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This section contains the detailed results from the analysis of all experimental data sets evaluated 

in this study. Physical models developed by Kulikovsky 1, 2 and Sadeghi et al. 3 were employed. 

The analyses revealed a concerted impact of reduced CCL thickness and structural changes 

incurred by the 𝑚pt reduction on a core set of properties including 𝜎el, 𝐷O2

GDL, 𝐷O2

CCL, and 𝑗0. 5-15 

Details of GDL type, CCL thickness, and CCL composition in experimental studies are reported 

in Tables S-1 to S-2.  
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Figure S-1. (a) Effect of 𝑚pt on the 𝜎el. 𝜎el remains relatively constant with 𝑚pt reduction. Since 

water is the primary medium for proton conduction, the growth in liquid water saturation upon 

decreasing 𝑚pt does not have a detrimental effect on 𝜎el 5-15 
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Figure S-1. (b) Effect of 𝑚pt on 𝐷O2

GDL. 𝐷O2

GDL decreases strongly with 𝑚pt reduction. Increased 

liquid water saturation with diminished vaporization capability results in flooding of the GDL 

which inhibits oxygen diffusion. 5-15 
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Figure S-1. (c) Effect of 𝑚pt on 𝐷O2

CCL. 𝐷O2

CCL decreases with 𝑚pt reduction. Increased liquid water 

saturation with diminished vaporization capability results in flooding of the CCL which inhibits 

oxygen diffusion. 5-15 
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Figure S-1. (d) Effect of  𝑚pt on 𝑗0. 𝑗0 follows the trend observed for 𝐷O2

CCL. 5-15 
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Figure S-2.  Effective properties for experimental systems studies for set 2 of Owejan et al. 10 and 

Hao et al. 12   i.e. dilution by carbon, including the impact of 𝑚pt reduction on (a) 𝜎el, (b) 𝐷O2

GDL,  

(c) 𝐷O2

CCL,   and (d) 𝑗0 .  
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Figure S-3. (a) Polarization curve for MEA fabricated by direct deposition method of Klingele et al. 16 and 

Brietwieser et al. 17. (b-e) shows the effect of 𝑚𝑝𝑡 reduction on 𝜎el, 𝐷𝑂2

𝐺𝐷𝐿,  𝐷𝑂2

𝐶𝐶𝐿,   and   𝑗0  respectively.   

𝐷𝑂2

𝐶𝐶𝐿 , 𝐷𝑂2

𝐺𝐷𝐿 shown in (c) and (d) increases and remains constant with  𝑚𝑝𝑡   reduction respectively, it is assumed 

that this effect is caused by the extremely thin and highly permeable PEM employed in the study that enabled 

highly efficient water removal via the anode.  𝜎el shown in (b) goes down with 𝑚𝑝𝑡, this due to highly efficient 

water removal via the anode. Since water is the primary medium for proton transport.  
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Table S-1.  Data from various study for non-diluted systems 

 

Study 
Pt Loading 

(mgcm-2) 

Composition 

(wt%) 

Temperature 

(ºC) 

CCL 

Thickness 

(µm) 

Pt Loading 

reduction 

method 

Type of GDL 
Fabrication 

Technique 

RH 

% 

Kongkanand et al.  13 

0.03 

50 % Pt/V 80 
No Data 

Available 

Non-

Diluted 

Carbon fiber 

paper backings 
CCM 100 

0.05 

0.1 

0.2 

0.3 

Ohma et al. 4 
0.12 30% Pt/C 

90% Ionomer /C 
80 

3.8 Non-

Diluted 

TGP-H060 

(Toray) 

Decal 

Transfer 
90 

0.35 11 

Qi et al. 6 

0.022 

20% Pt/C 45 
No Data 

Available 

Non-

Diluted 
ELAT Hot Bonding 

No 

Data 

0.043 

0.083 

0.138 

0.253 

Wilson et al. 5 

0.07 

20% Pt/C 80 

2 
Non-

Diluted 

No Data 

Available 
Painting 

No 

Data 
0.12 4 

0.17 6 

Mu et al. 7 
0.15 

60% Pt/C 60 
~7 Non-

Diluted 
WUT Energy CCM 100 

0.35 ~7 

Caillard et al. 14-15 

0.005 

No Data 

Available 
80 2 

Non-

Diluted 
LT1600 Sputtering Dry 

0.01 

0.02 

0.04 

0.1 

Kriston et al. 11 

0.05 

46% Pt/C 80 

0.942 
Non-

Diluted 
SGL 10 BC Spray 40 0.2 No Data 

Available 0.3 
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Table S-2.  Data from various study for diluted systems 

 

 

 

Study 

Pt 

Loading 

(mgcm-2) 

Composition 

(wt%) 

Temperature 

(ºC) 

CCL 

Thickness 

(µm) 

Pt Loading 

reduction 

method 

Type of 

GDL 

Fabrication 

Technique 

RH 

% 

Hao et al. 10 

set 2 

0.025 50% Pt/V; 0.11 – 0.89 C 

80 11 
Dilution by 

carbon 

No Data 

Available 

Decal 

Transfer 
100 0.05 50% Pt/V; 0.22 – 0.78 C 

0.1 50% Pt/V; 0.42 – 0.58 C 

Owejan et al. 12 

set 2 

0.025 50% Pt/V; 0.51 – 0.49 C 

80 

12.2 

Dilution by 

carbon 

Mitsubishi 

Rayon Co. 

U-105 (5 

wt% PTFE) 

with MPL 

Decal 

Transfer 
100 

0.05 50% Pt/V; 0.22 – 0.78 C 13.1 

0.1 50% Pt/V; 0.42 – 0.58 C 10.9 

Owejan et al. 12 

0.025 5%Pt/V; 1.0 

80 

11.0±1.2 

Dilution by 

mixing of 

two 

catalysts 

Mitsubishi 

Rayon Co. 

U-105 (5 

wt% PTFE) 

with MPL 

Decal 

Transfer 
100 

0.05 10%Pt/V; 1.0 11.2±1.1 

0.1 
30% Pt/V;0.71 – 30% 

Pt/V; 0.29 
10.4±1.8 

0.2 
50% Pt/V; 0.56 – 20% 

Pt/V; 0.44 
9.2±0.8 

0.3 
50 %Pt/V; 0.8 – 10% 

Pt/V; 0.2 
9.7 ±0.2 

Hao et al. 10 

0.025 5%Pt/V; 1.0 

80 11 

Dilution by 

mixing of 

two 

catalysts 

No Data 

Available 

Decal 

Transfer 
100 

0.05 10%Pt/V; 1.0 

0.1 
30% Pt/V;0.71 – 30% 

Pt/V; 0.29 

0.2 
50% Pt/V; 0.56 – 20% 

Pt/V; 0.44 
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Table S-3 List of abbreviations used 

PEMFC Polymer Electrolyte Fuel Cell MD Molecular Dynamics 

MEA Membrane Electrode Assembly NDA No Data Available 

GDE Gas Diffusion Electrode Dil Diluted 

FPE Flooded Porous Electrode Non-Dil Non-Diluted 

GDL Gas Diffusion Layer ECSA Electrochemical Surface Area 

DM Diffusion Media S-data Please Refer to Supporting Information 

CCL Cathode Catalyst Layer 𝑅i Resistance Through Ionomer Film 

GM General Motors 𝑅M Resistance Through Flooded Secondary Pores 

ORR Oxygen Reduction Reaction 𝑅int Resistance of interfacial water layer surrounding the Pt nanoparticle 

Pt Platinum 𝑅μ Resistance Through Water Filled Primary Pores 
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