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Abstract 

Prolonged weight bearing (WBR) at work is a suspected risk factor for the development 

of musculoskeletal disorders that commonly occur in the feet. No objective measure to 

quantify time spent in different WBR postures currently exists, creating a barrier in 

investigating the connection between WBR and foot pain. This study aimed to develop a 

prototype design for a low-cost instrumented insole system capable of differentiating 

workplace postures (sitting, standing and walking). Three objectives were defined: 1) 

quantify and differentiate the pedobarographic characteristics associated with each 

posture, 2) classify the postures from plantar pressure characteristics and 3) develop an 

insole system with off-the-shelf sensors capable of classifying workplace postures. 

Pressure measures near the hindfoot and central/lateral forefoot were found to 

simultaneously differentiate the postures, and machine learning algorithms accurately 

classified the postures using plantar pressure metrics. This foundational work facilitates 

the deployment of a low-cost instrumented insole for workplace studies where it will 

provide the objective evidence needed to resolve the link between WBR and foot pain. 
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Executive Summary 

Prolonged weight bearing (WBR) at work is a widely suspected risk factor for the 

development of musculoskeletal disorders, which most commonly occur in the feet and 

low back. The absence of an objective tool to quantify time spent in different WBR 

postures is a significant barrier in establishing evidence to either support or refute the 

connection between WBR and foot pain. Development of such a tool is impeded by the 

lack of data characterizing different workplace postures through pedobarographic 

patterns. The goal of this study was to develop a prototype design for a low-cost 

instrumented insole system capable of differentiating workplace postures (sitting, 

standing and walking). To achieve this goal, three objectives were defined: 1) to quantify 

and differentiate the plantar pressure locations and characteristics associated with each 

workplace posture, 2) to classify workplace postures from plantar pressure 

characteristics and 3) to develop an insole system with off-the-shelf force sensitive 

resistors (FSRs) capable of classifying workplace postures. The plantar pressure 

patterns of three common workplace postures – sitting (static non-WBR), standing (static 

WBR), and walking (dynamic WBR) – were characterized using a high-resolution, 

laboratory grade, in-shoe pressure measurement system. A regional breakdown of the 

plantar aspect of the foot was modified to enable the isolation of specific foot regions 

and measurement parameter combinations which significantly differed between the three 

postures. Following differentiation of sitting, standing and walking using selected plantar 

pressure measures, a machine learning classification algorithm was employed to 

determine the locations and number of discrete FSRs necessary to differentiate the 

three postures. Outcomes from the machine learning study were then built into a 

prototype low-cost instrumented insole. Overall, pressure measures in the medial and 

lateral hindfoot as well the lateral midfoot best differentiated the three postures 

simultaneously; the medial and central forefoot also differentiated the three postures 

concurrently using pressure and contact area measures, but to a lesser extent. These 

results were then validated through machine learning, which independently selected 

sensors around the midfoot/hindfoot boundary, and central/lateral forefoot, as most 

indicative of the posture; three sensor locations – the central forefoot and the medial and 

lateral midfoot – correctly classified the three postures 98% of the time while sampling at 

15Hz using a three second overlapping sliding window approach. To build in redundancy 

to the low-cost insole prototype, five sensor locations were required based on the 



xv 

machine learning study: two sensors in the central forefoot, one in the lateral forefoot, 

and one in each of the medial and lateral heel regions. By Nyquist Theory, a minimum 

sampling rate of 3Hz was selected for the system based on a slow step frequency of 

1.41Hz. Additionally, sensor resolution was selected on the basis of avoiding sensor 

saturation under loading conditions found on the plantar aspect of the foot. Initial testing 

of the low-cost insole prototype revealed that this standalone system can collect in-shoe 

plantar force data over an extended duration. Further testing of the insole prototype 

coupled with refinement of the machine learning classification scheme will allow this 

system to classify sitting, standing and walking in a similar fashion to the commercial in-

shoe measurement system. This work demonstrates that it is possible to accurately 

classify common workplace postures based on pedobarographic patterns, and these 

postulations were physically confirmed through development of the insole prototype. 

This foundational work facilitates the deployment of a low-cost instrumented insole for 

workplace studies, where it will provide the objective evidence needed to confirm or 

dispute the causal link between WBR and foot pain. Further research using the system 

could also identify which characteristics of an individual’s pedobarographic pattern may 

predispose an individual to plantar fasciitis or other WBR-related disorders; evidence 

suggesting atypical pedobarographic patterns leading to PF or other WBR-related 

disorders is not currently substantiated in the field.
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation 

Prolonged weight bearing (WBR) in the working population is commonplace; it is believed that 

approximately 47% of employees stand for more than 75% of their workday [1]. A suspected 

consequence of this loading is the development of work-related musculoskeletal disorders 

(WMSDs), which are most common in the feet and the low back [2]. In particular, plantar fasciitis 

(PF) is a debilitating foot disorder that presents as pain in the plantar heel region of the foot 

which can migrate throughout the entire plantar aspect of the foot and calf. It is estimated that 

approximately 10% to 24% [3-6] of the general population will be affected by plantar foot pain at 

some stage in their life; however, studies have shown that this estimate rises in working 

populations where prolonged WBR is unavoidable, such as retail salespeople (50% [2]), factory 

workers (52% to 69% [7,8]), and healthcare professionals (11% to 74% [9,10]). The national 

economic burden of plantar fasciitis in the US is estimated to be approximately $284 million 

US/yr. with 1,005,000 patient-visits per year [11].  

WorkSafeBC policy designates PF as a non-traumatically induced activity-related soft tissue 

disorder (ASTD) and notes it as a common cause of musculoskeletal pain among workers in 

British Columbia. Despite various studies suggesting a causal link between prolonged WBR and 

the development of plantar foot pain, it is extremely difficult to attribute the disorder directly to 

work-related WBR because of the lacking evidence related to the etiology of PF [12-15]. A 

diagnosis of PF is often associated with a variety of factors making it challenging to determine 

whether intrinsic factors (e.g., BMI, age, gender) or extrinsic factors, such as prolonged WBR, 

are more influential in the development of PF. Due to this ambiguity, justifying workers’ 

compensation for plantar fasciitis is problematic and highly subjective, resulting in most claims 

being denied. Between 2009 and 2013, WorkSafeBC accepted an average of 13 claims and 

denied 38 claims for PF per year, resulting in an average time lost cost of $194,000 per year 

(approximately $15,000 per claim) [16]. In 2015, WorkSafeBC amended that PF be 

subsequently defined as an occupational hazard, while still noting that the current evidence 

does not relate PF to any one process or industry; evaluations of causality are still conducted on 
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a case-by-case basis [17]. Quantifying and linking prolonged exposure to physical risk factors in 

the workplace and PF is not as immediate as a traumatic injury, such as a fall. Therefore, the 

prevalence of WMSDs like PF are frequently underestimated from workers’ compensation 

claims as many cases go unreported [18,19].  

Attributing work causality to the development of PF is challenged by the bias and inaccuracy 

associated with reporting time spent WBR at work, and more specifically, time spent standing 

(static WBR) versus walking (dynamic WBR). Use of self-report measures to determine time 

spent in workplace activities has had varying results and its utility in estimating workplace 

physical activity (PA) has been cautioned [20]. For example, one study comparing objective to 

self-report measures found that self-report was moderately accurate in measuring sitting and 

standing time, but not walking time [21], whereas another study found self-reporting workplace 

activity to underestimate standing time and overestimate walking time [22]. This variability is 

problematic, as research has shown prolonged standing to be particularly damaging to the 

plantar fascia [4,5,23,24]. Although no definitive answer exists as to why static WBR may be 

more causal in the development of PF than dynamic WBR, recent evidence suggests that soft 

tissue metabolism is mechanosensitive and modulated by the frequency of applied load [25]. 

Therefore, the constant load applied during prolonged standing theoretically places the worker 

at a greater risk of developing PF. This underlying ambiguity regarding the etiology of PF 

coupled with the established inaccuracies associated with self-reporting PA at work suggests 

that direct measurement of time spent WBR would yield more significant correlations between 

prolonged WBR and PF [9,26-28]. 

When compared to more direct measures of activity (e.g. accelerometer based inertial 

technologies, biometric tracking, video-monitoring, etc.), criticism has emerged regarding the 

accuracy and reliability of using self-report methods to collect activity data due to recall bias and 

other limitations [29-34]. However, direct measures of activity also have several shortcomings. 

Inertial measurement units (IMUs) and biometric technologies have been proven to differentiate 

complex activities quite reliably (ascending/descending stairs, cycling, walking/jogging, etc.) 

[35,36]; however, they have limited capabilities when distinguishing between various static 

activities (i.e. standing from sitting) [37,38]. IMU sensors are also limited by bias (i.e. drift) which 

can affect the accuracy and reliability of the sensors over time [39-41]. Although orientation data 

from multi-IMU systems [42,43] and single IMUs placed in select locations [44,45] can 

distinguish certain static postures, multi-IMU systems are of limited use in everyday life and 
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single IMUs are often placed in uncomfortable or impractical locations (e.g. chest, waist, thigh) 

[45] which can interfere with work in some professions. Problematic drift and intrusive single 

IMU locations make this technology infeasible for the widespread deployment proposed in this 

work. Additionally, other methods such as video-monitoring can reliability quantify PA at work, 

but sacrifice worker privacy and are resource-intensive to implement.  

The first step to investigate the potential link between WBR and PF is to develop a technology 

capable of differentiating PA at work. Specifically, time spent walking (dynamic WBR), standing 

(static WBR) and sitting (static non-WBR) are of primary interest. Because of the explicit 

activities of interest, many current technologies on the market are beyond the scope of what is 

needed to characterize activities thought to contribute to PF. Additionally, many systems are not 

designed to characterize these more subtle passive postures (e.g. sitting from standing) and are 

therefore often not designed with the sensitivity required to differentiate the postures. 

Preliminary testing of working prototypes have shown that embedding activity sensors within a 

shoe insole can quantify activity type and duration with minimal discomfort [36,46]. The high 

fidelity and temporal resolution associated with deploying an instrumented insole to a worker 

population allows for more valid conclusions to be drawn about the association (and ultimately 

relationship) of prolonged WBR at work and PF. 

This thesis lays the groundwork for the development of a novel insole technology to be used for 

differentiating sitting, standing and walking at work. The long-term goal of this project is to utilize 

this technology to track periods of WBR at work to establish an evidence-based link between 

WBR and incidence of PF. The focus of this thesis is quantitatively characterizing the plantar 

pressure distribution patterns between WBR postures (walking and standing) and static 

postures (standing and sitting). Through machine learning, this research aims to minimize the 

plantar pressure data needed to accurately differentiate these three postures. By distilling the 

necessary input data down to only essential measurements, this research will assist in the initial 

development of a cost-effective, purpose-driven activity differentiation insole ready for 

deployment to a worker population. 
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1.2. Foot and Ankle Anatomy 

To better quantify the biomechanics of plantar tissue loading, it is necessary to have a basic 

understanding of foot and ankle anatomy and how external loading on the foot can translate to 

and affect specific tissue structures.  

1.2.1. Bony Structures 

In the context of human osteology, the foot can be subdivided into three major areas of interest 

[47]: 

1. Tarsus: The tarsus, or tarsal bones, are a collection of seven articulating bones 

beneath the distal tibia and fibula of the shank.  

2. Metatarsus: The metatarsus, or metatarsal bones, are a series of five long bones 

connecting the tarsal bones to the phalanges. 

3. Phalanges: The phalanges are a series of five digital bones also classed as long 

bones. 

The three major regions of the foot are shown below in Figure 1. 
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Figure 1 Superior view of a right foot. Emphasis placed on the three main regions of 
the foot: Tarsus (‘Tarsals’), Metatarsus (‘Metatarsals’) and Phalanges.  

Figure adapted from [48]. 

The Tarsus 

The tarsus contains seven bones: the calcaneus, talus, cuboid, navicular and the three 

cuneiform bones, labeled medial, intermediate and lateral (Figure 1). The calcaneus is the 

largest of these bones, and it is situated at the most posterior end of the foot primarily serving to 

transmit load to the ground [47]. The talus, or ankle bone, is the second largest bone of the 

tarsus and acts as a socket to provide a connection between the shank and the foot. The talus 

is supported mediolaterally by the malleoli and anteriorly by the navicular; the tibia rests on the 

superior surface of the talus while the inferior surface rests on the calcaneus. The remaining 

tarsal bones serve to provide an articulating connection between the calcaneus, talus and the 

metatarsal bones.  

The Metatarsus 

The five long bones of the metatarsus are numbered from medial to lateral (I-V) (Figure 1) and 

each demonstrates typical long bone characteristics—two rounded extremities and an 
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elongated body [47]. The metatarsal bones articulate with four of the tarsal bones (cuboid, three 

cuneiforms) at their bases, and individually connect to a specific phalange at the head [47]. 

The Phalanges 

Common to both the hands and feet, the phalanges are a series of connected long bones which 

make up the fingers or toes. The phalanges are also labeled in a similar fashion to the 

metatarsal bones numbering I-V starting on the medial side with the hallux. Primarily for 

articulation purposes, the toes are made up of multiple phalanges; the great toe, or hallux, is 

comprised of two phalanges whereas all other toes have three, labeled proximal, middle and 

distal (Figure 1). In contrast to the phalanges of the hands, those of the feet have shorter bodies 

[47]. 

Generalized Foot Regions 

In addition to the three anatomical divisions, the foot can also be subdivided into the hindfoot, 

the midfoot and the forefoot (Figure 2a). Typically, the bones included in each region are as 

follows [47]: 

1. Hindfoot: The hindfoot is comprised of the talus and the calcaneus. 

2. Midfoot: The midfoot is comprised of the cuboid, navicular and medial, intermediate and 

lateral cuneiforms. 

3. Forefoot: The forefoot is comprised of the metatarsal bones (I-V) and the phalanges (I-

V). 

To increase specificity, this work further subdivides the forefoot region into a forefoot and a toe 

region (Figure 2b), as detailed below: 

1. Forefoot: The forefoot is comprised of the metatarsal bones (I-V). 

2. Toe Region: The toe region is comprised of all the phalanges. 
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Figure 2 (a) Generalized foot regions prior to modifications made in this work (b) 
Generalized foot regions defined in this work; note that the forefoot has 
been subdivided to a smaller forefoot region and a toe region (‘toes’). 
Tarsal bones are coloured purple, while the metatarsals are coloured 
yellow. Proximal phalanges are coloured green, middle phalanges blue, 
and distal phalanges orange. Bolded bone outlines denote overlap due to 
superior view. 

Figure adapted from [49]. 

1.2.2. Musculature and Connective Tissues 

The Dorsal Tissues of the Foot 

The two main muscles of note near the superior surface of the foot are the extensor digitorum 

brevis and the extensor hallucis brevis. The extensor digitorum brevis originates at the dorsal 

surface of the calcaneus and inserts at the proximal dorsal region of phalanges II, III and IV; the 

extensor hallucis brevis originates at the calcaneus and inserts at the proximal phalanx of the 

hallux [47]. While the extensor digitorum brevis functions to extend digits II, III and IV, the 

extensor hallucis brevis extends the hallux. The fifth toe is not moved by either of these 
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muscles, and is instead manipulated by the abductor digiti minimi and the flexor digiti minimi. 

Although many additional tissues lie deep to the extensor digitorum brevis and the extensor 

hallucis brevis, their actions are beyond the scope of what is necessary to interpret this work. 

The Plantar Tissues of the Foot 

The plantar aspect of the foot, similar to the dorsal region, is made up of a series of 

musculature, and this complexity exceeds the context of this work. The main tissue on the 

plantar aspect of the foot is the plantar fascia, also known as the plantar aponeurosis. The 

plantar fascia primarily functions to support the arch of the foot by supporting a tensile load 

during WBR, and also acts as a shock absorber during the stance phase of gait. A strong 

connective tissue, the plantar fascia originates at the tuberosity of the calcaneus and inserts at 

the individual heads of the metatarsal bones. White in colour, the tissue is comprised of 

collagen fibres oriented primarily parallel to the long axis of the foot. Longitudinally, the plantar 

fascia can be segmented into medial, lateral and central portions; the medial and lateral portions 

are thinner than the central portion and span the sides of the plantar aspect of the foot [47]. 

Additionally, the medial and lateral portions insert at the hallux and fifth toe, respectively, 

whereas the central portion inserts at the second to fourth toes. The plantar fascia originates as 

a uniform fibrous band of tissue near the calcaneus then widens anteriorly in the transverse 

plane, culminating in a division into five processes which insert into the respective metatarsals 

[47].  

1.2.3. Joints 

Hindfoot Joints 

The hindfoot region is the site of three joints important for dynamic foot function and load 

distribution, these joints are: 

1. The Talocrural Joint: Connecting the distal ends of the tibia and fibula to the 

proximal end of the talus, the talocrural joint is a synovial hinge joint permitting 

dorsiflexion and plantarflexion of the foot [47]. The Talocrural joint is typically what is 

referred to as the ankle joint (Figure 3). 

2. The Subtalar Joint: Connecting the talus to the calcaneus, the subtalar joint plays a 

fundamental role in load transfer and allows for inversion/eversion of the foot; the 
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subtalar joint does not assist in the dorsiflexion or plantarflexion of the foot [47] 

(Figure 3). 

3. The Inferior Tibiofibular Joint: Connecting the distal ends of the tibia and fibula, 

the inferior tibiofibular joint is a fibrous joint which enables minor articulation between 

the distal tibia and fibula [47]. The inferior tibiofibular joint contrasts with the superior 

tibiofibular joint, which is a synovial joint as opposed to a fibrous joint (Figure 3). 

 

 

Figure 3 Posterior view of the foot and ankle complex. The blue line designates the 
Inferior Tibiofibular Joint, red denotes the Talocrural Joint and green the 
Subtalar Joint. 

Figure adapted from [47]. 

Midfoot, Forefoot & Toe Joints 

The midfoot, forefoot and toe regions share a number of similar joints, due to the similarities in 

the five metatarsal and various phalangeal bones, which combine to enable various articulations 

of the anterior part of the foot (Figure 4). The midfoot extends from the hindfoot through five 

tarsometatarsal (TMT) joints, which connect the proximal metatarsal bones to the three 

cuneiform bones and the cuboid [47]. Moving anteriorly, the proximal ends of the metatarsals 
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connect to the distal phalanges through five metatarsophalangeal (MCP) joints, and the 

phalanges are linked through interphalangeal joints; note that the hallux has a single 

interphalangeal joint while toes II-V have both proximal (PIP) and distal (DIP) interphalangeal 

joints [47]. 

 

 

Figure 4 Superior view of selected forefoot, midfoot and toe joints. 

Figure adapted from [49]. 

1.2.4. Arches 

The arches of the foot facilitate static WBR in an erect posture and elicit elastic characteristics 

which aid in dynamic movements [47] (Figure 5). The arches are composed of the tarsal and 

metatarsal bones with supportive connective tissues strengthening the structure. There are 

three primary arches of the foot: 

1. The Medial Longitudinal Arch: Comprised of the calcaneus, talus, navicular, 

cuneiforms I-III and metatarsals I-III, the medial longitudinal arch is the most 
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prominent of the arches and provides a significant amount of elasticity due to its 

height [47]. 

2. The Lateral Longitudinal Arch: Comprised of the calcaneus, cuboid, metatarsals IV 

and V, the lateral longitudinal arch is shorter than its medial counterpart and is more 

structurally rigid [47]. 

3. The Anterior Transverse Arch: Comprised of the heads of the five metatarsal 

bones, the anterior transverse arch sits primarily in the frontal plane and contributes 

to what is widely known as the ‘ball of the foot’. 

 

 

Figure 5 Superior view of the three arches of the foot. 

Figure adapted from [49]. 
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1.3. Foot Biomechanics 

1.3.1. Shock Absorption and Load Distribution 

The foot structure has evolved to support upright bipedal walking including the cyclic loading 

and unloading of gait, the shock loading of sudden movements and the passive loading of 

constant standing. Further, during erect standing the feet play a fundamental role in balance 

and through minor articulations of the musculature, permit dynamic load redistribution to keep 

the individual upright. In addition to static WBR, the foot is also extremely important for dynamic 

movements, specifically gait. Gait is the manner and style of walking and is comprised of a 

series of synchronized movements which place various impulses on the plantar aspect of the 

foot through the entire stride. To adequately distribute such dynamic loads, the foot employs 

several innate techniques to act as a spring-damper system for softening both the typical and 

atypical loading regimes experienced throughout everyday life. However, the foot is also the 

primary propulsion device enabling human locomotion; resultantly, tissues of the foot must strike 

a balance between being soft enough to adequately attenuate loads, while being rigid enough to 

enable push off when transitioning from a static to dynamic posture (e.g. standing to walking). 

The primary biological solution to this trade-off is a structural technique the foot employs known 

as the ‘windlass mechanism’ (Figure 6). The windlass mechanism utilizes the triangular-like 

structure of the medial longitudinal arch (MLA) to modulate the stiffness of the plantar fascia, 

enabling it to act as both a spring-damper system (Figure 6a) and a push block (Figure 6b). The 

MLA is similar to a three-bar linkage, where the plantar fascia constitutes a flexible ‘bar’, 

spanning the distance from the tuberosity of the calcaneus to head of the first metatarsal bone. 

The two rigid ‘bars’ of the linkage may be thought of as the bony pathways starting at the 

attachment points of the plantar fascia and terminating at the center of the talus. The three bars 

approximate a triangle, as shown in (Figure 6c). Fundamentally, the term ‘windlass mechanism’ 

details the elongation of the plantar fascia as the hallux is dorsiflexed; the plantar fascia wraps 

around the first metatarsophalangeal joint during dorsiflexion of the hallux, resulting in the 

tensioning of the plantar fascia [50] (Figure 6b). By tensioning the plantar fascia, the calcaneus 

is drawn closer to the forefoot thus lifting the MLA without direct muscle action [51]; raising the 

MLA aids the re-supination of the foot, which is a fundamental step in creating the propulsive 

force necessary for locomotion [52,53]. An ineffective windlass mechanism would hinder the 

foot’s capacity to return from its pronated position, thus culminating in decreased propulsive 
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force and the elevated potential for foot pain and/or dysfunction [51]. During static WBR, the 

neutral position of the hallux keeps the plantar fascia taut, but does not apply extra tensile loads 

to the fascia like gait does. In this neutral position, the body weight is distributed over the entire 

plantar aspect of the foot, with load concentrations acting on the hindfoot and medial forefoot. 

Load concentrations at these two locations tend to flatten the MLA; however, this is 

counteracted by the plantar fascia, which preserves the structure of the arch while providing 

some energy absorption, rebound, and flexibility in conjunction with minor articulations within 

select tarsal bones [54,55]. 
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Figure 6 (a) Windlass mechanism with hallux in a neutral position (b) Windlass 
mechanism with hallux dorsiflexed; plantar fascia elongates raising medial 
longitudinal arch (c) Truss-like structure of the foot. 

Figure adapted from [56]. 

1.3.2. The Gait Cycle 

In 2006, it was reported that walking was the second most prevalent form of transportation in 

the United States and Europe after the private car [57]. The locomotor pattern demonstrated 

during bipedal walking amongst humans, also known as gait, has been reported to be quite 
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stable when observing both kinematic [58,59] and kinetic [59] features over level ground. At the 

highest level, the gait cycle can be broken down into two phases, stance, occupying the first 

60% of the cycle whilst the foot is in contact with the ground (Figure 7a), and swing, occupying 

the latter 40% whilst the foot is airborne (Figure 7b); the gait cycle during typical walking at a 

preferred walking speed (PWS) is approximately 1050ms in healthy individuals below thirty 

years of age, and increases slightly with age [60]. The stance phase of gait can be further 

deconstructed into a series of five positions: 

• Initial Contact: Typically referred to as ‘heel strike’, this is the first phase following 

swing where the heel is the first part of the foot to contact the ground. 

• Loading Response: The period of stance phase during which weight is completely 

transferred onto the referenced leg. 

• Mid Stance: This phase is marked by the alignment of the referenced leg with the 

opposite leg in the sagittal plane. 

• Terminal Stance: Primarily distinguishable by the heel of the reference leg rising off 

the ground, terminal stance phase consists of a weight transfer in the anterior 

direction loading the forefoot and toes and unloading the heel.  

• Toe-Off: The last phase of swing, toe-off describes the rising of the forefoot and toes 

off the ground initiating the transition of the reference leg into the swing phase of the 

gait cycle. 

The swing phase of gait can be further deconstructed into a series of three positions: 

1. Initial Swing: The reference leg is not at all in contact with the ground, and lies 

posterior to the opposite leg when viewed in the sagittal plane. 

2. Mid Swing: The reference leg lies approximately parallel to the opposite leg when 

viewed in the sagittal plane. 

3. Terminal Swing: The reference leg is just about to contact the ground, and lies 

anterior to the opposite leg when viewed in the sagittal plane. 
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Figure 7 (a) Stance phase of gait broken into five positions (b) Swing phase of gait 
broken into three positions. The right leg is considered the referenced leg, 
and is pictured in colour. The left leg is considered the opposite leg, and is 
shown in grayscale. 

Figure adapted from [61]. 

Loading of the plantar aspect of the foot during the stance phase of gait parallels the posterior to 

anterior weight transfer in the sagittal plane, with a slight lateral to medial load transfer in the 

transverse plane [62]. Pressure concentrations have shown to exist in the heel and the ball of 

the foot [62], which coincide with the main contact regions of heel strike and toe off, 

respectively. Additionally, the plantar fascia has been reported to transfer a large amount of load 

between the hindfoot and forefoot during the stance phase of gait [63]; this load transfer is often 

repeated many times during prolonged walking, placing cyclic stress on the fibres of the plantar 

fascia. 

1.3.3. Plantar Tissue Biomechanics 

The plantar fascia plays a fundamental role in load distribution within the foot, both during erect 

standing and in more dynamic movements such as walking or stair ascent/descent. As 

demonstrated in Figure 6c, the plantar fascia acts as a structural element which directly 

attributes to the medial longitudinal arch conformation [64]. Different overuse pathologies can 
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contribute to the breakdown of the plantar fascia, which thereby compromises its mechanical 

functionality [65]. The plantar fascia is comprised of collagen fibres oriented parallel to the long 

axis of the foot (Figure 8a) [47,66]; loading of the tissue is primarily tensile and acts in the same 

direction along the major foot axis. Various studies have examined the elastic properties of the 

plantar fascia. One study found that for a progressive load applied axially, the plantar fascia 

exhibited nonlinear behaviour with an elastic limit of approximately 6-7% of the initial length [67]. 

Another work identified an 11-12% elastic limit due to an axial load of approximately 900N [68]. 

The plantar fascia measures approximately 12 ± 1.5cm along the main longitudinal axis (from 

the medial tubercle of the calcaneus to the first MTP joint) [66]; this demonstrates the potential 

for a 0.72cm to 1.44cm (6% and 12% elastic limit respectively) elongation prior to plastic 

deformation. Additionally, the stiffness of the plantar fascia has been shown to be independent 

of loading rate [69]. The elongation capability coupled with the constant response over various 

loading rates makes the plantar fascia a dynamic spring-damper system for various loading 

regimes experienced throughout daily life. 

Ideally, the plantar fascia will maintain its intrinsic elastic properties throughout the duration of 

one’s life; however, this is not always the case. Evidence has demonstrated that the stiffness of 

the plantar fascia decreases with age [70], thereby decreasing the energy absorbing capabilities 

of the tissue. Additionally, various pathologies of systemic origin [71] can also compromise the 

mechanical functionality of the plantar fascia. If the elastic potential of the plantar fascia is 

compromised, loading regimes that were previously tolerable can potentially damage the plantar 

fascia. Damage to the plantar fascia is realized through micro-tearing of the collagen fibres 

resulting in some fibres deviating from their initial parallel orientation (Figure 8). Typically, these 

micro-tears are found near the calcaneal attachment of the plantar fascia where loads are more 

concentrated. Once the collagen fibres comprising the plantar fascia begin to tear, an increase 

in load is seen in the remaining collagen fibres, often culminating in a cascading effect which is 

felt as a sharp pain near the site of the micro-tearing (generally near the heel); the sharp pain in 

the heel is a condition known as plantar fasciitis (PF). 
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Figure 8 (a) Collagen fibres comprising the plantar fascia in a healthy state; fibres 
are parallel and organized (b) Collagen fibres comprising the plantar fascia 
after micro-tearing has occurred; fibres are scattered and disorganized. 

Figures adapted from [72]. 

1.4. Plantar Fasciitis: Characterization and Etiology  

1.4.1. Overview of Plantar Fasciitis 

One of the main causes of the overarching condition known as ‘plantar heel pain’ is plantar 

fasciitis [12,73,74]; described as a degenerative condition similar to tendinosis [75], PF is 

primarily characterized by micro-tears in the plantar fascia leading to fascial thickening and 

inflammation [24]. Studies have shown that degeneration of the fascia is primarily due to chronic 

mechanical overloading [76-78], although the exact etiology is multifaceted and varies between 

individuals [12-14,79]. Presenting as excruciating pain in the plantar heel region, PF has been 

estimated to affect 1 in 10 [3-5] people during their lifetime, with some estimates of up to 1 in 4 

[6]. Typically, patients first complain of pain in the medial heel, particularly after long periods of 

inactivity; such pain tends to decrease as activity level increases throughout the day, but often 

pain resurfaces towards the end of the day [79,80]. Many treatment modalities are available for 

PF, including but not limited to rest, ice/heat cycling, stretching, orthotics, taping, nonsteroidal 

anti-inflammatory drugs (NSAIDs), steroid injections, radio or shockwave therapy, and surgical 

intervention [3,13,14,74,78,80-86]. Often considered to be a self-limiting condition (a condition 

with no long-term harmful effects) [80] symptoms of PF are often resolved with conservative 

methods of treatments and tend to resolve within a year [83]. 
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1.4.2. Intrinsic Risk Factors 

Intrinsic risk factors predisposing an individual to plantar fasciitis refer to features within the 

body which may act alone, or in conjunction with other features, to place excessive strain on the 

plantar fascia damaging it over time. In 2014, Beeson [24] wrote a critical review examining the 

etiology of PF; a summary of intrinsic risk factors associated with PF is provided (Table 1). The 

review concluded that there is not enough data to rank the relative importance of each intrinsic 

risk factor; however, several reviews have listed obesity as a particularly influential intrinsic 

factor, often noting its importance and prevalence in PF diagnoses [5,24,87]. 

1.4.3. Extrinsic Risk Factors 

Extrinsic risk factors predisposing an individual to plantar fasciitis refer to features outside the 

body which may act alone, or in conjunction with other features, to place excessive strain on the 

plantar fascia damaging it over time. In 2014, Beeson [24] wrote a critical review examining the 

etiology of PF; a summary of extrinsic risk factors associated with PF is provided (Table 2). As 

with intrinsic risk factors there is insufficient evidence to assign the relative importance of each 

extrinsic risk factor; however, several reviews noted overuse due to prolonged WBR as an 

important and prevalent extrinsic factor in PF diagnoses [5,24]. 
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Table 1 Intrinsic risk factors for Plantar Fasciitis 

Risk Factor Description Relevance to this Study 

Age - Degenerative processes 
naturally occurring during the 
aging process [80,88] 
 
- Heel fat pad thickness varies 
with age which can change 
forces seen by the plantar fascia 
[89-91]  
 
- Lack of muscle strength and 
decreased bodily healing 
capabilities increase potential for 
damage [81]  
 

Because this work intends to target a working 
population (approximately 25-65 years old), age 
will need to be considered in future works. A 
solution to this is age-matching the groups across 
different workplace activity groups to negate any 
age effects. In the current study, a young 
population was used (29 ± 4.8 years old). 

Obesity - Elevated BMI levels [4,80,92-
95] 
 
-  Heel fat pad thickness varies 
with body weight, which can 
change forces seen by the 
plantar fascia [96]  

Because this work intends to target an average 
working population, BMI will need to be considered 
in future works. A solution to this is matching the 
groups across different workplace activity groups to 
negate any effects associated with elevated BMI. 
In the current study, a population on the border of 
normal/overweight was used (24.8 ± 4.1 kg m-2). 

Gender - Women have a higher 
incidence than men [91,93] 

Because this work intends to target an average 
working population, gender will need to be 
considered in future works. A solution to this is 
matching the groups across different workplace 
activity groups to negate any effects associated 
with gender. In the current study, a primarily male 
population was used (8 male, 2 female). 

Anatomical 
Abnormalities 

- Faulty foot mechanics (flat feet, 
restricted ankle joint mobility 
and/or excessive foot pronation) 
[8,77,80,81,92,97] 
 
- Strain induced on the plantar 
fascia by tightness in the lower 
limb muscles [98]  
 
- Existing calcaneal spur present 
[99]  

Although anatomical abnormalities have been 
rigorously studied as a risk factor for PF, future 
works will initially study asymptomatic populations 
so individuals with anatomical abnormalities will be 
excluded at this point. In the current study, 
individuals with anatomical abnormalities were not 
admitted to the study through the exclusion criteria. 

Acquired 
Systemic 
Diseases 

- Rheumatoid arthritis [100] 
 
- Diabetes mellitus [85]  

In the current study, individuals with acquired 
systemic diseases were not admitted to the study 
through the exclusion criteria. 

Genetics - Various genetic variants [101] In the current study, genetic predispositions for PF 
were not investigated and can therefore not be 
commented on further. 
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Table 2 Extrinsic risk factors for Plantar Fasciitis 

Risk Factor Description Relevance to this Study 

Occupation - Prolonged weight bearing 
[4,8,12,77,81,88,102] 
 
- Weight bearing on hard 
surfaces [8,97]  

Occupational exposure is the primary independent 
variable this work is attempting to study. Further 
details relating to this risk factor is expanded upon 
below. 

Footwear - Insufficient, diminished or poor-
fitting footwear [4,12,76,103] 

Although footwear issues have been rigorously 
studied as a risk factor for PF, this factor will only 
be addressed on a surface level in future works; 
instrumented insoles will be manufactured flat so 
as to not intrude on the structural integrity of the 
shoe, and shoes will be initially examined to ensure 
they are in good condition sufficient for studies 
examining activity at work. In the current study, 
specific shoe type was not specified and each 
participant provided their own shoes during testing. 
Shoes were not examined for fit or wear prior to 
inclusion in this study. 

Lifestyle - Change in activity level [4,12] Because this work intends to target an average 
working population, activity level will need to be 
considered in future works. A solution to this is 
matching the groups across different workplace 
activity groups to negate any effects associated 
with change in activity level. Additionally, 
participants included in future works will be asked 
to maintain their current activity level outside of 
work. In the current study, lifestyle factors were not 
considered as participants were asymptomatic and 
were only sampled once. 

Sport - Anatomical abnormal 
exacerbated by running [104] 
 
- Excessive running distance or 
intensity [12,105]  
 
- Running surface [105]  

Exclusion criterion of future works will be used to 
selectively exclude individuals with extensive 
running backgrounds as this sport has been noted 
to predispose individuals to PF. In the current 
study, history of sport was not considered as 
participants were asymptomatic and were only 
sampled once. 
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1.4.4. Weight Bearing and Plantar Fasciitis 

Several studies have looked at the correlation between work-related musculoskeletal disorders 

(WMSDs) and physical risk factors in the workplace; generally, the studies vary by examining 

different populations, types of work, or using different collection techniques and reporting 

strategies. Many of the studies suggest that ankle and foot disorders may be associated with 

prolonged standing at work [4,28,73,106-108]. One study sampled grocery store employees 

from different departments to determine the correlation between exposure to physical risk 

factors and the presentation of pain symptoms [2]. A total of 254 participants were sampled, and 

approximately 78% of grocery store workers reported WMSD symptoms, with 50% reporting 

foot pain, a substantial increase compared to estimations of the general population prevalence 

of foot pain (24%) [6]. Additionally, foot pain was more prevalent in workers who stood for most 

of the day when compared to counterparts who walked more [2]. Long-term fatigue can develop 

in individuals standing more than five hours a day, even with regular short (less than five 

minute) rest breaks [109]. Long-term fatigue is thought to be a precursor to more serious pain 

and degenerative conditions of the feet [109]. Nurses are cited as one of the most at-risk 

populations for foot pain, with some studies suggesting a prevalence of plantar fasciitis of up to 

33% in nurses [110], a full 9% to 23% above estimates of PF prevalence in adults [3-6]. Nurses 

typically work more hours per week than other at-risk populations and primarily stand and walk 

during their shifts, which could contribute to the increased risk and development of plantar foot 

pain [110] . 

1.4.5. Weight Bearing and Workplace Exposure 

In some professions, individuals spend the majority of their workday on their feet; although 

breaks are provided in most industries. An analysis conducted on the European Survey of 

Working Conditions concluded that approximately 47% of employees spend over 75% of their 

workday on their feet [1]. One proposed solution employed in many companies includes offering 

shock-absorbing ‘anti-fatigue’ mats which are supplemental flooring surfaces made of softer 

materials that rest on top of a hard floor (e.g. cement). Such mats have been shown to improve 

both subjective (e.g. discomfort/fatigue ratings) and objective (e.g. lower-extremity swelling) 

measures when compared to standing on hard floors [111]. Key factors that contribute to these 

measures include flooring elasticity, stiffness, and thickness, with the suggestion that softer 

floors reduced discomfort [112]. The use of such cushioning mats may lower the risk for PF, 
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although due to the multifaceted nature of PF etiology, it is challenging to draw comprehensive 

conclusions [8].  

Additionally, workplace exposure is difficult to characterize due to the dynamic nature of some 

professions which constantly vary between several primary postures. Of 32 perioperative nurses 

and technicians (PNTs) surveyed, 84% reported that at least half of their time was spent in 

some sort of WBR posture during their shift, primarily because sitting or resting is not allowed 

for PNTs once they are scrubbed in for surgery [9]. Another work studied the effect of standing 

in factory workers in varying departments within the same work site; it was concluded that 

workers standing in one place during the day (e.g. operating tools/stationary machines) were 

more likely to overload tissues when compared with workers in other areas where motion was 

more prevalent (e.g. the shipping department) [7]. Though compelling, both studies identify self-

reporting workplace posture durations as a limitation [7,9]. Another study found standing for the 

majority of the workday to yield an approximate three-fold increase in risk of developing plantar 

heel pain when compared to not standing for the majority of the day at work [4]; however, similar 

works have found no evidence suggesting a link between plantar heel pain and occupational 

WBR in the general population [28,92]. Because of the reliance on self-report measures and 

contradictory evidence, it is still not possible to substantiate a definitive link between prolonged 

WBR and PF due to the current inability to accurately track WBR at work [27]. 

1.5. Monitoring Weight Bearing in the Workplace 

Two primary options exist for tracking physical activity in the workplace: subjective measures or 

objective measures [113]. A third option, measuring energy expenditure through criterion 

standards, such as direct observation, doubly labelled water (DLW) and indirect calorimetry, 

also exists, but are typically carried out in a laboratory setting, making it inapplicable for this 

work [113]. Subjective measures of workplace activity level, or ‘self-reporting,’ include both 

written surveys/questionnaires as well as oral interviews. Objective measures of workplace 

activity level, or ‘activity trackers,’ include accelerometers, pedometers and other technologies 

which use inertia and other biometrics to infer activity type. Other objective measures, such as 

video monitoring and motion trackers, while effective, are resource-intensive and difficult to 

implement in most industries and can only be used in small participant populations. Video 

monitoring and motion trackers have been excluded from further review because of the 

divergence from the long-term goals of this work. 



   

24 

1.5.1. Self-Reporting 

Self-reporting is appealing on a surface level largely due to the simplicity and low resource 

requirements. Resultantly, self-reporting has been employed in a variety of workplace activity 

studies with acceptable levels of reported reliability [114-117]. A 2011 review on measurement 

of PA and sedentary behaviour at work cited questionnaires as the most common tool used for 

reporting [113]. Conversely, several studies have emerged questioning the accuracy and 

reliability of self-reporting workplace activity [29-34]. A 2008 systematic review [118] compared 

direct versus self-report measures in assessing PA in adults though not specifically within the 

workplace; the authors concluded that 38% of the 173 articles had low quality scores in a risk of 

bias assessment, identifying them as particularly subject to bias [118]. The authors postulated 

that self-report response bias may exist due to social desirability, and can cause 

overweight/obese individuals to over-report their PA levels leading to skewed results. The mixed 

opinions in the literature regarding the efficacy and accuracy of self-reporting are concerning 

and make it difficult to use self-reporting as a primary workplace PA measurement tool.  

When specifically examining self-reporting of sitting, standing and walking at work compared to 

objective measurements, the results are generally positive when using the Occupational Sitting 

and Standing Physical Activity Questionnaire (OSPAQ) [119]. Wick et al. [22] sampled 38 office 

employees and reported a modest underestimation of standing time (4.6%) and an 

overestimation (7.7%) of walking time. Pedersen et al. [21] sampled 34 desk-based employees 

and reported an underestimation of sitting time (3.2%) and standing time (0.2%), and an 

overestimation of walking time (3.4%). Despite the promise that these results demonstrate with 

respect to self-reporting of common workplace postures, several underlying issues hinder 

usability in the current line of research. Firstly, the OSPAQ is completed at the end of a 

workweek and asks users to estimate the percentage of time spent sitting, standing and walking 

over a typical workday; the percentage breakdown is then used to estimate the time spent in 

each posture. Although evidence [21,22] demonstrates that daily classification resolution is quite 

good, the OSPAQ, and most self-reporting questionnaires in general, lack specificity in the data 

collected. Daily or weekly totals are indicative of the high-level workplace physical activity 

profile, but identifying exactly how often an individual changes postures or information about the 

duration typically spent in each posture is lacking. The inadequate temporal resolution is 

problematic; although research has shown prolonged standing to be particularly damaging to 

the plantar fascia [4,5,23,24], recent evidence suggests that tissue metabolism is 
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mechanosensitive and therefore responsive to the frequency of the applied load [25]. Without 

temporal clarity, it may be challenging to draw specific conclusions about the connection 

between WBR and PF and comment as to why this connection may exist. 

Additionally, many self-report surveys and questionnaires exist making it difficult to compare 

results when so many non-standard methods are employed. One study [120] noted the 

importance of questionnaire phrasing and distinct separation of exposure categories when self-

reporting working posture [120]; therefore, it is difficult to determine which self-report measure of 

sitting, standing and walking at work is best, as to the authors knowledge, no studies to date 

have compared the validity and reliability of multiple self-reporting questionnaires to determine a 

single ‘gold standard’. Overall, these results suggest that although self-reporting does have 

potential when distinguishing sitting, standing and walking postures at work, self-reporting 

should be used as a secondary measure in conjunction with an objective measure to ensure 

accurate results are obtained. 

1.5.2. Activity Trackers 

Recent advancements in sensing technologies, embedded systems, wireless communication 

technologies and microelectromechanical systems (MEMS) have enabled continuous 

monitoring of health behaviours for commercial, personal and research purposes [121]. In 2013, 

fitness devices made up approximately 97% of the wearable electronics market [121], although 

many industries are starting to employ wearables as the technology is refined. In the medical 

field, technological advancements have made it possible to track a number of biomarkers, such 

as body temperature, heart rate, brain activity, and muscle motion, which are ideal for remote 

monitoring by a clinician [122,123]. Fall detection systems for older adults are also an area of 

ongoing research [124-126] which tend to employ various sensor-based wearables for 

monitoring human movement. One of the most widely used sensor types for monitoring human 

activity are accelerometers [121]; accelerometers have been employed for a multitude of 

activity-tracking purposes, such as the detection of falls [125-128], human movement analysis 

[127,128], and postural detection [36,129]. One of the fundamental challenges in working with 

wearable technologies, and specifically inertial-based technologies, is being able to provide the 

user with a comfortable, unobtrusive system which can be worn over extended durations without 

limiting the individual or causing them any discomfort [121]. Additionally, issues may arise 

surrounding user privacy, power consumption, on-node processing, wireless interference (if 
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applicable), and storage of the large amount of data obtained while collecting over an extended 

time-frame [121]. Although inertial based technologies do provide reliable feedback when 

differentiating complex dynamic postures [35,36], they have limited potential differentiating 

subtler static postures typical of a working environment (e.g. distinguishing sitting from standing) 

[37,38], making them difficult to employ for distinguishing sitting, standing and walking at work. 

Although orientation data from multi-IMU systems [42,43] and single IMUs placed in select 

locations [44,45] can distinguish certain static postures, multi-IMU systems are of limited use in 

everyday life, and single IMUs are often placed at positions on the body which may interfere 

with workplace activities (e.g. chest, waist, hip) [45]. Problematic drift [39-41] and intrusive 

single IMU locations make this technology infeasible for the widespread deployment proposed 

in this work. Additionally, IMUs provide no data on the loading patterns an individual may place 

on their feet throughout various day-to-day activities. Although differentiating the postures may 

be possible through select IMU placement, resolving why PF or WBR-related disorders occur in 

selected individuals may be best accomplished by an analysis of pedobarographic patters 

ascertained using instrumented insoles.  

1.5.3. Instrumented Insoles 

Custom Instrumented Insoles 

One solution that has been proposed to circumvent some of the issues associated with tracking 

human movement over an extended duration is to build the electromechanical system into an 

insole. If designed correctly, insoles can maintain a relatively unobtrusive feel for the user while 

providing more space to house various electronic components. Obvious issues of user 

discomfort, gait modification due to the added weight of the insole, and electronic durability may 

arise, but several studies have designed and tested instrumented insoles for varying 

applications [36,130-135]. Similar to the issues associated with inertial activity trackers, the 

majority of these custom instrumented insoles have been designed to monitor and/or distinguish 

more complex movements (Table 3). Additionally, almost all of the systems cited encompass 

wireless data transmission capabilities. Such capabilities may interfere with or be disrupted by 

work equipment and are unnecessary for the extended duration data collection proposed by the 

author for future studies.  

An instrumented insole system developed in 2013 [130] appears to be closest to the desired 

applications of the system proposed in this work. The ‘SmartStep’ system developed by 
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Sazonov and company has previously been validated in people with stroke, classifying sitting, 

standing and walking using a Support Vector Machine (SVM) classifier; the system achieved an 

accuracy of 95% when classifying the three postures [46,136]. However, these results represent 

optimal lab accuracies which would likely vary if data acquisition was conducted in the real 

world. Despite the promising results obtained by this novel insole system, several critical 

differences exist between Sazonov’s SmartStep and the system proposed in this work: 

1. Unilateral/Bilateral Collection: The SmartStep system collects data from two 

instrumented insoles worn by the same participant (bilateral collection). The 

proposed system aims to collect unilaterally in order to decrease system cost and 

reduce redundancy. Sazonov and colleagues [36] highlighted that unilateral 

collection could yield similar classification accuracies to those ascertained with both 

sides. 

2.  Sensor type: The SmartStep contains 3 FSRs as well as a 3D accelerometer; the 

proposed system intends to only use FSRs and avoid integration of an 

accelerometer to reduce complexity and system cost. 

3. Location of sensors: The SmartStep developers placed FSRs under 

‘biomechanically important’ support points on the plantar aspect of the foot (i.e. 

hallux, 1st metatarsal head, heel center). Although this sensor layout seems logical, 

assumptions of these key locations are not evidence based. The proposed system 

and the work encompassed in this thesis attempt to substantiate why specific sensor 

locations are selected when placing FSRs. 

4. Number of sensors: The SmartStep has been developed with 3 FSRs [130] as well 

as 5 FSRs [36,46,131,136,137], with an additional 3D accelerometer. The proposed 

system and the work encompassed in this thesis attempt to substantiate why a 

specific number of FSRs are required for posture classification. 

5. Sensor Calibration: The SmartStep system uses calibrated FSRs to classify 

postures, which is difficult and costly if intending to mass-manufacture the insoles. 

The proposed system aims to use an on/off signal for classification, which may avoid 

the technical complexities and costs associated with FSR calibration. 
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6. Wireless Capabilities: The SmartStep wirelessly transmits data to an associated 

smartphone via a Bluetooth Low Energy (BTLE) module. The proposed system will 

store all data collected on-board for later collection by appropriate personnel. 

7. Sampling Frequency: The SmartStep collects pressure and acceleration signals at 

25Hz while the proposed system intends to sample at less than 15Hz, thus reducing 

power consumption. 

Overall, the SmartStep system developed by Edgar et al. [137] and refined by Sazonov, Hegde 

and Tang [130] has largely contributed to demonstrating the potential for posture classification 

using in-shoe sensors [46,136]. Currently, the SmartStep technology is being prepared for 

commercialization through SmartMove Inc., a company founded in part by Dr. Edward Sazonov 

in 2008 aiming to combat sedentary behaviours through activity tracking. Compared with the 

wider body of instrumented insole systems, the novel aspects of the proposed system can be 

summed up in three main points: 

1. Single Uncalibrated Sensor Type: The proposed system intends to only use 

uncalibrated FSRs to classify workplace postures; by removing other sensors (e.g. 

accelerometers) and avoiding sensor calibration, this stands to simplify data 

integration and minimize sensor costs. 

2. Unilateral Data Collection: The vast majority of current systems collect bilaterally. 

By collecting unilateral data, the proposed system will have lower electronic costs. 

3. Physiologically Relevant Sensor Locations: This work contributes physiologically 

relevant sensor locations specifically identified for differentiating sitting, standing and 

walking; use of these sensor locations could aid in differentiating typical from atypical 

loading patterns. 

Research-Grade Instrumented Insoles 

In addition to the custom insoles (Table 3), many research grade technologies are also available 

for plantar pressure measurement; a summary of these commercially available technologies is 

provided (Table 4). Additional information on options for research-grade plantar pressure 

measurement systems can be found in a 2012 review by Razak et al. [138]. 
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Of the commercial systems, no single system is universally accepted as best for all applications; 

each of the systems has various pros and cons depending on the application. For the work 

encompassed in this thesis, the F-Scan system by Tekscan was the most desirable based on 

several factors:  

1. Superior Number of Sensors: As the F-Scan system has the highest number of 

pressure sensors amongst the noted commercial systems, it is advantageous for this 

work as it allows for the most comprehensive pressure field to be used as a basis for 

sensor localization within the novel insole. 

2.  Thinnest Insole: The F-Scan insole offers the thinnest option when compared to 

other systems. A thin insole was advantageous for this work as it was the least 

obtrusive to the participants, allowing for the most natural activities to be recorded 

using their preferred footwear. 

3. Lightest System: The F-Scan insole and wireless transmission belt offers the 

lightest option when compared to the other systems; a light insole system was 

advantageous for this work as it was the least obtrusive to the participants, allowing 

for the most natural activities to be recorded. 
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Table 3 Summary of research with custom instrumented insoles 

Study Sensors Used Wireless 
Data 

Transmission 
(Yes/No) 

Insole Target Function 

Edgar et al., 2010 
[137] 

5 Force Sensitive 
Resistors (FSRs); 1 3D 

accelerometer 

Yes Characterize postures in stroke 
patients to facilitate rehabilitation 

Sazonov, Hegde 
and Tang, 2013 
[130] 

3 FSRs; 1 3D 
accelerometer 

Yes Measure pressure differences 
between WBR and non-WBR postures 
and capture pressure differences 
during walking 

Sazonova, 
Browning and 
Sazonov, 2011 
[131] 

5 FSRs; 1 3D 
accelerometer 

Yes Predicting energy expenditure.  

Chen et al., 2006 
[132] 

8 FSRs Yes Measure plantar pressure under the 8 
specified regions and measure mean 
plantar pressure during walking 

Hellstrom et al., 
2016 [133] 

4 FSRs Yes Measure walking intensity 

Jacobs and 
Ferris, 2016 [134] 

8 custom neoprene 
bladders 

No Measure localized plantar pressure  

Shu et al., 2010 
[135] 

6 Custom fabric resistive 
pressure sensors 

Yes Characterize normal walking using 
various measurement parameters 
(e.g. mean and peak pressure, center 
of pressure (COP) shift speed) 
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Table 4 Selected in-shoe, comercially available, plantar pressure measurement 
systems 

Company Tekscan Novel Paromed Moticon Noraxon 

Model F-Scan Pedar paroTec Science Medilogic 

Approximate 
Cost (CAD) 

23,000 (inc. 
software + 

insoles) 

21,000 (not inc. 
software or 

insoles) 

Unspecified 20,000 (inc. 
software + 

insoles) 

17,500 (inc. 
software + 

insoles) 

Number of 
Pressure 
Sensors 

960 85-99 24 or 36 13 240 (max) 

Sampling 
Frequency [Hz] 

Up to 100Hz Up to 235Hz Up to 300Hz Up to 100Hz Up to 300Hz 

Wireless [Y/N] Y (some 
models) 

Y (some 
models) 

N (data stored 
onboard) 

Y Y 

Technology Resistive Capacitive Resistive Capacitive Resistive 

Resolution 
[kPa] 

4 2.5  Unspecified 10 Unspecified 

Pressure 
Range [kPa] 

862 (max) 15-600 625 (max) 400 (max) 6-640 

Insole 
Thickness 

[mm] 

0.15 1.9 3.5 Unspecified 1.6 

System Weight 
[g] 

322 400 Unspecified Unspecified 180 (Transmitter 
Only) 
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1.6. Machine Learning 

The development of smart technologies and wearable devices to track activities requires 

intelligent algorithms to be used to differentiate activities based on measurable characteristics. 

Machine learning (ML) employs a variety of unique algorithms to analyze a series of training 

examples to then make predictions about new examples of the same form. 

Machine learning is a broad field which uses computational power and statistics as a basis for 

prediction-making. The power of ML is derived from the efficiency of modern computing, which 

is able to compile observations from known training examples, retain the information, and make 

predictions about new observations according to the learned data at a rate far superior than 

possible by humans. However, there are numerous techniques for implementing these 

algorithms, control parameters that must be assumed, and a wide range of specific ML 

algorithms that can be applied. While a comprehensive review of these factors and algorithms is 

beyond the scope of this thesis, the components which relate to the implementation of ML for 

classifying workplace activities using plantar pressure measurements are briefly discussed. The 

reader is directed to [139-141] for a more comprehensive discussion of ML methods. 

1.6.1. The Overlapping Sliding Window Approach 

When sampling streams of continuous data, it is difficult to characterize the temporal 

characteristics of the data if only one time point is observed. One solution to this is a ‘sliding 

window’ approach, which observes several time points simultaneously to account for the 

temporal characteristics of data (Figure 9). However, the operator must then determine the most 

effective representation of the data within the window. A variety of descriptive statistics and data 

measures can be used to characterize the data within the window (e.g. mean, median, sum, 

maximum or minimum, Fourier transform, etc.). The window length can also affect the accuracy 

of the ML algorithm, especially when forecasting time series data [142-144]. Selecting an 

appropriate window length and degree of overlap between consecutive windows has been 

identified as a critical step of physical activity classification. The window should be selected to 

cover the full length of the activity of interest [145]. Sliding window methods have been used in 

many ML algorithms classifying human biomechanics [141,145-152].The effect of the metrics 

and window length on the accuracy of the classification algorithms should be evaluated. 
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Figure 9 Overview of the overlapping sliding window approach. S-variables denote 
the input data set, and M-variables denote the output dataset. Colours 
denote different windows. 

1.6.2. Selected Feature Selection Methods 

The goal of the work presented in this thesis is to identify the least number of sensors and the 

location of sensors necessary to record plantar pressure characteristics that are able to classify 

workplace postures. Therefore, reducing the number of features used in the machine learning 

algorithms is important. However, this reduction must be done in a systematic and robust way. 

Feature selection is the process of reducing a set of input features to a subset of the most 

significant features for use in the construction of a model. Feature selection attempts to 

minimize the amount of information ‘lost’ by removing features in logical ways to reduce 

redundancy and repetition of features. Two common feature selection methods are either a filter 

method or a wrapper method. 

Filter Methods 

A filter method is a feature selection tool which uses a proxy technique to comparatively score 

features, as opposed to directly using the classification error rate to score the features against 

each other. There are many filter methods available, however, five common methods are easily 

accessible through predefined Matlab scripts; a brief description of each method is described in 

Table 5. 
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Wrapper Methods 

A wrapper method is a feature selection tool which uses a predictive model to score and 

subsequently rank features. Wrapper methods primarily differ from filter methods in that they 

evaluate subsets of variables, thus allowing them to account for interactions between variables. 

Wrapper methods intersect feature selection with algorithm selection; features are selected 

based on the relative value they add to the classification scheme as evaluated by their impact 

on the classification accuracy. Using both methods staged is an effective way to maximize 

accuracy of the output, increase the robustness of the feature selection protocol, and also limit 

the computational cost. 

Table 5 Selected filter methods for feature selection 

Method Description 

Chi-Squared Based Feature 
Selection 

The Chi-Square test statistic is calculated between every feature 
variable and the class label. If the class label is found to be 
independent of the feature variable, the feature is not selected. 

Information Gain Based 
Feature Selection 

The information gain (‘information entropy’) describes a statistic which 
can be calculated for each feature variable in relation to the class label. 
Feature variables which contribute more information (on a 0 to 1 scale) 
will be ranked higher than those which do not add much information. 

Gini Index Feature Selection The Gini index is a measure of statistical dispersion, which, in the 
context of feature selection, analyses the distribution of a feature 
across the specified classes. Features most-representative of specific 
classes are ranked highest compared to those that are dispersed 
amongst several class labels. 

Minimum-Redundancy 
Maximum-Relevance 
(MRMR) Feature Selection 

MRMR feature selection attempts to select features which bear the 
strongest correlation to the class label, while maintaining sufficient 
separation from other feature variables.  

Fisher Score Feature 
Selection  

The Fisher score (‘Fisher information’) describes a method of 
measuring the specific amount of information a feature variable carries 
about a specific class label. Fisher scoring method used in statistics to 
answer maximum likelihood equations. 

 

1.6.3. Selected Classification Algorithms 

Machine learning algorithms are used in a broad range of applications. While there are 

hundreds of algorithms, and thousands of variants, we explored the most common algorithms 

available in packaged computational software (e.g. Matlab). Five machine learning algorithms 

were reviewed for their ability to classify biological systems and biomechanical behaviours 

(Table 6): 
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Table 6 Selected machine learning algorithms 

Machine 
Learning 
Algorithm 

Description Uses in Biomechanics 

Support 
Vector 

Machine 
(SVM) 

The SVM algorithm centers on using an optimization 
scheme to identify the optimal separating decision 
hyperplanes between the specified classes, as made up 
by a series of training examples mapped out as points in 
space. Any new examples are then mapped into the 
same space and are subsequently classified depending 
on which side of the hyperplane they fall. A further 
‘kernel trick’ can be used to perform non-linear 
classification by implicitly mapping inputs to another 
higher dimensional space. 

- PA classification using motion 
sensors [153] 
 
- PA classification using shoe-
based wearables  
[36,154] 
 
- PA classification using inertial 
technologies [154] 

Decision 
Trees (DT) 

Similar to a process flow chart, decision trees utilize a 
series of connected ‘tests’ which result in distinct 
outcomes depending on the result at any node. The 
original decision tree construction is an automated 
process in which the algorithm examines the 
discriminatory ability of each feature to create a set of 
rules from the training data, which can then be used on 
subsequent classification of new examples.  

- PA classification using shoe-
based wearables [146,148] 
 
- PA classification using inertial 
technologies [145,150,152] 

Linear 
Discriminant 

Analysis 
(LDA) 

LDA is a statistical method used to find a linear 
combination of features which characterizes or 
separates multiple classes of objects or events. The 
resulting feature set can be subsequently used as a 
linear classifier. 

- Classifying causes of falls 
[125,147]  

Naïve Bayes 
(NB) 

NB is a probabilistic classification scheme in that instead 
of providing the user a guess to the most likely class a 
specific example belongs, the NB algorithm will yield a 
probability distribution over the set of classes. The NB 
classification scheme is based upon ‘Bayes theory,’ 
which describes the probability of an event given 
knowledge about the conditions that may be related to 
that specific event.  

- PA classification using shoe-
based wearables  
[154] 
 
- PA classification using inertial 
technologies [145,151,154] 

K-Nearest 
Neighbour 

(KNN) 

The KNN algorithm begins by populating a space with a 
series of training examples, each of which identifies as a 
specific class based on the features associated with that 
example. Upon identifying a new example, the k-closest 
training examples are identified by their degree of 
similarity to the new example, and the class is 
determined based on the classes of the k-closest 
training examples. 

- PA classification using shoe-
based wearables [148] 
 
- PA classification using inertial 
technologies [145,149] 
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1.6.4. Training and Testing the Algorithms 

Once a feature set and an algorithm have been selected, the process of evaluating the model 

can begin. At its core, the fundamental purpose of machine learning is to generalize from 

learned experiences, allowing the developed model to make predictions on new, unseen 

examples; the accuracy of these predictions is one of the evaluation statistics used to assess 

the model. Two central processes facilitate the appraisal of a model—training and testing. In the 

context of supervised machine learning, training is when a model is presented with example 

inputs and their desired outputs. The goal of this is for the model to learn a general rule, or set 

of rules, that maps the inputs to the outputs. Once the model has ‘learned’ the appropriate 

mapping rules, testing can take place. Testing involves presenting the model with new example 

inputs and asking the model to predict an associated output. There are a number of possible 

outputs for a model trained using machine learning, most of which are beyond the scope of this 

thesis. Within the context of this work, the trained model is known as a classifier; classification 

describes the process where inputs are partitioned into two or more classes, and the algorithm 

must produce a model which assigns new inputs to one (or more) of these classes. In this work, 

multi-label classification was used to train a model able to label new inputs into three discrete 

postures: sitting, standing or walking. Labels proposed by the model for the new inputs are then 

compared to the correct labels for evaluation. 

To increase the robustness of testing when evaluating a model, it is advantageous to test the 

model with multiple sets of new examples, and subsequently evaluate the model based on 

multiple sets of performance statistics [155,156]. If the model was appraised using only one test 

set, the evaluation statistics could be biased due to possible abnormalities associated with that 

one set. The alternative approach is to use multiple test sets and average the evaluation 

statistics over all tests, thus creating more generalizable outcomes from which to compare 

models. Leave-one-out cross-validation (LOOCV) is a training and testing method used in 

machine learning to vary the test set within multiple folds of the same data set (Figure 10). In 

LOOCV, one set of observations is used as the test set, and the remaining observations form 

the training set. The process is then repeated until all observation sets have been used as the 

test set [157-159]. Prior to shuffling the testing and training set, the model is evaluated and 

performance statistics are extracted. At the end of the process, performance statistics are then 

averaged yielding a robust set of evaluation statistics from which to compare different models 

(denoted as PAvg in Figure 10). 
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Figure 10 Leave-one-out Cross-validation scheme denoted for a sample of 8 
observation sets. Fold numbers denote the eight particular ways of 
subdividing the original data set into training and testing subsets. 
Performance statistics (Px) may include measures such as classification 
accuracy, error rate, sensitivitiy, and specificity. PAvg represents the 
average performance statistics of the model, which are averaged across all 
performance statistics obtained from each classifier test. 

1.7. Organization and Objectives of the Thesis 

1.7.1. Objectives 

The goal of this study was to develop an initial prototype design for a low-cost instrumented 

insole system capable of differentiating workplace postures (sitting, standing and walking). To 

achieve this goal, three objectives were defined. 

1. Quantify and differentiate the plantar pressure locations and characteristics 

associated with each workplace posture. 

2. Classify workplace postures from plantar pressure characteristics.  

3. Develop an insole system with off-the-shelf force sensitive resistors capable of 

classifying workplace postures. 
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1.7.2. Organization 

This thesis is comprised of five chapters, which are organized as follows: 

Chapter 1 provides the background information necessary for interpretation of this work and 

explains the motivation behind the work. 

Chapter 2 (Study 1) focuses on the characterization of three common workplace postures – 

sitting, standing and walking – through pedobarography. A laboratory study was conducted to 

collect plantar pressure data from ten asymptomatic participants while they demonstrated each 

of the postures; a commercial-grade in-shoe pressure measurement tool was used to collect the 

pressure data. Pressure data was assessed to identify regions and measurement 

characteristics (e.g. peak pressure, average contact area, etc.) which most differed between the 

three postures. 

Chapter 3 (Study 2) details the development and validation of a posture classification scheme 

to classify sitting, standing and walking using machine learning methods based only on selected 

plantar pressure measures.  

Chapter 4 (Study 3) describes the development of a low-cost novel insole system; the intended 

use for this system is to selectively capture selected plantar pressure measures based on the 

outcomes from Study 2. This study details the development of the insole system to date, while 

also providing a comparison between classifying workplace posture using data from the 

commercial-grade in-shoe pressure measurement tool and classification using data from the 

novel system. 

Chapter 5 provides conclusions and implications as well as future works that may stem from 

this work. 
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Chapter 2.  
 
Differentiating sitting, standing and walking through 
regional plantar pressure characteristics 

The following journal paper will be submitted for review in Gait & Posture. 

2.1. Extended Methods 

Please refer to Appendix B for further details regarding the methods associated with developing 

this work. 

2.2. Prepared Journal Manuscript  

  



   

40 

Title Page 

Differentiating sitting, standing and walking through regional plantar pressure characteristics 

Kohle Merrya, Michael Ryanb,c, Carolyn J. Sparreya 

a Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC Canada 

b Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada  

c Kintec Footlabs Inc, Surrey, BC Canada 

 

Corresponding Author: 

Carolyn J. Sparrey, PhD 

Associate Professor 

Simon Fraser University 

250-13450 102 Ave, Surrey, BC, V3T 0A3, CANADA 

phone: (778) 782-8938 

email: csparrey@sfu.ca 

 

 

 

  



   

41 

Abstract 

Prolonged static weight bearing is thought to aggravate plantar heel pain; however due to a lack of 

available technologies, there is insufficient empirical evidence to conclusively prove causation or 

correlation. Likewise, prolonged periods of static weight bearing, common in the workplace, may put 

workers at greater risk of developing plantar heel pain. However, objective measures of physical activity 

and sedentary behaviours in the workplace are lacking making it difficult to establish or refute the 

connection between work exposure and plantar heel pain. Characterizing loading patterns during common 

workplace postures will enhance the understanding of foot function and inform the development of new 

measurement tools. Plantar pressure data during periods of sitting, standing and walking was measured in 

ten healthy participants using the F-Scan in-shoe measurement system (Tekscan Inc, Boston, USA). Peak 

and average pressure, peak and average contact area, and average pressure range, were analyzed in ten 

different regions of the foot. A two-way repeated measures ANOVA assessed the posture by foot region 

interaction for each measurement parameter; significant effects of posture by foot region were identified 

for all five measurement parameters. Ten foot-region by measurement parameter combinations were 

found to significantly differentiate all three postures simultaneously; seven used pressure measures to 

differentiate while three used area measures. The heel, lateral midfoot, and medial and central forefoot 

encompassed nine of ten areas capable of differentiating all postures simultaneously. This work 

demonstrates that plantar pressure is a viable means to characterize and differentiate three common 

workplace postures. The results of this study can inform the development of a measurement tool for 

quantifying posture duration at work. 

 

Keywords: Pedobarography, Plantar Pressure Patterns, Posture Differentiation, Plantar Heel Pain, Weight 

Bearing 
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1. Introduction  

Plantar heel pain (PHP) is a common musculoskeletal disorder (MSD) of the foot [1] prevalent in 

10% [2] to 25% [3] of adults. Although the etiology of PHP is considered multifactorial [1], evidence has 

shown a greater prevalence in working populations where prolonged static weight bearing (WBR) (i.e. 

standing) is necessary [4,5].  Prolonged static WBR in the working population is commonplace; 

approximately 47% of employees stand for more than 75% of their workday [6]. Professions with 

prolonged standing show a higher than average prevalence of MSDs in the feet and low back [4]. 

However, establishing the causality of WBR and differentiating dynamic and static WBR postures in the 

development of PHP has been hampered by poor reporting methods [7].  Elongation of plantar soft tissue 

during static loading creates a concentration of stress at the medial calcaneal tubercle [8].  Furthermore, 

bioreactor studies showed soft tissue metabolism is mechanosensitive and modulated by the frequency of 

applied load [9]. Collectively this suggests that passive WBR postures increase the risk of PHP [1,10]. 

Quantifying plantar pressure patterns during WBR (walking, standing) and non-WBR postures (sitting) 

will provide important clarity into the loading characteristics that may adversely affect the plantar soft 

tissue. Further, contrasting dynamic WBR and static WBR will provide valuable insights for the 

development of more effective PHP prevention strategies, interventions and workplace measurement 

tools. 

Plantar pressure distributions vary between individuals with and without foot-related MSDs during 

common activities such as walking, running, and stair ascent [11-14]. Evidence shows high pressure 

concentrations on the hallux [15] and heel [12,15] during walking; however, little consideration has been 

given to the pedobarographic patterns during standing [16]. Research into pressure distributions during 

sedentary activities have typically used force plates under barefoot conditions [13,16,17], which lack 

ecological validity for simulating workplace environments when compared to insole-based pressure 

measurement systems, as insole systems allow for plantar pressure measurement while wearing shoes 

[18]. Other studies have brief (3 - 10s) collection periods [11,13,14,19], which may not allow for natural 
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relaxation into a steady-state posture which can occur over longer duration WBR. These investigations 

suggest that different plantar pressure distributions exist between sitting, standing and walking; however, 

there has not been simultaneous study of walking and static postures representative of a typical working 

environment over an extended duration [20]. 

Objective measures of physical activity and sedentary behaviours in the workplace are lacking [20]. 

Differentiating static postures such as sitting and standing are important for understanding plantar loading 

conditions, but are often not distinguished by commercial inertial-based technologies [21]. To develop 

better objective measurement tools, it is critical to first clarify the pedobarographic characteristics that 

differentiate sitting, standing and walking in an asymptomatic population. 

This study aimed to quantitatively characterize the plantar pressure distribution between WBR 

postures (walking, standing) and contrast those with a non-WBR posture (sitting). Further, this study 

investigated the differentiability of dynamic WBR (walking) from static WBR (standing). It was 

hypothesized that forefoot contact as well as toe contact may show the greatest contrast between the WBR 

and non-WBR postures as these regions are largely inactive during sitting and active for balance during 

standing. Additionally, the cyclic loading of walking was hypothesized to be a reliable method for 

differentiating dynamic from static WBR postures. 

2. Methods 

I. Participants 

Data from ten healthy subjects (two females and eight males; mean age = 29 years) with no current 

or prior lower limb injuries or abnormalities were included in the current study (Table 1). Written 

informed consent was obtained from each participant. This study was approved by the Simon Fraser 

University Office of Research Ethics. 
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Table 1. Subject characteristics for individuals (N=10) included in the study. Values expressed as mean ± 

SD. 
Gender 

(M/F) 

Age 

(years) 
Height (cm) Weight (kg) BMI (kg m-2) 

Shoe Size 

(mm) 

Dominant 

Foot (R/L) 

8/2 29.0 ± 4.8 172.0 ± 10.3 74.2 ± 18.4 24.8 ± 4.1 260.1 ± 19.0 10/0 

 

II. Protocol 

A pair of appropriately sized pressure-measurement insoles was placed into each participant’s 

personal shoes. Data collection was structured into two distinct trials performed twenty minutes apart, 

each consisting of a six-minute collection phase. Each trial consisted of six, one-minute activity blocks 

(sitting, standing, or walking) in which each activity was executed twice and the order of activities was 

randomized. Sitting was conducted in a standard plastic office chair (46cm floor-seat height) while 

walking was performed at a self-selected speed over a 10m walkway; upon reaching the end of the 

walkway, participants turned in a self-selected manner and continued this repetition until the completion 

of the activity block. Participants were warned approximately five seconds before the conclusion of each 

activity. At the start of each activity the participant performed a right-footed stomp. Video of the 

participant’s feet was captured over the entire test and was used to validate the activity classifications. 

III. Plantar Pressure Measurement 

Plantar pressure was recorded bilaterally using an F-Scan in-shoe system (Tekscan Inc, Boston, 

USA) at 75 Hz. In-shoe pressure measurement was utilized to allow for static and dynamic plantar 

pressure measurements while wearing shoes, which is not feasible with force plates [18]. Additionally, F-

Scan provides continuous data collection throughout the activity. 

To subdivide the plantar aspect of the foot into anatomical areas of interest, a modified version of 

the PRC masking method, developed by Novel (Novel GmbH, Munich, Germany) was implemented 

[22,23]. The PRC method segments the plantar aspect of the foot into ten regions: hallux (HA), second 

toe (T2), third to fifth toes (T35), medial forefoot (MFF), central forefoot (CFF), lateral forefoot (LFF), 
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medial midfoot (MM), lateral midfoot (LM), medial heel (MH) and lateral heel (LH) (Figure 1). The 

definition of the toe regions were modified because no description of how they are defined by Novel was 

found [22,23]; the toe-forefoot boundary was defined by the sensor with the lowest cumulative pressure 

under the proximal interphalangeal joint of the hallux and continued laterally to the CFF/LFF boundary. 

HA and T2 were separated by an extension of the MFF/CFF boundary. The T35/LFF boundary was 

defined by a diagonal from the T2/T35/CFF/MFF intersection to a point on the most lateral aspect of the 

foot at a distance corresponding to 10% of the foot length below the toe-forefoot boundary.  

To assess the physiological plantar loading differences between the three activities, five parameters 

were calculated: peak pressure, average pressure, average pressure range (95th-5th CI), peak contact area 

and average contact area, in each of the ten foot-regions. Pressure measurements were spatially averaged 

across each region at each time increment; peak pressure was defined as the highest pressure at a single 

time point for a given region during the activity, average pressure was the mean region pressure over the 

entire activity, and average pressure range was defined as the maximum minus the minimum pressure for 

a given region during an activity. Contact area was determined by the number of active sensors within a 

region multiplied by the sensor area; peak contact area was determined by the highest area recorded for a 

given region during an activity while average contact area was defined as the mean area within a region 

for an entire activity.  
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            (a)        (b)                           (c)  

Figure 1. Regional breakdown of the foot conducted per the PRC mask method. (a) Foot characteristics 

defined as foot length (FL) measured from leading toe to heel, foot axis (FA) running vertically from 

center of heel to center of second toe, and medio-lateral axis (WM) running horizontally across the widest 

part of the metatarsals. (b) Heel-midfoot boundary is located 0.73(FL) measured from the leading toe, 

midfoot-forefoot boundary is located 0.45(FL). Medial and lateral heel and midfoot are distinguished by 

the foot axis (FA). Medial, central and lateral forefoot are defined as 0.3:0.25:0.45 of the medio-lateral 

axis (WM), respectively. (c) Exemplary footprint with ten anatomical masks displayed.  

IV. Data processing and statistical analysis 

All analyses were run using the JMP statistics software package, (v13.1.0, SAS Institute Inc., Cary, 

NC). Investigation of the three conditions excluded any transition periods which were defined as the time 

when an activity was completed until the participant was comfortably in position to begin the subsequent 

activity denoted through a stomp of their right foot; consequently, activity durations were non-uniform 

and typically were reduced from one-minute blocks to 40-50 second blocks after removing transitions. 
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Video data was used to identify and remove transitional activity periods from the data set. Average 

pressure was compared between dominant/non-dominant feet across all ten anatomical masks using 

paired t-tests with Bonferroni corrections for multiple comparisons. 

The goal of this analysis was to investigate which combinations of foot regions and measurement 

parameters significantly differed across postures. Differences in specific pedobarographic patterns for 

each of the five parameters measured were first analyzed across both posture and foot region using a two-

way repeated measures analysis of variance (ANOVA) to identify potential activity by foot region 

interactions. Assumptions associated with the repeated measures ANOVA (multivariate normality and 

sphericity) were tested; violations of sphericity were amended by implementing the Greenhouse-Geisser 

Correction. Post hoc analyses to assess pair-wise differences were carried out through Tukey’s HSD test 

at a significance level of 0.017 after a Bonferroni adjustment. Effect size was characterized based on 

differences between means using Cohen’s d.  

3. Results  

Paired t-tests on the average contact pressure data found that a difference between the dominant 

and non-dominant sides only existed in the lateral heel region. Kim and colleagues also reported no 

significant differences in peak pressure between the dominant and non-dominant side during walking 

[11]. Therefore, similar to other studies [14,15], only one foot was used for all further analyses; the 

dominant foot (the right side for all participants) was used. 

Differences in plantar pressure patterns were observed between WBR and non-WBR postures as well 

as dynamic versus static WBR (Figure 2). Significant effects of posture by foot region were identified for 

all dependent variables: peak pressure, average pressure, average pressure range, peak contact area and 

average contact area. Effects contrasts show that it is possible to differentiate a dynamic WBR posture 

(walking), a static WBR posture (standing) and a non-WBR posture (sitting) within a single metric (Table 

2 and 3). Ten foot-region by measurement parameter combinations were found to significantly 

differentiate all three postures; four of these interactions were found at the lateral midfoot and heel, with 
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another four in the medial and central forefoot. Seven of the ten differentiating combinations used 

pressure measures. Within the ten significant combinations, 28 of 30 two-way comparisons noted large to 

very large effects [24] with only two noting medium effects, specifically differentiating walking from 

standing using average pressure in the lateral midfoot and heel (Table 3).  

 

Figure 2. Plantar loading characteristics of posture by foot region for each of the five dependent 

variables. Values reported designate mean with error bars denoting standard deviation.  
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Table 2. Pairwise comparisons for each of the dependent variables in the ten foot regions. Values reported designate mean (standard deviation). 

Bold indicates metrics where all three postures were statistically different from each other. 

 

 

Variable Condition HA T2 T35 MFF CFF LFF MM LM MH LH

Sitting 0.54 (0.77) 0.80 (1.76) 0.88 (3.16) 0.93 (1.04) 0.55 (0.21) 2.90 (1.93) 1.21 (1.40) 2.47 (2.53) 6.51 (4.79) 7.47 (5.29)

Standing 4.82 (5.81)
$

4.12 (4.01)
$

6.17 (3.16)
$

9.26 (7.37)
$

13.45 (7.76)
$

23.06 (8.85)
$

15.92 (8.82)
*

23.72 (6.47)
*$

45.94 (13.85)
*$

43.58 (9.61)
*$

Walking 73.44 (26.71)
*$

39.27 (16.64)
*$

32.97 (16.52)
*$

74.37 (9.26)
*$

103.10 (22.21)
*$

93.67 (26.62)
*$

23.88 (13.25)
*

48.59 (9.40)
*$

110.28 (28.06)
*$

107.33 (27.54)
*$

Sitting 0.34 (0.52) 0.61 (1.32) 0.63 (1.38) 0.56 (0.68) 0.36 (0.48) 2.10 (1.66) 0.88 (1.17) 1.99 (2.29) 5.73 (4.71) 6.30 (4.72)

Standing 3.67 (4.94)
$

2.72 (3.53)
$

4.14 (3.64)
$

7.07 (6.04)
*$

9.70 (6.32)
*$

18.73 (7.06)
$

13.73 (8.55)
*$

20.81 (6.42)
*$

37.64 (12.07)
*

35.52 (8.04)
*$

Walking 12.50 (6.46)
*$

7.58 (4.86)
*$

7.33 (4.72)
*$

15.82 (5.65)
*$

22.20 (5.28)
*$

25.15 (6.47)
*$

6.37 (4.29)
$

14.44 (3.47)
*$

26.22 (9.43)
*

26.10 (7.04)
*$

Sitting 0.37 (0.57) 0.42 (0.87) 0.42 (0.52) 0.73 (0.87) 0.45 (0.52) 1.62 (1.00) 0.70 (0.56) 1.19 (0.80) 1.58 (0.58) 2.27 (1.84)

Standing 2.40 (2.32)
$

2.67 (2.02)
$

4.09 (2.71)
$

4.74 (3.73)
$

7.85 (4.51)
$

9.51 (4.83)
$

4.88 (2.38)
$

7.09 (3.04)
$

16.90 (6.38)
$

16.80 (5.92)
$

Walking 73.43 (26.71)
*$

39.27 (16.64)
*$

32.97 (16.52)
*$

74.37 (29.29)
*$

103.10 (22.21)
*$

93.47 (26.72)
*$

23.88 (13.25)
*$

48.30 (9.37)
*$

110.26 (28.02)
*$

106.40 (27.74)
*$

Sitting 0.29 (0.58) 0.18 (0.36) 0.41 (0.62) 0.82 (1.11) 0.60 (0.91) 2.87 (2.27) 0.86 (1.43) 5.28 (6.70) 7.53 (5.48) 8.14 (5.42)

Standing 2.77 (2.96)
$

1.55 (1.51)
$

3.12 (2.36)
$

8.01 (6.69)
*$

8.10 (4.47)
*$

12.59 (3.80)
*

13.00 (8.15)
*

23.06 (5.53)
*

18.35 (3.67)
*

17.99 (2.45)
*

Walking 8.75 (3.11)
*$

6.29 (2.54)
*$

7.78 (3.44)
*$

15.48 (3.16)
*$

13.36 (2.32)
*$

14.81 (2.88)
*

14.58 (8.55)
*

25.36 (5.08)
*

19.49 (3.87)
*

19.03 (2.55)
*

Sitting 0.19 (0.46) 0.14 (0.29) 0.27 (0.48) 0.52 (0.83) 0.38 (0.64) 2.16 (2.03) 0.55 (1.03) 4.27 (6.06) 6.68 (5.41) 7.22 (5.37)

Standing 2.14 (2.58) 1.11 (1.36) 2.40 (2.19) 6.64 (6.19)
$

6.57 (4.57)
*

11.53 (3.64)
*$

11.58 (8.16)
*$

21.53 (5.79)
*$

17.26 (3.56)
*$

16.95 (2.32)
*$

Walking 2.26 (1.50) 1.53 (1.05)
*

2.22 (1.38)
*

5.01 (1.68)
*$

4.77 (1.39)
*

6.62 (1.57)
*$

4.10 (3.05)
$

9.92 (3.82)
$

7.14 (2.41)
$

7.68 (2.54)
$

*
 Significant differences compared to sitting

$
 Significant differences between standing and walking

Peak Pressure 

(kPa)

Average 

Pressure (kPa)

Avg. Pressure 

Differential 

(kPa)

Peak Contact 

Area (cm
2
)

Average 

Contact Area 

(cm
2
)
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The largest effects differentiating WBR from non-WBR were seen across all pressure-based metrics 

with the greatest contrasts seen in peak pressure and average pressure in the lateral midfoot and hindfoot 

(Table 3). Average pressures in the midfoot and hindfoot differentiate WBR postures from non-WBR 

with almost all comparisons noting very large effects [24]. However, average pressure only notes one 

large effect (medial midfoot) when contrasting walking from standing within the midfoot and hindfoot. 

Additionally, peak contact area had very large effect sizes between WBR and non-WBR postures in the 

midfoot and hindfoot [24]. 

Dynamic and static WBR were best distinguished by average pressure differentials across all foot 

regions. Peak pressure across the entirety of the foot differentiated static from dynamic WBR with only 

one of twenty comparisons having less than a very large effect size; the rapid increase in pressure across 

all foot regions during the stance phase of gait is unequaled in static WBR. Peak contact area in the toes 

also differentiated static from dynamic WBR; while being unable to significantly contrast standing from 

sitting. 
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Table 3. Effect size comparisons for each posture combination of the dependent variables, in the ten foot regions (Cohen’s d score). A value of 

0.5 represents a medium effect while a value of 1.2 is a very large effect [24]. 

 

Variable Comparison HA T2 T35 MFF CFF LFF MM LM MH LH

Walking - Sitting 1.96 1.91 1.86 1.96 2.13 2.13 1.74 2.28 2.21 2.21

Walking - Standing 1.84 1.75 1.55 1.74 1.86 1.66 0.61 1.23 1.37 1.41

Standing - Sitting 0.11 0.16 0.31 0.22 0.27 0.47 1.13 1.05 0.84 0.8

Walking - Sitting 1.76 1.54 1.52 1.94 2.14 2.05 0.72 1.38 1.27 1.42

Walking - Standing 1.28 1.07 0.73 1.11 1.23 0.57 0.97 0.71 0.71 0.67

Standing - Sitting 0.48 0.47 0.8 0.83 0.92 1.48 1.7 2.09 1.98 2.09

Walking - Sitting 1.94 1.91 1.86 1.93 2.09 2.05 1.82 2.14 2.11 2.11

Walking - Standing 1.89 1.8 1.65 1.83 1.94 1.87 1.49 1.87 1.82 1.81

Standing - Sitting 0.05 0.11 0.21 0.11 0.15 0.18 0.33 0.27 0.3 0.29

Walking - Sitting 1.94 1.95 1.9 1.99 2.11 1.98 1.51 1.87 1.72 1.77

Walking - Standing 1.38 1.51 1.2 1.01 0.87 0.37 0.17 0.21 0.16 0.17

Standing - Sitting 0.57 0.44 0.7 0.97 1.24 1.61 1.33 1.66 1.56 1.6

Walking - Sitting 1.07 1.22 1.1 1 1.17 0.97 0.53 0.63 0.07 0.08

Walking - Standing 0.06 0.36 0.1 0.37 0.48 1.06 1.11 1.3 1.61 1.6

Standing - Sitting 1.01 0.86 1.21 1.37 1.64 2.03 1.63 1.93 1.68 1.68

Peak Pressure 

(kPa)

Average 

Pressure (kPa)

Avg. Pressure 

Differential 

(kPa)

Peak Contact 

Area (cm
2
)

Average 

Contact Area 

(cm
2
)
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4. Discussion  

I. Biomechanics/Physiology of Movement 

The central finding of this study is that plantar pressure in a healthy population is a viable means to 

both characterize and differentiate the common workplace postures of walking (dynamic WBR), standing 

(static WBR) and sitting (static non-WBR). The results of this study quantify the unique plantar contact 

characteristics of each posture for the first time. As expected, average pressures better distinguish WBR 

from non-WBR postures while peak pressures better distinguish dynamic from static WBR. Peak heel 

pressures during walking were double those observed during standing; whereas, average pressure metrics 

had limited ability to differentiate dynamic and static WBR postures, due to the cyclic loading/unloading 

of walking. Stance phase was distinguishable from standing using peak contact pressures, peak contact 

area and peak pressure differential due to the movement of the load from the hindfoot (heel strike) to the 

toes (toe-off) when compared to the more constant and distributed hindfoot and midfoot load of standing. 

Lower magnitude peak contact forces in the forefoot are seen during standing when compared with 

walking. During erect sitting forefoot and toe loading is even lower than standing. The biomechanical 

differences noted between the three postures and further demonstrated through the pedobarographic 

patterns suggest that plantar pressure is a viable way to distinguish between walking, standing and sitting.  

To the authors’ knowledge, no previous studies have investigated which pedobarographic 

characteristics can differentiate walking, standing and sitting in an asymptomatic population. Previous 

studies have, however, assessed plantar pressure characteristics within the individual postures; such 

studies often focus on the effects of a disease or condition [13,14], gender, age or foot differences 

[11,15,17], or contrasting dynamic activities [12,15], all using plantar pressure as an outcome measure.  

Patterns of pressure distribution during walking are consistent with recent reports, although 

regional peak pressure values were notably lower when compared to similar works using different 

measurement systems [12,15]. Previous research on the F-Scan system found lower peak pressures when 

compared to the absolute pressure [25,26]. However, Chevalier et al., [27] found regional peak pressure 
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values comparable to values found in this study also using the F-Scan system. The inaccuracy of the F-

Scan has been previously investigated [25,26,28] and attributed to sensor temperatures [25,28], 

preconditioning and damage [25,29], or inaccurate and inadequate calibration protocols [29]. Despite 

these issues, several works [25,29] have expressed that although accuracy and reliability of absolute 

pressure values ascertained with the F-Scan system may be skewed, valuable information can still be 

observed in the relative pressure patterns. Additionally, Price et al. [26] noted that findings are often 

challenging to compare due to differences in loading conditions and study protocols. 

Standing pressure patterns are similar to those previously reported. Pau et al. [13] also studied 

standing in an asymptomatic population and verified the finding that hindfoot is the most active during 

standing; however, they noted forefoot loads to be substantially greater than midfoot loads, which 

conflicts with our study’s results where the midfoot was more active than forefoot during standing. 

Explanations for this include that Pau use a different shoe condition (barefoot), plantar measurement tool 

(force place), and different method to divide the plantar aspect of the foot - Pau grouped the forefoot with 

the toes, which moved the forefoot/midfoot and midfoot/hindfoot divisions anteriorly relative to our 

study. In contrast, Cimolin et al. [30] reported similar pressure and contact area trends using a Pedar-X in-

shoe system as found in this study during standing. They noted the hindfoot to be most active, followed 

by the midfoot and then the forefoot/hallux [30]. 

II. Significance  

Weight bearing has shown to be a risk factor for the development of PF [1,10]. It was hypothesized 

that the forefoot and toes may elicit differentiable characteristics between WBR and non-WBR postures 

primarily due to the minimal recruitment during sitting. Our results (Table 2) suggest that all the pressure-

based metrics and peak contact area in the toe regions can successfully differentiate walking from sitting. 

Distinguishing standing from sitting proved more challenging as the large standard deviation in the toe 

regions during standing reduced the differentiability for most pressure metrics. The forefoot demonstrated 
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a strong potential for differentiating WBR from non-WBR, particularly in the medial and central forefoot 

using average pressure and peak contact area. As hypothesized, the low recruitment during sitting 

contrasts significantly when compared to WBR postures. Pressure-based metrics in the hindfoot also 

proved to strongly differentiate WBR from non-WBR postures. As Pau et al. [13] showed, the peak and 

average contact pressures in the hindfoot are greatest during standing and walking. Because of the 

magnitude of the loading, WBR postures place significantly more load on the hindfoot when contrasted 

with sitting, as shown by the large to huge [24] effect sizes in this study. 

Recent evidence suggests that soft tissue metabolism is mechanosensitive and modulated by 

loading frequency [9]. This suggests that differentiation of not only WBR versus non-WBR activities, but 

also dynamic versus static loading regimes, is of the utmost importance when examining the etiology of 

PF. We hypothesized that when differentiating dynamic from static WBR, the cyclic nature of gait could 

provide a means of distinguishing dynamic from static postures. Pressure-based metrics proved to 

distinguish dynamic from static postures across almost all regions; this was especially apparent using the 

average pressure differential, which had very large effect sizes [24] across all foot regions. However, peak 

or average pressures may prove more useful metrics as pressure differential was not able to significantly 

differentiate all three postures simultaneously, whereas peak pressure was able to differentiate the three 

postures in three foot regions and average pressure in four regions. Average pressure and average contact 

area demonstrate the impact of the cyclic nature of gait when distinguishing dynamic from static weight 

bearing. Average standing metrics were greater than that of walking, especially in the midfoot and 

hindfoot; although walking has higher peak pressures, the swing phase of walking reduces the average 

values. This trend is not always apparent in other studies which reported mean pressure or area values 

[13,15], as they only took an average across the stance phase of gait therefore inflating the average values 

of walking beyond that of standing across all regions/metrics. Combining both stance and swing and 

observing the results through average metrics provides a better picture of the overall loading exposure of 

the plantar fascia during the activity. 
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III. Future Implications of Work 

Minimizing redundancy when analyzing plantar pressure characteristics is critical for the 

development of cost-effective posture differentiation interventions. By distilling down the number of 

inputs needed to differentiate the three postures, plantar data collection can be conducted using cheaper 

instrumentation at only certain plantar locations and over a longer duration without amassing excessive 

amounts of data. In this study, ten foot-region by measurement parameter combinations were found to 

significantly differentiate all three postures highlighting the fundamental differences in biomechanics 

between the postures and the value of plantar pressure metrics for activity classification. Table 2 and 3 

demonstrate that although many possible region by parameter combinations exist, they convey the same 

information. By isolating those which can not only differentiate WBR from non-WBR, but also dynamic 

versus static postures simultaneously, one can reduce the number of inputs necessary to distinguish these 

postures. Further research is needed to optimize the number of foot-region by measurement parameter 

combinations needed to strike a balance between reliable posture differentiation and minimal redundant 

information; however, this work demonstrates that the medial/lateral hindfoot and the medial/central 

forefoot regions are good starting points.  

IV. Limitations 

The findings presented must be considered under several study limitations. First, a small sample size 

comprised mainly of males was used, although the number of participants included in the current study is 

similar to other studies investigating physical activity and sedentary behaviours [11,12,23], it may not be 

representative of plantar pressure distributions in females. Second, although plantar pressure across the 

feet has been shown as symmetric in standing [17] and walking [11], the current study was comprised of 

only right-foot dominant individuals. Third, shoe type and model were not controlled, foot type and shape 

were not restricted and participants were instructed to walk at their preferred speed. Although these 

choices do introduce variability into the investigation, one underlying goal of the study was to make the 
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in-shoe posture differentiation robust to eventually monitor ecological conditions. Similar choices have 

been made in other research; namely non-standardization of shoes [12,15,30] and using preferred walking 

speed [14]. Lastly, these results can be further validated through replication with other in-shoe pressure 

measurement systems.  

5. Conclusion  

It is currently difficult to establish a causal link between weight bearing in the workplace and plantar 

heel pain due to its multifarious etiology coupled with a lack of available objective evidence [20]. The 

current study sought to quantitatively characterize the pedobarographic patterns in three common 

workplace postures to identify how plantar regions and measurement parameters differ between them. 

Results suggest that ten region/parameter combinations could significantly differentiate the three postures 

simultaneously, while many more can distinguish between WBR and non-WBR postures or dynamic 

versus static postures. These results lay the groundwork for optimizing the differentiation of common 

postures and understanding the physiological implications of these different workplace postures. Above 

all, differentiating such postures using plantar pressure may allow for the objective evidence to emerge 

allowing researchers to establish or refute a link between weight bearing and plantar heel pain.  

6. Acknowledgements 

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) 

EGP 491213-15; and the Simon Fraser University Community Trust Endowment Fund. 

7. Conflict of Interest Statement 

Michael Ryan is a salaried employee of Kintec Footlabs Inc.  

  



   

57 

References 

[1] Beeson P. Plantar fasciopathy: Revisiting the risk factors. Foot & Ankle Surgery (Elsevier Science) 

2014;203:160-5. 

[2] Tong KB, Furia J. Economic burden of plantar fasciitis treatment in the United States. Am J Orthop 

2010;395:227. 

[3] Thomas MJ, Roddy E, Zhang W, Menz HB, Hannan MT, Peat GM. The population prevalence of foot 

and ankle pain in middle and old age: a systematic review. Pain 2011;15212:2870-80. 

[4] Anton D, Weeks D. Prevalence of work-related musculoskeletal symptoms among grocery workers. 

Int J Ind Ergonomics 2016;54:139-45. 

[5] Werner RA, Gell N, Hartigan A, Wiggerman N. Risk Factors for Plantar Fasciitis Among Assembly 

Plant Workers. PM & R 2010;22:110; 110,116; 116. 

[6] Parent-Thirion A, Vermeylen G, van Houten G, Lyly-Yrjänäinen M, Biletta I, Cabrita J. Fifth 

European Working Conditions Survey overview report . 2012;EF1182. 

[7] Pedersen SJ, Kitic CM, Bird M, Mainsbridge CP, Cooley PD. Is self-reporting workplace activity 

worthwhile? Validity and reliability of occupational sitting and physical activity questionnaire in desk-

based workers. BMC Public Health 2016;161:836. 

[8] Cheng HK, Lin C, Wang H, Chou S. Finite element analysis of plantar fascia under stretch—The 

relative contribution of windlass mechanism and Achilles tendon force. J Biomech 2008;419:1937-44. 

[9] Wang T, Lin Z, Day RE, Gardiner B, Landao‐Bassonga E, Rubenson J, Kirk TB, Smith DW, Lloyd 

DG, Hardisty G, Wang A, Zheng Q, Zheng MH. Programmable mechanical stimulation influences tendon 

homeostasis in a bioreactor system. Biotechnol Bioeng 2013;1105:1495-507. 

[10] Riddle DL, Pulisic M, Pidcoe P, Johnson RE. Risk Factors for Plantar Fasciitis: a Matched Case-

Control Study. Journal of Bone & Joint Surgery, American Volume 2003;85-A5:872. 

[11] Kim J, Kim K, Gubler C. Comparisons of Plantar Pressure Distributions between the Dominant and 

Non-dominant Sides of Older Women during Walking. Journal of Physical Therapy Science 

2013;253:313-5. 

[12] Rao S, Carter S. Regional plantar pressure during walking, stair ascent and descent. Gait Posture 

2012;362:265. 

[13] Pau M, Galli M, Celletti C, Morico G, Leban B, Albertini G, Camerota F. Plantar pressure patterns in 

women affected by Ehlers-Danlos syndrome while standing and walking. Res Dev Disabil 

2013;3411:3720-6. 

[14] Sullivan J, Burns J, Adams R, Pappas E, Crosbie J. Plantar heel pain and foot loading during normal 

walking. Gait Posture 2015;412:688-93. 



   

58 

[15] Chuckpaiwong B, Nunley JA, Mall NA, Queen RM. The effect of foot type on in-shoe plantar 

pressure during walking and running. Gait Posture 2008;283:405-11. 

[16] Periyasamy R, Anand S. The effect of foot arch on plantar pressure distribution during standing. J 

Med Eng Technol 2013;375:342-7. 

[17] Machado ÁS, Bombach GD, Duysens J, Carpes FP. Differences in foot sensitivity and plantar 

pressure between young adults and elderly. Arch Gerontol Geriatr 2016;63:67. 

[18] Hillier S, Lai MS. Insole plantar pressure measurement during quiet stance post stroke. Topics in 

stroke rehabilitation 2009;163:189-95. 

[19] Periyasamy R, Mishra A, Anand S, Ammini AC. Preliminary investigation of foot pressure 

distribution variation in men and women adults while standing. The Foot 2011;213:142-8. 

[20] Waclawski ER, Beach J, Milne A, Yacyshyn E, Dryden DM. Systematic review: plantar fasciitis and 

prolonged weight bearing. Occupational Medicine 2015;652:97-106. 

[21] Smith L, Hamer M, Ucci M, Marmot A, Gardner B, Sawyer A, Wardle J, Fisher A. Weekday and 

weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based 

workers: the active buildings study. BMC Public Health 2015;151:9-. 

[22] Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes: rationale and 

methodology. The Foot 1994;43:123-35. 

[23] Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure 

distribution measurements in a normal population. Gait Posture 2008;274:706-9. 

[24] Sawilowsky S. New effect size rules of thumb. Journal of Modern Applied Statistical Methods 

2009;82:597-9. 

[25] Nicolopoulos CS, Anderson EG, Solomonidis SE, Giannoudis PV. Evaluation of the gait analysis 

FSCAN pressure system: clinical tool or toy? The Foot 2000;103:124-30. 

[26] Price C, Parker D, Nester C. Validity and repeatability of three in-shoe pressure measurement 

systems. Gait Posture 2016;46:69-74. 

[27] Chevalier TL, Hodgins H, Chockalingam N. Plantar pressure measurements using an in-shoe system 

and a pressure platform: A comparison. Gait Posture 2010;313:397-9. 

[28] Koch M, Lunde L, Ernst M, Knardahl S, Veiersted KB. Validity and reliability of pressure-

measurement insoles for vertical ground reaction force assessment in field situations. Appl Ergon 2016;53 

Pt A:44-51. 

[29] Woodburn J, Helliwell P. Observations on the F-Scan in-shoe pressure measuring system. Clin 

Biomech 1996;115:301-4. 



   

59 

[30] Cimolin V, Veronica Cimolin, Paolo Capodaglio, Nicola Cau, Manuela Galli. Foot-type analysis and 

plantar pressure differences between obese and nonobese adolescents during upright standing. 

International journal of rehabilitation research 2015;391:87-91. 

  



   

60 

Chapter 3.  
 
Classifying sitting, standing and walking using only 
plantar force data 

The following journal paper will be submitted for review shortly. 

3.1. Extended Methods 

Please refer to Appendix C for further details regarding the methods associated with developing 

this work. 

3.2. Prepared Journal Manuscript  
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Abstract 

Prolonged static weight bearing is common in certain workplace environments and is thought to 

exacerbate plantar fasciitis. Thus, certain occupations may predispose workers to develop plantar fasciitis. 

Objective measures of physical activities able to distinguish sedentary behaviours in the workplace are 

lacking, making it difficult to establish or refute the connection between work exposure and plantar 

fasciitis. Plantar pressure has shown promise as an unobtrusive tool for posture differentiation, yet 

evidence suggesting the optimal number and locations of sensors required to accurately classify postures 

is lacking. Plantar pressure data was measured in eight healthy participants using the F-Scan in-shoe 

measurement system (Tekscan Inc, Boston, USA) during periods of sitting, standing and walking. Data 

was resampled to simulate on/off characteristics of 24 force sensitive resistors (FSRs) spanning the 

plantar aspect of the foot. Following feature selection, the top 10 sensor locations were evaluated using 

leave-one-out cross-validation with five different machine learning algorithms: RBF-Kernel support 

vector machines (SVM), bagged decision tree (BDT), linear discriminant analysis, naïve bayes, and K-

nearest neighbours. The top two algorithms (SVM and BDT) classified sitting, standing and walking at 

98.1% and 99.1% accuracy, respectively, with five sensors, and 97.4% and 98.1%, respectively, with 

three sensors. The central forefoot, and the medial and lateral midfoot were found to be the most 

important sensor locations for classification. This work demonstrates that a selected number of 

uncalibrated FSRs positioned at key points could classify sitting, standing and walking at high accuracies. 

The results of this study can assist in the development of an objective measure for quantifying sedentary 

posture duration at work. 

 

 

Keywords: Pedobarography, Pattern Recognition, Posture Differentiation, Plantar Fasciitis, Weight 

Bearing   
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1. Introduction  

Plantar Fasciitis (PF) is a degenerative foot condition which typically presents as a sharp pain 

around the heel after long periods of inactivity. PF is the most common cause of inferior heel pain [1] 

constituting an estimated 11-15% of foot problems requiring professional attention among adults [2]. The 

etiology of PF is multifactorial, and no clear consensus exists ranking the most causal risk factors. 

However, prolonged weight bearing (WBR) at work has been reported to increase risk [3]. Some 

industries require workers to maintain fixed postures to perform tasks, limiting their freedom to sit or 

move around [4,5]; estimates indicate 47% of employees stand for at least 75% of their workday [6]. 

Quantitatively monitoring WBR at work is challenging. Questionnaires are the most common tool 

used to quantify physical activity at work [7], but may be unreliable and prone to bias [8]. Commercial 

activity trackers can provide more objective measurements of physical activity without user interaction, 

but tend to focus on differentiating complex dynamic activities and have limited potential differentiating 

static postures typical in a workplace (e.g. sitting from standing) [9]. Custom activity trackers have been 

proven reliable at distinguishing static postures [10], but include unnecessary features beyond this 

application, thus increasing cost and complexity in the system. 

Several challenges arise when attempting to quantify workplace postures over an extended 

duration. First, the system must be minimally invasive and robust enough to deploy into a worker 

population with minimal to no participant interaction. Second, the system must be cost-effective so it can 

be manufactured in high volume to gather population data. One method to characterize essential 

workplace postures unobtrusively is through plantar pressure. Several shoe-based wearable systems have 

been recently developed targeting gait analysis and rehabilitation [11-15] and have been able to 

differentiate basic dynamic from static activities (e.g. walking from standing) and different static postures 

(e.g. sitting from standing) [13,16]. However, to date, these insole technologies have coupled plantar 

pressure with accelerometer data [13,16-18], increasing the cost and complexity. Purely pressure-based 

systems have focused on measuring gait biomechanics not activity differentiation [14,15]. In addition, 
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current instrumented insole designs using force sensitive resistors must calibrate the sensors prior to use 

[15,16], a costly and time-consuming process that would be prohibitive in a large-scale manufacturing 

environment. Finally, current designs place sensors in locations thought to be biomechanically important 

[11,12,14] but have not assessed the validity of other physiologically relevant sensor locations. 

Identifying the optimal number and locations of pressure sensors for classification of typical workplace 

postures and developing classification algorithms that can use uncalibrated on/off signals could reduce the 

complexity and cost of instrumented insole systems. 

Machine learning classifications are effective for activity recognition using shoe-based sensors 

[13,14,16-18]; however, no single classification algorithm is accepted as the standard for activity 

differentiation. Successful classification has been achieved for a variety of conditions: walking at various 

speeds [13,14,16-18], running [16], cycling [16], elevator use [18], ascending/descending stairs 

[13,16,18], standing [13,16,18], sitting [13,16,18] and sit-to-stand/stand-to-sit transfers [14,18].  

This study aimed to classify common workplace postures (sitting, standing and walking) through 

unilateral plantar pressure data. Additionally, the number and location of sensors on the plantar aspect of 

the foot needed for accurate posture recognition was evaluated through machine learning by reducing 

high-resolution temporal and spatial data to simulate force sensitive resistor (FSR) characteristics. It was 

hypothesized that less than five FSRs selectively placed under the foot would be needed to classify 

sitting, standing, and walking above 95% accuracy.  

2. Methods  

 

I. Participants 

Ten healthy subjects (8 male/2 female, body mass = 74.2 ± 18.4 kg, height 172.0 ± 10.3 cm, age = 

29.0 ± 4.8 years) were recruited. Written informed consent was obtained from each participant. This study 

was approved by the Simon Fraser University Office of Research Ethics. 
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II. Experimental Protocol & Data Collection 

Two appropriately sized F-Scan pressure measurement insoles (Tekscan Inc, Boston, USA) were 

fitted into each participant’s shoes; data was captured at 75Hz. Data collection was conducted in two 

separate trials spaced twenty minutes apart; each trial consisted of a six-minute collection phase in which 

each participant demonstrated the postures (sitting, standing and walking) twice, for approximately one 

minute each. Activity order was randomized. At the start of each activity the participant performed a 

right-footed stomp. Participants were warned five seconds before the completion of an activity and 

instructed to assume the next posture. Video data was captured to validate the start and end of an activity 

sequence. Participants sat in a plastic office chair (46 cm floor-seat height). Participants walked back-and-

forth over a 10 m walkway at a self-selected speed. 

III. Data Processing 

Subdivision of the plantar side of the foot was conducted to consistently locate anatomical regions 

of interest; a modified version of the PRC mask, developed by Novel (Novel GmbH, Munich, Germany) 

was selected based on literature substantiating its usage [19,20]. The subdivision results in the following 

ten anatomical regions: hallux (HA), second toe (T2), third to fifth toes (T35), medial forefoot (MFF), 

central forefoot (CFF), lateral forefoot (LFF), medial midfoot (MM), lateral midfoot (LM), medial heel 

(MH) and lateral heel (LH) (Figure 1a-b).  

Following regional division, 24 proposed sensor locations were identified on the plantar aspect of 

the foot (Figure 1c) simulating discrete FSRs that are commonly used in instrumented insoles [15,16]. 

Sensors locations were identified to cover the entire plantar surface, based on the regions, without 

overlapping each other or an edge. Each simulated sensor (‘simFSR’) was comprised of 5 F-Scan sensel 

elements in the shape of a cross which simulates the approximate size of common low-cost (< $9 CAD) 

FSRs (1.27 cm diameter). To place the sensors, three sensors were first placed at the center of the hallux, 

second toe, and third to fifth toe regions (sensors 1,2,3). A fourth sensor was then placed in the third to 

fifth toe region at an offset of 10% of the foot length in the posterior direction, and 10% of the foot width 

in the lateral direction (sensor 4). Sensors were then placed at the center of the remaining anatomical 
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masks (sensors 5,8,11,13,16,19,22). Remaining sensors were positioned offset ± 10% of the foot length 

along the longitudinal axis of the foot from the center sensor in each mask. Two sensor locations (sensors 

6 & 9) were moved an additional 8% anteriorly to compensate for the large toe-forefoot sensor gap. Only 

two sensors were defined for the lateral forefoot to compensate for the diagonal T35/LFF boundary. 

Sensor 24 was also moved medially 10% of the foot width to avoid edge overlap. 

 

 

Figure 1 - Regional breakdown of the foot into 10 anatomical regions and 24 perspective sensor 

locations. (a) Anatomical regions per the PRC masking method (b) Exemplary footprint subdivided using 

the PRC masking method (c) Exemplary footprint with 24 overlaid sensor locations. Circular FSRs (0.5” 

diameter) were approximated with 5 F-Scan sensel elements shaped in a cross; sensel elements are spaced 

0.51cm apart. 

Investigation of the three loading conditions was carried out following the removal of inter-activity 

transition periods, defined as the time when an activity was completed until the participant was 

comfortably in position to begin the subsequent activity, denoted through a stomp of the right foot, and 
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confirmed through video data. Resultantly, activity durations were non-uniform and were reduced from 

one-minute blocks to approximately 40-50 second blocks after removing transitions.  

IV. Data Resampling and Reduction 

To simulate low-cost off the shelf sensors and eliminate the need to calibrate the sensors, pressure 

data was resampled to 15 Hz from the original 75 Hz and data from each of the simFSRs (Figure 1c) was 

reduced to on/off signals. If any of the five sensel elements comprising a simFSR recorded a pressure 

value at a single time point, the simFSR was considered ‘on’. Pressure readings above the default noise 

filter threshold for the F-Scan system were deemed on; the default threshold is defined as 1.2% of the 

saturation pressure determined during calibration, which amounted to 6-12 kPa depending on the size of 

the participant. This range is similar to previous work by Price and colleagues [21], who defined active 

sensors of three in-shoe measurement tools as sensors registering pressure >10 kPa. To assist with data 

consolidation ‘on’ was assigned a numeric value of 1 and ‘off’ was assigned a value of 0.  

V. Machine Learning Classification 

Machine learning algorithms were used to classify each workplace activity using plantar pressure 

characteristics. The specific machine learning algorithm employed and the various control parameters 

within the algorithm were systematically explored to maximize classification power and assess the 

sensitivity of the algorithm to each parameter. 

 Similar to previous works [13,18], an overlapping sliding window approach was implemented to 

account for the temporal nature of gait; a sensitivity analysis was conducted for several window lengths 

(0.5, 0.75 ,1 ,1.5 ,2 ,2.5 and 3s) and window overlap percentages (0%, 25%, 50% and 75%). Window 

lengths were selected based on a step frequency estimated to be 1.4Hz (0.7s/stride) [22]. Several metrics 

(mean, mode, median, and sum) were calculated for each of the windows, and a subsequent sensitivity 

analysis was conducted to determine which data characteristic was best for classification. Data extracted 

from all 24 sensor locations was used to train five different learning algorithms: RBF kernel type SVM, 

Bagged Decision Tree (nTrees = 100), Discriminant Analysis, Naïve Bayes, and a k-Nearest Neighbour 
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(k = 5). A leave-one-out cross-validation scheme was used to test the window characteristics; 

characteristics were ranked for a given algorithm based on their classification accuracy, defined as the 

number of correctly classified samples divided by classified samples. Characteristics were compared 

relative to one another using the mean classification accuracy across all five learning algorithms, and the 

top characteristic was ultimately selected for subsequent analyses. 

Feature selection is a method of variable subset selection where certain characteristics (‘features’) 

are selected from a larger set for use in model construction; in this context, feature selection facilitated the 

reduction of the original 24 simFSRs to a smaller subset by eliminating redundant or irrelevant features 

while minimizing the loss of information. Twenty-four features were defined as the optimal metric 

extracted from the sliding window selected from the sensitivity study for each of the 24 proposed sensor 

locations. Feature selection was conducted using a two-step approach; first, the 24 features were reduced 

and ranked through five filter-based features selection methods: Chi-Square, Fisher Score feature, Gini 

Index, Info-Gain and MRMR. The top ten features ranked by each selection method were subsequently 

compared in rank order, and the most frequently appearing within a given rank were selected as the global 

feature corresponding to that rank. 

Data was split into training and testing data using a leave-one-out cross-validation scheme [23,24]. A 

sensitivity analysis with five different machine learning algorithms was run.  Algorithms used were: RBF 

kernel type SVM, Bagged Decision Tree (nTrees = 100), Discriminant Analysis, Naïve Bayes, and a k-

Nearest Neighbour (k = 5). Using all five of these algorithms, a sensitivity analysis was run on the 

number of sensors needed to accurately classify the three postures, starting with the top ten features and 

reducing to the single best feature; this simulated a wrapper-based feature selection method. Confusion 

matrices were constructed for each algorithm by feature number combination, and then used to calculate 

accuracy, error rate, sensitivity and specificity. Accuracy was defined as correctly classified samples 

divided by classified samples. Error rate was defined as incorrectly classified samples divided by 

classified samples. Sensitivity was defined as correctly classified positive samples divided by true 
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positive samples. Specificity was defined as correctly classified negative samples divided by true negative 

samples. 

3. Results  

 

I. Plantar pressure data 

Pressure data was initially captured using the F-Scan system, then resampled to 24 discrete simFSR 

on/off outputs (Figure 2). During sitting, pressures recorded were low (<10kPa). Consequently, 

representative sensors at the hallux, medial forefoot and medial midfoot were often inactive or 

intermittently active during sitting. The sensor at the medial hindfoot, however, demonstrated sustained 

load during sitting. During standing, the entire foot is used to facilitate balance, so loading is constant 

across the plantar aspect of the foot. As walking is broken up into two specific phases of gait, stance and 

swing, activation is cyclical as the foot is constantly loaded and unloaded; this cyclic motion is captured 

in both the pressure data, and the on/off data, across all regions of the foot. 
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Figure 2 – Exemplary activity collection phase. Order of activities in this case was Standing 

(approximately 5-55s) - Sitting (65-110s) - Walking (115-160s) - Sitting (170-215s) - Standing (225-

270s) - Walking (275 - 360s). Transition periods of approximately 5-10s separate each activity, as can be 

seen by abnormalities at approximately 60s and 220s. (a) Exemplary plantar pressure data for four major 

regions of the foot during an activity collection phase. (b) Exemplary on/off data for four simFSRs during 

an activity collection phase. The four simFSRs shown are representative of the middle of the four major 

regions of the foot, along the medial side of the foot.  
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II. Sliding Window Sensitivity Analysis 

Three different control parameters were strategically manipulated during this study to optimize the 

implementation of the overlapping sliding window method for this data set: size of the window, overlap 

percentage, and data metric extracted from the window (Figure 3). Varying window length demonstrated 

a plateau effect at lengths greater than 1s, even when different classification algorithms were used (Figure 

3a). Deviations in accuracy associated with different window overlaps were minimal (Figure 3b). Mean 

and sum substantially outperformed mode and median, and mean demonstrated higher accuracies across 

all classification algorithms when compared to sum using the same algorithm (Figure 3c). 

 

Figure 3 - Sensitivity analysis results for sliding window parameters. Models were trained using a 

complete feature set (24 features) with five different classification algorithms. (a) Classification 

accuracies for seven window lengths. (b) Classification accuracies for four different window overlaps. (c) 

Classification accuracies for four different data metrics. Data represents the mean of all results obtained 

through leave-one-out cross-validation, across all activities. Error bars denote standard error. Error bars in 

(b) are smaller than markers and are therefore not visible. 

III. Posture Classification 

The results show a clear ability to classify posture using only plantar pressure data. The number 

of sensors necessary for reliable posture classification, varied with classification algorithm (Figure 4). 
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Classification performance tended to decrease as the number of features used to construct the 

classification scheme decreased. Different classification algorithms performed similarly except for the K-

Nearest Neighbour classifier. The top ten features, in rank order, were: sensor 15, 18, 8, 9, 12, 17, 20, 10, 

11, and 16 (Figure 1c). The accuracy, error rate, sensitivity and specificity of the RBF kernel type SVM 

and the Bagged Decision Tree classifiers outperformed the three other classification algorithms; results 

from these two algorithms varying from five to a single sensor can be found in Table 1. 

 

Figure 4 - (a) Classifier accuracy (b) Error rate (c) Sensitivity and (d) Specificity obtained using five 

different classification algorithms while varying the number of features used. A window length of 3s and 

window overlap of 75% were used to construct the sliding window, and the mean was extracted from the 

data within. Data represents the mean of all results obtained through leave-one-out cross-validation, 

across all activities. Error bars represent standard error. Some error bars in are smaller than markers and 

are therefore not visible. 
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Table 1 - Classifier accuracy, error rate, sensitivity and specificity for varying sensor combinations and 

five classification algorithms. Data represents the mean ± standard deviation of all results obtained 

through leave-one-out cross-validation, across all activities.  

 

 

 Classification accuracy was minimally affected by the decrease in sensors from five to three 

(Table 1). There was a greater decrease in accuracy when further reducing to a single sensor. Both the 

RBF-Kernel SVM (RBF) and the bagged decision tree (BDT) algorithms showed high accuracy (> 97%) 

in classifying the three workplace postures when more than three sensors were used. The BDT 

classification algorithm outperformed the RBF in each of the sensor combinations tested (Table 1). The 

bagged decision tree classifier produced the highest accuracy in the reduced set, with an accuracy of 

99.09% when trained using five sensors; however, when reduced to the top three sensors (sensors 15, 18, 

Sensors Used Classification Algorithm Accuracy (%) Error Rate (%) Sensitivity (%) Specificity (%)

RBF-Kernel SVM 98.14 ± 2.38 1.86 ± 2.38 97.53 ± 5.58 98.75 ± 2.44

Bagged Decision Tree 99.09 ± 1.13 0.91 ± 1.13 99.09 ± 2.02 99.09 ± 1.66

Discriminant Analysis 93.29 ± 7.80 6.71 ± 7.80 93.04 ± 17.60 99.14 ± 1.69

Naive Bayes 97.28 ± 5.28 2.72 ± 5.28 93.20 ± 17.05 99.57 ± 0.46

K-Nearest Neighbour 97.31 ± 3.44 2.69 ± 3.44 99.40 ± 0.94 96.60 ± 5.03

RBF-Kernel SVM 98.12 ± 2.38 1.88 ± 2.38 97.48 ± 5.72 98.77 ± 2.45

Bagged Decision Tree 99.06 ± 1.25 0.94 ± 1.25 99.09 ± 2.00 99.05 ± 1.84

Discriminant Analysis 93.12 ± 7.81 6.88 ± 7.81 93.09 ± 17.62 99.18 ± 1.69

Naive Bayes 96.86 ± 5.33 3.14 ± 5.33 93.45 ± 17.25 99.30 ± 1.49

K-Nearest Neighbour 97.23 ± 3.42 2.77 ± 3.42 99.24 ± 1.23 96.60 ± 5.03

RBF-Kernel SVM 97.36 ± 5.64 2.64 ± 5.64 93.04 ± 18.07 99.80 ± 0.58

Bagged Decision Tree 98.09 ± 4.65 1.91 ± 4.65 94.35 ± 15.03 99.80 ± 0.31

Discriminant Analysis 92.98 ± 8.18 7.02 ± 8.18 92.94 ± 17.89 99.14 ± 1.53

Naive Bayes 96.56 ± 5.20 3.44 ± 5.20 93.30 ± 17.36 99.05 ± 1.11

K-Nearest Neighbour 80.60 ± 12.94 19.40 ± 12.94 98.39 ± 3.50 72.98 ± 18.36

RBF-Kernel SVM 94.45 ± 5.26 5.55 ± 5.26 94.10 ± 8.36 95.64 ± 7.83

Bagged Decision Tree 96.42 ± 3.92 3.58 ± 3.92 95.92 ± 6.53 96.85 ± 5.89

Discriminant Analysis 88.78 ± 17.12 11.22 ± 17.12 96.67 ± 6.99 88.16 ± 22.07

Naive Bayes 91.83 ± 11.16 8.17 ± 11.16 96.72 ± 6.72 90.72 ± 17.12

K-Nearest Neighbour 69.85 ± 5.35 30.15 ± 5.35 98.08 ± 2.65 57.53 ± 7.53

RBF-Kernel SVM 91.51 ± 12.62 8.49 ± 12.62 96.52 ± 7.13 93.63 ± 13.48

Bagged Decision Tree 92.05 ± 10.74 7.95 ± 10.74 95.51 ± 7.79 95.01 ± 10.68

Discriminant Analysis 88.53 ± 17.39 11.47 ± 17.39 96.93 ± 6.69 87.84 ± 23.11

Naive Bayes 88.49 ± 17.20 11.51 ± 17.20 96.93 ± 6.69 87.84 ± 23.11

K-Nearest Neighbour 35.69 ± 5.64 64.31 ± 5.64 98.64 ± 2.29 46.05 ± 6.66
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and 8), the accuracy only decreased 1%. Misclassifying a seated activity as standing was the most 

common error in the predicted behaviours. When reduced to a single sensor for classification standing 

activities became more frequently confused with walking.  

 

Figure 5 - Confusion matrices, displaying the ability of various sensor combinations to distinguish 

instances of sitting (Si), standing (St) and walking (W). Green values represent the percent correct while 

red values show the percent incorrect in each classification. Data represents the sum of all results obtained 

through leave-one-out cross-validation, across all activities. 

4. Discussion  

 

I. Classifier Performance 

The classification scheme refined through the sensitivity analysis and subsequent classifier 

evaluation successfully classified three typical workplace postures. The present work used systematic data 

Si 1935 55 0 97.2%, 2.8% Si 1965 39 0 98.1%, 1.9%

St 42 2120 6 97.8%, 2.2% St 19 2145 0 99.1%, 0.9%
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W 10 14 2216 98.9%, 1.1% W 1 1 2221 99.9%, 0.1%

93.0%, 7.0% 98.9%, 1.1% 99.6%, 0.4% 97.4%, 2.6% 94.4%, 5.6% 99.7%, 0.3% 99.9%, 0.1% 98.1%, 1.9%
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94.1%, 5.9% 90.8%, 9.2% 98.3%, 1.7% 94.4%, 5.6% 95.9%, 4.1% 93.9%, 6.1% 99.4%, 0.6% 96.4%, 3.6%
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W 34 185 2093 90.5%, 9.5% W 42 167 2103 91.0%, 9.0%
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reduction to identify sensor locations on the plantar surface that most effectively classify posture. The 

results showed that although more plantar force data increased classification accuracy, the number of 

simFSRs could be reduced significantly without incurring much loss of accuracy in classifying posture. 

For the top two algorithms, the RBF-Kernel SVM and the Bagged Decision Tree, the classification 

accuracy was within 1% between three and five sensors used, with sensitivity and specificity changing 

approximately 5% and 1%, respectively (Table 1). In this study, it was hypothesized that we could 

achieve above 95% classification accuracy using less than five sensors; using the SVM and DT 

algorithms, three sensors were identified as the minimum number needed to achieve 95% accuracy. 

Although the SVM and DT classified at high accuracies with a single sensor location, the standard 

deviation increased two-fold from three sensors highlighting a substantial increase in variability amongst 

the LOOCV results. Due to the high variability in classification accuracy associated with a single sensor, 

one sensor location is not robust enough for classification using multiple participants. 

Although body-worn inertial technologies have demonstrated the ability to classify a variety of 

physical activities and postures [9,10], such technologies can be hindering during extended duration 

monitoring [18] and provide no information on plantar loading patterns. Previous studies have shown that 

instrumented shoe systems can classify various activities accurately with minimal disruption to the 

participant [10,11,13,16,18]. However, FSR-based insole technologies developed to date have coupled 

FSRs with inertial measurement units (IMUs) to achieve their high classification accuracy [16]. Of these, 

the most suitable system for the application proposed in this study is the ‘SmartStep’ developed by Edgar 

and colleagues [11,16]. Using a classification scheme based on SVMs, the SmartStep classified sitting, 

standing, walking, running, stair ascent/descent and cycling at a 95.2% average accuracy using a full 

feature set, and over 98% accuracy on an optimized sensor set [16]. Based on the outcomes of the 

SmartStep’s optimized classification scheme, an accuracy of above 98% was identified as the lower 

bound for this work; a minimum of 98% accuracy in classification, identified as total correct predictions 

divided by total predictions, was also reinforced by our industry partner Kintec Footlabs Inc. This 



   

76 

classification accuracy was achieved with sensor combinations using three sensors or more. Several key 

differences exist between the classification scheme developed here and that of Sazonov and colleagues. 

Most importantly, using measurement magnitude values from FSRs in the classification schemes requires 

a time-consuming calibration procedure for each sensor making large scale commercial production of 

such systems prohibitive. Here we developed a classification scheme using on/off detection only which 

eliminates the need to calibrate each sensor. By optimizing the positioning of the FSRs in the insole, there 

is no longer a requirement for an IMU or bilateral data collection which reduces material costs and 

increase the battery life of the system. While insoles developed to date demonstrate the validity of shoe-

based instrumented systems for differentiating postures, the results presented here show opportunities for 

further simplification of these sensor systems and the potential to transition to large-scale production by 

eliminating the need for sensor calibration. 

II. System Advantages 

Quantifying and linking prolonged weight bearing in the workplace and PF is not as immediate as a 

traumatic injury, such as a fall; therefore, the prevalence of work-related musculoskeletal disorders like 

PF are frequently underestimated from workers’ compensation claims as many cases go unreported 

[25,26]. A comprehensive review of work related PF found insufficient quantitative evidence linking 

workplace exposure to the prevalence of PF and consequently identified an immediate need for a low-cost 

objective measurement tool which can accurately differentiate time spent in various postures at work [27]. 

Currently, commercial plantar pressure measurement systems such as Tekscan’s F-Scan system or the 

Pedar system by Novel are far too costly for workplace deployment, costing over $20,000 CAD each. 

Inertial based activity trackers have been proven for posture detection [9,10] and more complex data 

collection [28], but are often too cumbersome for comfortable long-duration wear [18]. Existing shoe-

based systems, although similar [11,16], are overly complex for this application. Through strategic sensor 

reduction, the classification scheme proposed in this work proves that it is possible to classify sitting, 

standing and walking at a 98% accuracy using on/off plantar force data at three discrete locations on the 
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plantar aspect of the foot. If translated to an electromechanical system, these results may provide the 

foundation for the deployment of such a system into the workplace, allowing for the extended postural 

tracking at work that is currently lacking. 

III. Sensor Locations 

Previous work in instrumented insole development have selected sensor locations on the basis of 

perceived biomechanical importance and strength of contact with the supporting surface [11,12,14]. For 

example, Sazonov and colleagues [16] assumed five biomechanically important locations and then 

conducted a backward selection procedure of sensor locations to investigate the contribution of each 

sensor for posture/activity differentiation. Results of their work found that FSRs at the hallux, medial 

forefoot, and hindfoot center, were optimal and yielded a 98.1% accuracy when coupled with multiple 

IMUs in their classification scheme. In our comprehensive analysis of sensor locations, we similarly 

found the forefoot to be significant in differentiating activities. However, we also identified the medial 

and lateral midfoot as important activity classifiers. The top two sensor locations were in the medial and 

lateral midfoot, where most other insole technologies typically embed their electronics under a rigid 

insole arch eliminating these locations as possible sources of data. 

The central forefoot and medial/lateral midfoot may provide the most meaningful data for this 

application for several reasons. First, the central forefoot is minimally recruited during sitting, constantly 

used for balance during standing, and cyclically loaded during walking, creating a large differential 

between the three postures to be classified in this work. The medial and lateral midfoot parallel this, 

making the combination convey a large amount of information regarding the posture with only three 

sensors required. Additionally, the medial midfoot, or Sensor 15 (Figure 1c) is on the boundary of the 

midfoot and the hindfoot making it possible that this sensor may pick up much of the information elicited 

by the hindfoot. The boundary position may be advantageous in this application because, although the 

heel has a strong signal due to its constant contact, it is challenging to differentiate sitting from standing 
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using this area alone (Figure 2b). The loading on the boundary may be intermittent, but the medial 

longitudinal arch provides enough variability to differentiate the activities. 

IV. Strengths/limitations of work 

Findings presented in this work must be considered within the study limitations. First, a small sample 

size was used, although this is similar to other works in this field [13,16,18,29] further work will be 

required to establish the broad applicability of this classification scheme. Secondly, constructing 

simulated FSRs from down sampled high spatial and temporal resolution data may not exactly duplicate 

FSR performance. However, the simulated FSRs provided an opportunity to comprehensively analyze 

sensor characteristics (position and number) from a single trial instead of constructing multiple prototypes 

and conducting repeated subject trials. Finally, shoe type and model were not controlled, walking speed 

was left up to the participant to select, and all foot shapes were included in the study design. Although 

they introduced potential sources of variability, these choices provide ecological validity to the data set, 

which ultimately aims to characterize the three postures in an uncontrolled environment, making it 

advantageous to leave these factors unrestricted.  

5. Conclusion  

A current lack of reliable and cost-effective measurement tools for distinguishing postures at work 

makes it difficult to link weight bearing at work to the onset of plantar fasciitis [27]. We classified 

common workplace postures through unilateral plantar pressure data alone for the first time.  Three 

locations—the central forefoot and medial and lateral midfoot—were sufficient to classify sitting, 

standing and walking through on/off sensor data with an accuracy of over 98%. This work will assist in 

making insole-based measurement systems commercially feasible by reducing sensor costs and 

eliminating the need for time consuming calibration. 
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Chapter 4.  
 
Wearable Shoe-Based Device for Posture Differentiation 
at Work 

4.1. Introduction 

Development of an objective tool to quantify time spent WBR at work could help fill a 

longstanding gap in the literature establishing or refuting a causal link between prolonged WBR 

in the workplace and plantar fasciitis. Currently, subjective methods (e.g. self-reporting), 

although commonly used [113] are inconsistent [21,22] and prone to bias [118]. Conversely, 

current objective methods (e.g. inertial based activity trackers) may be uncomfortable for 

extended use due to form-factor, weight, and position on the body [121]. Additionally, inertial 

technologies have limited potential differentiating static postures [37,38]. Shoe-based wearables 

have been proven to circumvent these issues and reliably classify sitting, standing and walking 

[36,46,136], but are overly complex, costly, and not optimal for large scale deployments 

required for workplace monitoring [36,131,134,135]. To fill this void, the aim of this work was to 

develop a prototype design for a low-cost instrumented insole system capable of differentiating 

workplace postures (sitting, standing and walking) using established plantar pressure patterns, 

metrics, and machine learning protocols.  

Differentiating sitting, standing and walking based on the pedobarographic characteristics 

associated with each posture was shown to be possible (See Chapter 2: Study 1). Both WBR 

from non-WBR, and static WBR from dynamic WBR could be distinguished only from the 

pedobarographic characteristics. Our previous machine learning analysis of down-sampled data 

defined the lower bound of what was sufficient plantar pressure information to classify these 

three postures, verifying the use of on/off signals from force sensitive resistors (FSRs) (See 

Chapter 3: Study 2). Unlike previous works that assumed sensor placements and then applied 

machine learning algorithms, we considered sensor placement across the entire foot and then 

assessed the effects of position, data characteristics, machine learning algorithms and settings 

on the accuracy of classifying three common workplace postures (sitting, standing and walking). 

It was concluded that three simulated FSR sensors, located at the central forefoot, and the 

medial and lateral midfoot, could classify the three postures at over 98% accuracy. Five 



   

83 

sensors, located around the medial and lateral midfoot and the central/lateral forefoot, classified 

the postures at over 99% accuracy.  

With a theoretical system design in place, the objective of this work was to develop a prototype 

insole system with off-the-shelf components capable of collecting plantar force data similar to 

the simFSR system (Chapter 3). Additionally, the ability of the insole to differentiate sitting, 

standing and walking using sensor locations determined to be physiologically relevant for these 

tasks was assessed qualitatively. To be compatible with a range of sensitive workplace 

applications (e.g. manufacturing, surgery, etc.) all electronics must be onboard and no Wi-Fi or 

Bluetooth connectivity enabled. This proof-of-concept prototype explores the potential to 

characterize workplace activities with a low cost, FSR based system. This work lays the 

foundation for further prototype refinement, more advanced posture characterization (e.g. 

differentiating fidgeting from quiet standing), as well as pilot testing in a worker population. 

4.2. Methods 

4.2.1. Technology Development 

Design Criteria 

To be suitable for workplace applications differentiating sitting, standing and walking the insole 

technology must meet critical design criteria:  

Measurement Accuracy: 

• Minimum of 3Hz Recording Rate. A slow stride frequency of 1.41Hz, indicative of a 

slow stride frequency [160] results in minimum capture rate of 3Hz by Nyquist 

Theory. 

• 99% accuracy in classification (i.e. total correct predicted postures/total 

predicted postures), which would result in under a half hour of incorrect postures 

identified over a standard 40-hour work week; a 40-hour work week results in 2400 

minutes of classified data, therefore if 1% was misclassified, 24 minutes/2400 

minutes would indicate incorrect postures. This level of accuracy parallels the 
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SmartStep system’s optimized classification accuracy [36] and was further reinforced 

by our industry partner, Kintec Footlabs Inc. 

Form Factor: 

• Insole system must fit within any standard footwear. 

• Data acquisition unit must attach to lower-limb in a discreet fashion. 

• Plantar biomechanics cannot be affected by system (e.g. no stiff arch to hide 

electronics). 

Data Management: 

• Data cannot be transmitted wirelessly (e.g. Wi-Fi or Bluetooth); as this 

technology intends to deploy in a hospital environment, it may be near medical 

devices with sensitivities to wireless interference [161]. To avoid any complications 

and liabilities associated with device proximity, no wireless protocols will be 

employed. 

• Minimum undisturbed data acquisition time of 12 hours; this will be affected by both 

battery life and memory size. Memory is dictated by on-board storage capacity as 

online data storage (e.g. cloud-based) requires wireless capabilities which are ruled 

out for this application.  

• Data must be easily extracted from device. 

Cost: 

• Total system cost, including all materials and manufacturing costs, must be less than 

$100 CAD. 

System Description 

The physical system developed from this work is known as the ‘Posture Differentiating 

Instrumented Insole’, or the PDI2 for short. The PDI2 data acquisition unit (Figure 11a-b) is a 

standalone system capable of reading outputs from a limited number of FSRs (five or less with 

the current design), and storing the data within an on-board microSD card. The system is 
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capable of recording at 19Hz for more than 72 hours with the current battery scheme, although 

modifications to battery size/type could increase this as needed to suit a variety of study 

designs. Additionally, the PDI2 is relatively lightweight, with the data acquisition unit (excluding 

the insole and embedded sensors) weighing only 65 grams. The data acquisition unit of the 

PDI2 can be attached to the participant’s shoe via a 3D printed dongle, to ensure the unit does 

not impact the participant’s day-to-day movement in any way. The size of the current PDI2 data 

acquisition unit (without the battery) is approximately 6cm x 4cm x 2cm (L x W x H), though this 

is expected to decrease in subsequent prototypes with the move to a printed circuit board 

(PCB). The electrical components comprising the data acquisition unit cost approximately $40 

CAD. Each FSR used will cost an additional $9 CAD. As the PDI2 was developed as a one-off 

prototype, manufacturing costs for production runs have not yet been established.  

 

 

Figure 11 The Posture Differentiating Instrumented Insole Prototype (a) Top view with 
sensor leads attached (b) Bottom view with no sensor leads present. 

Hardware 

The complete PDI2 prototype consists of six major hardware components: a flat insole 

(thickness = 4mm), one to five force sensitive resistors, a microcontroller, a microSD board & 

card, a protoboard, and a battery (Table 7). 
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Table 7 Components of the Posture Differentiating Instrumented Insole 

Component Purpose Description 

Insole (Figure 
12) 

- Sized to fit in the participants 
shoe minimizing sensor motion 
 
- Houses embedded FSR 
sensors  
 

The insole is a series of two flat polymer pieces 
which sandwich FSR sensors. The insole is meant 
to hide the presence of any sensors to the user, 
which is particularly challenging given the sensitive 
nature of the plantar side of the foot. As this is a 
data acquisition tool and not a custom orthotic 
meant to treat PF, no contour will be built into the 
insole to avoid influencing the natural gait of 
participants. 

FSRs (Figure 
13) 

- Capture data relating to each 
posture 

FSRs are resistors which modify their resistive 
value when axially loaded in compression. FSRs 
used in this prototype are Interlink 402 FSR 
sensors, which measure 0.5” in diameter. Sensors 
are not initially calibrated for rendering force, but 
are reported to read forces between 0-100N (0-
20lbs). 

Microcontroller - Facilitates the read/write 
channel between the FSRs and 
the microSD card 

A small computing module on a single integrated 
circuit, the microcontroller acts as the control 
module for the system, instructing each of the 
subsystems on their operation. 

MicroSD board 
& card 

- Board: Connects the microSD 
card to the data acquisition unit 
 
- Card: Stores information 
measured by the FSRs 

The MicroSD components permit the storage of 
data within the data acquisition unit, allowing the 
system to run in isolation. The microSD board & 
card are the most power-consuming components in 
the system. 

Protoboard - Backbone of the data 
acquisition unit; all subsystems 
are connected via the protoboard 

A construction base for the electronic components, 
the protoboard is the backbone of prototyped 
system but will be replaced with a custom printed 
circuit board once the design is finalized. 

Battery (Figure 
14) 

- Power the PDI2 prototype over 
an extended duration (~12hrs or 
one workday at a minimum) 

Current battery used in the PDI2 prototype is a 
2,000 mAh Lithium Ion weighing 34g and 
measuring 6cm x 3.6cm x 0.7cm. Battery life and 
power requirements were determined assuming 
peak load of all components; real energy usage will 
be evaluated in the first prototype and modified in 
future iterations to determine the smallest cell that 
is able to meet the 12 hours of continuous run time 
requirement. 
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Figure 12 Representative insole used in the Posture Differentiating Instrumented 
Insole 
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Figure 13 Representative Force Sensitive Resistor used in the Posture Differentiating 
Instrumented Insole 

 

 

Figure 14 Representative battery used in the Posture Differentiating Instrumented 
Insole 



   

89 

4.2.2. Pilot Testing 

Initial proof-of-concept testing of the system was conducted on a single participant during a 

simulation of the experimental protocol from Study 1. The trial consisted of six, one-minute 

activity blocks where each posture was demonstrated twice – sitting, standing, walking, sitting, 

standing and walking – totaling six minutes of data collection. The PDI2 prototype was set up to 

collect data from five FSRs, located strategically at points of the foot identified using preliminary 

results from Study 2 (Figure 15). Because the simFSR classification scheme (Chapter 3) was 

conducted in parallel to the development of the PDI2 system, sensor locations used in the initial 

testing were based on a preliminary set of results and not on the finalized locations determined 

as outcomes from the simFSR classification scheme. Therefore, two sensor locations differed 

between the simFSR classification scheme and the PDI2 prototype tested; sensor location 11 

and 19 were included instead of locations 9 and 12, while all other locations were matched 

(Figure 16a-b). Comparison of the simFSR system to the PDI2 prototype was conducted on the 

three sensor locations common to both systems (sensors 8, 15 and 18, Figure 16a-b). The PDI2 

sampled at 15Hz during the pilot testing, identical to the down sampled data compiled in the 

simulated FSR analysis.  
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Figure 15 Posture Differentiating Instrumented Insole system with five FSR sensors 
localized for testing 
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Figure 16 Comparison of (a) locations used for initial testing of the Posture 
Differentiating Instrumented Insole and (b) top five sensor locations 
specified from machine learning outputs. Note that sensor 11 and 19 were 
used in (a), while sensors 9 and 12 was used in (b). 

4.2.3. Conversion of Raw Data to Binary 

Similar to the conversion of the simFSR data into on/off characteristics (chapter 3), the raw FSR 

data obtained using the PDI2 was also converted to on/off characteristics. One challenge this 

presents is identifying the raw threshold value differentiating ‘on’ from ‘off’. Because the PDI2 

system is still in its infancy, a formal analysis and subsequent fine-tuning of this on/off boundary 

has not been conducted. To compare the initial testing of the PDI2 system to that of the simFSR 

system, an on/off boundary value of 50 raw units was selected; anything below 50 raw units 

represents the bottom 5% of the FSRs range and it is believed that a boundary of 50 units 

would primarily eliminate noise while maintaining the integrity of the data. In contrast, the on/off 

boundary used by the F-Scan system, and by extension the simFSR system, had a default 

noise threshold of 1.2% of the saturation pressure determined during calibration; the saturation 
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pressure of the F-Scan varies with participant mass, but the system has an upper pressure limit 

of 825 kPa (125 PSI). Although a lower value percentage-wise, the F-Scan system has a much 

larger pressure range than the PDI2 system and therefore 1.2% of the F-Scan data corresponds 

to a higher pressure reading than 5% of the PDI2 data. As a result, the noise threshold used for 

preliminary analysis of the PDI2 system should be considered conservative. 

4.2.4. Comparison of simFSR and FSR data 

It was previously determined that plantar pressure data collected using the F-Scan system could 

be converted to on/off characteristics and subsequently used to classify sitting, standing and 

walking at high accuracies (Chapter 3). If the data collected using the PDI2 system resembles 

that of the simFSR system, a classification scheme using the PDI2 system should also be able 

to classify sitting, standing and walking at high accuracies. Because only three of the five sensor 

locations were common to both systems (central forefoot, medial midfoot and lateral midfoot), 

the analysis is limited to comparing those three sensors. Additionally, the exemplary data from 

the simFSR system was taken from a single participant with a mass of 64kg and a foot posture 

index of +6 (pronated). In contrast, the exemplary trial using the PDI2 was conducted by a single 

participant with a mass of 98kg and a foot posture index of -3 (supinated). Because the data 

was captured at different times using different participants, a qualitative comparison of the data 

characteristics was used to assess the functionality of prototype system compared to the 

simFSR system.  

4.3. Results 

4.3.1. Data Collection 

The FSR sensors were not initially calibrated; therefore, a raw value of 0 to 1023 was extracted 

from all five FSRs individually during each frame of the collection phase. For reference, the FSR 

response curve is non-linear; variations in force are represented as large changes close to zero, 

and smaller changes as values draw closer to sensor saturation, found at a raw value of 1023 

(~100N). While no calibration was conducted, a benchtop test applying moderate pressure 

axially through a finger was carried out to verify that all five FSRs were responding to load. All 

the FSRs reported values between 950-970 raw units as a result of finger contact. Exemplary 

data for sitting (Table 8), standing (Table 9), and walking (Table 10) over one second 
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(equivalent to 15 frames) can be found below. Exemplary data for a full six-minute trial (Figure 

17) can also be found below.  

During sitting (Table 8), no forces were detected in the medial midfoot or lateral forefoot. 

Additionally, the central forefoot was loaded less than the medial hindfoot and lateral midfoot, 

showcasing that the majority of load during sitting is in the posterior of the foot. During standing 

(Table 9), loading was detected across all five sensors consistently, with the highest raw values 

being recorded in the central forefoot and the medial hindfoot. During walking (Table 10), a clear 

differential between swing and stance was seen, even within the one second exemplary data 

set. Additionally, the relative raw values demonstrate visible variations between heel-strike and 

toe-off. The medial hindfoot is loaded the highest first, followed by a transition into higher 

midfoot values concluding with highest values in the central and lateral forefoot sensors. 

Table 8 Exemplary sitting data collected using the Posture Differentiating 
Instrumented Insole; only one second of data is shown. 

 

 

Time [s]
Medial Midfoot 

- Sensor 15

Central Forefoot 

- Sensor 8

Medial Hindfoot 

- Sensor 19

Lateral Midfoot 

- Sensor 11

Lateral Forefoot 

- Sensor 18

0.07 0 407 886 596 0

0.13 0 413 887 602 0

0.20 0 406 889 607 0

0.27 0 392 890 609 0

0.33 0 369 892 597 0

0.40 0 371 893 597 0

0.47 0 376 893 599 0

0.53 0 386 893 606 0

0.60 0 388 893 607 0

0.67 0 390 893 606 0

0.73 0 389 894 603 0

0.80 0 389 894 606 0

0.87 0 391 894 607 0

0.93 0 392 894 607 0

1.00 0 388 894 604 0

SITTING
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Table 9 Exemplary standing data collected using the Posture Differentiating 
Instrumented Insole; only one second of data is shown. 

 

 

Table 10 Exemplary walking data collected using the Posture Differentiating 
Instrumented Insole; only one second of data is shown. 

 

  

Time [s]
Medial Midfoot 

- Sensor 15

Central Forefoot 

- Sensor 8

Medial Hindfoot 

- Sensor 19

Lateral Midfoot 

- Sensor 11

Lateral Forefoot 

- Sensor 18

0.07 653 889 937 891 765

0.13 680 893 923 887 784

0.20 684 896 923 890 799

0.27 714 901 919 888 809

0.33 720 908 900 889 832

0.40 717 921 861 888 856

0.47 676 930 860 888 863

0.53 689 932 867 891 863

0.60 710 934 877 892 856

0.67 719 933 891 891 837

0.73 723 929 900 890 816

0.80 730 926 910 889 818

0.87 743 926 916 889 827

0.93 752 927 919 890 824

1.00 746 925 918 890 822

STANDING

Time [s]
Medial Midfoot 

- Sensor 15

Central Forefoot 

- Sensor 8

Medial Hindfoot 

- Sensor 19

Lateral Midfoot 

- Sensor 11

Lateral Forefoot 

- Sensor 18

0.07 0 441 0 0 0

0.13 0 0 0 0 0

0.20 0 139 0 0 0

0.27 0 372 0 0 0

0.33 0 479 826 554 0

0.40 208 702 988 948 218

0.47 844 904 985 968 867

0.53 863 953 958 959 932

0.60 834 969 926 952 961

0.67 626 982 726 893 978

0.73 0 990 439 410 956

0.80 0 869 0 0 0

0.87 0 0 0 0 0

0.93 0 0 0 0 0

1.00 0 85 0 0 0

WALKING
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When examined over a full six-minute trial (Figure 17), it is clear qualitatively that the three 

postures are distinct even when observing the raw, uncalibrated FSR data. During sitting, the 

highest loading values were in the hindfoot (Figure 17e). Additionally, both the central and 

lateral forefoot (Figure 17a-b) displayed consistent loading though to a lesser extent when 

compared to the hindfoot. The midfoot (Figure 17c-d) was inactive during sitting. Less noise was 

present in the raw signal during standing when compared to sitting. Standing loads were 

consistent amongst all five sensors presented, with the hindfoot (Figure 17e) and central/lateral 

forefoot (Figure 17a-b) demonstrating more pressure than the medial/lateral midfoot (Figure 

17c-d). Walking displayed the highest loads amongst the three postures across all five regions 

shown. Additionally, the temporal characteristics of walking were distinguishable. On the whole, 

the midfoot sensors (Figure 17c-d) demonstrated the greatest contrasts between the three 

postures. 
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Figure 17 Exemplary raw data collected using the Posture Differentiating 
Instrumented Insole; values range from 0-1023 and represent the non-linear 
force response of five FSRs. Six minutes of data is shown collected at five 
different locations: (a) the central forefoot, (b) lateral forefoot, (c) medial 
midfoot, (d) lateral midfoot) and (e) medial hindfoot. Order of activities was 
Sitting-Standing-Walking-Sitting-Standing-Walking. Coloured curves 
indicate sensors common to both the simFSR system final outcomes 
(chapter 3) and the PDI2 initial prototype. Black and grey curves denote 
sensors used in the PDI2 initial prototype but not in the final outcomes of 
the simFSR system. (f) provides an approximate location breakdown of the 
five sensors showcased with colours corresponding to the associated 
curves. Foot outline and sensor size are not-to-scale. 
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4.3.2. Comparison of simFSR system to PDI2 system 

By converting the raw data collected with the PDI2 system (Figure 17) to on/off characteristics 

using an on/off boundary of 50 raw units, an initial comparison can be made between the 

simFSR system and the PDI2 system (Figure 18). Of the three sensors compared, the central 

forefoot (sensor 8, Figure 16b) demonstrated the most variability between the two systems 

(Figure 18a-b). During both instances sitting, the simFSR system sensor at the central forefoot 

(Figure 18a) was completely off whereas it was consistently on at the same location when using 

the PDI2 system (Figure 18b). The medial and lateral midfoot (sensors 15 and 18, Figure 16b) 

showed substantial agreement when comparing the simFSR system to the PDI2 system (Figure 

18c-f). Sitting was generally inactive (‘off’) in the medial midfoot and active (‘on’) in the lateral 

midfoot using both systems. Standing had constant activation in both systems across the medial 

and lateral midfoot sensors while the temporal characteristic of walking was again captured 

using both systems at both midfoot locations.  
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Figure 18 Exemplary on/off characteristics from the simFSR system (a,c,e) and the 
PDI2 system (b,d,f). Six minutes of data was collected at three different 
locations: (a,b) central forefoot, (b,d) medial midfoot, and (e,f) lateral 
midfoot. Order of activities is showcased on the top of plots (a) and (b); 
note that Si,St and W represent sitting, standing and walking, respectively. 
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4.4. Discussion 

4.4.1. Data Characteristics 

The lack of loading in the medial midfoot during sitting may be due to the medial longitudinal 

arch, which could elevate the plantar aspect of the foot in that location enough to unload the 

sensor during sitting. The lack of loading in the lateral forefoot was unexpected, as the lateral 

forefoot is adjacent to the central forefoot, which recorded a value consistently during sitting. 

One possibility is that this trial is only representative of a single participant, and a combination of 

foot shape, shoe type, and personal plantar loading pattern could aggregate to result in the lack 

of loading witnessed. During standing (Table 9), loading was collected across all five of the 

sensors consistently. This could be subject specific as only one participant was tested, but all 

uncalibrated values during standing across the five sensor locations were within 300 raw values 

of each other (650-950), demonstrating that no sensor was damaged or completely inactive 

during the trial. Sensor-to-sensor variability could also contribute to the variations. During 

walking (Table 10), a clear differential between swing and stance was seen, even within the one 

second exemplary data set. The ability for low-cost sensors to provide feedback with resolution 

capable of segmenting several points within the stance phase of gait is impressive, and 

demonstrates the potential for these sensors to be used moving forward in subsequent 

prototypes. 

When considering the characteristics of the full six-minute trial (Figure 17), the three postures 

(sitting, standing and walking) can be qualitatively distinguished. The greatest loads during 

sitting were in the hindfoot, which parallels outcomes from the characterization study (Chapter 

2). The central and lateral forefoot show less loading when compared to the hindfoot, which is 

expected as the forefoot is minimally recruited during sitting as balance is not a concern. The 

midfoot was inactive during sitting which suggests that in this participant the medial and lateral 

longitudinal arches reduced sensor contact. This may be because the participant trialed in 

Figure 17 had a supinated foot posture index. The lateral midfoot is more actively engaged than 

the medial midfoot suggesting a supinated foot may be causing the observed loading (Figure 

17c-d). Because the midfoot is loaded intermittently due to the medial and lateral longitudinal 

arches, the differential between the three postures increased suggesting it may delineate the 

postures better than locations loaded consistently throughout the three postures, such as the 

hindfoot and forefoot. When using a calibrated system, such as the F-Scan, consistently loaded 
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locations such as the hindfoot, medial forefoot and hallux are advantageous as they display the 

most consistent signal and subsequently can be used to differentiate the postures based on 

pressure magnitude. If magnitude is removed and raw data is observed (Figure 17), regions of 

inconsistent contact prove to be of more use when distinguishing the postures. However, these 

are preliminary conclusions based on a single trial. Further testing is required to draw more 

generalizable conclusions. 

4.4.2. Comparing simFSR system to PDI2 system 

The central forefoot sensor demonstrated that greatest variability between the simFSR and the 

PDI2 systems. Although this could be due to subject-specific loading, the most probable reason 

for this deviation is likely rooted in the different on/off boundary values used for both systems; 

because the PDI2 system used a lower threshold for what constituted ‘on’, the sensor was more 

active even during sitting where the forefoot is not expected to be as engaged. The low on/off 

threshold likely also contributed to the consistent loading during standing using the PDI2 system 

as when compared with the simFSR system. Walking was consistent between the two systems 

at the central forefoot location as both systems captured the temporal nature even when only 

analyzing on/off characteristics. 

The medial and lateral midfoot showed better agreement when comparing the simFSR system 

to the PDI2 system (Figure 18c-f) than the central forefoot sensor. The agreement between the 

two midfoot sensors using both the simFSR system and the PDI2 system suggests that given 

that the simFSR system was used to construct a classification scheme able to classify the three 

postures as high accuracy, the PDI2 system should be able to do the same if an appropriate 

classification scheme was developed using data from more participants.  

On the whole, the PDI2 system demonstrated the potential to distinguish between sitting, 

standing and walking using both uncalibrated data (Table 8-Table 10 and Figure 17) and on/off 

characteristics (Figure 18b,d,e). Although the initial testing regime presents data of only one 

participant, the results showcase the potential of the PDI2 system to gather data of similar 

character to the simFSR system. Further testing using more participants is warranted and a 

formal testing regime similar to the one presented in chapter 2 is advised. Additionally, further 

testing would also allow for the development of a classification scheme similar to previous work 

presented in this thesis (chapter 3), ultimately concluding if the novel system can utilize machine 
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learning to classify sitting, standing and walking at high accuracies using only on/off 

characteristics.  

.   
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Chapter 5.  
 
Contributions & Conclusions 

5.1. Contribution Overview 

This thesis was motivated by the need to improve current methods for quantifying behaviors at 

work. The studies presented here represent a systematic analysis of the physiology of plantar 

loading during workplace postures, the application of machine learning to classify workplace 

postures, the identification of simulated sensor locations that are most likely to be able to 

differentiate these postures and finally, the development of an insole prototype with sensors 

positioned using the insights gained from the first two studies.  

The first study focused on substantiating the claim that plantar pressure is a viable means of 

characterizing common workplace postures by identifying the critical biomechanical features 

specific to each posture. Laboratory experiments were conducted to characterize the 

pedobarographic patterns specific to common workplace postures: walking (dynamic WBR), 

standing (static WBR) and sitting (static non-WBR). Although a number of studies have 

compared characteristics or changes of these three postures in various populations 

[36,133,163-169], to the authors’ knowledge, no previous studies have investigated which 

pedobarographic characteristics best distinguish the postures in a healthy population. 

Additionally, much of the current literature restricts various subject-specific characteristics (e.g. 

shoe type, walking speed) which may compromise the ecological validity of their results. Results 

suggest that it is possible to differentiate both WBR from non-WBR postures and static from 

dynamic behaviours through plantar pressure. In addition, ten foot region/measurement 

parameter combinations were found to differentiate all three postures concurrently. 

The second study aimed to utilize machine learning to isolate specific regions of the foot with 

the best potential to differentiate workplace postures. Data collected in the first study was 

resampled from 960 sensors providing calibrated pressure data at 75Hz (i.e. a lab-grade 

system) to 24 sensors providing on/off data at 15Hz (simulating a low-cost FSR-based insole 

system). With the validation of plantar pressure as a differentiation tool completed in Study 1, 

Study 2 sought to identify the lower limit of necessary information needed to classify the three 

postures. Five different variables—window length, overlap and output metric, feature selection 



   

103 

method, and machine learning algorithm used—were manipulated to first identify the optimal 

method to employ machine learning for this application. Following the implementation 

refinement, the number of simulated sensors present was tested using ranked sensor locations; 

the top ten sensor locations were tested using five machine learning algorithms, followed by the 

top nine, and so on, until the single sensor ranked as carrying the most information about the 

postures was tested. Results suggest that five sensors can classify the postures correctly over 

99% of the time, while three strategically placed sensors can classify the postures correctly over 

98% of the time. Of the top five sensors chosen, three (central forefoot, lateral forefoot and 

lateral midfoot) align with regions that were found to differentiate all three postures 

simultaneously in Study 1. Of the top three sensors chosen, the central forefoot and lateral 

midfoot regions were also identified as critical in Study 1, but the medial midfoot (Sensor 15, 

Figure 16) was not. The discrepancy here may be associated with the fact that Study 1 used 

data across the entire medial midfoot, whereas Study 2 used the posterior region of the medial 

midfoot to assess on/off characteristics of Sensor 15. Because the posterior region of the medial 

midfoot was used and subsequently selected as critical using the machine learning algorithm, it 

can be postulated that the posterior part of this mask may be more like the medial heel, which 

was found to simultaneously differentiate the postures in Study 1. 

A novel Posture Differentiating Instrumented Insole (PDI2) was developed as a first-generation 

prototype in the path towards a deployable tool for quantifying sedentary behaviours at work. 

This work sought to initiate the development of a new, low-cost deployable technology, and a 

subsequent new line of research, using the PDI2 system to quantify sedentary behaviors at 

work. The PDI2 system was developed using off-the-shelf components in an attempt to minimize 

the system cost while collecting the minimum amount of data needed to classify the three 

postures. Although similar instrumented shoe-based systems have been used previously for 

posture classification [36,131,134,135,137,148], the PDI2 concept system has been specifically 

developed for this application, costs less, and provides longer collection periods by minimizing 

the amount of data needed. Further work is needed to develop and implement the machine 

learning classification algorithms suited for this system.  
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5.2. Future Research Directions 

5.2.1. Insole Development 

As the current prototype of the PDI2 system is the first generation for this application, several 

developmental modifications may be considered moving forward in order to distinguish the 

system from the SmartStep [36,137,170], the nearest competitor system in the space. The 

suggested modifications include: 

1. Protoboard Miniaturization: To decrease size and reduce wired connection wear, 

progression of the system to a printed circuit board is ideal. 

2. FSR Sensor Selection: The current FSR sensors used in the PDI2 system (Interlink 

402 FSRs) were selected based on previous experiences working with the sensors 

within our lab group. The size of these sensors (0.5” diameter) may be beneficial for 

keeping sensor locations robust, but smaller sensors could be considered if sensor 

saturation could be avoided. 

3. Embedding of Sensors within Insole: Currently, sensors and associated leads are 

sandwiched between two polymer insoles to ‘hide’ the electronics and minimize any 

user impact. Custom manufacturing of sensors in an insole shaped layer could result 

in a packaged solution with a single point of connection that reduces the opportunity 

for wire breakage and discomfort due to the wired connections. Alternatively, 

optimization of wiring schematics based on outcomes from Study 2 coupled with slot 

milling could potentially hide sensor wires and tails.  

4. Packaging of Electronics: To make the system ‘useable’ in a worker population, a 

case structure or dongle must be developed to comfortably hide the PDI2 data 

acquisition unit. An effective case design would not only shield the unit from 

accidental adjustment but could also minimize user avoidance due to appearance or 

bulk. 

5. Insole Sizing: To keep system cost down, it is ideal to not custom fit the PDI2 

system to each user; resultantly, a sizing regime suitable to most people is needed. 

As insole size changes however, sensor locations will also need to change. Solving 

this problem could be done through a modular insole, or a sliding element. A further 
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sensitivity study of sensor locations would also provide clarity on the need for precise 

sensor positioning for each shoe size. 

5.2.2. Subject-Specific Fidgeting 

This work focused solely on characterizing steady-state postures which was necessary to 

facilitate the start of this research stream. However, the author acknowledges that this is not 

wholly representative of a typical person over an extended duration. Each person adjusts their 

body to achieve comfort when maintaining a posture over an extended period. This could 

include things like crossing their legs or shifting weight to one foot while offloading the other. 

Review of literature and investigation with the PDI2 system must address this in the future to 

ensure accurate classification. 

5.2.3. Posture Differentiation at Work 

Tracking sedentary behaviours at work is challenging; questionnaires are not sufficiently 

accurate [21,22], commercial activity trackers show limited potential [37,38,171], and other 

methods such as video monitoring are resource intensive. The main goal for this research was 

to establish sufficient evidence for a novel insole technology to be designed with the intention of 

eventually deploying it into the workplace. Now that a prototype of the system physically exists, 

planning can begin to structure what the eventual deployment of the system into a worker 

population might look like. Once the system is deployed, various reliability and validation studies 

should be conducted to evaluate measurement repeatability within a real-world population.  

5.2.4. Future Clinical Implications 

The overarching goal of this work is to establish or refute any associated link between WBR at 

work and PF, thus resolving the current ambiguities [27]. Upon execution of the previously listed 

studies, a longitudinal observational study of workers in at-risk professions and the association 

with PF could refute or support any link between WBR and PF. 
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5.3. Limitations of the Research 

Although this work attempted to address key limitations within each study specifically, several 

key limitations still exist. During data collection, a relatively small sample size was used, and 

although this is similar to other works in posture characterization [166,172,173] and posture 

classification through machine learning [36,131,146,148], more data with larger variations in 

subject characteristics could result in more robust outcomes. Further, by only using one 

participant for analysis of the PDI2 system, results must be interpreted hesitantly until further 

formal testing can be conducted. Additionally, all postures analyzed were steady-state and did 

not contain any fidgeting or transitions; this must be considered when interpreting this work and 

should be addressed in future works. Lastly, the data collected in this study was collected with 

only one in-shoe pressure measurement system. Replication studies using other in-shoe 

pressure measurement systems, specifically the Pedar system by Novel, which is arguably the 

most-used in-shoe system, could further validate these results. 

5.4. Significance 

The studies conducted in this thesis lay the groundwork for an evidence-based low-cost 

instrumented insole system. The most significant outcomes from this work are: 

1. Identifying various biomechanical characteristics which differ between the three 

workplace postures and conveying on a fundamental level that using an insole as a 

behaviour tracker is appropriate. 

 

2. Identifying the minimal number and configuration of FSRs needed to classify the 

postures by computationally simulating a low-cost instrumented insole system, which 

proved that sitting, standing, and walking could be distinguished at high accuracy 

using as little as three sensors without any inertial measurement units or calibration 

of the FSRs. 

 

3. Developing the first generation PDI2 system prototype. This work took the idea of a 

low-cost instrument insole system and produced an evidence-based prototype that 

has the potential to classify common workplace postures at high accuracies. 
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Taken together these results show that plantar pressure based metrics reduced to on/off contact 

data have the potential to classify workplace postures in a highly accurate cost-effective way. 

This work is novel in its comprehensive assessment of plantar pressure characteristics and use 

of machine learning to inform a low-cost insole design specifically for differentiation of three 

common workplace postures. 
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Appendix A – Standard Operating Procedures for Study 1 

Simon Fraser University, Surrey Campus, NeuroSpine Laboratory 

Updated: November 8, 2017 

 

Author: Kohle Merry 

Principal Investigator: Dr. Carolyn J. Sparrey 

Study Number (as per SFU Office of Research Ethics): 2016s0326  

 

Introduction 

This SOP outlines the protocol used to collect sitting, standing and walking data using an insole-

based plantar pressure measurement system, specifically the F-Scan in-shoe system (Tekscan 

Inc, Boston, USA). 
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Materials 

Table 1 Materials used in Sitting, Standing and Walking Data Acquisition Study 

Equipment Amount Provider Description 

Tape (1-sided) 1 Roll Retail store Used to mark ‘X’s on the floor for distinguishing ends of the 
walking course, as well as the location for standing to be done. 

Desks/Tables 2 - Need to be roughly the same height. Used to support materials 
for the attention-diversion task. 

Office Chair 2 - Used for the sitting component. Chair used for this study had a 
46cm floor-seat height. 

Deck of Cards 5 Retail store Ideally need to be the same brand of cards to ensure uniform 
appearance. 

Timer 1 - Used to time the trials. 

Video Camera 1 - Used to video tape the trials for validation purposes. A GoPro 
camera was used in this study. 

Wireless F-Scan 
in-shoe system 

1 Tekscan 
Inc. 

One data acquisition unit (wireless) was used. Multiple pairs of F-
Scan insole sensors were used, and are only reusable for 
approximately 5-15 trials depending on the use. Insoles were 
trimmed to fit. 

Data Acquisition 
Laptop 

1 - Needs to have the appropriate F-Scan software downloaded. 
Note that the wired F-Scan system has a CD version of the 
software and is registered to Dr. Ed Park (University of Victoria) 
whereas the wireless version only has a digital copy of the 
software and is registered to Dr. Ed Park (SFU). The system will 
not work if the wrong software is used. 

Tape (2-sided) 1 Roll Retail Store Used to minimize relative motion of the insoles. 

Scale 1 - Used to weigh the participant for calibration of insoles. 

 

Experimental Overview 

The purpose of the protocol is to provide distinct phases of sitting, standing or walking activities 

in focused or distracted situations to determine the plantar pressures associated with each 

activity. In line with SFU DORE protocol 2016s0326 data collection is structured into three 

distinct trials performed ten minutes apart, each consisting of a six-minute collection phase. Two 

trials have no task associated with them (Trials 1 & 3) whereas one trial has an attention-

diversion task (sorting cards by colour) for the participants to do while going through the three 

postures (Trial 2).  

Trials 1 & 3 each consist of six, one-minute activity blocks (sitting, standing, or walking) in which 

each activity is executed twice and the order of activities is randomized. Sitting is conducted in a 

standard rigid plastic office chair (46cm floor-seat height) while walking was performed at a self-

selected speed over a 10m walkway (adjacent hallway to lab 3980); upon reaching the end of 
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the walkway, participants should turn in a self-selected manner and continue this repetition until 

the completion of the activity block. Participants should be warned approximately five seconds 

before the conclusion of each activity. At the start of each activity the participant will perform a 

right-footed stomp to sync plantar pressure and video data. Video of the participant’s feet (for 

data privacy) will be captured over the entire test and used to validate the activity classifications. 

Trials 2 consists of three, two-minute activity blocks (sitting, standing, or walking) in which each 

activity is executed while sorting cards by colour. The order of activities will be randomized. 

Cards will be moved from a designated starting position to a designated final position; only the 

colour of the cards matters while the numeric value serves no purpose. Sitting will be conducted 

in the same standard plastic office chair (46cm floor-seat height) used in Trials 1 and 3. Walking 

will be performed at a self-selected speed over a 5m walkway; upon reaching the end of the 

walkway, participants either pick-up or drop-off a card, and then turned in a self-selected 

manner and continue this repetition until the completion of the activity block. Similarly, during 

the sitting and standing activities, participants move cards from the starting positions to the final 

positions, alternating between red and black. Participants will be warned approximately five 

seconds before the conclusion of each activity. At the start of each activity the participant will 

perform a right-footed stomp. Video of the participant’s feet will be capture for the duration of the 

test. 

Experimental Setup  

Equipment for the experiments is housed is SRY 3960. The room should be booked using the 

shared calendar to ensure sufficient experimental space. Trials will be carried out in SRY 3960 

and the adjacent hallway. 

Trials 1 & 3 (No Task) 

Two trials are conducted with no task issued to the participants; the experimental setup can be 

found in Figure 1 below. 
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Figure 1 Experimental setup for Trials 1 & 3 (No Task) 

Trial 2 (Attention-Diversion Task) 

One trial is conducted with an attention-diversion task issued to the participants (sorting cards 

by colour); the experimental setup can be found in Figure 2 below. 

 

Figure 2 Experimental setup for Trial 2 (Attention-Diversion Task) 
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Experimental Protocol 

The study should be run according to the following protocol; note that underlined features 

designate an associated form. 

1. Introduction and greeting 

2. Study explanation (study purpose/rationale, introduce testing equipment, risks and 

benefits of study, review study protocol) 

3. Consent Form review (participant reviews form & signs) 

4. Participant Profile Form 

5. Foot Posture Index analysis conducted by study administrator (See FPI manual) and 

recorded on the FPI Scoring Table 

6. F-Scan setup 

6.1. Size insoles appropriately 

6.2. Weigh participant (no shoes) 

6.3. Velcro cuffs (should be noticeably tight) 

6.4. Ankle unit attachment to Velcro cuffs 

6.5. Belt attachment/sizing 

6.6. Ethernet cable connections: ankle units to belt 

6.7. Tape bottom of insole sensors in 3 locations (medial midfoot, toes, heel) and put 

sensors in shoes 

6.8. Connect insole sensors to ankle units via. sensor leash 

6.9. Participant puts on shoes slowly, holding back of the sensor to reduce movement 

6.10. Power up system and sync with data collection laptop (see F-Scan user manual) 

6.11. Enter patient info into software, click new recording to start a new trial 

6.12. Set up capture parameters (75Hz collection frequency, 400s collection time [6 

min of data collection plus 40s buffer room], 15s trigger delay to get participant into 

place, etc.) 

6.13. System calibration (Step Calibration – see F-Scan user manual) 

7. Video camera setup (GoPro mounted to GoPro Vertical Surface Mount to be held in 

hand and carried by test administrator during trial, 720p/120fps video collection mode, 

etc.) 

7.1. Note that the associated app, GoPro (formerly Capture), can be downloaded onto a 

mobile device from either the Apple app store or the Google Play store. 

8. Data collection period 

8.1. Start camera capture (button on camera) 

8.1.1. Camera is held by the test administrator and follows the participants feet 

in real-time to sync data and note any abnormalities 

8.2. Start F-Scan capture (done via software UI; set a trigger delay of 15s) 

8.3. Trial 1, in hallway Capture 400s of data 

8.3.1. Order of activities is predefined by the test administrator, and written on 

the Trial Ordering Form. Randomization is carried out independently for each 

trial. Within Trials 1 & 3, randomization is spliced into two sets, each comprising 
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three minutes of collection (e.g. Randomize min 1-3 [Si,St,W] then randomize 

min 4-6 [Si,St,W]), then two orders are joined together to compose a trial. No 

back-to-back activities can exist, with the single exception of minutes 3 & 4, the 

joining point of the two segments (e.g. first block [Si,St,W] and block two is 

[W,St,Si] results in trial [Si,St,W,W,St,Si]). In this example, participant would 

conduct two minutes of continuous walking from minutes 2-4 with no stomp in 

between. Randomization is carried out through random number generation 

between 1-9, with 1-3 denoting sitting, 4-6 denoting walking, and 7-9 denoting 

standing. Participants are told of the activity sequence to be carried out before 

each trial. 

8.3.2. Timing of activities is shielded from participants, and is carried out using a 

standard smartphone timer. Upon hearing the beep from the F-Scan belt 

signaling the start of an activity, the timer is started. Timing is meant to 

approximate a minute of data collection per posture. Participants are prompted 

through a 5-4-3-2-1 countdown to switch activities when 55s of an activity has 

elapsed. Because the transition period encroached into the subsequent minute, 

timing is modified as best as possible to accommodate this; an additional 40s of 

collection time is used to counteract the transition times. Trial is concluded once 

the F-Scan belt beeps again, signifying that the 400s has elapsed. 

8.4. Turn off camera (F-Scan automatically shuts down after 400s capture duration 

complete—this is signified with an audible beep from the F-Scan belt). 

8.5. Ten-minute break; participant is permitted to self-select which posture(s) they 

assume for the break. 

8.6. Trial 2, in SRY 3960 Start F-Scan, camera, Capture 400s of data 

8.6.1. Prior to the start of the trial, test administrator demonstrates the sorting 

task to the participant. Sorting during sitting and standing consists of two piles, 

sorted by colour, face up, approximately four inches from the desk edge, and 

approximately six inches apart (Figure 2, NTS). Roughly 50 cards are placed in 

each pile (i.e. 50 red, 50 black), totaling 100 cards for sitting and 100 cards for 

standing. One card from each pile is then placed approximately four inches 

towards the table center from each larger pile, denoting the final position of the 

cards. Participants are asked to move cards, one at a time, alternating between 

red and black, from the starting position of each pile to the final position, 

denoted initially by the single card. During the walking trial, only one pile of red 

(or black) cards is used. The initial position with approximately 25 cards of the 

same colour are placed on the same table as the sitting and standing cards. 

One card is moved to the opposite table, to denote the final location for the 

walking cards. Participants again move one card at a time from one table to the 

other. Walking speed and turning direction/speed are self-selected. Cards are 

also sorted at self-selected speeds. In most cases, participants will not run out 

of cards, however, if they do run out, they are asked to sit/stand/or walk similar 

to trials 1 & 3 for the remaining duration of the trial. 
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8.6.2. Camera is again held by the test administrator throughout the trial, 

targeting the participant’s feet.  

8.7. Turn off camera (F-Scan automatically shuts down after capture duration complete) 

8.8. Ten-minute break; participant is permitted to self-select which posture(s) they 

assume for the break 

8.9. Trial 3, in hallway  Start F-Scan, camera, Capture 400s of data 

8.10. Turn off camera (F-Scan automatically shuts down after capture duration 

complete) 

9. Remove F-Scan system from participant 

10. Participant debrief (explain next steps to be performed and answering participant 

questions if any) 

11. Reimburse participant  

11.1. Money transfer and receipt signing 

Data Retention & Storage 

Following the completion of the experimental protocol, the following elements should be in the 

study administrator’s possession: 

1. 3 sets of F-Scan trial data (.fsx), corresponding to 3 separate trials  

2. 3 sets of ASCII F-Scan trial data (.csv), corresponding to 3 separate trials 

3. 3 videos, corresponding to 3 separate trials 

4. A signed copy of the Consent Form 

5. A completed Participant Profile Form 

6. A completed FPI Scoring Table Form  

7. A completed Trial Ordering Form  

Pending any requests of the participant to withdraw their data from the study, participant data 

(paper and electronic), including video data, shall be kept for 5 years. The consent form is 

stored in a locked filing cabinet in a separate office at the study location, only accessible by the 

primary investigators and the co-investigators conducting the study. Only the consent forms 

contain identifying subject data; all other documents and electronic data are denoted through a 

participant ID of the format ‘SSWXX’, where X’s denote a two-digit number from 0-10. 

The personal profile forms, FPI scoring table forms, and trial ordering forms are stored in a 

locked filing cabinet within a passcard protected laboratory at the study location. The electronic 

participant data from the F-Scan system, as well as the trial video, are kept on a password 

protected secured server (SFU Vault) at the study location, accessible only by the primary 

investigators and the co-investigators conducting the study.  
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Associated Study Forms 

The following forms are associated with this study are appended to the end of this document. 

1. Consent Form (not appended due to length—contact author for access) 

2. Participant Profile Form 

3. FPI Scoring Table Form 

4. Trial Ordering Form 

5. NSERC2016 SSW Receipt Template 

 

Additional Sources 

The following additional documents are associated with this study and should be consulted 

when necessary: 

1. F-Scan User Manual (v. 6.51x) 

2. The Foot Posture Index Manual (six item version FPI-6) 

 

Contact Information 

Any questions should be directed to the author, Mr. Kohle Merry at kmerry@sfu.ca 
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Participant Profile Form 
Differentiation of Foot Contact Parameters between Sitting, Standing and Walking 

School of Mechatronic Systems Engineering 

250-13450 102 Avenue, Surrey, BC, V3T 0A3

This work is funded by the Natural Sciences and Engineering Research Council (NSERC) through grant 

number: EGP 491213-15 titled “Developing a low-cost instrumented insole to track and differentiate load 

bearing activities in the workplace.” 

Dr. Carolyn Sparrey 
Co – Principal Investigator 

250-13450 102 Avenue
Surrey BC CANADA V3T

0A3 1 (778) [...]
[...]@sfu.ca

Investigator Contact Information 

Dr. Edward Park 
Co – Principal Investigator 

250-13450 102 Avenue
Surrey BC CANADA V3T 0A3 

1 (778) 782 [...]
[...]@sfu.ca

Mr. Kohle Merry 
Co – Investigator 

250-13450 102 Avenue
Surrey BC CANADA V3T

0A3 1 (778) 998 [...]
[...]@sfu.ca
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The following profile collects personal health information as it is relevant to the study; please fill 

out the following to the best of your abilities. If you have any questions, please consult the test 

administrator.  If you are not comfortable answering a question, please leave it blank. 

 

 

Subject ID: ___________________________________________________________________ 

Date: ________________________________________________________________________  

Test Administrator: ____________________________________________________________  

Location: _____________________________________________________________________  

Age (years): _____ 

Weight (lbs): ___________ Height: _____(ft) ______(in)  

Gender:      M        F         Other 

Dominant Foot:     R     L 

Shoe Size: ___________________________

 

 

The following section is to be completed by the study investigator. 

 

Foot Posture Index (FPI): _______________________________________________________ 
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Date: ________________ FPI Scoring Tables Subject ID: ___________ 

1) Talar head palpation

2) Supra and infra lateral malleolar curvature

3) Calcaneal frontal plane position

4) Prominence in the region of the talonavicular joint (TNJ)

5) Congruence of the medial longitudinal arch

6) Abduction/Adduction of the forefoot
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Date: ________________ Study Ordering Form Subject ID: ___________ 
 

Min 1-6: 

1. _____________ 

2. _____________ 

3. _____________ 

4. _____________ 

5. _____________ 

6. _____________ 

 

 

Min 7-12: 

1. _____________ 

2. _____________ 

3. _____________ 

 

 

Min 12-18: 

1. _____________ 

2. _____________ 

3. _____________ 

4. _____________ 

5. _____________ 

6. _____________ 
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Project Title:  

Differentiation of Foot Contact Parameters between Sitting, Standing and Walking 

 

Principle Investigators: Dr. Carolyn Sparrey & Dr. Edward Park 

 

By signing this receipt you confirm that you have received $25.00 for your participation in the 

study named above. 

 

Participant name: 

__________________________ 

 

Participant signature: 

 

__________________________ 

Participant Phone Number:  

__________________________ 

 

Participant Email Address:  

 

__________________________
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Appendix B – Extended Methods for Study 1 

These extended methods are intended to provide clarity and specific details of the 

techniques used to conduct the plantar pressure insole study that could not fit in the 

standard journal paper format. 

Trimming F-Scan Insoles to Fit 

The F-Scan system (Tekscan Inc, Boston, USA) is comprised primarily of three 

elements: The F-Scan software, the data acquisition unit, and the insole-based sensors. 

The insole sensors are comprised of 960 (pre-trimming) resistive sensing elements 

(known as ‘sensels’) embedded into a Mylar substrate. The F-Scan insoles are 

particularly unique in that they are only 0.15mm thick, making them extremely discreet 

compared to most other commercial in-shoe pressure measurement systems. 

Additionally, the thinness of the F-Scan insole provides another advantage in that the 

sensors are shipped as templates, which are then trimmed to fit as needed. 

Trimming the F-Scan insoles to fit a specific shoe-size was straightforward as the 

templates are marked with lines denoting various common sizes on them; however, 

because foot shape is not always uniform, it was noticed that despite the shoe size of 

the insole matching the participant’s shoe size, the insole did not always fit perfectly. An 

especially wide foot was difficult to size appropriately as the length may fit correctly, but 

the insole may be too narrow therefore not covering the entire plantar aspect of the foot. 

Conversely, if the insole was cut to fit the width, often the length would be too long and 

bunching of the insole would occur near the toes/heel. To adapt for certain participants 

where this was the case, non-standard insole sizes were cut; for example, if a participant 

had a M10 shoe size with an especially wide foot, the M10 outline would be followed 

towards the heel and toe areas, but the midfoot and forefoot would be trimmed 

especially wide to accommodate. 

Bunching of the insole was also found to be an issue in many cases. When placing the 

insole sensor into the participant’s shoes (post-trimming), double-sided tape was used in 

an attempt to hold it in place and eliminate subsequent relative motion. Even still, when 

participants were putting their shoes on, if they did not proceed quite slowly and hold the 

posterior of the insole, the insole tended to shift anteriorly and would resultantly curl 
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around the toes, thus reducing the number of sensors under the heel. To compensate 

for this, participants were instructed to proceed very slowly when putting their shoes on 

and to hold the posterior of the insole with their fingers, while sliding on their shoe as if 

using their fingers as a shoe-horn. Based on the used sensors, it appeared there was 

still some bunching around the toe areas during some tests, but an attempt was 

concisely made to mitigate this throughout. 

Identifying the Foot Outline 

When data is exported from the F-Scan system, it is exported as a .csv file where each 

frame of the data collection period is represented by a 60 x 21 matrix of calibrated 

pressure values. Within the 60 x 21 matrix, some values are given a default ‘NaN’ or ‘Not 

a Number’ value to approximate the shape of an insole from a rectangular matrix; these 

are known as filler elements (Figure 1). If inside the matrix and not given a NaN 

designation, one must assume the rest of the matrix is a combination of active sensel 

elements, which form the trimmed sensor and are under the foot, and inactive sensel 

elements, which are trimmed off sensels designated with a zero value (Figure 1). The 

challenge found with this labeling system is the active/inactive designation is not labeled, 

making it difficult to identify the true foot outline; an inactive sensor designated with a 

default zero value could just as easily be an active sensor not currently loaded by the 

participant. 
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Figure 1 Exemplary F-Scan insole outline with sensel values denoting 
pressure in kPa. Segment pictured is the lateral heel of a right foot. 

This problem was resolved by first converting all ‘NaN’ values, labeled as ‘B’ in Figure 1, 

to zero values. Following this, all sensel readings within the 60 x 21 matrix were 

summed over an entire trial (~six minutes), creating a new 60 x 21 matrix with the total 

pressure values recorded by a sensel during a trial summed (Figure 2a-b). When 

pressure elements were summed over an entire trial, the footprint consisting of only 

active sensels emerged (Figure 2). Subsequent measurements were then able to be 

made to segment the foot into specific regions for subsequent analysis. 

0 25.636 24.266 36.316 36.275 36.441 0 B

0 0 30.315 42.321 60.527 25.382 0 B

24.181 25.127 36.441 72.55 42.515 0 0 B

0 36.526 60.77 54.474 72.632 30.47 0 B

0 24.181 25.405 30.438 48.588 0 0 B

0 0 24.181 24.181 30.456 0 B B

0 0 36.547 48.588 30.368 0 B B

0 0 26.888 60.665 26.95 0 B B

0 24.181 36.568 42.663 24.181 0 B B

24.181 0 42.663 30.474 0 0 B B

39.084 38.217 0 26.493 0 B B B

33.533 45.409 28.356 26.888 0 B B B

60.631 54.568 48.504 26.703 0 B B B

54.821 32.992 48.532 27.011 0 B B B

47.054 39.455 58.228 24.181 0 B B B

51.827 59.486 46.109 33.248 0 B B B
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0 0 0 0 0 B B B

0 0 0 0 0 B B B
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0 0 0 B B B B B

0 0 B B B B B B
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(Trimmed Off)

Legend
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Figure 2 Exemplary footprint extracted from exported F-Scan data. (a) 60 x 21 
Matrix containing summed pressure values over an entire trial. 
Yellow cells contain a zero value while green cells contain a non-
zero value (b) Isolated lateral heel region from (a) for readability 

Segmenting the Foot 

Regionally deconstructing the plantar aspect of the foot presented several challenges. 

Firstly, most in-shoe pressure measurement systems have automated algorithms for 

identifying the foot outline and designating foot regions, known as ‘masks’. Data analysis 

done within the commercial software accompanying the system is convenient for the 

user as the software segments the foot into masks automatically (Figure 3). However, 

further manipulation of the masked data can be difficult. Conducting analyses with 

exported data provides more freedom and is therefore preferred in some cases; 

however, the user must then define how to segment the foot. To protect intellectual 

property, most commercial measurement systems do not detail how their respective 

software packages segment the foot. As a result, much of the current literature is 

scattered on how to do this and no ‘gold standard’ is defined [172-179]; this is 

problematic as labels such as ‘midfoot pressures’ may not be describing the same 

midfoot region as another study, making comparisons invalid. To standardize the foot 

masks as much as possible this work used a masking method created by the company 
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Novel, which sells the Pedar in-shoe measurement system. Novel’s auto-segmentation 

method, known as the PRC masking method, uses the foot length, foot width at the 

metatarsals, and an axis spanning the heel center to the center of the second toe to 

regionally divide the foot [172,177]. Because of the wide-spread use of the Pedar insoles 

in the literature, this method was selected. 

 

Figure 3 Exemplary F-Scan regional foot breakdown as produced within the 
F-Scan software package 

One shortcoming of the PRC masking method is that the various descriptions of the 

segmentation method do not describe how the toe/forefoot boundary is established [3,6]. 

To account for this, a method was devised to identify the space between the 

interphalangeal joint (IP) and the metatarsophalangeal joint (MCP) of the great toe, 

which is an approximate dividing point between the hallux and the medial forefoot. This 

area was expected to be the region of lowest plantar pressure between the two joints as 

they protrude more on the plantar side of the foot causing them to load more significantly 

during the various postures (Figure 4a-b). Therefore, the MCP- IP space was defined by 

the inflection point where cumulative pressure begins to increase (traveling towards the 

MCP joint) again after decreasing when moving away from the prominence created by 

the IP joint.  
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Figure 4 Sagittal view of the right foot from the medial side. (a) Bony anatomy 
with emphasis placed on the first interphalangeal joint (IP) and the 
first metatarsophalangeal joint (MCP). (b) Regions of pressure 
created by the bony prominences. Red areas denote higher contact 
pressure while blue areas denote low pressure regions. 

To find this point using the F-Scan data, the IP joint of the hallux was approximated by 

mathematically determining the sensel element of highest cumulative pressure within a 

defined search box; the search area was automatically defined as the expected location 

of the hallux, and confirmed visually. Upon finding the sensel which corresponded to the 

center of the hallux, a column of sensels was extracted from the center of the hallux to 

approximately halfway up the medial forefoot. To isolate the center of the retracted 

space between the two joints, the gradient was taken along the extracted column of 

sensels, therefore describing the rate of change of the summed pressure values 

between the approximated IP and MCP joint locations (Figure 5). In Figure 5, rows one 

to ten are inactive sensels and therefore do not yield a summed pressure value. Upon 

reaching row ten, the summed pressure begins to increase resulting in an associated 

positive gradient until approximately row 13, where the pressure peaks and begins to 

decrease; this peak in pressure can be identified as roughly the IP joint of the hallux. 

Moving posteriorly, the pressure begins to drop until approximately row 16, where 

pressure again begins to rise towards the second prominence (the MCP joint). The 

valley created at approximately row 16 in this case can be distinguished as the retracted 

region between the two joints (Figure 4b), approximating the gap between the toes and 

the forefoot. Moving forward in segmentation, row 16, in this case, was subsequently 

used as the horizontal toe/forefoot boundary for the hallux and T2. Because of the 
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sloped nature of the foot from toes three to five, a compensation was made to create an 

angular boundary dividing the T35 region from the lateral midfoot. The T2/T35/CFF/LFF 

intersection point (Figure 6) was used as the medial boundary point, while another point 

was selected on the most lateral active sensel the row located 10% of the foot length 

below the toe/forefoot boundary (Figure 6a-b). The points were then connected by a 

diagonal row of sensels approximating a slope of negative one. 

Figure 5 Plot of the gradient ascertained from summer pressure values over 
a single trial; this plot was used to identify the Toe/Forefoot 
Boundary 
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Figure 6 Toe-Forefoot boundary depiction through (a) a diagram of the right 
foot and (b) an exemplary image from study one after foot 
segmentation was carried out  

Dead F-Scan Sensel Elements 

Although it is advantageous in some regard to have an insole as thin as the F-Scan 

systems (0.15mm), the insole resultantly has limitations in terms of durability and 

longevity. The manufacturer states that an insole should last approximately 5-15 uses 

depending on the application. Towards the end of that lifespan, some of the sensel 

elements ‘die’ and no longer read pressure values. Dead sensels are not usually visible 

by eye and were typically found when examining real-time data prior to the start of a trial. 

If single sensels located in an area obviously under the plantar aspect of the foot were 

deemed to be inactive, the trial was continued and the sensel was removed during 

subsequent data analysis. On occasion, however, there were several sensels within a 

region attached to one another creating a ‘gap’ in a certain foot region; this gap was 

generally visible on the real-time F-Scan software interface prior to testing. If a gap 
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existed consisting of more than a single sensel, the insole was switched out and 

replaced with a new one. 

Automated Detection of Activity Start Points 

When collecting the posture data during the experimental portion of this work, a right-

foot stomp was intended to denote the start of an activity and sync the video data to the 

pressure data. Once in a comfortable position, the participant was asked to give a small 

stomp using only their right foot to denote the start of a posture. The stomp created a 

sharp peak in the plantar pressure profile (Figure 7), which helped distinguish the start of 

an activity period from the transient transition phase.  

 

Figure 7 Exemplary data showcasing right-foot stomp denoting the start of 
an activity. Note that red data represents the right foot while green 
represents the left. 

Rather than code the video data for validation of activities, it was postulated that the 

pressure data could be analyzed to extract the timestamp of each stomp denoting the 

starting of each of the six activities. Further, it was believed that because of the nature of 

the stomp in comparison to the other postures, the gradient, or the rate of change of 

pressure in this case, would be a feasible way to isolate these peaks. To do this, 

regional pressure data over the entire heel was first averaged as this region yielded the 

strongest signal throughout all the activities. The gradient was taken over the entire 
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activity collection phase (~six minutes) (Figure 8a). A threshold value was established 

through trial and error to filter out much of the steady state character of a posture in 

addition to some noise (Figure 8b). Lastly, a peak-finder function was used to identify 

peaks in the noise-reduced gradient profile which either had a substantial number of 

zeros behind or in front of them; values with many zeros either in front or behind them 

were representative of the start or end of a steady-state posture (Figure 8c). When these 

‘critical timestamps’ were then overlaid on the corresponding pressure profile, the results 

were generally quite promising (Figure 9), demonstrating the potential in this method. 

However, upon investigation of all participants, noise associated with some participant’s 

steady state posture data, specifically during standing, was found to be indistinguishable 

from the right-foot stomp. Two exemplary cases of this can be found in Figure 10a-b 

where distinctions in time are not as representative of activity start/end points when 

compared to Figure 9. Specifically, the first instance of sitting and the first instance of 

standing in Figure 10a are skewed, as well as the second instance of standing in Figure 

10b. Because of the associated unreliability of this method, it was ultimately concluded 

that coding of videos was more reliable and because of the small number of subjects 

was used to accurately define the activity start/end points. For a larger data set it would 

be advantageous to revisit a pressure based activity distinction method as video coding 

would become prohibitively time consuming. 

 

Figure 8 Exemplary reduction steps involved in isolating critical timestamps 
in the data set. Note that order of activities was stand-sit-walk-sit-
stand-walk. (a) Gradient data from the average pressure of the heel 
(b) Gradient data after filtering (c) Isolated peaks denoting critical 
timestamps in the trial. 
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Figure 9 Exemplary average heel pressure plot with critical timestamps 
overlaid. Blue denotes the pressure profile while red vertical lines 
showcase the identified times corresponding to the start or end of 
an activity. Order of activities was standing-sitting-walking-sitting-
standing-walking. 
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Figure 10 Exemplary average heel pressure plot with critical timestamps 
overlaid. Blue denotes the pressure profile while red vertical lines 
showcase the identified times corresponding to the start or end of 
an activity. (a) Activity order was sitting-standing-walking-standing-
walking-sitting (b) Activity order was sitting-walking-standing-
sitting-standing-walking 

Measurement Parameters: Force-Time Integral & Pressure-Time Integral 

A thorough literature was conducted to identify potential metrics of plantar pressure to be 

used in the classification schemes. In particular, temporal metrics were desired to 

differentiate standing and walking patterns. Two examples of these metrics are the 

force-time integral and the pressure-time integral. Force-time and pressure-time 

integrals represent the cumulative effects of force or pressure over time, respectively, 

and are measured in [N s] or [kPa s]. These metrics were thought to be suitable for this 
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study because the cumulative loading placed on the plantar fascia is thought to be a 

contributing factor for plantar fasciitis. Therefore, distinguishing the differences in 

cumulative force or pressure during standing and walking could yield valuable results. A 

force-time integral (FTI) is calculated as the area under the average force plot for a given 

foot region, whereas a pressure-time integral (PTI) is calculated as the area under the 

average pressure plot for a given region. After further investigation into the literature, it 

was ultimately concluded that FTI and PTI are used almost completely during dynamic 

activity analysis only. For example, Chuckpaiwong and colleagues [163] used FTI to 

analyze the effect of foot type on in-shoe pressure during walking and running. 

Additionally, Chua and colleagues [180] utilized PTI to describe the behaviour of both 

feet during particular steps of a basketball lay-up. To the authors’ knowledge, no study 

has used FTI or PTI to analyze static postures. Since FTI/PTI are calculated from force 

or pressure plots, respectively, over an entire activity there would only be six FTI/PTI 

values representing an entire six-minute trial, one denoting the integral for each posture 

instance. For a representative trial, there are six curves as opposed to having time-

series data available (Figure 11a-b). Because of the lack of resolution in time when 

compared with other metrics, FTI and PTI parameters served no purpose in this study 

and were therefore excluded from subsequent analysis. 

 

Figure 11 Exemplary plots of (a) Force-Time Integrals and (b) Pressure-Time 
Integrals for a representative six-minute trial. 
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Measurement Parameters: Fourier Transform 

A Fourier Transform (FT) is a function decomposition method which deconstructs a 

function of time into the various frequencies that compose it. Upon conducting a FT, both 

the magnitude and phase of various frequencies can be compared to determine 

fundamental characteristics of the original signal. It was postulated that a FT could be 

useful in this application as the temporal characteristics of gait are a notable feature that 

distinguishes it from the other postures; conversion of the average pressure signal in 

time to the frequency domain could yield useful data which could be used to distinguish 

the postures.  

A script was written to use a Fast-Fourier Transform to deconstruct the various posture-

specific regional pressure signals into their fundamental frequencies. Results 

demonstrated that there was indeed evident differences between the three postures, but 

not enough significant differences to warrant subsequent use of the FT. During sitting 

and standing (Figure 12a-b), very little frequency data was extracted from the original 

signal. Conversely, during walking (Figure 12c), several key frequencies are 

distinguishable between 0-5Hz, although there is quite a bit of noise within the signal. It 

was concluded that frequency analysis could not reliably distinguish sitting from 

standing, making it an non-ideal method. Ultimately, the overlapping sliding window 

approach was instead used to extract the temporal characteristics from walking, while 

also establishing differences between sitting and standing. 
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Figure 12 Exemplary fast fourier transform plots of the magnitude and phase 
during (a) sitting (b) standing and (c) walking for the average 
pressure of the lateral heel 
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Appendix C – Extended Methods for Study 2  

These extended methods are intended to provide clarity and specific details of the 

techniques used to conduct the machine learning analysis study that could not fit in the 

standard journal paper format. 

Simulating an FSR Sensor 

To identify the minimal number and location of FSR sensors needed to accurately 

classify sitting, standing and walking, it was necessary to determine how to approximate 

an FSR sensor using the plantar pressure data obtained through the F-Scan system. 

Previous projects in the lab worked with the Interlink 402 FSRs (Figure 1a), so as a 

preliminary choice it was decided to move forward with that sensor while looking at 

different options in parallel. The Interlink 402 FSR sensor has a 0.5” diameter sensor 

head which translates to a sensor area of 1.29cm2. In comparison, each resistive sensel 

element (Figure 1b) has a sensel area of 0.062cm2; therefore, five sensel elements has 

a cumulative area of 0.31cm2. Although the area of the interlink sensor is over four times 

larger than that of five F-Scan sensels, the sensor area does not matter as the spacing 

of the five F-Scan sensels was selected to sufficiently cover the span of the Interlink 402 

FSR area (Figure 1c). As a best approximation, it was determined that using five sensel 

elements arranged in a cross shape was the closest match for the Interlink sensor 

(Figure 1c). 

Figure 1 Comparison of the (a) Interlink 402 FSR and (b) F-Scan Sensel 
Elements. (c) Approximated overlap showcasing the composition of 
a simulated FSR 
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Defining the Number and Locations of Simulated FSR Sensors 

After deciding on the closest approximation of the Interlink FSR using the F-Scan 

sensels, the next step to determine how to distribute the simulated FSRs (‘simFSRs’) 

over the plantar aspect of the foot. Although this problem seems trivial on the surface, 

complexities arise when multiple individuals are brought into the picture; because all 

participants have different sized feet, sensor locations must be scalable to draw 

generalized conclusions from the analysis. Therefore, for the sake of this work, the same 

number and locations of sensors must fit both the largest and smallest feet. Logically 

then, it makes sense to look at the participant with the smallest feet, which in this case 

was a women’s 7. Using the foot outline captured with the F-Scan system, the foot 

length of this participant was 24.9cm and the foot width across the metatarsals was 

7.6cm, which translates to 49 and 15 sensels, respectively. As Figure 1c shows, the 

sensel elements span slightly beyond the sides of the Interlink FSR; resultantly, to avoid 

overlap and leave room for manufacturing (e.g. sensor tails, wiring channels, etc.), the 

closest any two simFSR centers can be is to have three sensels between them, two 

forming the sides of each simFSR and a single sensel gap between them. Additionally, 

no simFSR can hang off the edge, so at least one sensel must be between a simFSR 

center and the edge of the insole; in an ideal case, two spaces between the edge is 

better. 

Using these spacing rules, the number of sensors can be determined along the length of 

the participant’s foot. An insole 49 sensels long reduces to 44 sensels when two sensels 

worth of room are left at either end. Following this, it is known that each simFSR is three 

sensels long, and is separated from an adjacent one by a single sensel space. Dividing 

this up results in a maximum of 11 simFSRs (3 sensel diameter/simFSR x 11 simFSRs = 

33 sensels + 11 gaps of a single sensel = 44 rows). Doing the same thing with the 15 

sensels comprising the width, 15 reduces to 13 after a single sensel gap on either side, 

then 13 sensels results in 3 simFSRs (3 sensels diameter/simFSR x 3 simFSRs = 9 

sensels + 3 gaps of a single sensel = 12 rows). Because of this, theoretically 33 

simFSRs are potentially discernible. In practice, however, the foot shape is not a perfect 

rectangle and therefore roughly six sensors are lost in the narrowing of the posterior half 

of the foot, bringing the possible sensor total to 27. Additionally, because the foot masks 

were used to define the locations of the simFSRs, several subsequent gaps were 

created around the edges of masks in an attempt to avoid simFSRs lying across two 
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regions. The one exception to this rule existed at the toe/forefoot boundary in several 

cases. Because the hallux is tapered along the anterior edge, it was a challenge to place 

two simFSRs within that mask; to compensate, one of the medial forefoot simFSRs was 

moved anteriorly to span the gap more evenly. The same compensation method was 

employed for T2 and the central forefoot. Because of the gaps existing between some 

masks, ultimately three simFSRs were lost, bringing the total to 24 simFSRs for each 

participant (Figure 2). It may be postulated that one could extract the entire 33 possible 

simFSRs from each participant if this process was further refined. In this case, a balance 

was struck between having enough simFSRs to span the majority of the foot, time spent 

defining the locations, and making several compensations for gaps/atypical data/dead 

sensels beneath a simFSR. These simFSR locations should adequately convey the 

information necessary to classify the three postures. More simFSRs may provide an 

additional level of detail, but based on previous studies that could classify postures using 

5 FSRs [36,46,136] the locations specified were expected to adequately classify the 

postures and this was subsequently proved by the results of Study 2. 
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Figure 2 Exemplary footprints showcasing the foot masks and simulated 
FSRs for (a) the smallest participant (Women's 7) and (b) the largest 
participant (Men's 12) 

The last component of defining the sensor locations is how each simFSR was 

specifically located within the insole using mathematical definitions to ensure 

repeatability and ease of scaling between subjects. To place the sensors, three sensors 

were first placed at the center of the hallux, second toe, and third to fifth toe regions 

(sensors 1,2,3) (Figure 3). A fourth sensor was then placed in the third to fifth toe region 

at an offset of 10% of the foot length in the posterior direction, and 10% of the foot width 

in the lateral direction (sensor 4). Sensors were placed at the center of the remaining 

anatomical masks (sensors 5,8,11,13,16,19,22). Remaining sensors were placed at an 

offset 10% of the foot length in the anterior/posterior directions from the center sensor in 

each mask along the longitudinal axis of the foot. Two sensor locations (sensors 6 & 9) 

were moved an additional 8% anteriorly to compensate for the large toe-forefoot sensor 
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gap. Only two sensors were defined for the lateral forefoot to compensate for the 

diagonal T35/LFF boundary. Sensor 24 was also moved medially 10% of the foot width. 

Note that 10% was selected through trial and error to avoid sensors spanning multiple 

masks, with the exception of simFSR 6 and 9. Additionally, 10% of the foot length was 

thought to be an easy number to follow when locating the proposed sensor locations 

during the manufacturing process. 

Figure 3 Exemplary foot outline with numbered simulated FSR sensors noted 


