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Abstract

In this thesis we develop a framework to study the circuit diameters of polyhedra. The
circuit diameter is a generalization of the combinatorial (edge) diameter, where walks are
permitted to enter the interior of the polyhedron as long as steps are parallel to its circuit
directions. Because the circuit diameter is dependent on the specific realization of the poly-
hedron, many of the techniques used in the edge case do not transfer easily. We reformulate
circuit analogues of the Hirsch conjecture, the d-step conjecture, and the non-revisiting con-
jecture, and recover some of the edge case relationships in the circuit case. To do this we
adapt the notion of simplicity to work with circuit diameter, and so we define C-simplicity
and wedge-simplicity.

Then, we prove the circuit 4-step conjecture, including for unbounded polyhedra, by showing
that the original counterexample U4 to the combinatorial analogue satisfies the Hirsch bound
in the circuit case, independent of its realization. This was the first known counterexample
to Hirsch, and several families of counterexamples are constructed from U4. In particular,
the unbounded Hirsch conjecture could still hold in the circuit case.

We also use computational methods to study Q4, the bounded counterpart to U4, and give
two realizations with different circuit diameters. It remains open whether Q4 is circuit
Hirsch-sharp; however, we are able to lower the distance bound for at least one direction
between the two far vertices of Q4. Finally, we present some auxiliary results involving
representations of polyhedra and circuit calculations.

Keywords: discrete geometry; polytope diameters; circuit diameter; linear optimization
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Chapter 1

Introduction

The classical simplex method in linear programming solves a linear optimization problem
over a convex polyhedron P = {x : Ax ≤ b} by taking steps along its edges starting at
a vertex and moving towards an optimal vertex. As such, the combinatorial diameter of
P , which is the largest distance between two vertices on its vertex-edge graph, offers some
insight into the performance of this algorithm – for example, a superpolynomial lower bound
on the diameter would imply that there is no polynomial-time pivot rule for simplex. Recent
years have seen encouraging progress in this regard, with both upper bounds and lower
bounds (for generalizations) being discovered (e.g. Todd [Tod14], Sukegawa and Kitahara
[SK15], Sukegawa [Suk17]; Borgwardt et al. [BLF17], Eisenbrand et al. [EHRR10], Labbé
et al. [LMS17]). Much of the work in this field was spurred by the following claim, put forth
in 1957 by W. Hirsch to G. Dantzig via written communication:

Conjecture 1.1 (Hirsch, 1957). The diameter of a d-dimensional polyhedron with f facets
is bounded above by f − d.

Surprisingly it was proven in (Klee and Walkup [KW67]) that the Hirsch conjecture is
equivalent to each of the following claims:

Conjecture 1.2 (d-step). The diameter of a d-dimensional polyhedron with 2d facets is
bounded above by d.

Conjecture 1.3 (nonrevisiting). Between any two vertices in a polyhedron there is a walk
that does not enter any facet it has already left.

However we now know these claims to not be true in general – in the same paper Klee
and Walkup give an unbounded counterexample in 4 dimensions that has 8 facets and
diameter 5; Santos constructed in [San12] the first bounded counterexample, this time in
43 dimensions, having 86 facets and diameter at least 44 (it was further improved to a
20-dimensional counterexample in Matschke et al. [MSW15]).

Standard approaches to obtaining bounds on diameters include looking at generaliza-
tions of polyhedra and studying variants of the combinatorial diameter. In this thesis
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we consider the diameter variant called the circuit diameter, introduced in (Borgwardt et
al. [BFH15]), where we allow vertex-vertex walks to enter the interior of the polyhedron,
using the circuit directions of P .

Definition 1.4 (Circuit direction). Given a polyhedron

P = {x ∈ Rd : A1x = b1, A2x ≥ b2},

with Ai ∈ Qmi×d and bi ∈ Qmi for i = 1, 2, the set of circuit directions, or circuits,
C(A1, A2) of A1 and A2 are those vectors g ∈ ker(A1)\{0} for which A2g is support-minimal
in
{
A2x : x ∈ ker(A1)\{0}

}
Here, ker(A1) = {x ∈ Rd : A1x = 0}. When f1 = 0 we assume ker(A1) = Rd.

We refer to the circuits of a polyhedron P by C(P ). These were first introduced by
Rockafellar as elementary vectors [Roc69]. Note that since g ∈ C(P ) ⇒ λg ∈ C(P ),
without loss of generality we can normalize the members of C(P ) to have coprime integer
components. Also, observe that the definition does not depend on the vectors b1,b2. In
fact, C(P ) is exactly the set of potential edge directions of P for varying right-hand sides.
In particular, C(P ) contains the actual edge directions of P .

Figure 1.1: (L) Incident edge directions at a vertex; (R) A step along a circuit direction
that passes through the interior

Each step in a circuit walk in a polyhedron is parallel to some circuit in C(P ), and
is feasible and maximal (i.e. the circuit direction is traversed as far as possible such that
feasibility is preserved). Circuit distance and circuit diameter are then defined similarly as
in the combinatorial scenario.

Definition 1.5 (Circuit distance). Given two points x,y ∈ P , the circuit distance from x
to y, denoted distC(x,y), is the smallest number of steps in a circuit walk from x to y.

Definition 1.6 (Circuit diameter). Given a polyhedron P , the circuit diameter of P ,
denoted ∆C(P ), is the length of the longest shortest circuit walk connecting any two of its
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vertices. That is,
∆C(P ) = max

x,y∈V (P )
distC(x,y).

It is appealing to consider this diameter variant because the circuit diameter bounds the
combinatorial diameter from below; this is because the set of edge directions of a polyhedron
is a subset of its circuit directions. Analysis is not straightforward, however, since the circuit
diameter is dependent on the realization of the polyhedron.

In this thesis we reformulate Conjectures 1.1, 1.2, and 1.3 using circuits; whether or not
the Hirsch bound holds for circuit diameter is still open. Let ∆C(f, d) be the largest circuit
diameter achieved among d-dimensional polyhedra with f facets.

Conjecture 1.7 (Circuit Hirsch, Borgwardt et al. [BFH15]). ∆C(f, d) ≤ f − d.

We formulate the circuit d-step conjecture, a conjecture on nonrevisiting circuit walks,
and one on Dantzig figures, which are d-dimensional polyhedra with 2d facets and with two
distinguished vertices u and v such that exactly d facets are incident to each of u and v.

To adapt Klee-Walkup constructions to the circuit framework we modified key polyhe-
dral definitions. For example, d-dimensional polyhedra whose vertices are each contained
in exactly d facets are called simple polyhedra. These polyhedra satisfy the nice property
that each step in an edge walk leaves and then enters exactly one facet. Moreover, any
non-simple polyhedra can be made simple by a small perturbation of its facets. For circuit
walks, since they are allowed to pass through the interior of the polyhedron, more than one
facet may be left at each step. So we define the concept of C-simplicity (or circuit-simplicity)
to apply to polyhedra where circuit walks satisfy the desired property of only entering one
new facet at each step. It turns out that via a series of perturbations one can also make
any non-C-simple polyhedron into a C-simple one.

Moreover, we study the wedging operation that was applied in both (Klee and Walkup
[KW67]) and (Santos [San12]) to build new polyhedra from old ones, and how the circuits
and circuit diameters are affected by this construction. This operation will be formally
defined in Definition 2.47.

Figure 1.2: The wedge on P over facet F .
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When taking the wedge on a polyhedron over one of its faces, one obtains a new polyhe-
dron whose facets and vertices relate back to those of the original polyhedron in a particular
way. This operation also preserves simplicity; that is, the wedge on a simple polyhedron
is also simple. Since this transfer does not hold for wedges on C-simple polyhedra, for
proving the main theorem it is necessary to define a stronger version of C-simplicity where
wedges can be taken so that the result is still C-simple. Using these techniques we prove
the following relationships among these circuit conjectures:

Theorem 1.8. Consider the following statements:

(1) Let u,v be two vertices of a k-wedge-simple polyhedron P for k ≥ f . Then there is a
non-revisiting circuit walk from u to v.

(2) ∆C(f, d) ≤ f − d for all f ≥ d

(3) ∆C(2d, d) ≤ d for all d

(4) For all d-dimensional Dantzig figures (P,u,v), the circuit distance from u and v is at
most d.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

Another main result of this thesis is to prove that the circuit diameter of the Klee-Walkup
counterexample satisfies the Hirsch bound, independent of realization. In Section 3.4 we
use this to prove the circuit 4-step conjecture for unbounded polyhedra (i.e. 4-polyhedra
with 8 facets have circuit diameter at most 4, regardless of the realization), in contrast to
the combinatorial case.

Theorem 1.9. The maximum circuit diameter of a 4-dimensional polyhedron with 8 facets
is 4, independent of realization.

An alternative proof of this is also given, that builds upon the results of Santos et
al. [SST12]. As for the Santos counterexample (and others of the same construction) it is
a challenging open problem to determine whether they satisfy circuit Hirsch, or if there is
some realization that does not.

The remainder of this thesis is structured as follows: Chapter 2 discusses preliminaries
and a brief survey of results on polyhedral diameters in the edge and circuit frameworks;
Chapter 3 contains our main results (the adaptation of a number of polyhedral concepts
into the circuit diameter framework; formulating and proving relationships among a number
of circuit diameter-related theorems; a more concrete result in the resolution of the circuit
4-step conjecture); Chapter 4 discusses some of the computations we did to aid in the
analysis, the challenges we encountered along the way, and some auxiliary results; Chapter
5 concludes the thesis. A preliminary version of some of the results is available as an ArXiv
preprint (Borgwardt, Stephen, Yusun [BSY16]), but note the discussion of Theorem 1.8
contains an error. The figures in this paper were created using Geogebra [geo].
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Chapter 2

Background and Related Results

In this chapter we briefly go over notation and relevant definitions, and summarize results
about the diameter of polyhedra (in both the combinatorial and the circuit settings).

2.1 Preliminaries

We follow Bertsimas and Tsitsiklis ([BT97]) and Grünbaum ([Grü03]) for the relevant defi-
nitions and properties.

Definition 2.1. A convex polyhedron, or simply polyhedron, is a set of the form

P = {x ∈ Rd : A1x = b1, A2x ≥ b2},

where Ai ∈ Qmi×d and bi ∈ Qmi , for i = 1, 2.

That is, P is the finite intersection of the hyperplanes described by the equalities A1x =
b1, and the half-spaces of the form ajx ≥ bj , where the aj vectors are the rows of A2, and
bj is the jth component of b2.

Now let us make the following important definitions:

Definition 2.2 (Affine and convex combination). Given points x1,x2, . . . ,xk ∈ Rd and
scalars λ1, λ2, . . . , λk ∈ R such that

∑
i λ1 = 1, the point

∑k
i=1 λixi is said to be an affine

combination of the points x1,x2, . . . ,xk.
If we restrict the scalars λi to be nonnegative, then the point

∑k
i=1 λixi is called a convex

combination of the points x1,x2, . . . ,xk.

Definition 2.3 (Affine and convex hull). The affine hull aff(X) (convex hull conv(X)) of
a set X of points is the set of all finite affine (convex) combinations of points in X.

Definition 2.4 (Affine and convex set). A set S ⊆ Rd is said to be affine if for all pairs
x1,x2 ∈ S, the point (1− λ)x + λy is also contained in S, for any λ ∈ R.
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The set S ⊆ Rd is called convex if for all pairs x1,x2 ∈ S, the point (1 − λ)x + λy is
also contained in S, for any λ ∈ (0, 1).

Figure 2.1: The affine hull (L) and convex hull (R) of three points in space.

Because we do not restrict the scalars λi to be nonnegative when taking affine combina-
tions, the affine hull of a set X of points is just the collection of all lines that pass through
any two distinct points in X; in contrast to this, the convex hull contains all line segments
formed by taking two points X as endpoints.

Geometrically, a set S is convex if given any two points in S, the segment connecting
the two points is also contained in S. These sets are ‘easy’ to optimize over, as we will see
in the next section. Moreover, the intersection of two (or more) convex sets is also convex.
Since half-spaces are convex, polyhedra are convex as well.

Instead of using inequalities to describe polyhedral sets, we can also use points:

Definition 2.5 (Extreme point). A point x ∈ Rd is said to be an extreme point of a
polyhedron P if it cannot be written as a convex combination of points y, z ∈ P , that is, if
x = λy + (1− λ)z with λ ∈ (0, 1) and y, z ∈ P , then x = y = z.

Definition 2.6 (Vertex). A point x ∈ Rd is said to be a vertex of the polyhedron P if there
exists a linear functional c ∈ Rd such that cT x < cT y for all y ∈ P , y 6= x.

Definition 2.7 (Basic solution). A point x ∈ Rd is said to be a basic solution of P = {x ∈
Rd : A1x = b1, A2x ≥ b2} if

(a) All equality constraints are active at x (so A1x = b1);

(b) Out of the constraints active at x, there are d of them that are linearly independent.

If x ∈ P as well, then it is called a basic feasible solution of P .

What is interesting about these definitions is that they are equivalent:

Proposition 2.8. If P = {x : Rd : Ax ≥ b} is a nonempty polyhedron and x ∈ P , then
the following are equivalent:

(a) x is an extreme point;

6



(b) x is a vertex;

(c) x is a basic feasible solution.

Hence in what follows we use the above three terms interchangably, and denote by
V (P ) the set of such points in P . Note that it is possible for V (P ) to be empty even if P
is nonempty; for instance, consider the polyhedron {(x1, x2) ∈ R2 : x1 ≥ 0}. Since d = 2
but only one linear inequality is given, this polyhedron does not have any basic feasible
solutions, and so V (P ) = ∅. We call polyhedra with at least one vertex pointed; in this
thesis we consider pointed polyhedra unless otherwise noted.

We mention an easy characterization of pointedness:

Proposition 2.9. A polyhedron is pointed if and only if it does not contain a line.

Figure 2.2: A polyhedron with no vertices.

If P is bounded, then it cannot contain a line, and we have the following:

Proposition 2.10. Suppose P is a nonempty polytope. Then P = conv(V (P )).

This means that any point in P can be written as a convex combination of its vertices.

Figure 2.3: The 3-cube is the convex hull of its eight vertices.

For unbounded polyhedra, the vertices do not give a complete description. To see why,
we define rays and directions:

7



Definition 2.11 (Ray). A ray is a set of the form {x ∈ Rd : x = x0 + λw, λ ≥ 0}, where
w 6= 0. Here w is called the direction of the ray.

Definition 2.12 (Recession direction). Given a polyhedron P , a nonzero vector w is called
a direction of recession, or simply direction of P if for each x0 ∈ P , the ray
{x ∈ Rd : x = x0 + λw, λ ≥ 0} is contained in P .

If a polyhedron is bounded, it does not have any directions of recession; this implies
that we can prove that a polyhedron is unbounded by showing that it contains a ray.

Definition 2.13 (Extreme direction). Given a polyhedron P , a nonzero vector w is called
an extreme direction of P if it cannot be expressed as a positive combination of two distinct
directions of P ; that is, it cannot be written in the form w = λ1w1 + λ2w2 for w1,w2 are
directions of P such that w1 6= kw2 for any k 6= 0, and λ1, λ2 > 0.

Definition 2.14 (Extreme ray). Given a polyhedron P , a ray {x ∈ Rd : x = x0+λw, λ ≥ 0}
is called an extreme ray of P if w is an extreme direction of P .

Note that if w is a direction of P , then so is λw for any λ > 0. Hence when speaking
of the set of extreme directions of a polyhedron, we implicitly assume that we are taking a
representative from each equivalence class.

We can also define extreme directions using the recession cone of a polyhedron:

Definition 2.15 (Cone). A set C ⊂ Rd is a cone if λx ∈ C for all λ ≥ 0 and all x ∈ C.

Definition 2.16 (Polyhedral cone). A polyhedral cone is a set of the form C = {x ∈ Rd :
Ax ≥ 0}.

Definition 2.17 (Recession cone). Given a polyhedron P = {x ∈ Rd : Ax ≥ b}, the
recession cone of P is the polyhedral cone C = {z ∈ Rd : Az ≥ 0}.

Note that in general, cones may not be convex. However, the polyhedral cone and the
recession cone are examples of convex cones. The recession cone of a polyhedron is exactly
the set of its directions of recession; so for polytopes the recession cone is the set {0}.
The extreme directions of a polyhedron can thus be seen as the extreme directions of its
recession cone. Algebraically, the extreme directions of C are those elements w ∈ C such
that there are d−1 linearly independent inequalities among Az ≥ 0 that are met at w with
equality. Now we can state the following fundamental result:

Theorem 2.18 (Resolution Theorem (see, e.g. Bertsimas and Tsitsiklis [BT97])). Let

P = {x ∈ Rd : Ax ≥ b}

8



be a nonempty polyhedron with at least one extreme point. Let x1,x2, . . . ,xk be the extreme
points, and let w1,w2 . . . ,wr be the extreme directions of P . Let

Q =


k∑

i=1
λixi +

r∑
j=1

θjwj : λi ≥ 0, θj ≥ 0,
k∑

i=1
λi = 1

 .
Then Q = P .

The summation
∑r

j=1 θjwj , θj ≥ 0, j = 1, 2, . . . , r is called a conic combination of
the points w1,w2, . . . ,wr. Hence this theorem says that a point in a polyhedron can be
expressed as the sum of a convex combination of its vertices and a conic combination of its
extreme rays. This has various implications in the study of linear optimization problems,
which we will discuss in the next section. For now we continue discussing the geometry and
structure of polyhedra.

Definition 2.19 (Supporting hyperplane). Given a polyhderon P = {x ∈ Rd : Ax ≥ b}, a
hyperplane H = {x ∈ Rd : aT x = b} is called a supporting hyperplane of P if

(a) P is contained in either one of the two half-spaces H≥ = {x : aT x ≥ b} or
H≤ = {x : aT x ≤ b}; and

(b) P ∩H 6= ∅.

The vector a is called the outward normal of this supporting hyperplane.

Definition 2.20 (Dimension). The dimension of an affine space is the largest number of
affinely independent vectors it contains, minus 1.

In particular, the dimension of the empty set is −1, the dimension of a singleton set is
0, the dimension of a line is 1, and the dimension of a hyperplane in Rd is d − 1. Now we
can define the faces of polyhedra.

Definition 2.21 (Face). Let P = {x ∈ Rd : Ax ≥ b}. Then the set F is said to be a face
of P if:

1. F = ∅;

2. F = P ; or

3. F = P ∩H for some supporting hyperplane H of P .

The dimension of F is the dimension of aff(F ). We say that F is a k-face of P if it is a
face of dimension k.

Definition 2.22 (Facet). Suppose that P is a polyhedron of dimension d. Then:

1. The faces of P of dimension d− 1 are called its facets; and
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2. The faces of P of dimension 1 are called its edges.

We denote the set of edges of a polyhedron P by E(P ). Also, observe that the 0-
dimensional faces of P are its vertices V (P ). In Figure 2.4 the above definitions are illus-
trated – H1 ∩P is a facet, H2 ∩P is an edge, and H3 ∩P is a vertex. The d-cube in general
has 2d facets and 2d vertices (so, the 3-cube has 6 facets and 8 vertices).

Figure 2.4: Supporting hyperplanes for a facet, an edge, and a vertex of the 3-cube.

The facets of a polyhedron play a special role in its description, in the same way as
vertices and rays do.

Definition 2.23 (Facet-defining). An inequality aT x ≥ b is said to be facet-defining for
the polyhedron P if the set P ∩{x ∈ Rd : aT x ≥ b} is a facet of P . The hyperplane aT x = b

is called a defining hyperplane for P .

Definition 2.24 (Irredundant). The representation of a polyhedron P in the form P =
{x ∈ Rd : Ax ≥ b} is said to be irredundant or minimal if removing any inequality from
Ax ≥ b results in a different polyhedron.

Proposition 2.25 (see, e.g. Grünbaum [Grü03]). Suppose that P ⊆ Rd is a d-dimensional
poyhedron. Then there is a unique irredundant description of P given by the set of its
facet-defining inequalities.

The faces of a polyhedron also satisfy the following properties:

Proposition 2.26. Let P be a polyhedron, and let F1 and F2 be faces of P . Then F1 ∩ F2

is a face of P .

Proposition 2.27. Let P be a polyhedron with vertex set V (P ), and let F be a face of P .
Then F is a polyhedron with vertex set V (P ) ∩ aff(F ).
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Proposition 2.28. Let P be a polyhedron, let F1 be a face of P , and let F2 be a face of
F1. Then F2 is a face of P .

We can also define a k-face F of P by the number of linearly independent facets active at
F . For a general polyhedron P ⊆ Rd, vertices are the intersections of d linearly independent
facets, edges are the intersections of d−1 of them, and so on. Furthermore, the combinatorial
structure of P is determined by its face lattice:

Definition 2.29 (Face lattice). Given a polyhedron P , its face lattice F(P ) is the set of
its faces, partially ordered by inclusion.

If two polyhedra have the same face lattice, they are combinatorially identical:

Definition 2.30 (Combinatorial equivalence). Two polyhedra P1 and P2 are said to be
combinatorially equivalent, or isomorphic, or of the same combinatorial type, if F(P1) is
isomorphic to F(P2). That is, there is an inclusion-preserving bijection between the faces
of P1 and the faces of P2.

This is an important definition as many properties of a polytope can be inferred from
its combinatorial type. In fact, when it is clear we will talk about polyhedra in terms of
the entire equivalence class (so, the 3-cube will mean polytopes that are isomorphic to the
standard 3-cube in Figure 2.3.)

We give names to the classes of polyhedra whose vertices are contained in the minimum
number of facets (or, whose facets contain the minimum number of vertices).

Definition 2.31 (Simple). A d-polyhedron is simple if each vertex is incident to exactly d
facets.

Definition 2.32 (Simplicial). A d-polyhedron is simplicial if each facet is incident to
exactly d vertices.

We will also use simple to refer to vertices and simplicial for facets where the corre-
sponding conditions are true.

Note that the roles of facets and vertices in polyhedra are similar, in that either can be
used to fully describe a polyhedron. The dual of a polyhedron can be defined as:

Definition 2.33 (Dual polyhedron). Given polyhedra P, P ∗ ⊆ Rd, we say that P ∗ is dual
to P if between F(P ) and F(P ∗) there is an inclusion-reversing bijection φ. That is, vertices
of P are mapped to facets of P ∗, edges of P to (d− 2)-faces of P ∗, and so on, such that if
F1 ⊂ F2 in P , then φ(F2) ⊂ φ(F1) in P ∗.

For example, the dual of the d-cube (which has 2d facets and 2d vertices) is called the
cross-polytope (which has 2d facets and 2d vertices). In 3 dimensions, this is the octahedron.
In general, the cross-polytope is the convex hull of the elementary basis vectors in Rd

together with their negatives.
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Note that cubes are simple polytopes, while cross-polytopes are simplicial. This holds
in general - the dual of a simple polytope is always simplicial.

Definition 2.34 (Graph of a polytope). Given a polytope P , its graph is defined as the
graph GP = (V,E) where V = V (P ) and E = E(P ).

For an unbounded polyhedron, its graph is defined in the same way – as the graph
induced by its vertices. As such, information about unbounded rays is not captured in
the graph. Sometimes we will append rays to a graph when it suits the discussion (see
Figure 2.7).

Definition 2.35 (Distance). Given a polyhedron P and two vertices x,y ∈ V (P ), the
distance between x and y, denoted by distE(x,y), is the length of the shortest path from x
to y on the graph of P .

Definition 2.36 (Diameter). Given a polyhedron P , its diameter, denoted by ∆E(P ), is
the maximum value of distE(x,y) attained over all pairs x,y ∈ V (P ).

Finally, we define the product operation applied on two polyhedra; this will be an
essential part of the later chapters.

Definition 2.37 (Product). Given polyhedra P ⊂ Rd1 and Q ⊂ Rd2 , the product of P and
Q, denoted by P ×Q, is the polyhedron

P ×Q = {(x,y) ∈ Rd1+d2 : x ∈ P,y ∈ Q}.

If F is a k-dimensional face of P ×Q, then it can be written as F = F1×F2, where F1 and
F2 are k1- and k2-dimensional faes of P and Q, respectively, and such that k1 + k2 = k.

The last property implies in particular that the vertices (0-dimensional faces) of P ×Q
are of the form (xP ,xQ), where xP ∈ V (P ) and xQ ∈ V (Q). Moreover, an edge of P ×Q
is a product of a vertex of one factor and an edge of the other, while each facet of P ×Q is
a product of one factor and a facet of the other.

Edge walks in P ×Q have a specific structure; a step taken from a vertex (xp,xQ) along
an incident edge can only affect one of the two elements xP , xQ. Hence edge walks in the
product can be decomposed into two edge walks, one in each factor. This implies:

Proposition 2.38. ∆E(P ×Q) = ∆E(P ) + ∆E(Q).

Example 2.39. The 3-cube C3 has diameter 3, since starting from any vertex one can reach
any other vertex in at most 3 edge steps. In general, the d-cube Cd has diameter d. This can
be seen by recursively-defining the cube as Cd+1 = Cd × [0, 1], and using Proposition 2.38.
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2.2 Linear Programming and the Simplex Method

The diameter of a polyhedron has a deep connection with the classical simplex method for
linear programming, an augmentation algorithm that moves along the edges of a polyhedron
towards an optimal solution. Specifically, the combinatorial diameter gives a lower bound
on the number of augmentations needed in the best-case performance of simplex. The linear
programming problem is defined as follows:

Definition 2.40 (Linear program). A linear program (LP), or a linear programming prob-
lem, is an optimization problem of the form min{cT x : A1x = b1, A2x ≥ b2} (or max).

It is an optimization problem that seeks the best value attained by a linear function
cT x on a convex polyhedron P .

Linear programming is extremely useful, and is widely seen in a large number of real-
world applications. It is the heart of mathematical programming, which is (broadly speak-
ing) the field of mathematics concerned with finding the best solution out of a set of al-
ternatives. The history of linear programming is rich and goes back to World War II and
even before then – see (Dantzig [Dan63]) for a thorough discussion of the history of the
field. Some examples of areas that linear programming has appeared in include the oil
industry (Garvin et al. [GCJS57]), cancer research (Mangasarian et al. [MSW95]), portfo-
lio optimization (Mansini et al. [MOS14]), and employee scheduling (Hanssmann and Hess
[HH60]).

The linear function cT x that is being minimized (or maximized) is called the objective
function of the linear program, and the set of linear equations and inequalities {A1x =
b1, A2x ≥ b2} is called its feasible region. Moreover, the individual rows in the relations
A1x = b1, A2x ≥ b2 are called the constraints of the linear program. Let us call a problem
of the form

min cT x

such that Ax = b

x ≥ 0

(2.1)

(and its feasible region) to be in standard form. Intuitively, this can be seen as a weighting
problem where we assign nonnegative multiplers xi to the columns Ai of A such that the
weighted sum is exactly b, and the weighting is best possible with respect to some linear
function cT x. Any polyhedron with a vertex, and hence any linear program on it, can be
written in this standard form.

Note that we can always rewrite the feasible region of a linear program to look like Defi-
nition 2.1, or Equation (2.1), or the inequality form Ax ≥ b. When the specific formulation
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is not relevant, we write linear programs as

min{cT x : x ∈ P} (2.2)

for convex polyhedron P ⊂ Rd. Note that while we are guaranteed the existence of a
basic feasible solution in formulation (2.1), polyhedra in general may not be pointed, so
formulation (2.2) may not have a vertex.

We have the following important properties of linear programs:

Definition 2.41 (Feasibility, optimality, unboundedness). Given the linear program (2.2),

(a) If P is nonempty, then the linear program is said to be feasible; if P is empty, then the
linear program is infeasible.

(b) If there is a point x ∈ P such that cT x ≤ cT y for all y ∈ P , then the linear program is
said to have an optimal solution x.

(c) If, given any point x ∈ P , there is another point y ∈ P such that cT y < cT x, we say
the linear program is unbounded.

Here are some examples to illustrate the above possibilities (the red arrows show the
objective function cT x = c1x1 + c2x2).

min x1 + x2

s.t. x1 ≤ 0

x1 ≥ 1

min x1 + x2

s.t. − x1 + x2 ≥ −1

3x1 + x2 ≥ −1

− x1 − 2x2 ≥ −3

min x1 + x2

s.t. − x1 + x2 ≥ −1

x1 − 3x2 ≥ −1

− x1 − 2x2 ≥ −3

Figure 2.5: (L-R) An infeasible LP, an LP with an optimal solution, and an LP with optimal
cost −∞.

The following two propositions show the importance of the vertices and extreme rays of
a polyhedron in linear programming:

Proposition 2.42. If the linear program (2.2) has an optimal solution, where P is a pointed
polyhedron, then there is a vertex x ∈ V (P ) where optimality is achieved.
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Proposition 2.43. If the linear program (2.2) is unbounded, then there is an extreme
direction w of P such that cT w < 0.

Note that we use the term unbounded here to refer to the fact that the optimal cost
is −∞, and not to describe the feasible region. This is because a linear program with an
unbounded feasible set may still have a finite optimal solution (consider the last example
above but with the objective function x1 + x2 instead).

The simplex method for solving linear programs takes advantage of Proposition 2.42
by traversing the vertices of the feasible region until the optimal solution is found. What
makes the simplex method so powerful is the fact that it systematizes the search for an
optimal extreme point by using the geometric structure of the feasible region. Indeed, any
linear program can be solved by enumerating all vertices of the feasible polyhedral set, but
clearly this does not scale to larger problems. Instead, simplex performs the following steps:

(1) Look for an initial feasible extreme point x0. If one cannot be found, the LP is infeasible.

(2) Check if there is an edge incident to xk along which the objective function is decreasing.

(a) If there is such an edge, there are two possibilities: either it leads to another vertex
xk+1 of the polyhedron, after which step (2) is repeated; or, it doesn’t end, in which
case the LP is unbounded.

(b) If there is no such improving (decreasing) edge from xk, then xk is the optimal
vertex.

A key fact about the simplex method is the fact that when no improving edge directions
are found at the current vertex x∗ (a local condition), it can be concluded that x∗ is
the optimal solution to the linear program (a global implication). This follows from the
convexity of the feasible region and linearity of the objective function.

2.2.1 The Simplex Method and the Geometry of Polyhedra

The simplex method uses the standard form LP in Equation (2.1):

min cT x

such that Ax = b

x ≥ 0

Suppose that A is m × d and b, c are d × 1. Then the extreme points of the polyhedron
P = {x ∈ Rd : Ax = b,x ≥ 0} are exactly those points x satisfying the equality conditions
Ax = b, and in addition d −m of the nonnegativity constraints are met with equality at
x (we say that these constraints are active at x). This means that d−m variables among
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the xi’s are zero; let N be the set of indices of these d−m variables, and let B be the set
of indices corresponding to the remaining m variables. Then we can rewrite the system

Ax = b

as
ABxB +AN xN = b (2.3)

where AB is m×m, AN is (d−m)×m, and each contains the columns of A corresponding
to indices in B and N , respectively. The variables {xi : i ∈ B} are called basic variables,
while those in {xi : i ∈ N} are nonbasic variables; we call B a basis for this basic feasible
solution. Now since xi = 0 for i ∈ N , we have xB = A−1

B b as the values for the basic
variables.

Moving from a vertex to an adjacent vertex entails choosing an entering variable xl

to enter the basis B, such that the objective function is improved when xl is increased.
Increasing xl affects the other basic variables – at some point a variable that was in the
basis may drop to zero, in which case we encounter another vertex. Or, we might discover
that we can increase the value of xl indefinitely without violating any of the other conditions.
When this happens, the LP is unbounded.

This method of picking an entering variable and a leaving variable is called a pivot rule;
choosing an appropriate one to use in an implementation of the simplex method is crucial.

Note that basic variables are not restricted to be nonzero; there can be multiple bases
that represent the same point x. This phenomenon is called degeneracy, which may result
in pivot steps where the objective function does not improve (or worse, cycling, when the
simplex implementation loops through the same sequence of basic feasible solution). It is
possible to design a pivot rule that prevents cycling. Bland’s rule (Bland [Bla77]) was the
first to do so; it picks the entering variable lexicographically from among the improving
nonbasic variables, and breaks ties among candidate leaving variables lexicographically as
well.

Regardless of the pivot rule used, the geometric interpretation of the simplex method is
the same – moving from vertex to adjacent vertex of a polyhedron along its edges. Hence,
the simplex method traces a walk on the graph of the feasible polyhedron from the starting
vertex x0 to the optimal vertex x∗. This walk can be no shorter than distE(x0,x∗), and so
in the best-case performance of the simplex method, the quantity max distE(x,y) is a lower
bound on the number of steps to find the optimum (where x,y are vertices of P ). This is
exactly ∆E(P ).

The connection between polyhedral diameters and the performance of simplex leads
to the question: What is the largest possible combinatorial diameter of a d-dimensional
polyhedron with a given number f of facets?
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Dimension and number of facets are selected as parameters as they correspond to the
numbers of variables and inequality constraints in the linear program. If there is a family
of polyhedra with combinatorial diameter exponential in d and f , then a pivot rule cannot
exist for the simplex method that is polynomial-time in these inputs.

We introduce notation for the combinatorial diameter of the class of d-polyhedra with
f facets.

• Let ∆E(f, d) denote the maximum combinatorial diameter attained by d-dimensional
polyhedra with f facets;

• Let ∆u
E(f, d) and ∆b

E(f, d) denote the maximum combinatorial diameter attained by
unbounded and bounded d-polyhedra with f facets, respectively.

• In general, we refer to a d-dimensional polyhedron with f facets as an (f, d)-polyhedron.

In the late 1950s Hirsch conjectured the bound ∆E(f, d) ≤ f − d (by written communi-
cation to Dantzig, see [Dan63]). This quantity has since become a benchmark for talking
about diameters of classes of polyhedra.

In the next section we outline some of the main results about ∆E(f, d), including various
lower and upper bounds, and prove the equivalence of the Hirsch conjecture with other
related statements.

2.3 Combinatorial Diameter: Survey of Results

Throughout the years both positive and negative results have been proven about the quan-
tity ∆E(f, d) and the Hirsch conjecture. Techniques developed in the 60’s still prove relevant
to this day; we begin with a powerful reduction in the study of diameters.

Proposition 2.44 ([KW67]). For any f > d ≥ 1, ∆b
E(f, d) is realized as the distance

between two vertices x,y of a simple d-polytope with f facets. For any f > d ≥ 2, ∆u
E(f, d)

is realized as the distance between two vertices x,y of a simple d-polyhedron with f facets
such that x and y are incident to unbounded edges of the polyhedron. In both cases, if
f ≥ 2d, x and y may be chosen so they do not share a facet.

This implies that the quantity ∆E(f, d) is achieved at a simple polyhedron. The proof of
Proposition 2.44 proceeds by showing that any non-simple d-polyhedron with f facets can
be transformed to a simple d-polyhdron with the same number of facets and such that the
diameter does not decrease. This is done by perturbing the facets by a small amount – this
means that facets are translated a small amount (by changing the right-hand side) so that a
vertex that has more than d facets incident to it is transformed into multiple vertices, each
with d facets. Figure 2.6 illustrates this operation on a pyramid with a non-simple vertex
having 5 > 3 facets incident to it; the two polyhedra on the right show two different ways
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of perturbing the facets to produce a simple polyhedra. These polyhedra have diameters
bounded below by the original diameter, since we only introduced new vertices and edges.

Figure 2.6: Two ways of perturbing the facets of a non-simple polytope (a pentagonal
pyramid) to simplicity.

Edge walks on simple polyhedra are easier to work with than in the general case; this
is because if two vertices x,y of a simple polyhedron are adjacent, then exactly one facet is
removed and one added when going from x to y.

Most results in this area focus on the bounded case, or ∆b
E(f, d). This is because Klee

and Walkup already give an unbounded 4-dimensional counterexample to Hirsch, that has
8 facets and diameter 5 (Klee and Walkup [KW67]). Let us call this polyhedron U4; it has
the ‘graph’ shown in Figure 2.7.1

Observe that U4 is simple, since each vertex is contained in exactly 4 facets. Hence an
edge walk from V1234 to V5678 has length at least 4 (one for each facet in the destination). It
is clear from the graph, however, that distE(V1234, V5678) = 5. This implies that ∆u

E(8, 4) ≥
5; Klee and Walkup also showed that ∆u

E(8, 4) = 5. The polyhedron U4 can also be used to
construct infinitely many non-Hirsch polyhedra whose excess over the Hirsch bound tends
to infinity (we omit the proof).

Proposition 2.45 (Klee and Walkup [KW67]). ∆E(f, d) ≥ f − d+ min
(
bd

4c, b
f−d

4 c
)
.

The value of ∆b
E(f, d) is known for the following cases; this list is given in the compre-

hensive survey (Kim and Santos [KS10]).

Theorem 2.46. • ∆b
E(f, 2) = bf

2 c (trivial.)

• ∆b
E(f, 3) = b2f

3 c − 1 (Klee [Kle64])

• ∆b
E(8, 4) = 4 (Klee [Kle64])

• ∆b
E(9, 4) = ∆b

E(10, 5) = 5 (Klee and Walkup [KW67])

• ∆b
E(10, 4) = 5, ∆b

E(11, 5) = 6 (Goodey [Goo72])
1Note that this is technically not a graph as we are using additional segments to represent unbounded

rays.
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Figure 2.7: The graph of U4, the Klee-Walkup counterexample to unbounded Hirsch. Each
vertex and ray is labeled by its containing facets.

• ∆b
E(11, 4) = ∆b

E(12, 6) = 6 (Bremner and Schewe [BS11])

• ∆b
E(12, 4) = ∆b

E(12, 5) = 7 (Bremner et al. [BDHS13])

Observe that these pairs (f, d) all satisfy f ≥ 2d. This is because for a fixed f − d, the
maximum value attained by ∆E(f, d) is when f = 2d. To see why this is the case, we first
define the wedge operation for polyhedra.

Definition 2.47 (Wedge). Let P be a d-dimensional polyhedron and let F be a facet of
P . Let L = [0,∞). Take the product P × L and let H≤ ⊂ Rd+1 be a closed halfspace
containing P × {0}, such that the defining hyperplane H of H≤ intersects P × {0} exactly
in F . Then the (d+ 1)-dimensional polyhedron P ′ = H≤ ∩ (P × L) is called the wedge on
P over F .

The wedge operation can also be viewed as taking the product P × [0, 1] and then
identifying the two faces F × {0} and F × {1} together. Figure 2.8 depicts an example.
Note that we only consider the wedging operation when it is done over a facet of P . The
operation can be extended to faces of smaller dimension, but we don’t use this here. Also,
note that there is a distinction between ‘the’ wedge on P over F (the combinatorial class)
and ‘a’ wedge on P over F (one realization in this combinatorial class; a different realization
arises when choosing a different H≤). In what follows, which one we refer to will be clear
from the context.
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Figure 2.8: The wedge P ′ on the hexagon P over facet F . Bases are Pl and Pu.

By construction, P ′ has f + 1 facets. The lower base Pl = P × {0} of P ′ and the upper
base Pu = H ∩ (P × L) of P ′ are facets of P ′, and both are isomorphic to the original
polyhedron P . The remaining f − 1 facets of P ′ are contained in spaces of the form G×L,
where G 6= F is a facet of P ; we call them the sides of the wedge. The lower base Pl lies
in the affine subspace Rd × {0} while the upper base Pu lies in the affine subspace H of
dimension d. We use φ to denote the projection to the upper base that is parallel to L, and
φ−1 to denote the projection to the lower base, also moving parallel to L.

Wedges are a basic building block for results on combinatorial diameters, due to some
nice properties:

Proposition 2.48 (Properties of wedges). Let P ⊆ Rd be a polyhedron and F one of its
facets. Let P ′ ⊆ Rd+1 be the wedge on P over F . Then:

(i) If P is simple, P ′ is simple.

(ii) ∆E(P ) ≤ ∆E(P ′) ≤ ∆E(P ) + 1.

Proof. (i) If P is simple, then each of its vertices is incident to exactly d facets. If x ∈ V (P )
and x 6∈ F , then it corresponds to two vertices xl and xu in the lower and upper bases of P ′,
respectively. The vertex xl ∈ V (P ′) is incident to d+ 1 facets in P ′: d sides corresponding
to the d original facets it was incident to in P , and the lower base of P ′. Similarly, xu is
incident to d+ 1 facets in P ′: its original d facets, and the upper base of P ′.

If x ∈ F , then in P it was incident to d facets, including F . In P ′, it is incident to [the
sides formed by] d− 1 of the original facets, and also both lower and upper bases.

(ii) Any two vertices in P can be connected by a path of length at most ∆E(P ). Since
any vertex x ∈ Pl has a neighbouring vertex φ(x) ∈ Pu, to connect any two vertices in P ′

there is a path of length at most ∆E(P ) + 1. So, ∆E(P ′) ≤ ∆E(P ) + 1.
On the other hand, any edge walk in P ′ transfers to a possibly shorter edge walk in P ,

by projecting to Rd × {0}. So, ∆E(P ) ≤ ∆(P ′).

We can now prove the following:
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Proposition 2.49 (Klee and Walkup [KW67]). ∆E(f, d) ≤ ∆E(f + 1, d+ 1) for all f ≥ d,
with equality if f ≤ 2d.

Proof. Suppose P is a d-polyhedron with f facets and diameter ∆E(f, d). The wedge on P
over one of its facets is a (d + 1)-polyhedron with f + 1 facets, and whose diameter is no
smaller than ∆E(P ). This gives the inequality ∆E(f, d) ≤ ∆E(f + 1, d+ 1).

For the second claim, suppose that f ≤ 2d, and let Q be a (d+1)-polyhedron with (f+1)
facets and diameter ∆E(f + 1, d + 1). Assume that x,y ∈ V (Q) such that distE(x,y) =
∆E(f+1, d+1). Since Q has f+1 ≤ 2d+1 facets, and both x,y must be incident to at least
d+1 facets, there must be a facet K of Q that contains both x and y. The facet K is also a
d-polyhedron, and each of its facets is the intersection of K with a facet of Q (other than K)
– hence K has at most f facets, and thus has diameter ∆E(K) ≤ ∆E(f, d). But distE(x,y)
in K is no smaller than ∆E(Q) = ∆E(f + 1, d+ 1). This implies ∆E(K) ≥ ∆E(f + 1, d+ 1),
completing the proof of ∆E(f + 1, d+ 1) ≤ ∆E(f, d).

A consequence of this series of relations is that the Hirsch conjecture and the d-step
conjecture are equivalent.

Theorem 2.50. The following two statements are equivalent:

(1) (Hirsch) ∆E(f, d) ≤ f − d for all f, d.

(2) (d-step) ∆E(2d, d) ≤ d for all d.

Proof. (1) ⇒ (2): d-step is just a special case of Hirsch, for f = 2d.
(2) ⇒ (1): By Proposition 2.49, if f ≤ 2d, then ∆E(f, d) = ∆E(2d, d). On the other

hand, if f > 2d, then ∆E(f, d) ≤ ∆E(f + 1, d + 1) ≤ · · · ≤ ∆E(f + (f − 2d), d + (f − 2d)),
which is by (2) at most f − d. (∆E(2(f − d), f − d) ≤ f − d)

Note that proving d-step for a particular d does not also prove Hirsch in that dimension;
the relevant parameter in the equivalence is f − d.

Klee and Walkup proved a stronger result involving four statements. One of these talks
about Dantzig figures:

Definition 2.51 (Dantzig figure). Let P be a d-dimensional polyhedron with 2d facets, of
which exactly d are incident to a vertex u and the other d are incident to a vertex v. Then
the tuple (P,u,v) is a Dantzig figure.

Essentially, Dantzig figures are the intersection of two d-dimensional cones of d facets.
In fact, it will suffice to consider the distances of u and v in such a Dantzig figure, as Klee
and Walkup’s result implies:
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Theorem 2.52 (Klee and Walkup [KW67]). The following statements are equivalent:

(A) Let u, v be two vertices of a simple polytope P . Then there is an edge walk between u
to v that does not visit a facet more than once.

(B) ∆b
E(f, d) ≤ f − d for all f ≥ d.

(C) ∆b
E(2d, d) ≤ d for all d.

(D) For all d-dimensional Dantzig figures (P,u,v), distE(u,v) = d.

Proof. Theorem 2.50 takes care of the equivalence B ⇐⇒ C. To prove the rest of the
equivalences we show A⇒ B, C⇒ D⇒ A.

That A⇒ B follows immediately from the fact that in a simple d-dimensional polytope
with f facets, any non-revisiting walk starting at a vertex will necessarily take f − d steps
at most to get to any other vertex (f facets in all, less d incident at the starting vertex,
gives f − d facets left to visit).

Assuming C holds, if P is an d-dimensional Dantzig figure, then ∆E(P ) ≤ d. So there
is a walk of length at most d connecting the two distinguished vertices x and y. However
at least d steps are needed in such a walk, so we have the exact length d. Hence C⇒ D.

To show the last implication D ⇒ A, assume that the claim in D holds, and take a
simple d-dimensional polytope P with f facets. Let x and y be any two vertices in P – we
will show that there is a non-revisiting path connecting them.

First, set y0 = y, and let F0 the smallest face of P that is incident to both x and y.
Then F0 is a simple polytope in d′ dimensions such that there are d′ facets incident at x,
d′ other facets incident at y, and some k facets that are not incident to either of x or y0.
Thus F0 has a total of 2d′ + k facets.

If k = 0 then F0 is a Dantzig figure in d′ dimensions, and by D, the distance between x
and y is exactly d′, and any walk connecting them must necessarily be non-revisiting.

If k > 0 then we will once again employ the wedging operation. Let G be any facet of
F0 that does not contain either x or y, and let F1 be the wedge of F0 over G. Then consider
the resulting polytope F1 with distinguished vertices x as before, and y1 the image of y0

in its upper base. The polytope F1 is d′ + 1 dimensional with 2d′ + k + 1 facets. Further,
there are now d′ + 1 facets incident to x and another d′ + 1 facets incident to y1, leaving
k − 1 facets not incident to either. Repeating this process we arrive at a simple (d′ + k)-
dimensional polytope Fk with distinguished vertices x, which is incident to d′ + k facets,
and yk, incident to another d′ + k facets. Now Fk is a Dantzig figure in dimension d′ + k,
so by D, the shortest walk between x and yk has length exactly d′ + k, and so has to be
non-revisiting (since we add one new facet at each step). By projecting this non-revisiting
path down through all the wedges Fk, Fk−1, . . . , F0, we get a non-revisiting path between x
and y0 = y in F0, hence in P . Thus D⇒ A is proved, and so is the theorem.
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Klee and Walkup also give some relations involving ∆E(f, d), obtained from several
constructions.

Proposition 2.53. (a) ∆u
E(f, d) < ∆u

E(f + 1, d)

(b) ∆b
E(f, d) ≤ ∆b

E(f + 1, d)

(c) ∆u
E(f, d) < ∆u

E(f + 2, d+ 1) and ∆b
E(f, d) < ∆b

E(f + 2, d+ 1)

(d) ∆u
E(f, d) ≤ ∆u

E(f + 1, d+ 1) and ∆b
E(f, d) ≤ ∆b

E(f + 1, d+ 1)

(e) If f ≤ 2d, ∆u
E(f, d) = ∆u

E(f + 1, d+ 1) and ∆b
E(f, d) = ∆b

E(f + 1, d+ 1)

(f) ∆u
E(2d+ k, d+ k) = ∆u

E(2d, d) and ∆b
E(2d+ k, d+ k) = ∆b

E(2d, d) for k > 0.

Proof. (a) and (b) are obtained by truncating a vertex (in the unbounded case, a vertex
incident to an unbounded edge); (c) from P × [0, 1]; (d), (e), and (f) from the proof of
Proposition 2.49.

The strict inequalities in (a) and (c) also explain why a table of known values for
∆u
E(f, d) in the same vein as Theorem 2.46 is not as interesting. Because the Klee-Walkup

counterexample implies ∆u
E(8, 4) = 5, by (a) and (c) we have ∆u

E(f, d) > f − d for f ≥ 2d,
d ≥ 4. That is, for each such pair (f, d), there exists a non-Hirsch unbounded polyhedron.

It is also possible to prove relationships between ∆b
E(f, d) and ∆u

E(f, d). For instance,
given a bounded polytope P , projecting one of its facets to infinity produces an unbounded
polyhedron whose diameter is no smaller than that of P – this shows ∆b

E(f, d) ≥ ∆u
E(f−1, d).

A consequence of this is the fact that given a bounded polytope whose diameter meets
the Hirsch bound exactly – which we call Hirsch-sharp – one can produce a non-Hirsch
polyhedron by projecting a vertex to infinity. So, performing this operation on U4 (Fig. 2.7)
yields a Hirsch-sharp 4-polytope with 9 facets, which we will denote as Q4 (following Kim
and Santos [KS10]) and will talk about in more detail in Chapter 4.

Here are the best known upper bounds proven over the years for general f and d:

1. ∆b
E(f, d) ≤ 2d−3f (Larman [Lar70])

2. ∆b
E(f, d) ≤ f log2(d+2) (Kalai and Kleitman [KK92])

3. ∆b
E(f, d) ≤ (f − d)log2 d (Todd [Tod14])

4. ∆b
E(f, d) ≤ (f − d)log2(d)−3+O(1/d) (Sukegawa [Suk17])

Many classes of polytopes have been proven to satisfy the Hirsch bound, including
{0, 1}-polytopes (Naddef [Nad89]), and the broad class of network flow and transportation
polytopes (Borgwardt et al. [BLF17]).
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Moreover, dual transportation polytopes that are defined on complete bipartite graphs
are also Hirsch (Balinski [Bal84]). Given a bipartite graph G with vertex sets V1 =
{0, 1, . . . ,M − 1} and V2 = {M,M + 1, . . . ,M + N − 1}, and edges E having one end-
point in each of V1 and V2, a dual transportation polyhedron associated to G and given by
a vector c ∈ R|E| is

PG,c =
{

x ∈ RM+N : −xu + xv ≤ cuv, ∀u ∈ V1, v ∈ V2, and uv ∈ E, x0 = 0
}
.

Theorem 2.54 (Balinski [Bal84]). The combinatorial diameter of PG,c is bounded above
by (M − 1)(N − 1) = MN − (M +N − 1).

The class of dual network flow polyhedra is a superclass of dual transportation polyhe-
dra, where the restriction that the underlying graph be bipartite is removed. For this class
a quadratic upper bound has been proven:

Theorem 2.55 (Borgwardt et al. [BFH16]). The combinatorial diameter of the dual net-
work flow polyhedron PG,c is bounded above by min{(|V | − 1)|E|, 1

6 |V |
3}.

On the other hand, the first bounded counterexample violating the Hirsch bound was
only discovered in 2010 by Santos:

Theorem 2.56 (Santos [San12]). There is a 43-dimensional polytope with 86 facets with
combinatorial diameter at least 44.

A modified version of the wedging operation, called the perturbed wedge, was vital in
this discovery. This is performed on a special type of polyhedron called spindles, which
generalize Dantzig figures:

Definition 2.57 (Spindle). A spindle P (u,v) is a polyhedron P with two distinguished
vertices u and v such that each facet of P is incident to exactly one of u and v. The length
of the spindle P is defined to be distE(u,v).

Lemma 2.58 (Strong d-step Lemma, Santos [San12]). For every d-spindle P with f > 2d
facets and length λ there is a (d+ 1)-spindle with one more facet and length λ+ 1.

In a later paper Matschke, Santos, and Weibel proved the existence of a smaller non-
Hirsch polytope:

Theorem 2.59 (Matschke et al. [MSW15]). There is a 20-dimensional polytope with 40
facets (and 36442 vertices) with combinatorial diameter 21.

The methods used to construct this counterexample is the same as in the original –
starting with a low-dimensional spindle, the strong d-step lemma is applied until the number
of facets is twice the dimension. The crux of this result is the construction of the initial 5-
dimensional spindle with 25 facets and length 6 (to which strong d-step is applied 15 times).
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Interestingly, Santos, Stephen, and Thomas proved that one cannot use a 4-dimensional
spindle in this way to obtain non-Hirsch polytopes.

Theorem 2.60 (Santos et al. [SST12]). 4-dimensional spindles have length at most 4.

Some other approaches to studying the combinatorial diameter involves looking at ab-
stractions of polyhedra, e.g. simplicial complexes (Provan and Billera [PB80], Klee and
Kleinschmidt [KK87], de Loera and Klee [DLK12]) and connected layer families (Eisen-
brand et al. [EHRR10]). While these avenues of analysis seem promising, still the polyno-
mial Hirsch conjecture remains unresolved:

Conjecture 2.61 (Polynomial Hirsch). The diameter of a d-dimensional polyhedron with
f facets is bounded above by a polynomial in d and f .

2.4 Circuits and the Circuit Diameter

For these definitions and properties we refer to Borgwardt et al. [BFH15] and Borgwardt et
al. [BSY16]. The circuits of a polyhedron are defined as follows:

Definition 2.62 (Circuit direction). Given a polyhedron

P = {x ∈ Rd : A1x = b1, A2x ≥ b2},

with Ai ∈ Qmi×d and bi ∈ Qmi for i = 1, 2, the set of circuit directions, or circuits,
C(A1, A2) of A1 and A2 are those vectors g ∈ ker(A1)\{0} for which A2g is support-minimal
in
{
A2x : x ∈ ker(A1)\{0}

}
, where g is normalized to coprime integer components.

Here, ker(A1) = {x ∈ Rd : A1x = 0}.

Sometimes, we will define polyhedra as a system of linear inequalities {x : Ax ≥ b} – if
there are no equality constraints, then it is not necessary to check the first kernel condition
(that is, we look for support-minimal vectors over Rd itself).

We refer to the circuits of a polyhedron P by C(P ). These were first introduced as
elementary vectors in (Rockafellar [Roc69]). Note that the definition does not depend on
the vectors b1,b2. In fact, C(P ) is exactly the set of potential edge directions of P for
varying right-hand sides. Here, a vector g is said to be a potential edge direction of the
polyhedron P if:

• It is an actual edge direction of the polyhedron, that is, it arises as the direction vector
with an adjacent pair of vertices at its head and tail; or

• It does not arise as such in P , but it does in some other polyhedron obtained by
changing the right-hand-side values of the constraints of P .

This means that C(P ) contains the actual edge directions of P .
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Proposition 2.63. C(A1, A2) is the set of all edge directions of

P = {x ∈ Rd : A1x = b1, A2x ≥ b2}

for varying right-hand sides b1,b2.

A proof of this statement for P = {x ∈ Rd : Ax = b,x ≥ 0} can be found in (Onn et
al. [ORT05]).

Figure 2.9: The circuits of a polyhedron are its potential edge directions for varying right-
hand sides. The vector in red is a circuit direction here because it arises as an edge direction
in the polyhedron obtained when the middle facet is translated upwards.

We define a circuit analogue to edge walks on polyhedra:

Definition 2.64 (Circuit walk). Given a polyhedron P , a sequence y(0),y(1), . . . ,y(k) is a
circuit walk of length k if for all i = 0, 1, . . . , k − 1 we have

(i) y(i) ∈ P ,

(ii) y(i+1) − y(i) = αig(i) for some g(i) ∈ C(P ) and αi > 0, and

(iii) y(i) + αig(i) 6∈ P for all α > αi.

Informally, a circuit walk takes steps of maximal length along circuit of P . Note that
the points are not restricted to be vertices of P (not even the initial and final point). The
circuit analogue for distance can also be defined for any two points of the polyhedron, but
the circuit diameter only looks at circuit walks from vertex to vertex.

Definition 2.65 (Circuit distance). Given two points x,y ∈ P , the circuit distance from
x to y, denoted distC(x,y), is the smallest number of steps in a circuit walk from x to y.

Definition 2.66 (Circuit diameter). Given a polyhedron P , the circuit diameter of P ,
denoted ∆C(P ), is the length of the longest shortest circuit walk connecting any two of its
vertices. That is,

∆C(P ) = max
x,y∈V (P )

distC(x,y).
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Note that in Definition 2.65 the order in which x and y are written matters – this is
because unlike combinatorial distance, the circuit distance is not symmetric. Figure 2.10
illustrates an example (originally from Borgwardt et al. [BFH15]) where distC(v(1),v(4)) = 2
while distC(v(4),v(1)) = 3 (since at least two more circuit steps are needed to go to v(1)

from any point reachable from v(4) after the initial step).

Figure 2.10: Circuit distance is not symmetric.

Furthermore, unlike the combinatorial diameter, which is invariant in a fixed combina-
torial class, the circuit diameter of a polyhedron depends on both its representation and its
realization in Rd. We would like to work with polyhedra that are given by their unique mini-
mal representations, rather than allow for arbitrary systems of inequalities, where redundant
inequalities may give rise to additional circuit directions and reduce the circuit diameter.
Figure 2.11 illustrates two combinatorially equivalent polytopes (6-gons) that have different
circuit diameters – the one on the left has circuit diameter 3 (since distC(v(4),v(1)) = 3)
while the one on the right, being regular, has circuit diameter 2.

Figure 2.11: Circuit diameter is realization-dependent.
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This dependence on the geometry of the polyhedron makes proving statements about
its circuit diameter more complicated, as one would have to take into account all possible
realizations. However it is still appealing to do so, because of its relationship with the
combinatorial diameter.

Proposition 2.67. For any polyhedron P , ∆E(P ) ≥ ∆C(P ).

Proof. This follows immediately from the fact that the edge directions of a polyhedron form
a subset of its circuit directions.

Figure 2.12: Circuits allow for shortcuts through the interior.

Denote by ∆C(f, d) the maximum circuit diameter attained by d-dimensional polyhedra
with f facets. (Also use ∆b

C(f, d) and ∆u
C(f, d) for the bounded and unbounded cases.)

Then we have:

Corollary 2.68. ∆E(f, d) ≥ ∆C(f, d) for any f ≥ d.

In fact, if we drop the maximality condition from the circuit walk definition (Condition
(iii) in Definition 2.64), we obtain a third type of walk called feasible circuit walks. Using
∆f for the diameter arising from these walks, in (Borgwardt et al. [BLF16]) it was proven
that ∆f (f, d) ≤ f − d for all f ≥ d; that is, the conjecture of Hirsch holds for this type of
diameter. Furthermore, ∆f is a lower bound on ∆C , giving the following:

Proposition 2.69 (Borgwardt et al. [BLF16]). ∆E(f, d) ≥ ∆C(f, d) ≥ ∆f (f, d) for any
f ≥ d.

It is interesting to note here that while Hirsch fails for the combinatorial diameter ∆E ,
it holds for ∆f . Hence the circuit diameter ∆C marks a point along the Hirsch/non-Hirsch
spectrum where it is yet unclear if the conjecture holds.

Conjecture 2.70 (Circuit Hirsch, Borgwardt et al. [BFH15]). ∆C(f, d) ≤ f − d for all
f ≥ d.
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If this conjecture were true, then conceptually there is a significant difference between
walking along edges and walking along circuits. If it were false, then there is a significant
difference between taking steps of maximal length and just staying feasible. This gives
credence to the study of the circuit diameter, as an exploration of the reasons that the
Hirsch bound is violated by the combinatorial diameter.

2.5 Circuit Diameter: Summary of Previous Results

Borgwardt et al. [BFH15] proved an upper bound for the circuit diameter of dual transporta-
tion polyhedra that is smaller than the bound for combinatorial diameter in Theorem 2.54.
For general dual network flow polyhedra, the best known bound is quadratic.

Theorem 2.71 (Borgwardt et al. [BFH15]). The circuit diameter of a dual transportation
polyhedron PG,c is bounded above by M +N − 2.

Theorem 2.72 (Borgwardt et al. [BFH16]). The circuit diameter of a dual network flow
polyhedron PG,c is bounded above by |V |(|V |−1)

2 .

Perhaps more interesting is the fact that the set of circuit directions of a polyhedron
form a universal test set for linear programming. This means that a certificate of optimality
at a point is given by the nonexistence of a feasible improving circuit direction from that
point. In other words, when each feasible circuit emanating from a point only makes worse
the objective value, that point is optimal. Note that the simplex method takes advantage
of the fact that incident edge directions at each point also form a test set [for that point].

This has some implications in the development of augmentation algorithms for linear
programming. In particular, under certain pivot rules, a simplex-like algorithm to solve
linear programs using circuits directions will find the optimum in a polynomial number of
augmentations:

Theorem 2.73 (de Loera et al. [DLHL15]). Let A ∈ Zn×d, b ∈ Zn, and c ∈ Zd, and
consider the linear program

min{cT x : Ax = b,0 ≤ x ≤ u,x ∈ Rd}.

Let x0 be an initial feasible solution, let xmin be an optimal solution, let γ be the maximum
non-zero entry (in absolute value) in any feasible solution, and let δ denote the least common
multiple of all subdeterminants of A. Then the number of augmentations to reach an optimal
solution from x0 is bounded as follows:

(a) The number of discrete deepest-descent augmentations needed to reach an optimal solu-
tion from x0 is bounded by 2d log(δcT (x0 − xmin)).
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(b) The number of discrete Dantzig-descent augmentations needed to reach an optimal so-
lution from x0 is no more than 2d2δγ log(δcT (x0 − xmin)).

(c) Any discrete steepest-descent direction (which by definition belongs to C(A)) is an overall
steepest-descent direction (which could be any applicable direction from Rd). Moreover,
the number of discrete steepest-descent augmentations to each an optimal solution of
the given linear program is bounded by C(A).

Here, discrete-descent, Dantzig-descent, and steepest-descent augmentations refer to spe-
cific pivot rules for choosing a circuit to augment along. A corollary of their result is the
following bound for the circuit diameter of polyhedra with totally unimodular coefficient
matrices:

Corollary 2.74. For a n × d totally-unimodular matrix A, the circuit diameter of the
polyhedron

P := {x : Ax = b,0 ≤ x ≤ u}

is bounded above by 2d(n+ 1)(d− n).

Relations involving the circuit diameter in the vein of Proposition 2.53 are scarce. Again,
this is because ∆C(P ) depends on the geometry of the polyhedron. On the other hand, we
prove here that one property does transfer:

Theorem 2.75. ∆C(f, d) ≤ ∆C(f + 2, d+ 1)

Recall from the proof of Proposition 2.53 that the construction P × [0, 1] is used to prove
the corresponding statement for combinatorial diameter. To prove it for circuit diameter,
we first need to characterize the circuits of a product of two polyhedra:

Proposition 2.76. Let P = {x ∈ Rd1 : A1x = b1, A2x ≤ b2} and Q = {x ∈ Rd2 : C1x =
w1, C2x ≤ w2} be pointed polyhedra. Then C(P ×Q) = (C(P )× {0}) ∪ ({0} × C(Q)).

Proof. By definition, C(P ) consists of vectors g that are in ker(A1) = {g : A1g = 0}, and
for which (A2g) is support-minimal in KP = {A2g : g ∈ ker(A1),g 6= 0}. Similarly, C(Q)
are those vectors h ∈ ker(C1) and such that (C2h) is support-minimal in KQ = {C2h : h ∈
ker(C1),h 6= 0}.

We would like to characterize the set of circuits C(P ×Q). Recall that

P ×Q =
{

(x,y) ∈ Rd1+d2 : A1x = b1, C1y = w1, A2x ≤ b2, C2y ≤ w2
}
.

For brevity denote by Mi the matrix
(
Ai 0
0 Ci

)
. Then C(P ×Q) is composed of vectors

(g,h)T such that A1g = 0, C1h = 0, and

(
A2 0
0 C2

)(
g
h

)
= M

(
g
h

)
=
(
A2g
C2h

)
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is support-minimal in the set

KP Q =
{
M

(
g
h

)
: g ∈ ker(A1),h ∈ ker(A2),g,h 6= 0

}
.

First, we claim that (
g
0

)
∈ C(P ×Q) ⇐⇒ g ∈ C(P ).

This follows from the fact that A2g is support-minimal over nonzero g ∈ ker(A1) if and
only if (

A2g
0

)

is support-minimal over nonzero (
g
0

)
∈ ker(M).

The pointedness assumption is crucial here. By Proposition 2.9, pointed polyhedra
cannot contain a line. This means that there is no nonzero vector g ∈ P such that A2g = 0,
that is, A2g has nonempty support as long as g 6= 0. Similarly, C2h 6= 0 for nonzero h.

Hence, given a fixed nonzero g ∈ ker(A1) for which A2g is support-minimal, the support
of (

A2g
0

)

cannot contain the support of (
A2g
C2h

)

for any nonzero h ∈ ker(C1). So,

M

(
g
0

)

is support-minimal over KP Q, while also being in ker(M), implying

(
g
0

)
∈ C(P ×Q).

Thus C(P )× {0} ⊆ C(P ×Q).
The argument for {0} × C(Q) ⊆ C(P × Q) is similar. To show that C(P × Q) has no

other circuits, we only need to prove that if(
g
h

)
∈ ker(M1)
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where both g and h are nonzero, then (
g
h

)

cannot be a circuit of P ×Q. But this is immediate – the support of

M2

(
g
0

)

has a strictly smaller support than

M2

(
g
h

)

again because pointedness dictates C2h 6= 0 for nonzero h. The result follows.

A consequence of this is a result on the circuit diameter of the product P×Q, the circuit
counterpart of Proposition 2.38.

Proposition 2.77. ∆C(P ×Q) = ∆C(P ) + ∆C(Q).

Proof. The previous result implies that when moving along circuit directions in the product
P×Q, one’s position in one of the factors does not change. Hence, any circuit walk in P×Q
can be decomposed into two circuit walks, one in P and one in Q, giving the bound.

Proposition 2.75 then follows from using the same construction P × [0, 1] as in Proposi-
tion 2.53. It is important to note here that since circuit diameter is dependent on realization,
the previous results consider specific realizations for P and Q, and hence P ×Q (as opposed
to the entire combinatorial class, in the combinatorial diameter setting).
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Chapter 3

The Circuit Diameter Conjectures

In Theorem 2.52 we gave Klee and Walkup’s proof of the equivalences of the Hirsch, non-
revisiting, and the d-step conjectures. An important first step was to show first that it is
enough to work with simple polyhedra, and that any non-simple polyhedron could be trans-
formed into a simple one via a perturbation of facets that does not decrease its diameter.
This is not easily transferred to the circuit framework, so in Section 3.1 we introduce a
refined notion of simplicity that is used in subsequent proofs.

The advantage of working with a simple polyhedron is that each step along an edge
leaves exactly one facet and enters exactly one other facet. In circuit walks, steps along
non-edge circuits will leave more than one facet at a time; however, we can still require that
circuit steps do not enter more than one facet at a time.

One of the main challenges in this regard is that in the circuit context, different geometric
realizations of polyhedra with the same combinatorial structure may have different circuit
diameters (see Figure 2.11). Thus the refined notion of simplicity should depend on the
geometry of the problem, including the circuits. This is what we explore in Section 3.1.

The rest of the chapter is structured as follows: in Section 3.2 we study how the set of
circuit directions is affected by the wedging operation (Definition 2.47) and define wedge-
simplicity; in Section 3.3 we reformulate the combinatorial diameter conjectures in the
circuit setting, and expound on their interrelationships; in Section 3.4 we show that the
circuit d-step conjecture is true for d = 4 (i.e. ∆C(8, 4) ≤ 4), in contrast to the combinatorial
case. We are able to prove this in two ways – showing that the original Klee-Walkup
counterexample to unbounded Hirsch remains Hirsch for circuit diameter; and by extending
a result on 4-prismatoids (Santos et al. [SST12]).

3.1 C-simplicity

In the following, let P = {x ∈ Rd : Ax ≥ b} be a d-dimensional polyhedron.
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For x(i) ∈ P , let H(i) denote the set of facets of P that are incident to x(i). First, let us
introduce some terminology for circuit walks in which we enter only one new facet in each
step.

Definition 3.1 (Simple walks). Let P be a polyhedron. A circuit walk x(0), . . . ,x(k) in P
is simple if |H(i+1)\H(i)| = 1 for i = 1, 2, . . . , k, where H(i) denotes the set of facets incident
to x(i). Walks that violate this condition are called non-simple.

We are particularly interested in polyhedra for which it suffices to only consider simple
circuit walks. As the combinatorial diameter is an upper bound on the circuit diameter of
a polyhedron, for the study of Conjecture 2.70, it suffices to consider circuit walks of length
at most ∆E(f, d), which is bounded above for example by f log d+2 (Klee and Kleinschmidt
[KK92]). This leads to the following definition.

Definition 3.2 (C-simple). Let P be a d-polyhedron with f facets. We say P is C-simple
if all circuit walks of length at most ∆E(f, d) and that start from a vertex of P are simple.

Let M be a finite set of points in P that includes the set of vertices. If all circuit walks
starting at any point in M and of length at most ∆E(f, d) + d are simple, then we say P is
C-simple with respect to M .

Note that C-simplicity is a strictly stronger condition than simplicity of a polyhedron,
as edge walks are a special type of circuit walks. The goal for this section is to prove that
it suffices to consider C-simple polyhedra for the study of Conjecture 2.70, which leads to
the following variant of the circuit Hirsch conjecture.

Figure 3.1: The polytope on the left is C-simple – this can be verified by checking that all
circuit walks of length at most ∆b

E(6, 2) = 3 are simple. The polytope on the right is not
C-simple because the circuit walk shown enters two facets at the second step.
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Conjecture 3.3 (C-Simplicity). For any C-simple d-dimensional polyhedron with f facets
the circuit diameter is bounded above by f − d.

We prove the equivalence of Conjecture 3.3 and Conjecture 2.70 by showing that for
fixed f and d, ∆C(f, d) can be realized by a C-simple polyhedron. We do so by describing
a perturbation of a polyhedron P such that the perturbed polyhedron P ′ is C-simple and
has at least the same circuit diameter as P .

The perturbations we consider are to the right hand sides of the defining equations, and
thus do not change the set of circuits, which depends only on A. That is, the right-hand
side b is changed to b→ b′ = b + p for some vector p with ‖p‖ ≤ δ for a sufficiently small
δ. We call such a perturbation a δ-perturbation. The perturbed polyhedron is

P ′ = {x ∈ Rd : Ax ≥ b′}.

Note that for a δ-perturbation, if δ is small enough each facet remains a facet and the
dimension does not change.

The challenge here lies in the fact that the circuit diameter of a polyhedron depends on
its realization, and not only on its combinatorial structure (see Figure 2.11, e.g.). Hence
the effect of a perturbation, in theory, might reduce the diameter. We have to check that
there is a δ-perturbation for which this is not the case.

Lemma 3.4. Let P be a polyhedron. Then there is a C-simple polyhedron P ′ in the same
dimension and with the same number of facets with ∆C(P ) ≤ ∆C(P ′).

Proof. Let P be a d-dimensional polyhedron with f facets. It suffices to prove that a δ can
be determined such that applying a δ-perturbation to P produces a C-simple polyhedron
P ′ with at least the same circuit diameter as P .

First, recall that P and any polyhedron produced by a perturbation of P share the same
finite set of circuits. Further, observe that it suffices to only consider circuit walks of length
at most ∆E(f, d) to validate C-simplicity. There are a finite number of points x ∈ P ′ that
may appear in such a walk. Hence the condition |H(i+1)\H(i)| = 1 only has to be satisfied
for a finite set of pairs (x(i),x(i+1)). This implies that (for fixed δ) the set of right-hand
sides b′ = b + p with ‖p‖ ≤ δ that do not give a C-simple polyhedron P ′ is of measure
0. In turn, for any given δ there are infinitely many perturbations that yield a C-simple
polyhedron P ′.

It remains to see that there is such a perturbation for which the circuit diameter of P ′

is at least the circuit diameter of P . Let YP denote the set of all points on circuit walks in
P of length at most ∆E(f, d). A simple but important observation is that the points in YP

are at least a certain fixed distance from each other. We say that a pair of points x∗,y∗ are
close if

‖x∗ − y∗‖ ≤ min
x,y∈YP

1
2‖x− y‖,

35



that is, they are less than half the minimum distance between pairs of points in YP . Consider
then a perturbation for which δ is small enough that basic solutions in P ′ remain close to
basic solutions in P . Take x ∈ P and y ∈ P ′. Let I(x) denote the cone of feasible directions
of x with respect to P and I ′(y) denote the cone of feasible directions of y with respect to
P ′. Then we have the following:

(P1) There is a one-to-many correspondence between vertices x of P and vertices y of P ′

where each y is close to a unique x and at least one y is close to a given x (and
possibly many are). In particular, each vertex y of P ′ is associated to precisely one
close vertex x in P .

(P2) Let x ∈ YP , y ∈ P ′ be close and let g be a circuit in I(x) ∩ I ′(y). Then a step
along g from y ∈ P ′ gives a y′ ∈ P ′ that is close to precisely one x′ ∈ YP , which is
derived from a step along g from x ∈ P . (It may also happen that g is an unbounded
direction of P , in which case it is also an unbounded direction of P ′. This is because
P ′ is obtained from P via small translations of facets, and so their recession cones are
identical.)

(P3) Let x ∈ YP , y ∈ P ′ be close. Then a step along g ∈ I ′(y)\I(x) from y will give a
y′ ∈ P ′ that is also close to precisely x.

Let us consider a circuit walk y(0), . . . ,y(k′) ∈ P ′ for k′ ≤ ∆E(f, d). Informally, the
above properties tell us that it starts close to a vertex of P (P1) and stays close to points
in YP in each step (P2, P3). More precisely, each y(i) is close to precisely one x(i) ∈ YP . If
(P2) is valid for x(i),y(i), then x(i+1) 6= x(i). Else if (P3) holds, then x(i+1) = x(i). This
implies that each y(0), . . . ,y(k′) corresponds to a circuit walk x(0), . . . ,x(k) in P with k ≤ k′.

Let now ∆C(P ) = k and let x(0), . . . ,x(k) be a walk in P realizing the diameter. Fur-
ther, let y(0) be a vertex of P ′ close to x(0) and y(k′) be a vertex of P ′ close to x(k). If
dist(y(0),y(k′)) < k, then there is a circuit walk y(0), . . . ,y(k′) and i, i′ ≤ k such that y(i′) is
close to x(i) for i′ < i. By the above, we then know that the walk y(0), . . . ,y(i′) corresponds
to a walk x(0),x′(1), . . . ,x′(i′) = x(i) of length i′ < i. This implies dist(x(0),x(k)) < k, a
contradiction. Thus dist(y(0),y(k′)) ≥ k, which proves the claim.

Note that the parameter δ can always be made smaller to ensure properties (P1-P3)
hold.

Hence we have proven the following:

Corollary 3.5. For any f > d > 1, ∆C(f, d) is attained by a C-simple d-dimensional
polyhedron with f facets.
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3.2 Wedge-simplicity

The wedge operation also played an important role in the derivation of combinatorial di-
ameter bounds, as well as in the proof of Theorem 2.52. Let us recall Definition 2.47 and
the accompanying discussion in Chapter 2:

Definition 2.47 (Wedge). Let P be a d-dimensional polyhedron and let F be a facet of
P . A wedge on P over F is a (d + 1)-dimensional polyhedron P ′ = H≤ ∩ (P × L), where
P ×L denotes the product of P with L = [0,∞) and H≤ ⊂ Rd+1 is a closed halfspace with
P × {0} ⊂ H≤ that is defined by a hyperplane H that intersects the interior of P × L and
satisfies H ∩ (P × {0}) = F × {0}.

Figure 3.2: The wedge P ′ on the hexagon P over facet F . Bases are Pl and Pu.

We again note that we only consider wedges over facets in this thesis, although a more
general definition exists where wedges can be taken over lower-dimensional faces. For ref-
erence, we include Figure 2.8 here (renumbered as Figure 3.2). The set of circuits of the
wedge P ′, C(P ′), contains precisely the normalized vectors in the linear subspaces coming
from the intersection of any subset of d linearly independent facets. Recall that the facets of
a wedge are: the lower base Pl; the upper base Pu; and its sides, each defined by supporting
hyperplanes of the form G × L, where G is a supporting hyperplane containing a facet of
P (other than the facet we wedge over). The following lemma shows that C(P ′) can be
characterized using C(P ).

Lemma 3.6 (Circuits of a wedge). Let P ⊆ Rd be a d-dimensional polyhedron with set of
circuits C(P ) and let F be one of its facets. Then if P ′ is a wedge on P over F , the set of
circuits C(P ′) is comprised of vectors of the form

(i) (0, 0, . . . , 0,±1)T ∈ Rd+1

(ii) (±g, 0)T ∈ Rd+1, where g ∈ C(P ) ⊆ Rd

(iii) φ
(
(±g, 0)T

)
∈ Rd+1, where g ∈ C(P ) ⊆ Rd, and φ(x) is the projection of the vector

x to the upper base, moving parallel to L.
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Proof. Each circuit direction of P ′ is defined by a selection of d facets with linearly inde-
pendent outer normals.

(i) First, consider the intersection of d sides of P ′ and recall that they correspond to d
facets G1, . . . , Gd of P . Their intersection in Rd, G1∩G2∩ · · ·∩Gd, is a single point u ∈ Rd

which may either be in P (in which case it is a vertex), or not in P . Hence the intersection
of the corresponding sides in Rd+1 is

(G1 × L) ∩ · · · ∩ (Gd × L) = (G1 ∩ · · · ∩Gd)× L = u× L,

which corresponds to the circuit direction (0, 0, . . . , 0,±1)T ∈ Rd+1.
(ii) Next, let the lower base Pl be one of the d facets in the intersection. Then the other

d− 1 facets again correspond to facets G1, . . . , Gd−1 of P : For the sides, these are the same
facets as above; if Pu is one of the facets then the corrsponding facet in P is F (i.e. Gi = F

for some i). For this, the intersection of these d facets is in one-to-one correspondence with
the intersection

(G1 × L) ∩ · · · ∩ (Gd−1 × L) ∩ Pl = (G1 ∩ · · · ∩Gd−1),

which gives a pair of circuits ±g ∈ C(P ) ⊆ Rd. We obtain circuits (±g, 0)T ∈ Rd+1.
(iii) It remains to consider the intersection of the upper base Pu with d− 1 sides. (Note

that the case with both Pu and Pl in the intersection is already covered above.) These sides
correspond to facets G1, . . . , Gd−1 in P .

In the wedge P ′, we get the intersection of facets

(G1 × L) ∩ · · · (Gd−1 × L) ∩ Pu = ((G1 ∩ · · · ∩Gd−1)× L) ∩ Pu = φ(G1) ∩ · · ·φ(Gd−1).

Hence their intersection in the upper base Pu is the image of the circuit g ∈ C(P ) corre-
sponding to G1 ∩ · · · ∩Gd−1 in P ⊆ Rd. That is, we get circuits φ

(
(±g, 0)T

)
∈ Rd+1.

Wedges are also helpful in the analysis of circuit diameters. However, for circuit walks
in wedges, the situation is more involved. Recall from Proposition 2.48 that wedges P ′

on P over a facet F satisfy ∆C(P ) ≤ ∆C(P ′) ≤ ∆C(P ) + 1, because there is an easy
correspondence between edge walks in P and edge walks in P ′. In contrast, circuit walks
in P ′ do not necessarily transfer to circuit walks in P . This is because it is possible to hit
the interior of Pu, as depicted in Figure 3.4: Let a walk begin at a vertex u ∈ Pl\F . Then
take a step along a circuit parallel to Pu, which will give a y in a side of the wedge. Then
continue from y along a circuit parallel to Pl to y′, which may lie in the interior of Pu.
Projecting this walk down to Pl gives a circuit step in P that does not use maximal step
length and is thus not a circuit walk. The point y′ may also be incident to both Pu and
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Figure 3.3: The circuits of a wedge – circuits in the lower base (blue), circuits in the upper
base (red), and circuits in the (d+ 1)st coordinate direction (green)

a side of the wedge, or lead to another point where this happens, in which case P ′ is not
C-simple – and this is possible even if P itself is C-simple. See Figure 3.5.

Figure 3.4: A circuit walk in the wedge P ′ that does not project to a circuit walk in P .

Thus the corresponding circuit formulations of Proposition 2.48 do not hold in general.
In particular, the wedge operation may reduce the circuit diameter by creating ‘shortcuts’
between vertices of Pl by walks that take an intermediary step into the interior of Pu. In
fact, it is possible to construct a polyhedron P and a wedge P ′ with ∆C(P ) > ∆C(P ′) (based
on the construction for Lemma 15 in Borgwardt et al. [BLF16]).

As we will see, we will not need this property for our arguments. On the other hand,
we will require that polyhedra constructed by wedging are C-simple polyhedra (compare
Proposition 2.48 (i)). The wedge operation may create a P ′ that is not C-simple, even if
the underlying polyhedron P is C-simple (see Figure 3.5). In the following, we explain how
to deal with this problem. First, we require some new terminology that strengthens the
C-simple property.
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Figure 3.5: Polyhedron P = Pl is C-simple but the wedge P ′ is not: the walk u,y,y′,v is
a non-simple circuit walk in P ′ because two new facets are seen in the step from y′ to v.

Definition 3.7 (Wedge-simple). Let P be a C-simple polyhedron. P is a [1-]wedge-simple
polyhedron with respect to a facet F if there is a wedge P ′ on P over F that is C-simple. P
is wedge-simple if for all facets F there is a wedge P ′ on P over F that is C-simple. We can
then recursively define P to be k-wedge-simple for k ≥ 2, if for all facets F there is a wedge
P ′ on P over F that is (k − 1)-wedge-simple.

With this terminology, we are ready to prove that a C-simple polyhedron can be per-
turbed to obtain a wedge-simple polyhedron.

Lemma 3.8. Let P be a C-simple polyhedron. Then there is a wedge-simple polyhedron P ∗

in the same dimension and with the same number of facets with ∆C(P ) ≤ ∆C(P ∗).

Proof. Let P ′ ⊆ Rd+1 be a wedge on P ⊆ Rd over facet F , and consider a perturbation of
the facets of P ′. Assume without loss of generality that we keep the lower base Pl fixed
when perturbing P ′ – that is, the facet xd+1 ≥ 0 is not translated. When one of the sides
of P ′ is translated, this corresponds to a translation of the corresponding facet in P before
wedging. When the upper base Pu is translated, this corresponds to translating the facet
F over which we performed the wedging operation. Thus, it is possible to guarantee some
properties of P ′ by perturbing P before wedging.

By Lemma 3.4, if P ′ is not C-simple we can perturb it to get a C-simple polyhedron
with at least the same circuit diameter. Translating the resulting polyhedron so that the
lower base remains at xd+1 = 0, we conclude using the arguments in the previous paragraph
that this is equivalent to wedging over a perturbed P . Thus it is always possible to perturb
an original polyhedron such that the wedge over a given facet F is C-simple.
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So now let P be perturbed so that the wedge P ′ over facet F is C-simple. Further,
let F ′ 6= F be a different facet of P and consider a wedge P ′′ over facet F ′. If P ′′ is not
C-simple, again a perturbation of P ′′ will make it C-simple. This corresponds to another
perturbation of P , so we need to make sure that C-simplicity of P ′ is not lost when ensuring
it for P ′′.

But note that from the proof of Lemma 3.4, as long as we are performing δ-perturbations,
that is, perturbations that are sufficiently small (where the δ depends on the minimum
distance between any two points in YP ), we get/retain C-simplicity. Since we only need to
consider wedges on P over its facets, of which there is a finite number, we can ensure that P
and each wedge constructed stay C-simple by scaling the parameter δ by some small factor
each time. This proves the claim.

Additionally, Lemma 3.8 transfers to k-wedge-simplicity.

Corollary 3.9. Let P be a C-simple polyhedron and let k ∈ N be given. Then there is a
k-wedge-simple polyhedron P ∗ in the same dimension and with the same number of facets
with ∆C(P ) ≤ ∆C(P ∗).

Proof. Let P = P0, P1, . . . , Pk be a sequence of wedges Pi+1 on Pi for 0 ≤ i < k and suppose
Pk is not C-simple. This can be amended by a slight perturbation of Pk (Lemma 3.4), which
translates to a perturbation of Pk−1, which in turn translates to a perturbation of Pk−2 and
so on up to a perturbation of P = P0. Repeated application of the proof of Lemma 3.8 thus
gives the claim.

The above statements sum up to the equivalence of the following conjecture to the
original formulation in Conjecture 2.70.

Conjecture 3.10 (Wedge-Simplicity). For any k-wedge-simple d-dimensional polyhedron
with f facets and any k ∈ N the circuit diameter is bounded above by f − d.

In light of the many applications of wedging over polyhedra in the studies of the com-
binatorial diameter, Conjecture 3.10 may be useful in its own right. It tells us that we may
restrict our studies to C-simple polyhedra for which an arbitrarily large number of wedging
operations still gives a C-simple polyhedron.

We conclude this section by explaining how k-wedge-simplicity transfers from a polyhe-
dron P to its faces.

Lemma 3.11. Let P be a wedge-simple d-dimensional polyhedron and F be any d′-face of
P for 1 < d′ < d. Then F is also wedge-simple.
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Proof. Let F be a d′-dimensional face of the wedge-simple polyhedron P . In order to prove
that F is wedge-simple, we need to show that there is a C-simple wedge on F over each of
its facets. To this end let G be a facet of F . We know that G = F ∩ G̃, where G̃ is a facet of
P . By wedge-simplicity of P , there is a wedge W on P over G̃ that is C-simple. Recalling
Definition 2.47, let H≤ be the closed halfspace intersected with P × L = P × [0,∞) to
produce the wedge W , and let H be the defining hyperplane for H≤ in Rd+1. In particular
this means that H ∩ (P × {0}) = G̃× {0}; that is, the hyperplane intersects the lower base
Pl in the facet G̃. Hence we have:

H ∩ (F × {0}) = H ∩ ((P × {0}) ∩ (F × {0}))

= (H ∩ (P × {0}) ∩ (F × {0})

= (G̃× {0}) ∩ (F × {0})

= G× {0}

So we can use the same halfspace H≤ intersected with F × L to produce a wedge WF

on F over G that is contained in W .
Further WF is a face of W . To see this, let HF ⊂ Rd be a supporting hyperplane of P

that intersects P exactly in F : HF ∩ P = F . Then we have the following implications:

HF ∩ P = F

⇒ (HF × L) ∩ (P × L) = (F × L)

⇒ (HF × L) ∩ (P × L) ∩H≤ = (F × L) ∩H≤

⇒ (HF × L) ∩W = WF

⇒ (HF × R) ∩W = WF (since W,WF ⊆ Rd × L)

Clearly W ⊆ P × L is contained in H≤F × R, since P is contained in H≤F . This means
that WF is a face of W , with supporting hyperplane HF × R. Circuit walks in WF are
therefore also circuit walks in W , and so if W is C-simple, then WF must be C-simple as
well. Since the facet G of F was selected arbitrarily at the beginning, the proof works for
any facet; this proves that F is wedge-simple.

Lemma 3.12. Let P be a k-wedge-simple d-dimensional polyhedron and F any d′-face of
P for 1 < d′ < d. Then F is also k-wedge-simple.

Proof. Following the proof of Lemma 3.11, let F be a d′-dimensional face of the k-wedge-
simple polyhedron P , and let G be a facet of F . Call G̃ the facet of P such that G = F ∩ G̃,
W the wedge on P over G̃, and W ′ the wedge on F over G, constructed using the same
closed halfspace as W . Then we saw above that W ′ is a (d′ + 1)-face of W .
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This means that we can proceed with this proof using induction on k. The base case,
k = 2, is handled immediately by Lemma 3.11: If P is 2-wedge-simple, then W is wedge-
simple, and thus so is W ′, implying F is 2-wedge-simple by the arbitrary choice of G.

The same argument can be used to prove the inductive step: if it is true for (k−1), then
using the same constructions, if P is k-wedge-simple, then W is (k − 1)-wedge-simple, and
thus so is W ′. Since G was chosen arbitrarily at the beginning, this implies that F itself is
k-wedge-simple.

3.3 The Conjectures

In this section we discuss how several variants of Conjecture 2.70 are related – these are
circuit analogues of variants of the combiantorial Hirsch conjecture. We begin with a dis-
cussion and formal statements for these conjectures.

3.3.1 Non-revisiting circuit walks

One of the most useful variants in the studies of the Hirsch conjecture for the combinatorial
diameter is the non-revisiting conjecture. A walk is non-revisiting if no facet is left during
the walk then entered again at a later step; the non-revisiting conjecture was that any two
vertices are connected by such a walk. In particular this means that if two vertices u,v lie
in the same face of a polyhedron, there would be a walk connecting the two vertices that
stays in this face and adheres to the given bound.

In an edge walk in a simple polyhedron, at each step exactly one facet is left and exactly
one other facet is entered. The non-revisiting conjecture requires that the entered facet is
new, i.e. it has not been left before. For circuit walks the situation is a bit more complicated.
Circuit steps that are not along edges will leave multiple facets simultaneously, and, in a
non-C-simple polyhedron, may enter multiple facets as well. To transfer the concept of a
non-revisiting walk, we consider the facets that are entered during a walk.

Recall that the connection of the non-revisiting conjecture for edge walks and the orig-
inal Hirsch conjecture, in fact, comes from the ‘positive’ interpretation of the above: One
enters exactly one new facet in each step. As one starts at a vertex, to which d facets are
incident, entering a new facet in each step immediately gives the bound f − d. We use this
interpretation to give a viable formulation for circuit walks.

Conjecture 3.13 (Non-revisiting). For any polyhedron P and two vertices u,v ∈ P , there
is a circuit walk from u to v that enters a new facet in each step, that is, each step produces
an active facet that was inactive at all previous steps.

In a non-revisiting circuit walk, each circuit step enters at least one new facet, and may
leave any number of old facets. So generally, it is possible to enter ‘old’ facets in a step
as long as one also enters a new facet. However, for C-simple polyhedra, only exactly one
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new facet is entered in each step. Then the above formulation is equivalent to asking for a
circuit walk from u to v that does not enter a facet it left before.

It is easy to see that Conjecture 3.13 implies Conjecture 2.70 with the same arguments
as before: One begins at a vertex, to which (at least) d facets are incident, and enters a
new facet in each step, which gives a bound of f − d.

3.3.2 Any start

In contrast to edge walks, which only walk between vertices of a polyhedron, one may
consider circuit walks that begin at a feasible point in a polyhedron that is not a vertex:
indeed many steps in circuit walks do not begin at vertices. To study partial circuit walks,
we present a variant of the conjectures that deals with the generalization of the starting
point. Recall that a set of facets is linearly independent if the corresponding outer normals
are linearly independent.

Conjecture 3.14 (Any start). For any d-dimensional polyhedron P with f facets and any
finite set M of points in P , the length of a circuit walk from any point u ∈M to any vertex
in P is bounded above by f −d′, where d′ is the number of linearly independent facets active
at u.

Note the number of active facets for any vertex u of a d-dimensional polyhedron is at
least d. The above conjecture gives rise to a generalized notion of circuit walk that may
start anywhere in the polyhedron, not only at a vertex.

Let us briefly look at an example to see why the above formulation is plausible: Consider
a simplex in Rd and recall it has d+ 1 vertices and d+ 1 facets, which implies f − d = 1. It
has combinatorial diameter 1, which transfers to circuit diameter 1. However, the number
of steps to a vertex can be much larger for non-vertices. For example, let a walk begin at
a feasible point u in the strict interior of a facet F . Then d′ = 1 and f − d′ = d. If the
simplex is C-simple with respect to a set M containing the starting point u, walking to the
unique vertex not incident to F requires exactly d steps. Figure 3.6 depicts an example in
dimension 3.

Consider a non-revisiting walk (as in Conjecture 3.13) starting at a non-vertex. Picking
up a new facet in each step that did not appear before would transfer to a bound of f − d′,
as only d′ ≤ d facets are active in the beginning. It is clear that Conjecture 3.14 is at
least as strong as Conjecture 2.70, as it encompasses the corresponding statement for M as
the set of all vertices and because d′ ≥ d for all vertices. But Conjecture 3.13 also implies
Conjecture 3.14:

Lemma 3.15. Let P be a d-dimensional polyhedron with f facets, let u be a feasible point
in P that is incident to d′ linearly independent facets of P , and let v be a vertex of P .
Suppose further that the non-revisiting conjecture (Conjecture 3.13) is true. Then there is
a circuit walk from u to v that enters a new facet in each step.
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Figure 3.6: A simplex in R3. The circuit distance of a point on the boundary to any vertex
is at most three.

Proof. Our strategy for the proof is as follows: We construct a polyhedron P ′ ⊂ P such
that u,v are vertices of P ′. Then we show that a non-revisiting circuit walk from u to v in
P ′ transfers to a non-revisiting circuit walk in P .

Let F v
1 , . . . , F

v
d be d linearly independent facets incident to v in P with outer normals

av
1, . . . ,av

d. Let further F u
1 , . . . , F

u
d′ be d′ linearly independent facets incident to u in P and

let au
1 , . . . ,au

d′ be the corresponding outer normals. For d′ ≥ d, there is nothing to prove.
For d′ < d, there are d − d′ outer normals among av

1, . . . ,av
d, without loss of generality

av
1, . . . ,av

d−d′ , such that the set {au
1 , . . . ,au

d′ ,av
1, . . . ,av

d−d′} is linearly independent.
Let now F≥d′+i = {x ∈ Rd : (av

i )T x ≥ (av
i )T u} for i ≤ d− d′. Note that by definition of

the ai, (av
i )T v ≥ (av

i )T u for all i ≤ d− d′. Thus P ′ = P ∩
d−d′⋂
i=1

F≥i contains both u and v,

and both are vertices of P ′. Informally P ′ is the intersection of P with a cone (starting at
u) of facets that are parallel to facets incident to v.

By assumption of Conjecture 3.13 there is a walk from vertex u to vertex v in P ′ that is
non-revisiting. As P and P ′ only differ in facets incident to the starting point u of the walk,
this implies that in each step of such a walk there is a facet from the original polyhedron P
that bounds the step length. Thus the corresponding walk is also a circuit walk in P and
it is non-revisiting in P .

3.3.3 Dantzig figures and the circuit d-step conjecture

Next, we consider the connection of Conjecture 2.70 to the so-called d-step conjecture
and Dantzig figures. It is well known that for the maximal combinatorial diameter of d-
dimensional polyhedra, it suffices to consider polyhedra with 2d facets. The maximal value
of f − d is realized in a polyhedron with 2d facets. This leads to the circuit equivalent of
the d-step conjecture.
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Conjecture 3.16 (d-step). For any d-dimensional polyhedron with 2d facets the circuit
diameter is bounded above by d.

With f = 2d, clearly f − d = d. Conjecture 3.16 treats a special class of polyhedra,
and thus is a specialization of Conjecture 2.70. In fact, one may even restrict the studies
to Dantzig figures (Definition 2.51).

Conjecture 3.17 (Dantzig figure). For any d-dimensional Dantzig figure and vertices u,v
not sharing a facet, the circuit distance from u to v is bounded above by d.

Note that for a C-simple Dantzig figure, the circuit distance from u to v is at least d. If
it is equal to d, then a corresponding walk is non-revisiting.

3.3.4 Equivalence of the Conjectures

We now prove a sequence of implications relating Conjectures 2.70, 3.13, 3.16, and 3.17.
The proof methods are inspired by the corresponding proof for the combinatorial diameter
in (Yemelichev et al. [YKK84]) and (Klee and Walkup [KW67]), but we have to pay signif-
icantly more attention to technical detail. Moreover we do not recover the last implication
(4) ⇒ (1); we explain why later in this section.

Theorem 1.8. Consider the following statements:

(1) Let u,v be two vertices of a k-wedge-simple polyhedron P for k ≥ f . Then there is a
non-revisiting circuit walk from u to v.

(2) ∆C(f, d) ≤ f − d for all f ≥ d

(3) ∆C(2d, d) ≤ d for all d

(4) For all d-dimensional Dantzig figures (P,u,v), the circuit distance from u to v is at
most d.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

Proof. (1) ⇒ (2): First, recall that ∆C(f, d) is realized by a k-wedge-simple polyhedron. In
a non-revisiting circuit walk from vertex u to v, a new facet is entered in each step. As
P is k-wedge-simple, it in particular is C-simple so this is exactly one new facet per step.
Since u is incident to exactly d facets, this walk has at most f − d steps.

(2) ⇒ (3): ∆C(2d, d) ≤ d is the special case of ∆C(f, d) ≤ f − d for f = 2d.
(3) ⇒ (4): The d-dimensional Dantzig figure (P,u,v) in particular has 2d facets.

We note here that this result mirrors Klee and Walkup’s proof of the equivalences in
Theorem 2.52, except for the last implication (4) ⇒ (1). The combinatorial version of this
implication is proven by wedging on a starting polyhedron F0, wedging over the result, and
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repeating this process until a Dantzig figure Fk is obtained. Then the edge walk in the
Dantzig figure is non-revisiting, and it projects down to a non-revisiting edge walk in F0.

The idea of k-wedge-simplicity is introduced because it is necessary to ensure C-simplicity
of the final Dantzig figure P ′ produced; this and the circuit diameter bound from the
assumption (4) gives a non-revisiting circuit walk in the Dantzig figure. However this might
not project down to a non-revisiting circuit walk in the intermediate wedge constructions,
or the starting polyhedron itself – see Figure 3.7.

Figure 3.7: The circuit walk in the wedge P ′ on the left is non-revisiting. However it does
not project to a circuit walk in P .

We can still guarantee existence of a non-revisiting circuit walk from x to yk in the final
Dantzig figure Fk, however. By k-wedge-simplicity of the starting polyhedron F0, we can
wedge on F0 such that F1 is (k − 1)-wedge-simple. In general there is a choice of wedge
such that Fi is (k− i)-wedge-simple, and hence the Dantzig figure Fk will be C-simple, with
the property that distC(x,yk) = d′ + k. So, any circuit walk of length d′ + k from x to yk

has to be non-revisiting – the number of facets incident to yk and the number of steps in
the walk are equal.

Where problems may arise are in the intermediate wedges Fi for i < k. Note that this
method could still work – if there were some way to control these non-revisiting walks such
that at the circuit step when the upper base is entered, the circuit direction traversed was
vertical (that is, it left [only] the lower base and entered the upper base). Such a circuit
walk in Fi would project down to a circuit walk in Fi−1 with one fewer step, and so the
same argument as in the previous paragraph will guarantee that this walk is non-revisiting
(using strong induction on i from k down to 0).

3.3.5 A connection of unbounded and bounded circuit diameters

In the proof of Lemma 3.15, we added extra facets incident to a boundary point u of P
to obtain a polyhedron P ′ ⊂ P in which u is a vertex. The added facets were parallel to
existing facets, such that C(P ) = C(P ′). By performing a similar construction it is possible
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to transform an unbounded polyhedron P to a bounded polytope P ′ with C(P ) = C(P ′) and
without cutting off any vertices. We will do so by adding facets through u that are parallel
to facets through a particular vertex v. In doing so, we derive a relationship between the
circuit diameters of bounded polytopes and unbounded polyhedra.

In the following, for a facet with outer normal ai, we call a facet with outer normal −ai

an opposite facet. We begin by examining how many opposite facets have to be added to
a single vertex of an unbounded polyhedron P to obtain a bounded polytope P ′. Here we
say a facet blocks an edge direction incident to vertex v if the half-line starting at v in edge
direction intersects the facet. Essentially, an edge direction only is unbounded if there is no
blocking facet.

Lemma 3.18. Let P be a d-dimensional unbounded polyhedron with f facets, and let u,v
be two vertices of P that do not share a facet. Then there is a bounded polyhedron P ′ ⊂ P ,
where P ′ is constructed by adding at most d− 1 facets incident to u that are opposite facets
for facets incident to v. By this construction, u,v ∈ P ′ are vertices and C(P ) = C(P ′).

Proof. By construction, P ′ still contains both u and v, as all facets that are added are
opposite facets of facets that are incident to v. In particular, the facets are parallel to
existing ones, so C(P ) = C(P ′). Thus it suffices to prove that at most d − 1 facets are
necessary to create a bounded polytope.

Consider the recession cone of P , or its cone of unbounded directions (Definition 2.17).
In particular, it is contained in the inner cone of v. Thus it suffices to block the edge
directions of the inner cone in P ′ by the addition of extra facets. A simple way to do so
would be to add opposite facets incident to u to all facets incident to v. In fact, this would
give a bounded box that contains P ′.

However, not all of these facets are necessary. Let S be a simple cone coming from the
selection of exactly d linearly independent facets of the d∗ ≥ d facets incident to v. Then
S contains the inner cone and it suffices to block the corresponding d edge directions of S.

The graph of P is connected and thus there is an edge incident to v that leads to a
neighbouring vertex. It is possible to choose the facets F1, . . . , Fd for S as a superset of
those d− 1 facets that define such an edge. This implies that we only have to block d− 1
edge directions to validate the claim. In fact, if we add to u exactly the opposite facets to
these d− 1 facets then we obtain the desired result.

Note that the number of facets that are necessary for the construction may be lower
than d−1 if the unbounded cone is of lower dimension than d or if multiple edges lead from
v to neighbors in the graph of P . Lemma 3.18 is our key ingredient to connect the maximal
circuit diameter ∆u

C(f, d) of an unbounded d-dimensional polyhedron with f facets and the
maximal circuit diameter ∆b

C(f, d) of a bounded d-dimensional polytope with f facets.
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Theorem 3.19. If all C-simple bounded (f ′, d′)-polytopes with f ′ ≤ f + d − 1 and d′ ≤ d

satisfy the non-revisiting conjecture (Conjecture 3.13), then ∆u
C(f, d) ≤ f − 1.

Proof. Let P be an unbounded d-dimensional polyhedron with f facets and let u,v be two
of its vertices. We assume u and v do not share a facet; otherwise consider the minimal
face that contains u and v in place of P . Further, let P ′ be constructed as in the proof of
Lemma 3.18, where new facets are added to u. Then P ′ has at most f + (d − 1) facets.
Now perturb polytope P ′ to obtain the C-simple polytope P ′′. Let u′ be a vertex of P ′′

that corresponds to u in the non-perturbed P ′, and to which all (at most d−1) extra facets
are incident. (The existence of such a u′ in P ′′ can be guaranteed by first fixing a set of d
facets that contains all extra facets and relaxing all other facets slightly. Any subsequent
perturbation then keeps the single point of intersection u′ of these facets feasible, i.e. u′ is
a vertex of P ′′.) Let further v′ be a vertex of P ′′ that corresponds to v in P ′.

Now consider a non-revisiting circuit walk from u′ to v′ in P ′′. As it is non-revisiting,
none of the extra facets is the only blocking facet in any step – in other words the step
length is always bounded by one of the original facets. This means that the circuit walk
transfers to a circuit walk from u to v in P , with the same number of steps. The circuit
walk thus has length at most f − 1, as none of the initial d facets is revisited.

Note that the constructed walk for the unbounded polyhedron P may be revisiting.
An interesting special case arises for Dantzig figures. For this case, Theorem 3.19 can be
refined.

Corollary 3.20. If all d-dimensional bounded spindles P (u,v) with 2d− 1 facets incident
to u and d facets incident to v have a non-revisiting circuit walk from u to v of length at
most d, then Conjecture 3.17 is true in dimension d, even for unbounded polyhedra.

Note the non-revisiting condition in the above corollary is needed to transfer a circuit
walk in the bounded polytope to be a circuit walk in the unbounded polyhedron. In dimen-
sion 4, all spindles have length at most 4 (Santos et al. [SST12]). Showing that such a walk
can be realized in a non-revisiting manner gives the circuit 4-step conjecture for bounded
and unbounded polyhedra. In the following section, we give two proofs of the circuit 4-step
conjecture: first by a careful analysis of the Klee-Walkup polyhedron U4 and second via
Corollary 3.20 by showing that 4-spindle walks can in fact be made non-revisiting.

3.4 The Circuit 4-step Conjecture

3.4.1 Proof via the Klee-Walkup polyhedron

The first unbounded counterexample to the Hirsch conjecture was given by Klee and Walkup
in [KW67], where they constructed a 4-dimensional polyhedron with 8 facets and combi-

49



natorial diameter 5. Stephen and Yusun in [SY15] prove that this polyhedron satisfies the
Hirsch bound in the circuit diameter setting. We detail the proof here, and then consider
the more general 4-step conjecture afterwards.

Denote by U4 the polyhedron defined by the system of linear inequalities {x ∈ R4 :
Ax ≥ b}, where

A =



−6 −3 0 1
−3 −6 1 0
−35 −45 6 3
−45 −35 3 6

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and b =



−1
−1
−8
−8
0
0
0
0


.

Its graph is shown in Figure 3.8: here the vertices are indexed by the four facets con-
taining each one, while the points labelled with R’s represent extreme rays. It is clear from
the graph that vertices V5678 and V1234 are at graph distance five apart.

Figure 3.8: The graph of U4.

Theorem 3.21. The circuit diameter of the Klee-Walkup polyhedron U4 is at most 4,
independent of realization.
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Proof. First we demonstrate the existence of a circuit walk of length 4 from V5678 to V1234.
Observe that we can take two edge steps as follows: V5678 → V1678 → V1478. Vertices
V1478 and V1234 are both contained in the 2-face determined by facets 1 and 4, so we can
complete the walk on this face. Note that this 2-face is an unbounded polyhedron on six
facets. Figure 3.9 is a topological illustration of this face, showing the order of the vertices
and rays.

Figure 3.9: The 2-face determined by facets 1 and 4.

Now consider a vector g corresponding to the edge direction from V1458 to V1345 –
this is the blue vector in Figure 3.10. Note that this is always a circuit direction in any
realization of U4 since it corresponds to an actual edge of the polyhedron.

To see that g is a feasible direction at V1478, consider vector h in the edge direction
from V1478 to V1458, and vector r in the direction of ray R124. Observe that g and −h
are the two incident edge directions at V1458, and so r must be a strict conic combination
of g and −h, i.e. r = α1(g) + α2(−h) for α1, α2 > 0. By rearranging terms we see that g
is a strict conic combination of h and r: g = (α2/α1)h + (1/α1)r, with α2/α1, 1/α1 > 0.
Feasibility of r and h at V1478 implies that g is a feasible direction at V1478.

Figure 3.10: Feasibility of the circuit direction g.

Now starting at V1478 traverse g as far as feasibility allows. This direction is bounded
since we eventually exit the polyhedron when following g from V1458. We will hit the 2-face
at a point along the boundary, and at one of the following positions:
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• exactly at V1234,

• on the edge connecting V1234 and V1345, or

• on the ray R124 emanating from V1234.

Hitting exactly V1234 gives a circuit walk of length 3 from V5678, while the other two
cases give circuit walks of length 4 since we only need one step to V1234. These two
situations are illustrated in Figure 3.11.

Figure 3.11: Getting from V1478 to V1234 in at most 2 steps.

The argument is the same for the reverse direction (V1234 to V5678). We can construct
a similar walk by first traversing edges V1234→ V2346→ V3467, and then taking a maximal
step in the circuit direction arising from the edge connecting V1467 and V1678. Here we
stay in the 2-face determined by facets 6 and 7. We can then arrive at V5678 in at most
two steps from V3467.

One consequence of Theorem 3.21 is the general circuit 4-step conjecture, however we
will need the following fact to prove it:

Lemma 3.22. Up to isomorphism, U4 is the only non-Hirsch simple (8,4)-polyhedron.

Proof. The simple bounded (8,4)-polytopes are enumerated in Grünbaum and Sreedha-
ran [GS67]. A simple unbounded (8,4)-polyhedron can be truncated with an additional
facet that cuts off the vertex at infinity, this produces a simple (9,4)-polytope. Observe
that the diameter of this polytope will remain at least 5, as any route between V1234 and
V5678 through the new facet will have to add the new ninth facet along with facets 5, 6,
7 and 8. Klee and Kleinschmidt in [KK87] mention that there is a unique simple polytope
with d = 4, f = 9 and diameter 5, following directly from the complete enumeration of
all polytopal simplicial 3-spheres, completed by Altshuler et al. [ABS80]. Thus this must
be exactly that polytope, which we denote by Q4. The result follows, as any non-Hirsch
4-polyhedron with 8 facets comes from Q4 by projecting to infinity the ninth facet that does
not contain either of the two vertices at distance 5.

52



Polytopes such as Q4 that satisfy ∆E(P ) = f − d are known as Hirsch-sharp polytopes.
Now we can prove the circuit 4-step conjecture:

Theorem 1.9 (Circuit 4-step). ∆C(8, 4) = 4.

Proof. By Lemma 3.4, it suffices to consider C-simple polyhedra – let P be a 4-dimensional
polyhedron with 8 facets. If P is bounded then it has combinatorial diameter 4 (Santos et
al. [SST12]), so suppose P is unbounded. By Lemma 3.22, P is combinatorially equivalent
to U4, and by Theorem 3.21 it has circuit diameter 4.

3.4.2 Proof via facial paths in 4-prismatoids

Here we present a second proof of Theorem 1.9. Recall that a spindle is a polytope with
two distinguished vertices u and v such that each facet is incident to exactly one of u and
v. Polar to this, a prismatoid is a polytope with two disjoint facets Q+ and Q− (called its
bases) that together contain all the vertices of the polytope. So edge walks between the two
distinguished vertices in a spindle correspond to facial paths between Q− and Q+, that is,
a path that moves from facet to facet via (d− 2)-dimensional faces.

The length of a spindle is the graph distance between the two vertices u and v, while
the width of a prismatoid is the dual graph distance between the two bases, that is, the
length of the shortest facial path between Q− and Q+.

These constructions were essential in finding counterexamples to the combinatorial
Hirsch conjecture; the starting point of Santos’s non-Hirsch construction was a 5-dimensional
prismatoid (see Santos [San12], and Matschke et al. [MSW15] for an improvement). On the
other hand, Santos et al. ([SST12]) proved that 4-dimensional prismatoids have width at
most 4, implying that d = 5 is the lowest possible dimension one could start this construc-
tion.

We strengthen this result here by showing that at each step of the facial path from Q+

to Q−, a new vertex of Q− is seen (where new here means it is new for that particular step,
and not necessarily for the whole walk). Back in the spindle, this is an edge walk from
u to v such that at each step in the walk, a new (with respect to that step) facet of v is
entered. Note that this is different from the usual nonrevisiting property for edge walks,
which requires entered facets to be new with respect to the entire walk up to that point.

Lemma 3.23. In a 4-prismatoid with parallel faces Q+ and Q−, there exists a facial path
from Q+ to Q− such that at each step at least one new vertex of Q− is encountered.

Proof. Suppose a 4-prismatoid Q is given, with bases Q+ and Q−. We know that Q has
width at most 4 (Santos et al. [SST12]). If Q has width 2 then there is a facet of Q that is
adjacent to both bases. The claim then follows as the number of vertices of Q− incident to
each facet in the facial path is strictly increasing.
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If Q has width 3, suppose the facial path of length 3 is Q+ → F → G → Q−. Then
F must have at either 1 or 2 vertices from Q− – any more and it would itself be adjacent
to Q−, and there would be a shorter path between the bases. Also, G must have at least
3 vertices in common with Q− to be adjacent to it. Hence the number of vertices of Q−

incident to each facet in this facial path is also strictly increasing.
Suppose now that Q has width 4. Santos et al. ([SST12]) prove that there is a facial

path of length 4 between the bases, say Q− → F1 → F2 → F3 → Q+, such that F2 is a
tetrahedron with |V (Q−) ∩ V (F2)| = 2 and |V (Q+) ∩ V (F2)| = 2. That is, F2 has two
vertices on Q− and two vertices on Q+. Otherwise, if F2 were incident to more than two
vertices of say, Q+, then it would be adjacent to Q+ and we would have a shorter facial
path between the bases, contradicting the assumption that Q has width 4. Denote by x
and y (z and w) the two vertices of Q+ (Q−) on F2.

Let us now consider each step of the path. The first step Q+ → F1 and the last step
F3 → Q− clearly satisfy the condition we require. Moreover, going from F2 to F3, the
number of vertices on Q− increases from 2 to at least 3 – a strict increase as well.

As for the step from F1 to F2, the crucial observation is that the triangle of F2 that is
incident to F1 contains two vertices of Q+ (x and y) and one of Q− (assume without loss
of generality that it is z). This means that F1 cannot contain w as well, or else F1 would
contain F2 entirely. Therefore w is the new vertex of Q− seen when moving from F1 to F2.

In Figure 3.12 we show an example of a facial path in a 4-prismatoid; this figure forms
part of a Schlegel diagram, which is a way of visualizing a 4-dimensional polytope by pro-
jecting it through a point beyond one of its facets, which results in a polytopal subdivision
in 3-space.

Figure 3.12: Intermediate steps in a facial path of length 4 between the two bases of a
prismatoid, visualized as a partial Schlegel diagram.

The two bases are the polytopes with vertex sets V (Q+) = {G,H, I, J,K,L,M} and
V (Q−) = {A,B,C,D,E, F}. The facial path shown walks from the outer facet Q+ to the
inner facet Q− as follows:
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• Step 1: Q+ to the facet F1 with vertices V (F1) = {K,L,M,E, F} via the 2-face
4KLM .

• Step 2: F1 to the tetrahedron F2 with vertices V (F2) = {K,L,E,D} via 4KLE.

• Step 3: F2 to the facet F3 with vertices V (F3) = {L,E,D,A} via 4LED.

• Step 4: F3 to Q− via 4EDA.

Figure 3.13 shows the entire facial path; observe that this is a revisiting path since the
vertex F is left at the second step and then seen again in the last step. However this path
still satisfies the condition we need, that at least one new vertex of Q− is seen at each step:
E and F for step 1, D for step 2, A for step 3, and B, C, and F for step 4 (we still list
F here because it is a vertex of Q− but not of F3, although it has already appeared in the
walk before).

Figure 3.13: A revisiting facial path in a 4-prismatoid.

The polar result for spindles is that there is a length 4 edge walk from u to v such that
a new facet of v is entered at each step. This implies the next result:

Corollary 3.24. Let P (u,v) = P (u) ∩ P (v) ⊂ R4 be a bounded spindle coming from the
intersection of two cones P (u), P (v) at u, respectively v. Then there is an edge walk from
u to v such that in each step, a new facet of P (v) becomes active.

Lemma 3.25. Let P (u,v) = P (u) ∩ P (v) ⊂ R4 be an unbounded spindle coming from the
intersection of two cones P (u), P (v) at u, respectively v. Let further P (v) be simple. Then
there is a circuit walk of length at most 4 from u to v.

Proof. Let a1, . . . ,a4 be the outer normals of facets F1, . . . , F4 incident to v. Let further
Qi = {x ∈ Rd : (−ai)T x ≤ (−ai)T u}, informally an opposite halfspace of the one created

by Fi, but now moved to be incident to ui. Set P ′(u) = P (u) ∩ Q with Q =
4⋂

i=1
Qi and
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P ′(u,v) = P ′(u)∩P (v). Clearly, P ′(u,v) ⊂ P (u,v) is a bounded spindle with simple cone
P (v) so that we may apply Corollary 3.24.

Thus there is a circuit walk from u to v in P ′(u,v) of length at most 4 such that in
each step at least one of the facets of P (v) becomes active. This means that the ‘extra’
facets introduced as Q are never the only facets to bound the step length. Combining this
fact with P ′(u,v) ⊂ P (u,v), we see that the circuit walk from u to v in P ′(u,v) of length
at most f is a circuit walk in P (u,v), as well. This proves the claim.

The bounded case ∆C(8, 4) ≤ 4 already follows from the combinatorial diameter bound
∆E(8, 4) ≤ 4; hence Lemma 3.25 takes care of the only other possible bad case – when the
(8, 4)-polyhedron is unbounded. So, given an unbounded (8, 4)-polyhedron, we take two
of its vertices u and v, which we can assume to have no facets in common (otherwise we
reduce to the 3- or fewer-dimensional case.)

An application of Lemma 3.25 gives Theorem 1.9.
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Chapter 4

Computational Methods

In this chapter we detail some of the computational methods used in our exploration of
circuit directions and circuit diameters, as well as a number of auxiliary results that do not
fit in Chapter 3. We begin with a discussion of the Hirsch-sharp polytope Q4 obtained from
U4 by truncating the vertex at infinity. We prove an analogue to Theorem 3.21 – that a
circuit distance bound of 4 holds for the far pair of vertices of Q4, for at least one direction.
Then, we give two representations of Q4 with different circuit diameters – for this we mainly
used MATLAB and polymake, though we also wrote code in python that would carry out
limited polyhedral computations (since polymake does not run on all systems).

We discuss differences between the inequality form Ax ≥ b and the standard form
Ax = b,x ≥ 0 presentation for polyhedra, and their implications on circuit computations.
We prove that an inequality-form polyhedron with nonnegativity constraints can be rewrit-
ten in standard form (using slack variables) while retaining the same circuits. On the other
hand, adding new inequalities to a polyhedron will always result in more circuits that orig-
inally existed – e.g. recall the classic linear programming exercise of writing unconstrained
variables x as x+ − x−.

Finally, we end with a short proof that the circuit directions of a certain polyhedron
arise as the vertices of another, hinting at another possible method to compute circuits
efficiently.

4.1 The Klee-Walkup Polytope

By applying a projective transformation to U4 we can obtain a bounded 4-dimensional
polytope with f = 9 and diameter 5. As in (Kim and Santos [KS10]), we call this polytope
Q4. Since its diameter is exactly 5 = f −d = 9−4, Q4 is Hirsch-sharp – this is the smallest
Hirsch-sharp polytope outside of cubes and tetrahedra, and is the basis for the constructions
used to produce more Hirsch-sharp polytopes (Holt and Klee [HK98], Fritsche and Holt
[FH99]). With this in mind, we investigate the circuit diameter of Q4.
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Figure 4.1: The skeleton of Q4.

The graph of Q4 is shown in Figure 4.1. Here the red vertices, those containing the
number 9, are the ones obtained by adding the ninth facet to U4. Note that we follow
the same vertex labeling as in Figure 2.7. It is easy to see that Q4 has graph diameter 5:
starting at V5678 and using only blue vertices, we stay in U4, and V1234 is at distance 5; if
we move to a red vertex at any point, we will need at least 4 other steps to introduce facets
1, 2, 3, and 4. It is easy to see that all other pairs of vertices are connected by walks of
length at most 4.

The arguments given in the proof of Theorem 3.21 cannot be applied to Q4 because we
lose unboundedness. That is, in the 2-face determined by facets 1 and 4 (which is now a
bounded 7-gon), we cannot anymore be certain that we can get to V1234 in two steps from
V1478 (or V1467, which is at distance 2 from V5678). Figure 4.2 illustrates an example
where we need three steps to arrive at V1234 coming from either V1478 or V1467.

It is interesting to note, however, that the non-existence of a 2-walk from V1478 to V1234

in this face implies the existence of a 2-walk from V1234 to V1478, and hence a circuit walk
of length 4 from V1234 to V5678 (see Figure 4.3). As a consequence we are able to attain
a walk of distance 4 between V1234 and V5678 for at least one direction, irrespective of
representation.

Theorem 4.1. In any realization of Q4, if u and v are the two vertices such that distE(u,v) =
5, then either distC(u,v) ≤ 4 or distC(v,u) ≤ 4.
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Figure 4.2: At least three steps are needed to go from V1478 to V1234.

Figure 4.3: Starting at V1478, moving parallel to the edge V1458-V1345 one hits the edge
V1469-V1249. Traversing the same circuit in the opposite direction from V1234, we end up
on the edge between V1458 and V1478, and one more step is sufficient to arrive at V1478.

We speculate that no representation of Q4 is circuit Hirsch-sharp, i.e. that ∆C(Q4) < 5
for all representations. Below we show one representation of Q4 that has circuit diameter
3, and another that has circuit diameter 4.

4.1.1 A Representation of Q4 with Circuit Diameter 3

We first consider the representation of Q4, given by the facet description Q̃4 = {x ∈ R4 :
Ax ≥ b} from [KS09]. This representation has several symmetries in its coefficients:

A =



3 −3 −1 −2
−3 3 −1 −2
−2 1 −1 −3
2 −1 −1 −3
−3 −3 1 −2
3 3 1 −2
1 2 1 −3
−1 −2 1 −3
0 0 0 2



and b =



−1
−1
−1
−1
−1
−1
−1
−1
−1



.
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Its f -vector is (27, 54, 36, 9), and its graph diameter is 5 (refer to Figure 4.1 for its
graph). Other than V1234 and V5678, all other pairs of vertices are connected by paths of
lengths at most 4.

By brute force enumeration, we are able to generate a circuit walk of length 2 from vertex
V1234 to vertex V5678, that uses the circuits g0 = (−1, 0,−3, 0)T and g1 = (1, 0,−3, 0)T .
This shows that the circuit diameter of Q̃4 is less than 5.

Further, by an exhaustive search we find circuit walks of length 3 between every other
pair of vertices. Some of these pairs admit a walk of length 2 while some pairs do not.
Hence Q̃4 has circuit diameter 3. See Section 4.2 for more details of this computation.

4.1.2 A Representation of Q4 with Circuit Diameter 4

We are able to use the same methods to explore the circuit diameters of perturbed, less
symmetric versions of Q4, with the goal of finding representations with different diameters.
For instance, consider the realization Q̃′4 = {x ∈ R4 : Cx ≥ b}, where

C =



3.2 −3 −1 −2
−3 3.2 −1 −2
−2 1 −1 −3
2 −1 −1 −3
−3 −3 1.05 −2
3 3 1.05 −2

1.05 2 1 −3
−1 −2.05 1 −3
0 0 0 2



= A+



0.2 0 0 0
0 0.2 0 0
0 0 0 0
0 0 0 0
0 0 0.05 0
0 0 0.05 0

0.05 0 0 0
0 −0.05 0 0
0 0 0 0



,

and A and b are as defined in the standard representation. (A quick check is done in
polymake to verify the isomorphism and generate the vertices.) Vertices V5678 and V1234

of Q̃′4, while still separated by a distance-5 path along the skeleton of the polytope, are
now at circuit distance 4 apart. Therefore Q̃′4 has circuit diameter exactly 4, as there are
multiple pairs of vertices separated by circuit distance 4. This brings to light the fragility
of the circuit diameter with respect to geometric realization.

4.2 Computational Details

We performed these circuit diameter computations using polymake [GJ00], MATLAB [mat14],
and Maple [map14]. Given the representation {x ∈ R4 : Ax ≥ b} of Q4, we first use poly-
make to compute its vertices, then we compute circuit directions in MATLAB. Since each
4 × 4 submatrix of A is nonsingular, we are able to compute all vectors g such that Ag is
support minimal by solving the systems Aijkg = 0 for 1 ≤ i < j < k ≤ 9, where Aijk is
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the 3 × 4 submatrix of A consisting of rows i, j, and k. Each Aijk matrix is rank 3 and
so the solution to Aijkg = 0 is a line passing through the origin. Normalizing to coprime
integer components will give the required circuit direction g. Any circuit step can then be
computed using a function that, given a starting point x and a circuit direction g as inputs,
finds αg so that A(x + αgg) ≥ b but A(x + αg) 6≥ b for α > αg.

We can then enumerate exhaustively all circuit walks of length 2 or 3 emanating from
any point, by considering all possible triples of circuit directions. With Q4, we have 84
circuit directions, and taking into account both the positive and negative of each one, we
find that there are at most 168 · (166)2 = 4629408 triples to check. The MATLAB code can
perform this check in a few minutes. Afterwards, to check for circuit walks of length 4, we
use the set of points output by the above enumeration procedure and compute circuit steps
for each feasible circuit. Again, this does not take long to run.

We mention here that precision may be lost due to MATLAB’s use of floating point
arithmetic, and this may be compounded at each circuit step taken. To get around this
potential issue we include a function that rounds to zero any value that lies within some
interval (−ε, ε), where ε is the machine epsilon in MATLAB, that is, the relative accuracy
of floating-point arithmetic.1 So, checking two quantities for equality is done by taking
their difference and checking if it falls in this ε-interval. Certainly, a value larger than ε

may be used for this check – in fact, given a fixed polyhedron and a fixed upper bound for
circuit diameter (say ∆E(P )), one could likely determine what ε would be appropriate for
that polyhedron. (This relates back to the discussion in the proof of Lemma 3.4.)

We perform checks (in Maple) using exact arithmetic for the generated walks. All these
computations were performed on a laptop in a few minutes.

In this way we find that Q̃4 has circuit diameter 3, and Q̃′4 has circuit diameter 4.

4.3 Alternate Representations of Polyhedra

Most of the computations we do work with the inequality form {x : Ax ≥ b} for polyhedra.
We claimed at the beginning of Section 3.1 that we can assume that polyhedra we consider
are full-dimensional, and are represented using an irredundant description of facets; here
we explore this in more detail.

First, we prove the following statement:

Proposition 4.2. Let A ∈ Qm×d, b ∈ Qm×1, and let P = {x ∈ Rd : Ax ≥ b,x ≥ 0}.
Further, let Q = {(x, s) ∈ Rd+m : Ax − s = b,x, s ≥ 0} be the polyhedron obtained by
adding slack variables to P to convert it into standard form. Then, g ∈ C(P ) if and only if
(g, Ag) ∈ C(Q).

1The number ε is the distance from 1.0 to the next larger double-precision number, i.e. ε = 2−52, see
https://www.mathworks.com/help/matlab/ref/eps.html
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Proof. First observe that P can be written as

P =
{

x ∈ Rd :
(
A

Id

)
x ≥

(
b
0

)}
,

and Q as

Q =
{(

x
s

)
∈ Rd+m :

(
A −Im

)(x
s

)
= b,

(
x
s

)
≥ 0

}
.

Given a g ∈ C(P ), by definition,
(
A

Id

)
g =

(
Ag
g

)
is support-minimal among nonzero vec-

tors g. For (g, Ag) to be in C(Q), we need to show
(
A −Im

)( g
Ag

)
= 0 and (g, Ag)

support-minimal in ker
((
A −Im

))
\ {0}. But this kernel is isomorphic to the set

Rd \ {0}, since the first d components determine the last m components completely. Also,(
A −Im

)( g
Ag

)
= Ag−Ag = 0. Hence g ∈ C(P ) if and only if (g, Ag) ∈ C(Q).

What Proposition 4.2 shows is that adding slack variables to convert from an inequality
form to standard form does not change the set of circuits, in the sense that there is a
bijection between C(P ) and C(Q). Observe, however, that Proposition 4.2 begins with an
inequality description of P including the nonnegativity constraints x ≥ 0. If these are
absent, the proposition will hold, but Q will not be in standard form since the x variables
are not constrained to be nonnegative. That is, we can set

P ′ = {x : Ax ≥ b}

and
Q′ = {(x, s) : Ax− s = b, s ≥ 0},

and we get the same bijection between circuit sets C(P ′) and C(Q′).
On the other hand, the standard preprocessing technique to introduce non-negativity

constraints on the way to standard form will introduce new circuits. Recall that this is to
split unconstrained variables x into x = x+ − x−, hence obtaining the polyhedron

Q = {(x+,x−) : A(x+ − x−) ≥ b,x+,x− ≥ 0}.

One might hypothesize that (g+,g−) ∈ C(Q) gives a corresponding circuit g = g+ − g− ∈
C(P ), but this is not the case, as we show in Example 4.3.
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Example 4.3. Consider the realization of U4 given by P = {x ∈ R4 : Ax ≥ b}, where

A =



3 −3 −1 −4
−3 3 −1 −4
−2 1 −1 −5
2 −1 −1 −5
−3 −3 1 −4
3 3 1 −4
1 2 1 −5
−1 −2 1 −5


and b = (−1,−1,−1,−1,−1,−1,−1,−1)T .

Then, let Q = {(x+,x−) ∈ R8 : Ax+ −Ax− ≥ b, x+,x− ≥ 0}.
Using python [pyt], we generate the circuits of Q and see that vector

(g+,g−) = (10, 0, 0, 0, 0, 0, 5, 3)T

is a circuit of Q. This means


A −A
I 0
0 I


(

g+

g−

)
=


Ag+ −Ag−

g+

g−

 is support-minimal for

nonzero (g+,g−). This evaluates to the vector

(47,−13, 0, 40,−23, 37, 20, 0, 10, 0, 0, 0, 0, 0, 5, 3)T .

If we attempt to pull this back into a circuit for P , we compute g = g+ − g− =
(10, 0,−5,−3)T , which is not in C(P ). This is because we can find another circuit g′ ∈ C(P )
such that the support of (Ag′) is smaller. In fact, the circuit

g′ = (41, 47, 50,−17)T ∈ C(P )

works; we getAg′ = (0, 36, 0, 70,−146, 382, 270, 0)T , andAg = (47,−13, 0, 40,−23, 37, 20, 0)T ,
showing that g 6∈ C(P ).

The reason why g+ − g− appears as a circuit of Q is because in Q we check support-

minimality of


A(g+ − g−)

g+

g−

 – so the support of the vector itself (g+,g−) is taken into

consideration. Hence, even if Ag′ has smaller support than Ag = A(g+ − g−), g has one
more zero entry than g′, and so (g+,g−) becomes a circuit of C(Q).

The implication of Proposition 4.2 and Example 4.3 is that while we are able to freely
convert from the inequality form to the standard form of a polyhedron without substantially
affecting the circuit sets, this does not transfer if new facets involving the existing variables
have to be added. This is relevant to the computation of circuits, since most available
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software is written to compute circuits of polyhedra in standard form only (e.g. 4ti2[4ti]).
So discrepancies arise when computing circuits based on their inequality form, which is
what we did in the MATLAB and python code in Appendix A.

We note also that for polytopes that are not full-dimensional, the set of circuits depends
on whether we use an equality or inequality representation. Writing a polyhedron

P = {x : A1x = b1, A2x ≥ b2}

in inequality form
Q = {x : A1x ≥ b1,−A1x ≥ b1, A2x ≥ b2}

produces different circuits; this is because of the addition of more inequalities, which affects
the minimality-check of the supports. In particular, while support-minimality of A2g is
checked for both C(P ) and C(Q), C(P ) is also restricted to be a subset of the kernel of
A1. Hence in C(Q), if we can find a vector g not in ker(A1) but for which A2g has smaller
support than any other vectors, then g ∈ C(Q) \ C(P ). This is easy to accomplish – suppose
A2 = I. Then we can pick one of the elementary coordinate vectors, and this would likely
be a circuit of Q.

For instance, consider the d-simplex

∆d = {x ∈ Rd+1 : 1T x = 1,x ≥ 0}.

Its circuits are the set

C(∆d) = {±(ei − ej) : 1 ≤ i < j ≤ d+ 1}.

But, when represented as

∆′d = {x ∈ Rd+1 : 1T x ≥ 1,−1T x ≥ −1,x ≥ 0},

the set of circuits becomes

C(∆′d) = {±(ei − ej) : 1 ≤ i < j ≤ d+ 1} ∪ {±ei : 1 ≤ i ≤ d+ 1}.

This is surprising, as P and Q are equal. In fact, to any polyhedron in inequality
form one could simply add a redundant inequality and produce additional circuits – this
demonstrates the dependence of the circuit set on how the polyhedron is represented. For
full-dimensional polyhedron in Rd, there is a unique minimal facet representation. This
presentation is assumed in Chapter 3, which presents a purely geometric picture.
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4.4 From Circuits to Vertices

We end this chapter by showing a nice equivalence that might be of use for computing
circuits. Consider the polyhedron defined by

P1 =
{

x ∈ Rd : Ax = b,x ≥ 0
}
,

where A ∈ Zf×d, b ∈ Zf . The circuits of this polyhedron are exactly the set

C(A) =
{

g ∈ Rd : Ag = 0,g has inclusion-minimal support
}
.

Now form a second polyhedron

P2 =
{(

y+

y−

)
∈ R2d : A(y+ − y−) = 0, ‖y+‖1 + ‖y−‖1 = 1,y+,y− ≥ 0

}
.

Here, ‖y‖1 is the 1-norm of the vector y, or ‖y‖ =
∑d

i=1 |yi|.

Theorem 4.4. If g ∈ Rd is a circuit of A, normalized so that ‖g‖1 = 1, then the vector(
y+

y−

)
∈ R2d defined by y+

i = max(gi, 0) and y−i = −min(gi, 0) (1 ≤ i ≤ d) is a vertex of

P2.

Proof: By construction of y =
(

y+

y−

)
, y ≥ 0 and ‖y‖1 = ‖y+‖1 + ‖y−‖1 = 1. Also at

most one of y+
i and y−i is nonzero for each i, so A(y+ − y−) = Ag = 0. Hence y ∈ P2.

Since g is support-minimal in ker(A) = {x : Ax = 0}, this means y =
(

y+

y−

)
has

inclusion-minimal support among points in P2. To see this, assume the opposite; that there

is some vector y′ =
(

y1

y2

)
∈ P2 with a smaller support, where y1,y2 ∈ Rd. This means

supp(y1) ⊆ supp(y+) and supp(y2) ⊆ supp(y−) (with at least one of these containments
strict), implying that for each i, at most one of y1

i and y2
i is nonzero. This further implies

that the vector x = y1 − y2 satisfies supp(x) ( supp(g), as well as Ax = 0, contradicting
the fact that g is a circuit of A.

Now since y is inclusion-minimal in P2, this directly implies it is a vertex of P2. This
is because we cannot set any more variables to zero, i.e. the set of active inequalities at y
is maximal. (Otherwise, we could stay in the same affine space and travel along a feasible
direction until another inequality becomes active.)

As for the reverse implication, we investigate whether all vertices of P2 arise from circuits
of P1. This is generally not the case, as we show in the following example.

65



Example 4.5. Consider

P1 =
{

x ∈ R3 :
(
1 2 1

)
x = b, x ≥ 0

}
and the corresponding

P2 =
{(

y+

y−

)
∈ R3 × R3 :

(
1 2 1 −1 −2 −1
1 1 1 1 1 1

)(
y+

y−

)
=
(

0
1

)
, y+,y− ≥ 0

}
.

Then the normalized circuits of P1 are

C
((

1 2 1
))

=

±


2
3
−1

3
0

 ,±


0
−1

3
2
3

 ,±


1
2
0
−1

2


 .

Using polymake, the vertices of P2 are found to be

V (P2) =





2
3
0
0
0
1
3
0


,



0
1
3
0
2
3
0
0


,



0
1
3
0
0
0
2
3


,



0
0
2
3
0
1
3
0


,



1
2
0
0
0
0
1
2


,



0
0
1
2
1
2
0
0


,



1
2
0
0
1
2
0
0


,



0
1
2
0
0
1
2
0


,



0
0
1
2
0
0
1
2


,


Computing y+−y− for the first six vertices gives exactly the circuits of P1, while doing

the same for the last three give the zero vector, which is not a circuit of P1.

This leads to the following claim:

Theorem 4.6. The vertices of P2 are

V (P2) =
{(

y+

y−

)
: y+

i = max(gi, 0), y−i = −min(gi, 0), 1 ≤ i ≤ d, ∀g ∈ C(P1)
}

∪


1

2ei

1
2ei

 : 1 ≤ i ≤ d


Proof. Let R =

{(
y+

y−

)
: y+

i = max(gi, 0), y−i = −min(gi, 0), 1 ≤ i ≤ d, ∀g ∈ C(P1)
}

and S =


1

2ei

1
2ei

 : 1 ≤ i ≤ d

 .
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The vertices of P2 are exactly its nonzero inclusion-minimal vectors(
y1

y2

)
,

and there are two possibilities: at most one of y1
i and y2

i is nonzero for each 1 ≤ i ≤ d, or
there is some index 1 ≤ i ≤ d such that both y1

i and y2
i are nonzero. The first scenario

corresponds exactly to the vectors in R, as we have shown previously. We now show that
the second type correspond to exactly the vectors in S.

Observe that if y1
i > y2

i > 0, we can modify these components to get a new vector

y′ =
(

y′1

y′2

)
∈ P2 where y′1i = y1

i +y2
i and y′2i = 0. Furthermore, we have supp(y′) ( supp(y),

implying y is not a vertex. If y2
i > y1

i > 0 instead, then the same argument holds but setting
y′1i = 0 and y′2i = y1

i + y2
i .

Finally, assume y1
i = y2

i > 0. If there is at least one other nonzero component in y, then
the vector y′ obtained from y by setting y1

i and y2
i to zero has smaller support, so y is not

a vertex of P2. However, if there are no other nonzero components in y, then it is support-
minimal among nonzero vectors in P2, since doing the same operation will result in just the
zero vector. The only vectors satisying this condition are those that have y1

i = y2
i = 1

2 and
all other entries zero – this is exactly the set S.

67



Chapter 5

Conclusion

5.1 Summary

This thesis builds up a theoretical toolkit to study the circuit diameters of polyhedra.
This involves transferring the various techniques known and used by discrete geometers to
prove bounds on polyhedral diameters – including wedging (Lemma 3.6), taking products
(Proposition 2.77), operations on spindles (Section 3.4.2; Corollary 3.24), and reformulations
of the non-revisiting and d-step conjectures. We see, working on small examples, that it is
already non-trivial to prove bounds on the circuit diameter, since the set of circuit directions
of a polyhedron depends on how it is represented (as a set of algebraic inequalities and
equations) and how it is realized (as a geometric figure in Rd). This is apparent already in
two dimensions, and more so in four.

There are two results in this thesis that stand out in importance – the reformulation and
implications between the circuit conjectures (Theorem 1.8) and the two proofs of the circuit
4-step conjecture (Section 3.4). The first gives us tools, showing that the general conjecture
can be approached using key special cases, while the second removes a key counterexample
from the edge case, and allows us to reinstate major conjectures for the circuit case.

The relationships among the circuit versions of the Hirsch, non-revisiting, and d-step
conjectures, plus an additional one involving Dantzig figures, are established using an ap-
proach patterned after Klee and Walkup’s original proof in [KW67] under the combinatorial
diameter framework. We modified the notion of simplicity for polyhedra using wedge-
simplicity and k-wedge-simplicity (Section 3.2), in order to have appropriate tools for deal-
ing with circuit walks in wedges; however the combinatorial result (Theorem 2.52) is not
fully transferred to the circuit framework because non-revisiting circuit walks in wedges do
not necessarily project down to circuit walks in the original polyhedron – see the discussion
in Section 3.3.4.
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We are also able to prove some auxiliary results including Theorem 3.19 (a connection
between unbounded and bounded circuit diameters) and an interesting equivalence between
circuits and vertices in Section 4.4.

As for the circuit 4-step conjecture, the key ingredient to one of the proofs is the fact
that the circuit diameter of U4, the original counterexample to unbounded Hirsch, satisfies
the circuit Hirsch conjecture (Theorem 3.21). We prove this is true independent of the
specific realization of U4; this is especially relevant because U4 is the starting point for
constructions that produce many other non-Hirsch unbounded polyhedra.

We present here the current known values for ∆b
E(f, d) as given in Theorem 2.46, and

what is known for the circuit diameter ∆C(f, d).

5.2 Looking Forward

Of main priority is to complete the proof of the equivalences in Theorem 1.8, or to prove a
partial equivalence (say (2) ⇒ (1)). It is possible that the circuit non-revisiting conjecture
is strictly stronger than the other circuit conjectures we formulate – since circuit walks
allow steps through the interior of the polyhedron (or the relative interior of its faces), the
non-revisiting property represents a much stronger restriction to these walks as compared
to the combinatorial case.

The resolution of the (combinatorial) polynomial Hirsch conjecture remains a funda-
mental objective, and studying the relaxation of edge walks to circuit walks provides a way
of furthering our understanding. Borgwardt et al. in [BLF16] give a hierarchy of polyhedral
diameters corresponding to which properties are relaxed among feasibility, maximality, or
walking along edges – the circuit diameter we study in this thesis ∆C(P ) is in the middle
of this hierarchy, as we discuss in Chapter 2. That is, we have

∆E(P ) ≥ ∆C(P ) ≥ ∆f (P ),

where ∆f (P ) denotes the diameter obtained when circuit steps are not restricted to be
maximal. Moreover, ∆f (P ) satisfies the Hirsch bound for any polyhedron; this means the
Hirsch bound breaks down somewhere in between ∆f (P ) and ∆E(P ), and where the circuit
diameter ∆C(P ) is situated may lend clues on the general conjecture.

Presently there is no clear way to resolve the circuit Hirsch conjectures; even small cases
are challenging, such as the circuit 5-step conjecture. A possible approach for 5-step would
be an enumeration of simple 5-polyhedra with 10 facets and showing that they are derived
from U4 (and the literature supports this - see Borwardt et al. [BDHS13], Holt and Klee
[HK98], Kim and Santos [KS10]); another is to look at whether all Hirsch-sharp 5-polytopes
with 11 facets are derived from Q4, following methods of Firsching [Fir17] and Bremner et
al. [BDHS13]. This seems out of reach at present – Firsching [Fir17] outlines the state-of-
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the-art in enumeration; Lutz [Lut08] and Fukuda et al. [FMM13] are examples of this type
of approach. Alternatively, one could prove that 5-spindles with 9 facets on one vertex and
5 on the other satisfy the non-revisiting conjecture – circuit 5-step follows from this via
Corollary 3.20.

It may also be worthwhile to search for counterexamples. Santos-type polytopes would
be one place to start; note that known examples of non-Hirsch polyhedra are based on U4

is the Santos constructions. Also, given the relationships proven in Theorem 1.8, it may
now be possible to understand the general situation by studying spindles.

It will be interesting to also consider circuit Hirsch-sharp polyhedra, or polyhedra whose
circuit diameter is exactly the Hirsch bound f − d. The combinatorial Hirsch-sharp poly-
topes were extensively studied (Fritzsche and Holt [FH99], Holt and Klee [HK98]) before
the bounded Hirsch conjecture was disproved; these include trivial Hirsch-sharp polytopes
(where f ≤ 2d) like the d-cube and the d-simplex, and non-trivial Hirsch-sharp polytopes
(where f > 2d), which include Q4 and others obtained from Q4 by performing operations.
For circuit diameter, the d-simplex remains Hirsch-sharp independent of realization, since
f − d = 1. A regular d-cube is also Hirsch-sharp, but it is not obvious whether this remains
true for non-regular realizations. We conjecture that Hirsch-sharpness transfers:

Conjecture 5.1. Any realization of the d-cube is circuit Hirsch-sharp.

Similarly, it is open whether there exists a realization of U4 that has circuit diameter
less than 4.

Another avenue to be explored is the calculation of circuit diameters for important
classes of polyhedra. Known results include bounds for the circuit diameters of dual trans-
portation polyhedra (Borgwardt et al. [BFH15]), dual network flow polyhedra (Borgwardt
et al. [BFH16]) and 2 × n transportation polytopes (Borgwardt et al. [BLFM15]). More
recently, Kafer et al. characterized the circuit diameters of polytopes that arise from combi-
natorial optimization problems – the matching polytope, the traveling salesman polytope,
and the fractional stable set polytope, showing that for these classes the circuit diameter is
much smaller than their combinatorial diameters (Kafer et al. [KPS17]).

Finally, de Loera et al. showed in [DLHL15] that a circuit augmentation algorithm for
linear programming that uses certain pivot rules finds a solution close to the optimum in
a polynomial number of augmentations. However this polynomial bound depends on the
number of circuits of the coefficient matrix, and one also has to consider the implementation
of the various pivot rules as well. A practical implementation of a circuit-following algorithm
will be nice to have – in particular, there does not exist yet an implementation of these
pivot rules, which likely will prove to be the bottleneck for this algorithm. The search for
other interesting pivot rules might also be fruitful in this regard, as a more efficient method
of circuit selection will impact the algorithm significantly.
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Appendix A

Code

A.1 MATLAB Code for Computations

In the following, we assume that the polyhedron is given as P = {x : Ax ≥ b}, where
A ∈ Qn×d and b ∈ Rd×1,

The main functions we use are ones that compute the circuits of P , and a script that
traverses circuit steps to maximality within the feasible region Ax ≥ b. We also have
functions to perform operations on P like compute its vertices, but for the most part we
defer to polymake for these operations, so we omit those here and only include the following:

function description

compute_circuits.m
Computes the circuits of P by checking
ranks of (d− 1)× d submatrices (only for d = 3, 4, 5).

traverse.m
Moves along a given direction from a given
starting point while maintaining feasiblity
(or detects infeasibility of the direction).

adjust_for_rounding.m
Rounds to zero any entries in a vector
smaller than a fixed tolerance.

compute_paths4.m
Script that computes circuit walks in a polyhedron
starting from a given point.

function result = compute_circuits(A)

%% Given an m-by-d matrix A
%% reduces each (d-1)-by-d submatrix to row echelon form
%% and outputs the rightmost column (as long as rank of
%% the submatrix is equal to d-1)
%% Brute forces; only works for d = 3, 4, 5.

[m, d] = size(A);
all_ind = 1:m;
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all_perms = nchoosek(all_ind,d-1);

result = zeros(size(all_perms,1),d);

if (d == 5)

for i = 1:size(all_perms,1)

if rank(A(all_perms(i,:),:)) == 4
[reduced, basis] = rref(A(all_perms(i,:),:));

if sum(basis) == 10 % 1 2 3 4
temp = [-reduced(:,d) ; 1];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*max(abs(den))*temp’;

elseif sum(basis) == 11 % 1 2 3 5
temp = [-reduced(1:d-2,d-1) ; 1 ; 0];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*max(abs(den))*temp’;

elseif sum(basis) == 12 % 1 2 4 5
temp = [-reduced(1:d-3,d-2) ; 1 ; -reduced(d-2:d-1,d-2)];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*max(abs(den))*temp’;

elseif sum(basis) == 13 % 1 3 4 5
temp = [-reduced(1:d-4,d-3) ; 1 ; -reduced(d-3:d-1,d-3)];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*max(abs(den))*temp’;

elseif sum(basis) == 14 % 2 3 4 5
% First column all zeros
temp = [1 ; 0 ; 0 ; 0 ; 0];
result(i,:) = sign(temp(find(temp,1)))*temp’;

end

end
end

elseif (d == 4)

for i = 1:size(all_perms,1)
[reduced, basis] = rref(A(all_perms(i,:),:));

if sum(basis) == 6 % basis [1 2 3]
temp = [-reduced(:,d) ; 1];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*lcm(sym(abs(den)))*temp’;

elseif sum(basis) == 7 % basis [1 2 4]
temp = [-reduced(1:d-2,d-1) ; 1 ; 0];
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[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*lcm(sym(abs(den)))*temp’;

elseif sum(basis) == 8 % basis [1 3 4]
temp = [-reduced(1:d-3,d-2) ; 1 ; -reduced(d-2:d-1,d-2)];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*lcm(sym(abs(den)))*temp’;

elseif sum(basis) == 9 % basis [2 3 4]
% Only possible if first column is all zeros
temp = [1 ; 0 ; 0 ; 0];
result(i,:) = sign(temp(find(temp,1)))*temp’;

end

end

elseif (d == 3)

for i = 1:size(all_perms,1)
[reduced, basis] = rref(A(all_perms(i,:),:));

if sum(basis) == 3 % basis [1 2]
temp = [-reduced(:,3) ; 1];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*max(abs(den))*temp’;

elseif sum(basis) == 4 % basis [1 3]
temp = [-reduced(1,2) ; 1 ; 0];
[num den] = rat(temp);
result(i,:) = sign(temp(find(temp,1)))*max(abs(den))*temp’;

elseif sum(basis) == 5 % basis [2 3]
% Only possible if first column is all zeros
temp = [1 ; 0 ; 0];
result(i,:) = sign(temp(find(temp,1)))*temp’;

end

end

end

result = unique(result,’rows’)

%%%%%%%%%%%%%%%%%%%%%%%

function [point feas] = traverse(in_point,dir,A,b)

%% Given a point in_point and
%% a direction dir,
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%% computes first whether dir is feasible.
%% If it is, computes the last point in the polytope
%% that can be reached from in_point
%% when traveling in the direction dir
%% If dir is not feasible,
%% Then outputs feas = 0 and point = in_point

%% Assume polytope is A*x >= -1
%% Assume polytope is A*x >= b??

%% Check if dimensions match.
dim = size(A,2);
inequalities = size(A,1);

if size(in_point,1) == dim
else

disp(’Input point has different number of variables than polytope’);
point = in_point;
feas = -1;
return

end

%% Check feasibility. (Only check dir, not -dir)
% Feasible if for tight inequalities at in_point, A*dir is >= 0

tight = (adjust_for_rounding(A*in_point-b) == 0);
A_dpos = (adjust_for_rounding(A*dir) >= 0);

if all(A_dpos(tight)) == 1
% Then feasible
feas = 1;

% Now compute coefficients and compute point

% Only consider non-tight inequalities now
%current = and(not(tight),adjust_for_rounding(A*dir) < 0);
current = and(not(tight),(A*dir < 0));

% Get smallest possible value for coefficient of dir
alpha = min((b(current) - A(current,:)*in_point)./(A(current,:)*dir));
if alpha > 0

point = in_point + alpha*dir;
else % Then unbounded

point = in_point;
feas = 0;

end

else
% Then not feasible
feas = 0;
point = in_point;

end
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end

%%%%%%%%%%%%%%%%%%%%%%%

function result = adjust_for_rounding(vect)

%% Given a vector vect
%% Rounds any entry with absolute value <= eps
%% to exactly 0

result = vect;
ind = abs(vect)<=eps;
result(ind) = 0;

end

%%%%%%%%%%%%%%%%%%%%%%%

function [paths points] = compute_paths4(A,b,gravers,start)

%% For computing all graver paths starting from vertex 3
%% Of length 2 or 3.

%% First generate all possible combinations of
%% directions
total_g = size(gravers,1);
temp = nchoosek(1:total_g,4);
perms4 = perms(1:4);
dir_set = zeros(0,4,’int8’);

% all 4 different first!
for i = 1:size(perms4,1)

dir_set = [dir_set; temp(:,perms4(i,:))];
end

clear temp perms4;

%temp1 = nchoosek(1:84,3);
%dir_set = [temp1; temp1(:,[2 3 1]); temp1(:,[3 1 2])];
%temp2 = nchoosek(1:84,2);
%dir_set = int8(sortrows([dir_set; temp2(:,[1 2 1]); temp2(:,[2 1 2])]));
%clear temp1 temp2;

% Get 292824 combinations
total = size(dir_set,1);
% total is 46308024 for only all 4 different
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% Initialize output matrices:
% One for list of triples of directions (3 entries per row) and
% one for points generated (12 entries per row)
paths = zeros(0,4,’int8’); % Initialize as int8 for now
points = zeros(0,16);

%% Consider each combination then compute
%% node coordinates

for k = 45500001:46308024 % Change manually

% Combination k, directions
d1 = gravers(dir_set(k,1),:)’;
d2 = gravers(dir_set(k,2),:)’;
d3 = gravers(dir_set(k,3),:)’;
d4 = gravers(dir_set(k,4),:)’;

% First direction d1
% Check if feasible direction.
% Feasible if A*d1>=0 or A*d1<=0
% For tight facets at start

% Call traverse function to go to next point
% Have to take into account both +d and -d for
% directions...
[point1_pos, feas1_pos] = traverse(start,d1,A,b);
[point1_neg, feas1_neg] = traverse(start,-d1,A,b);

% First branch: d1 feasible
if feas1_pos == 1 % then feasible

[point2_pos, feas2_pos] = traverse(point1_pos,d2,A,b);
[point2_neg, feas2_neg] = traverse(point1_pos,-d2,A,b);

% Same, branch off
if feas2_pos == 1 % d2 feasible

[point3_pos, feas3_pos] = traverse(point2_pos,d3,A,b);
[point3_neg, feas3_neg] = traverse(point2_pos,-d3,A,b);

if feas3_pos == 1 % d3 feasible

[point4_pos, feas4_pos] = traverse(point3_pos,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_pos,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:)];
points = [points; [point1_pos’ point2_pos’ point3_pos’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([1 1 1 -1])];
points = [points; [point1_pos’ point2_pos’ point3_pos’ point4_neg’]];

end
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end

if feas3_neg == 1 % -d3 feasible

[point4_pos, feas4_pos] = traverse(point3_neg,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_neg,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([1 1 -1 1])];
points = [points; [point1_pos’ point2_pos’ point3_neg’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([1 1 -1 -1])];
points = [points; [point1_pos’ point2_pos’ point3_neg’ point4_neg’]];

end

end
end

if feas2_neg == 1 % -d2 feasible
[point3_pos, feas3_pos] = traverse(point2_neg,d3,A,b);
[point3_neg, feas3_neg] = traverse(point2_neg,-d3,A,b);

if feas3_pos == 1 % d3 feasible

[point4_pos, feas4_pos] = traverse(point3_pos,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_pos,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([1 -1 1 1])];
points = [points; [point1_pos’ point2_neg’ point3_pos’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([1 -1 1 -1])];
points = [points; [point1_pos’ point2_neg’ point3_pos’ point4_neg’]];

end

end

if feas3_neg == 1 % -d3 feasible

[point4_pos, feas4_pos] = traverse(point3_neg,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_neg,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([1 -1 -1 1])];
points = [points; [point1_pos’ point2_neg’ point3_neg’ point4_pos’]];

end
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if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([1 -1 -1 -1])];
points = [points; [point1_pos’ point2_neg’ point3_neg’ point4_neg’]];

end

end
end

elseif feas1_neg == 1 % Note since start is a vertex, d1 and -d1 can’t be both feasible

[point2_pos, feas2_pos] = traverse(point1_neg,d2,A,b);
[point2_neg, feas2_neg] = traverse(point1_neg,-d2,A,b);

% Same, branch off
if feas2_pos == 1 % d2 feasible

[point3_pos, feas3_pos] = traverse(point2_pos,d3,A,b);
[point3_neg, feas3_neg] = traverse(point2_pos,-d3,A,b);

if feas3_pos == 1 % d3 feasible

[point4_pos, feas4_pos] = traverse(point3_pos,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_pos,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([-1 1 1 1])];
points = [points; [point1_neg’ point2_pos’ point3_pos’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([-1 1 1 -1])];
points = [points; [point1_neg’ point2_pos’ point3_pos’ point4_neg’]];

end

end

if feas3_neg == 1 % -d3 feasible

[point4_pos, feas4_pos] = traverse(point3_neg,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_neg,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([-1 1 -1 1])];
points = [points; [point1_neg’ point2_pos’ point3_neg’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([-1 1 -1 -1])];
points = [points; [point1_neg’ point2_pos’ point3_neg’ point4_neg’]];

end

end

end
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if feas2_neg == 1 % -d2 feasible
[point3_pos, feas3_pos] = traverse(point2_neg,d3,A,b);
[point3_neg, feas3_neg] = traverse(point2_neg,-d3,A,b);

if feas3_pos == 1 % d3 feasible

[point4_pos, feas4_pos] = traverse(point3_pos,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_pos,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([1 -1 1 1])];
points = [points; [point1_pos’ point2_neg’ point3_pos’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([1 -1 1 -1])];
points = [points; [point1_pos’ point2_neg’ point3_pos’ point4_neg’]];

end

end

if feas3_neg == 1 % -d3 feasible

[point4_pos, feas4_pos] = traverse(point3_neg,d4,A,b);
[point4_neg, feas4_neg] = traverse(point3_neg,-d4,A,b);

if feas4_pos == 1
paths = [paths; dir_set(k,:).*int8([-1 -1 -1 1])];
points = [points; [point1_neg’ point2_neg’ point3_neg’ point4_pos’]];

end

if feas4_neg == 1
paths = [paths; dir_set(k,:).*int8([-1 -1 -1 -1])];
points = [points; [point1_neg’ point2_neg’ point3_neg’ point4_neg’]];

end

end

end

end

end

%% Then, find if the target point is reached by checking output
%% array in the appropriate columns
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A.2 python Code for Polyhedral Computation

We use python mainly to aid in the polyhedral computations needed - e.g. computing
vertices of a polyhedron, computing combinatorial diameter, etc. The original intent in
using python was for it to serve as a polymake replacement, as the latter cannot be installed
on Windows computers without resorting to third-party software like cygwin.1 Towards the
end of this project we discovered that polymake could be run on docker2, a much easier
set-up than installing cygwin or another virtual machine, so we went back to polymake for
vertex computations, etc. The python code still remained useful, however, as we are able to
do there most of what we did in MATLAB, like traversing circuit directions in a given feasible
region. It is as of now incomplete still, and we hope to improve the code in the future.

What we did was to write a class Poly for polyhedra, taking as input a coefficient matrix
A and a right-hand-side vector b. The Poly object generated contains as attributes its
vertices, rays, facet-vertex incidences, circuits, and so on. Because of this, for moderately
large coefficient matrices it already is not quick to implement – especially since our circuit
computations are also brute force here as in MATLAB.

Some additional notes on packages used:

• We use pycddlib, a wrapper for Fukuda’s implementation of the double description
method for generating vertices of a polyhedron [MRTT53, FP96].3

• We use pynauty, which implements McKay’s graph isomorphism algorithm [McK81].
This has to be installed manually though, and only worked when we ran python from
inside cygwin.4

• We use NetworkX for incidence graph construction and computing combinatorial di-
ameter; more importantly, we also use it for checking isomorphism, eliminating the
need for the pynauty package.5

"""
Python 2.7

This file contains the functions needed to carry out computations on polyhedra
involving circuit directions.

To call the functions below, make sure it is in the same directory as the script
file and use the line

>> from circuitcomp import *

Inputs:
# mat = n x (d+1) matrix encoding Ax >= b as [-b | A]
# A = n x d coefficient matrix; b = n x 1 rhs vector
# these are extracted from mat

1http://www.cygwin.com/
2https://www.docker.com/
3https://pypi.python.org/pypi/pycddlib
4https://web.cs.dal.ca/~peter/software/pynauty/html/index.html
5https://networkx.github.io
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Assumptions:
# Polyhedron is defined by a system of linear inequalities Ax >= b

"""

# PACKAGES REQUIRED
import sympy as sp
import itertools
import numpy as np
import cdd
import fractions
import networkx as nx
import copy

class Poly:
""" Class of polyhedra """
""" Assume Ax >= b, mat = [-b | A] """
""" Matrices are in np.matrix """

def __init__(self,coef):
if coef.shape[1] == 0:

print ’Error: empty input matrix’
else:

mat = copy.deepcopy(coef)
self.A = mat[:,1:]
self.b = -mat[:,0]
self.n_facets = self.A.shape[0]
self.dimension = int(self.A.shape[1])
self.mat = mat
self.vertices = get_vertices(mat)
self.rays = get_rays(mat)
self.n_vertices = self.vertices.shape[0]
self.n_rays = self.rays.shape[0]
self.bounded = (len(self.rays)==0)
self.facets_thru_vertices = {j: set([i for i in range(self.n_facets)...
...if ((self.A*self.vertices[j].T-self.b)==0)[i]])...
...for j in range(self.n_vertices)}
self.facets_thru_rays = {j: set([i for i in range(self.n_facets)...
...if ((self.A*self.rays[j].T)==0)[i]]) for j in range(self.n_rays)}
self.circuits = (get_circuits(self.A))
self.n_circuits = self.circuits.shape[0]
self.facets_thru_circuits = {j: set([i for i in range(self.n_facets)...
...if ((self.A*self.circuits[j].T)==0)[i]]) for j in range(self.n_circuits)}
self.v_adjacency = vertex_adjacency(self.facets_thru_vertices,self.dimension)
self.diameter = compute_diameter(self.v_adjacency)
self.FVgraph = compute_bipartite_facet_vertex(self.facets_thru_vertices,...
...self.n_vertices,self.n_facets)
G = nx.Graph()
G.add_nodes_from(self.v_adjacency.keys())
for i in self.v_adjacency.keys():

for j in self.v_adjacency[i]:
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G.add_edge(i,j)
self.nxgraph = G ## create NetworkX Graph
G1 = nx.Graph()
G1.add_nodes_from(self.FVgraph.keys())
for i in self.FVgraph.keys():

for j in self.FVgraph[i]:
G1.add_edge(i,j)

self.nxFVgraph = G1 ## create NetworkX Graph for FVgraph so we can...
...check isomorphism without resorting to pynauty

def __str__(self):
print ’Polyhedron Ax >= b where A is’
print self.A
print ’and b is’
print self.b
return ’’

def get_vertices(mat):
m = cdd.Matrix(mat.tolist(),number_type=’fraction’)
m.rep_type = cdd.RepType.INEQUALITY
poly = cdd.Polyhedron(m)
vert = np.matrix(poly.get_generators())
return np.compress(np.array(vert[:,0]>0).flatten(), vert, axis=0)[:,1:]

def get_rays(mat):
m = cdd.Matrix(mat.tolist(),number_type=’fraction’)
m.rep_type = cdd.RepType.INEQUALITY
poly = cdd.Polyhedron(m)
vert = np.matrix(poly.get_generators())
return np.compress(np.array(vert[:,0]==0).flatten(), vert, axis=0)[:,1:]

def get_circuits(mat):
"""
# Given coefficient matrix A of size n x d (in system Ax >= b)
# compute its circuits, i.e. null spaces of each
# full rank (d-1) x d submatrix.
"""
# Initialize output array
r, c = mat.shape
result = sp.zeros(0,c)
# Generate all combinations of 1..n choose (d-1)
for comb in itertools.combinations(range(r),c-1):

temp = sp.Matrix(mat[comb,:])
M, b = temp.rref()
if len(b) == c-1: # Do computation only if rank is correct

ind = [i for i in range(c) if i not in b][0]
circ = M[:,ind].row_insert(ind,sp.Matrix([-1])).T
# Normalize to coprime integers!
cand = circ*(sp.lcm([circ[j].q for j in range(c) if circ[j] != 0]))
if [cand[j] for j in range(c) if cand[j] != 0][0] < 0:

cand *= -1
if tuple(cand) not in [tuple(row) for row in result.tolist()]:

86



result = result.col_join(cand)
# Now convert sympy result matrix to numpy
npresult = np.zeros([result.shape[0],c],dtype=fractions.Fraction)
for i in range(result.shape[0]):

for j in range(c):
npresult[i,j] = result[i,j] # Normalized to coprime integers already anyway

return np.matrix(npresult,dtype=fractions.Fraction)
## Uses exact arithmetic for this computation

def vertex_adjacency(FV,dim):
"""
Take Vertex-Facet adjacency dictionary and generate
Vertex-Vertex adjacency list.
** dim is dimension of polyhedron
"""
num_vert = len(FV)
VV = dict([(i,set()) for i in range(num_vert)])
for i in range(num_vert-1):

for j in range(i+1,num_vert):
if len(FV[i] & FV[j]) == (dim - 1):

VV[i] = VV[i] | {j}
VV[j] = VV[j] | {i}

return VV

def bfs(graph,start):
"""
Breadth-first search on graph (a dictionary) starting from
node start
Output is a dictionary {0: start; 1: graph[start]; etc} (levels)
"""
notvisited = set(graph.keys())
result = {0:{start}}
#notvisited.remove(start)
current = {start}
currentlevel = 1
while notvisited:

new_nodes = set()
for i in current:

new_nodes = new_nodes | graph[i]
notvisited.remove(i)

result[currentlevel] = new_nodes & notvisited
currentlevel += 1
current = new_nodes & notvisited

del result[currentlevel-1]
return result

def compute_diameter(VV):
"""
Use Vertex-Vertex adjacency dictionary to compute
diameter of polyhedron
"""
result = 0
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for i in VV.keys():
if len(bfs(VV,i))-1 > result:

result = len(bfs(VV,i))-1
return result

def compute_bipartite_facet_vertex(FV,nv,nf):
"""
Given facet-vertex adjacency list,
generate bipartite graph of vertex/facet incidences
for use with pynauty
"""
total_nodes = nv + nf
result = dict([(i,set()) for i in range(total_nodes)])
for i in FV.keys():

for j in FV[i]:
new_j = int(j + nv)
result[i] = result[i] | {new_j}
result[new_j] = result[new_j] | {i}

for i in result.keys():
result[i] = list(result[i])

return result

def check_connected(VV):
"""
Check if the graph determined by the vertex-vertex adjacency
matrix is connected. Do this by performing one BFS - result must hit all vertices
"""
k = VV.keys()
bfsearch = bfs(VV,k[0])
visited = set()
for i in bfsearch:

visited = visited | bfsearch[i]
if len(visited) == len(VV):

return 1
else:

return 0

def isomorphic(P,Q):
"""
#Inputs: two Poly objects P, Q
# Requires NetworkX
"""
return nx.is_isomorphic(P.nxFVgraph,Q.nxFVgraph)

def traverse(in_point,circ,A,b):
"""
# Starting at in_point, traverse circ as far as possible
# inside the polyhedron Ax >= b
# A is n x d, b is n x 1,
# in_point and circ are d x 1
"""
# Check feasibility of circ at in_point
facets, dim = A.shape
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tight = {i for i in range(facets) if (A*in_point - b)[i] == 0}
not_tight = {i for i in range(facets) if i not in tight}
feas = check_feas(in_point,circ,A,b)
if feas == 2:

new_point = in_point
elif feas == 1:

candidates = not_tight & {i for i in range(facets) if (A*circ)[i] < 0}
diffs = b - A*in_point
ratios = {(diffs[j]/((A*circ)[j])).item(0) for j in candidates}
alpha = (min(ratios))
new_point = in_point + alpha*circ

else:
new_point = in_point

return (feas, new_point)

def check_feas(in_point,circ,A,b):
"""
# Checks feasiblity of circuit circ at point in_point
# in the polyhedron Ax >= b
# returns 0 if infeasible, 1 if feasible, 2 if unbounded
"""
facets, dim = A.shape
tight = {i for i in range(facets) if (A*in_point - b)[i] == 0}
#not_tight = {i for i in range(facets) if i not in tight}
if all(A*circ >= 0):

feas = 2
elif all([((A*circ)[i] >= 0) for i in tight]):

feas = 1
else:

feas = 0
return feas

# Also redefine for taking as input a Poly object instead
def traverse_in_P(in_point,circ,P):

"""
# Starting at in_point, traverse circ as far as possible
# inside the polyhedron P: Ax >= b
# in_point and circ are d x 1
"""
return traverse(in_point,circ,P.A,P.b)

def check_feas_in_P(in_point,circ,P):
"""
# Checks feasiblity of circuit circ at point in_point
# in the polyhedron Ax >= b
# returns 0 if infeasible, 1 if feasible, 2 if unbounded
"""
return check_feas(in_point,circ,P.A,P.b)

def tight_facets(in_point,P):
"""
# Outputs indices of facets of polyhedron P tight at point in_point
"""
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facets, dim = P.A.shape
tight = {i for i in range(facets) if (P.A*in_point - P.b)[i] == 0}
if {i for i in range(facets) if (P.A*in_point - P.b)[i] < 0}:

print ’Infeasible point’
return set([-1])

else:
#not_tight = {i for i in range(facets) if i not in tight}

return tight

def row_in_matrix(r,mat):
"""
# Checks if row r is contained in a matrix mat.
# Outputs first occurrence it finds if yes,
# and outputs -1 if it is not a member.
"""
found = False
index = -1
for ind,row in enumerate(mat):

if np.all(row == r):
found = True
index = ind
break

print("Found: ", found)
print("Row: ", index)
return index

## From https://stackoverflow.com/questions/1987694/print-the-full-numpy-array
## The following class allows for printing of full arrays
class fullprint:

’context manager for printing full numpy arrays’

def __init__(self, **kwargs):
if ’threshold’ not in kwargs:

kwargs[’threshold’] = np.nan
self.opt = kwargs

def __enter__(self):
self._opt = np.get_printoptions()
np.set_printoptions(**self.opt)

def __exit__(self, type, value, traceback):
np.set_printoptions(**self._opt)
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