
can take. We assume that

∑
r∈R q(r) = |P |. Furthermore, there is a distance `ij of the

direct path between i, j ∈ R ∪ P ∪ {t}. The goal is to assign all passengers to drivers with
capacities being satisfied, so that sum of shortest paths from drivers through its assigned
passengers ending in destination t, is minimized.

Proof of Theorem 32. We do the reduction from the S2-1AP with dij ∈ {1, 2}. Let I =
(X,Y, {dij}) be such instance of the S2-1AP. We build an instance of the SRP by setting
N := X to be the set of drivers, E := Y to be the set of passengers. All vehicle capacities
are set to be 3. All distances between drivers and passengers, and two passengers are set
to be dij . All other distances (distances to the destination t) are set to be 1.

86

Observe the value of the shortest path from driver i, through passengers Sj = {p1, p2},
ending in destination t. It is equal to

aij = min{dip1 + dp1p2 + 1, `ip2 + `p2p1 + 1}.

Therefore, the cost cij of assigning Sj = {p1, p2} to i is equal to

cij = min{dip1 + dp1p2 , dip2 + dp1p2}.

Hence, covering our passengers with shortest paths from drivers to the destination, is equiv-
alent to solving the starting instance I of the S2-1AP.

Lastly, note that all distances between drivers, passengers and the destination in our
SRP instance have values 1 or 2, hence the triangle inequality is satisfied.

Thus SRP is precisely a PAP. We can associate a bipartite G = (V,L) where the generic
bipartition of V is N ∪M where M = {1, 2, . . . ,m}.

Depending on some constraints the size of G may be reduced. For example, if a set
Sj contains two passengers who may not want to travel together. Such sets are dropped
from F and hence the corresponding node j ∈ M from G is removed. Let di be the time
required to reach destination by driver i without any additional passengers. Then some
drivers may have constraints that they do not want to consider passenger group, say Sj

with corresponding driving time cij exceeds a prescribed threshold. In such cases, the arc
(i, j) is removed from G. Thus G need not be a complete bipartite graph. Most of the time,
the driver time constraints make it really sparse. The case, when some of the passengers
are allowed not to be assigned at all, is trivially modeled by adding dummy personal drivers
for these passengers. Let us disregard this option for now and continue with the general
setting. We now discuss the integer programming formulation given for PAP where G is
not necessarily complete bipartite.

For each node i, we denote A(i) the set of nodes that are adjacent to i. Then the integer
programming formulation for SRP can be given as follows:

87

Minimize
∑
i∈N

∑
j∈A(i)

cijxij

Subject to
∑
i∈A(j)

xij ≤ 1, ∀j ∈M (4.9)

∑
j∈A(i)

xij ≤ 1, ∀i ∈ N (4.10)

∑
j∈∆(t)

∑
i∈A(j)

xij = 1, ∀t ∈ E (4.11)

xij ∈ {0, 1}, ∀(i, j) ∈ L (4.12)

As discussed earlier, constraints (4.9) are redundant and may be removed from the
formulation.

In SRP we assumed that all drivers must be using their cars to get to the destination.
However, in practice some of these drivers may like the option to be a passenger in another
vehicle. The ride-sharing problem with this flexibility is called the flexible ridesharing
problem (FRP). We now observe that FRP can be formulated as SRP with slightly increased
problem size. Let N1 be the set of drivers who are willing to drive but also willing to go
as a passenger in another vehicle and N2 be the set of drivers who definitely want to
drive. Note that N = N1 ∪N2. Without loss of generality assume N1 = {1, 2, . . . , n1} and
N2 = {n1 + 1, n1 + 2, . . . , n}. Let N ′1 = {p + 1, p + 2, . . . , p + n1} and E′ = E ∪N ′1. Note
that the element p + i in N ′1 corresponds to the driver i ∈ N1 viewed as a passenger. Let
F ′ = {S′1, S′2, . . . , S′m1} be a family of feasible subsets of E′ and M ′ = {1, 2, . . . ,m1}. We
restrict |S′j | ≤ 3 if it does not contain any elements of N ′1 and |S′j | ≤ 4 if it contains at least
one element of N ′1. Construct the bipartite graph G′ = (V ′, L′) where the generic bipartition
of V ′ = N ∪M ′. Each node i ∈ N2 is connected to a node j in M ′ where the set Sj is
acceptable for the driver i. Respectively, a node i ∈ N1 is connected to a node j in M ′ if Sj
is acceptable for i, and p+ i ∈ Sj . Similarly to SRP, given a driver i ∈ N and a passenger
subset Sj ∈ F ′, let aij be the minimal travel time required to pick up all the passengers by
the driver and ride them to the destination, and let bi be the minimal required travel time
for i to get from origin to destination alone. We derive cij = aij − bi−

∑
k∈Sj∩N ′1\{p+i} bk−p

as the assignment cost for our formulation. For each node i, let A(i) be the collection of
nodes in G′ adjacent to i. Now, on G′ we can write an integer program similar to that of
SRSP, which will solve the FRSP.

4.2.1 Bipartite and weighted matching models

As the initial approach we have decided to use bipartite matching. Here we model our
problem as maximum cardinality bipartite matching and solve it as maximum flow problem.

88

Arbitrarily select set of drivers D, D ⊆ {i : i ∈ R,mi > 1}. P - set of passengers,
P = R \D.

For any driver j ∈ D and passenger k ∈ P define sj,k as travel cost savings of matching
j and k together.

sj,k = (c(l+j , l
+
k) + c(l+k , l

−
k) + c(l−k , l

−
j))− (c(l+j , l

−
j) + c(l+k , l

−
k)) =

= c(l+j , l
+
k) + c(l−k , l

−
j)− c(l+j , l

−
j)

(4.13)

Define capacity function C in the following way:

• C(source, j) = mj − 1, ∀j ∈ D

• C(j, k) = 1 if j and k can travel together (satisfying time and maximum detour
constraints), ∀j ∈ D ∀k ∈ P

• C(k, sink) = 1, ∀k ∈ P

• C(·, ·) = 0 otherwise

Find maximum flow f through this network, and assign passenger k to driver j if
f(j, k) = 1.

The issues of modelling our problem as matching were the following: Choice of drivers
is arbitrary but influences heavily the resulting performance. We are not guaranteed to
find a matching that yields minimum total travel cost. Pairwise compatibility checks ap-
proach does not guarantee that the final assignment of passengers to driver will satisfy time
constraints or even reduce the total travel cost. To deal with some of the issues of this
model we modified the edges with weights to make it a weighted matching and solve it as
an assignment problem.

Arbitrarily select D ⊆ {i : i ∈ R,mi > 1}. P = R \D. The cost of matching driver j
and passenger k is sj,k defined in (4.13).

We construct bipartite graph in the following way:

• left side of the graph consists of vertices corresponding to j, each copied mj−1 times,
and |P | "zero" vertices (for empty match possibility)

• on the right side of the graph there are vertices that correspond to k

• the edge weight between vertices u and v is

sj,k for u corresponding to j

0 if u is "zero" vertex

Solve assignment problem on the described graph to get assignment of passengers to
drivers. "zero" vertex assignment means that passenger is not assigned to any driver.

89

The heuristic nature of the solution and the restriction to pairwise matching suggested
to look for a more flexible model. We decided to try mathematical programming.

4.2.2 Integer linear programming formulation

Now we model our problem as integer linear program and use general purpose ILP solver.
Define carpool λ as a tuple (j, {k1, k2, . . . , kq}), where j ∈ R represents driver, and

{k1, k2, . . . , kq} ⊂ R is a set of passengers that are going with him. We call λ feasible
carpool if:

• j /∈ {k1, k2, . . . , kq}

• 0 ≤ |{k1, k2, . . . , kq}| ≤ mj − 1

• there exists a path that starts at l+j , finishes at l
−
j , visits all the passenger origins and

destinations in the proper order, and respects time constraints of everyone

• define w(λ) to be a cost of the shortest path (as described above). w(λ) must satisfy
w(λ) < c(l+j , l

−
j) +

∑q
p=1 c(l+p , l−p)

Define Λ to be a set of all feasible carpools.
Variables: xz - binary: 1 if carpool λz ∈ Λ is used, 0 otherwise.

min
∑
λz∈Λ

w(λz)xz (4.14)

subject to

∑
λz∈Λ:i∈{j}∪{k1,k2,...,kq}

xz = 1, ∀i ∈ R (4.15)

4.2.3 Experimental results

The approach discussed above allowed us to get the exact solution to our problem. How-
ever we had to consider scalability issue for larger instances of the problem (in terms of
the number of requests). We were able to solve instances up to 1000 requests within the
reasonable time, which led us to think that integer programming is promising to try for the
dynamic version of the problem.

Dynamism of the problem. In dynamic version we assume that requests come to
us throughout the day. Using results described in previous section we decided to extend
our integer programming model to incorporate this change. We have used rolling horizon
approach thought the day to determine the set of requests to perform scheduling. Every
fixed number of minutes the system analyzes the requests received since the last run, and
tries to schedule them into carpools using integer programming.

90

Data generation and results. We generate our data for the full 24 hour day, based
on statistics that were provided. Destination of each request is SFU Burnaby campus, and
origins are spread around Vancouver metro area and Lower Mainland.

The input of the data generator is the following: number of requests; ratio of requests
with a car (set to 30% based on statistics provided by company); hourly SFU Burnaby
traffic distribution for average day (Fig. 4.2); distribution of requests origins among postal
code areas for average day (Fig. 4.3).

Figure 4.2: Hourly distribution of incoming and outgoing personal vehicle traffic at SFU
Burnaby

Car capacity for requests with available cars is set to 4 seats. Time windows are gener-
ated such that the latest arrival time tend

r of request r follows the distribution from Fig. 4.2,
and earliest departure time tbegin

r is randomly selected in the following way:

tbegin
r ∈ [tend

r −max{2br, 3600}, tend
r − br] (4.16)

Here br is the cost (in seconds) of the shortest path from origin to destination. In this
way the feasibility of all single trips is maintained.

We solve the following instance with our dynamic scheduler: 1000 total requests for 24
hour day period, 300 are from users with cars (4 seats total in each car), 700 are from users
without cars (transit users). Out of those 1000, we assume that we have a knowledge of 500
requests in the evening of the previous day. Remaining 500 requests show up dynamically
throughout the day (we assume that these requests are submitted by user exactly 1 hour
before the user can leave his destination, i.e. earliest possible departure time). Latest
possible arrival time of each request is chosen according to the time distribution that was

91

Figure 4.3: Provided distribution of carpooling requests by postal zones (FSA districts) for
a typical day

provided. Earliest possible departure time is then generated to be such, that the user have
enough time to get to SFU by his deadline, plus some random ahead time of at most the
time it takes for him to do the trip alone (so if I need to be at SFU by 9:00, and it takes
me 1 hour to go directly, then my earliest possible departure time will be between 7:00 and
8:00).

Maximum detour time (carpool trip overhead compared to direct solo trip) is set to be
10 minutes. The cost of transit user going alone (not being carpooled with anyone) is 10%
of the corresponding car route that would have taken him from his home to the destination.
Destination is SFU Burnaby for everyone. Origins are spread out Vancouver metro area.
We run our scheduler every 30 minutes. The system takes gathered over this period of time
new requests together with requests that we have already been aware of, and produces the
optimal schedule. The time after which we are not allowed to change the scheduled carpool
is set to be 30 minutes before the time the driver is supposed to leave his origin. At that
point these driver and passengers are out of the scheduler, as we have committed to using
this carpool.

We have obtained the following results for these instances. 600 out of 700 transit users
and 39 out of 300 car users are not matched by the system. 100 remaining transit users
and 261 car owners were matched together into 48 carpools with 2 people, 44 carpools with
3 people, and 31 carpools with fully packed cars (4 people). Computational time required

92

for each run of the scheduler varies from 2 minutes in the beginning of the day (when more
requests are known ahead and not many have been committed) to few seconds in the end
of the day (when most requests are dealt with already).

Figure 4.4: An example of the static ridesharing problem solution for an instance of size
100

4.3 Conclusion

In this chapter we have explored the problem that arises in ridesharing systems, and can
formally be stated as an assignment of vehicles to groups of passengers that should carpool
together. Among others we have explored a formulation that relies on assignment combi-
natorial structure, and is described as the Partition Assignment Problem. We presented
some complexity results on the problem, including reductions to and from other famous
assignment problems. An integer programming formulation is used to obtain solutions to
generated instances of various sizes.

This versatile model has not been studied before and therefore presents many areas of
open problems such as: analysis of special cases, developing constant factor approximations,
further research of domination properties of local search methods, developing heuristics and
exact algorithms for the problem.

93

Chapter 5

Laboratory Samples Delivery

The results of work discussed in this chapter were presented at International Conference on
Operations Research and Enterprise Systems (ICORES) 2015 in Lisbon, Portugal [111].

Every metropolitan city has hospitals of varying sizes, each cost-effective in serving the
healthcare needs of its surrounding population. Most hospitals include a laboratory that
can perform a variety of tests on samples collected from its patients. Since laboratories in
smaller hospitals are often not equipped to perform all tests on its samples, these samples
have to be sent to laboratories in larger hospitals for testing. This paper addresses the
problem of routing samples to hospitals, called the Hospital Laboratory Courier Routing
Problem (HLCRP). This is the pickup and delivery problem with time windows without
capacity constraints and with transshipments allowed. Even though we address the specific
problem of routing test samples between hospitals, our model and solution procedure can
be applied to other problems.

The test samples are collected from the patients in the hospitals during a day. The
samples include blood, urine, sputum, or tissue, and each sample has a deadline before
which the test should be conducted. The hospitals are located in a given geographical area,
such as the metropolitan area of a city. Each hospital is equipped with a laboratory of a
given capability. Some samples can be tested at the hospital where it was collected, while
others have to be transported to another hospital with better equipped laboratories.

We consider three levels of capability for the laboratories: Level 1, Level 2, and Level 3.
The Level 3 laboratories are the most well-equipped of the laboratories, and can perform
all the tests on a sample. The Level 1 laboratories are the least equipped, with the Level
2 laboratories capable of performing all the tests that Level 1 laboratories can perform, as
well as additional tests. In the geographical area we consider in this paper, there is only one
Level 3 laboratory, two Level 2 laboratories, eleven Level 1 laboratories, and three locations
without any laboratory.

Depending on the tests required to be performed on a sample, the level of the laboratory
is specified together with the deadline. Currently, in practice the destination hospital is

94

Figure 5.1: Typical map layout for HLCRP

explicitly specified by the hospital staff. Thus, each sample has its origin, its destination,
and the deadline before which the test should be performed.

The transportation of samples is done by a fleet of vehicles of a fixed size. In addition,
the use of taxis is also allowed to transport samples with the impending deadlines. For
the fleet of vehicles, there is no depot, and each vehicle can start its route at any hospital
and finish it at any other hospital. (This characteristic of the problem also comes from
the situation observed in practice where the cost of the route does not include the cost of
getting the vehicle to the first hospital in the route.)

In practice, the deadline is a hard constraint and is the driving force in determining the
routes and schedules. The samples are small enough that all of them can fit easily into a
small car. Thus, in our model we do not consider capacity constraints on the vehicles.

The Hospital Laboratory Courier Routing Problem (HLCRP) deals with finding the
routes and schedules for the vehicles such that all the samples are transported within their
deadlines, and a linear function of the total distance travelled by the vehicles and taxis is
minimized. Since the cost of using a taxi is several times higher than the standard vehicle,
the optimizer should also reduce the number of taxi calls. In addition to this objective, we
also address the objective of minimizing the number of taxis used to transport the samples.

Thus, the HLCRP is a variation of the pickup and delivery problem with time windows,
where capacity constraints are not considered and transshipment is allowed ([120], [97]).
Problems that address pickup and delivery of people using transshipment (called transfers)
have also been addressed [32].

The start of the time window for a sample is the time when the sample is collected
from the patient. The deadline is the time by which the sample has to reach the designated
laboratory in order to be processed on time. The time windows are hard constraints (each
sample has to be processed within its deadline). Transshipment is allowed because there
is no requirement that a sample has to be delivered by the same vehicle that picked up

95

the sample. Thus, a sample can be moved from one vehicle to another at an intermediate
hospital.

Finally, if a sample cannot be transported by a vehicle in the fleet within its deadline,
a taxi can be used to transport the sample. The HLCRP can be used to model many
problems that may arise in other domains that involve routing and scheduling.

Our case study considered the case of a region in Canada that sub-contracts lab sample
transportation to a courier company. The planning of the routes are done two times a year
and the routes are fixed for that period. During that time period, for day-to-day operations
when urgent sample transporation requests has to be served, or when the regular routes
would not be enough to serve lab transportation requests on time, a taxi cab is used.

Each sample that requires transportation defines one transportation request.
There is no restriction that the sample has to be picked up and delivered by the same

vehicle. The samples can be moved from one vehicle to another at any intermediate hospital
site. Also, the samples can be removed from one vehicle at an intermediate hospital location
and left there to wait for another vehicle that will take the sample to another intermediate
hospital or to its destination hospital.

The problem is the pickup and delivery problem with time windows and with transship-
ment. The start of the time window of a sample is the time sample is collected from the
patient. The deadline is the time the sample has to reach the designated lab in order to
be processed on time. The time windows are the hard constraints. All samples has to be
processed on time, and the re-taking of the sample from the patient has to be avoided at
any cost.

Although the problem is dynamic, we consider the static version of the problem where
the routes are generated in advance based on expected demand. Thus, in this paper, we
are considering the static version of the problem. The sample transporation requests are
satisfied by the courier fleet of vehicles that is dedicated to this transportation service.
There is no depot. The vehicle can start and finish its route at any hospital. The start and
the end location do not have to be the same. In addition, if the vehicles cannot serve a
sample transportation request on time, a taxi will be called in to perform the trasnporation
task.

In our problem, the objective is to minimize the total transportation costs that consists
of the courier vehicle costs and the taxi costs. The transportation costs are proportional to
the distance travelled.

The HLCRP may either be modeled as a vehicle routing problem (VRP), or as a multi-
commodity network flow problem (MCNFP). Typically, the number of locations in the VRP
is large, and each location has to be visited once. In contrast, in the MCNFP, the number
of locations is smaller, though the number of requests originating at each location is large,
with multiple visits to the same location during the day.

96

There is a large body of research on the VRP, with many surveys, including [31, 55,
92, 93, 127]. There are also many surveys on the time-constrained version of the VRP
- the Vehicle Routing Problem with Time Windows (VRPTW) - including [16] and [75].
Examples of the methods for optimally solving the VRPTW include Desrochers et. al
[40], who pioneered the column-generation approach for the vehicle routing problem. They
decomposed the problem into a master problem and a subproblem, and solved the master
problem using column generation. Kohl et. al [82] introduced cuts to the decomposition-
based approach, and Kohl and Madsen [83] develop a Lagrangean relaxation approach to
solve the VRPTW exactly. For a comprehensive review of using the column generation
method to solve the VRPTW, see [75].

We model the HLCRP as an MCNFP. Each node in the network is a hospital at a partic-
ular time instant, and each arc between two nodes is the route between the corresponding
hospitals. Each set of boxes that are carried together by a vehicle is a commodity that
flows through the network. Such models have been used to design networks and routes for
public transportation [24], to solve ship routing and scheduling problems [29], in maritime
transportation [17], airline schedule planning [57], and ferry scheduling [77].

In related work, heuristics using genetic algorithms have been used to solve the problem
of routing blood samples collected from hospitals and health care centres to two central
laboratories in Spain [58]. In this problem, in addition to imposing time windows on samples,
vehicles also have capacity restrictions. Finally, [112] provides a comprehensive survey of
operations research methods used in the healthcare industry. The applications listed in the
survey are far too many to list here.

5.1 Modelling the problem as multi-commodity network flow

We modeled the HLCRP as a multi-commodity network flow problem. Each hospital is
represented by a set of nodes at regularly spaced time instants.

In the model we use for HLCRP, the time horizon is divided into intervals of size δ
(where δ is a suitably chosen constant), and each hospital is represented by multiple nodes,
one for each time instant (the multiple of δ). Representing each node by multiple nodes,
one for each time instant, is a standard modelling approach, usually called time expanded
network. This approach has been successfully used to solve many practical instances of
similar routing and scheduling problems.

A directed arc exists between two nodes a and b, if it is feasible to travel from node a
to node b within the corresponding time. The movement of the samples and the vehicles
represent the flow through the network.

Since in practice, the hospital staff packs samples with the same destination hospital
and close deadlines into one package, we consider the problem of routing the packages. (The

97

difference between the deadlines can be specified by providing a threshold.) Each package
has a destination and a deadline.

The fleet of vehicles is of a fixed size. Since we observed in practice that the vehicle
capacities are not a restriction, we can assume that the problem does not have capacity
constraints. There is no depot, i.e., a vehicle can start and finish its route at any site node
at any time, with no additional cost. In other words, the vehicles do not need to start from
and return to a depot.

The solution to our problem consists of a set of routes and schedules. Each route is a
sequence of hospital locations, each of which has the arrival time and the departure time.
We assume that each vehicle starts immediately from the first pick-up point, thus there is
no travel cost from and to the depot.

We assume that samples that have the same destination and deadline are transported
in a package (each package now has a destination, as well as a deadline).

We also consider a second set of vehicles - the taxis. There are no limits on the number
of taxi trips. However, using a taxi to travel between two nodes costs ρ times more than
using a vehicle.

We provide details of the network construction for the model in Section 5.1.1, and the
mathematical programming formulation for the model in Section 5.1.2.

5.1.1 Network Construction

Time Discretization:
The size of the network is a function of the discretization time, denoted ∆t. ∆t is

specified in minutes. T is the set of all discrete time instants/stamps, M is the set of
all packages, and lpj , ldj ∈ N denote the pickup, delivery locations of package j, ∀j ∈ M .
Furthermore, tpj , tdj denote the earliest pickup time, latest delivery time of package j, ∀j ∈
M , and hb = minj∈M tpj , he = maxj∈M tdj denote the beginning, end of the horizon for our
problem.
|T | is given by |T | = bhe−hb∆t c + 1. The earliest pickup time stamp of package j ∈ M

is given by τpj = d t
p
j−h

b

∆t e. The latest delivery time stamp of package j ∈ M is given by

τdj = b t
d
j−h

b

∆t c. The discretized cost (distance) from u ∈ N to v ∈ N (measured in time
stamps), denoted δu,v, is given by δu,v = ddu,v∆t e. Thus δu,u = 1 denotes waiting for one time
stamp at node u ∈ N . We assume the graph G is not complete, so the distance du,v (as
well as the discretized distance δu,v) is ∞ if there is no direct route from node u to node
v. We let σu,v denote the shortest path distance from u to v in the network (computed in
units of δ).

Nodes and Arcs in the Network:
We are given a set N of site nodes (each site node denotes a hospital or test site).

Corresponding to each site node u ∈ N , we construct q copy nodes (u, 1),(u, 2),. . . , (u, q),

98

where (u, l) represents the copy of site node u at time stamp l. We also add a start node
s and a destination node f to the set of copy nodes. We now describe the set of arcs
comprising the network.

We have three types of arcs in the network, the set of package arcs Ap, the set of vehicle
arcs Ac, and the set of taxi arcs At. We provide the ability to use additional problem-specific
information to reduce the number of arcs (and therefore the size) of our model. Thus, if no
package travels from node (u, q) to node (v, r) in any optimal route, then there is no arc
between nodes (u, q) and node (v, r). Arcs may also not be present if routing a package
through the arc violates feasibility. To simplify exposition, we refer to a copy node as a
node in rest of the paper.

A package arc between two copy nodes indicates that a package can travel between the
corresponding site nodes feasibly in time. Thus, the package arc ej(u,q),(v,r) is in set Ap if
package j can arrive at site node u before time q, can leave site node v at or after time
r, and be feasibly delivered at its destination node before its deadline. Moreover, r is the
earliest possible time during which the package may arrive at site node v after departing
from site node u at time p. Similarly, a vehicle arc ec(u,q),(v,r) (taxi arc e

t
(u,q),(v,r)) exists if a

vehicle (taxi) can feasibly travel from copy node (u, q) to copy node (v, r).
We describe below the conditions that have to be fulfilled for the existence of package

arcs, vehicle arcs, and taxi arcs. We define a boolean variable bu,v which is set to 1 if a
package originating at copy node (u, q) is allowed to travel through copy node (v, r) (it is
set to 0 otherwise). This boolean variable is used to specify the conditions for the existence
of package arcs.

Conditions for the existence of package arcs:
∀j ∈ M,∀u, v ∈ N u 6= ldj v 6= lpj ,∀q ∈ T , package arc ej(u,q),(v,r) ∈ Ap if each of the
conditions below hold:

blpj ,u
= 1 ∧ blpj ,v = 1 (5.1)

q ≥ τpj + σlpj ,u
(5.2)

r = q + δu,v ≤ τdj − σv,ldj (5.3)

Here, Equation (5.2) (respectively (5.3)) determine the earliest possible departure time of
the package from u (respectively the latest possible arrival time at v). Note that there can
be more than 1 package arc (for different packages) between copy nodes (u, q) and (v, r).

Conditions for the existence of vehicle and taxi arcs:

99

∀u, v ∈ N ∀q ∈ T ec(u,q),(v,r) ∈ Ac (e
t
(u,q),(v,r) ∈ Ac) if r = q + δu,v ≤ |T | − 1

∀v ∈ N ∀r ∈ T ecs,(v,r) ∈ Ac
∀u ∈ N ∀q ∈ T ec(u,q),f ∈ Ac

These constraint ensure that there is a feasible arc between two locations with respect
to travel time. In addition, we add a vehicle arc from the start node s to every copy node
(u, q) and from every copy node (v, r) to the end node f .
We are now ready to provide the formulation.

5.1.2 Mathematical Programming Formulation

The decision variables are the boolean variables xj,u,q,v,r, yu,q,v,r, and zu,q,v,r, that indicate
whether a package, vehicle, or taxi travels along arc ej(u,q),(v,r), e

c
(u,q),(v,r), or et(u,q),(v,r),

respectively. The number of vehicles used is modeled using integer variables sv,r and fu,q.

min
∑

u,q,v,r: et(u,q),(v,r)∈At

du,v(yu,q,v,r + ρzu,q,v,r) (5.4)

Subject to

Package pickup constraints (ensures each package is picked up):

∑
q,v,r: ej

(lp
j
,q),(v,r)

∈Ap

xj,lpj ,q,v,r
= 1 ∀j ∈M (5.5)

Package delivery constraints (ensures each package is delivered):

∑
u,q,r: ej

(u,q),(ld
j
,r)
∈Ap

xj,u,q,ldj ,r
= 1 ∀j ∈M (5.6)

Package transit constraints (ensures if a package enters a copy node, it also exits the copy
node):

∑
u,q: ej(u,q),(v,r)∈Ap

xj,u,q,v,r =
∑

w,s: ej(v,r),(w,s)∈Ap

xj,v,r,w,s

∀j ∈M,∀v ∈ N \ {lpj , l
d
j },∀r ∈ T

(5.7)

Package carry constraints (ensures packages must be carried by vehicles or taxis):

yu,q,v,r + zu,q,v,r ≥ xj,u,q,v,r ∀j, u, q, v, r : u 6= v ∧ ej(u,q),(v,r) ∈ Ap (5.8)

100

Vehicles start constraint (ensures k vehicles start their routes):

∑
v,r: es,(v,r)∈Ac

sv,r = k (5.9)

Vehicles finish constraint (ensures k vehicles finish their routes):

∑
u,q: e(u,q),f∈Ac

fu,q = k (5.10)

Vehicles transit constraints (ensures that the drivers that enter a copy node exit the copy
node):

sv,r +
∑

u,q: e(u,q),(v,r)∈Ac
yu,q,v,r = fv,r +

∑
w,s: e(v,r),(w,s)∈Ac

yv,r,w,s

∀v ∈ N, ∀r ∈ T
(5.11)

Variables:

x, z ∈ {0, 1} y, s, f ∈ {0, 1, . . . , k} (5.12)

5.2 Implementation and Experimental Results

We solve the mathematical programming model above using the general-purpose mixed-
integer program solver CPLEX. Since the time-space network can be too large, we apply arc
reduction procedures prior to the integer programming formulation construction. Moreover,
we remove some of the arcs in the network based on the available heuristic information about
the general structure of possible routes. For example, in the graph networks corresponding
to city maps, there are tendencies for routes to extensively use arterial roads. Another type
of arc reduction can come from the fact that there is rarely a need for a package, that has
its pickup and delivery in the same local area, to be travelling through another distant area
of the network. All this extra information can easily be incorporated into our model using
conditions for existence of the package arcs (bu,v in Sec. 5.1.1).

This section presents our computational study. We generate forty problem instances in
total, comprised of four sets, each with ten problem instances. The instances we generate
are based on the geographical location of hospitals in a metropolitan city in Canada, and
publicly available data on the population these hospitals serve. We generate four sets
of problem instances, each with a different population distribution among hospitals with
differing levels, with each set comprising ten problem instances. Each instance we generate
is a list of samples, with each list containing up to 7000 samples. Each sample has the
origin hospital, the destination hospital, the time the sample is collected (the start time of

101

the time window), and the deadline (the end time of the time window). The destination
hospital is the hospital that has the appropriate level lab. If the hospital where the sample
is collected has the appropriate level lab, the origin and destination hospitals are the same,
and these samples are not considered in solving our routing problem.

To reduce the size of the input to our model, we pre-process each instance by packing
samples which have the same destination as well as a large overlap in their time windows,
into a single package. In the extreme case, we will have 140 packages. This, together with
the number of hospitals (at most 20), is the size of the input. Although packing procedure
is also parametrized, it is relatively simple and trivial. Each instance is run on the Simon
Fraser University RCG Colony, a cluster of 64-bit Linux computers (each run is set to use
exactly one core of one processor). We specify the details of our computational study below.
computational parameters more specifically to the particular set of experiments below.

5.2.1 Comparing Solution Quality across Problem Instances

We use the relative MIP gap, the ratio of the difference between the solution value (obtained
by the MIP solver) and either the optimal, or a bound on the optimal, as a measure of the
solution quality. We examine its dependence on three parameters: the sparsity of the input
graph, the number of vehicles in the fleet, and the discretization time δ used to construct
the network. The input graph is either sparse or complete, the number of vehicles ranges
from 0 to 25 (in steps of 5), and the discretization time, in minutes, ranges from 5 to 30 (in
steps of 5).

We also measure the running time of our model to reach the relative gap of 10% for
discretization time steps of 5 minutes and 10 minutes, and 10 vehicles. When δ is 10 minutes
(5 minutes), the average time to reach the gap is 1244 seconds (4124 seconds). We set a
CPU time limit of 2 hours.

Sparse vs Complete Graph

Our model permits us to specify and exploit the sparsity of the input graph. The underlying
input graph may be quite sparse when the geographical area has bridges, highways, and
arterial roads. It is clear from Fig. 5.2 that our model requires much less CPU time for
sparse graphs. Intuitively, there are more options available in a denser graph. The larger
solution space that results slows down the MIP solver.

Missing edges between pairs of nodes may be replaced by ‘edges’ with shortest path
distances between corresponding nodes. Adding such missing edges may provide feasible
solutions, where none may exist in the sparse graph, due to the fact that we discretize time
windows and distances. We evaluate our solutions on the sparse graph in the rest of the
paper.

102

Figure 5.2: Dependence of Average Gap on Discretization for Sparse, and Complete Input
Graphs

Number of Vehicles and Discretization Time Steps

Figure 5.3: Dependence of Average Relative Gap on Number of Vehicles and Discretization
Time Steps

Figure 5.3 displays how the relative gap changes with the number of vehicles allowed and
the discretization time. We note that solving the problem for the case when the packages
have to be delivered by using both vehicles as well as taxis is harder than for the case when
the packages have to be delivered either entirely by vehicles or entirely by taxis.

Table 1: Dependence of Average Objective Function Value, Relative Gap and Number of
Taxis on Number of Vehicles and Discretization Time Steps

103

Table 1 displays how the relative MIP gap, the objective function value, and the number
of taxis, depend on the number of vehicles used and the discretization time step. As can
be observed, both the objective function value and the number of taxis decrease with the
number of vehicles allowed. The flexibility of our model in allowing taxis becomes apparent
when few vehicles are present. In these cases, instead of obtaining infeasible solutions, we
get solutions with larger objective function value. It turns out that in the real-life scenario
that motivated our work, taxis were used whenever it was impossible to transport a sample
using a vehicle.

Figure 5.4: Illustrative example of the routes generated using simulated data

5.3 Conclusions and future work

In this work, we address an important problem that arises in the health care industry,
that of transporting laboratory samples between hospitals. This problem arises because
the laboratories within a hospital may not be equipped to perform the required tests on a
sample. We present a mathematical programming formulation of the problem, a solution
procedure using CPLEX, and a set of experiments to evaluate the solution procedure. Even
though we test our solution procedure on generated data, we believe our solution procedure
can be used to solve the real-world problem that motivated this exercise in the first place.
The approach outlined in this paper can be applied to solve problems of comparable size
that arise in the health care industry.

Future work may include a model-based heuristic that will provide good solutions for
larger problem instances. In addition, the geographical area may be partitioned into zones,
and the size of the flow network reduced by removing arcs unlikely to be used in an optimal
solution. This may permit us to solve much larger instances of the problem.

104

Chapter 6

Conclusion

In this thesis we are developing the knowledge about few challenging nonlinear assignment
problems. Our interest was particularly in computational complexity, solvable special cases,
approximations, linearizations and local search algorithms. To build a more complete pic-
ture of algorithms performance we have also conducted extensive experimental analysis on
real world and generated instances. For several practical applications we have described a
detailed process of problem modelling, that heavily relies on results and techniques discussed
in this dissertation.

For Bilinear Assignment Problem (BAP) we presented a systematic study of complexity
aspects defined on the data set (Q,C,D) and size parameters m and n. BAP generalizes
the well known quadratic assignment problem, the three dimensional assignment problem,
and the disjoint matching problem. We show that BAP is NP-hard if m = O(r

√
n), for some

fixed r, but is solvable in polynomial time if m = O(logn
log logn). Further, we establish that

BAP cannot be approximated within a constant factor unless P=NP even if Q is diagonal;
but when the rank of Q is fixed, BAP is observed to admit FPTAS. When the rank of Q
is one and C or D is a sum matrix, BAP is shown to be solvable in polynomial time. In
contrast, QAP with a diagonal cost matrix is just the linear assignment problem which is
solvable in polynomial time. We also provide a characterization of BAP instances equivalent
to two linear assignment problems. Same as in the case of QAP, linearizable instances yield
a class of polynomially solvable special cases.

Various results leading to performance guarantee of heuristics from the domination
analysis point of view are presented. In particular, we showed that a feasible solution with
objective function value no worse than that of (m − 1)!(n − 1)! solutions can be identified
efficiently, whereas computing a solution whose objective function value is no worse than
that of m!n! − dmβ e!d

n
β e! solutions is NP-hard for any fixed rational number β > 1. As

a by-product, we have a closed form expression to compute the average of the objective
function values of all solutions, but the median of the solution values cannot be identified
in polynomial time, unless P=NP.

105

Moreover, we have presented the first systematic experimental analysis of heuristics
for BAP along with some theoretical results on local search algorithms worst case perfor-
mance. Three classes of neighborhoods - h-exchange, [h, p]-exchange and shift based - are
introduced. Some of the neighborhoods are of an exponential size but can be searched for an
improving solution in polynomial time. Analysis of local optimums in terms of domination
properties and relation to average value A(Q,C,D) are presented.

Several greedy, semi-greedy and rounding construction heuristics are proposed for gener-
ating reasonable quality solution quickly. Experimental results show that RandomXYGreedy
is a good alternative among the approaches. The built-in randomized decision steps make
this heuristic valuable for generating starting solutions for improvement algorithms within
a multistart framework.

Extensive computational analysis has been carried out on the searches based on de-
scribed neighborhoods. The experimental results suggest that the very large-scale neigh-
borhood (VLSN) search algorithm - Alternating Algorithm (AA), when used within multi-
start framework, yields a more balanced heuristic in terms of running time and solution
quality. A variable neighborhood search (VNS) algorithm, that strategically uses optimized
2-exchange neighborhood and AA neighborhood, produced superior outcomes. However,
this came with the downside of a significantly larger computational time.

To assist researchers who pursue experimental study on this versatile optimization
model, we have developed several sets of test instances. These instances could serve as
a reference point for future performance measures of heuristic as well as exact solution
approaches.

Various promising future work areas and challenging open problems, that we have en-
countered during our work on BAP, could be summarized as follows:

• searching for tighter bounds in complexity and special cases results

• developing FPTAS for more general cases of the problem

• further theoretical and experimental analysis on performance of linearization refor-
mulation techniques

• developing stronger domination analysis results for performance of local search algo-
rithms

• design and analysis of advanced heuristic approaches that are based on presented local
search results

• design and analysis of exact algorithms for BAP

On a note of applications, we have presented two real-world problems that have strong
connections to nonlinear assignment framework.

106

The first problem arises in ridesharing systems, and can formally be stated as an as-
signment of vehicles to groups of passengers that should carpool together. Among others
we explore a formulation that relies on assignments combinatorial structure, and is de-
scribed as the Partition Assignment Problem. We present some complexity results on the
problem, including reductions to and from other famous assignment problems. An integer
programming formulation is used to obtain solutions to generated instances of various sizes.

This versatile model has not been studied before and therefore presents many areas of
open problems such as: analysis of special cases, developing constant factor approximations,
further research of domination properties of local search methods, developing heuristics and
exact algorithms for the problem.

Another application discussed in this thesis, addressed an important problem that arises
in the health care industry, that of transporting laboratory samples between hospitals. This
problem arises because the laboratories within a hospital may not be equipped to perform
the required tests on a sample. We present a mathematical programming formulation of
the problem, a solution procedure using CPLEX, and a set of experiments to evaluate the
solution procedure. Even though we test our solution procedure on generated data, we
believe our solution procedure can be used to solve the real-world problem that motivated
this exercise in the first place. The approach outlined in this paper can be applied to solve
problems of comparable size that arise in the health care industry.

Future work may include a model-based heuristic that will provide good solutions for
larger problem instances. In addition, the geographical area may be partitioned into zones,
and the size of the flow network reduced by removing arcs unlikely to be used in an optimal
solution. This may allow to develop approaches to the problem that are better scalable
with the size.

107

Bibliography

[1] Warren P Adams, Monique Guignard, Peter M Hahn, and William L Hightower.
A level-2 reformulation–linearization technique bound for the quadratic assignment
problem. European Journal of Operational Research, 180(3):983–996, 2007.

[2] Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey
of very large-scale neighborhood search techniques. Discrete Applied Mathematics,
123(1):75–102, 2002.

[3] Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. Very
Large Scale Neighborhood Search: Theory, Algorithms and Applications, Approxima-
tion Algorithms and Metaheuristics. CRC Press, 2007.

[4] Noga Alon, Gregory Gutin, and Michael Krivelevich. Algorithms with large domina-
tion ratio. Journal of Algorithms, 50(1):118–131, 2004.

[5] M Altman. Bilinear programming. Bulletin of the polish academy of sciences-series
of astronomical and physical mathematic sciences, 16(9):741, 1968.

[6] Eric Angel and Vassilis Zissimopoulos. On the quality of local search for the quadratic
assignment problem. Discrete Applied Mathematics, 82(1-3):15–25, 1998.

[7] Kurt M Anstreicher and Nathan W Brixius. Solving quadratic assignment problems
using convex quadratic programming relaxations. Optimization Methods and Software,
16(1-4):49–68, 2001.

[8] Gautam Appa, D Magos, and Ioannis Mourtos. On multi-index assignment polytopes.
Linear Algebra and its applications, 416(2-3):224–241, 2006.

[9] Esther M Arkin, Refael Hassin, and Maxim Sviridenko. Approximating the maximum
quadratic assignment problem. Information Processing Letters, 77(1):13–16, 2001.

[10] Sanjeev Arora, Alan Frieze, and Haim Kaplan. A new rounding procedure for the
assignment problem with applications to dense graph arrangement problems. Mathe-
matical programming, 92(1):1–36, 2002.

[11] Hans-Jürgen Bandelt, Yves Crama, and Frits CR Spieksma. Approximation algo-
rithms for multi-dimensional assignment problems with decomposable costs. Discrete
Applied Mathematics, 49(1-3):25–50, 1994.

[12] Xavier Berenguer. A characterization of linear admissible transformations for the m-
travelling salesmen problem. European Journal of Operational Research, 3(3):232–238,
1979.

108

[13] Alain Billionnet, Marie-Christine Costa, and Alain Sutter. An efficient algorithm for
a task allocation problem. Journal of the ACM (JACM), 39(3):502–518, 1992.

[14] Aurélien Blanchard, Sourour Elloumi, Alain Faye, and Nicolas Wicker. Un algorithme
de génération de coupes pour le problème de lâĂŹaffectation quadratique. INFOR:
Information Systems and Operational Research, 41(1):35–49, 2003.

[15] Shahid H Bokhari. A shortest tree algorithm for optimal assignments across space and
time in a distributed processor system. IEEE transactions on Software Engineering,
(6):583–589, 1981.

[16] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows, part
i: Route construction and local search algorithms. Transportation science, 39(1):104–
118, 2005.

[17] Geir Brønmo, Marielle Christiansen, Kjetil Fagerholt, and Bjørn Nygreen. A multi-
start local search heuristic for ship schedulingâĂŤa computational study. Computers
& Operations Research, 34(3):900–917, 2007.

[18] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment problems.
2009.

[19] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment problems:
revised reprint. SIAM, 2012.

[20] Rainer E Burkard and Eranda Çela. Heuristics for biquadratic assignment prob-
lems and their computational comparison. European Journal of Operational Research,
83(2):283–300, 1995.

[21] Rainer E Burkard, Eranda Cela, Günter Rote, and Gerhard J Woeginger. The
quadratic assignment problem with a monotone anti-monge and a symmetric toeplitz
matrix: Easy and hard cases. Mathematical Programming, 82(1):125–158, 1998.

[22] Rainer E Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of monge prop-
erties in optimization. Discrete Applied Mathematics, 70(2):95–161, 1996.

[23] Rainer E Burkard, Rüdiger Rudolf, and Gerhard J Woeginger. Three-dimensional ax-
ial assignment problems with decomposable cost coefficients. Discrete Applied Math-
ematics, 65(1-3):123–139, 1996.

[24] Avishai Ceder. Designing public transport networks and routes. In Advanced Modeling
for Transit Operations and Service Planning, pages 59–91. Emerald Group Publishing
Limited, 2002.

[25] Eranda Cela. The quadratic assignment problem: theory and algorithms, volume 1.
Springer Science & Business Media, 2013.

[26] Eranda Çela, Rainer E Burkard, and Bettina Klinz. On the biquadratic assignment
problem. In Quadratic Assignment and Related Problems: DIMACS Workshop, May
20-21, 1993, volume 16, pages 117–146. American Mathematical Soc., 1994.

[27] Eranda Çela, Vladimir G Deineko, and Gerhard J Woeginger. Linearizable special
cases of the qap. Journal of Combinatorial optimization, 31(3):1269–1279, 2016.

109

[28] Dilip Chhajed and Timothy J Lowe. m-median and m-center problems with mutual
communication: Solvable special cases. Operations Research, 40(1-supplement-1):S56–
S66, 1992.

[29] Marielle Christiansen, Kjetil Fagerholt, and David Ronen. Ship routing and schedul-
ing: Status and perspectives. Transportation science, 38(1):1–18, 2004.

[30] Nicos Christofides and Enrique Benavent. An exact algorithm for the quadratic as-
signment problem on a tree. Operations Research, 37(5):760–768, 1989.

[31] Jean-François Cordeau, Gilbert Laporte, Martin WP Savelsbergh, and Daniele Vigo.
Vehicle routing. Handbooks in operations research and management science, 14:367–
428, 2007.

[32] Cristián E Cortés, Martín Matamala, and Claudio Contardo. The pickup and delivery
problem with transfers: Formulation and a branch-and-cut solution method. European
Journal of Operational Research, 200(3):711–724, 2010.

[33] Yves Crama and Frits CR Spieksma. Approximation algorithms for three-dimensional
assignment problems with triangle inequalities. European Journal of Operational Re-
search, 60(3):273–279, 1992.

[34] Ante Ćustić and Bettina Klinz. The constant objective value property for multidi-
mensional assignment problems. Discrete Optimization, 19:23–35, 2016.

[35] Ante Ćustić, Bettina Klinz, and Gerhard J Woeginger. Geometric versions of the
three-dimensional assignment problem under general norms. Discrete Optimization,
18:38–55, 2015.

[36] Ante Ćustić and Abraham P Punnen. A characterization of linearizable instances
of the quadratic minimum spanning tree problem. arXiv preprint arXiv:1510.02197,
2015.

[37] Ante Ćustić and Abraham P Punnen. Average value of solutions of the bipartite
quadratic assignment problem and linkages to domination analysis. Operations Re-
search Letters, 45(3):232–237, 2017.

[38] Ante Ćustić, Vladyslav Sokol, Abraham P Punnen, and Binay Bhattacharya. The bi-
linear assignment problem: complexity and polynomially solvable special cases. Math-
ematical Programming, 166(1-2):185–205, 2017.

[39] Vladimir G De&ıbreve, Gerhard J Woeginger, et al. A study of exponential neighbor-
hoods for the travelling salesman problem and for the quadratic assignment problem.
Mathematical programming, 87(3):519–542, 2000.

[40] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization
algorithm for the vehicle routing problem with time windows. Operations research,
40(2):342–354, 1992.

[41] Wolfgang Domschke. Schedule synchronization for public transit networks.
Operations-Research-Spektrum, 11(1):17–24, 1989.

110

[42] Wolfgang Domschke, Peter Forst, and Stefan Voß. Tabu search techniques for the
quadratic semi-assignment problem. In New directions for operations research in
manufacturing, pages 389–405. Springer, 1992.

[43] Zvi Drezner, Peter M Hahn, and Éeric D Taillard. Recent advances for the quadratic
assignment problem with special emphasis on instances that are difficult for meta-
heuristic methods. Annals of Operations research, 139(1):65–94, 2005.

[44] Thomas A Feo and Mauricio GC Resende. A probabilistic heuristic for a computa-
tionally difficult set covering problem. Operations Research Letters, 8(2):67–71, 1989.

[45] Dmitri G Fon-Der-Flaass. Arrays of distinct representativesâĂŤa very simple np-
complete problem. Discrete Mathematics, 171(1-3):295–298, 1997.

[46] Alan M Frieze. A bilinear programming formulation of the 3-dimensional assignment
problem. Mathematical Programming, 7(1):376–379, 1974.

[47] Alan M Frieze. Complexity of a 3-dimensional assignment problem. European Journal
of Operational Research, 13(2):161–164, 1983.

[48] Alan M Frieze, J Yadegar, S El-Horbaty, and D Parkinson. Algorithms for assignment
problems on an array processor. Parallel Computing, 11(2):151–162, 1989.

[49] Alan M Frieze and Joseph Yadegar. On the quadratic assignment problem. Discrete
applied mathematics, 5(1):89–98, 1983.

[50] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

[51] E Kh Gimadi and N Korkishko. On some modifications of the three index planar
assignment problem. In Discrete optimization methods in production and logistics.
The second int. workshop, Omsk, pages 161–165, 2004.

[52] Edward Kh Gimadi and Natalie M Kairan. Multi-index assignment problem: an
asymptotically optimal approach. In Emerging Technologies and Factory Automation,
2001. Proceedings. 2001 8th IEEE International Conference on, volume 2, pages 707–
709. IEEE, 2001.

[53] Fred Glover and Abraham P Punnen. The travelling salesman problem: new solvable
cases and linkages with the development of approximation algorithms. Journal of the
Operational Research Society, 48(5):502–510, 1997.

[54] Fred Glover, Tao Ye, Abraham P Punnen, and Gary Kochenberger. Integrating tabu
search and vlsn search to develop enhanced algorithms: A case study using bipartite
boolean quadratic programs. European Journal of Operational Research, 241(3):697–
707, 2015.

[55] Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehicle routing
problem: latest advances and new challenges, volume 43. Springer Science & Business
Media, 2008.

111

[56] Dries Goossens, Sergey Polyakovskiy, Frits CR Spieksma, and Gerhard J Woeginger.
Between a rock and a hard place: the two-to-one assignment problem. Mathematical
Methods of Operations Research, 76(2):223–237, 2012.

[57] Ram Gopalan and Kalyan T Talluri. Mathematical models in airline schedule plan-
ning: A survey. Annals of Operations Research, 76:155–185, 1998.

[58] Alex Grasas, Helena Ramalhinho, Luciana S Pessoa, Mauricio GC Resende, Imma
Caballé, and Nuria Barba. On the improvement of blood sample collection at clinical
laboratories. BMC health services research, 14(1):12, 2014.

[59] Glenn William Graves and Andrew B Whinston. An algorithm for the quadratic
assignment problem. Management Science, 16(7):453–471, 1970.

[60] Harold Greenberg. A quadratic assignment problem without column constraints.
Naval Research Logistics (NRL), 16(3):417–421, 1969.

[61] Lov K Grover. Local search and the local structure of np-complete problems. Opera-
tions Research Letters, 12(4):235–243, 1992.

[62] Don A Grundel, Pavlo A Krokhmal, Carlos AS Oliveira, and Panos M Pardalos. On
the number of local minima for the multidimensional assignment problem. Journal of
Combinatorial Optimization, 13(1):1–18, 2007.

[63] Gregory Gutin, Tommy Jensen, and Anders Yeo. Domination analysis for minimum
multiprocessor scheduling. Discrete applied mathematics, 154(18):2613–2619, 2006.

[64] Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its
variations, volume 12. Springer Science & Business Media, 2006.

[65] Gregory Gutin, Alek Vainshtein, and Anders Yeo. Domination analysis of combina-
torial optimization problems. Discrete Applied Mathematics, 129(2):513–520, 2003.

[66] Gregory Gutin and Anders Yeo. Tsp tour domination and hamilton cycle decompo-
sitions of regular digraphs. Operations Research Letters, 28(3):107–111, 2001.

[67] Gregory Gutin and Anders Yeo. Polynomial approximation algorithms for the tsp
and the qap with a factorial domination number. Discrete Applied Mathematics,
119(1):107–116, 2002.

[68] Peter Hahn, Thomas Grant, and Nat Hall. A branch-and-bound algorithm for the
quadratic assignment problem based on the hungarian method. European Journal of
Operational Research, 108(3):629–640, 1998.

[69] Pierre Hansen, Nenad Mladenović, Raca Todosijević, and Saïd Hanafi. Variable neigh-
borhood search: basics and variants. EURO Journal on Computational Optimization,
pages 1–32, 2016.

[70] J Pirie Hart and Andrew W Shogan. Semi-greedy heuristics: An empirical study.
Operations Research Letters, 6(3):107–114, 1987.

[71] Refael Hassin and Samir Khuller. z-approximations. Journal of Algorithms, 41(2):429–
442, 2001.

112

[72] Dirk Hausmann, Bernhard Korte, and TA Jenkyns. Worst case analysis of greedy type
algorithms for independence systems. In Combinatorial Optimization, pages 120–131.
Springer, 1980.

[73] Cor A. J. Hurkens and Alexander Schrijver. On the size of systems of sets every t of
which have an sdr, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.

[74] Santosh N Kabadi and Abraham P Punnen. An o (n 4) algorithm for the qap lin-
earization problem. Mathematics of Operations Research, 36(4):754–761, 2011.

[75] Brian Kallehauge, Jesper Larsen, Oli BG Madsen, and Marius M Solomon. Vehicle
routing problem with time windows. In Column generation, pages 67–98. Springer,
2005.

[76] Daniel Karapetyan and Abraham P Punnen. Heuristic algorithms for the bipartite
unconstrained 0-1 quadratic programming problem. arXiv preprint arXiv:1210.3684,
2012.

[77] Daniel Karapetyan and Abraham P Punnen. A reduced integer programming model
for the ferry scheduling problem. Public Transport, 4(3):151–163, 2013.

[78] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[79] L Kaufman and Fernand Broeckx. An algorithm for the quadratic assignment problem
using bender’s decomposition. European Journal of Operational Research, 2(3):207–
211, 1978.

[80] Arman Kaveh. Algorithms and theoretical topics on selected combinatorial optimiza-
tion problems. Master’s thesis, Science: Department of Mathematics, 2010.

[81] Bettina Klinz and Gerhard J Woeginger. A new efficiently solvable special case of
the three-dimensional axial bottleneck assignment problem. In Combinatorics and
Computer Science, pages 150–162. Springer, 1996.

[82] Niklas Kohl, Jacques Desrosiers, Oli BG Madsen, Marius M Solomon, and Francois
Soumis. 2-path cuts for the vehicle routing problem with time windows. Transporta-
tion Science, 33(1):101–116, 1999.

[83] Niklas Kohl and Oli BG Madsen. An optimization algorithm for the vehicle routing
problem with time windows based on lagrangian relaxation. Operations research,
45(3):395–406, 1997.

[84] AE Koller and SD Noble. Domination analysis of greedy heuristics for the frequency
assignment problem. Discrete Mathematics, 275(1):331–338, 2004.

[85] Hiroshi Konno. Maximization of a convex quadratic function under linear constraints.
Mathematical programming, 11(1):117–127, 1976.

[86] Hiroshi Konno. Maximizing a convex quadratic function over a hypercube. Journal
of the Operations Research Society of Japan, 23(2):171–189, 1980.

113

[87] Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location
of economic activities. Econometrica: journal of the Econometric Society, pages 53–
76, 1957.

[88] VM Kravtsov. Polynomial algorithms for finding the asymptotically optimum plan
of the multiindex axial assignment problem. Cybernetics and Systems Analysis,
41(6):940–944, 2005.

[89] Daniela Kühn and Deryk Osthus. Hamilton decompositions of regular expanders:
a proof of kellyâĂŹs conjecture for large tournaments. Advances in Mathematics,
237:62–146, 2013.

[90] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955.

[91] Jeroen Kuipers. On the LP-relaxation of Multi-dimensional Assignment Problems
with Applications to Assignment Games. University of Limburg, 1990.

[92] Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European journal of operational research, 59(3):345–358, 1992.

[93] Gilbert Laporte, Michel Gendreau, J-Y Potvin, and Frédéric Semet. Classical and
modern heuristics for the vehicle routing problem. International transactions in op-
erational research, 7(4-5):285–300, 2000.

[94] Eugene L Lawler. The quadratic assignment problem. Management Science, 9(4):586–
599, 1963.

[95] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto,
Peter Hahn, and Tania Querido. A survey for the quadratic assignment problem.
European journal of operational research, 176(2):657–690, 2007.

[96] Federico Malucelli and Daniele Pretolani. Lower bounds for the quadratic semi-
assignment problem. European Journal of Operational Research, 83(2):365–375, 1995.

[97] Snežana Mitrović-Minić and Gilbert Laporte. The pickup and delivery problem with
time windows and transshipment. INFOR: Information Systems and Operational
Research, 44(3):217–227, 2006.

[98] Snežana Mitrović-Minić and Abraham P Punnen. Local search intensified: Very
large-scale variable neighborhood search for the multi-resource generalized assignment
problem. Discrete Optimization, 6(4):370–377, 2009.

[99] Shashi Mittal and Andreas S Schulz. An fptas for optimizing a class of low-rank
functions over a polytope. Mathematical Programming, 141(1-2):103–120, 2013.

[100] Kowtha A Murthy, Yong Li, and Panos M Pardalos. A local search algorithm for the
quadratic assignment problem. Informatica, 3(4):524–538, 1992.

[101] Christos H Papadimitriou and David Wolfe. The complexity of facets resolved. Journal
of Computer and System Sciences, 37(1):2–13, 1988.

114

[102] Panos M Pardalos, KG Ramakrishnan, Mauricio GC Resende, and Yong Li. Imple-
mentation of a variance reduction-based lower bound in a branch-and-bound algorithm
for the quadratic assignment problem. SIAM Journal on Optimization, 7(1):280–294,
1997.

[103] Panos M Pardalos, Henry Wolkowicz, et al. Quadratic Assignment and Related Prob-
lems: DIMACS Workshop, May 20-21, 1993, volume 16. American Mathematical
Soc., 1994.

[104] William P Pierskalla. Letter to the editor-the multidimensional assignment problem.
Operations Research, 16(2):422–431, 1968.

[105] Abraham Punnen and Santosh Kabadi. Domination analysis of some heuristics for
the traveling salesman problem. Discrete Applied Mathematics, 119(1):117–128, 2002.

[106] Abraham Punnen, Francois Margot, and Santosh Kabadi. Tsp heuristics: domination
analysis and complexity. Algorithmica, 35(2):111–127, 2003.

[107] Abraham P Punnen and Santosh N Kabadi. A linear time algorithm for the
koopmans–beckmann qap linearization and related problems. Discrete Optimization,
10(3):200–209, 2013.

[108] Abraham P Punnen, Piyashat Sripratak, and Daniel Karapetyan. Average value
of solutions for the bipartite boolean quadratic programs and rounding algorithms.
Theoretical Computer Science, 565:77–89, 2015.

[109] Abraham P Punnen and Yang Wang. The bipartite quadratic assignment problem
and extensions. European Journal of Operational Research, 250(3):715–725, 2016.

[110] Maurice Queyranne. Performance ratio of polynomial heuristics for triangle inequality
quadratic assignment problems. Operations Research Letters, 4(5):231–234, 1986.

[111] Arash Rafiey, Vladyslav Sokol, Ramesh Krishnamurti, Snezana Mitrovic-Minic, Abra-
ham P Punnen, and Krishna Teja Malladi. A network model for the hospital routing
problem. In ICORES, pages 353–358, 2015.

[112] Abdur Rais and Ana Viana. Operations research in healthcare: a survey. International
transactions in operational research, 18(1):1–31, 2011.

[113] F Rendl. The quadratic assignment problem. Facility location: applications and
theory. Springer, Berlin, pages 439–457, 2002.

[114] Franz Rendl. On the complexity of decomposing matrices arising in satellite commu-
nication. Operations Research Letters, 4(1):5–8, 1985.

[115] VI Rublineckii. Estimates of the accuracy of procedures in the traveling salesman
problem. Numerical Mathematics and Computer Technology, 4:18–23, 1973.

[116] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. Journal of
the ACM (JACM), 23(3):555–565, 1976.

[117] VI Sarvanov. The mean value of the functional in sampling problems, vestsi akademii
navuk bssr. Seryya Fizika-Matematychnykh Navuk, 139:51–54, 1978.

115

[118] VI Sarvanov and NN Doroshko. The approximate solution of the traveling salesman
problem by a local algorithm that searches neighborhoods of exponential cardinality
in quadratic time. Software: Algorithms and Programs, 31:8–11, 1981.

[119] VI Sarvanov and NN Doroshko. Approximate solution of the traveling salesman
problem by a local algorithm with scanning neighbourhoods of factorial cardinality
in cubic time. Software: Algorithms and Programs, 31:11–13, 1981.

[120] Martin WP Savelsbergh and Marc Sol. The general pickup and delivery problem.
Transportation science, 29(1):17–29, 1995.

[121] Vladyslav Sokol, Ante Ćustić, Abraham P Punnen, and Binay Bhattacharya. Bilinear
assignment problem: Large neighborhoods and experimental analysis of algorithms.
arXiv preprint arXiv:1707.07057, 2017.

[122] Frits CR Spieksma. Multi index assignment problems: complexity, approximation,
applications. In Nonlinear Assignment Problems, pages 1–12. Springer, 2000.

[123] Frits CR Spieksma and Gerhard J Woeginger. Geometric three-dimensional assign-
ment problems. European Journal of Operational Research, 91(3):611–618, 1996.

[124] Leon Steinberg. The backboard wiring problem: A placement algorithm. Siam Review,
3(1):37–50, 1961.

[125] Sergei Pavlovich Tarasov. Properties of the trajectories of the appointments prob-
lem and the travelling-salesman problem. USSR Computational Mathematics and
Mathematical Physics, 21(1):167–174, 1981.

[126] Abdolhamid Torki, Yatsutoshi Yajima, and Takao Enkawa. A low-rank bilinear pro-
gramming approach for sub-optimal solution of the quadratic assignment problem.
European Journal of Operational Research, 94(2):384–391, 1996.

[127] Paolo Toth and Daniele Vigo. The vehicle routing problem, ser. siam monographs on
discrete mathematics and applications. Society for Industrial and Applied Mathemat-
ics, 2002.

[128] Louis Y Tsui and Chia-Hao Chang. A microcomputer based decision support tool
for assigning dock doors in freight yards. Computers & Industrial Engineering, 19(1-
4):309–312, 1990.

[129] Louis Y Tsui and Chia-Hao Chang. An optimal solution to a dock door assignment
problem. Computers & Industrial Engineering, 23(1-4):283–286, 1992.

[130] Yochai Twitto. Dominance guarantees for above-average solutions. Discrete Opti-
mization, 5(3):563–568, 2008.

[131] VG Vizing. Values of the target functional in a priority problem that are majorized
by the mean value. Kibernetika, Kiev, 5:76–78, 1973.

[132] Stefan Voss. Network design formulations in schedule synchronization. In Computer-
Aided Transit Scheduling, pages 137–152. Springer, 1992.

116

[133] Eitan Zemel. Measuring the quality of approximate solutions to zero-one programming
problems. Mathematics of operations research, 6(3):319–332, 1981.

[134] Karel Zikan. Track initialization in the multiple-object tracking problem. Technical
report, Stanford University Systems Optimization Lab, 1988.

117

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Assignments and linear assignment problem
	Overview of nonlinear assignment problems
	Quadratic assignment and related problems
	Problems with multiple assignments
	Multi-dimensional assignment problems
	Partition assignment problem

	Outline of thesis

	Bilinear Assignment Problem: Complexity and Polynomially Solvable Special Cases
	Formulation and connection to other nonlinear problems
	Complexity and polynomially solvable cases
	Characterization of linearizable instances
	Cost array of rank one

	Approximations
	A discretization procedure
	FPTAS for BAP with fixed rank of Q
	Domination analysis

	Integer programming linearizations
	Conclusion

	Bilinear Assignment Problem: Theoretical and Experimental Analysis of Algorithms
	Construction heuristics
	Neighborhood structures and properties
	The h-exchange neighborhood
	[h,p]-exchange neighborhoods
	Shift based neighborhoods

	Experimental analysis
	Experimental design and test problems
	Experimental analysis of construction heuristics
	Experimental analysis of local search algorithms
	Variable neighborhood search

	Conclusion

	Partition Assignment Problem and Applications
	Partition assignment problem
	Complexity
	Average cost of solution

	Modelling ridesharing as partition assignment problem
	Bipartite and weighted matching models
	Integer linear programming formulation
	Experimental results

	Conclusion

	Laboratory Samples Delivery
	Modelling the problem as multi-commodity network flow
	Network Construction
	Mathematical Programming Formulation

	Implementation and Experimental Results
	Comparing Solution Quality across Problem Instances

	Conclusions and future work

	Conclusion
	Bibliography

