Supplementary data for J. Huang, J.Zhang and M. Eikerling. Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum. *Physical Chemistry Chemical Physics*, 2018, DOI:10.1039/C8CP01315B.

SUPPORTING INFORMATION

Unifying theoretical framework for deciphering the oxygen reduction

reaction on platinum

Jun Huang,^{1,2,z} Jianbo Zhang,^{2,3} Michael Eikerling⁴

¹ College of Chemistry and Chemical Engineering, Central South University, Changsha 410083,

PR China

² Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy,

Tsinghua University, Beijing 100084, China

³ Beijing Co-innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing

100081, China

⁴ Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Corresponding authors: jhuangelectrochem@qq.com

Lateral interaction effect

Figure S 1. Effect of ξ_{0H} on the coverage of adsorbed oxygen intermediates (left) with $\xi_0 = 10 \ kJ \ mol^{-1}$. Effect of ξ_0 on the coverage of adsorbed oxygen intermediates (right) with $\xi_{0H} = 10 \ kJ \ mol^{-1}$. Other parameters are given in Figure 2 of the maintext.

Interfacial parameters

Category	Item	Value	Note	
General	Gas constant, R	8.314 J K ⁻¹ mol ⁻¹	Constant	
	Faraday constant, F	96485 C mol ^{- 1}	Constant	
	Temperature, T	298.15 K	Typical value	
	Elementary charge, e	$1.6 \times 10^{-19} C$	Constant	
	Avogadro's number, N_A	$6.02 \times 10^{23} mol^{-1}$	Constant	
	Water dipole moment, μ_w	3.1 D	Typical value	
	Pt atom density, N _{tot}	$1.6335 \times 10^{19} m^{-2}$	Calculated using	
			$4/\sqrt{3}a_{Pt}^2$ with	
			$a_{Pt} = 3.92$ Å	
	Vacuum permittivity, ε_0	$8.85 \times 10^{-12} F m^{-1}$	Constant	
Dielectric	Permittivity of oxide layer,	1.0 ε_0	Nothing but vacuum	
and structural	ε_{PtO}		inside the oxide layer	
	Permittivity of the IHP, ε_{IHP}	06.0 ε ₀	1	
	Permittivity of the OHP, ε_{OHP}	30.0 ε ₀	1	
	Permittivity of bulk solution, ε_s	78.5 ε ₀	Constant (bulk water)	
	Thickness of the oxide layer, δ_{Bto}	0.18 nm	DFT calculation ²	
	Net charge number per oxide site ς_{OH}	0.02	DFT calculation ²	
	Thickness of the IHP δ_{IHP}	0.275 nm	Constant (the	
			diameter of water	
			dipole)	
	Thickness of the OHP. δ_{OHP}	0.515 nm	1	
	Potential difference between	0.3 V	1	
	bulk and interfacial metal, $\Delta \phi_M$			

Table S1. Parameters of the electrified interface in calculation of σ_M .

A collection of ORR Tafel slopes of Pt electrocatalysts.

Sample	Method & condition	Tafel slope / mV dec ⁻¹	Potential range / V	Potential dependence	Reference
Pt/Vulcan	RDE, ⁰ 2-saturated 0.1 <i>M HClO</i> 4, mass- transfer corrected	60~90	0.75 – 0.95	Decreasing	3
Pt(111)	RDE, θ_2 -saturated 0.1 <i>M</i> HClO ₄	77	0.7 – 0.9	Not shown	4
50% wt Pt/Vulcan	IR-free voltage of a catalyst layer in H_2/O_2 gas condition at 100% RH and 80°C	60 - 110	0.75 – 0.90	Decreasing	5
Pt(111)	RDE, ⁰ 2-saturated 0.1 <i>M HClO</i> ₄ at 296 K, intrinsic kinetic current	~60 - 118	0.5 - 1.0	Decreasing	6
Pt-poly, $Pt_3Ni_{,}$ Pt_3Co	RDE, ⁰ 2-saturated 0.1 <i>M HClO</i> 4 at 293 K, mass-transfer corrected	90 - 110	0.80 - 0.92	Decreasing	7
Pt disk electrode	$RDE, \frac{HClO_4}{H_2SO_4}$ and H_2SO_4	60 - 120	0.4 - 1.0	Decreasing	8

Table S2. A collection of ORR Tafel slopes of Pt electrocatalysts.

Effect of ionic strength

Figure S 1. Effect of ionic strength on the ORR for the case of pH=1.2 in Figure 3.

Rate constants

Figure S 3. Variations in the rate constants as a function of electrode potential for pH=1.2 in Figure 3.

Figure S 4. Normalized total oxide coverage, $\theta_{OX} = (\theta_{OH} + \theta_O)/\theta_{max}$, as a function of hydroxyl binding energy. The data are calculated at E = 0.9 V (*RHE*) using the same parameter set as in Figure 7.

Relation between ORR activity and G_{OH}^{0}

According to the definition we obtain,

(S1)
$$K_{3}^{*} = \frac{k_{3}^{*}}{k_{-3}} = [H^{+}] \exp\left(\frac{E_{a,-3} - E_{a,3}}{RT}\right) = [H^{+}] \exp\left(\frac{E_{a,-3} - E_{a,-3}}{RT}\right) = [H^{+}] \exp\left(\frac{E_{a,-3} -$$

Based on the scaling relation, E_{3}^{eq} of a catalyst having a different ΔG_{OH}^{0} relative to $\Delta G_{OH}^{Pt,0}$ is expressed as,

$$E_{3}^{eq} = E_{3}^{Pt,eq} + \frac{(\zeta_{0} - 1)(\Delta G_{0H}^{0} - \Delta G_{0H}^{Pt,0})}{F}.$$
(S2)

where $E_{3}^{Pt,eq} = 0.95 V$ as in Table 1.

Substituting Eq.(S2) into Eq.(S1) leads to,

$$K_{3}^{*} = [H^{+}] \exp\left(-\frac{F\left(E-E^{Pt,eq}\right)}{4RT}\right) \exp\left(\frac{\delta G_{\ell}}{4RT}\right)$$
,
with
$$K_{3}^{Pt,*} = [H^{+}] \exp\left(-\frac{F\left(E-E^{Pt,eq}\right)}{RT}\right) \exp\left(\frac{\delta G_{0}-\delta G_{0H}}{RT}\right).$$
(S3)

Similarly, we have,

$$K_{4}^{*} = K_{4}^{Pt,*} \exp\left(\frac{\left(\Delta G_{OH}^{0} - \Delta G_{OH}^{Pt,0}\right)}{RT}\right),$$
(S4)
$$K_{4}^{Pt,*} = \left[H^{+}\right] \exp\left(-\frac{F\left(E - E_{4}^{Pt,eq}\right)}{RT}\right) \exp\left(\frac{-\delta G_{OH}}{RT}\right).$$

For step (1),

$$k_{1}^{*} = k_{1}^{Pt,*} \exp\left(\frac{-\beta_{1}\zeta_{OOH}\left(\Delta G_{OH}^{0} - \Delta G_{OH}^{Pt,0}\right)}{RT}\right),$$
(S5)
$$k_{1}^{Pt,*} = k_{1}^{0} \exp\left(\frac{-E_{a,i}^{0} - \beta_{1}F\left(E - E_{1}^{Pt,eq}\right)}{RT}\right) [O_{2}][H^{+}]$$
with

For step (3),

$$k_{3}^{*} = k_{3}^{Pt,*} \exp\left(\frac{\beta_{3}(\zeta_{0} - 1)\left(\Delta G_{0H}^{0} - \Delta G_{0H}^{Pt,0}\right)}{RT}\right),$$
(S6)
with
$$k_{3}^{Pt,*} = k_{3}^{0} \exp\left(\frac{-E_{a,3}^{0} - \beta_{3}F\left(E - E_{3}^{Pt,eq}\right)}{RT}\right)\theta_{0}[H^{+}]$$
.

For step (4),

$$k_{4}^{*} = k_{4}^{Pt,*} \exp\left(\frac{\beta_{4}\left(\Delta G_{OH}^{0} - \Delta G_{OH}^{Pt,0}\right)}{RT}\right),$$
(S7)
$$k_{4}^{Pt,*} = k_{4}^{0} \exp\left(\frac{-E_{a,4}^{0} - \beta_{4}F\left(E - E_{4}^{Pt,eq}\right)}{RT}\right)\theta_{OH}[H^{+}]$$
with

Combining Eqs. (S3)-(S7) into the relation $v_{ORR} = (K_3^*)^{\nu} (K_4^*)^{\mu} k_i^*$ gives,

$$v_{ORR} = v_{ORR}^{0} \exp\left(\frac{\left(\nu(\zeta_{O} - 1) + \mu - \zeta_{i}\right)}{RT} \left(\Delta G_{OH}^{0} - \Delta G_{OH}^{Pt,0}\right)\right),$$
(S8)

with $v_{ORR}^{0} = (K_{3}^{Pt,*})^{\nu} (K_{4}^{Pt,*})^{\mu} k_{i}^{Pt,*}$ and

$$\zeta_{i} = \begin{cases} \beta_{1}\zeta_{OOH}, & i = 1\\ -\beta_{3}(\zeta_{0} - 1), & i = 3,\\ -\beta_{4}, & i = 4 \end{cases}$$
(S9)

Figure S 5. Rate-determining term of the ORR rate expression for $(\Delta G_{OH}^{0} - \Delta G_{OH}^{Pt,0}) = 0$ and 0.2 eV. Labels for the curves are the same as in Figure 5.

References

- J. Huang, A. Malek, J. Zhang and M. H. Eikerling, *The Journal of Physical Chemistry C*, 2016, 120, 13587-13595.
- 2. A. Malek and M. H. Eikerling, *Electrocatalysis*, 2017, DOI: 10.1007/s12678-017-0436-0.
- 3. E. J. Coleman and A. C. Co, ACS Catalysis, 2015, 5, 7299-7311.
- 4. A. M. Gomez-Marin, R. Rizo and J. M. Feliu, *Catalysis Science & Technology*, 2014, **4**, 1685-1698.
- N. P. Subramanian, T. Greszler, J. Zhang, W. Gu and R. R. Makharia, *ECS Transactions*, 2011, 41, 985-1007.

- 6. J. X. Wang, J. Zhang and R. R. Adzic, *The Journal of Physical Chemistry A*, 2007, **111**, 12702-12710.
- 7. N. Markovic, T. Schmidt, V. Stamenkovic and P. Ross, *FUEL CELLS-WEINHEIM-*, 2001, **1**, 105-116.
- 8. D. B. Sepa, M. V. Vojnovic and A. Damjanovic, *Electrochimica Acta*, 1981, **26**, 781-793.