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Abstract

We present a simple exact distance oracle for the point-to-point shortest distance problem in
planar graphs. Given an edge weighted planar graph G of n vertices, we decompose G into
subgraphs by a branch-decomposition of G, compute the shortest distances between each
vertex in a subgraph and the vertices in the boundary of the subgraph, and keep the shortest
distances in the oracle. Let bw(G) be the branchwidth of G. Our oracle has O(bw(G)) query
time, O(bw(G)n logn) size and O(n2 logn) pre-processing time. Computational studies
show that our oracle is much faster than Dijkstra’s algorithm for answering point-to-point
shortest distance queries for several classes of planar graphs.

Keywords: shortest distance, planar graphs, exact distance oracle, branch decomposition
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1. Introduction

The problem of computing the shortest paths/distances between vertices in graphs is one
of the most well-known and well-studied problems in graph theory with many applications.
There are many variants of the problem, and thus many practical algorithms are developed
to solve them. One of the variants, and also the focus of this thesis, is the point-to-point
shortest path/distance problem: Given a graph G and two vertices s (called the source) and
t (called the destination), find a shortest path/distance from s to t in G. The point-to-point
shortest path/distance problem is the foundation of other shortest path/distance problems
and has many applications. One of the most commonly used applications is route-finding in
real road networks (which share many properties with planar graphs). Take Google Maps
as an example, it asks you to choose a starting location and a destination, and then outputs
a route from the starting location to the destination that is the “shortest” with respect to
either travel time or travel distance. In computer networks, it is common that a “shortest”
route between two computers is required in order to build up a connection between the two
computers. Whether the application is in a map system or a computer network, the larger
the graph is, the more important the efficiency of answering a shortest path/distance query
is: in applications like Geographic Information System (GIS), a delay of a few minutes may
not be tolerable. Classic algorithms like Dijkstra’s algorithm [13], however, may not be
efficient for new applications that require an answer for a shortest path/distance query in a
large graph in a very short time. The problem with algorithms like Dijkstra’s algorithm is
that they use the raw information of the graph only and compute everything on the graph
itself. Distance oracles, on the other hand, is an approach to address this new challenge.

A distance oracle (sometimes also called an index or a labeling scheme) is a data struc-
ture that is precomputed and stores some information that helps computing the shortest
distance to answer a distance query [39]. A distance oracle can be classified into static ora-
cles and dynamic ones. A static oracle is mainly evaluated by the following parameters: (1)
the time used for the oracle to answer a distance query (query time), (2) the memory size
used by the oracle (oracle size), and (3) the time used for creating the oracle (pre-processing
time). In addition to the criteria above, a dynamic oracle is also evaluated by the update
time: the time to update the oracle when there is a dynamic change in the input graph.
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The oracle can be either centralized or distributed, that is, an oracle can be entirely stored
in a server (central node), or be stored separately in each node in a network.

In this thesis, we consider the static oracles. We propose an oracle for the point-to-point
distance problem in edge weighted planar graphs. The oracle itself can be either centralized
or distributed, but the pre-processing is performed in a centralized way, a more detailed
description of the oracle will be given in Section 3.

1.1 Related Work

There are two extreme methods of solving point-to-point exact shortest path/distance prob-
lems: one is by classical shortest distance algorithms like Dijkstra algorithm [13] and
Bellman-Ford algorithm [5, 17]. These algorithms do not use a distance oracle, instead,
they compute the shortest distance completely on the graph itself and on the fly. Another
method is to use a 2-dimensional distance array to store the pre-computed all-pairs dis-
tances in the graph. When a shortest distance query comes in, the program can then just
look up the distance array and return the desired answer. Let G be an edge weighted graph
with n vertices and m edges. Dijkstra’s algorithm takes O(m + n logn) time and O(m)
memory space to answer a point-to-point shortest distance query for G without negative
edge weight. Bellman-Ford algorithm takes O(mn) time and O(m) memory space to an-
swer the query but can handle the problem for graphs with negative edge weights (without
negative cycles) [37]. The oracle of 2-dimensional distance array takes O(1) time (query
time) to answer the query but requires O(n2) memory space (oracle size). Further more, it
takes O(n(m+ logn)) time (pre-processing time) to create the oracle. There is a trade-off
between the query time and oracle size. The area that this thesis focuses on is to study and
develop oracles that have better trade-offs between the two extreme examples.

1.1.1 Dijkstra Algorithm

Dijkstra algorithm and its variants are so far the most well-known one-to-all exact shortest
distance algorithm without the use of a distance oracle. The algorithm starts with a set
initially containing only the source vertex, and continues adding vertices with the shortest
distance from the source vertex to the set, until the destination vertex is found or there is
no vertex that the source vertex can reach [13]. An advantage of this algorithm is that in
the process, it computes the shortest distances from the source to all the vertices in the set,
thus Dijkstra algorithm is often used as a tool to compute one-to-all shortest distances in a
graph. The algorithm is so popular that it is often used as a benchmark in evaluating the
efficiency of an oracle. It is used in this thesis as a comparison object as well.
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1.1.2 Distance Oracle in General graphs

A distance oracle is a data structure that stores some pre-computed information and answers
a shortest distance query efficiently. An exact distance oracle is a distance oracle that gives
the shortest distance dG(s, t) from vertex s to vertex t in graph G. An approximate distance
oracle, together with an (α, β) approximation stretch (α is called a multiplicative stretch
and β is called an additive stretch), is a distance oracle that gives a distance d̃G(s, t) with
dG(s, t) ≤ d̃G(s, t) ≤ αdG(s, t) +β. An approximation oracle with stretch (α, 0) is called an
α-approximate distance oracle.

In 2003, Cohen, Halperin, Kaplan, and Zwick [8] introduced a distributed exact distance
oracle for general graphs using 2-hop cover. Assume the 2-hop cover for a graph G is H,
then their oracle size is O(|H|), and has an average query time of O( |H|n ). They also
pointed out that the size of the oracle is unpredictable, but using a heuristic in the paper,
an almost optimal 2-hop cover can be found (a (logn)-approximation algorithm), thus
bounding the size of the portal sets to O(logn) for each vertex [8]. In 2013, Babenko,
Gledberg, Gupta, and Nagarajan [3] further improved the 2-hop cover algorithm that gives
an logn approximation on the optimal maximum size of the portal sets, thus reducing
the worst-case query time of the oracle up to a log factor. In 2014, Jiang, Fu, Wong,
and Xu developed a distributed exact distance oracle for unweighted directed graphs using
2-hop labeling, and provided a oracle size bound of O(hn) on scale-free networks with
O(n logM · ( nM + logn)) pre-processing time and O(n · logn

M · nB ) query time, where h is a
small constant, M is the memory size, and B is the disk block size [27].

Sommer pointed out in [39] that Thorup and Zwick in 2005 [41] gave a tight trade-off
between approximation ratio and space complexity for general graphs: an oracle of size
O(kn1+ 1

k ) gives a (2k − 1)-approximation on the shortest distance and has an O(k) query
time for any k ≥ 1 [41]. He also pointed out that the trade-offs for distance oracles that use
embedded information of the graphs is less studied [39].

Many distance oracles have been developed and studied for general graphs, readers may
refer to Sommer’s survey paper (Section 2) [39] for more details.

1.1.3 Distance Oracle in Planar Graphs

Planar graphs are considered widely in the application of shortest distance queries due to
their similarity with real world road networks [39]. Though real road networks are not all
planar graphs, they share some properties (small separators, etc.) [15] that can be used
as a tool of answering distance queries efficiently. Because of this similarity with the road
networks, many researchers came to the realization of the necessity of answering shortest
distance queries efficiently in planar graphs.
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Theoretical Results

In 1997, Djidjev [14] proved that there exists an exact distance oracle of size S ∈ [n, n2] that
answers the shortest path/distance query in O(n2

S ) time for planar graphs. If S ∈ [n
4
3 , n

3
2 ],

then there exists an oracle of size S with query time Õ( n√
S

) [14]. Djidjev uses r-divisions
(a partition of the edge set into O(nr ) regions, R1, R2, · · · of size r) to divide a graph G

into subgraphs, and uses the set of boundary vertices, denoted as ∂R, (vertices adjacent to
edges of different regions) as portal sets (vertices in which can be used to compute/estimate
shortest paths). The algorithm then computes the pairwise distances between portals and
stores them in a table with O( n2

√
r
) space and can answer shortest distance queries in O(r)

time. For more details and improvements, readers can refer to [7, 14, 29]. In 2004, Gavoille
[18] proved a lower bound of Ω(n

3
2 ) for the oracle size of a bounded degree weighted planar

graph for any query time. In 2006, Fakcharoenphol and Rao [16] expended the embedded
information in planar graphs into exact distance oracle and came up with an exact distance
oracle with O(n log3 n) query time and O(n logn) size that is suitable for machines with
limited space and preprocessing time. Wulff-Nilsen proposed an exact distsance oracle with
constant query time and O(n

2(log logn)4

logn ) size for weighted directed planar graphs in 2010
[42]. Mozes and Sommer [29] then introduced an exact distance oracle for planar graphs
with oracle size O(S) and pre-processing time Õ(S), and answers shortest distance queries
in Õ( n√

S
) time, given that S ∈ [n log logn, n2]. They also came up with a linear space exact

distance oracle for planar graphs with query time O(n
1
2 +ε) for any ε > 0. In 2017, Cohen-

Addad, Dahlgaard and Wulff-Nilsen [9] developed an exact distance oracle using r-division
that achieves O(n

5
3 ) space and O(logn) query time on planar weighted directed graphs.

They also provided a way to construct an exact distance oracle of size O(S) that answers
shortest distance oracle queries in O(n5/2

n3/2 logn) time for any S ≥ n
3
2 , which improves the

previous O(n
1
4 ) query time.

In 2004, Thorup [40] proposed a (1 + ε)-approximation oracle with O(log log(nN) + 1
ε )

query time and O(n(log(nN)) logn
ε ) size for planar digraphs with edge weights drawn from

{0, 1, · · · , N}, and a (1+ε)-approximation oracle with O(1
ε ) query time and O(n logn

ε ) size for
undirected planar graphs. In 2015 [22], Gu and Xu proposed a (1+ ε)-approximation oracle
with an O(1) query time independent of ε and O(n logn( logn

ε + f(ε)) space for undirected
planar graphs, where f(ε) = 2O(1/ε). In 2016, Wulff-Nilsen [44] came up with a (1 + ε)-
approximate distance oracle with O( (log logn)3

ε2 + log logn
√

log log(log logn/ε2)
ε2 ) query time and

O(n(log logn)2

ε + log logn
ε2 ) space for undirected planar graphs. This improves the previous

best product of query time and space.

Computational Results

Due to the popularity of route planning and GIS, many distance oracles specialized for real
road networks were developed in the recent years.
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In 2008, Geisberger, Sanders, Schultes, and Delling [19] came up with a hierarchical
distance oracle called Contraction Hierarchies (CH). The algorithm recursively contracts
vertex with “less importance”, constructing layers of contracted graphs. It answers shortest
distance queries by searching paths from the most contracted layer to the original graph.
CH performs well on practical data (road network of Western Europe) due to its small
overhead and fast pre-processing time [19, 39]. An improved version of the oracle, PHAST,
was then introduced in 2013 in [10], taking the advantages of the modern CPU architectures
and making it suitable for shortest distance queries for continental road networks.

Inspired by the recent research findings on graph partitioning, Delling, Goldberg, Pajor,
and Werneck [11] proposed an algorithm called Customizable Route Planning (CRP) in
2011. The algorithm partitions a graph into connected subgraphs with no more than N

vertices, together with a set of boundary graphs (induced by boundary vertices and arcs)
then uses bidirectional Dijkstra algorithm to construct the oracle. The algorithm was tested
on continental road networks and was more than 3000-7000 times faster than the Dijkstra
algorithm [11].

Figure 1.1: Practical results for road planing in real road networks. This figure is extracted
from [39]. It shows the trade-offs between space (S) and query time (Q) for many distance
oracles developed for real world road networks.

Other distance oracles that performs well on practical data like road networks includes
TreeMap [45], Arc Flags (AF) [28], Transit-Node Routing [2], Hub Labels [12], and etc..
Readers may refer to Sommer’s survey paper [39] for more detailed descriptions of the above
oracles. Most of such distance oracles are tuned using techniques specialized for specific net-
works like road networks, etc., and the algorithms/heuristics rely on the topological/spatial
properties of the networks heavily. Figure 1.1 shows the computational results (space-query-
time trade-offs) on some of the above algorithm.
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1.1.4 Graph Decomposition and Its Use in Distance Oracles

Graph decomposition is a commonly used approach for developing distance oracles. Com-
mon decomposition techniques includes tree decomposition [33], path decomposition [32, 40]
and branch decomposition [34]. For any particular decomposition technique, a graph G is
decomposed into subgraphs using some kind of graph separator (e.g. a vertex cut set, an
edge set, etc.). Each separator cuts the induced graph (a subgraph of G) into subgraphs.
A decomposition of a graph G is often represented by a tree like structure called decom-
position tree, together with a function τ that maps either vertices or edges of the graph to
nodes in the decomposition tree. Recent studies use these decomposition techniques and
separators to design distance oracles (whether exact or approximate). The reason is that if
some separators separate the source and the destination into two different subgraphs, then
the shortest path from the source to the destination has to intersect with those separators,
thus reducing the number of vertices needed to compute the shortest distance. Thorup
[40], Wulff-Nilsen [43], and Gu and Xu [22] proposed approximate distance oracles based on
graph decompositions. Xiang [45] introduced a distributed exact distance oracle using tree
decomposition of a graph. It creates a separation tree (whose nodes represents vertex sets
that separates the graph) T by recursively removing centroids in the tree decomposition
and labeling the nodes using Breadth First Search (BFS). T is then transformed into a
binary tree T ′ by adding dummy nodes to it, and the labels are updated accordingly. The
construction takes O((tw(G))2 ·n · log2 n+tw(G) ·m · logn). The oracle answers the shortest
distance query in O(tw(G)) time, where tw(G) is the treewidth (defined in Section 2) of G.

1.2 Contribution of the Thesis

A branch-decomposition is a system of using vertex cut sets as separators to decompose a
graph G into subgraphs (a formal definition of branch-decomposition is given in Chapter
2). It is a useful technique for many problems in graph theory, the shortest path problem
is one of such problems.

In this thesis, we present a simple exact distance oracle for planar graphs G based on
branch decompositions. The oracle has O(bw(G)) query time, O(bw(G)n logn) size and
O(n2 logn) pre-processing time, where bw(G) is the branchwidth of G. The construction of
the oracle starts with computing a branch decomposition of the input planar graph G from
which a branch decomposition tree TB is built. Then a perfect “virtual” rooted binary tree
TV is constructed by transforming TB into a rooted binary tree TL (each tree node in TL
corresponds to a tree edge in TB) and adding dummy nodes. The algorithm then computes
the cut set associated with each node in TL (a tree edge in TB) and the shortest distances
between each vertex in a leaf node and vertices in the cut set associated with each ancestor
in TV , and keeps the shortest distances in the oracle.
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In the query phase, assume that the source is s and the destination is t, the cut set
C that separates s and t is found using TV , the shortest distance between s and t is then
defined by dG(s, t) = min

v∈C
{dG(s, v) + dG(v, t)}, where dG(v, u) denotes the shortest distance

between u and v in G.
Due to its close relation with the branch decomposition of G, the oracle has a small

query time and oracle size for graphs with small branchwidth. Unlike the exact distance
oracles that are specialized for real world road networks, our oracle is efficient for a wide
range of undirected planar graphs, and is easy to implement from algorithm engineering
point of view due to the simplicity of the data structure.

Computational study shows that our oracle performs well on planar graphs, it beats
both Dijkstra’s algorithm and Bi-directional Dijkstra’s algorithm by a factor of at least 30
for planar graphs with 5000+ edges.

1.3 Thesis Structure

In this thesis, we will give the preliminaries of the thesis in Chapter 2 and introduce the
branch-decomposition based exact oracle for the point-to-point distance problem in arbi-
trary planar graphs in Chapter 3. We then present the computational study results for the
branch decomposition based oracle and Dijkstra’s algorithm, followed by a discussion of the
results in Chapter 4. Finally, we conclude the thesis in Chapter 5.
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2. Preliminary

We denote G = (V,E) as a graph with V as the vertex set and E as the edge set (i.e., a
set of pairs of elements in V ). We let |V | = n and |E| = m. We denote by V (G) and E(G)
as the vertex set and the edge set of a graph G, respectively. In the rest of this thesis,
we consider G as a simple connected graph (no multi-edge or loop). G is weighted if each
edge e is associated with a real number, denoted as w(e), as the edge weight, otherwise
unweighted. For an un-weighted graph, we assume each edge has weight one. If the pairs
in E is ordered, we say that the graph G is directed, otherwise, the graph G is undirected.
We will use graph for undirected graph and digraph for directed graph in the rest of the
thesis. G is said to be planar if there is a drawing of G onto a plane with no two edges
crossing each other. One interesting property of a planar graph is that m = O(n).

A path P in G is a sequence of edges e1e2 · · · ek of G, where ei = (vi, vi+1) for i =
1, 2, · · · , k such that each vertex of G appears in P at most once. When v1 = vk+1, P is
called a cycle. The length of a path P , denoted by l(P ), is the sum of the weights of all
edges in P . Formally, for P = e1e2 · · · ek, l(P ) = Σk

i=1w(ei). A shortest path from a vertex
s to a vertex t in G is a path from s to t with the minimum length. The length of a shortest
path from s to t in G is the shortest distance from s to t in G, denoted by dG(s, t).

A subgraph H = (V ′, E′) of G is a graph such that V ′ ⊆ V and E′ ⊆ E, and V ′ contains
all endpoints of the edges in E′. A connected component Q = (VQ, EQ) of G is a subgraph
of G such that every pair of vertices in VQ is connected by a path, and no vertex in VQ

is connected to any vertex in V \ VQ. A vertex cut set C ⊆ V of G is a set of vertices of
which the removal (together with their incident edges) will decompose G into at least two
components. For a graph G and a subset A ⊆ E(G) of edges, we denote the complement
of A, E(G) \A, by Ā. A separation of graph G is a pair (A, Ā) of subsets of E(G). Notice
that for each separation (A, Ā), there is a vertex cut set C = V (A) ∩ V (Ā) associated with
it. The order of a separation (A, Ā) is |V (A) ∩ V (Ā)| = |C|.

We will use node for vertex and link for edge in a tree. In a rooted tree T with root
r, node v is a child of node u if (u, v) is a link of T and dT (v, r) = dT (u, r) + 1; and u is
called the parent of v. Node v is a descendant of u if u is on the path between v and r, and
dT (v, r) > dT (u, r); and u is called an ancestor of v. A node of T is called a leaf if it does
not have any child, otherwise an internal node. An internal node u of a binary tree T has at
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most two children. The depth of a node v in T , denoted by dep(v), is the length of the path
from the root to this node. The depth of a tree T is defined by dep(T ) = max

v∈V
{dep(v)}. A

perfect binary tree is a tree where every internal node has exactly two children and all leaf
nodes have the same depth. For each vertex u in T , the subgraph induced by each child v
of u and v’s descendants is a subtree of T . We call one subtree the left subtree of u and
the other (if u has two children) the right subtree of u (see Figure 2.1 for an example). For
a tree T , we denote by lf(T ) the number of leaves in T . For a link e = (u, v) of T with
root r, removing e partitions T into two subtrees TL(e) and TR(e), one contains the root
r and the other does not. If the node v is the left child of u, then we say that the subtree
containing r is the right subtree (namely TR(e)) induced by the link e. The other subtree
TL(e), which is rooted at v, is called the left subtree induced by the link e (see Figure 2.2(a)
for an example). If v is the right child of u, then TL(e) is the subtree containing r and
TR(e) is the subtree rooted at v (see Figure 2.2(b) for an example). We denote by lfL(e)
the number of leaves in the left subtree TL(e) and by lfR(e) the number of leaves in the
right subtree TR(e) induced by e.

Figure 2.1: An example of the left/right subtrees of a node u in a binary tree rooted at r.
Circles represent nodes in the tree, and triangles represent implicit subtrees. In this figure,
u has two children v and v′. We say that the binary tree Tv (the dashed region), induced by
v and its descendants, is the left subtree of u; and the binary tree Tv′ (the dotted region),
induced by v′ and its descendants, is the right subtree of u.

An inorder search of a rooted tree is a tree traversal that first visits the left subtree
of the root, then the root, then the right subtree of the root, and each subtree is visited
recursively. The inorder search index, or just the index, of a node u is the order (numbered
from 1 to n) in which u is visited by an inorder search in the rooted tree. The index of a
node u is denoted by index(u). For a pair of nodes u and v in a rooted tree T with root
r, a common ancestor of u and v is a vertex w which is on the path from u to r and the
path from v to r. The nearest common ancestor (nca) is therefore the common ancestor w
with highest depth. Notice that if w is the nca of u and v, then one of u and v is in the left
subtree of w and the other is in the right subtree of w.

Branch decomposition was first introduced by Robertson and Seymour in 1991 [34]. A
branch decomposition of a graph G is a pair (TB, τ), where TB is a ternary tree with |E|

9



(a) If v is a left child, then the subtree rooted at r
is the left subtree TL(e), the subtree rooted v is the
right subtree TR(e).

(b) If v is a right child, then the subtree rooted at
r is the right subtree TR(e), the subtree rooted v is
the left subtree TL(e).

Figure 2.2: An example for the two cases of left/right subtrees. Circles represent nodes
in the tree T , and triangles represent implicit subtrees. The dashed link e = (u, v) is a
removed link and r is the root of the tree T .

leaf nodes and τ is a bijection from the edges in G to the leaves in TB. The removal of any
link e in TB (say the resulting two subtrees are T1 and T2) “cuts” G into two subgraphs,
one induced by the leaves in T1, the other induced by the leaves in T2. Thus each tree link
in TB has a vertex cut set associated with it. We say that the separation (τ(T1), τ(T2)) is
induced by the link e. We define the width of a branch decomposition (TB, τ) to be the
largest order of the separations induced by links of TB. The branchwidth of G, denoted by
bw(G), is the minimum width of all branch decompositions of G. In the rest of this thesis,
we identify a branch decomposition (TB, τ) with the tree TB, leaving the bijection implicit
and regarding each leaf of TB as an edge of G. We call a link e in a branch decomposition
tree valid if lf(TB)

3 ≤ lfL(e) ≤ 2lf(TB)
3 .

For any perfect binary tree T and a leaf node x ∈ V (T ), we define the forward port set
and backward port set as follows:

Definition 1. let v be a node in T with the in-order index a · 2i, where a is some integer,
we define v as a level i port.

For each leaf node x of T , let y be the node with the minimum index such that index(x) ≤
index(y). Assume that y is a level i port and we rename y as yi. For every j > i, let yj be the
level j port with the minimum index such that index(x) ≤ index(yj). We call yi, yi+1, · · ·
the forward ports for x. The set Fx containing all the forward ports of x is the forward
port set for x. Similarly, let z be the port with the maximum index such that index(x) ≥
index(z). Assume z is a level p port. For every q > p, let zq be the level q port with the
maximum index such that index(x) ≥ index(zq). We call zp, zp+1, · · · the backward ports
for x. The set Bx containing all backward ports of x is the backward port set for x.

Notice that for any node y in Fx, x is in the left subtree of y, and for any node z in Bx,
x is in the right subtree of z. Additionally, any ancestor of x is either in Fx or Bx but not
in both. These are direct observations of the in-order search on a perfect binary tree.
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Throughout the paper, we refer shortest path/distance query problem as the point-to-
point shortest distance query problem: Given a pair of vertices s and t in a weighted planar
graph G, find the shortest distance dG(s, t) from s to t in G.

11



3. Algorithm Design

3.1 Algorithm Description

To construct our oracle, we first compute a branch decomposition TB of an input planar
graph G. An optimal branch-decomposition can be computed in O(n3) time in worst
case and O(n2 logn) in average case [20]. A branch-decomposition of width O(k) can be
computed in min{O(n log3 n log k), O(nk2 log k)} time, where k = bw(G) [21].

As mentioned above, every leaf node in TB corresponds to an edge in G. For each tree
link e of TB, e is associated with a vertex cut set (the separator) that cuts G into two
subgraphs (or regions). For querying the shortest distance of a pair of vertices s and t, one
just need to find the cut set that separates s and t into two regions, the shortest path has
to go through a vertex in the cut set. Thus to find the shortest distance between s and t
using a branch decomposition TB, one just need to find a cut set in TB that separates s and
t into two regions. Based on the structure of a branch decomposition TB, the cut set is one
of these associated with the three links incident to the nca w of the leaf containing s and
the leaf containing t, as shown in Figure 3.1. The shortest distance path between s and t in
G will have to intersect with some vertices in at least one of the cut sets associated with e1,
e2, or e3 in Figure 3.1. Therefore, if we want to find the shortest path distance from s to t,
we will have to consider all three cut sets, thus increasing the query time. To increase the
efficiency, we need to use the correct cut set for s and t for computing the distance between
s and t, not all of the three cuts. Also, the number of ancestors of a node s is the height of
TB and thus if TB has a large height (TB is not balanced) then the oracle has a large size.
To address the above problems, we perform the following transformation to get a rooted
binary tree TL, which we will refer to as a logical tree in the rest of the paper, such that for
every two vertices s and t in G, the nca of the node containing s and the node containing t
in TL is associated with a cut set which separates s and t in two regions, and the hight of
TL is O(logn).

Given a branch decomposition tree TB, we choose a link e that is valid and “virtually
remove” it from the tree. Assume that the separation is (E(G1), E(G2)), where G1 and G2

are the two subgraphs induced by e. We then recur the above process on G1 and G2, say
the valid links chosen in G1 and G2 are f and g respectively. We view e, f , and g as logical
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Figure 3.1: In this branch decomposition tree T of G rooted at r, w is the nearest common
ancestor of u and v. The three links (bold lines) e1, e2, and e3 are the three potential vertex
cut sets that may separate u and v in G.

nodes and connect f and e, and g and e using logical links. We repeat the process until
all links are “removed” from TB. The logical nodes and links form a rooted binary tree,
denoted by TL. Notice that each node in TL corresponds to a link in TB. Further more,
the order we choose links in TB to remove in the transformation phase does not affect the
theoretical bound of our oracle, as long as the chosen links are valid in every iteration.

To make this process simpler to implement, we first change TB to a rooted binary tree
by first pick up a link e = (u, v) with u, v both internal nodes. Then e is physically removed
from the tree and two links (r, u) and (r, v) are added to TB, where r is a newly added node,
and also the root of TB. The detailed process is described in Algorithm 1 and Algorithm 2.

Algorithm 1 TreeTransformation
Input: G, an input planar graph

1: Find a branch decomposition tree TB of G
2: Convert TB to a rooted binary tree rooted at r
3: Tab ← An empty table with links in TB as horizontal indexes and L (left side) & R

(right side) as vertical indexes.
4: Count lfL(e) and lfR(e) for every link e and fill the table Tab by first virtually remove
e and then count the number of leaves in each resulting subtree

5: rL ←ModifyDecompTree(TB, Tab)
6: return TL, rooted at rL

We now prove that the cut set associated with the nca of the nodes containing s and t
in TL contains the correct vertex that intersect with the shortest path between s and t in
G: at any stage of the transformation, say the tree link that is currently being removed is
e, then e separates the graph into two subgraphs, say the two subgraphs are G1 and G2,
if u resides in G1 and v resides in G2, then e contains the cut set that separates u and v.
After the transformation, u will be in a node in one subtree of e in TL and v will be in a
node in the other subtree of e in TL. Thus the nca of the two nodes containing u and v will
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Algorithm 2 ModifyDecompTree
Input: r, the root of the current branch decomposition subtree Tr; Tab, the table computed

in Algorithm 1; N , the number of leaves in Tr
1: e0 = (u, v)← V alidLinkSelection(r,N) (Algorithm 4)
2: if no such e0 is found then
3: return NULL
4: end if
5: updateTable(r, Tab, e0) (Algorithm 5)
6: dir ← 0 if v is the right child of u, 1 otherwise
7: nr ← Tab[r][LEFT ] + Tab[r][RIGHT ], the number of leaves in Tr with e0 removed
8: nv ← Tab[v][LEFT ] + Tab[v][RIGHT ], the number of leaves in Tv
9: e1 ←ModifyDecompTree(r, Tab, nr)

10: e2 ←ModifyDecompTree(v, Tab, nv)
11: link e0 & e1 and e0 & e2 with logical links, e0 is the parent of the two
12: if dir = 0 then
13: e1 is the left child of e0 and e2 is the right child of e0
14: else
15: e2 is the left child of e0 and e1 is the right child of e0
16: end if
17: return e0

be e, hence we can correctly find the cut set that separates them. Notice that because we
always select valid links, the resulting tree TL will be balanced. Thus the height of TL is
O(logn).

3.1.1 Valid Link Selection

There is, however, one problem remains unsolved: the selection of such a valid link. To
address this problem, we count the number of leaf nodes in the induced left and right
subtrees for each link, and store the result in a 3 × O(n) table Tab. The first row of Tab
is the reference to all the links in TB, the second and the third rows contain the number of
leaves in the left/right subtrees of the corresponding link.

The general idea of valid link selection is to do it in a recursive way, from top to bottom,
so that each edge is considered at most once in each selection. In any valid link selection
stage of the tree transformation, suppose e = (u, v) (u is the parent of v) is selected in
the tree Tr rooted at r that has m leaves (recall that m = O(n) in planar graphs). Link e
is then marked as removed, thus we have a separation (E(T1), E(T2)). Suppose T1 is the
subtree rooted at r and T2 is the subtree rooted at v. The table Tab is then updated by the
following rule: for the subtree T1, do a search from r and count the number of leaves, stops
when reaches a leaf or a removed edge (Algorithm 3); for the subtree T2, we do a search
from v and count the number of leaves. To find a valid child link, we again start from the
root to preserve the right/left direction of the links. Suppose we want to select a child in
T1, we first start from r, checking each link incident to r, and recurse on the children of r
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until we find one edge that is valid. For more detailed description of the algorithms, please
refer to Algorithm 4 and Algorithm 5.

The table update process takes O(n) time and requires O(n) space for the table Tab.
To find children links in the worst case, we need to iterate through the table, thus taking
O(n) time. Therefore, valid link selection stage takes O(n) time and O(n) space.

Algorithm 3 LeavesCount
Input: r, the root of the current branch decomposition tree

1: if r is NULL or both children links of r is removed then
2: return 0
3: else if r is a leaf node then
4: return 1
5: else if one of the child link of r is removed then
6: return The LeavesCount of the other child link
7: else
8: return The sum of the LeavesCount for both children links
9: end if

Algorithm 4 ValidLinkSelection
Input: r, the root of the current branch decomposition tree, Tab, the table, n the total

number of leaves in the tree rooted at r, and e = (u, v), the edge being selected
1: for each child u of r (two at most) do
2: if (r, u) is valid then
3: return (r, u)
4: else
5: return V alidLinkSelection(u, Tab, Tab[u][LEFT ] + Tab[u][RIGHT ])
6: end if
7: end for
8: return NULL

Algorithm 5 UpdateTable
Input: r, the root of the current tree, Tab, the table, and e = (u, v), the link being removed

1: Mark e as removed
2: Suppose the two subtrees are T1 and T2, with roots r and v
3: LeavesCount(r), update Tab accordingly
4: LeavesCount(v), update Tab accordingly

3.1.2 In-Order Search Index Assignment

After we obtain TL, the question that remains is to find the nca of two nodes efficiently.
Harel and Tarjan [23] proposed an O(1) algorithm that finds the nca of two nodes in 1984.
The algorithm, however, requires the tree to be a complete binary tree (for correct node
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indexing used in the algorithm), otherwise a complex transformation is required in order to
find the nca of two nodes in an arbitrary tree. A detailed algorithm description is given in
Section 3.1.3. Recall that by our transformation, TL is already a rooted binary tree, thus
changing TL into a complete tree is trivial: recall that each node in TL is a link (associated
with a cut set) in TB. For a leaf node (some link in TB) u in TL, suppose the graph induced
by the leaves in the subtree Tu of TB is Gu, then the cut set associated with u cuts Gu into
two subgraphs (called atom nodes). Let TE be the tree obtained from TL by attaching atom
nodes to the corresponding leaf nodes. Let TV be a perfect binary tree obtained from TL

also, but with the following rules: let the height of TL be h. For a leaf node u in TL with
depth less than h, create two dummy perfect binary trees (solely for node indexing) Tu1 and
Tu2 of height h− dep(u) and attach them to u. Suppose the two atom nodes attached to u
in TE are a1 and a2, attach a1 and a2 to Tu1 and Tu2 so that their nca is u (attach one on
the rightmost leaf on Tu1 and other on the leftmost leaf on Tu2); for a node u with depth
equals h, simply attach the two associated atom nodes. We then add dummy nodes to the
leafs so that TV becomes a perfect binary tree of height h+ 1, which is also complete. After
creating TV , we do an in-order search to assign each node the in-order search index.

Algorithm 6 InorderSearch
Input: v, the current tree node in TL; i, the last assigned index, initially 0

1: if v is NULL then
2: return i
3: end if
4: if v has a left child w1 then
5: i← InorderSearch(w1, i)
6: else
7: Create a new atom node a1 and attach it to the left of v and assign i+ 1 to a1
8: i← i+ 2h+1−dep(v)

9: end if
10: Assign the new i to v
11: if v has a right child w2 then
12: i← InorderSearch(w2, i)
13: else
14: i← i+ 2(h+1)−dep(v)+1 − 1
15: Create a new atom node a1 and attach it to the left of v and assign i to a2
16: end if
17: return i

One disadvantage of the above algorithm is that we need to physically create and add
dummy nodes and dummy links to TE , thus creating additional memory consumption. The
dummy nodes and dummy links are solely for assigning the correct index to the non-dummy
nodes in TE . To further speed up the pre-processing, notice that Algorithm 7 is based on
the in-order search index of each node in the perfect binary tree, thus we do not need to
physically add dummy nodes and links to TE , we only need the correct index. Therefore, we
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“virtually” add dummy nodes and links to make TE a perfect binary tree TV . The process
is also trivial: because TV is a perfect binary tree of height h+ 1, as long as we know that
depth of a node v and the last assigned index i, we can assign the indexes to v and its two
atom nodes a1 and a2 by the following rules:

• if v is a leaf node in TL (not in TB) with dep(v) < h+ 1, then

– index(v) = i+ 2(h+1)−dep(v), or in another word, the number of nodes in the left
virtual subtree plus i;

– the left atom node a1 of v has index(a1) = i+ 1;

– the right atom node a2 of v has index(a2) = i+ 2(h+1)−dep(v)+1−1, or in another
word, the number of nodes in the left and right virtual subtree plus i minus 1.

• if v is not a leaf node in TE , then

– recur on the left child

– index(v) = i+ 1.

– recur on the right child

By using the above rules, we can use an in-order search algorithm to correctly assign the
desired index to all the nodes in TE as if they are in a complete binary tree TV without
physically adding dummy nodes and links. Thus we use the term “virutal”. The algorithm
is shown in Algorithm 6.

The in-order search step takes only O(n) in time since each node is visited only once in
TE .

3.1.3 Finding the Nearest Common Ancestor

Now we are in position to discuss how the nca of two nodes in TE can be found efficiently.
We first have the following theorem.

Theorem 1. For a pair of distinct leaf nodes u and v in TE, with index(u) <index(v), the
forward port set of u, Fu, and the backward port set of v, Bv, has exactly one node w in
common, which is also their nca. Additionally, index(u) < index(w) < index(v).

Proof. Suppose the nca of u and v is the node w, and the tree rooted at w is Tw. Since all
ancestors of any leaf node x is either in Fx or Bx but not both, and u and v are distinct, w
has to be in one of Fu ∩Bv, Fu ∩Fv, Bu ∩Fv, or Bu ∩Bv. If w is in Bu ∩Bv, then u and v
are both in the right subtree of Tw. Say the right child of w is w′ (w′ exists because u and
v are distinct and they are leaf nodes), then u and v has to be in the subtree rooted at w′,
therefore w′ is a common ancestor of u and v with a larger depth than w, contradiction.
A similar argument can apply to prove that the nca is not in Fu ∩ Fv. If w is in Bu ∩ Fv,
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then u is in the right subtree of w and v is in the left subtree of w, hence according to
the in-order search, index(u) > index(v), contradiction. Thus the nca of u and v is in the
intersection of Fu and Bv.

We now want to prove that Fu ∩ Bv has only one element. Suppose that there are
at least two elements in Fu ∩ Bv, clearly the nca w is the one with the largest depth. Say
another node, different from w, in Fu∩Bv is p, then either index(p) > index(v) or index(p) <
index(u). Since w and p are both in Fu and Bv, w is in the left subtree and the right subtree
of the subtree induced by p, contradiction. This also proves that index(u) < index(w) <
index(v).

To answer nca query (for later use in the shortest distance query) between a pair of
nodes u and v in TE with index(u) < index(v), if we first “virtually remove” (ignore) all
nodes in Fu and Bv that are not in the range [index(u),index(v)], then sort the remaining
elements in Fu and Bv in ascending depth in TE , call the resulting sets F ′u = {ufmin, · · · }
and B′v = {vbmin, · · · }, We then have the following theorem:

Theorem 2. The nca of a pair of nodes u and v with index(u) < index(v) is ufmin = vbmin.

Proof. Suppose the nca of u and v is w, and dep(w) > dep(ufmin), then w, as well as v, is
in the left subtree of the tree rooted at ufmin, thus index(v) < index(ufmin), contradicts
to Theorem 1. Similarly, if dep(w) > dep(vbmin), then index(u) > index(vbmin). Again, it
contradicts to Theorem 1.

The above theorem provides a way to quickly identify the nca of u and v using only
Fu or Bv: the first element w in sorted Fu or sorted Bv such that index(u) < index(w) <
index(v) is the nca of u and v. Thus when querying the nca of u and v, we need only one of
Fu or Bv. Suppose we use Fu only, then all we need to do is to iterate through Fu, as soon
as we find a node w in Fu with index(u) < index(w) < index(v), this w will be the nca of u
and v. The process takes O(logn) time in theory. In practice, however, it is good enough,
because even if we have a planar graph with one billion edges, the nca search takes only 30
comparisons. The space consumption for each node is O(logn), because we need to store
Fv and Bv for each node v in TE .

To further improve the time on computing the nca of two nodes in TE , we can use the
algorithm proposed by Harel and Tarjan [23]. In their algorithm, they define an operation ⊕
on the index of the nodes: let bin(i) be the binary representation of the integer i, then i⊕ j
is the integer k, where bin(k) = bin(i) XOR bin(j). Haerl and Tarjan used this operation to
compute the nca of two nodes in a perfect binary tree. The algorithm is shown in Algorithm
7. Here we omit the proof of the correctness of the algorithm. Readers may refer to [23] for
the proofs.
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Algorithm 7 NearestCommonAncestor
Input: T , a perfect binary tree, v & u, the two nodes in T
Output: w, the nca of v and u

1: if v is the ancestor of u then
2: return v
3: end if
4: if u is the ancestor of v then
5: return u
6: end if
7: h← blog(index(v)⊕index(u))c
8: return The node w whose index is 2h+1bindex(v)/2h+1c+ 2h

3.1.4 Construction of the Cut Sets

This can be done in TB. To find a cut set Ce of a link e in TB, say the two children
links of e are f and g, as shown in Figure 3.2(a) . We can do: Ce = Cf \ Cg ∪ Cg \ Cf ,
where Cf and Cg are the cut sets associated with f and g, respectively. However, by doing
this, we may ignore at most 2 vertices on the boundary of the region He induced by Ce
(x1&x2 ∈ Ce ∩ Cf ∩ Cg, as shown in Figure 3.2(b)).

(a) An example of TB , where circles represents nodes
and triangles represents subtrees. Ce, Cf , and Ch

are the cut sets associated with the three links in TB .
The dotted regions Hf and Hg are the subgraphs
induced by the cut sets Cf and Cg. The dashed
region He is the subgraph induced by the cut set Ce.

(b) An example of regions in G. The dashed circle is
the input graph G, the solid line circle represents the
region He induced by the cut set Ce. He is further
decomposed into Hf and Hg. x1 and x2 are the
example of the two ignored vertices in Ce = Cf \
Cg ∪ Cg \ Cf .

Figure 3.2: An illustration of the correspondence between links (cut sets) in TB and re-
gions/subgraphs in G.

To address this, we can either check if there is a vertex in both Hf and Hg which is
incident to some other vertex outside He; or, we can check the node degree of the vertices,
if degHf

(u) + degHg
(u) < degG(u), then such an u is an ignored vertex. Both method takes

O(n2) time to find in worst case. More specifically, if we initially set all graph edges to be
external, and while we are constructing the cut sets from bottom up, say we are merging
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Hf (induced by Cf ) and Hg (induced by Cg) to form He, we mark the edges incident to a
vertex in either Cf or Cg (a vertex on the boundary) as internal with respect to He. We
can then check for each node in Cg ∩Cf if some nodes has both internal edges (with respect
to Hg and Hf ) and external edges (may be internal with respect to some other region), then
these nodes are the ignored ones. For each edge, we only need to store the largest region it
resides in to keep track of in which regions the edge is internal.

If we have embedded information, we can then use the embedded information to find
such ignored vertices. When checking the two possibly ignored nodes, since we have the
embedded information, we have an ordering of the nodes in Ce ∩ Cf ∩ Cg. The ignored
vertices can only be the first and/or the last nodes in this ordering, thus we only need to
check the first and the last node. This approach reduces the time complexity to O(n) in
theory.

There are O(n) nodes in TE , thus the process has a time complexity of O(n2) and uses
O(bw(G)n) space.

3.1.5 Shortest Distances from Vertices to Cut Sets

To finish up the pre-processing, we need to calculate the shortest distances from s to every
vertex in the subgraph containing s (in the atom node that contains s), and the shortest
distance from s to the vertices in the cut set of every ancestor of w in TE (there are at most
logn of such ancestors). This can be done by running the one-to-all Dijkstra’s algorithm
for each vertex s ∈ V (G) and storing only the shortest distances from s to the vertices
described above. This takes n executions of Dijkstra’s algorithm and thus taking a total of
O(n2 logn) time and O(bw(G)n logn) space.

3.1.6 Answering Shortest Distance Queries

Algorithm 8 Query
Input: TV , the computed virtual tree, s, the source, t, the destination
Output: dG(s, t), the shortest distance from s to t in G

1: Find the two atom nodes w1 and w2 that contain s and t
2: w ← NearestCommonAncestor(TV , w1, w2)
3: Cw ← the cut set associated with w
4: d← positive infinity
5: for each vertex v ∈ Cw do
6: if dG(s, v) + dG(v, t) < d then
7: d← dG(s, v) + dG(v, t)
8: end if
9: end for

10: return d
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To answer a shortest distance query from s to t in G. Assume the pre-processing is
done, we first locate the atom nodes w1 and w2 in TE that contains s and t, respectively. If
w1 = w2, then we just look up the shortest distance. If not, we first find the nca of w1 and
w2. Assume the nca is w, and the cut set associated with w is Cw. We then find the vertex
u ∈ Cw such that dG(s, u)+dG(u, t) is the smallest. The result is the shortest distance from
s to t in G. In the worst case, it takes O(bw(G)) to find the desired shortest distance. The
algorithm is shown in Algorithm 8

3.2 Distributed Version of the Oracle

By the centralized construction of the oracle, it can be stored independent from the input
graph G. It can, however, also be stored in a distributed way. As discussed in Section 3.1.6,
the information we need to calculate the shortest distance from s to t in G is the distances
mentioned in Section 3.1.5 and the nca of the two atom nodes in TE containing s and t.
The nca can be found using the forward port set and the backward port set as discussed
in Section 3.1.3. Thus, for each vertex v, we can store the indexes of the ancestors of the
atom node containing v in TE , and the required shortest distances. Therefore, we have a
distributed version of the oracle as well. The labeling scheme takes O(bw(G) logn) space.

3.3 The Complexities and the Trade-Off of the Oracle

The oracle takes min{O(n log3 n log k), O(nk2 log k)} time to find a branch decomposition
tree TB of width O(k) theoretically for a planar graph G with k = bw(G) [21], O(n2) time
to transform TB into TE , O(n) time to assign in-order indexes, O(n2) time to construct
cut sets, and O(n2 logn) time to compute selected shortest path distances. Thus it takes
O(n2 logn) time to construct. It answers the shortest distance query in O(bw(G)) time
and uses O(bw(G)n logn) space. The label size for each node in TE , if the oracle is stored
distributively, is O(bw(G) logn). The product of query time and oracle size of our oracle is
O(k2n logn), where k = bw(G). For planar graphs G with bw(G) = o(n

1
3 ), our oracle has

a better product of query time and oracle size than the best known result of O(n
5
3 logn) in

[9].
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4. Computational Study

The program was implemented in Java 1.7. The implementations of the above algorithms
are straight forward using the pseudo code provided above. We used Algorithm 7 to find
the nca of a pair of vertices. Notice that because of the structure of a branch decomposition
tree, a vertex v in the graph G may appear in multiple atom nodes in the virtual tree
TV . When answering a shortest distance query from s to t, we always choose the first
atom node we can find that contains the vertex s, and so does for the vertex t. We
tested our implementations on three classes of graph instances against both one-directional
Dijkstra’s algorithm (or just Dijkstra’s algorithm) and bi-directional Dijkstra’s algorithm.
Both versions of Dijkstra’s algorithms are implemented in Java. For the three classes of
graph instances, Class (1) instances include Delaunay triangulations of point sets taken from
TSPLIB [31]. The instances were used as test instances in the previous studies [6, 25, 24]
on branch decompositions. Class (2) instances are generated by LEDA library based on
some geometric properties [6]. Class (3) instances are generated by PIGALE library [1],
which generates random planar graphs with a given number of edges based on the algorithm
[36]. The three classes of planar graphs are commonly used in the previous computational
studies on planar graphs. The three classes were chosen as test subjects because the three
libraries are popular and available to us. The branch decompositions were calculated using
previously implemented algorithms in [6]. The branch decomposition program was written
in C++ and was tested on the three classes of graph instances as well, readers may refer to
[6] for computation times of the graph instances. We tested the program on the three classes
of graph instances for point-to-point shortest distance queries and reported the following
attributes:

• G, the name of the graph;

• E(G), the number of edges in the graph G;

• bw(G), the branchwidth of the graph G;

• Preprocessing Time (PT) in seconds, given that we already have the branch decom-
position;

• Oracle Size (S) in MB;
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• Oracle Query Time (OQT) per 1000 queries in seconds;

• Dijkstra’s algorithm Query Time (DQT) per 1000 queries in seconds;

• Bi-directional Dijkstra’s algorithm Query Time (BDQT) per 1000 queries in seconds;

• D/O = DQT/OQT, a ratio that tells us how much faster can our oracle answer a
query compared to Dijkstra’s algorithm; and

• B/O = BDQT/OQT, a ratio that tells us how much faster can our oracle answer a
query compared to Bi-directional Dijkstra’s algorithm.

All the above data are either rounded to two decimal places, or to one significant digit if
two decimal places are not enough. D/O and B/O are calculated using the un-rounded data,
then rounded to two decimal places. We may refer to D/O and/or B/O as improvement
ratios.

The program was executed on a server with Intel(R) Xeon(R) 2.80GHz x86_64 CPU,
8GB physical memory and 8GB swap memory. The operating system is CentOS 6.9, and
the programming language we used is Java.

4.1 Experimental Results

4.1.1 Results for instances in the Three Classes

The computational results for Class (1) instances are shown in Table 4.1. The data show
that the shortest distance query time using our oracle is much faster than those using the
two versions of Dijkstra’s algorithm, by a factor of 270 to 800 for instances of more than
5000 edges compared to Dijkstra’s algorithm, and by a factor of 30 to 163 compared to
Bi-directional Dijkstra’s algorithm.

G E(G) bw(G) PT S OQT DQT BDQT D/O B/O
d1655 4890 29 15.67 318.08 0.02 3.00 0.65 150.96 32.77
pr1002 2972 21 5.11 131.96 0.01 2.28 0.33 155.79 22.72
pr2392 7125 29 36.18 439.67 0.02 4.86 0.61 239.62 30.01
rl1323 3950 22 11.82 206.82 0.02 2.49 0.75 123.55 37.43
rl1889 5631 22 24.75 376.60 0.01 3.68 0.42 272.41 31.28
fl3795 11326 25 123.97 976.49 0.01 7.03 1.60 718.365 163.46
fnl4461 13359 48 202.28 1369.4 0.02 7.25 1.07 478.87 70.58
pcb3038 9101 40 56.91 867.4 0.01 4.68 0.65 325.82 44.97
rl5915 17728 41 372.45 2139.74 0.02 10.85 0.49 723.28 32.39
rl5934 17770 41 340.06 2289.7 0.01 10.39 0.70 798.37 53.82

Table 4.1: Computational Results (in seconds) of Shortest Distance Query Using This Or-
acle v.s. Dijkstra’s Algorithm and Bi-directional Dijkstra’s Algorithm for Class (1) Graphs
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The computational results for Class (2) and (3) instances are shown in Tables 4.2 and
4.3. The data in these two tables show a similar result: our oracle answers shortest distance
queries much faster than both Dijkstra’s algorithm and Bi-directional Dijkstra’s algorithm.
This shows that the performance of our oracle is independent on the type of the input
planar graph.

The data for all three classes also show that the query time is dependent on the branch-
width of the input graph G. The data show that smaller branchwidth yield a faster query
time, regardless of the number of edges. This outcome is not surprising, since in section
3.1.6 we showed that the query time is O(bw(G)), which depends only on the value of bw(G).
This also rule out the possibility that the O(logn) time algorithm, Algorithm 7, we used in
our program to find the nca is a major reason that slows the query process. Thus indicating
that in practice, Algorithm 7 is good enough.

The preprocessing time is also relatively small compared to the time needed to compute
the optimal branch decomposition as shown in Tables 1, 2, and 3 in [6]. Thus the whole
preprocessing time including the branch decomposition process is dominated by the time
used to find the branch decomposition. The oracle size is not very small, but it is also
not intolerably large. The data show that the oracle size is proportional to the number of
edges in the input graph. The oracle size may be reduced if we use another programming
language or improve our algorithm.

G E(G) bw(G) PT S OQT DQT BDQT D/O B/O
rand1160 2081 8 2.32 135.06 0.005 30.86 0.25 156.57 44.62
rand1672 3047 10 6.66 193.06 0.006 1.28 0.24 201.29 38.04
rand2236 4002 10 10.50 462.43 0.007 1.67 0.48 238.71 69.39
rand2780 5024 10 18.08 480.62 0.007 2.00 0.56 291.71 81.05
rand3325 6035 9 26.73 961.84 0.006 2.38 0.67 394.70 111.06
rand3857 7032 11 38.35 970.42 0.007 3.03 0.76 418.43 104.43
rand5446 10093 11 97.12 2000.19 0.007 4.00 0.79 538.76 106.89
rand8098 15031 13 323.84 5155.72 0.01 9.81 3.86 735.15 289.11
rand10701 20044 13 716.45 7310.19 0.01 16.38 1.99 1460.08 117.07
rand15902 30010 14 1466.30 17841.22 0.01 21.59 3.21 1615.78 240.25

Table 4.2: Computational Results (in seconds) of Shortest Distance Query Using This Or-
acle v.s. Dijkstra’s Algorithm and Bi-directional Dijkstra’s Algorithm for Class (2) Graphs

One potential reason that slows the query process of our oracle is the number of memory
accesses in the query stage. The program needs to do multiple memory accesses in order to
get the correct nca as well as the cut set associated with it. While in Dijkstra’s algorithms,
one to two memory accesses are enough.

The main improvement in our oracle is that when answering a shortest distance query
from s to t, the oracle needs only to consider bw(G) number of vertices given the nca of s
and t, while in the two versions of Dijkstra’s algorithm, a much larger number of redundant
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G E(G) bw(G) PT S OQT DQT BDQT D/O B/O
PI1180 2202 7 3.28 110.06 0.007 1.58 0.37 210.15 56.64
PI1182 2016 7 3.87 93.44 0.007 1.76 0.22 250.50 31.43
PI1186 2029 6 3.81 86.78 0.008 1.38 0.33 179.91 43.45
PI1193 2019 6 3.95 87.83 0.006 1.54 0.28 252.49 45.49
PI1207 2029 9 3.74 88.18 0.006 1.38 0.29 225.53 46.31
PI2995 5043 7 37.94 592.45 0.006 2.85 0.59 476 98.42
p3586 6080 8 40.05 840.81 0.007 3.41 1.68 465.16 229.67

Table 4.3: Computational Results (in seconds) of Shortest Distance Query Using This Or-
acle v.s. Dijkstra’s Algorithm and Bi-directional Dijkstra’s Algorithm for Class (3) Graphs

vertices needed to be considered. Intuitively, for a shortest path P that contains a large
number of edges, the two Dijkstra’s algorithm tend to do a huge number of iterations in order
to find P , due to its BFS-like search pattern. This redundancy is even worst when the graph
is unweighted: the search is BFS. This improvement is also reflected in the experimental
results: the larger the number of edges in a graph, the better the improvement ratios tend
to be. Thus one may suspect that for a shortest path distance of a path with a large number
of edges, our oracle can have an even better improvement ratios than those shown in Tables
4.1, 4.2, and 4.3. The above observation is experimented and discussed in section 4.1.2.

4.1.2 Experiments and Results for Shortest Distance Queries with Long
Paths

As mentioned above, long paths (shortest paths with a large number of edges) may yield
a larger improvement ratio and short path (shortest paths with a small number of edges)
may yield a less appealing ratio. Consider two vertices s and t, which are relatively close,
in the sense that they have a small number of vertices between them in a shortest path.
Bi-directional Dijkstra algorithm will find the path using only a small number of iterations.
Whereas, if the branchwidth is large, the oracle needs to consider a large number of vertices
in the boundary in order to find the shortest distance. For shortest paths with large numbers
of vertices, Bi-Dijkstra’s algorithm tends to consider more redundant vertices than the oracle
does, thus making oracle more efficient than Bi-directional Dijsktra’s algorithm.

We tested the query time on paths with a large number of edges and paths with a small
number of edges for several graphs, they all yield similar results: long paths queries has a
better improvement ratios than short paths. In the experiment, a random source s in G

is selected, then the shortest path distance and the number of edges in the shortest path
from s to every vertex in G is computed using Dijkstra’s algorithm. As a result, a list of
vertices is returned. The list is sorted in ascending order such that the shortest path from
s to the first vertex in G in the list has the smallest number of edges, and the shortest path
from s to the last vertex in G in the list has the largest number of edges. The long paths
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Graph G E(G) bw(G) Number of Edges in the Shortest Path B/O

rand3857 6035 11 830 - 855 165.83
10 - 25 87.22

p3586 6080 8 200 - 224 237.55
5 - 15 165.71

fnl4661 13349 48 780 - 807 78.28
10 - 25 60.88

Table 4.4: Computational Results of Long/Short Path Shortest Distance Queries Using
This Oracle v.s. Bi-Directional Dijkstra’s Algorithm

are selected around the tail of the list and the short paths are selected starting from the
( n

100)-th position of the list. Here we listed three graphs from the three classes. The results
are shown in Table 4.4. We did not test the oracle on paths with only one to two edges
because the associated cut set sizes will be small, and thus both algorithm should yield a
good query time.

The table shows that for long paths, our oracle performs better than the average; and
for short paths, our oracle performs worse. The data also show that for long paths, the B/O
ratio is affected by both branchwidth of the input graph and the number of edges in the
shortest path. With similar branchwidth, the B/O ratio of the graph rand3857 is increased
by approximately 58.80%, while that for the graph p3586 is only increased by 3.43%. With
similar number of edges in a long path for rand3857 and fnl4661, the B/O ratio is increased
only by 10.91% for fnl4661. The reason for such dependence is easy to understand: if there
are many edges in a path, then Dijkstra’s algorithm tends to use more iterations in order to
find the desired shortest path distance than our oracle. And the larger the branchwidth is,
the more vertices in the cut set our oracle needs to consider when computing the shortest
path distance.

For short paths, the reason that the B/O is below what is listed in Tables 4.1, 4.2, and
4.3 is that bi-directional Dijkstra’s algorithm needs to explore much fewer vertices than for
the long paths. Also, the proportion of the time spend on the memory accesses becomes
larger. It is anticipated that if the program is written in programming languages that has
less overhead than Java, the performance would be much better. The results, however, still
show that our oracle has a better query time than the two versions of Dijkstra’s algorithms
even for short paths.
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5. Conclusion

We proposed and implemented a branch-decomposition based exact oracle for point-to-point
distance problem in planar graphs. Computational studies show that our oracle performs
well on planar graphs with small branchwidth. The oracle is particularly much more efficient
than Dijkstra’s algorithm when answering a shortest distance query of a shortest path with
a large number of edges, but less improvement over Dijkstra’s algorithm is achieved if the
path contains a small number of edges. This is due to the fact that when we transform
the decomposition tree into a virtual tree, we include every link in the decomposition tree.
Thus making the subgraph associated with each atom node very small, namely, one edge.
Hence the query rely heavily on the cut sets. This makes it interesting to consider a case
where we do not completely transform the decomposition tree into a virtual tree, rather, we
stop when there is a certain number of leaf nodes in the subtree. By doing so, the subgraphs
associated with each atom node will be a graph with a small number of vertices.

An interesting future work is to implement the above idea and experiment on it to see if
this can improve the query time on paths with small number of edges. Another interesting
open problem is that is there a way to choose associated atom nodes for s and t so that the
nca is as close to s and t as possible?

Moreover, planarity properties used in our oracle are for finding a good branch decom-
position. Although planarity give us a good embedded information that we can use to
deal with the ignored boundary vertices as mentioned in Section 3.1.4, it is not mandatory.
Thus, the input graph does not have to be planar as long as a good branch decomposition
can be obtained. Theoretically, a graph G of a constant genus (the minimum number of
handles that must be added to the plane to embed the graph without any crossings) or
non-orientable genus, a branch decomposition of G with branchwidth O(bw(G)) can be
computed in polynomial time [26]. For an arbitrary graph G, it is NP-hard to compute an
optimal branch decomposition of G [35], but a branch decomposition of G with branchwidth
O(bw(G)) can be computed in O(2O(bw(G))n2) time [38]. For graphs that are close to planar,
however, there may be some techniques we can use to find a good branch decomposition.

In [4], Bashir finds a good carving decomposition for non-planar graphs G by first
removing edges so that the graph becomes planar, say the resulting graph is G′, then
computing an optimal carving decomposition on G′, and finally adding the edges back.
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The above idea is based on the fact that a carving decomposition of G′ is also a carving
decomposition of G, given that V (G) = V (G′). Although this fact is not true for branch
decomposition, it provide us a potential approach to deal with non-planar graphs: first
remove some edges in the input graph G so that the resulting graph G′ becomes planar,
then compute an optimal branch decomposition TB of G′. To add back the removed edges,
for any removed edge e = (x, y), first find a link l = (u, e′) in TB where e′ and e share
a common end point, namely x. Then remove the link l, add a new link l′ = (u, e′′) in
TB, where e′′ is a new node. Finally we attach e and e′ to e′′. The resulting branch
decomposition may not be optimal, but it is very close to optimal if the input graph is
close to planar. Another way to deal with non-planarity is that we can contract a small
non-planar subgraph of the input graph G into a “super vertex”, making the resulting graph
G′ planar, then run our construction. With this approach, however, we need extra space for
storing shortest distances between vertices within “super vertices”, and shortest distances
from each vertex in a “super vertex” to vertices in the cut sets of the parent nodes. The
above two approaches for adapting our oracle to non-planar graphs exploit many interesting
open problems and hence are good future works.

The program we used in the experiments was implemented in Java, thus everything
has to be implemented in an object-oriented point of view. This creates a large amount of
overheads and increases the memory usage of the oracle. Therefore it is also interesting to
test if the oracle can perform better if it is implemented in another language like C/C++.
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