
Advanced Techniques for Bounded and
Unbounded Repetition in Parabix

Regular Expression Search
by

Dong Xue

B.Sc., University of Science and Technology of China, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Science

c© Dong Xue 2017
SIMON FRASER UNIVERSITY

Fall 2017

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Dong Xue

Degree: Master of Science

Title: Advanced Techniques for Bounded and Unbounded
Repetition in Parabix Regular Expression Search

Examining Committee: Chair: Leonid Chindelevitch
Assistant Professor

Robert D. Cameron
Senior Supervisor
Professor

Fred Popowich
Supervisor
Professor

Arrvindh Shriraman
Examiner
Associate
Professor

Date Defended: 12 September 2017

ii

Abstract

The three-level architecture of the regular expression search tool named icGrep, which
is based on a pure parallel Parabix framework, has shown great speedup compared to
conventional search tools. This thesis proposed some advanced techniques for bounded and
unbounded repetition in Parabix regular expression search. We first accelerated the bounded
repetition type of Unicode unit-length regular expressions by utilizing a log2 technique
with the UTF8-to-UTF32 pipeline. To reduce the overhead brought about by the UTF-
8-to-UTF-32 transformation, the multiplexed character classes concept was proposed. For
the unbounded repetition part, we have reviewed finite automata theory for application
to Parabix regular expression matching and proposed a totally different compile pipeline
for the local language. In the meanwhile, we proposed star-normal-form optimization to
make the RE abstract syntax tree less complex and less ambiguous. All of these innovative
techniques have demonstrated their performance dealing with repetition against the basic
pipeline.

Keywords: icGrep; Regular Expression; Parabix; Repetition

iii

Dedication

I feel honoured to have get the guidance of Professor Robert Cameron. Weekly meetings
with Rob really help a lot, and I can’t figure out many things by myself. I not only benefit
a lot from him in academic studies, but also gain much life experience that can never be
got from the textbooks.

I would be grateful to professor Fred Popowich for his great patience in assisting my
thesis review. Thanks to all my friends in professor Rob’s laboratory. Nigel and Linda have
helped me a lot on the icGrep pipeline and Parabix framework.

I would like to acknowledge my parents, who have given as much support as I need.

iv

Table of Contents

Approval ii

Abstract iii

Dedication iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Programs ix

1 Introduction 1

2 Background 4
2.1 Parabix Framework . 4
2.2 Kernel Programming in Parabix Framework 6
2.3 Regular Expression Matching . 6

2.3.1 Regular Expression . 6
2.3.2 Matching Process . 7

2.4 Repetition Type . 11
2.5 Review of Finite Automata Theory for IcGrep 11

2.5.1 Local Language . 11
2.5.2 Automata Construction . 11
2.5.3 Star Normal Form . 14

3 Design Objective 16
3.1 Accelerate Bounded Repetition . 16

3.1.1 Log2 Technique for Fixed-length Bounded Repetition 16
3.1.2 Extend the application of Log2 Technique 17

3.2 Add Star Normal Form Pass . 17
3.3 Glushkov Construction’s Application to Parabix Regular Expression Matching 18

v

4 Implementation 20
4.1 Bounded Repetition . 20

4.1.1 UTF-8 to UTF-32 Pipeline . 20
4.1.2 Multiplexed Character Classes Pipeline 26

4.2 Unbounded Repetition . 30
4.2.1 Star Normal Form Pass . 30
4.2.2 New Compile Pipeline for Local Language 32

5 Performance Evaluation 35
5.1 Bounded Repetition . 35
5.2 Unbounded Repetition . 38

5.2.1 Star Normal Form . 38
5.2.2 New Compile Pipeline for Local Language 39

6 Conclusion and Future Work 41
6.1 Conclusion . 41
6.2 Future Work . 41

6.2.1 Log2 Technique for Bounded Repetition of Arbitrary Length Regular
Expression . 41

6.2.2 Support for Extended Regular Expression Types 42

Bibliography 43

Appendix A Code 45

vi

List of Tables

Table 2.1 Matching Time for Complex Expressions (s / GB) [12] 10

Table 4.1 The Structure of UTF-8 Encoding . 20
Table 4.2 Kernel Cycles for matching ".{4}" on the 19 MB XML file by U8U32

Pipeline . 26
Table 4.3 Bitset which indicates whether the breakpoint belongs to the source CCs 27
Table 4.4 Kernel Cycles for matching ".{4}" on the 19 MB XML file by Multi-

plexed Pipeline . 30

Table 5.1 The Hardware Configuration of the Test Machine 36
Table 5.2 Averaged Matching Time for Different Repetition Times(ms/MB) . . 36

vii

List of Figures

Figure 2.1 Transform bytestream "Parabix" into eight bit streams 4
Figure 2.2 Advance Operation . 5
Figure 2.3 ScanThru Operation . 5
Figure 2.4 MatchStar Operation . 6
Figure 2.5 Architecture for icGrep [12] . 8
Figure 2.6 Match "p[a-z]∗r" in the text stream 10
Figure 2.7 Match "nihao" in the Chinese text stream 10
Figure 2.8 Rules for Thompson Construction 13

Figure 3.1 Match "abc" by the pipeline enlightened by Glushkov automaton . 18
Figure 3.2 Match "aba" by the pipeline enlightened by Glushkov automaton . 19

Figure 4.1 Transformation from UTF-8 to UTF-32 21
Figure 4.2 Pipeline for icGrep . 23
Figure 4.3 Pipeline for deletion on U8U32 bits 24
Figure 4.4 Pipeline for deposit on Matches Stream 25
Figure 4.5 Four streams before swizzling . 25
Figure 4.6 Four streams after swizzling . 25
Figure 4.7 Pipeline for icGrep with multiplexed character classes 29

Figure 5.1 Performance on Three Different Files 37
Figure 5.2 Averaged Matching Time(Log2 Pipelines vs. pcregrep) 38
Figure 5.3 Performance for star normal form pass with respect to different num-

bers of starred subexpressions inside the bracket 39
Figure 5.4 Performance for star normal form pass with respect to different

nested levels of starred subexpressions 40
Figure 5.5 Performance for local language with respect to different nested levels

of starred subexpressions . 40

Figure 6.1 Log2 technique for arbitrary length repetition type 42

viii

List of Programs

4.1 Regular Expression AST for "(a∗b∗)∗" . 31
4.2 Regular Expression AST for "(a∗b∗)∗" in Star Normal Form 31
4.3 Pablo Primitives for RE "(a∗b∗)∗" in Star Normal Form 31
4.4 Pablo Primitives for RE "(a∗b∗)∗" . 32
A.1 U8 to U32 Transformation . 45
A.2 Multiplexed Character Classes Pipeline . 48

ix

Chapter 1

Introduction

Most of the traditional regular expression search tools use the finite automata, which in-
cludes the deterministic finite automaton(DFA) and nondeterministic finite automaton(NFA),
to recognize the giving regular expressions and then search the given text based on the fi-
nite automata. There are many algorithms to convert the regular expression into NFA,
such as Thompson [19] and Glushkov constructions [15]. Due to the reality that a number
of states become active when traverse the text, it is impossible to match a regular expres-
sion of length m in a text of length n less than O(mn) time with this NFA in most cases.
Therefore, they try to convert the NFA into DFA, which has one active state exactly at
one time and can reduce the time complexity to O(n) [19]. However, this might lead to
state explosion when doing the conversion. Besides the utilization of NFA or DFA, there
are various regular expression engines using the concept of backtracking. In a backtracking
algorithm, if a symbol fails to match, then the regular expression engine will return to a
previously saved position or state, where it could have taken a different pass, to continue
the search for a match. It will take O(mn) time when the expression doesn’t include any
alternation constructs. In some worst cases, the search engine may explore all potential
paths and result in an explosion of the time we spent.

All of the above-mentioned algorithms are proved to be difficult to parallelize, and must
match the regular expressions in the given text byte-at-a-time [9]. Cameron proposed the
Parabix framework which utilize the concept of parallel bit streams [4]. IcGrep is a regular
expression search tool based on the pure parallel Parabix technology and a three-level
compilation architecture [17] .

The first level is the regular expression, which gets the input of regular expressions
from the command line, parses them into abstract syntax tree forms, and finally compiles
them into three-address Parabix equations. The second level is the Parabix, which gets the
Parabix equations as inputs, and finally compiles them into LLVM IR form. The last level
is LLVM, which dynamic compiles and links the LLVM IR, and finally generates a function

1

finding all the matches to the regular repressions. There are corresponding optimizations
for each level, in the form of passes.

This thesis mainly focuses on proposing some advanced techniques for bounded and
unbounded repetition types in Parabix regular expression search. The traditional searching
tools such as GNU grep, rg etc. that are NFA or DFA-based usually expand the repeti-
tion into an equivalent form of multiple copies [14]. For example, the expansion of "R{3}"
is "RRR"; the expansion of "R{3, }" expands to "RRR+"; the expansion of "R{2, 6}" is
"RRR?R?R?R?". The number of states in the finite automaton will grow as the num-
ber of repetitions grows. Other tools such as Perl, PCRE, Python, Ruby etc. that are
backtracking-based use recursive matching loops to count the repetition type [14]. Either
way, the process of matching repetition is slow and large repetition counts will be unwise.

In the Parabix-LLVM framework, the normal pipeline utilizes the log2 technique [3] to
optimize repetition of byte-length type, which has shown a great benefit to performance
and can support very large count numbers. In this paper, we want to extend the application
to more general cases, especially the repetition of Unicode-unit-length type. At first, we
proposed the UTF8 to UTF32 pipeline to accelerate this case. Although we have already
got significant performance increases with this pipeline, we find that the overhead caused by
the UTF8 to UTF32 transformation is becoming more obvious with the times of repetition
becoming less. Therefore, the multiplexed character classes concept is proposed to minimize
the overhead, and the experimental results are in good agreement with theory.

Besides the cases of bounded repetition type, we have also explored new approaches
to optimize the regular expressions with unbounded repetition type. We have reviewed
the finite automata theory for application to Parabix regular expression matching, and
proposed star-normal-form optimizations in RE level, which makes the RE abstract syntax
tree less complex and more unambiguous. We also utilize the algorithm of Glushkov NFA
construction to propose totally new compile logic for local language, by which it can be
checked more efficiently. Both of these two methods enlightened by automata theory have
shown their performance against the conventional tools and the original icGrep pipeline.

The chapters are organized as following: Chapter 2 provides the basic background in-
formation about the Parabix framework, kernel programming in this framework, regular
expression matching process, repetition type, and some basic knowledge in the automata
theory area. Chapter 3 shows the objective of dealing with regular expression with counting.
Detailed implementation of UTF8-to-UTF32 pipeline is described first in Chapter 4, and in
order to minimize the overhead brought by the transformation from UTF8 to UTF32, we
proposed totally new pipeline that based on multiplexed character classes concept. In the
chapter 5, we compared their performance with the previous version of icGrep and some
unix command-line search tools, such as GNU grep, pcregrep and rg. Finally, the conclu-
sion is outlined in Chapter 6. In the meanwhile, we proposed the potential way to extend

2

the application of log2 technique to arbitrary repetition type and identified the idea to add
support for more regular expression types in the Parabix framework.

3

Chapter 2

Background

2.1 Parabix Framework

The Parabix toolchain takes a new form of input rather than conventional byte streams
[4, 17]. It first transforms the original byte streams into several parallel basis bit streams
based on the encoding form. As the example shown in Figure 2.1, we’ll get eight basis bit
streams for UTF-8, each of which represents a corresponding bit in a byte. In this case, we
can take full advantage of the characteristic of SIMD registers, and process block-size data
at one time. The block size is decided by the width of SIMD register, which varies from
128 bits to 512 bits based on the different architecture. For instance, we can process 128
bits at one time with SSE2, Neon, and 256 bits at one time with AVX2.

All the Parabix programs are operated on unbounded bit streams, which are considered
to be long integers. Conceptually, these unbounded bit streams are computed at the same
time. But in practice, they are separated to blocks and computed block-by block, where
the block size is the width of SIMD register. If specific operations cause the last bits in the
current block to cross the boundary, then we need to use the carry queue to move them

Bytestream text Parabix
Hex Coding 50 61 72 61 62 69 78

bit0 0 0 0 0 0 0 0
bit1 1 1 1 1 1 1 1
bit2 0 1 1 1 1 1 1
bit3 1 0 1 0 0 0 1
bit4 0 0 0 0 0 1 1
bit5 0 0 0 0 0 0 0
bit6 0 0 1 0 1 0 0
bit2 0 1 0 1 0 1 0

Figure 2.1: Transform bytestream "Parabix" into eight bit streams

4

M .1.........................1....................
Advance(M) ..1.........................1...................

Figure 2.2: Advance Operation

input text parabix is a framework to process streaming text
M1 .1.1.......1...1......................1.........

M2 = CC[a−m] .1.111..1..1.1.111...1.......11......111111..1..
M1 +M2 ..1...1.1...11....1..1.......11......1.....1.1..

(M1 +M2) ∧ ¬M2 ..1...1.....1.....1........................1....

Figure 2.3: ScanThru Operation

to the next block. There are two types of three-address Parabix equations: character class
equations and regular expression matching equations. Correspondingly, there are two kinds
of streams in the Parabix level, character class bit streams and marker bit streams. The
character class bit streams are used to identify the corresponding character classes. They
are calculated by a set of specific boolean-logic operations on the eight basis bit streams.
The process of calculation is shown in character class equations. Marker streams are used
to identify the current match position during the matching process. Similarly, the process is
shown by regular expression matching equations. There are also some useful streams which
are initialized before matching process, such as Initial, NonFinal, UTF8invalid streams, etc.
Some of them can be used to solve the multiple bytes text streams matching problem, and
others are used to validate the data for UTF well-formedness

The operations of Parabix program are in three types: bitwise logic, bit-stream shifting
and long stream addition. These are some important operations in Parabix framework:

• Advance: The Advance operation takes a marker bitstream as input, and advance all
the bits in the stream one bit forward.

• Scanthru: The Scanthru operation accepts the initial marker M and the character
class stream C as inputs, and try to set the cursor of the first stream’s positions
directly after a run of marker positions of the second stream, not one bit advance at
a time. This operation is defined as: ScanThru(M,C) = (M + C) ∧ ¬C.

• MatchStar: The MatchStar operation accepts the initial marker M and the character
class stream C as inputs,. It corresponds to the Kleene star in the regular expression,
and will return all the reachable positions with the occurrence of zero or arbitrary
times of repetition of the second input character class stream. This operation is
defined as: MatchStar(M, C) = (((M ∧ C) + C) ⊕ C) ∨ M.

5

input text parabix is a framework to process streaming text
M1 .1.1.......1...1......................1.........

M2 = CC[a−m] .1.111..1..1.1.111...1.......11......111111..1..
T0 = M1 ∧M2 .1.1.......1...1......................1.........
T1 = T0 +M2 ..1...1.1...11....1..1.......11......1.....1.1..
T2 = T1⊕M2 .111111....11..1111...................111111....
T3 = T2 ∨M1 .111111....11..1111...................111111....

Figure 2.4: MatchStar Operation

2.2 Kernel Programming in Parabix Framework

In icGrep, a program is composed by kernels and stream sets [4]. The stream set is
an ordered set of sequences of fields of bit width 2k, where k ∈ Z+ . The kernel will do
some specific computation based on the inputs and outputs stream sets, and there might
also be some non-stream, named scalar, inputs or outputs when needed. In particular, the
source(sink) kernel has no input(output) streams sets. The key idea for Parabix program-
ming is like the following equation:

Program = Kernels + StreamSets (2.1)

The kernel writer often needs to declare kernel attributes and update processedItem-
Count(producedItemCount) for each input(output) stream set. There are three kinds of
kernels that perform different numbers of blocks at one time for a different purpose.

1. Block oriented kernels typically perform block-at-a-time processing.

2. Segment oriented kernels implement the doSegment interface to process input seg-
ments of a given size K. The kernels that use the segment-oriented ones will call the
default do-block functions.

3. Multiblock oriented kernels implement the doMultiBlock call to deal with the mini-
mum number of blocks that the kernel requires each time.

All those three kernels only process full stride of blocks by default. When the program
requires specific processing to handle partial blocks at end of file, the kernel writer must
need to implement the specific do-final functions. If no specific processing required, then
the program will use the normal full stride of blocks processing logic.

2.3 Regular Expression Matching

2.3.1 Regular Expression

The regular expressions follow the standards of Portable Operating System Interface
for uniX (POSIX), which regulates two flavors of expressions. The first one is POSIX

6

Basic Regular Expression (PCRE), and another one is POSIX Extended Regular Expression
(ERE) [5]. The default rules of icGrep for regular expressions are as follows:

• a (denoting the singleton set containing the single-symbol string a)

• [a1a2...an] (denoting a character class that may match any one of the symbols ai in
the bracket)

• [a1 − an] (denoting a character class that may match any symbols in the range of a1

to an in the bracket)

• ST (denoting the set of all possible concatenations of strings from set S and T)

• S | T (where S and T are, in turn, generalized regular expressions; denoting their set’s
union)

• S∗ (denoting the set of n-fold repetitions of strings from set S, for any n≥0, including
the empty string)

• S+ (denoting one or more occurrences of set S)

• S? (denoting the optional occurrence of set S)

• S{min,max} (denoting at least min and at most max occurrences of set S)

• S&&T (denoting the intersection of set S and T)

• S−−T (denoting the difference of set S and T)

• ˆS (denoting the complement of set S with respect to the set of all strings of symbols
in the language)

• (? = S) (denoting positive lookahead assertion of set S, similarly, "(?!S)" denotes neg-
ative lookahead assertion of set S; "(? <= S)" denotes positive lookbehind assertion;
"(? <!S)" denotes negative lookbehind assertion)

• (S)...\1... (denoting the backreferences, inside which "\1" match the same text as
previously matched by a capturing group of S)

2.3.2 Matching Process

The three-level architecture of icGrep is proposed by Cameron et al and is shown in
Figure 2.5 [12]. There are corresponding optimizations for each level, in the form of pass.
Users can chain new passes into arbitrary level of Parabix regular expression match tool.
There are several analysis and transformation passes in each level, so it is users’ responsi-
bility to make sure all the passes interact with each other correctly. For passes in the first

7

Figure 2.5: Architecture for icGrep [12]

8

two levels, all of them are not required to be executed in a particular order. The description
of the passes for each level is as following:

• Regular Expression Pass

There are several passes in the level of regular expression. The "remove nullable
prefix (suffix)" pass is to remove any prefix (suffix) that is unnecessary in the search
process. For example, when searching for lines containing "a∗cdb∗", all we need to do
is searching for lines containing "cd". Therefore, the prefix "a∗" and suffix "b∗"will be
removed by corresponding passes. The "simplification optimization" pass is to flatten
different types and hierarchies in the RE level. For example, the regular expression
"(a{2, 3}){4, 5}" will be transformed into "a{8, 15}"; the alternation hierarchy of "[0−
9]|[a − z]|[A − Z]" will be flattened and all the character classes inside it will be
combined into one: "[0− 9a− zA− Z]".

• Parabix Pass

There are some useful passes in the Parabix level. The "dead code elimination (DCE)"
pass will remove the blocks that will never be executed. The "common subexpression
elimination (CSE)" pass will remove common subexpressions in order to eliminate
redundant instructions and simplify the program. What’s more, the "if optimization"
pass in the Parabix level has shown significantly acceleration to the program. It is in
the form of "if E : S". In the block-at-a-time code, if the computation of E for all the
bits positions in the block is zero and there are no coming bits from the carry queue,
the computation of the block of S will be omitted.

• LLVM Pass

The LLVM Pass framework is an important part of the LLVM system. Some of passes
are just to analyze the program and collect useful information, while others are used
to do transformations or optimizations. Users can chain new passes into the compiler
framework. In the LLVM platform, the PassManager orders passes to satisfy the
dependencies. To find the dependencies exist between the various passes, each pass
can declare the set of passes that are required to be executed before the current pass,
and passes which are invalidated by the current pass.
Here are some optimization passes that are useful for a wide variety of code. The
"reassociate" pass reassociates expressions into a new form that can be designed to
promote better constant propagation. For example, it will transform the expression
"1 + (a + 2)" to "a + (1 + 2)". The "gvn" pass numbers global value, so that it can
eliminate redundant instructions and common subexpressions. The "simplifycfg" pass
simplifies the control flow graph. To be more specific, it will eliminate the basic block
that has no predecessors, PHI nodes that have only one predecessor, the basic block
that only contains one single unconditional branch. In the meanwhile, if one basic

9

input text parabix is a framework to process streaming text
M1=Advance(CC[p])" .1.........................1....................

M2=MatchStar(M1, CC[a-z]) .1111111...................1111111..............
M3=Advance(M2 ∧ CC[r]) ...1........................1...................

Figure 2.6: Match "p[a-z]∗r" in the text stream

input text ni3haoma3 ni3menhao
CC1=CC(ni3) ..1.........1......
CC2=CC(hao)1............1
m0 = Initial 1..1..1...1..1..1..

NonFinal 11.11.11..11.11.11.
m1 = ScanThru(m0, NonFinal) ..1..1..1...1..1..1

m2 = Advance(m1 ∧ CC1) ...1.........1.....
m3 = ScanThru(m2, NonFinal)1.........1...

m4 = Advance(m3 ∧ CC2)1.............

Figure 2.7: Match "nihao" in the Chinese text stream

block has only one predecessor and the predecessor has only one successor, the pass
will merge the basic block with its predecessor. The "instcombine" will combine several
redundant instructions into one. For example, the instructions "%B = add i8 %A, 3"
and "%C = add i8 %B, 4" will be combined into "%C = add i8 %A, 7" [1].

There are two examples that match the corresponding regular expressions. Figure 2.5
shows the matching process of "p[a-z]∗r" in the text stream which only contains one single
byte for each character in UTF-8 encoding. Figure 2.6 shows the matching process of "nihao"
in multiple bytes of data sequences. This example also shows the usage of some helper
streams, such as "Initial", "NonFinal", etc. IcGrep has shown its performance compared
to conventional command-line regular expression search tools. Table 2.1 shows seconds
took per GB of input file of icGrep vs two competitors, pcre2grep and ugrep of the ICU
(International Component for Unicode). All the test cases are run on an Intel i7-2600 using
generic 64-bit binaries for each engine [12].

Table 2.1: Matching Time for Complex Expressions (s / GB) [12]

10

2.4 Repetition Type

Repetition in regular expression is in the form of "e{min,max}", in which "e" is a regular
expression, "min" represents the minimal repetition times for the regular expression and
"max" represents the maximal times the "e" appears. They must be non-negative integers,
and the maximal value can’t be less than the minimal value. If we omit the "max", then
"e{min, }" means the maximum of matches can be infinite. If we omit the comma as well,
then "e{min}" means the maximum of matches is equal to the minimal value. It is same
as conjunction of min "e"s. By the way, "e{0, 1}" is same as "e?", "e{0, }" is same as "e∗",
and "e{1, }" is same as "e+". The bounded repetition is that the times of repetition can’t
be unlimited, while the unbounded repetition is the opposite case.

2.5 Review of Finite Automata Theory for IcGrep

2.5.1 Local Language

A language L of alphabet A∗ is local if there are three subsets "First", "Final", and
"Follow" such that

L = (First A∗ ∧A∗ Final) - A∗ Follow A∗[2], (2.2)

where the set "First" included all the first characters of the words in the language L, the
set "Final" includes all the final characters, and the set "Follow" includes all the factors of
two of all the words. For local language, all words can be decided whether they belong to
the language or not only by these three sets.

If a language is not local, then we can replace each character into a new linearization
form, where each symbol can occur at most once. Every linear expression represents a local
language [2]. The local language can be checked more efficiently compared to the normal
regular expression.

2.5.2 Automata Construction

A finite automaton has many states and it will process the incoming strings. As it is
consuming the characters in the string consecutively, it will switch from one state to another.
Different states are often represented by circles in the diagram. In particular, the accepting
states are marked with double circles. The arrows in the figure show the transformation
process between states.

It has been proved that each regular expression can be represented by one equivalent
NFA(or DFA) and vice versa. There are many straightforward or complex algorithms to
represent regular expression with automata, such as Thompson construction [19], Glushkov
construction [15], follow construction [16], and the Antimirov construction [8]. The first

11

two algorithms are described in more detail below, and both of them are proved to run
in cubic time of regular expression size [19, 15]. Therefore, lots of optimal methods are
proposed to reduce the time complexity and simplify the automata. Brüggemann-Klein et
al fine-tune the the recursive functions in the Glushkov construction, and regulate that the
regular expression must be in less ambiguous form [10]; The follow construction is to apply
an ε removal algorithm based on the directly construction, and the NFA constructed in this
way is proved to be a quotient of the position automaton with respect to the equivalence
given by the follow relation [16]; The Antimirov construction, which is also named partial
derivative construction, is based on the concept of Brzozowski’s derivatives [8, 11, 18]. The
NFAs constructed by the three ways will be ε free, which means that they don’t contain
empty word transitions. However, all of them are proved to be combinations of minimization
and epsilon removal algorithms based on Thompson construction [7]. This unified idea of
related algorithms serves to simplify the construction of NFA.

Thompson Construction

Thompson construction is the most straightforward implementation of NFA construc-
tion. It regulates that there are just one initial state q and only one final state s in the
NFA. The basic idea is to build the NFA from its subexpressions recursively. According to
Aho et al., the rules are shown in Figure 2.8 [19].

Glushkov Construction

Compare with Thompson’s construction, the Glushkov construction are totally "ε free",
which means the NFA constructed by Glushkov doesn’t include empty word transitions. It
has already been proved that the Glushkov automata can be constructed by simply applying
ε-removal to the corresponding Thompson automata [7]. It will definitely reduce the table
size when matching the regular expressions.

There are three steps to construct a NFA based on the regular expression:

1. Convert the regular expression E into linear expressions E′ just by simply replacing
each character to a unique one, so that each symbol must occur at most once.

2. Compute the first characters, last characters, and the two factors of all the words w
in the language L recursively based on the linear expression E’. According to these
three sets, we keep adding transitions and states, and finally get a deterministic finite
automaton that recognizes E′.

3. Convert the DFA back to NFA by replacing the characters to the corresponding oc-
currence of letters.

Suppose the size of a regular expression is the number of symbols it contains, which
is denoted by n. The above-mentioned implementation of Glushkov construction takes

12

Figure 2.8: Rules for Thompson Construction

13

cubic time of n, and it is decided by the second step, computing the three sets. Most of
the recursive operations can be done from O(1) to O(n2) time, except calculating the two
factors of all words for the regular expressions of repetition type. Therefore, Brüggemann-
Klein et al proposed an optimal algorithm that aims at the recursive definition of follow
sets in [10]. They require reconstruction of the regular expressions into star normal form.
Besides this, many other similar quadratic algorithms are put forward, and each takes a
different path toward the very same goal, simplify the follow function.

2.5.3 Star Normal Form

A new form of regular expression, star normal form, is defined by Brüggemann-Klein et
al [10]. A regular expression is defined to be in star normal form if and only if each starred
subexpression H∗ in this regular expression satisfies these two conditions [10]:

1. follow(H, last(H)) ∧ first(H) = ∅

2. ε /∈ L(H)

The intuition behind the star normal form is that if a starred subexpression H∗ breaks
these conditions, then H itself is already in repetition type. Therefore, if we enclose it with
Kleene Star, it will become ambiguous. It has been proved that with star normal form of
regular expression, we can construct Glushkov NFA in quadratic time. The algorithm is
described as follows [10]:

1. Convert an arbitrary regular expression into star normal form in linear time.

2. Construct the NFA for the new star normal form regular expression based on the
Glushkov construction. This step takes quadratic time.

The linear time conversion algorithm into star normal form will be introduced in Chapter
4. Here we take a look at an example in advance to show the potential advantages of star
normal form, and omit the process of calculation temporarily. The star normal form of
regular expression "(a∗b∗)∗" is "(a+b)∗". In Parabix matching engine, we can search regular
expressions more efficiently with this new form. It can reduce the complexity of patterns
that have starred subexpressions, so that it can reduce the occurrences of while loops in
Pablo primitives [4].

We want to add this transformation as an optimization part of the Parabix regular
expression match tool. To ensure the correctness of the program, it is very important
to preserve unambiguity during the transformation. There are two kinds of unambiguity
as follows. A regular expression is defined to be weak unambiguous if there is only one
path through the expression that matches the word in the language [13]. For example, let’s
consider the regular expression "(a+b)∗aa∗". In order to mark the position of each character,

14

we linearize the expression into the new form "(a1 +b1)∗a2a
∗
3". Then if we want to match the

word "aaa", there are three possible ways to denote the paths: a1a1a2, a1a2a3, and a2a3a3.
Obviously, this regular expression is not weak unambiguous. On the other hand, the strong
unambiguity is related not only to symbols, but also to operators [13]. For example, if we
want to match the word "aa" against the regular expression "(a∗ + b∗)∗", there are two
possible ways. The first way is having one "a" inside the bracket, and then replicating it one
more time by the outer star. The other way is directly getting two "a"s inside the bracket
by the inner star. Apparently, this expression is weak unambiguous, because each symbol
is unique. However, if we count the operator in, then it will not be strong unambiguous. It
has been proved that these two types of unambiguity have some relationship with the star
normal form. A regular expression E is defined to be strong unambiguous as long as these
three conditions are satisfied [10]:

• E is weak unambiguous.

• E is in star normal form.

• Empty word ε can be denoted unambiguously in each subexpression of E.

15

Chapter 3

Design Objective

3.1 Accelerate Bounded Repetition

3.1.1 Log2 Technique for Fixed-length Bounded Repetition

The log2 technique is utilized to accelerate the matching of bounded repetition of a RE
that is byte length. Suppose there is a bounded regular expression in the form of E{m, n},
we treat it as the concatenation of two parts: E{m} and E{0, n - m} in order to utilize the
log2 technique. Then the match problem will be solved in two steps accordingly:

M1 = Match(M0, E{m})

M2 = Match(M1, E{0, n−m})

We denote the operation that setting the markers directly prior k characters within the
marked bits of regular expression E as Prior(C, k). It is computed recursively as follows:

Prior(C, 1) = CC(E) « 1

Prior(C, 2) = Prior(C, 1) ∧ (Prior(C, 1) « 1)

Prior(C, 4) = Prior(C, 2) ∧ (Prior(C, 2) « 2)

Prior(C, 8) = Prior(C, 4) ∧ (Prior(C, 4) « 4)

......

Prior(C, k) = Prior(C, [k / 2]) ∧ (Prior(C, dk / 2e) « (k - dk / 2e))

For the first part, we can use the Prior operation to directly set the markers m bits ahead
within the marked positions of character class E. Then M1 can be calculated as following:

M1 = Prior(E, m)

16

To calculate the second part Match(M1, E{0, n - m}), we first find all the reachable posi-
tions by any number of repetitions of E, which is achieved by the operation MatchStar(M1,
CC(E)). Next, we should filter out the positions that are more than n - m bits ahead of
marked positions in M1, which are preceded by at least n - m consecutive zero bits in M1.
Then M2 can be calculated as following:

M2 = MatchStar(M1, CC(E)) ∧ ¬Prior(¬M1, n - m)

The algorithm only uses a fixed number of bit-wise operations to match the bounded rep-
etition of regular expression. The time complexity of this algorithm is dlog2me+ dlog2(n−
m)e.

For example, we want to find all the matches of "[a−z]{5, 9}" in a text stream. Suppose
we set initial marker stream M0 all ones for every position, then

M1 = Match(M0, [a-z]{5}) = Prior(CC[a− z], 5)

M2 = MatchStar(M1, CC[a− z]) ∧ ¬Prior(¬M1, 4)

, where Prior(CC[a-z], 5) is calculated by the following equations:

Prior(CC[a− z], 5) = Prior(CC[a− z], 2) ∧ (Prior(CC[a− z], 2) « 3)

Prior(CC[a− z], 2) = Prior(CC[a− z], 1) ∧ (Prior(CC[a− z], 1) « 1)

Prior(CC[a− z], 1) = CC[a− z] « 1

, and Prior(¬M1, 4) can be computed recursively in the same way.

3.1.2 Extend the application of Log2 Technique

The log2 technique is utilized to accelerate the matching of bounded repetition of a RE
that is byte length. Our target is to extend the application to more general cases, and it
means to make sure the repetition part only takes one bit position in the bitstream for those
cases. Therefore, we need to propose a different pipeline, where generates suitable deletion
masks and delete the corresponding bits in the bitstreams.

3.2 Add Star Normal Form Pass

We want to transform an arbitrary regular expression into star normal form, so that it
can denote the corresponding language more unambiguously. The new form has the exact
same Glushkov automata with the original one, which guarantees the correctness of the
matching program.

17

input text baaaabccdbcdffabcabcabcccc
Advance(p) ..1111.........1..1..1....

f11...1....11.11.11...
MatchStar(Advance(p), f)111.......111111111..

Advance(s)11..1.....1..1..111
match1.........1..1..1..

Figure 3.1: Match "abc" by the pipeline enlightened by Glushkov automaton

In particular, the transformation will simplify the regular expressions whose subexpres-
sions are in Kleene Star form. The Parabix framework will generate Pablo while loop to
deal with the Kleene Star. For each step in this while loop, the reachable position will
be kept, but the positions matched by previous steps will be removed. Once there are no
more remaining bits in the marker stream, we terminate the loop. The match result will
be the bitwise-or of the outputs at each step. Apparently, the star normal form with less
Kleene Star subexpressions will definitely accelerate the matching process and we realize
this transformation in the form of pass.

3.3 Glushkov Construction’s Application to Parabix Regular
Expression Matching

The Glushkov construction also has some application on the Parabix regular expression
match engine. If we have a text stream T defined in the language L, suppose we define a
bit stream f such that f(i) = 1 if and only if the pair (T (i − 1), T (i)) is factor of length
2 of the regular expression. What’s more, suppose we also form bitstreams p(i) = 1 if T(i)
belongs to fist characters of all words in the language L, and define s(i) = 1 if T(i) belongs
to last characters.

Then all the matches to language L can be found using the following equation:

Match = MatchStar (Advance(p), f) & Advance(s). (3.1)

Figure 3.1 is an example shows the matching process of "abc" with the pipeline enlight-
ened by Glushkov automaton.

However, for some ambiguous cases, this equation might not always be correct. Figure
3.2 shows the matching process of regular expression "aba". The result is incorrect because
the sets of first and final intersect in this case. Therefore, we restrict our pipeline for unam-
biguous patterns, which recognize the local language only. For those ambiguous patterns,
we may need to add more information to find the exact match. For example, besides cre-
ating the marker stream for all factors of length two, we also form the marker stream for
length-three.

18

input text bababaaaababbbb
Advance(p) ..1.1.1111.1...

f .11111...111...
MatchStar(Advance(p), f) ..11111111111..

Advance(s) ..1.1.1111.1...
match ..1.1.1111.1...

Figure 3.2: Match "aba" by the pipeline enlightened by Glushkov automaton

19

Chapter 4

Implementation

4.1 Bounded Repetition

4.1.1 UTF-8 to UTF-32 Pipeline

Bounded Repetition of Regular Expressions whose length is UnicodeUnit

We want to extend the log2 technique so that it cannot only support a bounded repetition
type for a single character or character class, but also the regular expression whose length is
one defined in the Unicode space. If the inputs are in the form of UTF-8, then Unicode unit-
length expressions might be one to four bytes. Therefore, we need to do UTF-8 to UTF-32
conversion, which would internally apply deletion to the 21 streams being produced.

UTF-8 to UTF-32 Transformation

The UTF-8 encoding has variable length, from one to four. Table 4.1 shows the structure
of UTF-8 encoding. The character x represents the corresponding bits in the code point.

Characters for each language occupy four bytes in UTF-32 encoding system. The major
disadvantage of UTF-32 is that it wastes the space, since the most frequent characters only
occupy one or two bytes in other encoding systems. The value of bits in UTF-32 is equal to
the Unicode code point value. To realize the transformation, we can do a simple mapping
from bits of UTF-8 to the corresponding positions in the UTF-32 as Figure 4.1. After

Number
of bytes

Bits for
Code Point

Code Point Range Byte1 Byte2 Byte3 Byte4
1 7 U+0000-U+007F 0xxxxxxx
2 11 U+0080-U+07FF 110xxxxx 10xxxxxx
3 16 U+0800-U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000-U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 4.1: The Structure of UTF-8 Encoding

20

Figure 4.1: Transformation from UTF-8 to UTF-32

transformation, we can use 21 basis bit stream to represent the encoding information of the
character(there are only 21 streams instead 32 required; the high 11 bits of every UTF-32
code unit are always zero). The leading bytes for multiple bytes character will be marked as
useless bits in the deletion mask, after which would apply deletion logic to the 21 streams
being produced. Until now, every character in the Unicode space will only take one bit
position in the marker stream.

Pipeline

When a regular expression includes repetition of a RE that is Unicode unit-length, then
go to a basic pipeline like the list 4.1 and Figure 4.2.

21

ByteData = MMapSource(FileName)

BasisBits = S2P(ByteData)

LineBreaks = UnicodeLineBreaks(BasisBits)

(U8u32Bits, DelMask, NegDelMask) = U8U32(BasisBits)

LB_Del = ParallelBitsDeletion(LineBreaks, DelMask)

U32_Del = ParallelBitsDeletion(U8u32Bits, DelMask)

Matches_Del = RE_compiler<regexp>(U32_Del, LB_Del)

Matches = ParallelBitsDeposit(Matches_Del, NegDelMask)

MatchedLines = ScanMatch(ByteData, LineBreaks, Matches)

StdOutSink(MatchedLines)
(4.1)

First, the MMapSource kernel reads the input file, and uses the byte streams to represent
the original input file. Next, the S2P kernel, which means serial to parallel, transforms the
byte stream into eight parallel bit streams. Eight parallel bit streams are then passed into
the UnicodeLineBreaks kernel, in which we use the Pablo primitives to calculate the line
breaks of the input file. Then we need to go to the different pipelines based on the regular
expression type. If the input regular expression includes any bounded repetition of Unicode
unit length, then we first pass the eight basis streams into a pablo kernel, which uses the
Pablo primitives to transform the UTF-8 to UTF-32 form. The output of this kernel is 21
U8U32 basis bit streams, where the useless bits marked by deletion mask. To remove those
marked bits, we apply deletion operations on the stream sets, and the basic pipeline for the
deletion is shown in Figure 4.3. We do the same deletion operations on the Unicode line
breaks stream, then pass the new line break stream and the 21 U32 basis bit streams into
icGrep kernel. This kernel also belongs to Pablo kernel, and by doing a series of operations
on the bitstreams, it outputs a match stream which marked all the matches of the input
file. If we only need the count of the matches, then we just apply "popcount" operation on
the match stream. Otherwise, we apply ParallelBitsDeposit logic on the match stream to
get all the deleted bits back as Figure 4.4 shows, so that the match stream is aligned with
the original line break stream. To get the information of matched lines in the input file,
we pass the original line break stream and the byte stream and the aligned match stream
into the ScanMatch kernel. Those matched lines are finally passed to the StdOut where it
is printed as standard output.

If the input regular expression doesn’t include any bounded repetition type, then we just
go through a basic pipeline, in which the icGrep kernel accepts the eight basis bit streams
and the original line break stream. The corresponding output stream is match stream.

22

Figure 4.2: Pipeline for icGrep

23

Figure 4.3: Pipeline for deletion on U8U32 bits

With the information of match stream, line break stream and byte stream, we can obtain
the matched lines. Finally we use the StdOut kernel to print them.

There are two kernels within the deletion part:

(u32Swizzles) = SwizzledDeleteByPEXTkernel(U8u32Bits, DelMask)

U32Bits = SwizzleGenerator(u32Swizzles)
(4.2)

There are three kernels within the deposit part:

SwizzleMatches = SwizzleGenerator(Matches)

(SwizzleMatches_PDEP) = PDEP(SwizzleMatches, NegDelMask)

Matches_PDEP = SwizzleGenerator(SwizzleMatches_PDEP)

(4.3)

In the deletion(deposit) part, we need to delete(deposit) the corresponding bits in the
input stream set based on the mask. To realize this goal, there is one necessary operation:
swizzle [4]. The swizzle operation is to transform a set of bit streams into a swizzled form.
For example: consider the 4 streams (32 bits each) in figure 4.5, and swizzled outputs using
a field width of 8 are shown in Figure 4.6.

In swizzled form, one "swizzle field" each from a set of streams is grouped together
to be processed as a unit using SIMD operations. Before calling PEXT deletion(PDEP
deposit) kernel, we can only get the streams that have fields of zeroes of variable lengths
spaced at irregular intervals, so it is unrealistic to delete(deposit) the masked bits in parallel.
By swizzling the result, we can use the SwizzledDeleteByPEXT(PDEP) kernel to perform
the same deletion(deposit) instruction on the entire length of a stream. In particular,

24

Figure 4.4: Pipeline for deposit on Matches Stream

Stream 1 abcdef00 ghi00000 jk000000 lmnop000
Stream 2 qrstuv00 wxy00000 z1000000 23456000
Stream 3 ABCDEF00 GHI00000 JK000000 LMNOP000
Stream 4 QRSTUV00 WZY00000 Z1000000 23456000

Figure 4.5: Four streams before swizzling

Swizzle 1 abcdef00 qrstuv00 ABCDEF00 QRSTUV00
Swizzle 2 ghi00000 wxy00000 GHI00000 WZY00000
Swizzle 3 jk000000 z1000000 JK000000 Z1000000
Swizzle 4 lmnop000 23456000 LMNOP000 23456000

Figure 4.6: Four streams after swizzling

25

Kernel Name Items Processed CPU Cycles Cycles Per Item
MMapSource 1.97e+07 1.08e+06 0.05

S2P 1.97e+07 1.33e+07 0.68
UnicodeLineBreaks 1.97e+07 4.07e+06 0.21

U8U32 1.97e+07 2.28e+07 1.16
PEXTdel_LB 1.97e+07 4.21e+06 0.21

Swizzle 1.20e+07 2.48e+06 0.21
PEXTdel_UTF32 1.97e+07 2.14e+07 1.09

Swizzle 1.20e+07 8.35e+06 0.70
IcGrep 1.20e+07 2.42e+06 0.20

MatchedLines 1.20e+07 2.04e+06 0.17
Popcount 1.20e+07 1.62e+06 0.14

Table 4.2: Kernel Cycles for matching ".{4}" on the 19 MB XML file by U8U32 Pipeline

the SwizzledDeleteByPEXT kernel will swizzle the input itself before committing the PEX
deletion operations. Finally, we must swizzle back to the correct form after being applied
SIMD instructions, which are performed by the SwizzleGenerator kernel. The deletion logic
to 21 U8U32 basis bit streams is the same as to LineBreaks stream.

4.1.2 Multiplexed Character Classes Pipeline

When the times of repetition are less than some specific value, the running time of
our pipeline may take more time than regular pipeline. Table 4.2 shows the kernel cycles
information about matching a pattern ".{4}" on a 19 MegaBytes Wikibooks XML file. We
find out that it takes time to transform 8 basis bit streams to 21 basis bit streams and
the deletion kernel applied on the 21 basis bit streams will slow down the program as
well. To remove the overhead, we apply deletion logic to the character class streams, using
the multiplexed character classes concept instead. For most of the cases, the number of
character class streams will not be greater than 3. The deletion on these limited character
class streams and omitting the transformation from UFT-8 to UTF-32 will definitely reduce
the overhead.

Multiplexed Character Classes

In order to get fewer character class bit streams for arbitrary regular expressions, we
use the idea of multiplexed character classes. The first step is to find the exclusive and
collectively exhaustive character classes, each of which are encoded with and represented
by consecutive numbers, and finally compute each bit of the set of multiplexed basis bit
streams. For example, the regular expression "[a-kp-u][f-mu-y]jw" includes four source char-
acter classes as follows:

26

CC[0] [a-kp-u]

CC[1] [f-mu-y]

CC[2] j

CC[3] w

To get exclusive and collectively exhaustive character classes, we need to calculate the
breakpoints of the source character classes. The breakpoints of character classes set is
defined as follows: each codepoint c such that either c is in certain character class and c-1
is not, or c-1 is in certain character class and c is not. The computation of breakpoints is in
a quite straightforward way, and that is just iterating through the interval representation
of each character class. For each interval (lo, hi), lo and hi+1 are breakpoints. In this case,
the breakpoints are a, f, j, k, l, n, p, u, v, w, x, and z.

In the meanwhile, a bitset is computed to identify whether the current breakpoint be-
longs to the source character classes. Table 4.3 shows the bitsets for our example.

Table 4.3: Bitset which indicates whether the breakpoint belongs to the source CCs
breakpoints a f j k l n p u v w x z

source CC[0] 1 1 1 1 0 0 1 1 0 0 0 0

source CC[1] 0 1 1 1 1 0 0 1 1 1 1 0

source CC[2] 0 0 1 0 0 0 0 0 0 0 0 0

source CC[3] 0 0 0 0 0 0 0 0 0 1 0 0

Next, we find out all the inclusive bitsets, and try to classify the interval codepoint to
the corresponding sets. In this case, there are 6 inclusive bitsets: 0000, 0001, 0011, 0111,
0010, 1010, where 0000 indicates that the corresponding interval codepoint doesn’t belong
to any source character classes. We encode each of the inclusive sets with consecutive num-
bers. Obviously, if there are N inclusive sets, then there will be log2N bits in the code.
The 3-bit codes to represent each of inclusive character classes are as follows:

Encoding bits Bitsets Exclusive character classes

000 0000 [^a-mp-y]

001 0001 [a-gp-t]

010 0011 [f-iku]

011 0111 [j]

100 0010 [l-mvx-y]

101 1010 [w]

Finally, by computing each bit of the set of multiplexed encoding, we can get set of
multiplexed basis streams. The three bits in our case are shown as follows:

27

bit0 [a-gjp-tw]

bit1 [f-ku]

bit2 [l-mv-y]

Restructure the icGrep by Multiplexed Character Classes

The normal pipeline of icGrep passes the 8(16 or 32) basis bit streams into Parabix kernel
to finish the matching process. However, information redundancy is the most obvious defect
of the current method. Most of the regular expressions have limited character classes, even
zero in the worst cases. If we pass multiplexed character classes streams instead, then the
Parabix engine will become more modular and get some expected acceleration. The 7-stage
restructured icGrep pipeline is shown as follows:

ByteData = MMapSource(FileName)

BasisBits = S2P(ByteData)

LineBreaks = UnicodeLineBreaks(BasisBits)

CharacterClasses = CharClassesKernel(BasisBits)

Matches = RE_compiler<regexp>(CharacterClasses, LineBreaks)

MatchedLines = ScanMatch(ByteData, LineBreaks, Matches)

StdOutSink(MatchedLines)

(4.4)

Basic Pipeline

The basic pipeline of multiplexed character classes, which support the log2 technique
for repetition of a RE that is UnicodeUnitLength, is like following:

ByteData = MMapSource(FileName)

BasisBits = S2P(ByteData)

LineBreaks = UnicodeLineBreaks(BasisBits)

(DelMask, NegDelMask) = DelMask(BasisBits)

LB_Del = ParallelBitsDeletion(LineBreaks, DelMask)

CharacterClasses = CharClassesKernel(BasisBits)

CC_Del = ParallelBitsDeletion(CharacterClasses, DelMask)

Matches_Del = RE_ compiler<regexp>(CC_Del, LB_Del)

Matches = ParallelBitsDeposit(Matches_Del, NegDelMask)

MatchedLines = ScanMatch(ByteData, LineBreaks, Matches)

StdOutSink(MatchedLines)

(4.5)

28

Figure 4.7: Pipeline for icGrep with multiplexed character classes

The basic pipeline that applies the multiplexed character classes concept is shown as
Figure 4.7. Compared to the pipeline of UFT8-to-UTF-32, we pass in the multiplexed
character class streams to the icGrep kernel instead. We have matched the pattern ".{4}"
on the aforementioned 19 MegaBytes Wikibooks XML file again, and Table 4.4 shows the
related kernel cycles information. We find that the multiplexed pipeline will eliminate the
overhead caused by UTF8-to-UTF32 transformation, and the deletion logic applied on the
limited multiplexed character classes streams has also accelerated the matching process.

29

Kernel Name Items Processed CPU Cycles Cycles Per Item
MMapSource 1.97e+07 1.95e+06 0.10

S2P 1.97e+07 1.37e+07 0.70
UnicodeLineBreaks 1.97e+07 5.47e+06 0.28

Delmask 1.97e+07 5.16e+06 0.26
PEXTdel_LB 1.97e+07 8.69e+06 0.44

Swizzle 1.20e+07 3.84e+06 0.32
CharacterClasses 1.97e+07 3.00e+06 0.15
PEXTdel_CC 1.97e+07 7.82e+06 0.40

Swizzle 1.20e+07 3.68e+06 0.31
IcGrep 1.20e+07 3.16e+06 0.26

MatchedLines 1.20e+07 3.02e+06 0.25
Popcount 1.20e+07 2.93e+06 0.24

Table 4.4: Kernel Cycles for matching ".{4}" on the 19 MB XML file by Multiplexed Pipeline

4.2 Unbounded Repetition

4.2.1 Star Normal Form Pass

If a regular expression E is not in star normal form, then there might be subexpression
in the form of H∗ which breaks the condition: follow(H, last(H)) ∧ firs(H) = ∅. Therefore,
if all the subexpressions in the form of Kleene Star H∗ are replaced with new form H◦∗,
where the new starred subexpressions satisfy the previous condition, then we can get a new
star normal form expression denoted as E• [10]. The definition of H◦ is as follows [10]:

[E = ∅, ε] E◦ = ∅

[E = a] E◦ = E

[E = F +G] E◦ = F ◦ +G◦

[E = FG] E◦ =



FG if ε /∈ L(F), ε /∈ L(G)

F ◦G if ε /∈ L(F), ε ∈ L(G)

FG◦ if ε ∈ L(F), ε /∈ L(G)

F ◦ +G◦ if ε ∈ L(F), ε ∈ L(G)

[E = F ∗] E◦ = F ◦

(4.6)

It has been proved that the calculation of the star normal form of regular expression is
based on the following two operations:

[E = ∅, ε, a] E• = E

[E = F +G] E• = F • +G•

[E = FG] E• = F •G•

[E = F ∗] E• = F •◦∗

(4.7)

30

[E = ∅, ε] E•◦ = ∅

[E = a] E•◦ = E

[E = F +G] E•◦ = F •◦ +G•◦

[E = FG] E•◦ =



F •G• if ε /∈ L(F), ε /∈ L(G)

F •◦G• if ε /∈ L(F), ε ∈ L(G)

F •G•◦ if ε ∈ L(F), ε /∈ L(G)

F •◦ +G•◦ if ε ∈ L(F), ε ∈ L(G)

[E = F ∗] E•◦ = F •◦

(4.8)

Here is an example which calculates the star normal form of (a∗b∗)∗:

(a∗b∗)∗• = (a∗b∗)•◦∗

= (a∗•◦ + b∗•◦)∗

= (a•◦ + b•◦)∗

= (a+ b)∗

(4.9)

Just as the example shown in the equation 4.7, the star normal form of regular expression
"(a∗b∗)∗" is "(a+ b)∗". Following the formulas shown before, we can easily implement it in
the form of pass.

We try to show all the regular expression abstract syntax trees for "a(a∗b∗)∗b" in the
icGrep, the results are shown as following:

Listing 4.1: Regular Expression AST for "(a∗b∗)∗"
Simplifier :
(Seq[Name "CC_61" ,Rep(Name "\1" =((Seq[Rep(Name "CC_61" ,0, Unbounded),Rep(

↪→ Name "CC_62" ,0, Unbounded)])) ,0, Unbounded),Name "CC_62"])

Listing 4.2: Regular Expression AST for "(a∗b∗)∗" in Star Normal Form
Star_Normal_Form :
(Seq[Name "CC_61" ,Rep(Name "\1" =((Alt[Name "CC_61" ,Name "CC_62"])) ,0,

↪→ Unbounded),Name "CC_62"])

What’s more, we have also shown the Pablo primitives as list 4.3 and 4.4. It shows
regular expression "(a∗b∗)∗" requires a while loop with a standard algorithm, but it will be
implemented using MatchStar when StarNormalForm is applied(no while loop required),
which accelerates the program.

Listing 4.3: Pablo Primitives for RE "(a∗b∗)∗" in Star Normal Form

31

CC_61+CC_62 = (and_45 & xor_2)
and_47 = (any & CC_61_1)
and_48 = (any & CC_62_1)
and_49 = (any & CC_61+CC_62)
ipp = pablo. Advance (and_47 , 1)
and_50 = (initial & ipp)
fpp = pablo. ScanThru (and_50 , nonfinal)
unbounded = pablo. MatchStar (fpp , and_49)
CC_62_2 = (and_48 & unbounded)
matchstar = pablo. MatchStar (CC_62_2 , any)

Listing 4.4: Pablo Primitives for RE "(a∗b∗)∗"
While test:

unbounded = pablo. MatchStar (pending , and_45)
unbounded_1 = pablo. MatchStar (unbounded , and_46)
not_22 = (~ accum)
and_48 = (unbounded_1 & not_22)
pending = and_48
or_25 = (accum | unbounded_1)
accum = or_25
test = pending

CC_62_2 = (and_46 & accum)

4.2.2 New Compile Pipeline for Local Language

After reviewing of Glushkov Construction in Chapter 2, we try to solve some specific reg-
ular expression types of local language in the similar way. In particular, we can avoid many
unnecessary while loops in Parabix level when we deal with the unbounded repetition types
with this new compiler pipeline. Here we need a helper function EmptyWord(R), which
indicates whether the empty word belongs to the regular expression. The EmptyWord(R)
is calculated recursively as follows:

• EmptyWord(ε) = true

• EmptyWord(∅) = false

• EmptyWord(R∗) = true

• EmptyWord(RS) = EmptyWord(R) ∧ EmptyWord(S)

• EmptyWord(R | S) = EmptyWord(R) ∨ EmptyWord(S)

• EmptyWord(¬R) = true if v(R) = ∅

• EmptyWord(¬R) = false if v(R) = ε

32

With the helper function of calculating EmptyWord, the calculation of first, final and
follow sets for different regular expression types of icGrep are shown as following:

• First(ε) = ∅

• First(∅) = ∅

• First(a) = a for all a ∈ L(RE)

•

First(RS) =

First(R) ∨ First(S), EmptyWord(R).

First(R), otherwise.

• First(R | S) = First(R) ∨ First(S)

• First(R ∗) = First(R)

• First(¬R) = true if v(R) = ∅

• First(¬R) = false if v(R) = ε

• Final(ε) = ∅

• Final(∅) = ∅

• Final(a) = a for all a ∈ L(RE)

•

Final(RS) =

Final(R) ∨ Final(S), EmptyWord(S).

Final(S), otherwise.

• Final(R | S) = Final(R) ∨ Final(S)

• Final(R ∗) = Final(R)

• Final(¬R) = true if v(R) = ∅

• Final(¬R) = false if v(R) = ε

• Follow(ε) = ∅

• Follow(∅) = ∅

33

• Follow(a) = ∅ for all a ∈ L(RE)

• Follow(RS) = Follow(R) ∨ Follow(S) ∨ Final(R) First(S)

• Follow(R | S) = Follow(R) ∨ Follow(S)

• Follow(R ∗) = Final(R) ∨ Final(R) First(R)

With the results of these three sets for local language, we compiled them into character
class streams and then the match result will be the following:

Match = MatchStar(Advance(Marker(First), 1), Marker(Follow))

& Advance(Marker(Final), 1)
(4.10)

34

Chapter 5

Performance Evaluation

5.1 Bounded Repetition

Suppose the length of a regular expression is n, and the size of the input text is m. The
traditional algorithms first try to convert the regular expression into a non-deterministic
finite automaton by arbitrary NFA construction algorithms. In Thompson’s construction,
transforming the regular expression into NFA takes linear time, and removing the ε in the
NFA will take quadratic time of n. In Glushkov construction, it’ll take cubic time of n to
construct an ε free NFA. There are a few advanced algorithms based on different concepts
like star normal form, Brzozowski’s derivatives etc, which can reduce the time complexity
to quadratic time.

All these operations belong to the preprocessing step. In our algorithm, we compile
the regular expression and don’t count this preprocessing into the performance measures,
because it is just an offline process. However, other Unix tools count it in, so we need to
use large test files to minimize the basis.

The test cases are run on an Intel i3-5010 using generic 64-bit binaries for each engine.
Table 5.1 shows the detailed hardware configuration of the test machine. Three Wikibooks
XML files in three different languages are used to test the time it takes to count all the
matches against n times of several regular expressions with Unicode-unit-length bounded
repetition, where n varies from 4 to 1000. The bounded repetition parts of the group of
regular expressions are in the form of ".{n}", "\p{greek}{n}", "\p{Lu}{n}", "\p{...}{n}",
..., and the sizes of these three files are 19MB, 54MB, and 88MB, respectively. We have
compared the performance for two log2 bounded repetition pipelines of icGrep introduced
previously, regular pipeline of icGrep, GNU grep, pcregrep and rg. In the meanwhile, we
also tested the count with invert flag, which means selecting non-matching lines instead.

Figure 5.1 shows the performance of searching a set of regular expressions with Unicode-
unit-length bounded repetition of the six different engines in three different files, where n

35

Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian

CPU(s) 4
Thread(s) per core 2
Core(s) per socket 2

Vendor ID GenuineIntel
CPU MHz 2100.000

Table 5.1: The Hardware Configuration of the Test Machine

Repetition
times

log2
multiplexed

log2
U8U32

Normal
Version

grep pcregrep rg

4 2.50 4.30 1.69 1.16 5.85 2.04
10 2.52 4.31 2.01 1.59 6.35 2.16
20 2.52 4.34 2.62 2.40 7.15 2.56
50 2.56 4.34 4.28 4.89 11.32 2.90
100 2.56 4.36 6.83 6.48 14.36 3.58
300 2.60 4.38 12.41 11.11 25.99 8.99
500 2.58 4.40 15.61 1420.28 36.67 17.10
700 2.60 4.39 17.49 11346.46 41.62 852.54
1000 2.58 4.38 19.40 17988.06 46.42 2467.90

Table 5.2: Averaged Matching Time for Different Repetition Times(ms/MB)

varies from 4 to 1000. Table 5.2 summarizes the averaged matching time of different regular
expressions in each engine with respect to different repetition times.

Figure 5.1 shows that compared to the regular pipeline of icGrep and the GNU grep,
the more times that bounded repetition part repeats, the acceleration achieved by our new
bounded repetition pipelines will be more obvious. As shown in Figure 5.1, the performance
of pcregrep and our three versions of different pipelines are quite stable. For a clear per-
formance evaluation, we compared these four individually as Figure 5.2. It has shown two
versions of log2 pipelines are more stable than pcregrep and regular version of icGrep, and
both of them can achieve more than 20x speedup compared to pcregrep when the times of
repetition are more than 1000. Furthermore, the multiplexed character classes pipeline of
log2 technique is nearly two times faster than UTF8-to-UTF32 pipeline.

Figure 5.2 also shows that when the numbers of repetition are less than some specific
value, the times it takes for log2 UTF8-to-UTF32 pipeline are more than most of other
pipelines or conventional tools. This is because that it takes time to do the transformation
from UTF8 to UTF32. When times of repetition are big enough, the overhead caused
by this transformation will become not obvious. The new multiplexed pipeline is therefore
proposed to reduce the overhead, and the performance evaluation shows that the theoretical

36

Figure 5.1: Performance on Three Different Files

37

Figure 5.2: Averaged Matching Time(Log2 Pipelines vs. pcregrep)

result is in agreement with the experimental one. However, the times it takes for the new
pipeline are still more than our regular version of icGrep. It’s because the overhead caused
by deletion kernel can’t be eliminated. In the meanwhile, there are cases that the time it
takes is becoming less or the increase rate is decreasing with the increasing of n, and that
is because lots of matches will terminate before they reach the n times of repetition.

5.2 Unbounded Repetition

5.2.1 Star Normal Form

We have tested one bunch of regular expression which has different numbers of starred
subexpressions inside the bracket with respect to three MegaBytes Wikibooks XML files.
The group of regular expressions are in the following forms: "R1(? : R∗2R∗3)∗R4", "R1(? :
R∗2R

∗
3R
∗
4)∗R5", "R1(? : R∗2R∗3R∗4R∗5)∗R6", "R1(? : R∗2R∗3R∗4R∗5...)∗Rn", etc, and the numbers

of starred subexpressions inside the bracket are 2, 3, 4, ..., respectively. For each regular
expression in the test case, we need to add a subexpression R1 at the beginning and Rn in
the end respectively in order to prevent all of the starred subexpressions being removed from
the optimization passes. As the test cases before, we averaged the testing time of repeated
measurements to get more reliable results. The test results for the optimized version and
normal version of icGrep are shown in Figure 5.3. As the figure shows, the more starred
subexpressions one regular expression includes, the acceleration achieved by star normal
pass will be more obvious.

38

Figure 5.3: Performance for star normal form pass with respect to different numbers of
starred subexpressions inside the bracket

We have also tested the regular expressions with different nested level. The group
of regular expressions are in the following forms: "R1(R∗2R∗3)∗R4", "R1((R∗2R∗3)∗)∗R4", ...,
"R1(((R∗2R∗3)∗)∗......)∗R4". The results are shown in Figure 5.4. As the figure shows, the
more nested level one regular expression includeds, the acceleration achieved by star normal
pass will be more obvious.

5.2.2 New Compile Pipeline for Local Language

We have tested several regular expressions with different repetition nested level, from 1
to 9, on three different MegaBytes Wikibooks XML files. In the meanwhile, we must make
sure that the regular expressions can’t be optimized by the star normal form pass. Figure
5.5 shows that we have achieved performance gains by the new pipeline for local language.
The running time for local language pipeline is quite stable with the increasing of nested
level of starred subexpressions, while the time for normal pipeline increases. This is because
that the matchstar operations in the regular expression will be omitted in the new pipeline.

39

Figure 5.4: Performance for star normal form pass with respect to different nested levels of
starred subexpressions

Figure 5.5: Performance for local language with respect to different nested levels of starred
subexpressions

40

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, we optimize the regular expressions with counting in the Parabix-LLVM
framework. To utilize the log2 technique, we proposed the UTF8-to-UTF32 pipeline to ac-
celerate this case. Although we have already got significant performance increases with this
pipeline, we find that the overhead caused by the UTF-8-to UTF-32 transformation is be-
coming more obvious with the times of repetition becoming less. Therefore, the multiplexed
character classes concept is proposed to minimize the overhead.

Besides bounded repetition cases, we have also reviewed the finite automata theory
for application to Parabix regular expression matching, and proposed star-normal-form
optimizations in RE level, which makes the RE abstract syntax tree less complex and more
unambiguous. We also utilize the algorithm of Glushkov NFA construction to propose
totally new compile logic for local language. Both of these two methods enlightened by
automata theory have shown their performance dealing with unbounded repetition type
against the conventional tools and the original icGrep pipeline.

6.2 Future Work

6.2.1 Log2 Technique for Bounded Repetition of Arbitrary Length Reg-
ular Expression

Until now, we can only utilize the log2 technique for bounded repetition of unit length
type. Actually, we can extend this idea to arbitrary bounded repetition type. The basic
idea is to mark all the positions that are not the first of the repetition regular expression as
deletion positions. We delete all those positions so that the arbitrary bounded repetition
will become unit length. Here we take a look at a specific example of matching "abc{3}" as
following:

41

input text baaaabccdbcdffabcabcabcccc
Maches to ′abc′1.........1..1..1..
deletion mask11........11.11.11...
new marker1.......111..

Figure 6.1: Log2 technique for arbitrary length repetition type

We will apply log2 technique to the new marker and find the consecutive three marked
bits as the steps introduced in previous sections. However, this deletion pipeline to the
arbitrary Unicode length bounded repetition type is only suitable for local language, which
means the alphabet in the regular expression must be used only once. When the repetition
part is not local language, then the generation of deletion mask might cause ambiguity.

6.2.2 Support for Extended Regular Expression Types

The Unicode Technical Standard regulates that the regular expression engines can offer
three levels Unicode support [6].

• Level 1: Basic Unicode Support. It includes all the basic needs that a regular expres-
sion engine must provide, such as the hex notation, properties, simple word bound-
aries, subtraction and intersection, etc.

• Level 2: Extended Unicode Support. It included the extended Unicode features, such
as extended grapheme boundaries, name properties, canonical equivalents, etc. All
the features in this level and level 1 are country and language independent.

• Level 3: Tailored Support. It includes the features that must satisfy the end-user’s
specific expectations, such as tailored punctuation, tailored grapheme clusters, context
matching, etc. These Unicode features are often country and language dependent, and
are only needed in some specific applications.

Until now, the icGrep can support all the Unicode features in Level 1 and part of features
in Level 2. None of the features is supported in Level 3. For example, Diff and Intersect
types that have different Unicode length range are not supported yet. They might need
different strategies to address them.

42

Bibliography

[1] Llvm’s analysis and transform passes. http://llvm.org/docs/Passes.html#
llvm-s-analysis-and-transform-passes. Accessed: 2017-06-19.

[2] Local language (formal language). https://en.wikipedia.org/wiki/Local_
language_(formal_language). Accessed: 2017-07-17.

[3] Parabix methods for bounded repetition. http://parabix.costar.sfu.ca/browser/
docs/Working/bounded-rep.pdf. Accessed: 2017-09-15.

[4] Parabix technology home page. http://parabix.costar.sfu.ca/. Accessed: 2017-
06-19.

[5] Portable operating system interface for unix. http://www.regular-expressions.
info/posix.html. Accessed: 2017-06-21.

[6] Uts no.18: Unicode regular expressions - unicode.org. http://unicode.org/reports/
tr18/. Accessed: 2017-06-20.

[7] Cyril Allauzen and Mehryar Mohri. A unified construction of the glushkov, follow,
and antimirov automata. In International Symposium on Mathematical Foundations
of Computer Science, pages 110–121. Springer, 2006.

[8] Valentin Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291–319, 1996.

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, et al. The landscape of parallel computing research: A view
from berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS De-
partment, University of California, Berkeley, 2006.

[10] Anne Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120(2):197–213, 1993.

[11] Janusz A Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM),
11(4):481–494, 1964.

[12] Robert D Cameron, Nigel Medforth, Dan Lin, Dale Denis, and William N Sumner.
Bitwise data parallelism with llvm: The icgrep case study. In International Conference
on Algorithms and Architectures for Parallel Processing, pages 373–387. Springer, 2015.

43

http://llvm.org/docs/Passes.html#llvm-s-analysis-and-transform-passes
http://llvm.org/docs/Passes.html#llvm-s-analysis-and-transform-passes
https://en.wikipedia.org/wiki/Local_language_(formal_language)
https://en.wikipedia.org/wiki/Local_language_(formal_language)
http://parabix.costar.sfu.ca/browser/docs/Working/bounded-rep.pdf
http://parabix.costar.sfu.ca/browser/docs/Working/bounded-rep.pdf
http://parabix.costar.sfu.ca/
http://www.regular-expressions.info/posix.html
http://www.regular-expressions.info/posix.html
http://unicode.org/reports/tr18/
http://unicode.org/reports/tr18/

[13] Haiming Chen and Ping Lu. Checking determinism of regular expressions with count-
ing. Information and Computation, 241:302–320, 2015.

[14] Russ Cox. Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...). URL: http://swtch. com/˜ rsc/regexp/regexp1. html, 2007.

[15] Victor Michailowitsch Glushkov. The abstract theory of automata. Russian Mathe-
matical Surveys, 16(5):1, 1961.

[16] Lucian Ilie and Sheng Yu. Follow automata. Information and computation, 186(1):140–
162, 2003.

[17] Dan Lin, Nigel Medforth, Kenneth S Herdy, Arrvindh Shriraman, and Rob Cameron.
Parabix: Boosting the efficiency of text processing on commodity processors. In High
Performance Computer Architecture (HPCA), 2012 IEEE 18th International Sympo-
sium on, pages 1–12. IEEE, 2012.

[18] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-
examined. Journal of Functional Programming, 19(02):173–190, 2009.

[19] Ken Thompson. Programming techniques: Regular expression search algorithm. Com-
munications of the ACM, 11(6):419–422, 1968.

44

Appendix A

Code

Listing A.1: U8 to U32 Transformation

void U8U32KernelBuilder :: generatePabloMethod () {
// input: 8 basis bit streams

const auto u8bitSet = this -> getInputStreamVar ("u8bit");

// output : 32 u8 - indexed streams , + delmask stream + error stream

cc:: CC_Compiler ccc(this , u8bitSet);

PabloBuilder & main = ccc. getBuilder ();
const auto u8_bits = ccc. getBasisBits ();

Zeroes * zeroes = main. createZeroes ();

// Outputs
// The first 11 bits of u32 are always 0s.

Var * u32_0 [8];
for (int i = 0; i < 8; i++) {

u32_0[i] = main. createVar ("u32_0" + std :: to_string (i), zeroes);
}

Var * u32_1 [8];
for (int i = 0; i < 8; i++) {

u32_1[i] = main. createVar ("u32_1" + std :: to_string (i), zeroes);
}

Var * u32_2 [8];
for (int i = 0; i < 8; i++) {

u32_2[i] = main. createVar ("u32_2" + std :: to_string (i), zeroes);
}

Var * delmask = main. createVar (" delmask ", zeroes);
Var * error_mask = main. createVar (" error_mask ", zeroes);

PabloAST * ASCII = ccc. compileCC ("ASCII", re:: makeCC (0x0 , 0x7F), main);
PabloBuilder ascii = PabloBuilder :: Create (main);
for (int i = 1; i <= 7; i++) {

45

ascii. createAssign (u32_2[i], ascii. createOr (u32_2[i], ascii.
↪→ createAnd (ASCII , u8_bits [i])));

}
main. createIf (ASCII , ascii);

PabloAST * u8pfx = ccc. compileCC ("u8pfx", re:: makeCC (0xC0 , 0xFF), main);
PabloAST * nonASCII = ccc. compileCC ("u8pfx", re:: makeCC (0x80 , 0xFF),

↪→ main);
PabloBuilder it = PabloBuilder :: Create (main);
main. createIf (nonASCII , it);

Var * u8invalid = it. createVar (" u8invalid ", zeroes);
PabloAST * u8pfx2 = ccc. compileCC (re:: makeCC (0xC2 , 0xDF), it);
PabloAST * u8pfx3 = ccc. compileCC (re:: makeCC (0xE0 , 0xEF), it);
PabloAST * u8pfx4 = ccc. compileCC (re:: makeCC (0xF0 , 0xF4), it);
PabloAST * u8suffix = ccc. compileCC (" u8suffix ", re:: makeCC (0x80 , 0xBF),

↪→ it);

//

//
// Two -byte sequences
Var * u8scope22 = it. createVar (" u8scope22 ", zeroes);
PabloBuilder it2 = PabloBuilder :: Create (it);
it. createIf (u8pfx2 , it2);
it2. createAssign (u8scope22 , it2. createAdvance (u8pfx2 , 1));
// PabloAST * u8scope22 = it2. createAdvance (u8pfx2 , 1, " u8scope22 ");
for (int i = 2; i <= 7; i++) {

it2. createAssign (u32_2[i], it2. createOr (u32_2[i], it2. createAnd (
↪→ u8scope22 , u8_bits [i])));

}
it2. createAssign (u32_2 [1], it2. createOr (u32_2 [1], it2. createAnd (

↪→ u8scope22 , it2. createAdvance (u8_bits [7], 1))));
it2. createAssign (u32_2 [0], it2. createOr (u32_2 [0], it2. createAnd (

↪→ u8scope22 , it2. createAdvance (u8_bits [6], 1))));
for (int i = 3; i <= 5; i++) {

it2. createAssign (u32_1[i + 2], it2. createOr (u32_1[i + 2], it2.
↪→ createAnd (u8scope22 , it2. createAdvance (u8_bits [i], 1))));

}

//
// Three -byte sequences
Var * u8scope3X = it. createVar (" u8scope3X ", zeroes);
Var * EX_invalid = it. createVar (" EX_invalid ", zeroes);
Var * del3 = it. createVar ("del3", zeroes);

PabloBuilder it3 = PabloBuilder :: Create (it);
it. createIf (u8pfx3 , it3);

PabloAST * u8scope32 = it3. createAdvance (u8pfx3 , 1, " u8scope32 ");
PabloAST * u8scope33 = it3. createAdvance (u8scope32 , 1, " u8scope33 ");
it3. createAssign (u8scope3X , it3. createOr (u8scope32 , u8scope33));
PabloAST * E0_invalid = it3. createAnd (it3. createAdvance (ccc. compileCC (re

↪→ :: makeCC (0 xE0), it3), 1), ccc. compileCC (re:: makeCC (0x80 , 0x9F),
↪→ it3));

PabloAST * ED_invalid = it3. createAnd (it3. createAdvance (ccc. compileCC (re
↪→ :: makeCC (0 xED), it3), 1), ccc. compileCC (re:: makeCC (0xA0 , 0xBF),
↪→ it3));

46

it3. createAssign (EX_invalid , it3. createOr (E0_invalid , ED_invalid));

for (int i = 2; i <= 7; i++) {
it3. createAssign (u32_2[i], it3. createOr (u32_2[i], it3. createAnd (

↪→ u8scope33 , u8_bits [i])));
}
it3. createAssign (u32_2 [1], it3. createOr (u32_2 [1], it3. createAnd (

↪→ u8scope33 , it3. createAdvance (u8_bits [7], 1))));
it3. createAssign (u32_2 [0], it3. createOr (u32_2 [0], it3. createAnd (

↪→ u8scope33 , it3. createAdvance (u8_bits [6], 1))));
for (int i = 2; i <= 5; i++) {

it3. createAssign (u32_1[i + 2], it3. createOr (u32_1[i + 2], it3.
↪→ createAnd (u8scope33 , it3. createAdvance (u8_bits [i], 1))));

}
for (int i = 4; i <= 7; i++) {

it3. createAssign (u32_1[i - 4], it3. createOr (u32_1[i - 4], it3.
↪→ createAnd (u8scope33 , it3. createAdvance (u8_bits [i], 2))));

}
it3. createAssign (del3 , u8scope32);

//
// Four -byte sequences
Var * u8scope4nonfinal = it. createVar (" u8scope4nonfinal ", zeroes);
Var * u8scope4X = it. createVar (" u8scope4X ", zeroes);
Var * FX_invalid = it. createVar (" FX_invalid ", zeroes);
Var * del4 = it. createVar ("del4", zeroes);

PabloBuilder it4 = PabloBuilder :: Create (it);
it. createIf (u8pfx4 , it4);
PabloAST * u8scope42 = it4. createAdvance (u8pfx4 , 1, " u8scope42 ");
PabloAST * u8scope43 = it4. createAdvance (u8scope42 , 1, " u8scope43 ");
PabloAST * u8scope44 = it4. createAdvance (u8scope43 , 1, " u8scope44 ");

it4. createAssign (u8scope4nonfinal , it4. createOr (u8scope42 , u8scope43));
it4. createAssign (u8scope4X , it4. createOr (u8scope4nonfinal , u8scope44));
PabloAST * F0_invalid = it4. createAnd (it4. createAdvance (ccc. compileCC (re

↪→ :: makeCC (0 xF0), it4), 1), ccc. compileCC (re:: makeCC (0x80 , 0x8F),
↪→ it4));

PabloAST * F4_invalid = it4. createAnd (it4. createAdvance (ccc. compileCC (re
↪→ :: makeCC (0 xF4), it4), 1), ccc. compileCC (re:: makeCC (0x90 , 0xBF),
↪→ it4));

it4. createAssign (FX_invalid , it4. createOr (F0_invalid , F4_invalid));

for (int i = 2; i <= 7; i++) {
it4. createAssign (u32_2[i], it4. createOr (u32_2[i], it4. createAnd (

↪→ u8scope44 , u8_bits [i])));
}
it4. createAssign (u32_2 [1], it4. createOr (u32_2 [1], it4. createAnd (

↪→ u8scope44 , it4. createAdvance (u8_bits [7], 1))));
it4. createAssign (u32_2 [0], it4. createOr (u32_2 [0], it4. createAnd (

↪→ u8scope44 , it4. createAdvance (u8_bits [6], 1))));
for (int i = 2; i <= 5; i++) {

it4. createAssign (u32_1[i + 2], it4. createOr (u32_1[i + 2], it4.
↪→ createAnd (u8scope44 , it4. createAdvance (u8_bits [i], 1))));

}
for (int i = 4; i <= 7; i++) {

47

it4. createAssign (u32_1[i - 4], it4. createOr (u32_1[i - 4], it4.
↪→ createAnd (u8scope44 , it4. createAdvance (u8_bits [i], 2))));

}
it4. createAssign (u32_0 [7], it4. createOr (u32_0 [7], it4. createAnd (

↪→ u8scope44 , it4. createAdvance (u8_bits [3], 2))));
it4. createAssign (u32_0 [6], it4. createOr (u32_0 [6], it4. createAnd (

↪→ u8scope44 , it4. createAdvance (u8_bits [2], 2))));
for (int i = 5; i <= 7; i++) {

it4. createAssign (u32_0[i - 2], it4. createOr (u32_0[i - 2], it4.
↪→ createAnd (u8scope44 , it4. createAdvance (u8_bits [i], 3))));

}

it4. createAssign (del4 , it4. createOr (u8scope42 , u8scope43));

// Invalid cases
PabloAST * anyscope = it. createOr (u8scope22 , it. createOr (u8scope3X ,

↪→ u8scope4X), " anyscope ");
PabloAST * legalpfx = it. createOr (it. createOr (u8pfx2 , u8pfx3), u8pfx4);
// Any scope that does not have a suffix byte , and any suffix byte that

↪→ is not in
// a scope is a mismatch , i.e., invalid UTF -8.
PabloAST * mismatch = it. createXor (anyscope , u8suffix);
//
PabloAST * EF_invalid = it. createOr (EX_invalid , FX_invalid);
PabloAST * pfx_invalid = it. createXor (u8pfx , legalpfx);
it. createAssign (u8invalid , it. createOr (pfx_invalid , it. createOr (mismatch

↪→ , EF_invalid)));
// PabloAST * u8valid = it. createNot (u8invalid , " u8valid ");
it. createAssign (error_mask , u8invalid);
it. createAssign (delmask , it. createOr (it. createOr (del3 , del4), ccc.

↪→ compileCC (re:: makeCC (0xC0 , 0xFF), it)));

Var * output = this -> getOutputStreamVar (" u32bit ");
Var * delmask_out = this -> getOutputStreamVar (" delMask ");
Var * error_mask_out = this -> getOutputStreamVar (" errMask ");

for (unsigned i = 0; i < 8; i++) {
main. createAssign (main. createExtract (output , i), u32_0[i]);

}
for (unsigned i = 0; i < 8; i++) {

main. createAssign (main. createExtract (output , i + 8), u32_1[i]);
}
for (unsigned i = 0; i < 8; i++) {

main. createAssign (main. createExtract (output , i + 16) , u32_2[i]);
}
main. createAssign (main. createExtract (delmask_out , main. getInteger (0)),

↪→ delmask);
main. createAssign (main. createExtract (error_mask_out , main. getInteger (0)

↪→), error_mask);

}

Listing A.2: Multiplexed Character Classes Pipeline
std ::pair < StreamSetBuffer *, StreamSetBuffer *> grepPipeline_rep (Driver *

↪→ grepDriver , std :: vector <re::RE *> & REs , const GrepModeType grepMode ,

48

↪→ unsigned encodingBits , StreamSetBuffer * ByteStream , Value * fileIdx)
↪→ {

auto & idb = grepDriver -> getBuilder ();
const unsigned segmentSize = codegen :: SegmentSize < 2 ? 2 : codegen ::

↪→ SegmentSize ;
const unsigned bufferSegments = (codegen :: BufferSegments < 2 ? 2 :

↪→ codegen :: BufferSegments) * codegen :: ThreadNum ;
size_t MatchLimit = ((grepMode == QuietMode) | (grepMode ==

↪→ FilesWithMatch) | (grepMode == FilesWithoutMatch)) ? 1 :
↪→ MaxCountFlag ;

StreamSetBuffer * BasisBits = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (encodingBits , 1),
↪→ segmentSize * bufferSegments));

kernel :: Kernel * s2pk = grepDriver -> addKernelInstance (make_unique < kernel
↪→ :: S2PKernel >(idb));

grepDriver -> makeKernelCall (s2pk , { ByteStream }, { BasisBits });

kernel :: Kernel * requiredStreamsK = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: RequiredStreams_UTF8 >(idb));

StreamSetBuffer * RequiredStreams = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (4, 1), segmentSize *
↪→ bufferSegments));

grepDriver -> makeKernelCall (requiredStreamsK , { BasisBits }, {
↪→ RequiredStreams });

const auto n = REs.size ();

std :: vector <std :: vector <UCD :: UnicodeSet >> charclasses ;

unsigned * exclusiveSetIDs_array [2];

for (unsigned i = 0; i < n; i++) {
REs[i] = resolveNames (REs[i]);
std :: vector <UCD :: UnicodeSet > UnicodeSets = re:: collect_UnicodeSets (

↪→ REs[i]);
UnicodeSets . push_back (UCD :: UnicodeSet (0 x0A));
UnicodeSets . push_back (UCD :: UnicodeSet (0 x0D));
std :: vector <std :: vector <unsigned >> exclusiveSetIDs ;
std :: vector <UCD :: UnicodeSet > multiplexedCCs ;

doMultiplexCCs (UnicodeSets , exclusiveSetIDs , multiplexedCCs);

for (unsigned i = 0; i < 2; ++i) {
exclusiveSetIDs_array [i] = new unsigned [exclusiveSetIDs [i]. size ()

↪→];
for (unsigned j = 0; j < exclusiveSetIDs [i]. size (); j++) {

exclusiveSetIDs_array [i][j] = unsigned (exclusiveSetIDs [i][j]);
}

}

REs[i] = multiplex (REs[i], UnicodeSets , exclusiveSetIDs);
charclasses . push_back (multiplexedCCs);

}

kernel :: Kernel * linebreakK = grepDriver -> addKernelInstance (make_unique <
↪→ kernel :: LineBreakKernelBuilder >(idb , encodingBits));

49

StreamSetBuffer * LineBreakStream = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (1, 1), segmentSize *
↪→ bufferSegments));

grepDriver -> makeKernelCall (linebreakK , { BasisBits }, { LineBreakStream });

StreamSetBuffer * DelMask = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (), segmentSize *
↪→ bufferSegments));

StreamSetBuffer * NegDelMask = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (), segmentSize *
↪→ bufferSegments));

StreamSetBuffer * ErrorMask = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (), segmentSize *
↪→ bufferSegments));

kernel :: Kernel * delMaskK = grepDriver -> addKernelInstance (make_unique <
↪→ kernel :: DelMaskKernelBuilder >(idb));

StreamSetBuffer * LineBreakStream_del_4 = grepDriver -> addBuffer (
↪→ make_unique < CircularBuffer >(idb , idb -> getStreamSetTy (4, 1),
↪→ segmentSize * bufferSegments));

StreamSetBuffer * LineBreakStream_del = grepDriver -> addBuffer (
↪→ make_unique < CircularBuffer >(idb , idb -> getStreamSetTy (1, 1),
↪→ segmentSize * bufferSegments));

StreamSetBuffer * lbSwizzle = grepDriver -> addBuffer (make_unique <
↪→ SwizzledCopybackBuffer >(idb , idb -> getStreamSetTy (4) , segmentSize *
↪→ (bufferSegments +2) , 1));

kernel :: Kernel * delKlb = grepDriver -> addKernelInstance (make_unique <
↪→ kernel :: SwizzledDeleteByPEXTkernel >(idb , 64, 1/*4*/));

kernel :: Kernel * unSwizzleKlb = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SwizzleGenerator >(idb , 4, 1, 1));

grepDriver -> makeKernelCall (delMaskK , { BasisBits }, {DelMask , NegDelMask ,
↪→ ErrorMask });

grepDriver -> makeKernelCall (delKlb , { LineBreakStream , DelMask }, {
↪→ lbSwizzle });

grepDriver -> makeKernelCall (unSwizzleKlb , { lbSwizzle }, {
↪→ LineBreakStream_del_4 });

kernel :: Kernel * selectStreamK_lb = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SelectStream >(idb , 4, 0));

selectStreamK_lb -> setName (" selectStreamK_lb ");
grepDriver -> makeKernelCall (selectStreamK_lb , { LineBreakStream_del_4 }, {

↪→ LineBreakStream_del });

std :: vector < StreamSetBuffer *> MatchResultsBufs (n);

for(unsigned i = 0; i < n; ++i){
StreamSetBuffer * CharClasses = nullptr ;
StreamSetBuffer * CharClasses_del_k = nullptr ;
StreamSetBuffer * CharClasses_del = nullptr ;

//k = bitstreamCount , num = number of input sets to the
↪→ unswizzle kernel .

50

const auto numOfCharacterClasses = charclasses [i]. size ();
unsigned k = (numOfCharacterClasses + 3) / 4 * 4;
unsigned num = k / 4;

CharClasses = grepDriver -> addBuffer (make_unique < CircularBuffer >(
↪→ idb , idb -> getStreamSetTy (numOfCharacterClasses),
↪→ segmentSize * bufferSegments));

CharClasses_del_k = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (k), segmentSize *
↪→ bufferSegments));

CharClasses_del = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (
↪→ numOfCharacterClasses), segmentSize * bufferSegments));

std :: vector < StreamSetBuffer *> Swizzle_cc ;
for (unsigned j = 0; j < num; ++j) {

Swizzle_cc . push_back (grepDriver -> addBuffer (make_unique <
↪→ SwizzledCopybackBuffer >(idb , idb -> getStreamSetTy (4) ,
↪→ segmentSize * (bufferSegments +2) , 1)));

}

kernel :: Kernel * delK_cc = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SwizzledDeleteByPEXTkernel >(idb , 64,
↪→ numOfCharacterClasses));

kernel :: Kernel * unSwizzleK_cc = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SwizzleGenerator >(idb , k, 1, num));

unSwizzleK_cc -> setName (" unSwizzleK_cc ");
kernel :: Kernel * ccK = grepDriver -> addKernelInstance (make_unique

↪→ < kernel :: CharClassesKernel >(idb , std :: move(charclasses [i])
↪→));

grepDriver -> makeKernelCall (ccK , { BasisBits }, { CharClasses });
grepDriver -> makeKernelCall (delK_cc , { CharClasses , DelMask },

↪→ Swizzle_cc);
grepDriver -> makeKernelCall (unSwizzleK_cc , Swizzle_cc , {

↪→ CharClasses_del_k });

kernel :: Kernel * selectStreamK_cc = grepDriver ->
↪→ addKernelInstance (make_unique < kernel ::
↪→ ExpandOrSelectStreams >(idb , k, numOfCharacterClasses));

selectStreamK_cc -> setName (" selectStreamK_cc ");
grepDriver -> makeKernelCall (selectStreamK_cc , { CharClasses_del_k

↪→ }, { CharClasses_del });

StreamSetBuffer * MatchResults = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (1, 1), segmentSize *
↪→ bufferSegments));

kernel :: Kernel * icgrepK = grepDriver -> addKernelInstance (make_unique
↪→ < kernel :: ICGrepKernel >(idb , REs[i], false ,
↪→ numOfCharacterClasses , true , exclusiveSetIDs_array));

grepDriver -> makeKernelCall (icgrepK , { CharClasses_del ,
↪→ LineBreakStream_del , RequiredStreams }, { MatchResults });

MatchResultsBufs [i] = MatchResults ;
}
StreamSetBuffer * MergedResults = MatchResultsBufs [0];
if (REs.size () > 1) {

MergedResults = grepDriver -> addBuffer (make_unique < CircularBuffer >(
↪→ idb , idb -> getStreamSetTy (1, 1), segmentSize * bufferSegments))
↪→ ;

51

kernel :: Kernel * streamsMergeK = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: StreamsMerge >(idb , 1, REs.size ()));

grepDriver -> makeKernelCall (streamsMergeK , MatchResultsBufs , {
↪→ MergedResults });

}
StreamSetBuffer * Matches = MergedResults ;

if (matchesNeedToBeMovedToEOL ()) {
StreamSetBuffer * OriginalMatches = Matches ;
kernel :: Kernel * matchedLinesK = grepDriver -> addKernelInstance (

↪→ make_unique < kernel :: MatchedLinesKernel >(idb));
Matches = grepDriver -> addBuffer (make_unique < CircularBuffer >(idb , idb

↪→ -> getStreamSetTy (1, 1), segmentSize * bufferSegments));
grepDriver -> makeKernelCall (matchedLinesK , { OriginalMatches ,

↪→ LineBreakStream_del }, { Matches });
}

if (InvertMatchFlag) {
kernel :: Kernel * invertK = grepDriver -> addKernelInstance (make_unique

↪→ < kernel :: InvertMatchesKernel >(idb));
StreamSetBuffer * OriginalMatches = Matches ;
Matches = grepDriver -> addBuffer (make_unique < CircularBuffer >(idb , idb

↪→ -> getStreamSetTy (1, 1), segmentSize * bufferSegments));
grepDriver -> makeKernelCall (invertK , { OriginalMatches ,

↪→ LineBreakStream_del }, { Matches });
}
if (MatchLimit > 0) {

kernel :: Kernel * untilK = grepDriver -> addKernelInstance (make_unique <
↪→ kernel :: UntilNkernel >(idb));

untilK -> setInitialArguments ({idb -> getSize (MatchLimit)});
StreamSetBuffer * AllMatches = Matches ;
Matches = grepDriver -> addBuffer (make_unique < CircularBuffer >(idb , idb

↪→ -> getStreamSetTy (1, 1), segmentSize * bufferSegments));
grepDriver -> makeKernelCall (untilK , { AllMatches }, { Matches });

}

StreamSetBuffer * Matches_4 = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (4, 1), 10 * segmentSize *
↪→ bufferSegments));

kernel :: Kernel * expandStreamK_match = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: ExpandOrSelectStreams >(idb , 1, 4));

grepDriver -> makeKernelCall (expandStreamK_match , { Matches }, { Matches_4 });

StreamSetBuffer * swizzle_match = grepDriver -> addBuffer (make_unique <
↪→ DynamicBuffer >(idb , idb -> getStreamSetTy (4, 1), 10 * segmentSize *
↪→ bufferSegments));

kernel :: Kernel * SwizzleK_match = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SwizzleGenerator >(idb , 4, 1, 1));

SwizzleK_match -> setName (" SwizzleK_match ");
grepDriver -> makeKernelCall (SwizzleK_match , { Matches_4 }, { swizzle_match })

↪→ ;

StreamSetBuffer * swizzle_PDEP_match = grepDriver -> addBuffer (make_unique
↪→ < DynamicBuffer >(idb , idb -> getStreamSetTy (4, 1), 10 * segmentSize *
↪→ bufferSegments));

kernel :: Kernel * PDEPK = grepDriver -> addKernelInstance (make_unique <
↪→ kernel :: PDEPkernel >(idb , 4, 4));

52

grepDriver -> makeKernelCall (PDEPK , {NegDelMask , swizzle_match }, {
↪→ swizzle_PDEP_match });

StreamSetBuffer * PDEP_match = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (4, 1), 10 * segmentSize *
↪→ bufferSegments));

kernel :: Kernel * unSwizzleK_match = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SwizzleGenerator >(idb , 4, 1, 1));

unSwizzleK_match -> setName (" unSwizzleK_match ");
grepDriver -> makeKernelCall (unSwizzleK_match , { swizzle_PDEP_match }, {

↪→ PDEP_match });

StreamSetBuffer * PDEP_match_result = grepDriver -> addBuffer (make_unique <
↪→ CircularBuffer >(idb , idb -> getStreamSetTy (1, 1), 10 * segmentSize *
↪→ bufferSegments));

kernel :: Kernel * selectStreamK_match = grepDriver -> addKernelInstance (
↪→ make_unique < kernel :: SelectStream >(idb , 4, 0));

selectStreamK_match -> setName (" selectStreamK_match ");
grepDriver -> makeKernelCall (selectStreamK_match , { PDEP_match }, {

↪→ PDEP_match_result });

return std ::pair < StreamSetBuffer *, StreamSetBuffer *>(LineBreakStream ,
↪→ PDEP_match_result);

}

53

	Approval
	Abstract
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Introduction
	Background
	Parabix Framework
	Kernel Programming in Parabix Framework
	Regular Expression Matching
	Regular Expression
	Matching Process

	Repetition Type
	Review of Finite Automata Theory for IcGrep
	Local Language
	Automata Construction
	Star Normal Form

	Design Objective
	Accelerate Bounded Repetition
	Log2 Technique for Fixed-length Bounded Repetition
	Extend the application of Log2 Technique

	Add Star Normal Form Pass
	Glushkov Construction's Application to Parabix Regular Expression Matching

	Implementation
	Bounded Repetition
	UTF-8 to UTF-32 Pipeline
	Multiplexed Character Classes Pipeline

	Unbounded Repetition
	Star Normal Form Pass
	New Compile Pipeline for Local Language

	Performance Evaluation
	Bounded Repetition
	Unbounded Repetition
	Star Normal Form
	New Compile Pipeline for Local Language

	Conclusion and Future Work
	Conclusion
	Future Work
	Log2 Technique for Bounded Repetition of Arbitrary Length Regular Expression
	Support for Extended Regular Expression Types

	Bibliography
	Appendix Code

