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Abstract 

This thesis proposes a new automatic image cropping technique and a platform for 

subjective image quality evaluation on mobile devices. Image cropping is a widely used 

technique in the printing industry, photography and cinematography. The proposed 

cropping method considers both the low-level pixel properties and high-level semantics. 

It is a combination of saliency-based and semantics-based image analysis. In the end, 

we compare the proposed method with a conventional saliency-based strategy. 

Furthermore, in order to simplify the final subjective test, we developed an iOS based 

mobile application for subjective image quality evaluation. The developed application 

implements two-alternative forced choice (2AFC) test methodology and further reduces 

the cognitive load of subjects performing the test by providing an easy-to-use, natural 

interface using the mobile device’s touch screen. The test results show the proposed 

cropping technique performs significantly better overall compared to saliency-based 

cropping. 

 

Keywords:  image cropping; saliency-based; semantics-based; subjective test; iOS; 

two-alternative forced choice 
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Chapter 1.  
 
Introduction 

Image cropping is widely used in the printing industry, photography, and 

cinematography. It is a well-known fundamental operation for improving the quality of 

photographs, by removing the distracting content from a photo, changing its aspect ratio, 

and enhancing the overall composition [1, 6]. In this thesis, a new automatic image 

cropping algorithm is presented, and a subjective test is presented to evaluate the 

performance of the new algorithm. A large number of image cropping methods have 

already been developed, but the proposed algorithm considers both bottom-up visual 

saliency and high-level semantics, which distinguishes it from existing cropping 

techniques. 

 

Figure 1: The resolution comparison between iPhone 8 Plus display and 
Cannon EOS 5D R imaging sensor 

In recent years, the resolution of mobile device displays has been growing. 

Figure 1 shows the resolution, 1080×1920 pixels, of the latest iPhone (iPhone 8 Plus), 

which was released in September 2017. However, the resolution of imaging sensors is 

growing at an even faster pace. As Figure 1 shows, in 2015, Cannon released the EOS 
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5D R camera, which could take a photo with the resolution of 8688×5792 pixels. This 

illustrates a challenge where the image is too large to be displayed on a screen in its 

native resolution. Even if the native display resolution matches or exceeds image 

resolution, the small physical size of the mobile screen may reduce the size of important 

objects and features in the image to the point where they are not clearly visible. The 

same happens when a high-resolution image is downsized to match the screen 

resolution. Automatic image cropping techniques have been developed to address these 

challenges, as well as other applications such as thumbnail creation and image 

summarization [63, 64, 43]. The existing automatic cropping methods ([1-3, 41-43, 46-

50]) were mostly developed and tested on low-resolution images, usually smaller than 

1920×1080 pixels. Therefore, automatic cropping of high-resolution images is still a 

relatively unexplored topic.  

Throughout this thesis, we have focused on the cropping of the high-resolution 

images. The lowest resolution of the image we collected in our dataset is 1920×1280 

pixels, and the highest is 5760×3840 pixels. These resolutions are less considered in 

the literature on automatic image cropping. We implemented the proposed algorithm in 

MATLAB. First, we designed a system based on bottom-up saliency and high-level 

semantics. Then we developed multi-resolution techniques for these building blocks to 

deal with various sizes of objects of interest relative to the image resolution. 

Second, we developed an iOS based mobile application [38] for subjective image 

quality evaluation using objective-C in Xcode to simplify the final subjective test. 

Third, we tested the cropped images using the subjective quality evaluation 

mobile application. We compared cropped images produced by our method against 

those produced by a saliency-based method [20], and found that the proposed images 

were preferred by participants. 

In this chapter, we will first review the existing automatic cropping techniques. 

Then we will give an overview of methods used in the proposed algorithm: saliency 

estimation and semantic image analysis. Finally, we will summarize the contributions of 

the thesis. 
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1.1. Existing Cropping Techniques 

Many techniques have been developed for image resizing/retargeting. Image 

retargeting [56, 57] has been proposed to deal with the mismatch between the native 

display and image characteristics, by using scaling, seam carving and cropping 

techniques. Simple scaling could fix the mismatch, but some details may be lost when 

downsizing the image. Seam carving is also a popular technique in image retargeting. At 

first, each pixel of the image is assigned an energy value using energy function which 

can be visual saliency, entropy and so on. A seam is a path of low energy pixels in an 

image that connect the top boundary to the bottom boundary, or the left boundary to the 

right boundary. The image size can be changed to any size by repeatedly removing or 

inserting the seams [69]. Seam carving usually changes the structure of the object in the 

image, which sometimes makes the objects look unnatural. Therefore, in this thesis, our 

retargeting method is only concerned with how to crop the image, without scaling or 

deforming objects in it.  

Many computational methods [1-3, 41-43, 46-50] have been proposed to crop an 

image automatically. Existing automatic image cropping algorithms can broadly be 

classified into aesthetics-based and attention-based [43]. Aesthetics-based methods 

attempt to preserve artistic intent in a cropped image, by following photographic 

composition rules such as the “rule of thirds” [44]. Examples of aesthetics-based 

approaches include [1, 41, 42]. In [1], the researchers proposed sensation-based photo 

cropping (SBPC), which is illustrated in Figure 2.  SBPC trains a quality classifier, which 

gives a quality score to each candidate region, and the candidate region with the highest 

score is cropped. They trained the quality classifier on a large photo database. The 

database included photos from DPChallenge [7] and Photo.net [8]; the photos containing 

human faces were removed from the database. The remaining photos were associated 

with quality scores given by different people. The higher the quality score is, the higher 

the image quality is. The classifier is trained according to the quality scores. The input 

photo is trimmed into several candidate regions. The region to be cropped is determined 

by the quality score. The quality classifier could automatically rank all the candidate 

regions of a photo to ensure the region with the highest quality score is cropped.  



4 

 

Figure 2: The overview of SBPC algorithm [1] 

In [41], a content preserving aesthetic image cropping method is proposed. The 

researchers trained a quality classifier to give a quality score to each crop candidate, 

and combine the quality scores with object boundaries simplicity and content 

preservation. Object boundaries simplicity is used to avoid cutting through the object. 

Visual saliency is used to preserve attention grabbing content.  

In [42], composition rules are combined with region statistics to create a cropping 

method that takes into account aesthetic change between the original and cropped 

image. Crop-out and cut-through values are used to identify each crop candidates, and a 

quality classifier is trained to evaluate each candidate. 

Attention-based methods attempt to preserve the most important content in a 

cropped image, usually by generating a bottom-up visual saliency map and choosing a 

crop from the region with the highest total saliency [46, 47]. In some cases, bottom-up 

saliency is replaced by the search for important high-level concepts such as faces [48] 

and human figures [49]. In [50], bottom-up saliency is supplemented by face and skin 

detection to create a cropping method that combines rudimentary bottom-up and top-

down analysis.  

In [2], an attention-based method, sparse coding of saliency maps (SCSM), is 

proposed for image cropping. SCSM first trains a classifier from the saliency map of 

training photos and then selects the candidate region with least error. The researchers 

first classify all training photos into 13 categories with a multi-class SVM classifier. The 

classifier is trained for 13 scene categories with more than 6000 photos. Then they use 

the Graph-Based Visual Saliency (GBVS) algorithm [19] to extract the saliency map of 

each training photo for each category. The saliency maps are used as the feature 
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vectors. A sub-classifier for each category is trained based on these saliency maps and 

is called a “Dictionary” in [2]. At test time, they first classify the photo and calculate 

saliency maps. They then search the candidate crop regions that can be best decoded 

from the dictionary.  

Reference [3] proposed another attention-based method, describable attribute for 

photo cropping (DAPC). DAPC picks an appropriate set of low-level features, and trains 

classifiers to predict the high-level attributes, then ranks the input images with the 

trained classifier. The researchers proposed a photo cropping method using an attribute 

classifier. To train the classifiers to predict the attributes from low-level features, a 

training dataset with ground-truth attributes is needed. The high-level attributes have 

never been provided by any image dataset. To get the training data, the researchers 

presented the photos and asked people to label the photos based on some attributes. 

People were asked if the image meets the low-level attributes, such as the “rule of 

thirds”, and people could answers “Yes”, “No” or “Not sure”. The positive images, which 

are consistently labeled as “yes”, are used to train the attribute classifier. They collected 

1000 photos from DPChallenge [7] and Flickr [9] with quality scores given by different 

users. In Flickr [9], the quality score is called “interestingness.” The researchers also 

trained a quality classifier based on the high-level attributes. The quality score will be 

given for each cropping candidate with the trained quality classifier. 

1.2. Purpose of the Study  

The cropping method proposed in this thesis is conceptually similar to [50] in the 

sense that it combines bottom-up visual saliency and top-down semantic analysis. 

However, we take advantage of the recent progress on object classification and 

detection [51] and employ a deep convolutional neural network to detect the presence of 

1000 different object categories in an image. We further classify the object categories 

according to importance and combine this semantic analysis with bottom-up saliency 

detection, as well as face and upper body detection. The result is a cropping system that 

is better able to understand the image content and produce a cropped image that better 

preserves important content.  
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1.3. Bottom-up Saliency 

Visual attention has been investigated by scientists in different disciplines, such 

as cognitive psychology, neuroscience, and computer vision [10-13]. A bottom-up 

saliency-based is derived from low-level features and is independent of categories, or 

other properties of objects. Many bottom-up saliency models have been developed, such 

as feature integration theory (FIT) [14], guided search model [15], [16], Koch and Ullman 

[17] and Itti-Koch-Niebur [18]. Below, we review three popular saliency models: Itti-Koch-

Niebur Saliency (IKN [18]), Graph-Based Visual Saliency (GBVS [19]) and Adaptive 

Whitening Saliency (AWS [20]). 

IKN model [18] first decomposes the image into a set of feature maps based on 

colors, intensity, and orientations, and normalizes the feature maps. Then it uses across-

scale processing to combine the feature maps to create three master “maps” 

corresponding to colors, intensity, and orientations. Finally, these three master “maps” 

are linearly combined to get the final saliency map. GBVS [19] first extracts feature 

vectors from the whole image and constructs activation maps based on feature vectors. 

Then, it normalizes these maps to highlight conspicuity and combines them into a single 

map. It defines Markov chains over various image maps, and computes the activation 

and saliency values from the equilibrium distribution over map locations. 

 

Figure 3:  AWS saliency map computation process [20] 

As Figure 3 shows, the AWS [20] process contains early forward whitening and 

saliency extraction from whitened features. In the early forward whitening stage, the 
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researchers introduced a multi-scale multi-orientation decomposition to the input image, 

which contains the color whitening, chromatic scale orientation, and scale whitening. 

Then after the early whitening, conspicuity maps are computed using a simple squared 

vector norms computation and the final saliency map is the summation of these 

conspicuity maps.  

These three saliency models have been widely used for computing bottom-up 

saliency maps. Each model generates a saliency map image with pixel values between 

0-1. The higher the value is, the more salient the pixel is. If we display the saliency map 

as a grayscale image, the bright area is predicted to be more salient than the dark part. 

Figure 4 shows one sample image and the saliency maps computed by each model: 

IKN, GBVS and AWS. 

 

Figure 4:  Saliency map computed by each saliency model: Original Image (a) 
vs. IKN saliency map (b) vs. GBVS saliency map (c) vs. AWS 
saliency map (d) 
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In order to find the best saliency model among these three to use in our 

application, we collect some test photos to evaluate the performances of these three 

models. We collected some photos from unsplash.com [21] (our dataset is described in 

more detail in Chapter 4), and then processed all the photos with these three models. 

With each saliency map we get, we will crop the most salient part of the original image. 

To find the most salient part, we create a search window, which has the same size as 

the final required image. The window will slide around the saliency map, and the 

summation of all saliency values in the search window will be calculated. The window 

that contains the largest summation (total saliency) is the most salient part of the image. 

Finally, we will cut this part from the original image as the final retargeted image result. 

Figure 5 shows one sample image and Figure 6 shows the result of cropping the most 

salient rectangle. 

In Figure 6, the first row is the saliency maps computed by each saliency model. 

The second row is the cropped window with the largest value of total saliency, and the 

third row is the corresponding window from the original image, which is the cropped 

result.   

 

Figure 5:  A sample image used for evaluation of three saliency models 
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After browsing through the results across all test images, we found the AWS 

produces the best crops, followed by IKN. GBVS has similar results in most cases, but in 

some cases it missed the important parts, especially near the boundary of the image, as 

GBVS concentrates its saliency map to the center of the image. As Figure 6 shows, the 

GBVS cropped image (g) misses the central part of the bicycle. The AWS cropped 

image (i) captures the bicycle. In addition to examples like this, AWS was the top-

performing saliency model in a comprehensive study reported in [11]. Therefore, we 

choose AWS as the saliency model in our proposed algorithm, as well as the benchmark 

against which our model will be compared. 

 

Figure 6:  The process of cropping the image: GBVS saliency map (a) vs. IKN 
saliency map (b) vs. AWS saliency map (c); cropped GBVS saliency 
map (d) vs. cropped IKN saliency map (e) vs. cropped AWS saliency 
map (f); GBVS cropped image (g) vs. IKN cropped image (h) vs. AWS 
cropped image (i) 

From the image in Figure 6, we also find that none of these three bottom-up 

saliency models indicate the old man as a salient object, which is the problem 

encountered with only using the bottom-up saliency model to perform cropping. That is 
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why we need further semantic analysis to improve automatic cropping performance. The 

following section briefly discusses this issue. 

1.4. Top-down Semantics  

In order to incorporate semantic information into image cropping, we employ 

object detection and classification in our cropping system. The top-down semantic 

analysis in our system includes object detection and face/upper body detection. Object 

detection is the process of finding real-world objects such as trees, cars, and buildings in 

images or videos. The typical object detection algorithms include feature extraction and 

a machine learning algorithm to recognize an object. Face detection is a category under 

object detection, but considering the importance of human faces, we decided to separate 

face/upper body detection from general object detection.  

The object detection and classification model we employed in our proposed 

cropping system is a Deep Convolutional Neural Network called GoogLeNet [22], the 

winner of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014 

classification challenge. The challenge involved the task of classifying images into one of 

1000 leaf-node categories in the ImageNet hierarchy. There are about 1.2 million images 

for training, 50,000 for validation and 100,000 images for testing. 1000 categories are 

labeled in these 1.2 million images. They include various animals, daily life objects, 

plants, and so on. A full list of categories can be found in [45]. The average image 

resolution is around 500×500 pixels. Each image is associated with one ground truth 

category, and performance is measured based on the highest scoring classifier 

predictions. 200 categories were chosen in the challenge, and GoogLeNet won 142/200 

object categories, which was the most among all competing models, and also had the 

largest mean average precision. Most importantly, GoogLeNet had the lowest 

classification error [23] in all 1000 categories. 

There are many other object detection and classification models, such as YOLO 

[58], R-CNN [59], Fast R-CNN [60], Faster R-CNN [61], and SSD [70]. In [58], the 

researchers indicated that YOLO could achieve 0.88 on top-5 accuracy on the ImageNet 

2012 validation set, which is still slightly lower than the accuracy that GoogLeNet could 

achieve in ImageNet 2014, 0.89, shown in [66]. Many other new models are being 

developed, especially for object localization, but at the time of this research GoogLeNet 
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is still considered a state-of-the-art solution for object classification. GoogLeNet does not 

give the location of the detected object, but it provides better classification accuracy than 

competing models, which is crucial for semantic analysis in our proposed system. 

Since the GoogLeNet ImageNet model does not detect humans or faces, we use 

another model for face/upper body detection. Many face detectors have been developed 

over the years. As stated in [71], the face detection algorithm can be classified into three 

main families: boosting-based [24], convolutional neural network based (CNN-based) 

[59] model and Deformable Parts-based Models (DPMs) [72]. Boosting-based 

approaches contain two major procedures: feature extraction and a learning algorithm. 

Viola-Jones is one of the typical boosting-based models which uses the Haar-like feature 

and Adaboost Learning. CNN-based models are based on convolutional neural network 

which have been popular in the face detection field recently, and are currently 

considered state-of-the-art for this problem. DPMs model the deformation between facial 

parts, and usually contains two major procedures: facial part localization and face 

detection. A lot of extension works have been built based on these face detection 

techniques, such as emotion recognition, face tracking, and head pose estimation.  

The detector we used is the well-known Viola-Jones [24] detector. It is one of the 

earliest and most popular object detection algorithms. While there are more advanced 

and accurate face detectors currently available, Viola-Jones is still used and one of the 

benchmarks and we felt it was sufficiently good for the purpose of demonstrating the 

principles behind our proposed approach. Our overall system architecture is very 

flexible, however, and it does not depend on any particular face detector. One could 

easily replace the Viola-Jones detector with any other face detector in our system 

without any other modification to the architecture or parameters.  

The Viola-Jones face/upper body detector is implemented in MATLAB as 

cascadeObjectDetector. The cascadeObjectDetector function provides options 

for face detection, upper body detection, eye pair detection and so on. The most salient 

parts of an image are usually the faces and the human bodies, so we use both face 

detection and the upper body detection in the proposed algorithm.  
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1.5. Contributions 

The contributions of this thesis are as follows: 

1. A complete automatic image cropping method based on bottom-up visual 

saliency and top-down semantic analysis. 

2. A comparison of the proposed algorithm against a prototypical attention-

based cropping method on high-resolution images with a variety of content. 

3. A platform for subjective image quality evaluation on mobile devices by 

providing an easy-to-use, natural interface using the mobile device’s touch 

screen. 

These contributions have also been reported in the following papers: 

• J. Lin and I. V. Bajić, “A platform for subjective image quality evaluation on 
mobile devices,” Proc. IEEE CCECE’16, pp. 1-4, May 2016. (Reference [38]) 

• J. Lin and I. V. Bajić, “Automatic Image Cropping based on Bottom-up Saliency 
and Top-down Semantics”, presented at IEEE PacRim’ 17, Victoria, BC, Aug. 
2017. (Reference [52]) 
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Chapter 2.  
 
Proposed Automatic Cropping Technique 

In this chapter, we present our proposed automatic image cropping technique. 

The four major parts, which are visual saliency estimation, multiresolution object 

detection and classification, multiresolution face/upper body detection and final map 

construction, are explained in detail, followed by some optimization solutions for practical 

implementation. The contents of this chapter have been presented in [52]. 

2.1. System Architecture 

The architecture of our image cropping algorithm is shown in Figure 7. It consists 

of four major parts: the AWS saliency estimation, multiresolution object detection and 

classification, multiresolution face/upper body detection and final map construction 

(fusion). The last step is finding the maximum enclosing rectangle within the final map. 

The AWS saliency estimation, object detection and human detection are 

processed in parallel. The input image 𝐼(𝑥, 𝑦) is subject to AWS saliency estimation to 

generate the AWS saliency map 𝑆(𝑥, 𝑦) . Meanwhile, object detection and face/upper 

body detection are applied to the input image to find the object and human faces/upper 

bodies. Both the object detection and face/upper body detection are applied in a 

multiresolution manner to detect objects at multiple scales. Then, an object map 

𝑂(𝑥, 𝑦) is constructed based on the multi-resolution object detection result, and the 

face/upper body map  𝐻(𝑥, 𝑦)  is created based on the result of the face/upper body 

detection. Once we have all three maps, the AWS saliency map  𝑆(𝑥, 𝑦) , object 

map 𝑂(𝑥, 𝑦), and face/upper body map 𝐻(𝑥, 𝑦), we fuse them together to create the final 

map 𝐹(𝑥, 𝑦). Finally, we find the maximum enclosing rectangle in 𝐹(𝑥, 𝑦) and crop the 

input image based on the result. Each part is described with more details in the following 

sections. 
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Figure 7:  Overview of the proposing image cropping algorithm 

2.2. Saliency Estimation 

Great progress has been made on bottom-up visual saliency modeling in the last 

few decades [10]. As we mentioned earlier, the AWS saliency model [20] showed better 

performance compared to the GBVS and IKN models [19, 18]. In fact, AWS was the top 

performing model in a comprehensive comparison reported in [11]. Therefore, we 

choose AWS as the bottom-up saliency model in our system. The input image is 

processed with the AWS saliency estimation method to obtain the AWS saliency 

map 𝑆(𝑥, 𝑦).  

An example of an image and its AWS saliency map is shown in Figure 8. As 

seen in the figure, the saliency map indicates the area near the bicycle as the most 

salient region of the image, due to the diversity of low-level features such as edges, 

colors and brightness in this part of the image. However, the higher-level semantic 

concept of the bicycle is not captured by the bottom-up saliency map, and neither is the 

human that sits in the doorway. Examples like this show us that bottom-up saliency 
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alone is not sufficient to identify the most important part of the image, because it is 

missing out on the higher-level semantic concepts. This is why our image cropping 

system incorporates object detectors. 

 

Figure 8:  Input image 𝑰(𝒙, 𝒚) (left) and its AWS saliency map 𝑺(𝒙, 𝒚) (right) 

2.3. Object Detection and Classification 

We build our object detection around the GoogLeNet deep convolutional neural 

network (CNN) [22]. GoogLeNet was trained on 1.2 million images and 1000 object 

categories. However, straight-forward application of GoogLeNet and similar CNN-based 

object detectors to large images that are encountered in image cropping applications 

usually does not give good results. This is because, due to the complexity and memory 

requirements of CNN training, these detectors are trained on relatively small images, 

usually around 300×300 pixels in size. Specifically, GoogLeNet’s input is 224×224 [22]. 

If one shrinks a large image to this size, the objects of interest often become too small 

for the detector to recognize.  

 For this reason, we develop a multiresolution approach for object detection in 

our system. The whole multiresolution approach for object detection in our system is 

shown in Table 1.  

Function object_importance (whose details are described below) is applied 

to the input image 𝐼 and results in an object importance map 𝑂1 of the same size as the 

input image. If the width and height of the image are larger than 2000 pixels, the image 

is rescaled by ½ in each dimension (and referred to as 𝐼1 ), object_importance 

function is applied again, and the resulting map (𝑂2) is upsampled to the size of the 

original image. The process is repeated until the dimensions of the downscaled image 
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are less than 2000 pixels. Index 𝑘 in the algorithm denotes the resolution level, with 𝑘 =

0 being the original resolution. At the end, max-pooling is executed over all the object 

importance maps, and each pixel in the final map 𝑂(𝑥, 𝑦) obtains the maximum value 

found at location (𝑥, 𝑦) across all object importance maps at various resolution levels. In 

the algorithm, the dimension threshold of 2000 pixels is set empirically. It gave 

reasonable results on our data, but it can easily be changed for other applications or 

datasets. 

Table 1: Multiresolution object detection algorithm 

1: 𝑂0 = object_importance(𝐼) 

2: Let 𝑘 = 1, 𝐿𝑚𝑎𝑥 = 0, and 𝐼0 = 𝐼 

3: while  width(𝐼𝑘) > 2000  or  height(𝐼𝑘) > 2000 : 

4: 𝑘 = 𝑘 + 1, 𝐿𝑚𝑎𝑥 = 𝑘 

5: Scale width and height of 𝐼𝑘−1 by ½ , call the result 𝐼𝑘 

6: 𝑂𝑘 = object_importance (𝐼𝑘) 

7: Upsample 𝑂𝑘 to the size of 𝐼0 using bicubic interpolation 

8: end while 

9: 𝑂(𝑥, 𝑦) = max
𝑘=0..𝐿max

𝑂𝑘(𝑥, 𝑦) 

The function object_importance in Table 1 operates as follows. Image 𝐼𝑙 at 

level 𝑙 is subdivided into tiles. In our implementation, each tile is 500 × 500 pixels. The 

tiles on the right and bottom boundary of the image overlap their neighboring tiles in 

order to fit fully into the image. Each tile is rescaled to 224 × 224 pixels and input to the 

GoogLeNet object detector, which outputs a vector of 1000 real values indicating its 

confidence about the presence of 1000 different object categories in the tile. The 

confidence value is from 0 to 1, which indicates how confident the model is about the 

presence of a certain object category: the larger the value, the more confident the model 

is. Even though GoogLeNet sometimes suggests more than one object in the tile, we 

only take the object category with the largest confidence, denoted 𝑐 . However, the 

detector’s confidence 𝑐 by itself is not a complete indication of the importance of the tile 
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because different object categories may have different importance to the user. To 

account for that, we assign the object importance weight 𝑤 as shown in Figure 9 and 

Table 2.  

 

Figure 9:  All 1000 categories are classified into three classes 

Table 2:  Object importance weights 

 

We divided the 1000 objects categories that GoogLeNet detector can recognize 

into three groups: animals, daily life objects, and typical backgrounds. Table 2 lists some 

of the examples in each category, along with the weights 𝑤. While many different weight 

assignments are possible and, depending on the application, can also be personalized 

for each user, we settled for a simple and sensible assignment that we believe is 

sufficient to demonstrate the effectiveness of the cropping system: animals get the 

highest weight 𝑤 = 1, daily life objects 𝑤 = 0.5, and typical backgrounds 𝑤 = 0. 

Animals 

𝒘 = 𝟏 

Daily life objects 

𝒘 = 𝟎. 𝟓 

Typical backgrounds 

𝒘 = 𝟎 

English setter Umbrella Picket fence 

Egyptian cat Soccer ball Sliding door 

Gazelle Laptop Dam, dike, dyke 

… … … 
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                         𝑤 = {
1,     if object belongs to animals               
0.5, if object belongs to daily life objects
0,      otherwise                                               

 

Once the weight is set according to the object category, the pixels in the tile are 

assigned importance values using the scaled Gaussian function  

𝑂𝑙(𝑥, 𝑦) = 𝑤 ∙ 𝑐 ∙ 𝑒𝑥𝑝 (− (
(𝑥−𝑥0)2

2𝜎𝑥
2 +

(𝑦−𝑦0)2

2𝜎𝑦
2 )) 

where (𝑥0, 𝑦0) is the center of the tile, and 𝜎𝑥 = 𝜎𝑦 = 200 . In Equation (2.2), 𝑤 

represents object importance, which can be obtained from Equation (2.1), 𝑐 represents 

detectors confidence about the presence of the object, and the exponential term 

represents uncertainty about the actual location of the object in the tile, since 

GoogLeNet does not provide the coordinates of the detected object. Figure 10 shows 

the cross-section and Figure 11 shows a surface plot of an example of an object map for 

two neighboring tiles with different detected objects. 

 

Figure 10:  2D cross-section of object map construction process for two tiles 
with different objects 

(2.2) 

(2.1) 
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Figure 11:  3D Object map construction process for two tiles with different 
objects 

We use the center of each tile as the center of the Gaussian function, the 

weighted confidence as the peak value of the Gaussian function, and 200 as the 

standard deviation, which controls the width of the Gaussian function. Since the images 

we are targeting are pretty large, the object may be pretty large too. Suppose that we 
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have an important object which is separated into two adjacent tiles. In order to have a 

smooth transition on the boundary between these two adjacent tiles, we need the 

Gaussian function to decay to half of the peak value at the boundary, which is 250 pixels 

away from the center, so that at the boundary the values of the two neighboring 

Gaussians would be equal for a Gaussian function. In the Gaussian function, the half 

maximum value will occur at 1.177 𝜎, where 𝜎 is the standard deviation. Therefore, we 

choose 200 as the standard deviation so that we have half maximum value at around 

250. Figure 12 shows the cross-section of the object map. In Figure 12, the curves 1 and 

2 are the object maps of two neighboring tiles detected as the same object, so they add 

up to curve 3. The value between two peaks is between 0.9 and 1.1, which is considered 

to be a smooth transition. Figure 13 shows a sample of a full object map construction 

process. 

 

Figure 12:  2-D cross-section of object map construction process for an object 
separated into two tiles 
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Figure 13:  The object saliency map construction process 
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Figure 14:  The multi-resolution object detection process for an image with 
resolution 2519×1581 

An example of multi-resolution object detection is shown in Figure 14. The size of 

the input image ‘1’ is 2519×1581. We first compute the first level object map ‘3’ based 

on the input image ‘1’. And then, we scale down the input image to get the scaled image 

‘2’. We compute the second level object map ‘4’ based on the scaled image ‘2’. After 

that, we combine the first level object map with the second level object map to get the 

final object map. For the combination, the second object map ‘4’ is scaled up to be of the 

same size as the first level object map, and it is shown as ‘5’. Finally, we combine these 

two maps, ‘3’ and ‘5’, by max pooling to get the final object map, ‘6’. 

2.4. Face/Upper Body Detection 

GoogLeNet does not detect humans or human body parts, so we use a separate 

detector for this purpose. Specifically, our face and upper body detection is built upon 

the well-known Viola-Jones detector [24]. It is implemented in MATLAB as function 

cascadeObjectDetector. The cascadeObjectDetector function provides options 

for face detection, upper body detection, eye pair detection and so on. Other than the 

classification model, there are also a few other parameters that could be customized in 

the cascadeObjectDetector function. We set all other parameters as default, except 

the MergeThreshold. The MergeThreshold is the threshold that defines the criteria 

to get the final result in an area where multiple detections are found around an object. 

Groups of detections that meet the threshold are merged to produce one bounding box 

around the target object.  Increasing this threshold will help suppress false detections 
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but runs the risk of missing more promising faces/upper bodies. We have experimented 

with various values and finally decide to set the MergeThreshold as 20. 

 

Figure 15:  Human face and upper body detection result 

 

Figure 16:  Human face and upper body detection saliency map 𝑯(𝒙)  
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As Figure 15 shows, the man’s face in the image is not clear. In the experiment, 

the face detector misses the man’s face, but the upper body detector catches the man. 

Using both face and upper body detectors helps find humans in the input image. 

The multiresolution approach to face and upper body detection operates similarly 

to Algorithm 1. The main difference is that the object_importance function is 

replaced by the face_detect function, which runs the Viola-Jones detector on the 

input image 𝐼𝑙 and returns a map 𝐻𝑙 in which pixels in regions where faces/upper bodies 

are detected are set to 1 and others are set to 0. At the end (line 9 of the algorithm), 

maps 𝐻𝑙 are max-pooled to create the final 𝐻(𝑥, 𝑦).  

2.5. Final Map Construction 

Once the three maps 𝑆(𝑥, 𝑦), 𝑂(𝑥, 𝑦), and 𝐻(𝑥, 𝑦) are created, they are fused as 

follows: 

𝐹(𝑥, 𝑦) = max(𝐻(𝑥, 𝑦), 0.3 ∙ 𝑆(𝑥, 𝑦) + 0.3 ∙ 𝑂(𝑥, 𝑦)) 

The reasoning behind Equation (2.3) is as follows. If a pixel (𝑥, 𝑦) belongs to a 

human face or upper body (𝐻(𝑥, 𝑦) = 1), then the final importance map will have the 

highest value at that position (𝐹(𝑥, 𝑦) = 1), because the second argument of the max 

function is upper bounded by 0.6. If there is no human at (𝑥, 𝑦) (i.e., 𝐻(𝑥, 𝑦) = 0), then its 

importance is determined by bottom-up saliency 𝑆(𝑥, 𝑦) and the possible presence of 

objects 𝑂(𝑥, 𝑦)  each contributing an equal amount to the final importance. We 

experimented with various weights for these two terms. If the object weight is set to be 

very high, a large object with high confidence will be carrying a higher value, and it will 

potentially result in the final crop missing the human. But if the object is large enough, 

and sufficiently important (according to Table 2) while the human figure is very small, we 

want the final crop to give up the relatively small human in favor of the important object. 

Considering the trade-off between the large object and small human face/upper body, 

we experimented with different values, as shown in Figure 17. In this figure, the final 

crops labeled in red with value 0.4 and 0.5 missed the human face/upper body, and 0.1 

or 0.2 may make the whole system only focus on the human face/upper body. Therefore, 

we finally chose 0.3 as the value for the object weight and used the same value for the 

saliency weight. 

(2.3) 
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Figure 17:  Final rectangle for choosing different object weight values in the 
fusion function 

2.6. Image Cropping 

Once the final importance map 𝐹(𝑥, 𝑦) is constructed, we find the rectangle of the 

desired size that includes the maximum total importance, i.e., the maximum sum of 

𝐹(𝑥, 𝑦) within the rectangle. We create a search window with the same size as the final 

required image. The window will slide around the final map, and the summation of all 

values of 𝐹(𝑥, 𝑦) in the search window will be calculated. The window that contains the 

largest summation is the most important part of the image. Finally, we crop this part from 

the original image as the final cropped image. Figure 18 shows the various importance 

maps in the cropping system, along with the final selected rectangle. 

       

                  𝟎. 𝟏                                                                              𝟎. 𝟐 

       

                                  𝟎. 𝟑                                                                                𝟎. 𝟒 

 

𝟎. 𝟓 
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Figure 18:  Top: 𝑶(𝒙, 𝒚) and 𝑯(𝒙, 𝒚). Bottom: 𝑭(𝒙, 𝒚) and the maximum enclosing 
rectangle. 

The above search procedure is inefficient and takes a long time to find the final 

rectangle. To speed it up, we use the Summed area table algorithm [25], also known as 

integral image. This is an algorithm for quickly and efficiently generating the summation 

of values in a rectangular subset of a matrix. 

The value in the summed area table is the summation of all the importance 

values above and to the left. This is shown in Equation (2.4) where 𝐹(𝑥′, 𝑦′) is the value 

at the point (𝑥′, 𝑦′) in the final importance map, and 𝑇(𝑥, 𝑦) is the value at the point (𝑥, 𝑦) 

in the summed area table. Therefore, 𝑇(𝑥, 𝑦) is just the sum of all the importance values 

above and to the left of (𝑥, 𝑦) in the importance map 𝐹: 

𝑇(𝑥, 𝑦) = ∑  𝐹(𝑥′, 𝑦′)𝑥′≤𝑥
𝑦′≤𝑦

 

       

               𝑂(𝑥, 𝑦)                                                                      𝐻(𝑥, 𝑦) 

       

              𝐹(𝑥, 𝑦)                                𝐹(𝑥, 𝑦) with selected rectangle 

 

 

(2.4) 

https://en.wikipedia.org/wiki/Algorithm
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Figure 19:  A example of computing a sum in the Summed Area Table algorithm 
(Adapted from [53])  

Once the summed area table is computed, we can easily obtain the summation 

of values in any rectangular subset of the importance map. This takes a constant 

computing time that is independent of the size of the importance map and the size of the 

rectangle.  

Figure 19 shows four points: (𝑥0, 𝑦0) , (𝑥1, 𝑦0) , (𝑥0, 𝑦1) , and (𝑥1, 𝑦1) . The 

summation over the rectangle in 𝐹 enclosed by these points is 

∑ 𝐹(𝑥, 𝑦) = 𝑇(𝑥1, 𝑦1) + 𝑇(𝑥0, 𝑦0) − 𝑇(𝑥0, 𝑦1) − 𝑇(𝑥1, 𝑦0)
𝑥0<𝑥≤𝑥1
𝑦0<𝑦≤𝑦1

, 

where 𝑇(𝑥𝑖, 𝑦𝑗) are the values in the summed area table at the corresponding points. 

The summed area table algorithm saves a lot of computing time. We found that with this 

algorithm, our system became more than ten times faster than before, when we used a 

straightforward search for the maximum enclosing rectangle. 

2.7. Summary 

In this chapter, we introduced the architecture of our automatic image cropping 

system. The system incorporates AWS saliency estimation, multiresolution object 

detection and classification, multiresolution face/upper body detection and final map 

construction. We use summed area table algorithm to speed up the search for the 

maximum enclosing rectangle in the final map.  

 

           (𝑥0, 𝑦0)        (𝑥1, 𝑦0) 

 

           (𝑥0, 𝑦1)         (𝑥1, 𝑦1) 

(2.5) 
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In order to evaluate the performance of our automatic image cropping system, 

we designed a subjective image quality evaluation mobile application, so that we can 

easily perform a subjective quality test.  The subjective image quality evaluation mobile 

application is introduced in Chapter 3. 
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Chapter 3.  
 
Subjective Test Tool 

Image quality is an important consideration for content creators, distributors, as 

well as for the consumer electronics industry that develops devices used for image 

display. While many “objective” image quality metrics have been developed in the last 

number of years [54, 55], subjective evaluation is still considered to be the ultimate test 

of image quality. This is especially evident when one considers the variety of subjective 

impressions that the same image can make when displayed on different devices.  

In the engineering research community, the most popular set of protocols for 

subjective image quality evaluation comes from the ITU Recommendation BT.500 [29]. 

This chapter describes detailed experimental setup and methodology that can be applied 

to both still image and video quality assessment. In many test protocols described in 

[29], the subjects quantify visual quality in terms of numerical values.  

 

Figure 20:  An example for a popular 5-point categorical quality scale 

For example, as Figure 20 shows, a popular 5-point categorical quality scale allows the 

subject to describe the visual quality of the image or video in terms of the following five 

values, whose explanations are given in brackets: 5 (excellent), 4 (good), 3 (fair), 2 

(poor), 1 (bad). Such an approach to quality assessment is known to create cognitive 

overhead, because subjects often spend considerable time deciding how to map their 

subjective impressions into the given categories. For example, an image whose quality 

5 Excellent 

4 Good 

3 Fair 

2 Poor 

1 bad 
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is quite satisfactory may cause the subject to overthink – is this image “excellent” or 

merely “good?” Should I give it a 5 or 4? 

 

Figure 21:  An example for a 2AFC approach 

An alternate methodology that avoids the issues with categorical scales is the so-

called two-alternative forced choice (2AFC) approach [30]. This methodology has long 

been used in the psychophysics community to measure detection thresholds for various 

psychophysical attributes. More recently, it has also been employed in image [31] and 

video [32] quality assessment. In this approach, test subjects directly compare qualities 

of two images or videos without having to map them to numerical values, which allows 

them to fully focus on quality assessment. For example, in Figure 21, two images are 

shown side by side. In 2AFC, the subject would simply be asked which of the two 

images looks better. 2AFC is the method of choice in the subjective image quality 

evaluation platform described here. We implemented this test platform as a mobile 

application on iOS. Coupled with an easy-to-use, natural user interface afforded by the 

mobile device’s touch screen, our test platform minimizes subjects’ cognitive load and 

permits them to devote full attention to the image quality assessment task. The content 

of this chapter has been presented in [38]. 
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3.1.  

3.2. Subjective Test Methodology 

In this section, we first describe the methodology of Two-alternative forced 

choice (2AFC) for subjective image quality evaluation and the associated statistical test. 

2AFC is an experimental methodology that has been used for a long time in 

psychophysics research [30]. It’s most common use is related to measuring detection 

thresholds for various psychophysical attributes, whereby subjects would be presented 

with two slightly different auditory or visual stimuli, and would be asked whether they are 

able to detect the difference.  

The same methodology can be used for subjective image/video quality 

evaluation [31, 32]. Suppose we have two different versions of the same image. For 

example, one version could be compressed, and the other uncompressed. The images 

would be presented to the subjects, who would be asked to select which of the two 

images looks better. They would be instructed to choose one of the images (randomly, if 

needed) even if they are unsure of which image they think looks better – hence the 

wording “forced choice” in 2AFC. If the two images look indistinguishable, which would 

force the subjects to choose randomly between the two, we expect about half the 

subjects to choose one of the images and the other half to choose the other image. This 

even distribution of votes is usually referred to as the chance level and is associated with 

the null hypothesis. Here, we use Pearson’s chi-squared (𝜒2)  test to evaluate the test 

result. The chi-squared test is used to determine whether there is a significant difference 

between the observed result and the expected result. The expected result is formed 

under the null-hypothesis. The test provides the 𝑝-value, which represents the probability 

that the observed data can be generated under the null-hypothesis. If the 𝑝-value is too 

small, the observed data is unlikely to be generated under the null-hypothesis, so the 

hypothesis has to be rejected. 

Suppose that after 𝑁 subjects have voted, the first image has obtained 𝑛1 votes 

and the second image has obtained 𝑛2 votes, with 𝑛1 + 𝑛2 = 𝑁. If the images have the 

same subjective quality (which is the null-hypothesis in our case), we will expect each 

image to obtain 𝐸1 = 𝐸2 = 𝑁/2 votes. The Pearson’s chi-squared (𝜒2) test statistic is 

computed as [33] 
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𝜒2 = ∑
(𝑛𝑖 − 𝐸𝑖)2

𝐸𝑖

2

𝑖=1

, 

using which a 𝑝-value can be found from 𝜒2 distribution tables or graphs [34]. Figure 22 

shows the relationship between the 𝑝-value and 𝜒2 for a chi-squared distribution with 

one degree of freedom, as is the case here. 

 

Figure 22:  𝒑-value vs. 𝝌𝟐 (blue) and the 𝒑 = 𝟎. 𝟎𝟓 level (red) 

In experimental sciences, the null hypothesis is usually rejected when 𝑝 < 0.05. 

As seen in Figure 22, for this to happen, 𝜒2  needs to be sufficiently large, i.e., the 

observed votes 𝑛𝑖 need to deviate sufficiently from their expected values 𝐸𝑖 under the 

null hypothesis. If this happens to be the case, then the null hypothesis can be rejected, 

and we may conclude that the image that has received more votes has better subjective 

quality. Examples of chi-squared testing of subject responses are given in the last 

section of this chapter. 

3.3. iOS Mobile App for Subjective Evaluation 

The first step for the iOS mobile application development is to set up the 

development environment. The prerequisite for iOS development is a Mac workstation or 

Apple laptop, which runs Apple’s operating system. Second, an iOS device is needed for 

debugging and testing purposes. We choose the iPad for this purpose, because the iPad 

has a larger screen than the iPhone, and it is better for the image quality test. The iOS 
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Simulator can also be used for the debugging purposes, but the test on the real device is 

still needed before the final deployment.  

When the hardware is ready, the Xcode needs to be installed for development. 

To run an application on a real device, a registered Apple developer account is needed 

and iOS Developer Program needs to be subscribed to. Also, this gives us access to all 

beta software from Apple, related to iOS, which is pretty important from a developer’s 

perspective. 

Our app for subjective image quality evaluation is developed in Xcode and built 

on the iOS platform. When the app is started, brief instructions are shown on how to use 

it. The subject is asked to enter his/her name or other suitable ID, and an e-mail address 

where the test results should be sent – this e-mail address is provided to the subject by 

the experimenter, as Figure 23 shows.  

 

Figure 23:  The starting page of the subjective test application: The tester is 
asked to enter his/her name or other suitable ID, and an e-mail 
address where the test results should be sent – this e-mail address 
is provided to the tester by the experimenter. 

The app searches the image gallery on the mobile device for images with 

filenames in a particular format. Specifically, the app looks for images whose filenames 

are ‘A<index>’ and ‘B<index>’. These images are placed into the image gallery by the 

experimenter prior to the test. ‘A’ and ‘B’ indicate the two classes of images being 

compared, for example compressed and uncompressed, or images produced by two 
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different image processing algorithms. Meanwhile, <index> is the index of the image pair 

that will be displayed to the subject: pair A1-B1 is displayed first, followed by A2-B2, and 

so on. Once the test starts, image pairs are displayed on the screen in sequence 

according to the index.  

 

Figure 24:  A screenshot of the image pair being compared 

Figure 24 shows an example. Each pair is displayed for 10 seconds, during 

which time the subject can vote for the image that (s)he thinks has higher quality by 

touching that image on the touch screen. The vote is recorded and the app displays the 

next image pair. The 10 second interval comes from [30], which recommends visual 

stimuli be displayed to the subjects for 10 seconds. However, this can easily be modified 

to fit a particular experimental design. Within each pair, the app randomly chooses 

whether to display the image from class ‘A’ on the left or the right side (and thereby, the 

image from class ‘B’ on the opposite side). This is done to counteract side bias – a 

phenomenon whereby a subject may have a preference for the stimulus on one side of 

his/her field of view irrespective of the quality.  



35 

If the subject does not vote for any of the two images within the designated 10-

second interval, the app randomly chooses one class (‘A’ or ‘B’) and records the random 

vote. This strategy enforces the forced choice aspect of 2AFC. If the images in a 

particular pair look so similar that the subjects cannot make up their mind as to which 

one looks better, the random voting will generate vote counts 𝑛𝑖 that are close to the 

expected null-hypothesis vote count 𝑁/2. This will make the 𝜒2 test statistic small and 

thereby induce a large 𝑝-value, which will cause the null hypothesis not to be rejected. 

The same will happen if the subjects do vote within the designated 10-second period but 

split their votes nearly evenly between the images of the two classes. Once all image 

pairs are processed, the app provides a summary of the results for the subject and e-

mails the complete results to the designated e-mail address.  

Figure 25 shows a typical test ending screenshot. It shows a brief summary of 

the test. After selecting the “Email result” button, a summary email, as Figure 26 shows, 

pops up, and is sent to the email address set at the beginning of the test. 

 

Figure 25:  A Screenshot of the test ending page: a summary of the results is 
shown to tester 
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Figure 26:  A typical email that contains the result will be constructed and sent 
to experimenter 

3.4. Evaluation of the Test Application 

To evaluate the developed test app, we collected a set of 16 High Dynamic 

Range (HDR) images from [37], comprising various indoor and outdoor scenes. Each 

HDR image was processed by Tone Mapping Operators (TMOs) from [35] and [36] with 

their default settings. This produced two Low Dynamic Range (LDR) images with 8 bits 

per color channel for each HDR image. Each LDR image was stored in a JPEG format 

with quality factor 100 and no subsampling. Images were assigned filenames according 

to the convention described in the previous section and copied to the image gallery on 

an iPad3 device. For the test, the screen resolution was set to 2548×1036 and the iPad 

was fully charged and with maximum screen brightness.  

A total of 16 subjects (5 women, 11 men) took part in the experiment. All of them 

were between 20-30 years old, with normal or corrected-to-normal vision. They were 

naïve as to the purpose of the test, and were instructed to choose an image that they 
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thought looked better in each image pair. The test took place in an office with 

conventional LED office lighting.  

Table 3:  Number of voters for the images produced by the two TMOs, along 

with the 𝒑-value of the corresponding 𝝌𝟐 Test 

Image pair TMO [35] TMO [36] 𝑝-value 

1 5 11 0.1336 

2 8 8 1.0000 

3 11 5 0.1336 

4 8 8 1.0000 

5 2 14 0.0027 

6 7 9 0.6171 

7 0 16 6×10−5 

8 9 7 0.6171 

9 10 6 0.3173 

10 4 12 0.0455 

11 11 5 0.1336 

12 9 7 0.6171 

13 11 5 0.1336 

14 12 4 0.0455 

15 8 8 1.0000 

16 1 15 0.0005 

Total 117 139 0.1691 

Subjects’ votes were sent by the app to the designated e-mail address, from 

where they were collected into an Excel sheet and statistically analyzed. The results are 

shown in Table 3, where the number of votes obtained for each image is given along 

with the 𝑝 -value of the corresponding 𝜒2  test. Since there were 16 subjects in the 

experiment, under the null hypothesis (images of equal quality), each image is expected 

to obtain 8 votes, which is 𝐸1 = 𝐸2 = 8 in Equation (3.1). The 𝑝-values indicate that in 

most cases, the obtained votes did not deviate sufficiently from their expected values to 
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reject the null hypothesis. Therefore, in most cases, the images produced by TMOs from 

[35] and [36] were of equal quality, in a statistical sense. 

An example of the case where the votes were split evenly is shown in Figure 27. 

This figure shows image pair #2, where each image received 8 votes. It is evident that 

the images are different. The one on the right seems to have higher contrast, which is 

usually associated with high subjective quality. However, this comes at the expense of 

some overexposure, especially in the areas around and below the sun. In the end, the 

higher contrast did not help the image on the right – both images won the same number 

of votes, and are therefore considered to be, statistically speaking, of the same 

subjective quality.  

 

Figure 27:  Image pair #2, where the votes were split evenly 

There were 5 instances where 𝑝 < 0.05 was obtained and the null hypothesis 

could be rejected. For these cases, the 𝑝-value and the statistically higher number of 

votes are indicated in bold in Table 3. In four of these cases, TMO from [36] produced 

the image that was judged to have better subjective quality, and in one case, TMO from 

[35] produced a better looking image. However, considering the total number of votes 

across the 16 images, the two TMOs were in a statistical tie – neither of them obtained a 

statistically significant advantage in the number of votes. Therefore, while each TMO 

may produce a better looking image in a specific instance, the results suggest that 
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neither one can be considered better overall, at least in terms of the resulting image 

quality on mobile iOS devices.  

This test was run simply to evaluate the mobile test app. In the next chapter, we 

employ the test app to compare the proposed image cropping approach against a 

benchmark that employs only bottom-up saliency.  
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Chapter 4.  
 
Evaluation of the Proposed Automatic Cropping 
Technique 

In this chapter, we will evaluate the proposed automatic cropping technique by 

comparing it against a suitably chosen benchmark. For the benchmark we choose a 

cropping system that bases its decisions only on the bottom-up saliency map produced 

by the AWS model. In other words, the benchmark system looks like Figure 7 with 

multiresolution object detection and multiresolution face/upper body detection removed. 

This can be considered as a representative of attention-based cropping methods [46, 

47]. 

In [41], the researchers use the overlap percentage between the proposed crop 

and the “ground truth” to evaluate the performance of their cropping algorithm. The crop 

with the large overlap area was consider as the better crop. There are a lot of 

exceptions. For example, how to judge which one is better if two crops have the same 

overlap value. Also, the crop with the higher overlap value may be considered as the 

bad crop if it misses an important object. There is also a question of what is the “ground 

truth” in this case, because different people themselves may have different opinions on 

what is important in a given image. In this thesis, we use another way to evaluate the 

performance of the proposed cropping system, through subjective evaluation of final 

crop. This kind of methodology is commonly used in evaluating the image quality [2, 68]. 

4.1. Test Image Dataset 

The image cropping literature generally uses small images (by today’s standards) 

for cropping. Even the latest work on the topic, [43], uses a dataset where the vast 

majority of images have width and height no larger than 1280. Since most of today’s 

displays, even mobile ones, have sufficient resolution to display such images, we believe 

image cropping should be tested on larger images. For this purpose, we selected a set 

of 20 high-resolution images from unsplash.com, shown in Figure 28. These images 

include a variety of content, from indoor to outdoor scenes, including humans. Most 

images have artistic flavor to them, which is a challenge for both bottom-up saliency 
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models as well as object detectors, because the lighting and scene composition differ 

from “natural” images on which they are trained. Image resolutions in the dataset have a 

range from 19201280 to 57603840. 

 

Figure 28:  The sample images for testing 

4.2. Test Setup 

The target crop size for each test image was one quarter of its original size: half 

the width and half the height. The subjective test was carried out using our mobile test 

app. However, the test protocol is slightly different from the one described in the 

previous chapter. Since the crop is supposed to capture the most important part of the 

original image, the subjects need to know what the original image looks like. Hence, 

prior to showing each crop pair, we showed the original image to the subject. 

The original image was shown for 5 seconds. After 5 seconds, the pair of 

cropped images, one produced by the benchmark and the other by the proposed 

method, was shown side by side for 10 seconds. This procedure was selected according 
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to Section 4 in [29]. To counteract the side bias, the crops were randomly put on either 

side: the benchmark crop was sometimes on the left and sometimes on the right and 

vice versa for the proposed crop. During these 10 seconds, the subject was able to vote 

for whichever crop they think is a better representation of the original image by touching 

the corresponding image on the iPad. If the subject does not vote for any of the two 

images within the designated 10-second interval, the app randomly chooses one image 

and records the random vote. Once the subject finishes voting, the next original test 

image will show up, and the application will continue the process until all cases are 

tested.  

  A total of 22 subjects, 17 males and 5 females, took part in the experiment. All of 

them were between 20-30 years old, with normal or corrected-to-normal vision. They 

were naïve as to the purpose of the test, and were instructed to choose an image that 

they thought better describes the original image. Note that if the subjects had been 

asked a different question (e.g. which image looks better?), or if they had not seen the 

original image, the responses could have been different. The test took place in a room 

with conventional LED office lighting. Considering that the sizes of the tested images are 

very large, we projected the iPad screen on to a 55inch Samsung 4k TV and the 

subjects were looking at the TV instead of the iPad screen. Subjects’ votes were sent by 

the app to the designated e-mail address, from where they were collected into an Excel 

sheet and statistically analyzed. 
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4.3. Test Result 

Table 4:  Number of voters for the images produced by the AWS based 
cropping and the proposed algorithm, along with the 𝒑-value of the 

corresponding 𝝌𝟐 Test 

Image pair AWS Crop Proposed Crop 𝑝-value 

1 5 17 0.0105 

2 14 8 0.2008 

3 14 8 0.2008 

4 7 15 0.0880 

5 11 11 1 

6 17 5 0.0105 

7 10 12 0.6698 

8 0 22 2.73E-06 

9 0 22 2.73E-06 

10 12 10 0.6698 

11 3 19 0.0006 

12 0 22 2.73E-06 

13 10 12 0.6698 

14 15 7 0.0880 

15 11 11 1 

16 5 17 0.0105 

17 3 19 0.0006 

18 11 11 1 

19 10 12 0.6698 

20 9 13 0.3937 

Total: 167 273 4.34E-07 

 

Subjective test results are presented in Table 4, where the number of votes for 

each image crop produced by the benchmark and the proposed method is shown in the 

second and third column, respectively. The last column shows the 𝑝 -value for the 

corresponding chi-squared (𝜒2) test statistic [22]. In experimental sciences, the result is 

usually considered statistically significant when 𝑝 < 0.05. There are eight such cases in 

Table 4, indicated in bold typeface. In seven of these cases (images 1, 8, 9, 11, 12, 16, 

17) the proposed cropped image received a statistically higher number of votes, and 
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these cases are shown in green. In one case (image 6, shown in red), the benchmark 

cropped image received a higher number of votes. In other cases the difference in the 

number of votes was not statistically significant. Overall, however, the proposed 

cropping method received a statistically larger number of votes, as indicated in the last 

row of the table.  

 

Figure 29:  The chart showing how many votes each algorithm got (Orange for 
proposed; blue for AWS) 

Another illustration of the results is shown in Figure 29. Here, the horizontal axis 

is the image pair index, and the vertical axis is the number of votes.  The orange bars 

represent the votes for the proposed crop while the blue bars represent the votes for the 

benchmark crop. It is clear that the blue bar and orange bar are almost equal in most 

cases, but for image pairs 1, 8, 9, 11, 12, 16, and 17, the orange bar is much longer than 

the blue bar, which means the proposed crop was judged to be much better than the 

benchmark crop. Next, we show two illustrative examples.  
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Figure 30:  Image pair #8, where the proposed cropped image (right) got all the 
votes 

Figure 30 shows an example of the case where the proposed crop got all the 

votes. The benchmark crop misses the human figure, while the proposed crop includes 

it.  

 

Figure 31:  Image pair #6, where the proposed cropping image (right) got fewer 
votes than the AWS cropping image (left) and p-value is less than 
0.05 

Figure 31 shows crops of image 6, where the benchmark crop was preferred (17 

vs. 5). Even though the proposed crop includes more of the content of the original image 

(for example, the shaker in the bottom right, which is missing from the benchmark), the 

benchmark crop was preferred by the participants, presumably because of its higher 

aesthetic appeal. This illustrates the importance of aesthetic analysis for image cropping, 

especially in cases where the original image does not include humans and where 

aesthetic considerations may be considered more important than attention-related 

criteria. 

 Table 5 shows all the test images and also the voting results. 
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Table 5:   All test images and results 
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Chapter 5.  
 
Conclusions and Future Work 

We presented an image cropping system built upon the principles of bottom-up 

saliency and top-down semantics. Taking advantage of recently developed high-

performance object detection and classification, we were able to construct an 

importance map for the image, which assigns different importance to various classes of 

objects and combines this with bottom-up saliency. Images cropped using this approach 

were judged to be better overall by participants in a subjective test, compared to 

conventional saliency-based crops. However, there were cases where aesthetics-related 

factors led to saliency-based crops to be preferred over the proposed crops, despite the 

fact that they were missing out on some content.  

A number of extensions of the proposed cropping system are possible. For 

example, different object groupings and greater differentiation of weights in Table 2 

could lead to better importance maps. Weights can even be personalized if the user 

preferences are known, for example from their social media profiles. Also, importance 

map fusion in Equation (2.3) may be optimized. Another improvement could be the 

inclusion Recent object detectors, such as YOLOv2 [67] and Faster R-CNN [61], are 

getting better at classifying a larger set of objects and could potentially provide similar 

level of semantic interpretation together with better localization compared to our current 

object detection module. Our overall system architecture is flexible enough to allow 

replacement of an object detector on a plug-and-play basis. 

 Finally, a recent trend in many research areas has been to train end-to-end deep 

network models to perform certain tasks without separating them into smaller sub-

problems, and this approach might work for image cropping as well. However, this would 

require much larger training datasets of “correct” crops that are currently not available.  
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