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Abstract

Emergency services have been in existence since the beginning of recorded history, yet most
efficient and effective use of resources in this field is still considered an open problem. In
this thesis, we explore the challenges involved in police services, and present an approach
for determining police force capacity for a given call for service data. We use mathematical
programming for modeling police dispatching and shift scheduling, and test our method on
real occurrence data.
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Chapter 1

Introduction

1.1 Background

The police department in a city plays a crucial role in maintaining law and order by pre-
venting crimes and responding to incidents. The way a policing agency operates in a city
can have a profound effect on public safety and quality of life. Government and emergency
services have a challenging task to devise techniques to utilize their limited resources effec-
tively to live up to the public expectations. Doing so involves making decisions regarding
various aspects of their operations. In policing, some of those elements include the number
of patrol units, their geographic locations, dispatching policy, workforce scheduling, etc.
Study of various police reports[13, 20] suggests that even today planners and administra-
tors struggle to establish a reliable system to achieve policing efficiency and effectiveness
in all situations. For example, the ever-changing number of calls for service with time and
location affects the objective of attaining a desirable response time. This uncertainty then
impacts police officer’s availability for specific problem tasks or any other proactive work,
as a lot of time is spent on responding to 9-1-1 calls. A significant amount of time and effort
has been devoted in the last few decades to incorporate the advancement in technologies
and research to enhance policing service model. In our work, we use the concepts of mathe-
matics, operations research and computing science to address some of the issues in policing
service.

1.2 Existing Work

Significant research in the study of police patrol allocations began in the early 1970s, when
New York City Rand Institute analyzed emergency services and developed mathematical
models for various aspects of operations. Larson[16] developed a hypercube queuing model
which was a major advancement for police resource allocations across geographical regions at
that time. The model aims to expand the state description of a queuing system with multiple
servers to incorporate more complex dispatch policies by taking into account geographical
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and temporal complexities of the region. The hypercube in itself is an n-dimensional binary
space for n servers with vertices representing a state space, which in this case would be
the state of the cars. For example, if we use 1 for busy and 0 for free, a (100) state for
three car system would mean car 1 and 2 being free and car 3 as busy. Once system config-
uration has been established, hypercube model could provide details about optimal units
to dispatch at any particular state, and also calculate various performance measures, like,
region-wide mean travel time, workload imbalance and inter-district dispatches. Application
of this model in urban service systems have been further studied, for instance, Takeda et
al.[4] used them for ambulance decentralization in urban areas and Chelst KR et al.[11] for
police patrol deployments.

Traditional methods to determine the number of police officers on duty in a particular
area at a specific time involved using quantitative methods of hazard or workload formulas.
These techniques focus on weighing various factors which are significant for workforce allo-
cation and generate a hazard score for each geographical area. Values of this hazard score
determine the relative distribution of available police workforce among precincts in a city.
For example, there are total N areas in a city, and the police department has developed a
set of M relevant factors, then hazard score Hn for an area n is given by

Hn = w1
fn1
F1

+ w2
fn2
F2

+ . . .+ wM
fnM

FM

where Fm = f1m + f2m + . . .+ fNm

here fnm is the amount of factor m in area n, and wm is the weightage given to factor m. A
value of say .10 for Hn would indicate that 10% of city police force be allocated to area n.
If the factors or weights capture the police workload involved rather than the crime hazard
itself, then they are regarded as workload formulas. Chaiken[10] in his report discusses how
these formulas fail to incorporate other critical performance measures like delay in the call
for service and total response times while balancing patrol allocation among areas. Another
interesting scenario was mentioned by Larson[17], according to which using hazard formula
could suggest the need for additional police personnel in the regions which were already
overallocated, as more policing in an area could increase the number of arrests, and thus
more crime being recorded. Hazard score for such an area would indicate assigning extra
police officers in that area, and therefore stretching overworked precincts.

In modern times, much of the staffing and scheduling decisions are backed by soft-
ware systems and simulators. Some of the applications which were developed include Staff
Wizard, Police Resource Optimizing System (PROS), and Managing Patrol Performance
(MPP). Such software often takes as input number of calls for service per hour, average re-
sponse times, priority level among calls, unit deployed in an area, and other specific pieces
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of information. Vancouver Police Department’s patrol deployment study of year 2007[13]
talks about different approaches, and their advantages and disadvantages. They mention
about Police Allocation Manual (PAM) approach which uses mathematical and logical re-
lationships between workload data to approximate staffing needs. MPP, on the other hand,
relies on queuing theory, probabilistic reasoning, and other mathematical models, to provide
forecasts, predict staffing demands and run simulations. These tools offer a lot of benefits
compared to manual planning. First, they enable planners to test different scenarios or any
changes in allocation and calculate performance statistics in a reasonable amount of time.
Second, because of their data-driven techniques, recommendations are in-line with realities
and could easily be visualized. Though these applications have brought a definite upgrade
in the industry, they are not self-sufficient to handle each aspect of policing operations.
They have the disadvantage of not being flexible and transparent. Often human factor,
regulations, and unforeseeable circumstances require manual intervention at every stage of
process. Therefore carefully designed mathematical models combined with human reasoning
could help to overcome the majority of complications in police agencies.

1.3 Our Approach

In our approach we concentrate on developing mathematical models for police patrol al-
location strategies, specifically focusing on dispatching and shift scheduling. Our ultimate
objective is to determine the size of the smallest police workforce along with their shift
schedules to serve all the job requests in a region. Our work could be divided into three
major stages:

First, we present a model for police dispatching for a known call for services with a fixed
number of police officers on duty in a day. In this model we consider police officers have
a 24-hour shift, i.e., they are available for any job during a day. We show how this model
could help us in estimating lower bound on the number of police officers required to meet
demand with a significant improvement in response time.

Second, using the estimates for the hourly requirement of police officers in the first stage,
we design a shift schedule. We calculate the number of police officers required in each shift
and thus obtain total number of employees needed.

Third, we show that the shifts generated from the second stage could fulfill the daily
call for service requests with minimal overtime from fewer police officers.

3



1.4 Thesis Overview

This thesis is organized as follows:

In chapter 2, we discuss Waterloo Regional Police Service (WRPS) Occurrence Data,
which is the dataset used for our experiments. We talk about various fields in the data and
present statistics with the help of graphs.

In chapter 3, we focus on police dispatching and its intricacies. We elaborate on our
model and show a mathematical programming formulation for the problem. Furthermore,
we show how we can estimate police officer demand and analyze the output obtained from
our model on various program parameters.

In chapter 4, we provide background about shift scheduling and give details about rod-
schedule method[19].

Chapter 5 will contain specifics about the final stage of our whole approach where we
use the shifts from the previous step for police dispatching.

4



Chapter 2

Dataset

2.1 About

For our studies, we are using publicly available Waterloo Regional Police Service (WRPS)
Occurrence Data, which provides detailed statistics about police call information. WRPS
aggregates this data from two systems, Computer Aided Dispatched (CAD) System and
Records Management System (RMS).

Information gathered from data source description[1, 3] mentions: “WRPS uses the In-
tergraph CAD software to start an occurrence, dispatch officers, and maintain the status
of all logged-in units. The creation of any new occurrence number in CAD is considered a
‘CAD event’ regardless of the source. CAD events may be generated from calls coming into
the Communications Centre from a non-emergency line, from a 9-1-1 phone line, or initi-
ated by an officer. A call may be canceled, duplicated from multiple people reporting the
same incident, taken over the phone by resource desk, of a nature requiring a police report
to be prepared or concluded with no report being necessary.”. Niche RMS is the records
management system used by WRPS, which stores information regarding occurrences once
they are marked closed.

WRPS releases data combined from these two systems in a CSV and XLS file which
includes one full year of occurrence data. It should be noted that WRPS puts great effort
in aggregating this data and making it available for the community to analyze.

2.2 Data Fields

Table 2.1 summarizes various fields present in occurrence data[2].
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Name Summary
Occurrence Number Unique identifier for incident.
Geographic Location The latitude and longitude detail for adjusted

location of incident, generally nearest intersec-
tion.

Nearest Intersection Location Street names for adjusted location information
to nearest intersection.

Patrol Division Patrol division based on address. The Region of
Waterloo is divided into four patrol divisions for
optimum police service delivery: WN=North;
WC=Central; WS=South; WR=Rural.

Patrol Zone Patrol zone based on address. Each patrol
division is divided in six zones: : North
zones=WN1-WN6; Central zones=WC1-WC6;
South zones=WS1-WS6; Rural zones=WR1-
WR6.

Municipality The city or township based on the address of the
occurrence

Reported Date and Time Date and time when the event was received in
the WRPS Communications Centre and an oc-
currence number was generated.

Initial Call Type The 9000 code of the main call type assigned to
the occurrence when it is initially created.

Initial Call Type Description Description of initial call type.
Final Call Type The 9000 code of the final call type assigned to

the occurrence when it is closed.
Final Call Type Description Description of final call type
Initial Priority The first priority attached to the call
Final Priority The final priority attached to the call
Disposition Each occurrence is given a disposition represent-

ing the general outcome of the event. It may
be canceled (CAN), duplicated (DUP), taken
over the phone by resource desk (DPR), seri-
ous enough for a police report to be prepared
(RTF), or unfounded with no report being nec-
essary (NR).

Dispatch Date and Time Captures the date and time of the first unit dis-
patched.
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Name Summary
Arrival Date and Time The date and time that a dispatched unit first

arrived on scene to the address of the occur-
rence.

Cleared Date and Time The date and time that a dispatched unit last
cleared from the address of the occurrence.

Call Dispatch Delay Calculated time interval (in seconds) between
Reported Date and Time, and Dispatched Date
and Time.

Call Travel Time Calculated time interval (in seconds) between
Dispatched Date and Time, and Arrival Date
and Time.

Call On-Scene Time Calculated time interval (in seconds) between
Arrival Date and Time, and Cleared Date and
Time.

Call Response Time Calculated time interval (in seconds) between
Reported Date and Time, and Arrival Date and
Time.

Call Service Time Calculated time interval (in seconds) between
Dispatched Date and Time, and Cleared Date
and Time.

Total Call Time Calculated time interval (in seconds) between
Reported Date and Time, and Cleared Date and
Time.

Total Unit Service Time Calculated total service time (in seconds) of all
units that were dispatched in CAD, excluding
dispatching delay in the Communications Cen-
tre

Table 2.1: Fields in occurrence data

2.2.1 Call Priority

Each call received for service is assigned a priority based on its type. This priority may
change over the time as more information is collected about the situation. Final Priority
field in the dataset represents the last priority which was assigned to the call when the
incident was marked closed in CAD. For our experiments we use this priority to decide if a
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vehicle should be dispatched or not.

Following list describes each priority code[2]:

0 - Officer Needs Assistance
1 - Immediate
2 - Urgent
3 - Routine
4 - Delay - When Zone Officer Becomes Available
5 - Differential Police Response (DPR) - officer not required to attend; taken over the

phone at Police Reporting Centre (PRC)
6 - Collision Reporting Centre - motor vehicle collisions with property damage only;

complainant attends PRC
7 - Officer Initiated - officer generated and/or present at that location
8 - Proactive - event specifically generated due to community project, directed patrol,

strategic enforcement
9 - Administrative (Communications Alert); filed call not requiring police response

2.2.2 Time Intervals

Figure below depicts various time intervals involved in handling a call for service:

Figure 2.1: Time mileposts and time intervals in police emergency response system

Dispatch Delay (t2 - t1) - Duration until a dispatch is made for an incident. Call is usually
placed in a dispatch queue and is responded when a unit becomes available.

Travel Time (t3 - t2) - Travel duration from unit’s location to location of incident or call.
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Response Time (t3 - t1) - Total delay in responding to a committed call for service request.

On-Scene Time (t4 - t3) - Time spend between a unit’s arrival at the incident location to
when it is cleared.

Service Time (t4 - t2) - Time spend for a particular call for service, i.e. travel time plus
on-scene time.

2.3 Data Analysis

In this section, we perform data analysis on raw occurrence data for the year 2014. Study
of this data gives valuable insights about the call for service patterns and helps us in mak-
ing informed decisions for our studies. We should take into account that the statistics and
graphs presented in this section are based on raw data of calls. Given the complexity in-
volved in real-world policing operations, information released through dataset might not
accurately represent exact details of how a request was really handled.

From figure 2.2 we notice that the number of emergency calls is least among all types,
and communication alerts dominate overall occurrence data. Not all call for service requests
require a police officer to travel to the incident location; thus we focus our study only on
priority 1 to 4. Plot of location coordinates (figure 2.3) shows where the majority of calls
are reported which could give information about where patrol units should be concentrated.
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Figure 2.2: Plot showing count of Occurrence Number for each final priority for the year
2014.

Figure 2.3: Plot showing location details of priority 1 to 4 occurrences for the year 2014.
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In figure 2.4, the breakdown of calls in the year 2014 by month shows that the number
of priority 1 calls during each month are more or less consistent, while there exists a lot
of fluctuations for priority 4. With the help of figure 2.5 we can see that number of jobs
increase during the weekend.

Figure 2.4: The trend of count of Occurrence Number for each month broken down by final
priority for the year 2014. The marks are labeled by count of Occurrence Number.

Figure 2.5: The trend of count of Occurrence Number for first seven days of September
broken down by final priority.
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Information about the distribution of calls (figure 2.6) during each hour of the day gives
an insight about workload, as it can be seen that the evening hours are the peak hours when
the majority of incidents are reported, with early morning hours being relatively moderate.

Figure 2.6: Plot showing percentage of priority 1 to 4 calls reported during each hour of a
day for the year 2014.
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Analysis of time fields on data suggests that on average approximately 10 minutes of
travel time is required for jobs which is uniform throughout the year 2014. Higher value of
average dispatch delay in figure 2.7 is due to priority 4 calls, as they are delayed because of
unavailability of zone officers. There was a sharp swing for dispatch delay in February, but
it is not clear if it is because of some erroneous data or some unique incidents.

Figure 2.7: The trends of average dispatch delay, travel time and response time (in minutes)
for each month in the year 2014. The data is filtered on final priority, which ranges from 1
to 4.
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Another critical aspect is analyzing data from multiple years (figures 2.8, 2.9). Plotting
occurrence entries for the year 2014 and 2015 reveals that the number of calls among various
priorities has strikingly similar patterns in both the year. For priority 1-3, there isn’t any
major change in the number of occurrences in the year 2015 compared to 2014.

Figure 2.8: The trend of count of Occurrence Number for each quarter of year 2014 and
2015. The data is filtered on final priority, which ranges from 1 to 4.

Figure 2.9: The trend of count of Occurrence Number for month of September in year 2014
and 2015.
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2.4 Preparing Data for Experimentation

We choose occurrence data for the year 2014, which contains more than 2,90,000 records.
Each record provides detailed information regarding a particular call for service and how it
was handled. We will use information about location, reported date and time, cleared date
and time, and priority for our dispatching model.

2.4.1 Data Filtering

To test our models we need sufficient and accurate data with all the required fields. We
perform filtering based on various fields on original dataset.

Time fields: Since our work focuses only on police dispatching and shift scheduling, we
eliminate records with missing dispatch date, reported date, cleared date. This operation
removes significant data rows, which is apparent as most of the calls do not really require
any police dispatch or are handled over the phone. We found some calls with very high
values of on-scene time and response time. On the other hand, some data rows have time
fields, like travel time, service time, dispatch delay, etc., with negative values. We were not
able to find documentation explaining the significance of such values. Therefore we drop
all the entries with on-scene and response time greater than 8 hours, and time fields with
negative values.

Priority: WRPS occurrence dataset doesn’t provide information regarding how many police
officers respond to a call for service, nor if a police officer was dispatched for a particular
incident. On the basis of description of call priorities, we consider only priority 1, 2, 3, 4,
and 8 call types.

Location: Analysis of processed data shows that the location of some calls is outside the pri-
mary cluster of call requests. We pick jobs with Easting value between 532000 and 560000,
and Northing between 4795000 and 4820000.

After this data cleaning operation, we still have a high number of call for service data
for our studies. As we will see in next chapter, size of our model depends heavily on the
number of incidents. Since urgent calls have precedence during peak hours, we decided to
drop priority 4 calls between 6 PM to 4 AM for our experiments.
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Chapter 3

Police Dispatching

3.1 Preliminary

In this chapter, we will discuss how we can estimate a lower bound on number of police
officers for a known call for service data. To solve this problem, we decided to go with
mathematical programming approach. Linear programming (LP) is the most fundamental
tool in combinatorial optimization, where a problem in hand is represented with a linear
objective function which needs to be minimized or maximized, and a set of linear constraints
on nonnegative variables are used to represent the limitations. Mathematically, Linear Pro-
gramming is an optimization technique which could be represented in the following standard
form:

Minimize cTx

Subject to Ax ≤ b

and x ≥ 0

where x represents variables whose values we want to determine, c and b are the known
coefficients, cTx collectively represents the objective function of our problem, inequalities
Ax ≤ b and x ≥ 0 are the constraints.

Linear Programming was invented by George Dantzig in 1947, and has been a growing
area ever since. Industries in transportation, telecommunications, energy, and manufactur-
ing have been using it for decades for optimizing their operations.

3.2 Police Dispatching Problem

Let’s take an example of a call for service and understand the sequence of actions. Suppose
an incident occurs where an offender poses a serious threat to people, and a police service is
requested. This call for service is usually handled by a dispatcher, who collects the informa-
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tion and assigns a police unit to the incident. Police arrive on the scene and take necessary
action, and if required may initiate a call for service themselves. A police officer may also
need additional time to do any paperwork related to the incident. Once everything is in
order, police may signal the call as cleared by passing this information to dispatcher, where
it could be marked as completed or successful.

These service calls vary in terms of severity from regular administrative work to emer-
gency situations. Based on the severity, each call for service needs to be handled separately.
Generally, police departments assign a priority to each type of request on the basis of avail-
able information and predefined criteria. This priority decides how a particular call should
be handled and what actions are required. Service calls with low priority often involve delay
in dispatch so that high priority jobs do not get affected. Though delay in dispatch depends
on a lot of factors, it mostly comes down to the availability of police units in that area.
Since we cannot be sure about the nature of future service requests, it becomes really tricky
to decide assignment of a police unit to a service request.

Analysis of occurrence data has also shown that the number of calls for service among
different priorities varies based on season and day of the week. A constant number of police
officers on duty for each day would then lead to under-manning on some day and over-
manning on other. Thus decision on the number of police officers on duty on a particular
day in a particular region affects the overall dispatching of police officers for incidents.

As it is evident that increase in the number of police personnel would be an easy fix to
various objectives of efficient policing operation, this strategy leads to significant increase
in costs to government and public. On the other hand, the insufficient number of personnel
deployment would not only affect public but also police officers doing overtime to meet the
demands. It couldn’t be emphasized more that an efficient policing operation is of utmost
importance which could bring improvement in the daily life of people in the city.

3.3 Model Construction

We will describe a model for police dispatching with an objective to minimize the response
time. Response time is an essential metric for checking the efficiency of policing operations,
and in our model, we will try to obtain best response time with given number of police
officers.

We consider the static version of police dispatching, where we know all the details of
the call for service for a day in advance. This variant is in contrast to the actual dynamic
nature of dispatching where the next request is unknown to a dispatcher. We believe results
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from static version would give us valuable insights about domains which could be enhanced.
We denote each call for service as a job, with a location and priority associated with it. A
location would be the coordinates where unit needs to be present for handling the job.
Priority would determine how many patrol units are required for that job and maximum
possible dispatch delay. In our problem, we assign two police officers for priority 1 jobs and
one for rest of the priorities. Also, each job has a start time and end time. Start time would
be the time by which a police officer should arrive at the job location. End time would be
the time when the police officer is cleared from the job. When it comes to using WRPS
occurrence data, we will consider reported time as start time and call on-scene duration
added to reported time as end time.

Each police officer has a shift during which he/she is available for accepting jobs. In our
model we do not consider depot, and assume police officer is ready to take jobs immediately
as soon as shift begins. A police officer can handle only one job at a time and would
need to travel to the job location. Travel distance is calculated using euclidean distance
between location coordinates. Once done with a job, he/she would devote some fixed time
in proactive policing, during which no job would be assigned to that officer. Police officers
would not take a job with start time outside their shift, but could undertake a job which
started in their shift but ended beyond their shift. This would mean that police officer did
overtime in order to satisfy the requirements.

3.4 Big-M Method

In this section, we will present a basic formulation which uses Big-M method.

3.4.1 Notations

We define a set of notations to model our problem:

N = {1, 2, . . . , n} - set of all job requests.
P = {1, 2, . . . , p} - set of available police officers.
tbegin
j - time at which job j ∈ N is reported in the dataset.
tend
j - time at which job j ∈ N should finish if started at time tbegin

j .
τbegin

k , τ end
k - time at which shift for police officer k ∈ P starts and finishes.

cj - number of police officers required to service job j ∈ N .
dij - time cost to move from location of job i ∈ N to location of job j ∈ N .
proactive_time - a fixed proactive time after the end of each job.
Ej - maximum allowed delay in starting a job j ∈ N .
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3.4.2 Variables

We use following variables in our formulation:

xijk - binary, determines if police officer k is going to do job j after job i.
sjk - binary, determines if police officer k is going to do job j as first job.
fjk - binary, determines if police officer k is going to do job j as last job.
ej - non-negative continuous, determines delay in starting a job j ∈ N .

3.4.3 Modeling Problem as Network Flow

We model our problem as a network flow, where each job j ∈ N is represented as a node,
and a directed arc from job node a to job node b represents feasibility of doing job b after
job a. We also add a start node s and a final node f to our graph to represent source and
destination.

Handling priority 3 and 4 jobs
Jobs belonging to priority 3 and 4 are not urgent and therefore do not require immediate

police dispatch. We will use ej to measure the delay in starting a job j after its reported
time. To control jobs getting postponed for an arbitrary long duration, we will set maximum
allowed delay in responding to a job, denoted by Ej . For our model, we will consider Ej to
be zero for priority 1 and 2 jobs, and 2 hours for priority 3 and 4 jobs.

Condition for arc between nodes
There is an arc from start node s to every other job node, and each job node has an

outgoing arc to final node f . We will denote by A−(j) (respectively A+(j)) a set of incoming
(outgoing) arcs to (from) node j ∈ N . There exists an arc from node i ∈ N to node j ∈ N ,
i.e. (i, j) ∈ A−(j) and (i, j) ∈ A+(i), if following constraints hold true:

tend
i + dij + proactive_time ≤ tbegin

j + Ej (3.1)

Constraint (3.1) ensures that police officer has enough time to perform proactive work
and travel to his/her next job. We allocate a fixed proactive time after the end of the
job, represented by proactive_time, to take care of any community work or administrative
tasks. Also if job j could be postponed, we ensure that we don’t eliminate an arc without
considering the maximum delay.

3.4.4 Mathematical Formulation

Our IP objective function aims at minimizing response time, which is sum of delay (ej) in
starting a job and travel time (dij) between jobs. We use binary variables xijk specifying if
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police officer k traveled from job i to job j, sjk to indicate if police officer k did job j as
his/her first job, and fjk if job j was done as a final job in his/her shift.

min
∑
j∈N

(ej +
∑

i∈N :(i,j)∈A−(j)
dij(

∑
k∈P

xijk)) (3.2)

subject to

police start - a police officer can do max one job as a starting job:

∑
j∈N

sjk ≤ 1, ∀k ∈ P (3.3)

police finish - a police officer can do max one job as a final job. This constraint is
redundant given condition 3.3, but it could help solver in finding bounds:

∑
j∈N

fjk ≤ 1, ∀k ∈ P (3.4)

police officer transition through the node:

sjk +
∑

i∈N :(i,j)∈A−(j)
xijk =

∑
l∈N :(j,l)∈A+(j)

xjlk + fjk, ∀k ∈ P, ∀j ∈ N (3.5)

police officer shift constraint - first job should be after shift begins:

∑
j∈N

tbegin
j sjk ≥ τbegin

k , ∀k ∈ P (3.6)

police officer shift constraint - final job start time should be within the shift. We choose
a large enough value of M ′jk such that if fjk is zero, start time of job j need not be within
the shift of officer k ∈ P :

tbegin
j + ej ≤ τ end

k +M ′jk(1− fjk), ∀j ∈ N, ∀k ∈ P (3.7)

police requirement for jobs:

∑
k∈P

sjk +
∑
k∈P

∑
i∈N :(i,j)∈A−(j)

xijk = cj , ∀j ∈ N (3.8)

Big-M constraint - We choose a (big enough) value for Mij s.t. if xijk is 0, constraint
shouldn’t add any extra restrictions on ej and ei:

Mij(1− xijk) + tbegin
j + ej ≥ tend

i + ei + proactive_time+ dij , ∀k ∈ P, ∀i, j ∈ N (3.9)
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ej constraint - bound on maximum delay:

ej ≤ Ej , ∀j ∈ N (3.10)

variables:

xijk, sjk, fjk ∈ {0, 1}, ej ≥ 0, ∀k ∈ P, ∀i, j ∈ N (3.11)

3.4.5 Analysis

Values ofM play a significant role in Big-M formulations. If not selected carefully, they lead
to numerical problems and weak linear relaxations[15, 9]. It is possible to choose appropriate
values of M based on data inspections to avoid numerical issues, but still, the problem
of weak relaxation could remain[12]. We tested this formulation on Gurobi Optimizer, a
mathematical programming solver, with parameter value for MIP Gap at 0.10 and time
limit at 7200 seconds (2 hours). We assume car speeds of 40 kph, and proactive_time after
each job is considered as 20 minutes. Police officers have 24-hour shift, making them available
for any job in a day. Value of cj is two for priority 1 jobs, and one for other priorities. We
use data of September 1st 2014 with 263 jobs from the filtered dataset discussed in chapter
2 for evaluating our model. We used different values of police count from 25 to 35, and
couldn’t obtain a feasible solution within time-limit.

3.5 Time Discretized Method

In order to obtain a solution in reasonable time and incorporate delay for jobs in our model,
we need to modify our formulation approach. If we model lesser priority jobs as a single
node with a fixed start time, it becomes difficult to bring flexibility in dispatching. Thus we
create multiple copies of each priority 3 and 4 job at intervals of time δ from their original
start time, with start time and end time of copies adjusted accordingly. This adjustment in
start time for a job j would be mapped as delay, shj . For example, in our dataset, if there
is a priority 4 job with start time 8 AM, δ is set to 20 minutes, and we are creating five
copies of each priority 3 and 4 job, then five extra jobs would be created with start time
8:20 AM, 8:40 AM, 9:00 AM, 9:20 AM, and 9:40 AM with shj value 20, 40, 60, 80, and 100
respectively. These job copies would also be represented as a regular node in the network.
We will use N ′ to denote the set of all the original jobs and their copies if any. We will
describe by J(z) the set of related jobs of job z, i.e., set of copies of z and job z itself. We
call J(z) as job-set of job z. For other priority jobs, J(z) would only contain original job z.
A police officer could be assigned to any of the jobs in the job-set to satisfy original service
call request.
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3.5.1 Notations

Let’s define a new set of notations to represent our problem:

N = {1, 2, . . . , n} - set of all original job requests.
P = {1, 2, . . . , p} - set of available police officers.
N ′ = {1, 2, . . . , n′} - set of all job requests with copies.
tbegin
j , tend

j - time at which job j ∈ N ′ starts and finishes.
τbegin

k , τ end
k - time at which shift for police officer k ∈ P starts and finishes.

cj - number of police officers required to service job j ∈ N ′.
dij - time cost to move from location of job i ∈ N ′ to location of job j ∈ N ′.
shj - delay in starting a job. For priority 1 and 2, it will be zero.
proactive_time - a fixed proactive time after the end of each job.
gap_time - maximum possible time interval between two consecutive jobs by a police officer.

3.5.2 Variables

We use following variables in our formulation:

xijk - binary, determines if police officer k is going to do job j after job i.
sjk - binary, determines if police officer k is going to do job j as first job.
fjk - binary, determines if police officer k is going to do job j as last job.

3.5.3 Modeling Problem as Network Flow

We again model our problem as a network flow, where each job j ∈ N ′ is represented as a
node, and a directed arc from job node a to job node b represents feasibility of doing job b
after job a. We also add a start node s and a final node f to our graph to represent source
and destination.

Condition for arc between nodes
There is an arc from start node s to every other job node, and each job node has an

outgoing arc to final node f . We will denote by A−(j) (respectively A+(j)) a set of incoming
(outgoing) arcs to (from) node j ∈ N ′. There exists an arc from node i ∈ N ′ to node j ∈ N ′,
i.e. (i, j) ∈ A−(j) and (i, j) ∈ A+(i), if following constraints hold true:

tend
i + dij + proactive_time ≤ tbegin

j (3.12)

i, j /∈ J(z) ∀z ∈ N (3.13)
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Constraint (3.12) ensures that police officer has enough time to perform proactive work
and travel to his/her next job. We allocate a fixed proactive time after the end of the job,
represented by proactive_time, to take care of any community work or administrative tasks.
Next, with constraint (3.13) we restrict arcs between jobs belonging to the same job-set.

Edge elimination technique
One serious problem with constructing edges only based on previous criteria is that we

add a lot of edges because of copy nodes in the network. In an optimal solution, only one
incoming arc will be used out of all the arcs to nodes in a job-set of a job with cj as 1, but
our network size is unnecessarily inflated with all possible arcs between nodes. We propose
a technique to eliminate a significant number of edges between nodes. Figure 3.1 is an ele-
mentary network of three original jobs, represented in blue. We created two copy nodes (in
green) each for two of those jobs. Graph contains all the valid edges based on constraints
(3.12) and (3.13). We have skipped start node and finish node for simplicity. Assume path
indicated with arcs in orange is a feasible solution for the problem. The arc from Ja to Jb2

is the first arc in the path. Jb2 belongs to job-set {Jb, Jb1, Jb2}. We claim that if there is a
job in the job-set of Jb2 with start-time earlier than that of Jb2, with a valid arc from Ja (in
this case Ja to Jb1), then we can obtain another feasible solution by eliminating Ja to Jb2,
and considering Ja to Jb1 instead. This is because any job node which is reachable from Jb2

will also be reachable from a node in job-set of Jb2 which has start-time before that of Jb2.
Choosing a job earlier than Jb2 would mean improvement in response time. Therefore we
add the following two conditions for having an arc from node i ∈ N ′ to node j ∈ N ′.

There exists no job j′ other than j in job-set J(z), where j ∈ J(z) and z ∈ N , s.t:

tend
i + dij′ + proactive_time ≤ tbegin

j′ (3.14)

with

tbegin
j′ ≤ tbegin

j (3.15)

These two conditions limit arc from a job i ∈ N ′ to only one copy of job z ∈ N . We
select this by choosing the earliest copy job node in time which is reachable from job i.
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Figure 3.1: A simple three job (in blue) network with two jobs having two copy nodes each
(in green). Time horizon is of 24 hours, i.e., 1440 minutes

To further restrict the size of the graph we introduce constraint (3.16), which removes
arcs between job nodes which are far apart in time, precisely, the time difference between
next job start time and current job end time should be less than gap_time. One additional
benefit of this approach is that it helps in reducing the gap between consecutive jobs of a
police officer. Thus there won’t be a case where a police officer finished a job at 9 AM, and
his next job was at 4 PM, if gap_time was set to 3hrs.

tbegin
j − tend

i ≤ gap_time (3.16)

3.5.4 Mathematical Formulation

Our IP objective function aims at minimizing response time, which is sum of delay (shj)
in starting a job (because of picking a job which is a copy of original job) and travel time
(dij) between jobs. We use binary variables xijk specifying if police officer k traveled from
job i to job j, sjk to indicate if police officer k did job j as his/her first job, and fjk if job
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j was done as a final job in his/her shift.

min
∑

j∈N ′

((
∑
k∈P

shj(
∑

i∈N ′:(i,j)∈A−(j)
xijk + sjk)) +

∑
i∈N ′:(i,j)∈A−(j)

dij(
∑
k∈P

xijk)) (3.17)

subject to

police start - a police officer can do max one job as a starting job:

∑
j∈N ′

sjk ≤ 1, ∀k ∈ P (3.18)

police finish - a police officer can do max one job as a final job. This constraint is
redundant given condition 3.18, but it could help solver in finding bounds:

∑
j∈N ′

fjk ≤ 1, ∀k ∈ P (3.19)

police officer transition through the node:

sjk +
∑

i∈N ′:(i,j)∈A−(j)
xijk =

∑
l∈N ′:(j,l)∈A+(j)

xjlk + fjk, ∀k ∈ P, ∀j ∈ N ′ (3.20)

police officer shift constraint - first job should be after shift begins:

∑
j∈N ′

tbegin
j sjk ≥ τbegin

k , ∀k ∈ P (3.21)

police officer shift constraint - final job’s start time should be within the shift:

∑
j∈N ′

tbegin
j fjk ≤ τ end

k , ∀k ∈ P (3.22)

police requirement for jobs - if copies of a job were created, then count of police officers
over all job copies should be equal to original job demand. Only priority 3 and 4 jobs have
copies, which have demand cz as one:

∑
j′∈J(z)

(
∑
k∈P

sj′k +
∑
k∈P

∑
i∈N ′:(i,j′)∈A−(j′)

xij′k) = cz, ∀z ∈ N (3.23)

variables:

xijk, sjk, fjk ∈ {0, 1}, ∀k ∈ P, ∀i, j ∈ N ′ (3.24)
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3.6 Estimating Lower Bounds

Values for various parameters govern the output of our model. One such important param-
eter is the number of police officers. Our focus in the first stage of our experiment is to
estimate the lower bound on the number of police officers for satisfying demands in a day,
which would then be fed into the second stage for shift scheduling. As this value would
depend on shift length being used, we would consider 24-hour shift for all the police officers
in this step. We run our model with different input values of police officer count and select
the feasible solution obtained within the time limit with least number of police officers. By
this approach, we estimate the minimum count of police officers for satisfying demand and
then a dispatching strategy which reduces response time.

3.7 Implementation and Experimental Results

We capture the mathematical programming formulation mentioned in section 3.5.4 in an LP
format, which could be passed to Gurobi Optimizer. LP format is an easy to read modeling
format structured as a list of segments, where each segment represents a logical piece of the
optimization model.

In this run, we consider a time horizon of 24 hrs, i.e., 1440 minutes. Police officers have
24-hour shift, therefore τbegin

k is 0 and τ end
k is 1440, making them available for any job in

a day. Value of cz is two for priority 1 jobs, and one for other priorities. We create five
copies of priority 3 and 4 jobs, with δ as 20 minutes. We fix the value of gap_time at
180 minutes, which would give more compact scheduling of police officers. We assume car
speeds of 40 kph, and proactive_time after each job is considered as 20 minutes. Changing
values for these parameters would generate different solution, but considering a small set
of combination would be sufficient to prove the core concept of dispatching and scheduling.
For Gurobi Optimizer, we set parameter value for MIP Gap at 0.10 and time limit at 3600
seconds (1 hour).

We use the filtered dataset discussed in chapter 2 for evaluating our model. We will
consider two weeks from the year 2014: September 1st to September 7th, and March 31st
to April 6th. We will present results for both the weeks but would focus our attention on
output from September 1st week for detailed analysis. Table 3.1 and 3.2 gives statistics
obtained from execution of our model. We don’t see any visible pattern in response time
based on the number of jobs and police count. Results compiled on using different officer
count on Sept 6th data (table 3.3) shows how response time decreases with increase in officer
count.
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Table 3.1: Estimated lower bounds on officer count for each day of 1st week of September
2014 (based on 1 hour timeout limit)

Table 3.2: Estimated lower bounds on officer count for each day of 1st week of April 2014
(based on 1 hour timeout limit)

Table 3.3: Response time output for different count of police officers for Sept 6th 2014 data

Analysis of results for a particular day show some exciting aspects of our model. Figure
3.2 asserts that our model could generate very good response time for all the priorities com-
pared to real-world response time targets. Report on General Duty Staffing Assessment for
Surrey[6] mentions that 7 minutes of emergency response time is considered reasonable from
the cost perspective, and provides satisfactory service to the public. With the current model,
we were able to achieve an average of 3-5 minutes of response time for priority 1 and 2 calls.
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Though response time is optimized, officer scheduling generated as a result has some issues.
From figures 3.3 and 3.4 we notice that the job count for police officers is disproportional
and some of the officers had no job assigned in the morning, but others had a busy schedule.

Figure 3.2: Response time statistics for September 6th 2014 with 30 police officers

Figure 3.3: Job count of police officers for September 6th 2014 with 30 police officers
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Figure 3.4: Job schedule for each police officer for September 6th 2014 on time horizon of
1440 minutes (24 hours). Blue section marks the time duration when the police officer was
attending a job.
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3.8 Conclusion

We explored the problem of police dispatching and presented a mathematical programming
formulation with the aim to minimize response time. We evaluated our model on WRPS
dataset and estimated officer demand for a week of September and April 2014. We also
performed detailed analysis on the results for a single day, September 6th, and discussed
statistics on response time and officer schedules.

30



Chapter 4

Shift Scheduling

4.1 Background

A shift schedule could be described as a record of employee availability on each day of a
week. Industries or services which require 24/7 availability of personnel often implement
their work schedule as a sequence of different types of shifts. A shift involves a collection of
working hours on particular days followed by a rest period. In policing industry, the prob-
lem of generating shift schedules for police officers could be considered as an optimization
problem in which demand for personnel must be satisfied with conditions on total working
hours of police officers, work policies, and other preferences. Though manual approach of
generating shifts is often a laborious task and limited to finding a feasible solution, it is still
fairly common in many areas. Use of mathematical models, on the other hand, is not only
easy and accurate but provides much better performance. Best example of this would be of
San Francisco Police Department(SFPD), which moved away from hand designed schedules
and implemented Police Patrol Scheduling System (1989)[14] and saw a significant upgrade
in productivity with 20% improvement in response times.

Shift designs in other industries have also garnered major interest among researchers.
One such problem is of nurse scheduling, where work schedule is developed for nurses in the
health-care sector. Berrada et al.[7] and Miller[18] tackled this by developing mathematical
programming models with the objective to optimize staffing needs and incorporating per-
sonal preferences of individual nurses. For shift scheduling in call centres, queuing models
and heuristics were derived by Andrews et al.[5] and Buffa et al.[8]. Also, quality of shifts
cannot be justified solely based on quantitative optimizations, in this regard work published
by Vila et al.[21] discusses how various aspects of a shift affects police officer’s health and
performance. He mentions that a study conducted on officers with fewer workdays in a week
showed lesser fatigue than those with 5-day on and 2-day off, 8-hour shifts.
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Our aim concerning shift scheduling would be to consider a set of standard patrol shift
types in the police departments and satisfy officer demands.

4.2 Demand Table for Shift Scheduling

To put in simple terms, a demand table is a record of police officer requirements in each
hour of a day or week. We generate this data for a day from the output of our dispatching
model based on the jobs considered for that day. For each hour of a day, we count the
number of police officers assigned to a job or doing some proactive duty. If we plan to create
demand table for a week, we run our dispatching model for every day of that week.

It is essential to understand the significance of demand table with regard to shift schedul-
ing. They provide patterns in requirement which could be used to adjust shift timings to
optimize overall number of policing personnel on duty. It should also be noted that using
demand tables alone doesn’t suffice personnel requirements in the real world. This is be-
cause of nature of policing industry where work is carried out continuously, 24/7. Impact
of leaves, vacations, training and other activities sharply increases the actual requirement
of employees.

4.3 Model for Shift Scheduling

We aim to create an LP model for generating shifts based on demands. Since shifts are
generally scheduled for a week, we use demand data for each hour of that week. Our LP
model is inspired by the work done by Bruce Rout[19] at Simon Fraser University, where
he proposes a rod-schedule method. In the rod-schedule method, we represent a length of
time, in our case 168 (hours in a week), divided into sections on a rod. For instance, for
a week, the first section would denote Monday 00:00 hour and last section Sunday 23:00.
Each section holds a binary value, 1 if a police officer is working in that hour of the week, or
0 if not. A rod could then be used to model a week of shift for an employee, and a collection
of such rods could be used to fulfill demands for a particular week.

Following is an example of a rod:
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These rods could be used for describing any shift patterns, but only a set of shift sched-
ules are practical. Policing industry, like any other industry is bound by union and govern-
ment regulations which formulate working hours and timings for workers. Several studies
are conducted to design shifts which try to accommodate workers safety, health, family
care, and satisfaction, and effect of those shift schedules have shown better job performance
and personal life for individuals. Therefore only specific shift patterns should be consid-
ered for scheduling. Details of 10-hour shift and 11-hour shift were found in various police
reports[13, 20] with 4 or 5 different start times in a day.

In our model, we consider police officers work 40 hours a week. A shift schedule for a
week is decided based on shift type, and start day and time of shift. For example, a 10-hour
weekly-shift with four days on and three days off, having a start time of say Monday 8 AM,
would have a schedule of 8 AM - 6 PM from Monday to Thursday, with rest days from Friday
to Sunday. An 8-hour weekly-shift with five days on and two days off, having a start time of
say Wednesday 4 PM, would have a schedule of 4 PM - 2 AM from Wednesday to Sunday,
with rest days from Monday to Tuesday. A 40-hour work week on a rod representation
would have forty ones and rest zeros. For instance, 10-hour shift with start time on Monday
12 AM would have ones at sections 0-9, 24-33, 48-57, and 72-83.

4.3.1 Notations and Variables

Let’s define a set of notations to represent our problem:

L = {1, 2, . . . , l} - set of allowed shift types, i.e., 8-hour, 10-hour, 12-hour, etc.
T = {1, 2, . . . , t} - set of allowed start times, i.e., Monday 12 AM, Monday 8 AM, Tuesday
12 AM, Tuesday 8 AM, etc.
<∗i,j - a vector of ones and zeros, representing the rod with shift type i ∈ L and start time
j ∈ T , with length 168.

Variables:
Qi,j - number of officers following shift schedule based on rod vector <∗i,j .

4.3.2 Mathematical Formulation

Considering each rod represents 40 hours of work in a week, our objective function would
be to minimize total work hours:

min
∑
i∈L

∑
j∈T

40Qi,j (4.1)

subject to
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demand satisfaction for each hour - <∗ is the binary constrained matrix with 168 rows
and (l ∗ t) columns, where l and t is size of set L and T respectively. Columns in <∗ are rod
vectors <∗i,j , q is the vector with members Qi,j , and d is the demand vector with members
dh, h ∈ {1,2,3...168}, where dh is the demand in hour h of the week.:

<∗q ≥ d (4.2)

non negative values for Qi,j :

q ≥ 0 (4.3)

4.4 Finding Number of Police Officers

Results from shift scheduling formulation would give us the number of police officers needed
for each type of shift. Adding them would tell us the minimum number of police officers
required to meet demands for that particular week. As mentioned in previous sections, this
number is just based on police officer requirements for jobs. The actual required number
would vary significantly based on policies and other work commitments. It is interesting
to note that this number might still require police officers to work overtime if they take
jobs which start in their shift but end outside their shift. Also, the count of police officers
in each shift calculated based on a particular week’s data would most likely fail to satisfy
demands for other weeks. This is obvious as demands change across weeks, more so in
different seasons.

4.5 Implementation and Experimental Results

We again use Gurobi Optimizer for our shift scheduling problem. To test our model we
separately examine two shift types with total 40 working hours per week: 10-hour shift with
4 days on and 3 days off, and 8-hour shift with 5 days on and 2 days off. We also consider
only fixed set of start times for weekly-shifts, precisely, 12 midnight, 8 AM and 4 PM, on
each day of a week. Selecting this period will allow for 2-hour overlap between upcoming
shift and current shift for 10-hour based schedule, while there won’t be any such overlap for
8-hour based schedule. Overlaps could be significant in handling jobs reported around shift
change. Demand data for September 1st week based on results from dispatching model is
summarized in table 4.1.

MIP solver returns optimal results in few seconds, which are mentioned in table 4.2 and
4.3. Based on 10-hour shift, 139 police officers are required, while with 8-hour shift only
113 officers are needed. To better understand the meaning of this result we plot a graph
between demand and number of police officers required based on the optimal solution. Fig-
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ure 4.1 and 4.2 provide closeness of fit, where it could be seen that for 10-hour shift there
are spikes during particular hours. This is caused by 2 hour overlap with our shift selec-
tion. In 8-hour shift we didn’t consider overlap and thus obtain a much better fit to demand.

Table 4.1: Estimated hourly demand of police officers during the 1st week of September
2014
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Table 4.2: The number of police officers required in each 10-hour shift type for demand in
table 4.1. First column is the type of shift, which is 10-hour shift. Second column is day of
week, with 0 for Monday, 1 for Tuesday and so on. Third column gives start hour with value
between 0-23. Fourth column is the output of the model, i.e. count of the police officers.

36



Table 4.3: The number of police officers required in each 8-hour shift type for demand in
table 4.1. First column is the type of shift, which is 8-hour shift. Second column is day of
week, with 0 for Monday, 1 for Tuesday and so on. Third column gives start hour with value
between 0-23. Fourth column is the output of the model, i.e. count of the police officers.
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Figure 4.1: Line graph showing officer demand and actual availability based on 10-hour shift
with start times 12AM, 8AM, and 4PM

Figure 4.2: Line graph showing officer demand and actual availability based on 8-hour shift
with start times 12AM, 8AM, and 4PM
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4.6 Conclusion

We used the rod-schedule method to estimate personnel requirements to satisfy hourly
demands of officers for a week. Results from 10-hour and 8-hour shift types with start
times 12 AM, 8 AM and 4 PM were analyzed on WRPS occurrence data for the first week
of September 2014. 10-hour based schedules with shift overlap require 139 police officers,
while 8-hour based schedules without shift overlap require only 113 officers.
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Chapter 5

Shift Based Dispatching

5.1 Objective Function for Model

In first stage of our approach we used officers with 24-hour shift, which is unrealistic in
actual policing operations. In order to make our first stage model more practical, we need
to make some modifications. To begin, we will use shift schedules generated using rod-
schedule method for our dispatching decisions. A police officer is assigned a shift based
on the requirements obtained from our shift scheduling run. This police officer would only
take jobs belonging to his/her shift. Now input to our program would include the total
number of police officers with their availability hours. In the first stage of our approach we
optimized dispatching for better response times, but in this step, we would minimize officer
overtime keeping other parameters same. In the real world, overtime plays a vital role in
dispatching decisions, where an officer is often not allocated any new incident investigation
if it is reported at the end of his/her shift, given other officers are available.

5.2 Mathematical Formulation

We add a constraint to calculate officer overtime and change our objective function to
minimize it. Rest of the constraints and formulation remains same as in section 3.5.4. We
use non-negative continuous variable yk to represent total overtime done by police officer
k ∈ P . Our modified formulation would look like:

min
∑
k∈P

yk (5.1)

subject to

police start - a police officer can do max one job as a starting job:

∑
j∈N ′

sjk ≤ 1, ∀k ∈ P (5.2)

40



police finish - a police officer can do max one job as a final job. This constraint is
redundant given condition 5.2, but it could help solver in finding bounds:

∑
j∈N ′

fjk ≤ 1, ∀k ∈ P (5.3)

police officer transition through the node:

sjk +
∑

i∈N ′:(i,j)∈A−(j)
xijk =

∑
l∈N ′:(j,l)∈A+(j)

xjlk + fjk, ∀k ∈ P, ∀j ∈ N ′ (5.4)

police officer shift constraint - first job should be after shift begins:

∑
j∈N ′

tbegin
j sjk ≥ τbegin

k , ∀k ∈ P (5.5)

police officer shift constraint - final job’s start time should be within the shift:

∑
j∈N ′

tbegin
j fjk ≤ τ end

k , ∀k ∈ P (5.6)

police requirement for jobs - if copies of a job were created, then count of police officers
over all job copies should be equal to original job demand. Only priority 3 and 4 jobs have
copies, which have demand cz as one:

∑
j′∈J(z)

(
∑
k∈P

sj′k +
∑
k∈P

∑
i∈N ′:(i,j′)∈A−(j′)

xij′k) = cz, ∀z ∈ N (5.7)

police officer overtime constraint - calculates overtime done by a police officer:

∑
j∈N ′

(tend
j + proactive_time)fjk − τ end

k ≤ yk, ∀k ∈ P (5.8)

variables:

xijk, sjk, fjk ∈ {0, 1}, ∀k ∈ P, ∀i, j ∈ N ′ (5.9)

5.3 Experiment and Results

For experiments, we set the time limit of 2.5 hours on MIP solver. Again, we consider the
same parameter values as used in 1st stage of approach. We consider a time horizon of 24 hrs,
i.e., 1440 minutes. Values of τbegin

k and τ end
k is decided based on shift schedules. Value of cz is

two for priority 1 jobs, and one for other priorities. We create five copies of priority 3 and 4
jobs at repeated intervals of 20 minutes. We fix the value of gap_time at 180 minutes, which
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is the maximum possible time interval between two consecutive jobs by a police officer. We
assume car speeds of 40 kph, and proactive_time after each job is considered as 20 minutes.

Table 5.1 is the digest of results for September 2014 1st week with 10-hour shift sched-
ule. Third column of the table contains total officer hours based on shift based dispatching,
which is calculated by adding all the shift hours of police officers available on a particular
day. Fourth column is the total officer hours used, calculated based on the demand table
4.1. Then we report overtime best bound, and obtained solution by Gurobi Optimizer. We
notice that officer shifts successfully handled all the jobs for the whole week. Total daily
overtime values ranged from 341 minutes on Sept 4th to 1659 minutes on Sept 5th, which
could be considered reasonable given the number of officers on duty each day(fig. 5.1). For
example, on Sept 1st, average overtime is around 11.38 minutes per officer. Also, this over-
time includes proactive time after their last job, which could be avoided if work is going
beyond officer’s shift. Response time values(fig. 5.2) see an increase compared to 1st stage
results, which is expected as the focus in this stage was to minimize overtime.

Table 5.1: Results for 1st week of Sept 2014 with 10-hour shifts: showing total officer hours
each day and total of overtime (in minutes) from all police officers
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Figure 5.1: Count of police officers on duty on each day based on 10-hour shift schedule

Figure 5.2: Response time analysis based on results of shift based dispatching for Sept 6th
2014
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On 8-hour shift schedules (table 5.2), we get some interesting results, where total over-
time varied from 1771 minutes to 3561 minutes. This is because of non-overlapping shift
schedules in 8-hour shifts, as we considered shifts with start time 12-midnight, 8 AM, and
4 PM. Also, as a consequence total officer hours is reduced, as graphed in figure 5.3.

Table 5.2: Results for 1st week of Sept 2014 with 8hr shifts: showing total officer hours each
day and total of overtime (in minutes) from all police officers

Figure 5.3: 8hr and 10hr shift comparison based on total officer hours allocated for each day
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The most intriguing result was when 10-hour shifts generated based on the year 2014
data fulfilled the requirement of the year 2015. Outputs mentioned in table 5.3 show the
successful assignment of officers for the jobs in 1st week of September 2015 with moderate
overtime.

Table 5.3: Results on 1st week of Sept 2015 using schedule generated for Sept 2014 1st week.

5.4 Conclusion

We examined how our shift schedules affect police dispatching by evaluating our revised
model on the first week of September 2014 data. First, we discussed results based on 10-
hour shifts where allocated police officers could satisfy demand with moderate overtime.
Next, we compared results for 8-hour shift schedules with 10-hour based schedules. Finally,
we demonstrated how shift generated on the year 2014 data could meet demands for the
year 2015 occurrences.
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Chapter 6

Conclusion

In this work, we studied the various aspects of police patrol allocation strategies and pre-
sented a model for dispatching and shift scheduling. We first determine a dispatching plan
by estimating smallest police force with 24-hour shift schedule. This schedule establishes
the hourly police patrol requirements to successfully service the jobs minimizing the total
response time. The second part involves selecting a smallest size police force with shift
schedules to satisfy the hourly job load determined in the first part. The third part is to
verify and determine the dispatching schedule of the job data using the police force with
schedules established by the second part. We develop mathematical programming models
for our problem and test them on Waterloo Regional Police Service Occurrence Data, eval-
uating the performance on various criterion, like response time, officer overtime, and total
number of police officers. For the experiment data of the first week of September 2014, we
estimated that 139 police officers with 10-hour based shift schedules with start times 12
AM, 8 AM, and 4 PM could satisfy the call for service requirements. Based on the proposed
dispatching model, we obtained average response time of around 8 minutes for priority 1
and 2 jobs, while it was under an hour for priority 3 and 4.

We believe our approach gives an insight into the interactions between the resources
needed and their assignment in policing agencies, which could then be used to analyze
current operations and assist in any future policy changes.
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