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Abstract

Transport of fluid and heat inside a tree, and the interchange of water and energy between
the tree and the environment, are topics that have been and continue to be areas of active
research in plant physiology, agriculture and environmental studies. Many models have
been proposed to describe the flow of sap inside the tree, and to connect it to the driving
transpiration rate, with various levels of complexity, and with different levels of abstraction.
Most existing models are 1D models and many only attempt to get numerical results, with-
out much analysis. For our work, we adopt a porous medium model that has been verified
experimentally [Chuang et al., Ecological Modelling, 191(3):447-468, 2006]. We generalize
this 1D model to a 3D axisymmetric geometry, where flow is transpiration driven and has
anisotropic and spatially dependent hydraulic conductivity. Through asymptotic analysis,
we derive approximate solutions that produce the axial and radial trunk sap fluxes for a
given transpiration function. We validate the analytical solutions using a second order finite
difference scheme. Next we use our solution formulas to tackle the inverse problem of deter-
mining spatial and temporal components of transpiration given a discrete set measurements
of the trunk sap flux. Finally, we compare our results to some experimental data on radial
variations of sap flux.

As for the heat transport problem, previous work related to trees discuss special cases of the
problem, while giving detailed accounts and specific formulas of the boundary conditions,
like wind and solar radiation effects. Most of this work does not include the possible effects of
advection owing to sap flux, and does not discuss the effects of spatial variation in saturation
on the thermal diffusivity. Assuming local thermal equilibrium for porous media, we propose
a simple advection-diffusion model, with general boundary conditions, and derive Fourier-
Bessel series solutions for the various possible cases suggested by dimensionless parameters.

Keywords: tree sap flow; heat transport; porous medium model; 3D axisymmetry; par-
tial differential equations; asymptotic analysis; inverse problem; advection-diffusion; series
solution
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Chapter 1

Introduction

1.1 Sap Ascent

Transport of sap in trees is a problem that has puzzled scientists and plant physiologists for a
long time. In particular, “the ability of trees to suck water from the soil to the roots, through
the stem to the leaves, sometimes to heights of over a hundred meters, is remarkable given
the absence of any mechanical pump” [8]. The short version of the most widely available
explanation goes as follows [63]: water is lost from the leaves as an unintended consequence
of the shared path between diffusion of the essential precursor for photosynthesis (CO2)
from the atmosphere into the leaves, and the water evaporation and diffusion from leaves
to the atmosphere due to the vapour pressure deficit. As water evaporates from the leaves,
the water-air interface retreats into the hydrophilic leaf cell wall interstices, where it is
highly curved and thus has a high surface tension. This tension force is in turn transmitted
through the water continuum to the xylem in the branches and stem (see Figures 1.2 and
1.1), and subsequently to the roots, thus creating the force necessary to pull sap from the
roots to the leaves [50]. Part of this water is provided from the internal capillary storage of
the tree during the day [72, 23], especially when there is a high evaporative demand; this
storage is replenished during the night when transpiration is at a minimum. Sometimes the
tension is so high that it causes air to leak into the tracheids in the xylem, thus causing an
embolus to form. The compartmentalization and redundancy of the tree vascular system
helps in isolating these emboli and providing alternate routes for sap flow [15]. Trees have
different ways of mitigating the effects of embolism: one mechanism is to create a local
pressure to dissolve the embolus, while another is to grow new conductive tissue during the
subsequent growth season.
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Figure 1.1: Water transport in the xylem [70]: water moves through the tracheids and the
vessel elements in the xylem to the leaves. The water encounters much less resistance in
the vertical direction than in the radial direction where it has to move through the pits.

Figure 1.2: Stem anatomy [71] with the non-conductive heartwood and the conductive
sapwood (mostly comprised of xylem tissue).
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1.2 Tree Hydraulic Transport Physics

Many forces are related to the hydraulic flow of sap in the tree. First, note that sap exists
under negative pressure in the stem, so that in order for the sap to flow in the xylem, the
cohesive forces that bind water molecules together should be strong enough to withstand
the transpiration pull effect. Indeed, pure water can withstand very high tension forces of
the order of 10 − 100 [MPa], well above the forces that exist in plants [54]. These same
cohesion forces are responsible for surface tension force, which is relevant wherever a water-
air interface exists in constricted spaces; the pressure difference across a meniscus owing to
surface tension has the form

PT = γ

RM
,

where γ [N/m] is the surface tension in the leaves, and RM [m] is the meniscus radius.
As water recedes into the mesophyll cell walls in the leaves, the resulting surface tension
force is enough to pull water upward from the roots even in the tallest trees. This force
also acts in the tracheids especially in the pit margo where it prevents air movement from
embolized tracheids into neighbouring tracheids, thus maintaining sap flow. This force
may also explain the form of the pressure-saturation relationship near full saturation: as
residual water in embolized tracheids is gradually lost, the water-air interface recedes into
the tapering ends of the tracheid, thus creating more resistance to loss.

Another force at play is gravitational force, which is especially important in tall trees.
Yet another force that is relevant here is the elastic force, which acts in the tracheids and
prevents them from collapsing under tension force; this force also acts in the trunk within
living cells such as parenchyma cells and in the bark because the elasticity of cell walls
acts against osmotic forces (this may be a factor in the pressure-saturation relationship,
especially in angiosperms). Osmotic forces act in the roots, where the active concentration
of minerals in the stele creates an osmotic pressure difference between the soil and root,
which may be relevant for transport to leaves in smaller plants; the same force acts between
xylem and phloem, where the active loading of sugars in the phloem creates a pressure
difference that drives sugar transport.

Finally, note that the vapour pressure difference between the vapour saturated air space
inside the leaves and outside air is the driving force for transpiration.

To summarize, we consider trees that are tall enough so that the osmotic push from
the roots is insignificant, and for which the gravitational effects are significant. We discard
details of the interaction of xylem conductive tissue with other tissues in the trunk, and
use instead empirically derived relationships between the pressure and saturation. In our
model, we do not consider the effect of growth, although this may be relevant on longer
time scales. Nor do we consider the coupling between flow in the xylem and phloem. Elastic
forces in the tracheid wall are neglected because the wall is stiff (due to lignification), and
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thus these forces do not affect the flow volume. We neglect details of the leaves’ interaction
with the surrounding air and instead consider the outflow rate as a given, similar to Chuang
et al [12]. In fact, our outflow boundary condition is specified on the trunk boundary so
that the branches are not explicitly included as part of the model geometry. Finally, we do
not consider high tensions or large deviations from full saturation at which embolism form
since this is not always a reversible process and its mechanism is still not well understood
[7].

1.3 Biology and Tree Anatomy

We will focus on conifers in explaining the concepts at play in our model, as they have a
simpler architecture as porous media, which is a central central feature of the model we
will adopt for sap flow. This can be seen in the simplicity of the conductive tissue, which is
mainly constructed of tracheids, with rare occurrences of parenchyma and other cell types,
as shown in Figure 1.1. The tracheids are dead longitudinally-oriented cells, that are com-
prised of a cell wall and an empty lumen; they are connected to each other through pits
(small pores) that allow water conduction but restrict the movement of air from embolized
neighbouring tracheids (due to high surface tension forces that need to be overcome). The
distribution of pits in the cell wall are such that the hydraulic conductivity in the longi-
tudinal direction is orders of magnitude higher than in the radial direction [13, 53]. Some
tracheids may be embolized and this is hypothesized [72] to act as a water storage, thus
the concept of capacitance comes into play. The tracheids taper at both ends, and as water
is lost from an embolized tracheid, it recedes into the tapered ends so that the surface
tension force increases until it balances the negative pressure in neighbouring tissue (which
decreases in magnitude due to released water from the embolized tracheid). When the
pressure in neighbouring tissue increases, the water enters the embolized tracheids and the
water-air interface surface tension decreases until it balances the new neighbouring pressure.
This process is reversible although there is the slow dynamics of air dissolving in water and
air released from water until it reaches zero pressure (atmospheric pressure). Cavitation
is another mechanism that releases water into the transpiration stream, although it is less
reversible and usually occurs under more severe conditions like drought of freezing, when
the tension is too high to overcome the pit resistance to embolism. For example, in severe
drought the transpiration demand is high while the soil water supply is deficient, which
causes high water tensions to develop inside the stem enough to overcome the air-water
surface tension in the pits and release the water in the cavitated tracheid (vessel) to the
transpiration stream. In any case, the experiments of [65] provide support to the hypothesis
of [72] that the embolized tracheids act as water storage compartments. In these experi-
ments, the authors of [65] noticed that upon severely dehydrating conifer stem segments and
then fully re-hydrating them, there was a higher water release per unit change in pressure
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during subsequent tension application. This indicates that at the end of the dehydration-
rehydration cycle there was a higher percentage of embolized tracheids that were able to
act as water storage compartments. Moreover, the authors found that cavitation which is
associated with acoustic emissions in the experiments, is rare at pressure tensions in a range
of 0-2 [MPa] for the stems of the coniferous trees Thuja (cypress) and Tsuga (hemlock),
which means that there is a large pressure range over which embolism formation can be
ignored. Finally, it is worth noting that the concavity of the pressure saturation curves in
[65] implies an ever decreasing amount of water release per unit decrease in pressure near
full saturation.

The controversy surrounding embolism repair in conifers is discussed in [7]; the issue
of whether embolism repair happens, and in which trees it occurs, is still not settled. If
embolism occurs in conifers, it is probably not very successful because there is permanent
loss of conductivity (for example, in the heartwood). Thus, in our work, we will assume
that embolism is irreversible. Note that due to the stiffness of the lignified tracheid wall
(which means that the geometry of the tracheid is fixed), the hydraulic conductivity of a
tracheid is not expected to change until an embolism occurs. Since we consider only changes
close to full saturation where embolism is not expected to occur, and since we are assuming
that there is no embolism repair, the hydraulic conductivity is assumed to be independent
of saturation and time; therefore, we only assume a given spatial variation in conductivity,
which is due to previously embolized tracheids.

One more thing to note is that even though we restrict discussion for the most part to
conifers, the model is applicable to other trees like angiosperms, although in this case we
are not able to justify some of our model assumption as easily in terms of the anatomy and
physiology; for example, water storage may be localized in the living tissue of the bark,
or in the pith [23]. Another problem is the complexity of the tissue, which may consist of
vessels, tracheids, fibers or even living parenchyma cells.

1.4 Review of Mathematical Models for Sap Flow

Many models have been proposed to explain the hydraulic phenomena occurring in trees
such as the lag between transpiration and sap flow and the low pass filter action on the
transpiration by the trunk flow. Some models [69, 37, 60] treat the tree stem using an
electrical circuit analogy, as consisting of several electrical components connected in series
and parallel, including resistors for the reciprocal of hydraulic conductivity, capacitors for
water storage, inductors for momentum changes [55], voltages for pressures, and currents
for sap velocities. The authors in [60] include stem growth and diurnal variations into their
circuit model. These models are easy to apply but they have 3 main deficiencies. First,
they are usually discrete models that lack spatial resolution. Second, they assume that
capacitance, which is related to the storage capacity of the tree, is a constant. Third, they
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require fitting of a typically large number of artificial parameters representing fictitious
circuit components rather than actual hydrodynamic or physical parameters that represent
the actual hydraulic properties of a tree and are more of computational models, that do not
aid in understanding the flow problem.

Another class of models are the porous medium models in which the tree stem is assumed
to be a porous medium typically governed by a partial differential equation (PDE) [12, 1],
with a spatially dependent saturation or pressure, and with variable capacitance or nonlinear
pressure-saturation relationship. These models range in complexity from simple macroscale
models [12, 6] to more complex microscale models that include water-air interface dynamics
[1, 2]. In terms of the geometry, some models only consider a 1D stem domain [12] while
others consider also tree branches [6, 22] (it is worth mentioning that [22] assumes that the
hydraulic conductivity decreases irreversibly due to cavitation). All these models consider
individual trees, while at least one model tries to scale what is learned by considering each
tree as a porous medium to forest scale [44]. Finally, the authors of [21] leverage their ability
to acquire high resolution images of wood vessel structure to run detailed two phase Lattice-
Boltzmann flow simulations. In general, these models are usually simulation based and no
analysis has been performed on the model equations to aid in understanding. Second, the
models are usually 1D and only consider vertical variations ignoring sometimes important
variations in the radial direction.

In our work, we extend the model of Chuang et al. [12] to a more general 3D model
of a tree trunk with axisymmetry, including radial variations in the model variables and
the radial component of the sap velocity. This allows us to see the effects of anisotropy in
the hydraulic conductivity on the model variables. We also perform a thorough asymptotic
analysis of the model, connecting sap flow and saturation inside the tree trunk to the
transpiration flux from the trunk surface. We analyze the forward problem of determining
the sap flow in the trunk given the transpiration flux from the leaves. Then we use the
resulting formulas to solve the inverse problem of determining the transpiration flux (both
the spatial and temporal components) given a discrete set of measurements of the sap flow
inside the trunk. Throughout, we use a finite difference numerical scheme to solve the
governing equations, which serves two purposes: to verify our asymptotic analysis, and to
consider cases for which we are not able to obtain an asymptotic solution.
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Chapter 2

Governing Equations

In this chapter, we state the model equations and boundary conditions for sap flow in
a tapered cylinder. We start with the model equations for the 1D case in Section 2.1
which were derived in Chuang et al. [12] for Norway spruce and verified experimentally.
We extend the model to the case of a 3D axisymmetric tree stem with taper in Section
2.3, that incorporates the radial variations within the stem. We do this extension in a
way that replicates the 1D model vertical variations in the vertical component of velocity
and saturation, thus maintaining the link to the experimental results in [12], while also
providing insight into the radial variations in velocity (both radial and vertical components)
and saturation. Finally, we elaborate in Section 2.4 on the functional relationships used in
the model, where we attempt to state the most general forms of parameters for which the
analysis performed in subsequent chapters is valid.

2.1 Chuang’s Model

Here we briefly describe the 1D model of Chuang et al. [12], who assumed that sap flow
inside the stem from roots to leaves follows an unsaturated porous medium model, with
three phases: solid (the stem structures), liquid (sap) and gaseous (air). The essential
variable under consideration is the saturation s(z, t) which is the local volume fraction of
the sap, where z [m] is the height and t [s] is the time. In this model, the stem wood is
assumed to have spatially homogeneous physical properties. Furthermore, owing to the 1D
geometry, the radial and angular variations of saturation are neglected and only a vertical
dependence is assumed. The flow inside the stem is assumed to be driven by two forces:
one is the gravitational force acting downwards, and the other is a saturation dependent
pressure force ψ(s) [m] that pulls sap upwards towards the leaves. Thus the flow velocity
has only a vertical component vz(z, t) [m/s] that has only a vertical spatial dependence and
is given by Darcy’s law

vz = −K(s) ∂
∂z

(ψ(s) + z) , (2.1)
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Table 2.1: Variables and parameters used in the governing equations. Values are for the
“base case” used in the asymptotic analysis, while certain parameters from additional sim-
ulations are given in square brackets.

Symbol Description Units Value or Formula
Independent and dependent variables:

r radial distance m
z vertical distance m
t time s

s(r, z, t) sap volume fraction or saturation −
S(r, z, t) dimensionless saturation deficit function −
vr(r, z, t) radial sap velocity m/s
vz(r, z, t) vertical sap velocity m/s
Solution-dependent and solution-independent functions:
E(t) transpiration rate per unit leaf area m3/m2s (2.15)
f(z) leaf area per unit trunk area (shading effect) m2/m2 (2.17)
K hydraulic conductivity tensor m/s (2.4)
Kr,z hydraulic conductivity components m/s (2.19)
`(z) leaf area per unit height m2/m (2.13)
R(z) tree radius (in case of a varying radius) m (2.20)
λ(z) sunlight shading effect − (2.14)
ψ(s) pressure head m (2.18)

Dimensional parameters:
E0 E(t) daily average m3/m2s 1× 10−9 [3.94× 10−8]
g gravitational acceleration m/s2 9.8
K0 maximum vertical hydraulic conductivity m/s 5.36× 10−7

`0 leaf specific area m 15.3
p0 fitting parameter for K m 694
r0 maximum tree radius (at base) m 0.0645
z0 tree height m 6.7
τ number of seconds per day s 8.64× 104

ρ sap density kg/m3 1000
ψ0 parameter in ψ(s) m 2.93× 105

Dimensionless parameters:
f0 maximum of f(z) 2.6
n fitting parameter for ψ 400
s0 maximum sap volume fraction 0.574
α exponential stem taper rate 0 or 1.42
β fitting parameter for K 3.5
γ ratio of inner to outer radius 0 [0− 0.75]
δ maximum relative saturation variation O(10−1)

[
O(10−2)

]
ζ stem aspect ratio = r0

z0
0.0096

η temporal change parameter=
(

2πz2
0s0n

τK0ψ0

)
4.77

κ max. radial to vertical hydraulic conductivities 10−4, 10−2, 100

µ gravity parameter = z0n
ψ0

0.0091
φ transpiration parameter = 2f0E0

K0

µ
ζ 0.0092 [0.363]
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where K(s) [m/s] is the saturation-dependent hydraulic conductivity. Notice that both
pressure head ψ(s) and hydraulic conductivity K(s) have no explicit spatial dependence
owing to the assumption of spatial homogeneity of the wood physical properties. In order
to close the model equations, Chuang et al. [12] relied on the continuity equation

∂s

∂t
= 1
A

(Avz)−Q1D,

where A(z) is the stem cross section area at height z, and Q1D [1/s] is the transpiration
rate from the leaves per unit stem volume (see Section 2.4 for details).

To complete the problem specification, suitable boundary and initial conditions are
required. At the base of the tree (z = 0) we assume that there is a reservoir of root water
available for uptake from the soil, which we impose via a Dirichlet condition

s|z=0 = s0. (2.2)

At the top of the stem (z = z0) the vertical sap flux vz must be zero, which can be expressed
using a Neumann condition

1 + ψ′
∂s

∂z

∣∣∣∣
z=z0

= 0. (2.3)

In the absence of any detailed measurements of water distribution within a tree stem, we take
the initial saturation to be some constant value between 0 and s0; however, this assumption
is inconsequential for our analysis since we assume time periodic boundary conditions and
neglect transient behavior.

2.2 Measurement Units

There are many variations in the literature of the meaning of the physical quantities we
use, which warrants a brief discussion. Darcy’s law in its most simple form (in the absence
of gravity) states that

VQ = −KD∆P
ρνL

where VQ [m/s] is Darcy’s velocity, KD [m2] is the specific hydraulic conductivity, ∆P [Pa]
is the pressure difference, ν [m2/s] is the kinematic viscosity, L [m] is the length, and ρ

[kg/m3] is the density. The units of KD change if a mass flow rate is used instead. Lumping
KD and ν gives the hydraulic conductivity KC = KD/ν [s], then using K = gKC [m/s] and
the pressure head difference ∆ψ = P/ρg) [m], where g [m2/s] is gravitational acceleration,
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we get

VQ = −K∆P
L

where the differential form in the presence of gravitational force is given in (2.1). Finally,
water content is either given as a volumetric content [m3/m3] or as a mass content [kg/m3];
it also also given as a percentage of the maximum empty space in a porous medium (or
relative water content).

2.3 Axisymmetric Model for Sap Flow in a Tapered Cylinder

In this section, we extend the 1D model from the previous section to the case of an axisym-
metric porous medium with angular symmetry, as depicted in Figure 2.1. This means that

(a) (b)

Figure 2.1: The left figure shows the tree trunk and its sapwood as a tapered annular cylinder
(exponentially decaying radius case). The right figure shows a vertical cross section with
the boundary conditions for the sap flow model.

the saturation s(r, z, t) now has both vertical z [m] and radial r [m] dependencies. It also
means that the flow velocity has both a radial vr(r, z, t) [m/s] and a vertical vz(r, z, t) [m/s]
component, where both components have radial and vertical spatial dependencies. The flow
is similarly driven by pressure gradients and the gravity so the flow velocity v is

v = −K(r, z)∇(ψ(s) + z),

where K is the hydraulic conductivity tensor

K(r, z) =
[
Kr(r, z) 0

0 Kz(r, z)

]
, (2.4)

which is symmetric and positive definite, and ψ is the pressure head. Here we assume that
Kr is nonzero and that K has an explicit spatial dependence and no saturation dependence
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(contrast with the model in Section 2.1). The reason for adopting this point of view is
explained further in Section 2.4. The velocity components in cylindrical coordinates are

vr = −
(
Kr

∂ψ

∂r

)
, vz = −

(
Kz

∂ψ

∂z
+Kz

)
. (2.5)

Now the continuity equation is

∂s

∂t
= −∇ · v, (2.6)

which in cylindrical coordinates becomes

∂s

∂t
= 1
r

∂

∂r

(
rKr

∂ψ

∂r

)
+ ∂

∂z

(
Kz

∂ψ

∂z

)
+ ∂Kz

∂z
. (2.7)

A tree can have a complicated geometry, with the trunk splitting into several major
branches and with these branches dividing into smaller branches. Some trees like conifers
have a main trunk with no major branches, and with small branches carrying the leaves
emanating from the trunk surface. We will focus on the latter case, taking the domain
as the tree trunk and relegating the effect of branches to a pre-assigned flux from the
trunk surface that has spatial and temporal t variations but does not depend on saturation.
Nonetheless, this case could be generalized to by considering the branches as “mini-trunks”
and attaching these mini-trunks to the main trunk (this approach is not touched upon here
since it requires a full 3D model including angular variation).

Note that many trees experience a reduction in sap conductivity in the innermost por-
tions of the tree trunk as they grow, due to embolism formation and other factors. For this
inner heartwood portion, the boundary is assumed to follow the same functional relation as
the lateral trunk surface, so that the domain has the annular cylindrical form

γR(z) 6 r 6 R(z) for 0 6 z 6 z0, (2.8)

where z0 [m] is the tree height, R(z) [m] is the tree radius at height z and 0 ≤ γ < 1 is the
heartwood portion of the tree radius that is nonconductive.

Now turning to the boundary conditions, the lateral surface of the trunk at r = R(z) is
assigned a time-periodic and height-dependent transpiration flux, taking into account the
effect of sun exposure on transpiration through leaf density and shading f(z), and diurnal
variation E(t) [m/s], to get

v · n̂|r=R(z) = Q3D, (2.9)

where n̂ is the unit outward pointing surface normal and

Q3D = f(z)E(t)
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(see Section 2.4 for the actual specification of the functions f and E). This is in contrast
to the source transpiration term Q1D in Chuang’s model in Section 2.1.

The inner tree boundary at r = γR(z) is assigned zero flux because fluid cannot pene-
trate the heartwood:

v · n̂|r=γR(z) = 0, (2.10)

and the upper boundary is also assigned zero flux

vz|z=z0 = 0. (2.11)

We assume that the soil has an adequate supply of water so that the bottom of the trunk
at z = 0 is fully saturated

s|z=0 = s0, (2.12)

where s0 is the porosity of the medium, or the maximum allowed saturation level. This can
be relaxed to any fixed saturation level s0 without much change in the analysis, provided
that the saturation level is not too low to the degree of forming embolisms (theoretically,
since we are assuming embolized tracheids never recover, and since the lumen radius of
tracheids is of the order of tens of micrometers, the saturation should be slightly lower than
full saturation to allow the pressure to be a few kilopascals lower than atmospheric pressure
and to counter act the surface tension forces inside the lumen that act to collapse the air
bubble). A graphical summary of the boundary conditions is provided in Figure 2.1.

To summarize, the reasons for extending Chuang’s model into a 3D axisymmetric model
are:

• Our extension to 3D permits flow in the radial direction and also accounts for poten-
tially large differences in the radial and axial conductivities.

• We include radial variations in certain physical parameters, in particular in the con-
ductivities which typically decrease with sapwood depth and increase with stem height.

• We incorporate a non-conducting heartwood zone that corresponds to a more realistic
annular geometry.

• Transpiration flux is incorporated as a radially-directed outflow through the tree sur-
face, rather than simply a volume-averaged quantity as in the 1D model.

• This model is a natural first step towards developing a fully 3D model that incorpo-
rates radially-dependent features such as directional solar heating, non-uniform stem
shape and actual branching geometries.
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2.4 Coefficient Functions from Chuang et al.

Here we provide details about parameter estimates and functional relationships used in our
model that are specific to the Norway spruce data considered in [12]. All symbols are listed
in Table 2.1 along with their units and values, which are chosen to match the data as much
as possible. Notice that a couple of parameters have two values listed: the transpiration
average E0 = 3.94× 10−8 [m/s] is used in all the simulations and figures, and approximates
the data measured in [12] on the particular days they took the measurements, whereas
E0 = 1×10−9 [m/s] is used in our asymptotic analysis, which represents the transpiration on
cloudy humid day (i.e. under conditions not favorable for transpiration). The corresponding
values for φ are 0.363 and 0.0092. The values used in the asymptotic analysis correspond
to the case µ = φ, which says that both transpiration and gravity are significant, while the
values in [12] correspond to the case µ� φ so that transpiration is much more significant.
One more parameter that has multiple values is γ, with [12] using γ = 0 in their model,
which is the value we use in our asymptotic analysis and most of the figures except where
we otherwise specify.

The relationship between our model transpirational flux and Chuang’s model transpi-
ration rate can be derived by considering a thin horizontal cylindrical slice of the tree of
height dr

2πrQ3D = πr2Q1Ddr,

which simplifies to
Q3D = R(z)

2 Q1D.

The paper uses experimental data for the Norway spruce tree (Picea abies) to derive
functional forms for R,ψ, f and E. These particular functional forms are not critical for
most of our analysis although we use them for our simulations to verify the analysis and
extract the essential properties of these functions that we rely on in our analysis.

For the effect of sun exposure on transpiration, the authors of [12, Fig. 4] propose the
following formula for the leaf area density [m2/m]

`(z) = `0 sech2
(

6 z
z0
− 2.4

)
(2.13)

The effect of shading λ(z) is derived from a rough fit to data in [12, Fig. 5]

λ(z) = 1
π

arctan
(

63
(
z

z0

)
− 50

)
+ 0.53, (2.14)

Similarly, the diurnal variation E(t), which is the leaf transpiration flux in the absence of
shading, is assumed to consist of the first three terms of a Fourier series

E(t) = Eo<
[
1 + d1e

2πit
τ + d2e

4πit
τ

]
, (2.15)
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where time t is measured starting at midnight on the first day, τ = 86, 400 [s] is the diurnal
period, and Eo = 3.94× 10−8 [m/s] is the amplitude of the transpiration flux. The complex
fitting parameters d1 = −0.9118 − 0.0494i and d2 = −0.0446 + 0.1861i are obtained by
taking the discrete Fourier transform of the data obtained from digitizing [12, Fig. 7]. The
right plot of Figure 2.2 shows the resulting E(t). In our asymptotic analysis, we will assume
that E(t) has a general Fourier expansion

E(t) = E0<
[ ∞∑
m=0

dme
2πmit
τ

]
, (2.16)

where E0 is the average leaf transpiration flux (without shading effects) and d0 = 1. Trans-
ferring the effect of transpiration flux from a source in the continuity equation (as in [12])
to a boundary condition at r = R(z), we get the spatial component of the transpiration

f(z) = `(z)λ(z)
2πR̄(z)

, (2.17)

where
R̄(z) =

(0.0645
r0

)
R(z).

The left plot of Figure 2.2 shows the resulting f(z), which we use in the simulations for
illustration purposes except where we specify explicitly a different form; otherwise for the
purpose of our asymptotic analysis, we assume a general positive and smooth function f(z).

According to Chuang et al. [12], the pressure head has the form

ψ(s) = ψ0

[
1−

(
s0
s

) 1
n

]
, (2.18)

where ψ0 = 2.93× 105 [m] is a scaling parameter, and n = 400 is a fitting parameter. This
is similar to the van Genuchten model commonly used to describe capillary pressure in soil
and rock [62] and has also been applied to drying of lumber [32]. Note that pressure head
is a negative quantity because s < s0, reflecting the understanding in the sap hydraulics
literature that sap within a tree stem is under tension. The most important characteristics
of this curve, some of which we use in our analysis, and especially near full saturation, are:

• ψ is an increasing function of s otherwise we get a negative diffusion coefficient in
(2.7).

• ψ is concave downwards, because it becomes ever harder to extract moisture from the
tissue surrounding the xylem, as water recedes into the interstices of cell walls, and
the cell plasma becomes more concentrated (osmotic pressure).
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(a) f(z) (b) E(t)

Figure 2.2: (a) Transpiration vertical profile function f(z) specified in (2.17) (b) leaf tran-
spiration flux function E(t) specified in (2.15). Both functions are used in most of the
simulations for the sap flow (unless otherwise indicated), with E0 = 3.94× 10−8, α = 1.42
and γ = 0, and the rest of the parameters as shown in Table 2.1.
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• ψ varies smoothly and does not have sudden abrupt changes in its gradient. Abrupt
jumps and hysteresis may occur only due to embolism, which we assume does not
happen due to the small saturation variations.

For our analysis, we assume a general ψ(s) in the form of a Taylor expansion that captures
these properties as in (4.2).

Now, for the conductivity, the vulnerability curve Chuang et al. use is

K(s) = K0e
−
(
−ψ(s)

p0

)β
, (2.19)

where K0 = 5.36 × 10−5 [m/s] is the hydraulic conductivity at maximum saturation, and
p0 = 694 [m] and β = 3.5 are fitting parameters. It is worth noting that this sigmoidal curve
is nearly flat close to full saturations because the main cause of loss of hydraulic conductivity
is embolism formation, and this does not occur unless the saturation drops well below the
full saturation level s0. If we assume that tree has been exposed to embolism in the past, due
for example to drought, but is not currently experiencing these harsh conditions that cause
embolism formation, then we can assume that the hydraulic conductivity has an explicit
spatial dependence and no saturation dependence. Furthermore, since the radial flow goes
through tiny pits connecting xylem elements, and through few radial parenchyma cells, while
the vertical flow goes through the xylem lumen for the most part, the hydraulic conductivity
in the vertical direction Kz is larger than the hydraulic conductivity in the radial direction
Kr. Thus for our model, we assume a general tensorial hydraulic conductivity, with explicit
spatial dependence and no saturation dependence, as given in (2.4); however, to get an
explicit solution for saturation in the time varying case (see Section 4.4), we assume that
K is a constant near full saturation.

Finally, in Chuang et al. [12], and for the purpose of simplifying the analysis, the tree
radius variation with height is chosen to be

R(z) = r0e
−α
(
z
z0

)
, (2.20)

where the tapering parameter α = 1.42 controls the radius decay rate, and r0 = 0.0645 [m]
is the tree radius at z = 0 [m]. This can be written as

R(z) = r0R
∗
(
z

z0

)
, (2.21)

where R∗ is a function of order O(1). This later form is sufficient to proceed with the
asymptotic analysis, but to get a closed form solution for the time varying case, we even-
tually use (2.20), which is the only function with the simplifying property that R′/R is
constant, which we use to simplify the analytic solution equations; the exponential form is
also used to illustrate our numerical results. It is worth mentioning here that there is an
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extensive literature on more complicated functional fits to the diameter-versus-height rela-
tionship [35, 46, 48], from which we conclude that a wide range of coniferous and deciduous
tree species have a small enough taper rate that such an exponential function provides a
reasonable approximation to stem shape.
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Chapter 3

Numerical Method

In this chapter we develop a numerical scheme for solving the equations in the previous
chapter based on a cell-centered finite volume approximation. We perform a convergence
study to validate the scheme and run simulations to illustrate the effects of varying the
heartwood fraction γ on radial velocity. This numerical scheme will be used to validate our
asymptotic results and to investigate cases not covered by the asymptotics.

3.1 Coordinate Transformation

To simplify the discrete equations, it is helpful to first transform the radial coordinate
for the tapered annular cylindrical domain. We therefore transform the annular sapwood
domain in which flow occurs

γR(z) 6 r 6 R(z) for 0 6 z 6 z0,

using the transformation
r̃ = r

R(z) ,

while keeping the vertical coordinate z untouched. The resulting transformed coordinates
r̃, z describe a right circular region

γ 6 r̃ 6 1 and 0 6 z 6 z0,

which can be conveniently discretized on a fixed rectangular grid in r̃, z. Spatial derivatives
are transformed according to the rules

∂

∂r
= 1
R(z)

∂

∂r̃
and ∂

∂z
= −Cr̃ ∂

∂r̃
+ ∂

∂z
,
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where
C = R′

R
= − a

z0
,

is a constant owing to the special exponential form assumed for R(z) in (2.20).
Next, applying the coordinate transformation to the velocity expression components

yields turn into

vr = − Dr

R(z)
∂s

∂r̃
and vz = −Kz + Cr̃Dz

∂s

∂r̃
−Dz

∂s

∂z
,

where
Dr = Krψ

′(s) and Dz = Kzψ
′(s).

Here, Kr and Kz can be either equal and saturation dependent as in [12] or else they can
be spatially dependent as in our model. We use a general saturation dependent hydraulic
conductivity K(s) in order to compare to the experimental data in [12] (see Section 6.1).

The final continuity equation becomes

∂s

∂t
= −∇ · v = − 1

R(z)r̃
∂ (r̃vr)
∂r̃

+ Cr̃
∂vz
∂r̃
− ∂vz

∂z
,

which we emphasize is now posed on a rectangular domain for which standard finite differ-
ence schemes can be easily applied.

3.2 Finite Difference Discretization

Next we discretize the velocity and continuity equations using a cell centered finite difference
scheme. The domain is divided into a regular grid with ∆r̃ as the radial step size, and ∆z
as the vertical step size. The saturation values are calculated at the cell centers, and the
velocities are calculated at the cell edge centers. The derivatives are approximated using
centered differences and fractional indices indicate edge centers (one half index) or cell
corners (both indices are shifted by half). The saturations at edge centers and cell corners
are approximated using the arithmetic mean of the two cells sharing the edge or the four
cells sharing the corner. The discretization stencil with nodes labelled by corresponding
indices is shown in Figure 3.1.
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Figure 3.1: Discrete grid point locations in transformed coordinates, with points indexed
as (ri, zk). Saturation is approximated at cell centers (red circles) and velocity components
on cell edges (blue triangles). The discrete equations involve saturations at cell corners
(magenta diamonds, approximated using an average of cell-centered values) so that the
difference equations for dsi,k/dt correspond to a full nine-point stencil involving the neigh-
bouring saturation points denoted in red.

The outcome of the discretization is

(vr)i+ 1
2 ,k

=−
((Dr)i+ 1

2 ,k

Rk∆r̃

)
(si+1,k − sik) ,

(vz)i+ 1
2 ,k

=−
[
(Kz)i+ 1

2 ,k
−
(
Cr̃i+ 1

2
(Dz)i+ 1

2 ,k

∆r̃

)
(si+1,k − sik)

+
((Dz)i+ 1

2 ,k

∆z

)(
si+ 1

2 ,k+ 1
2
− si+ 1

2 ,k−
1
2

)]
,

(vz)i,k+ 1
2

=−
[
Ki,k+ 1

2
−
(
Cr̃i(Dz)i,k+ 1

2

∆r̃

)(
si+ 1

2 ,k+ 1
2
− si− 1

2 ,k+ 1
2

)
+
((Dz)i,k+ 1

2

∆z

)
(si,k+1 − sik)

]
.

As for the continuity equation, the discretization is

∂sik
∂t

=− 1
r̃iRk∆r̃

(
r̃i+ 1

2
(vr)i+ 1

2 ,k
− r̃i− 1

2
(vr)i− 1

2 ,k

)
+ Cr̃i

∆r̃
(
(vz)i+ 1

2 ,k
− (vz)i− 1

2 ,k

)
− 1

∆z
(
(vz)i,k+ 1

2
− (vz)i,k− 1

2

)
Now in order to treat the boundaries, the continuity equation is integrated over the

boundary cell, and the divergence theorem is used to get

∂s

∂t
= − 1
|Ω|

∮
∂Ω
v · n̂ dA,

where s here is the average of saturation over the cell volume Ω, and dA is the area element
over the cell boundary surface ∂Ω. This integral can be approximated by considering the
average of the velocity on each edge of the cell and approximating the curved portions of
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the boundaries as straight lines (surfaces in 3D). This results in

∂s

∂t
≈ − 1
|Ω|

∑
jthside

(~vj · n̂j)Aj .

Now the (r, z) coordinates of the corners of the cell (i, j) are calculated as follows: first the
z coordinates of the bottom (B) and top (T ) corners are given by

(zB)ik = zk −
∆z
2 and (zT )ik = zk + ∆z

2 ,

then the r coordinates of the corners of the cell are calculated using

(rBR)ik =
(
r̃i + ∆r̃

2

)
R((zB)ik), (rTR)ik =

(
r̃i + ∆r̃

2

)
R((zT )ik),

(rBL)ik =
(
r̃i −

∆r̃
2

)
R((zB)ik), (rTL)ik =

(
r̃i −

∆r̃
2

)
R((zT )ik),

where rBR, rTR, rBL and rTL are the bottom right, top right, bottom left and top left radii
of the cell corners. The areas of the top (AT ), the bottom (AB), the left (AL) and the right
(AR) surfaces are given by the following formula

AB =π(r2
BR − r2

BL), AL = π(rTL + rBL)
√

(rBL − rTL)2 + (∆z)2,

AT =π(r2
TR − r2

TL), AR = π(rTR + rBR)
√

(rBR − rTR)2 + (∆z)2,

where rRT , rRB, rLT and rLB are the radii of the corners of the cross-section of the cell (or
edges of bounding surfaces intersections in 3D). The volume of the cell is given by

|Ω| = 1
3π∆z

[(
r2
RT + rRBrRT + r2

RB

)
−
(
r2
LT + rLBrLT + r2

LB

)]
.

To calculate the velocities at the lower boundary of the domain, fictitious cells are added
to the lower boundary, and the saturations si0 in the fictitious cells are calculated by linearly
extrapolating using the Dirichlet BC at the boundary cell edge s = s0 to get

si0 = 2s0 − si1,

where si1 are the saturations at the lower boundary. The velocity at the bottom surface of
the lower boundary cell is calculated as for a typical interior cell.

For time stepping, the Matlab ODE solver ode15s is used. We provide the sparsity
pattern of the Jacobian matrix and use tolerance values ABSTOL = RELTOL = 1× 10−10.
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Table 3.1: Grid refinement study. The order of convergence is esti-
mated as the base-2 logarithm of the ratio of successive grids errors.
Errors are estimated based on the solution from a 500× 500 grid.

No. of cells `1-error Order
31× 31 2.2910× 10−5 −
63× 63 4.0361× 10−6 2.5049

125× 125 9.7881× 10−7 2.0439
250× 250 2.4615× 10−7 1.9915

3.3 Validation of Numerical Scheme

The numerical scheme exhibits a numerical convergence rate of order 1.99 which is consistent
with the expected order 2. The order of convergence is computed by taking successively
finer grids, and comparing to the finest grid while computing to steady state. Errors are
estimated using the L1 norm difference between the solution on the current grid and the
solution on the finest grid as a surrogate for the exact solution. This was done for the case
of α = 1.42. The results are shown in Table 3.1.
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Chapter 4

Asymptotic Series Solution

In this chapter, we apply methods from asymptotic analysis to develop approximate so-
lutions for the 3D model from Section 2.3 under various conditions. We first nondimen-
sionalize the governing equations in Section 4.1 to obtain four dimensionless parameters
that capture certain aspects of the model behaviour. Next we perform a regular asymp-
totic expansion of the saturation in terms of the small dimensionless parameter ζ (stem
aspect ratio) to derive simpler linear differential equations for the saturation in Section 4.2.
This yields a general solution for the constant transpiration steady state case in Section 4.3
as well as a solution for the time-varying constant hydraulic conductivity case in Section
4.4 (where we expand the time component of the transpiration E(t) in terms of Fourier
modes). The ratio of radial to vertical velocities is discussed in Section 4.5. The physical
meaning of the model parameters and direct measurements are discussed in Section 4.8.
Anisotropic hydraulic conductivity effects are discussed in Section 4.9.1, where steady state
leading order solutions are derived. We also discuss the situation where the branches are
concentrated within a crown region (more consistent with deciduous tree species) and for
which interpretations are easier to reach in Section 4.9.3.

It is worth mentioning here that the following analysis, at least for the steady state, bears
some resemblance to the work of Kevorkian for the problem of heat conduction in a long
rod of circular cross section [33, Chapter 4]. Our analysis has been performed for a general
radius variation with height and a general hydraulic conductivity although for the time
varying solution the specific exponential form (2.20) and a constant scalar K are assumed
at the last step in order to solve the resulting ODE and for a general leaf distribution f(z)
and transpiration E(t) functions. Both the steady state and the time periodic solutions
have been obtained using two terms in the asymptotic expansion.
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4.1 Nondimensionalization

As a preparatory step, we begin by writing the governing equations and boundary conditions
in dimensionless form, which allows comparison of the order of magnitude of terms in the
equations through the resulting dimensionless parameters. First, a brief clarification on
notation: when we state A ∼ B, we mean that two quantities are of the same order of
magnitude, while A = O(B) means that A is of the same order as B but is also allowed
to be lower. In the following, we make the fundamental assumption the the expansion
parameter ζ from (4.4) is fixed and ζ � 1. We also assume that the conductivities Kr and
Kz are the same order of magnitude and are never equal to zero. The vertical variations of
saturation and vertical velocity in this case are also relevant to the more physical case when
Kr � Kz, which is discussed in Section 4.9.1. In addition, we set γ = 0 in (2.8) so that
sap flows throughout the entire tree trunk (see Section 6.1 for a discussion of γ > 0). We
further assume the order of magnitude estimate for η ∼ 1 form (4.13) which is motivated
by experimental data fits in Chuang et al. [12], although we consider other cases in Section
4.9.2.

We proceed by nondimensionalizing the main equation (2.7), and the boundary condi-
tions (2.9), (2.10), (2.11) and (2.12). We use the following nondimensionalizations of the
variables

r = r0r
∗, z = z0z

∗, f = f0f
∗, s = s0 (1− δS) , (4.1)

E = E0E
∗, t = τ

2π t
∗, R = r0R

∗, Kr = κK0K
∗
r ,

Kz = K0K
∗
z ,

where r0 is the maximum stem radius at the base, z0 is the stem height, f0 is the maximum
of f , s0 is the maximum saturation, E0 is the average value of E, τ = 86400 [s] is the number
of seconds in a day (unless we are considering longer time intervals), K0 is the maximum
vertical conductivity, and κ is the ratio of the maximum of Kr to the maximum of Kz. We
assume that saturation inside the stem near full saturation, thus we incorporate a small
parameter δ into the definition for saturation deficit S, emphasizing that δ will eventually
cancel out in the final dimensional solutions.

Expanding pressure head ψ in a Taylor series in δ yields

ψ(S) = −δψ̄0S

[
1 + 1

2ψ1δS + 1
6ψ2δ

2S2 + · · ·
]
, (4.2)

where

ψ̄0 = ψ0
n
, ψ1 = n+ 1

n
= 1 + 1

n
∼ 1, ψ2 =

(
n+ 1
n

)(2n+ 1
n

)
= 2 +O

( 1
n

)
∼ 1,
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Taking the derivative with respect to s and noting that d
ds = − 1

δs0
d
dS

d

ds
(ψ(S)) = ψ̄0

s0

[
1 + ψ1δS + 1

2ψ2δ
2S2 + · · ·

]
.

Note that we only need the first two terms in the Taylor expansion of the derivative of ψ,
so we will discard any indication of the remaining terms to reduce clutter.
Substituting (4.2) into the main equation (2.7) and nondimensionalizing using (4.1) we get

ηζ2∂S

∂t
= κ

1
r

∂

∂r

(
rKr (1 + ψ1δS) ∂S

∂r

)
+ ζ2 ∂

∂z

(
Kz (1 + ψ1δS) ∂S

∂z

)
−
(
µζ2

δ

)
∂Kz

∂z
, (4.3)

where the superscript ∗ is dropped from all dimensionless variables from now on, and we
will clearly mention when we return to dimensional variables. The three dimensionless
parameters that appear in equation (4.3) are

ζ = r0
z0
, µ = nz0

ψ0
, η = 2πns0z

2
0

τK0ψ0
, (4.4)

which will appear frequently in the analysis below. Notice that the most striking and
obvious feature of our problem is the small aspect ratio of the domain

ζ � 1,

which we adopt as the key parameter for our asymptotic expansions.

The top (2.11) and bottom (2.12) boundary conditions yield after nondimensionalizing
and series expansion

S(r, 0, t) = 0, (4.5)

(1 + ψ1δS) ∂S
∂z

= µ

δ
. (4.6)

If we assume that the derivatives are of O(1) then

µ

δ
= gravity force

saturation dependent force = O(1). (4.7)

We will assume that
µ ∼ δ (4.8)

so that the gravity contribution is important in (4.6), noting that the gravity term would
shift to lower order terms in the solution for the case of µ � δ. As for the boundary
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condition (2.9) at r = R(z),

κnr

(
Kr

∂S

∂r

)
+ nz

(
ζKz

∂S

∂z
− µζ

δ
Kz (1− ψ1δS)

)
= ζ2φ

2δ f(z)E(t) (1− ψ1δS) , (4.9)

where the normal vector components are

nr = 1√
1 + (R′(z))2 and nz = −R′(z)√

1 + (R′(z))2 .

The dimensionless parameter φ appearing in equation (4.9) is defined by

φ = 2f0E0
K0

µ

ζ
(4.10)

Note that the appearance of ζ in the denominator is not a problem since µ is of similar
order, as is shown in Table 2.1, and as will see later on in the order of magnitude relationship
(4.27).

Substituting R(z) = r0R
∗
(
z
z0

)
where R∗ = O(1), we get R′(z) = ζ(R∗(z∗))′, and then

expanding in terms of ζ, the normal vector components become

nr = 1√
1 + (R′(z))2ζ2 = 1− 1

2(R′(z))2ζ2 + · · · ,

nz = −R′(z)ζ√
1 + (R′(z))2ζ2 = −R′(z)ζ

(
1− 1

2(R′(z))2ζ2 + · · ·
)
,

where the * superscript is dropped as already mentioned. Employing the above approx-
imations and nondimensionalizing using (4.1), the result is the dimensionless boundary
equation

κ

(
1− 1

2(R′(z))2ζ2
)(

Kr
∂S

∂r

)
− ζR′(z)

(
1− 1

2(R′(z))2ζ2
)(

ζKz
∂S

∂z
− µζ

δ
Kz (1− ψ1δS)

)
= ζ2φ

2δ f(z)E(t) (1− ψ1δS) , (4.11)

where φ is given in equation (4.10) and where we have also expanded 1
ψ(s) as a series in δS

as we did for ψ.
See Section 4.8.2 for a detailed interpretation of the physical meaning of the dimension-

less parameters in (4.4) and (4.10).
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4.2 Asymptotic Expansion for the General Case

Here we will proceed with our asymptotic analysis for the dimensionless equations obtained
in the previous section, assuming a general spatial dependence in hydraulic conductivity
and a general tree radius function R(z). The outcome of our analysis will be a set of one-
dimensional differential equations. Following that in sections (4.3), (4.4) and (4.5), we will
consider special cases for which we can obtain closed form solutions for these differential
equations.

We start by assuming a regular expansion of S in terms of ζ

S = S0 + S1ζ + S2ζ
2 + S3ζ

3 + · · · (4.12)

We will employ the order of magnitude assumption

η ∼ 1, (4.13)

and other cases will be considered later in section 4.9.2. Note that we will need to consider
the expansion up to order ζ3, because in order to obtain a reasonably accurate solution,
we need to determine S0 and S1, which cannot be determined without the next two terms
S2 and S3. In addition, having S1 will allow us to calculate the radial component of sap
velocity.

Substituting (4.12) into (4.3) yields the leading order equation

1
r

∂

∂r

(
rKr

∂S0
∂r

)
= 0.

Assuming that Kr is never equal to zero, this equation implies that the leading order term
S0 is independent of the radial coordinate, or

S0 = S0(z, t).

The next order equation of order ζ yields the same result

1
r

∂

∂r

(
rKr

∂S1
∂r

)
= 0,

so that similarly
S1 = S1(z, t). (4.14)

Note that due to the absence of radial dependence of S0 and S1, the boundary condition
(4.11) at r = R(z), and if we assume that derivatives are of O(1), we have the following
order of magnitude relationship:

φ

δ
= O(1). (4.15)
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We will assume that
φ ∼ δ (4.16)

so that the effect of transpiration on the trunk saturation is observable, whereas the tran-
spiration effect is shifted to lower order terms in the case of φ� δ. Note that assumption
(4.16) together with the earlier assumption µ ∼ δ in (4.7) implies φ ∼ µ. Now for the case
of Picea abies parameter values in [12], and for the particular level of transpiration on the
days the measurements were made, we actually have µ � φ; however, we know that tran-
spiration varies according to the surrounding weather conditions, thus we shouldn’t restrict
ourselves to any particular order of magnitude for φ. In fact, our choice of µ ∼ φ to develop
our asymptotics produces a solution that is a good approximation of the solution for the
other case of µ� φ, as we will see later on in Section 4.6.

Moving on to higher order terms, for the order ζ2 equation we have

κ
1
r

∂

∂r

(
rKr

∂S2
∂r

)
= f2(r, z, t), (4.17)

where

f2(r, z, t) =η∂S0
∂t
− ∂

∂z

(
Kz

∂S0
∂z

)
+ µ

δ

∂Kz

∂z
,

so that after integrating once and substituting r = R(z) we obtain

κRKr
∂S2
∂r

= −
∫ R

0
rf2(r, z)dr =η

2R
2∂S0
∂t
−
∫ R

0
r
∂

∂z

(
Kz

∂S0
∂z

)
dr + µ

δ

∫ R

0
r
∂Kz

∂z
dr.

Applying the boundary condition at r = R(z) yields

κRKr
∂S2
∂r

=RR′Kz
∂S0
∂z
− µ

δ
RR′Kz + φ

2δ fRE, (4.18)

and then combining the last two equations gives

RR′Kz
∂S0
∂z
− µ

δ
RR′Kz + φ

2δ fRE = η

2R
2∂S0
∂t
−
∫ R

0
r
∂

∂z

(
Kz

∂S0
∂z

)
dr + µ

δ

∫ R

0
r
∂Kz

∂z
dr.

After simplification this equation reduces to

φ

2δ fRE =η

2R
2∂S0
∂t
− ∂

∂z

∫ R

0
r

(
Kz

∂S0
∂z

)
dr + µ

δ

∂

∂z

∫ R

0
rKzdr,

and yet further to

η
∂S0
∂t
− 2
R2

∂

∂z

[
G(z)∂S0

∂z

]
=
(
φ

δ

)
fE

R
− µ

δ

2
R2

dG(z)
dz

, (4.19)
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where
G(z) =

∫ R

0
rKzdr. (4.20)

Now, the boundary condition (4.5) at z = 0 at order ζ is

S0(z, t) = 0, (4.21)

while the boundary condition (4.6) at z = 1 at order ζ is

∂S0
∂z

∣∣∣∣
z=1

= µ

δ
. (4.22)

Next, we consider the order ζ3 equation

κ
1
r

∂

∂r

(
rKr

∂S3
∂r

)
= η

∂S1
∂t
− κδ

ζ
ψ1

1
r

∂

∂r

(
rKrS0

∂S2
∂r

)
− ∂

∂z

(
Kz

∂S1
∂z

)
− δ

ζ
ψ1

∂

∂z

(
KzS0

∂S0
∂z

)
,

which upon integrating from 0 to r and evaluating at r = R(z) becomes

κRKr
∂S3
∂r

= η
∂

∂t

∫ R

0
rS1dr − κ

δ

ζ
ψ1RKrS0

∂S2
∂r
−
∫ R

0
r
∂

∂z

(
Kz

∂S1
∂z

)
dr

− δ

ζ
ψ1

∫ R

0
r
∂

∂z

(
KzS0

∂S0
∂z

)
dr.

The corresponding boundary condition at r = R(z) is

κRKr
∂S3
∂r

= RR′Kz
∂S1
∂z

+ µ

ζ
ψ1RR

′KzS0 −
φ

2ζ ψ1RfES0.

Combining the last two equations and using (4.18), then simplifying yields

0 = η
∂

∂t

∫ R

0
rS1dr −

∂

∂z

∫ R

0
r

(
Kz

∂S1
∂z

)
dr − δ

ζ
ψ1

∂

∂z

∫ R

0
r

(
KzS0

∂S0
∂z

)
dr.

Using the fact that S0 and S1 have no radial dependence yields

η
∂S1(z, t)

∂t
− 2
R2

∂

∂z

[
G(z)∂S1(z, t)

∂z

]
= − 2

R2H(z), (4.23)

where

H(z) =− δ

ζ
ψ1

∂

∂z

[
G(z)S0

∂S0
∂z

]
, (4.24)

and G(z) is as defined in (4.20).
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The bottom boundary condition (4.5) at z = 0 at order ζ2 gives

S1(z, t) = 0, (4.25)

while the boundary condition (4.6) at z = 1 at order ζ2 gives

∂S1
∂z

∣∣∣∣
z=1

= −µ
ζ
ψ1 S0|z=1 , (4.26)

where here the boundary condition forces the following order of magnitude relationship

µ

ζ
= O(1) (4.27)

assuming ψ1 ∼ 1 and that the derivatives are of O(1) (since there are no steep changes in
saturation as the simulations in Section 4.6 show). For the parameter values for Picea abies
shown in (2.1), the relationship µ ∼ ζ actually holds.

4.3 Constant Transpiration, Steady State Solution: Connec-
tion with Circuit Models

In this section we consider the case when transpiration is constant in time (E = 1) so that
the solution may be taken at steady state. The solution we obtain is also the time averaged
solution for the time-varying periodic transpiration case. We start by integrating the S0

equation (4.19) using the boundary condition (4.5) at z = 0 and (4.6) at z = 1, yielding

S̄0(z) = φ

2δ

∫ z

0

[ 1
G(z′)

∫ 1

z′
f(w)R(w)dw

]
dz′ + µ

δ
z, (4.28)

where G(z) is defined in (4.20).
Similarly, solving (4.23) for constant transpiration and steady state and applying bound-

ary conditions (4.5) at z = 0 and (4.26) at z = 1 gives

S̄1(z) = −δ
ζ
ψ1

∫ z

0
S̄0(z′)∂S̄0

∂z
(z′)dz′, (4.29)

where H(w) from (4.24) is evaluated at S̄0. The first term in S̄0 captures the transpiration
effect and the second term captures the gravitational effects. The inner integral is the total
transpiration rate above height z′ per unit horizontal cross section area at x, which is just
the sap flux rate.
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Note that if we neglect the gravity term in S̄0, the remaining first term on the right of
(4.28) can be thought of as a formula for a resistance circuit

S̄0(z) =
∫ z

0
I(z′)dR(z′),

where

dR(z′) =
[∫ R(z′)

0
Kz(r, z′)dr

]−1

dz′,

is the resistance of tree slice between z = z′ and z = z′ + dz′. As for

I(z′) = φ

2δ

∫ 1

z′
f(w)R(w)dw,

it is the cumulative transpiration rate from the surface of the trunk between z = z′ and
z = 1. This establishes a connection to circuit models used in tree modeling.

4.4 Time Periodic Transpiration Constant Scalar Conductiv-
ity

In this section, we consider a time periodic transpiration function (i.e., where E(t) is
periodic) and a constant scalar hydraulic conductivity (i.e., in dimensionless variables,
κ = Kr = Kz = 1). We assume further the exponential form for the trunk radius function
R(z) given in (2.20). This will allow us to get a closed form solution for the first two terms
in the asymptotic expansion. We use the eventual solutions and numerical experiments to
show how transpiration disturbances in one part of the tree propagate through the rest of
the tree. Since κ does not appear in the differential equations (4.19) and (4.23) determining
S0 and S1, any κ ∼ 1 will give exactly the same result. We also assume that the boundary
function R is given by (2.20).

Next, we decompose E(t) into its Fourier modes as in (2.16), so that the dimensionless
form is

E(t) = <
[ ∞∑
m=0

dme
imt

]
,

where d0 = 1, and expand S0 in terms of its Fourier modes

S0(z, t) = <
[ ∞∑
m=0

dmS
m
0 (z)eimt

]
. (4.30)

The equation for Sm0 is a linear nonhomogeneous ODE

d2Sm0
dz2 − 2αdS

m
0

dz
− (iηm)Sm0 = Hm

0 (z),
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where

Hm
0 (z) = 1

R2(z)

−φ
δ
R(z)f(z) +


µ
δ

(
R2(z)

)′ ;m = 0

0 ;m > 0

 . (4.31)

The corresponding boundary conditions from (4.21) and (4.22) are

dSm0
dz

∣∣∣∣
z=1

=


µ
δ ;m = 0

0 ;m > 0
, (4.32)

and
Sm0 (0) = 0. (4.33)

The term S0
0 has already been determined as the steady state solution S̄0 in (4.28), and

in our case simplifies to

S̄0(z) =
∫ z

0

1
R2(z′)

[∫ 1

z′

φ

δ
f(w)R(w)dw

]
dz′ + µ

δ
z.

Considering the homogeneous solution first, for m > 0, we get

Sm0,h = Am+
0 e%

+
mz +Am−0 e%

−
mz, (4.34)

where Am+
0 and Am−0 are constants and

%±m = α±
√
α2 + imη.

Using variation of parameters, the particular solution is

Sm0,p = 1
%+
m − %−m

([∫ z

0
Hm

0 (z′)e−%
+
mz
′
dz′
]
e%

+
mz −

[∫ z

0
Hm

0 (z′)e−%
−
mz
′
dz′
]
e%
−
mz
)
. (4.35)

Then applying the boundary conditions (4.33) yields the following simple relationship
between the coefficients:

Sm0 |z=0 = 0 =⇒ Am+
0 = −Am−0 ,

and the above boundary condition (4.32) leads to

Am−0 = −Am+
0 =

∫ 1

0

[
%+
m exp

(
%+
m(1− z′)

)
− %−m exp

(
%−m(1− z′)

) ]
Hm

0 (z′) dz′

(%+
m − %−m)

[
%+
m exp(%+

m)− %−m exp(%−m)
] . (4.36)

Proceeding to the next order in the asymptotic solution for S1, a similar series expansion

S1(z, t) = <
[ ∞∑
m=0

dmS
m
1 (z)eimt

]
(4.37)
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is substituted into (4.23), and (4.19) is used to simplify the right hand side involving S0.
The resulting equation involves three extra nonlinear terms that require individual Fourier
series expansions:

(S0)2 = <
[ ∞∑
m=0

dmBm(z)eimt
]
,

(
∂S0
∂z

)2
= <

[ ∞∑
m=0

dmCm(z)eimt
]
,

S0E(t) = <
[ ∞∑
m=0

dmDm(z)eimt
]
.

After some further simplification, the ODEs for Sm1 (z) can be written as

d2Sm1
dz2 − 2αdS

m
1

dz
− imηSm1 = Hm

1 (z), (4.38)

which are identical to the Sm0 (z) equations except that the right hand side is given by (4.19)
as

Hm
1 (z) = ψ1δ

ζ

[2αµ
δ
Sm0 (z)− imη

2 Bm(z)− Cm(z) + φf(z)
δR(z)Dm(z)

]
. (4.39)

The corresponding boundary conditions from (4.25) and (4.26) are

Sm1 (0) = 0 and dSm1
dz

(1) = −µψ1
ζ

Sm0 (1).

We have already obtained the first term (m = 0) in the S1-series as (4.29) from the steady
state solution, while for m > 1 we proceed as before by splitting

Sm1 = Sm1,h + Sm1,p, (4.40)

where the homogeneous solution is

Sm1,h = Am+
1 exp(%+

mz) +Am−1 exp(%−mz), (4.41)

and the particular solution Sm1,p is identical to (4.35) with Hm
0 replaced by Hm

1 . Finally,
applying the boundary conditions yields the coefficients

Am−1 = −Am+
1 = µψ1

ζ

Sm0 (1)
%+
m exp(%+

m)− %−m exp(%−m)

+

∫ 1
0

[
%+
m exp

(
%+
m(1− z′)

)
− %−m exp (%−m(1− z′))

]
Hm

1 (z′) dz′(
%+
m − %−m

) (
%+
m exp(%+

m)− %−m exp(%−m)
) . (4.42)
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Next we want to put the leading order solution formulas in a more understandable form
that shows how disturbances in transpiration travel along the stem. First define

Fm0 (z, t) = exp ((|Pm| cos(φPm))z) cos
(
|Pm| sin(φPm)z +mt+ φA1

0
+ φdm

)
Gm0 (z, t) = exp ((|Pm| cos(φPm))z) cos (|Pm| sin(φPm)z +mt− φPm + φdm)

where

Am+
0 = |Am+

0 | exp
(
iφAm+

0

)
and dm = |dm| expiφdm , (4.43)

and
Pm = 1

2
(
%+
m − %−m

)
, (4.44)

then the terms in the Fourier series expansion can be written in the alternate form:

<
[
dmS

m
0,h(z) exp (imt)

]
= |dm||Am+

0 | exp (αz) [Fm0 (z, t)− Fm0 (−z, t)] , (4.45)

and

<
[
dmS

m
0,p(z) exp (imt)

]
=

−
(
φ

δ

) |dm|
|Pm|

exp (αz)
∫ z

0
f(z′)

[
Gm0 (z − z′, t)−Gm0 (z′ − z, t)

]
dz′. (4.46)

Notice that in formulas for the saturation leading order term, there are two travelling
waves moving in opposite directions for each mode m, and with equal speeds of magnitude∣∣∣∣(dzdt

)
m

∣∣∣∣ = m

|Pm| sin (φPm) . (4.47)

We have thus arrived at a description of the leading order mode-dependent speed at which
saturation effects of localized spatial and temporal variations in the transpiration are trans-
mitted through the tree, as is illustrated in Figure 4.1: the relaxation time at z = 0.5z0 is
numerically given by 3.5 hours in Fig. 4.1c, while asymptotically given by 4.1 hours as we
will see in Section 4.8.1; for η = 4.77 the numerical time shift is 1 hour in Fig. 4.1e, while
the asymptotic estimate is 1.44 hours; similarly for η = 14.3 the numerical shift is 2.7 hour
in Fig. 4.1f, while the asymptotic estimate is 2.86 hours. Larger η gives better agreement
between the results of the numerical solution and asymptotic formulas). Discrepancies are
due to the formulas being first order estimates and due to using formulas which are meant
for periodic solutions to estimate properties of transient solutions in the case of spatial
travel in (4.47). We have also captured the nonlinear effects of the pressure-saturation
relationship on our time dependent solution. Note that although the saturation formulas
have been developed for the constant isotropic hydraulic conductivity case where there is no
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radial dependence, they still capture the solution in the moderately anisotropic case κ ∼ ζ,
as we will see in Section 4.9.1.

4.5 Steady State, Constant Transpiration and Constant Scalar
Conductivity

We next apply the results in the previous two sections to obtain first order approximations
for the steady state transpiration case, where we also assume a constant isotropic hydraulic
conductivity. For the special case considered here, and since S̄0 and S̄1 have no radial
dependence, we need to consider the S̄2 equation (4.17) in order to obtain an expression for
the radial velocity. Considering the steady state mode m = 0, (4.17) simplifies to

1
r

∂

∂r

(
r
∂S̄2
∂r

)
= −∂

2S̄0
∂z2 ,

so that
∂S̄2
∂r

= −r2
∂2S̄0
∂z2 .

Nondimensionalizing expression (2.5) for radial velocity in the case of constant scalar K
yields

v̄r ≈
K0δ

µζ
(1 + δψ1S) ∂S

∂r
.

which in contrast with the two leading order terms introduces a simple quadratic radial
dependence in S̄2. Then, since S̄2 is the first term with radial dependence, this gives the
leading order velocity term as

v̄r ≈ −
(
K0δ

2µ

)
ζr
d2S̄0
dz2 = −

(
K0φζ

2µ

)
r

2
d

dz

[ 1
G(z)

∫ 1

z
R(w)f(w)dw

]
. (4.48)

which obeys the simple estimate

v̄r = O

(
K0ζφ

2µ

)
. (4.49)

As for the vertical velocity component, the dimensionless expression from (2.1) is

v̄z ≈ K0

(
−1 + δ

µ
(1 + δψ1S) dS

dz

)
,

and considering the leading order term, this becomes

v̄z = K0

(
−1 + δ

µ

dS̄0
dz

)
=
(
K0φ

2µ

) 1
πR2(z)

∫ 1

z
2πR(z′)f(z′)dz′, (4.50)

36



(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Comparison between numerical (plots) and asymptotic estimates (formulas)
of relaxation times given by (4.54) and spatial travel between z = 0.5z0 and z = 0.8z0
in (4.47) for a transient disturbance at the top of the tree (E0 = 3.94 × 10−8, κ = 1,
a = 1.42 and γ = 0). (a) Shifted and rescaled version of original f(z) so that the leaves are
concentrated at the upper portion of the tree. (b) Transient disturbance E(t) corresponding
to an extreme weather event. (c) Saturation variation as the transpiration is changed
with time for η = 4.77: at t = 0 the tree is fully hydrated with no transpiration, at
t = 1 days constant transpiration is applied, and at t = 3 days a Fourier mode m = 1
is applied. (d) Zoomed portion of (c) showing the relaxation from zero transpiration to
positive transpiration. (e) Zoomed portion of (c) showing the shift in time between two
corresponding peaks at two heights. (f) Similar to (e) but for the case of η = 14.3 (obtained
by scaling r0, z0 and ψo by 3).
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so that to leading order
v̄z = O

(
K0φ

2µ

)
. (4.51)

As a result, the ratio of velocities

vr0
vz0
∼ ζ (4.52)

where vr0 and vz0 represent the velocities orders of magnitude in (4.49) and (4.51). This
means that the velocity ratio has the same order of magnitude as the stem aspect ratio of
the domain.

To illustrate these asymptotic results, we present in Figures 4.2a,b plots of the vertical
velocity and saturation, determined using the two leading order terms in the steady state
asymptotic solution. In both cases, the solution variables are averaged across the stem
cross-section and the corresponding finite-volume numerical solution is included in order
to demonstrate the close correspondence. The vertical velocity exhibits the characteristic
double peak that is later observed for the variable-transpiration problem in Figure 6.1. To
illustrate the relative magnitude of the velocity components, Figure 4.2c depicts the log
of the ratio vr/vz. Except for a thin boundary layer adjacent to the top boundary the
radial component is at least a factor of 100 smaller than the vertical component, which is
consistent with our asymptotic estimate of v̄r/v̄z in (4.52). The final plot in Figure 4.2d
provides a clearer picture of the actual flow direction within the stem by depicting both
streamlines and direction field arrows.

4.6 Numerical Validation

In order to validate the asymptotic results, we provide next a comparison between the
asymptotic solutions developed in the previous sections and the numerical solution proposed
in Chapter 3. Within the asymptotic regime where µ ∼ φ ∼ ζ ∼ δ, the relative error between
the numerical solution saturation deficit (i.e. s0−s) and the corresponding asymptotic value
(using two terms in the asymptotic expansion) is of order O(10−4) as shown in Figure 4.3,
which is the order of the next missing correction term in the asymptotic solution. This
gives us confidence in the validity of our asymptotic results and their convergence to the
correct order.

As we shift outside of the asymptotic regime by increasing transpiration rate so that
ζ ∼ µ� φ, we start seeing some small differences begin to appear as shown in Figure 4.4.
Increasing the transpiration even further breaks the model validity, as we get tensions of
the order of Megapascals, and at these tensions embolisms would start to form.

38



(a) Average vz (b) Average s

(c) Log velocity ratio (d) Velocity vector plot

Figure 4.2: Asymptotic and numerical solutions for constant transpiration and isotropic
conductivity. (a,b) Comparison of vertical velocity vz and saturation s (both are averaged
across the radius). (c) Log ratio of the velocity components, log10 |vr/vz|. (d) Velocity field
arrows and flow streamlines. Parameters are chosen as in Table 2.1 with E(t) ≡ Eo =
3.94 × 10−8, κ = 1, α = 1.42 and γ = 0; the asymptotic result is based on the first two
terms in the steady-state solution for the isotropic case κ = 1.

39



Figure 4.3: L1-norm of difference between numerical and asymptotic solutions relative to
the numerical solution within the asymptotic regime where µ ∼ φ ∼ ζ ∼ δ

(a) 3am to 2pm (b) 2pm to 2am

Figure 4.4: Saturation (s) profiles during a 24-hour period, showing the horizontally-
averaged numerical solution and asymptotic approximation. For purposes of clarity the
profiles over one daily cycle are separated into two roughly 12-hour periods (a,b), since the
saturation decreases over the first half day after which it increases again. Here the stem
has a taper α = 1.42 and a transpiration flux average E0 = 3.94 × 10−8 (with κ = 1 and
γ = 0).
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4.7 Heartwood Region

The primary reasons for developing this 3D sap flow model are to capture the radial velocity
(as well as radial variations in the solution) and to investigate the impact of including a
non-conducting heartwood region with γ > 0. With this in mind, we performed a series
of three simulations with different heartwood thickness (γ = 0, 0.5 and 0.75) and plotted
profiles of the computed radial velocities in equation (4.5). Two positive peaks appear in
vr which clearly derive from the local maxima in the transpiration flux, and these are offset
by a comparatively large negative radial velocity at the tree base due to root influx. This is
a geometric effect that mimics the inward radial tilt of sapwood vessels (which due to stem
taper is largest at the base). The effect of this radially-inward flow is accentuated as the
thickness of the annulus decreases (i.e., as γ increases) in order to maintain a total mass
balance that matches the specified outward transpiration flux.

(a) γ = 0 (b) γ = 0.5 (c) γ = 0.75

Figure 4.5: Simulations of radial velocity vr (SI units) shown at various times throughout
a diurnal cycle at the middle of the sapwood region, r = R(z)(γ + 1)/2. Results are shown
for three values of heartwood fraction γ = 0, 0.5, 0.75 and other parameters as in Table 2.1
except κ = 1.

4.8 Interpretation and Measurement of Dimensionless Pa-
rameters

In this section, we provide physical meaning to some of the important dimensionless pa-
rameters in our model, and discuss the possibility of measuring them directly instead of
measuring the individual dimensional parameters that constitute them. We start by deriv-
ing a formula for the relaxation time of the system, and then discuss how transpiration rate
and gravity are related to the magnitude of stem water deficit.
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4.8.1 Relaxation Time

Consider (4.19) for the special case of constant isotropic hydraulic conductivity (κ = 1) and
exponentially varying boundary (2.20). If we consider the homogeneous part of (4.19) with
the substitution Ŝ0 = S0 − µ

δ z, then

η
∂Ŝ0
∂t
− 1
R2

∂

∂z

[
R2∂Ŝ0

∂z

]
= 0,

with boundary conditions (4.5) and (4.6) becoming homogeneous

Ŝ0
∣∣∣
z=0

= 0 and ∂Ŝ0
∂z

∣∣∣∣∣
z=1

= 0. (4.53)

Using separation of variables with Ŝ0(z, t) = Z(z)T (t), we get

T ′ = −λ
2

η
T and Z ′′ − 2αZ ′ + λ2Z = 0,

where λ is the separation constant. The boundary conditions (4.53) become

Z(0) = 0 and Z ′(1) = 0,

and the eigenvalues are

λk =

√
α2 + π2

(
k + 1

2

)2
,

with the relaxation time for the slowest mode being

Trelax = η(
α2 +

(
π
2
)2) . (4.54)

For a comparison between the numerical and asymptotic estimates of the relaxation time
see Figure 4.1c.

4.8.2 Physical Relevance of the Dimensionless Parameters and Order of
Magnitude Relationships

We next highlight four dimensionless parameters that play a prominent role in the asymp-
totic solution derived in Sections 4.2, 4.3 and 4.4, and which also have straightforward
physical interpretations.

Stem aspect ratio, ζ: This parameter plays a central role in the asymptotic analysis
as the power series expansion parameter. One of our main conclusions is that the ratio of
the radial and vertical velocity components is v̄r/v̄z = O(ζ), which is small regardless of
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the conductivity ratio κ. Indeed, this is what allows us to assume κ = 1 in our asymptotic
derivation and still obtain a solution whose leading order term is relevant to the anisotropic
case.

Transpiration–flux ratio, χ = φ/δ: This ratio appears in several key places throughout
the asymptotic derivation wherever transpiration terms appear in the solution, including
(4.11),(4.19) and (4.28). Substituting the parameter definitions into χ yields

χ = 2f0E0µ

K0ζδ
= (2πr0z0)(f0E0)

(πr2
0)
(
K0δ

ψ0
nz0

) ,
and based on the right-most expression χ may be interpreted as the ratio of transpiration
flux through the stem surface to vertical sap flux through a circular stem cross-section. For
the parameters of interest in this study χ ∼ 1, which reflects the balance that must exist
between these two fluxes under “normal” daytime conditions. Other limits could nonetheless
be considered, such as χ� 1 for which the transpiration rate is insufficient to generate an
appreciable change in saturation and hence the impact of transpiration will only be felt in
higher order terms. On the other hand, imposing a higher transpiration rate with χ � 1
could be viewed as shifting the tree into an embolism regime for which saturation is no
longer a smooth function, violating a fundamental assumption in our model.

Gravity–saturation ratio, ξ = µ/δ: This ratio also appears in the governing equation
(4.3) and the leading order saturation boundary condition (4.6). In terms of dimensional
parameters, ξ = nz0

ψ0δ
, which can be viewed as a balance between the driving force due to

gravity, and the corresponding (saturation-dependent) capillary forces acting on the pore
scale in both stem and roots. At night when transpiration is a minimum these two forces
must be in balance to prevent water loss into the soil, which is reflected in the fact that
ξ ∼ 1. Recall that our analysis requires µ ∼ ζ (when ψ1 ∼ 1, see (4.26)) which places a
restriction on the model parameters. For example, if tree height and radius are scaled up
by the same factor so that ζ remains fixed then the ratio ψ0/n must also increase, meaning
that larger trees may develop larger tensions for a given saturation deficit.

Time parameter, η: Consider the formulas for the travelling wave speed (4.47) and
relaxation time (4.54) derived in Section 4.8.1. For simplicity, consider a tree with no taper
(α = 0) in which case the wave speed formula reduces to (2m/η)1/2 and the relaxation
time to Trelax = 4η/π2. Clearly, the parameter η is intimately tied to the time variation
of the solution both through the speed of propagation of saturation disturbances along the
stem (with characteristic time proportional to η1/2) and the time for decay of disturbances
(proportional to η).
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4.8.3 Parameter Estimation

In this subsection we will try to estimate model parameters using our asymptotic results for
the case of an exponential boundary with constant isotropic hydraulic conductivity. In the
following, we will assume that the geometric parameters ζ and α are available. Assuming
the system relaxes relatively fast to the steady state in the absence of transpiration at night
(η = O(1)), the slope of the dimensional saturation line will be equal to − µ

z0
: from (4.28)

and (4.1), with φ = 0 (as there is no transpiration)

s = s0
(
1− δS̄0

)
= s0

(
1− µ z

z0

)
.

Now for the relaxation parameter η, it can be estimated using (4.54), when there is no
transpiration at nighttime, and the maximum of the saturation deficit decays to 63% of its
value within a time period of duration roughly equal to Trelax (the same happens for the
velocity). Next assuming K0 is known from vulnerability curves, φ can be obtained if we
estimate f0 and E0 (i.e. if we have f(z) and E(t)). An estimate of the curves f(z) and g(z)
given a few measurements of the vertical sap velocity component, made at several heights
and at various times during the day is an interesting inverse problem that we consider in
Section 5.

4.9 Additional Special Cases

4.9.1 Anisotropic Hydraulic Conductivity

Until this point, we considered the case where hydraulic conductivity is nearly isotropic
with κ ∼ 1. However, typical values of κ lie in the range 10−4 – 10−2 [13, 53]. Having said
so, Note that the solution formulas for the vertical variation of saturation are still relevant
for the anisotropic case, and they still approximate the radial average of the solution very
well (at least in the moderate anisotropy case (κ ∼ ζ)), which is illustrated in Figure 4.6.
Thus, we next consider two anisotropic cases κ = ζ and κ = ζ2 and show that the radial
solution variations become significant when conductivity is highly anisotropic (κ = ζ2).

First, we should mention here that we are not claiming any dependence of the ratio of
the hydraulic conductivities Kr and Kz on the tree aspect ratio ζ; we are merely considering
the case where the ratio is small enough to produce a significant dependence of the vertical
velocity vz on the radial position. Second, this assumption may have merit since experiments
done with air to measure the relative permeabilities in the radial and vertical directions [14]
support it.
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(a) (b)

Figure 4.6: Effect of anisotropy for (a) κ = ζ, (b) κ = ζ2 on the computed radially-averaged
saturation during a diurnal cycle in a tapered stem with α = 1.42, E0 = 3.94 × 10−8 and
γ = 0.
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Constant Hydraulic Conductivity with κ = ζ:

Considering the case of a moderate anisotropy with κ = ζ, the main equation (4.3) becomes

ηζ2∂S

∂t
=ζ 1

r

∂

∂r

(
r (1 + ψ1δS) ∂S

∂r

)
+ ζ2 ∂

∂z

(
(1 + ψ1δS) ∂S

∂z

)
.

Considering the steady-state problem with constant transpiration for simplicity, and ex-
panding using a regular asymptotic series as in (4.12), we get a leading order solution which
is independent of r

S̄0 = S̄0(z),

where S̄0(z) can be determined, and a correction term

S̄1(r, z) = −∂
2S0
∂z2

(
r2

4

)
+ h(z),

for some h(z) to be determined. Thus for the moderately anisotropic case we start seeing
a radial dependence of the saturation in the first correction term.

Constant Hydraulic Conductivity with κ = ζ2:

In the case of a more extreme anisotropy with κ = ζ2, which is more typical of actual trees,
(4.3) simplifies to

η
∂S

∂t
=1
r

∂

∂r

(
r (1 + ψ1δS) ∂S

∂r

)
+ ∂

∂z

(
(1 + ψ1δS) ∂S

∂z

)
.

Assuming for simplicity a cylindrical domain (α = 0), and expanding S using a regular
asymptotic series as in (4.12), we obtain the leading order heat equation

η
∂S0
∂t

= ∆S0.

with boundary conditions

S0|z=0 = 0, ∂S0
∂z

∣∣∣∣
z=1

= µ

δ
and ∂S0

∂r

∣∣∣∣
r=1

= φ

2δ f(z).

Next using the transformation Ŝ0 = S0 − µ
δ z, the result is the heat equation

η
∂Ŝ0
∂t

= ∆Ŝ0.
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with boundary conditions

Ŝ0
∣∣∣
z=0

= 0, ∂Ŝ0
∂z

∣∣∣∣∣
z=1

= 0 and ∂Ŝ0
∂r

∣∣∣∣∣
r=1

= φ

2δ f(z).

Considering the steady state case and using separation of variables, the resulting series
solution is

Ŝ0 =
∞∑
n=0

Bn sin(λnz)I0(λnr), (4.55)

where I0 is the zeroth order modified Bessel function of the first kind

Bn = φ

δ

( 1
λnI ′0(λn)

)∫ 1

0
f(z′) sin(λnz′)dz′ and λn = π

2 (2n+ 1).

It should be noted here that the steady state case can be solved using the same method
applied to the pressure head equation (2.7), without resort to any assumption about the
magnitude of the saturation variation δ.

Numerical Results and Discussion:

The effect of anisotropy on the solution is investigated in Figure 4.7 where we compare
the simulated vertical velocity profiles for κ = ζp, using the three exponents p = 0, 1, 2
and taking 6 terms in the Fourier–Bessel series for p = 2. These results are computed
assuming a tree with no taper (α = 0) and a constant transpiration rate. For each value
of κ, we plot vz as a function of radius at five different heights corresponding to the points
labelled A–E in Figure 2.2. For the isotropic or moderately anisotropic cases (p = 0, 1) the
velocity remains essentially constant with radius, whereas the extreme case of p = 2 exhibits
significant radial variations. This is consistent with our asymptotic results which show that
radial dependence only enters the leading order solution when κ = ζ2, and may help to
explain the radial dependence on velocity that was observed experimentally in [29, 52].

This sequence of simulations was then repeated for a tapered stem with α = 1.42 and
the corresponding velocity plots are presented in Figure 4.8. Here, we observe similar
behaviour to the other cases except that the κ = ζ2 results have a more pronounced radial
variation. Even for the the moderately anisotropic case (κ = ζ), there is a slight radial
dependence visible in the bottom-most vz profile (location A). It is also interesting to note
that introducing a taper with α = 1.42 induces a significant drop in the vertical velocity near
the tree base owing to the increase in sapwood cross-section there; this should be compared
with the untapered case where the vertical velocity profiles increase monotonically with
height.

We performed one further validation of our asymptotic results for the extreme case
κ = ζ2 by comparing a numerical simulation with the series solution (4.55) truncated at 6
terms. The relative difference in the saturation deficit s0 − s = δS between the asymptotic
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(a) κ = 1 (b) κ = ζ (c) κ = ζ2

Figure 4.7: Effect of anisotropy (κ = 1, ζ, ζ2) on the computed velocity in a non-tapered
stem with α = 0 and γ = 0. The vertical velocity profiles are simulated numerically using
a constant transpiration rate E0 = 3.9375× 10−8, and depicted at heights labelled A–E on
the left plot of Figure 2.2.

(a) κ = 1 (b) κ = ζ (c) κ = ζ2

Figure 4.8: Same as Figure 4.7 for a tapered stem with α = 1.42.
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and numerical solutions is of order 10−2, which is the same order as the missing correction
term in the asymptotic expansion of S, as expected.

4.9.2 Case η 6∼ 1

Here, we consider the cases where the tree is much smaller or much larger than the Norway
spruce in Table 2.1. Owing to the quadratic dependence of the time parameter η on height,
we expect changes in height to have drastic effects on η value, and consequently a drastic
effect on the relaxation time. Considering the same case as in Section 4.4, but with the
assumption of η ∼ ζ instead of η ∼ 1, we get

S0 = S0(z, t),

where S̄0(z) can be determined and

Sm1 (r, z) = imηζ

(
r2

4

)
Sm0 (z) + h(z),

for mode m > 0 and for some h(z) to be determined. Thus the time varying modes of the
first correction now have radial dependence.

Assuming η � 1 is not as interesting as η ∼ 1, as the resulting leading order term is
then similar to the steady state case (4.28), except for the factor E(t)

S̄0(z) = φ

2δE(t)
∫ z

0

[∫ 1
z′ f(w)R(w)dw

G(z′) dr

]
dz′ + µ

δ
z, (4.56)

where G(x) is defined in (4.20). This means that as the radius of the tree decreases,
capacitative effects become negligible and resistance dominates. In other words, small tree
branches may be assumed to be much more resistive than capacitative.

It should be noted here that we can always maintain η ∼ 1 by modifying the time
period τ , which means that for larger trees, τ should be larger, and thus the time variations
become seasonal variations instead of daily variations. However, longer time periods can
mean occurrence of both growth and embolism, in which case our model may not hold.

4.9.3 Branching from Tree Crown

Consider the case where branches emanate from the crown of the tree, with minimal branch-
ing along the tree stem. The reason for considering this situation, besides its physical rele-
vance, is that it allows us to compare the effects of anisotropy on sap flow with the situation
where the branches are spread out along the stem. For this case, we will assume the specific
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functional forms

l(z) = 1
2

(
1 + 2

π
arctan

(
100

(
z

z0
− 0.8

)))
, (4.57)

λ(z) = 1,

where we are assuming that there is no shading effect. Figure 4.9 shows the resulting
transpiration function f(z).

Figure 4.9: Transpiration flux spatial dependence function f(z) resulting from the modifi-
cation (4.57) for a non-tapered stem with α = 0 and γ = 0. The time constant transpiration
rate is Eo = 3.94× 10−8.

Figure 4.10 shows a comparison between the vertical velocity component for the three
cases of hydraulic conductivity κ = 1, ζ, ζ2 for a cylindrical geometry. Notice the extreme
radial change in the vertical velocity at the branching points C and D at the upper part
of the tree for κ = ζ2. The other two cases κ = 1, ζ do not show much radial change.
Figure 4.11 shows a comparison between the radial velocity component for the same three
cases, where the radial velocity dependence on height is plotted at three depths 1/4, 1/2
and 3/4 along the stem. Notice the gradual increase in the radial velocity with height in
the anisotropic case κ = ζ2 in comparison to the other two cases, where the radial velocity
suddenly increases to its maximum at the start of branching. The reason for this is that in
order to satisfy the transpiration demand at the tree upper part, there is easy access to the
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water supply at greater depths in the isotropic case in comparison to the anisotropic case
κ = ζ2.

(a) κ = 1 (b) κ = ζ (c) κ = ζ2

Figure 4.10: Effect of anisotropy (κ = 1, ζ, ζ2) on the computed velocity in a non-tapered
stem with α = 0 and γ = 0. The vertical velocity profiles are simulated numerically using
a constant transpiration rate Eo = 3.94 × 10−8, and depicted at heights labelled A–E on
Figure 4.9. The curves for heights A–C are superimposed for the left and middle plots.
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(a) κ = 1 (b) κ = ζ (c) κ = ζ2

Figure 4.11: Effect of anisotropy (κ = 1, ζ, ζ2) on the computed velocity in a non-tapered
stem with α = 0 and γ = 0. The radial velocity profiles are simulated numerically using a
constant transpiration rate Eo = 3.94× 10−8, and depicted for f(z) in Figure 4.9.
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Chapter 5

The Inverse Problem: Estimating
Transpiration from Sap Flux
Measurements

Thus far, we have derived formulas for the saturation and velocity inside the tree trunk
in terms of a prescribed transpiration function at the trunk surface. Now we turn to
the more practical problem of estimating the transpiration function Q(z, t), given discrete
measurements of the sap velocity inside the trunk. To do this, we first expand the spatial
f(z) and time E(t) components of the transpiration function in terms of its Fourier modes.
Then we substitute a truncated version of these representations into our derived saturation
formulas (and thus velocities); this in effect turns our estimation problem into a finite
dimensional one of estimating the Fourier coefficients. Carefully picking a discrete set of
height and time points for velocity measurement, we obtain a linear algebraic system set of
equations that recovers f(z) given E(t) or vice versa. Finally, in order to recover both f(z)
and E(t) simultaneously we propose an energy functional formulation that performs well in
this respect. Before all this let us start with a general discussion of why measurement of
parameters in trees is problematic.

5.1 Measurements of Relevant Physical Quantities

So are our model variables, parameters and empirical relationships such as pressure-saturation
relationship readily measurable? The answer is yes and no (see [30] for a recent review of
some measurement methods and associated difficulties). Many of the practical measure-
ment techniques are destructive, invasive and of low resolution, and the non-invasive high
resolution techniques are expensive and not practical for the field. Measuring the pressure-
saturation (or pressure-volume ([31] uses pressure chamber)) relationship is destructive, as
the trees need to be harvested before the measurement (see [30] for some difficulties in mea-
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suring the pressure). [68] and [47] propose methods to measure water content (or saturation)
without harvesting the tree. This is also the case for measuring the hydraulic conductivity
(see [17]). As for the measurement of the sap flow velocity, probes are inserted into the tree
trunk, which may disrupt the flow, and is limited to low spatial resolution (see [41] and [68]
which use a heat pulse method). It is also limited by the minimum velocity it can measure
(see [64] and [19] for low velocities determination). Although cavitation is not accounted
for by our model, we indicate that [65] measures the acoustic emissions generated during
cavitation events, which does not show the location of the cavitation. Branches and leaves
distributions could conceivably be measured through photographing from multiple angles
and subsequent image processing. Measuring transpiration can be done using a porometer
as described by [56]. Finally, for non-invasive measurements using plant dedicated MRI
techniques, see [67].

5.2 Deriving the Linear Algebraic System

Consider the case of isotropic hydraulic conductivity K = 1, with exponential trunk taper
function (2.20). The question is how can we estimate the leaf area density f(z) (i.e. the
vertical transpiration profile) from sap flux vz|z=zi,t=ti measurements at multiple heights
and times. We begin with a simplifying assumption that changes in leaf density with height
are negligible near the bottom and top of the stem, with Fourier expansion

f(z) =
∑
n

bn cos(nπz), (5.1)

where the bn are constants to be determined. Now vz is given in (4.50) to first order as

vz = K0

(
−1 + δ

µ

dS0
dz

)
,

and the z derivative of saturation is given by (4.30) as

dS0
dz

= <
[∑
m

dm
dSm0
dz

eimt
]
,
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where the Sm0 have already been derived in (4.28), (4.34) and (4.35). Thus we obtain (using
d0 = 1)

dS̄0
dz

= φ

δ

∑
n

bnW
1
n(z) + µ

δ
,

dSm0,h
dz

= A1
0W

2
m(z),

dSm0,p
dz

= φ

δ

∑
n

bnW
3
nm(z),

A1
0 = φ

δ

∑
n

bnW
4
nm,

where

W 1
n(z) = e2αz

∫ 1

z
cos(nπz′)e−αz′dz′,

W 2
m(z) =

(
%+
me

%+
mz − %−me%

−
mz
)
,

W 3
nm(z) = − 1

2Pm

([∫ z

0
cos(nπz′)e−Pmz′dz′

]
%+
me

%+
mz

−
[∫ z

0
cos(nπz′)ePmz′dz′

]
%−me

%−mz
)
,

W 4
nm =

%+
m

[∫ 1
0 cos(nπz′)e−Pmz′dz′

]
e%

+
m − %−m

[∫ 1
0 cos(nπz′)ePmz′dz′

]
e%
−
m

2Pm
[
%+
me%

+
m − %−me%

−
m

] .

Thus assuming bn and dm are both real

dS0
dz

= µ

δ
+ <

[∑
m

dm

(
φ

δ

∑
n

bnWnm(z)
)
eimt

]
= µ

δ
+ φ

δ

∑
n,m

bndm<
[
Wnm(z)eimt

]
,

where

Wnm(z) =

W
1
n(z) ;m = 0,

W 2
m(z)W 4

nm +W 3
nm(z) ;m > 0,

and finally the vertical velocity is

vz(z, t) = K0
φ

µ

∑
n,m

bndm<
[
Wnm(z, t)eimt

]
. (5.2)

Note that the velocity is bilinear in the Fourier coefficients bn and dm. Thus if we are
given the temporal component of transpiration E(t) (or equivalently dm) and a spatially
uniform set of velocity measurements {vz(zk, t0)}k for 0 < z < 1 at some fixed time t0, we
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can use least squares to estimate the spatial component of transpiration f(z) (or equivalently
bn). Similarly, if we are given the spatial component of transpiration f(z) (or equivalently
bn) and a temporally uniform set of velocity measurements {vz(z′0, t′l)}l at some fixed height
z0 and for 0 < t < π, we can use least squares to estimate the temporal component of
transpiration E(t) (or equivalently dm). This naturally leads to the algorithm we will use
next to estimate both bn and dm when we have both sets of velocity measurements.

5.3 Optimizing to Determine the Transpiration Function

Next we will describe an algorithm to estimate the transpiration function Q(z, t) = f(z)E(t)
from a finite set of velocity measurements. We will assume that the spatial component of
transpiration f(z) has zero derivatives at z = 0, 1 (or equivalently has a cosine Fourier
expansion (5.1)), and that the temporal component E(t) is symmetric about π (i.e., the
Fourier coefficients dm are real). These assumptions are not restrictive physically as we
expect low leave density at the stem extremities and some kind of temporal symmetry
about some point in the day. So we want to estimate the Fourier coefficients bn and dm

given a set of velocity measurements, where the measurements are divided into two sets as
proposed at the end of Section 5.2.

First we rewrite (5.2) as

vz(z, t) = K0
φ

µ

∑
n

∑
m

bnGnm(z, t)dm = K0
φ

µ
bTG(z, t)d, (5.3)

with
Gnm(z, t) = <

[
Wnm(z)eimt

]
.

Now define the following four matrices and two column vectors

(Mbz(d))k,n = (G(zk, t0)d)T , (Mdz(b))k,m = bTG(zk, t0), (Vz)k = µ

K0φ
vz(zk, t0),

and

(Mbt(d))l,n =
(
G(z′0, t′l)d

)T
, (Mdt(b))l,m = bTG(z′0, t′l), (Vt)l = µ

K0φ
vz(z0, tl),

where the two sets of measurements points {zk, t0}Nk=1 and {z′0, t′l}
M
l=1 are as defined in

Section 5.2. Thus

Vz = Mbz(d)b = Mdz(b)d and Vt = Mdt(b)d = Mbt(d)b. (5.4)
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Now consider the following energy functional

Ebd = Eb + ωEd,

where ω is a free parameter and

Eb = 1
2 ‖Vz −Mbz(d)b‖2 and Ed = 1

2 ‖Vt −Mdt(b)d‖2 .

Here, Eb is the energy for the least squares problem for determining b given d and uses the
spatially uniform set of measurements {zk, t0}Nk=1, while Ed is the energy for the least squares
problem for determining d given b and uses the temporally uniform set of measurements
{zo, tl}Ml=1. Thus we combine both these energies into Ebd in order to estimate both b and
d.

We seek to solve the following optimization problem (which is convex in each of b and
d separately)

min
Bb≥0,Dd≥0

Ebd(b, d),

where B and D are matrices that transform from the Fourier cosine coefficients b and d

to the discretized transpiration functions f(zk) and E(t′l) respectively (see Equations (5.1)
and (2.16)).

Bkn = cos(πnzk) and Dlm = <
[
eimt

′
l

]
.

Taking the derivatives of the energy Ebd and to zero gives

0 = ∂Ebd
∂b

= −MT
bz(d)Vz +MT

bz(d)Mbz(d)b− ωMT
bt(d)Vt + ωMT

bt(d)Mbt(d)b, (5.5)

0 = ∂Ebd
∂d

= −ωMT
dt(b)Vt + ωMT

dt(b)Mdt(b)d−MT
dz(b)Vz +MT

dz(b)Mdz(b)d. (5.6)

Now we start with an initial random b and d pairs (uniformly sampling each element),
and solve the first equation for b assuming d is known, and the second equation for d
assuming b is known, in an iterative Gauss-Seidel fashion. In each step we ensure that f(zk)
and E(t′l) are positive by transforming from the Fourier coefficients b and d, projecting the
result by changing any negative values into zero, and then transforming back into b and d

b = (BTB)−1BT max(Bb, 0) and d = (DTD)−1DT max(Dd, 0).

We tested our algorithm for α = 1.42, η = 1 and N = M = 5 (we lumped K0φ/µ with
the velocity measurements in (5.2)). Since we do not have a dataset where both velocity and
transpiration measurements are available, we generated random Fourier coefficients b and d
by uniformly sampling each coefficient from the interval [−1, 1] then shifting the resulting
functions f(z) and E(t) to become positive. We then checked the resulting matrices Mbz
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andMdt and found out that with proper choices of t0 and z0 we can always get the condition
numbers of these matrices to about 35 or less. We can sometimes get significantly better
condition numbers by further choosing a nonuniform spatial and temporal distribution of
the velocity measurement points.

To illustrate the algorithm, we start with a known b and d (red curves in Figures 5.1 and
5.2), calculate the velocities Vz and Vt using (5.4) (the forward problem), and then multiply
by a normally distributed noise of mean 1 and standard deviation 3% and 10%. Next we use
the algorithm to recover f(z) and E(t) (blue curves) from the noisy Vz and Vt. We tested
with 5 coefficients in both space b and time d, and for square matricesMbz andMdt (i.e. the
number of measurement points is equal to the number of coefficients for both b and d). For
B and D, we used 200 uniformly spaced points in space and in time. First, we notice that
the accuracy of the recovery depends on the the location of our measurement points, with
the best points being in general the ones that give values of vz that are well separated and
distributed over a wide range, which makes them less sensitive to noise. Second, there were
no problems as far as convergence since the the energy Ebd is separably convex in (b, d).

(a) f(z) (b) E(t)

Figure 5.1: (a) transpiration vertical profile function f(z), (b) leaf transpiration flux func-
tion E(t) (right). We start from a known f(z) and E(t) (red), we then add 3% noise and
attempt to recover the functions (blue).
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(a) f(z) (b) E(t)

Figure 5.2: (a) transpiration vertical profile function f(z), (b) leaf transpiration flux func-
tion E(t) (right). We start from a known f(z) and E(t) (red), we then add 10% noise and
attempt to recover the functions (blue).
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Chapter 6

Experimental Verification

6.1 Norway Spruce

In addition to verifying our asymptotic solution, we compare our results to Chuang et
al. [12], especially to the experimental data they used. Figure 6.1 shows a simulation result
that is compared with their experimental data. The deviation of our curves from the data
points is mainly due to the simplifying assumption that the transpiration function Q(z, t)
can be factored along the coordinates z and t, and our approximation of the factors f(z)
and E(t) by digitizing figures.

6.2 Douglas fir

An attractive tree to compare our model to is the Douglas fir, since the authors in [18]
and [19] produce the values of most of the model parameters for this tree, and also have
indirect measurements of the radial conductivity and the radial velocity. The experimental
relationship between pressure and saturation, as shown in Figure 4 of [19], is linear

ψ(s) = ψ0(s− s0),

where ψ0 is the reciprocal of the slope multiplied by the factor 100s0
ρg ; this gives ψ0 ≈ 1.8×103.

As for the hydraulic conductivity, it is highly anisotropic, and the axial componentKz ranges
between 2.5×10−5 and 5.3×10−5, according to [19, Tab. 1], while the radial component Kr

ranges between 1× 10−8 and 2.2× 10−8 (depending on the radial depth in the trunk). As
for the stem dimensions, r0 = 0.1, z0 = 16 and γ ≈ 0.485. Figure 2 in [25] gives some idea
of the variability in the leaf distribution. Figure 1 in [19] gives the vapour pressure deficit
diurnal variation which is roughly correlated with the diurnal variation of transpiration
E(t). The measurements in [19] for the radial sap flow, radial pressure gradients, and
hydraulic conductivity is made at a height of 1 m above the ground.
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Figure 6.1: Comparison of 3D numerical simulations with the experimental data in Chuang
et al. [12] for Norway spruce. Vertical sap flux from simulations (Sim) and experiments
(Exp) at two different times, converted to SI units.
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Now amending the numerical code to allow for the approximation of a linearly decaying
tree trunk radius with respect to height (consistent with [25, Fig. 2])

R(z) = r0
z0

(z0 − z) ,

which can be done by replacing C by − ζ
R(z) in the transformed equations in Section 3.1.

The simulations for parameter values Kz = 3.22×10−5 and Kr = 1.13×10−8 from [19] (see
Figure 6.2a) give an ellipse that is nearly a straight line, which is traversed in the clockwise
direction. Reducing the hydraulic conductivity by an order of magnitude (i.e., multiplying
by 0.1), gives a pattern in Figure 6.2b very similar to what can be seen at the bottom of
[19, Fig. 5] (replicated below at the bottom of Figure 6.3); in both cases, the ratio of the
maximum radial gradient to the maximum axial gradient (the tip of the ellipse) is about
20, which is close to the value that can be extracted from [19, Fig. 5], which is about 25.
However, we were not able to obtain the deviation from the elliptic shape shown at the
top of Figure 6.3 for transpiration at a different day. In any case, the leaf distribution was
assumed to decay linearly with height, and the transpiration scaling parameter E0 was a
free parameter; the results were not sensitive to these unknowns, as long as we assume that
the branches (and leaves) do not appear at heights below 1 m. Above the lower limit of
branches, various other patterns do appear (not shown) when we plot the axial versus the
radial pressures gradients, and at some heights we get a knot, and two different points for
the maxima of the radial and axial pressure gradients.
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(a) Large K (b) Small K

Figure 6.2: Average axial pressure gradient (calculated between the bottom and top of the
tree) versus the radial pressure gradient simulation results at z = 1 m through a diurnal
cycle, for parameter values (a) Kz = 3.22 × 10−5 and Kr = 1.13 × 10−8 [19], and (b)
one tenth of these values. Hourly pressure gradients up till noon (blue circles) and in the
afternoon (red circles). Note the clockwise cycle (not as prominent in the left plot).

Figure 6.3: Experimental results from Domec [19] at two different days with the similar
parameter values as the ones used to generate Figure 6.2.
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Chapter 7

Conclusion

In this paper, we extended and generalized the work done by Chuang et al. [12] to a 3D
axisymmetric porous medium model, with general radius dependence on height, periodic
transpiration function and smooth nonlinear pressure head function, using only minimal
assumptions. Using the two leading terms of the asymptotic expansion, and thus captur-
ing the nonlinearity of the pressure head, we were able to derive formulas for saturation
and velocity spatial and temporal dependence; we were also able to describe the various
possible flow regimes by means of several dimensionless parameters of the model. Using
asymptotic results and simulations, we were able to study the effects of hydraulic conduc-
tivity anisotropy in relation to radial variation of the sap vertical velocity component, which
gives a possible explanation to the observed radial variations in the experimental results of
[52] and [29]. As for the inverse problem of determining the transpiration functions from a
spatially and temporally discrete set of noisy measurements of the sap flux inside the tree
trunk, we devised an optimization technique that uses the formulas of the forward prob-
lem, and performs well even with a significant amount of noise added to the signal. The
vertical mass flux was shown to replicate the results of the 1D model, which agree with
the experimental results quoted in [12] for Picea abies; our model also has the ability to
explain some experimental results about cyclic patterns in radial versus vertical velocity
components, as given in [19]. The asymptotic analysis was verified through a second order
numerical scheme to be valid in general (i.e., for large saturation variations), as long as we
do not reach the low pressures at which embolisms start to form, at which point the model
assumptions break. The asymptotic results for the steady state case were shown to conform
with a resistance circuit model.

7.1 Future Work

First, some work remains to be done to specify the conditions under which we can get good
recovery in the inverse problem optimization algorithm we proposed in Chapter 5 to obtain
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the transpiration function from sap flux measurements in the tree trunk. Furthermore,
the symmetry assumption for E(t) should ideally be removed. Related to this problem
is the interesting inverse problem of determining the spatial variation in the hydraulic
conductivity, through stem sap flux and leaves transpiration flux measurements. Next, we
only considered the trunk for our domain, and instead of the branches, we specified a flow
boundary condition. The next step is to consider the branches as mini-trunks, and couple
the flow inside the branches to the flow inside the trunk; this could be potentially useful
especially in trees that have a lot of large branches emanating from the trunk. Furthermore,
in our work, we neglected the angular component of the flow and assumed an axisymmetric
flow; we also assumed the hydraulic conductivity eigenvectors to be aligned with the vertical
and radial directions. This could be another possibility for future work, as in some trees,
angular flow patterns were observed [10]; this in addition to the fact that the alignment of
the tracheids changes near branching points in a tree.

As for embolism formation and recovery, we assumed that embolized tracheids are pre-
determined, and that there is no change in the embolism status of tracheids with time. Since
embolism is an important factor in tree hydraulic functionality and tree death, including it
in our model should be useful (see [1] and [2] for a model of unsaturated porous medium
flow). Embolism formation at the cell level [11] and its effects on transport at the tree level
[26], is an interesting multiphysics problem.

There are many other effects that we neglected in our model and could be important
in determining the xylem flow. One is the effect of water withdrawal through the tree root
system on the water distribution in the soil, which is important in water stress conditions
[58]. Another is the effect of vertical and lateral growth of the stem through the apical
and lateral meristems [60] on the domain size over time scales larger than the diurnal
cycle. Yet another is the effect of the flow in the phloem, which transports sugars, on the
flow in the xylem [16]. Furthermore, water loss from the leaves is intimately connected to
photosynthesis through the stomata CO2 gain, as we explained in the introduction, so one
possible extension is to couple water transport to photosynthesis. Moreover, hormones and
minerals are transported through the xylem, and these affect growth and photosynthesis.

Finally, now that we have a model for sap transport at the tree level, a next step that
could be useful for environmental studies, is to average the interactions of a plot of trees or
a forest on the surrounding environment, in terms of mass and energy exchanges [44].
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Part II

Heat Transport
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Chapter 8

Background: Heat Transport in
Trees

Transport phenomena in general, and heat transport in particular, are well developed dis-
ciplines, with many applications in engineering [5], physical sciences, and biology [4]. The
discipline is well-developed mathematically, with books that discuss generalized transport
equations with multiple phases [59]. The different modes of heat transfer are also studied
extensively: pure heat conduction in a material leads to the heat diffusion equation, with
thermal conductivities, densities, and specific heat capacities that may be spatially and
temporally dependent. In the case of the presence of more than one material with con-
trasting thermal parameters, the effective governing equations, boundary conditions and
parameters can be derived using an averaging technique called homogenization [43]. Heat
is also transferred in a moving fluid by convection (or advection), which is particularly im-
portant for engineering applications, as for example in the case of engine cooling systems.
Radiative energy transfer is a well studied problem in physics and engineering [57] and is
also important in environmental studies [45].

Heat transfer in trees is usually studied in the context of micrometeorology in order to
estimate the energy storage change in a tree, and thus its effect on the energy storage in a
canopy [27] and subsequent exchange with the atmosphere. Inside a tree we note that heat
is transferred by two mechanisms: one is conduction, which is anisotropic due to anisotropy
of the tree vascular tissue [49]; and the other is convection due to the movement of sap
inside the tree. The thermal conductivity and heat capacity parameters also have spatial
and temporal variations owing to the varying local composition of wood tissue, tree sap
and air, and thus homogenization techniques are particularly helpful in obtaining properly
averaged effective transport coefficients. Now considering the surface of the tree, there are
multiple factors affecting the heat transfer: interfacial heat convection is one such factor,
which could be either natural or forced, depending on the wind speed; another factor is
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radiative heat transfer to and from the surface of the tree, which depends on the properties
of the surface and the interception of radiation by leaves [45].

In the context of trees, the first question that should be tackled is what kind of ge-
ometry should we consider. Taking into account the detailed tree geometry and including
trunk, branches and leaves would produce a mathematically intractable model and turn
the problem into more of a computational exercise with no foreseeable gains. Thus one
simplification we exploit here is to consider the tree trunk only as a right circular cylinder
with a cross-section of constant radius. This will allow us to use many results from previous
studies on this simpler geometry. With simple boundary conditions and assumptions about
symmetry and constant material properties, the problem becomes more easily amenable to
analytical techniques [9]. Taking into account spatial and temporal dependence in mate-
rial properties, or the anisotropy of the diffusion, or the lack of symmetry of the problem
due to directionally dependent boundary conditions (as for example with solar radiation),
the problem is no longer separable and one must resort to other tools such as asymptotic
analysis or numerical solution. In [51] for example, the tree is treated as a 2D disk with no
vertical dependence on temperature; this study also takes into account the angular depen-
dence of incident radiation but neglects the height dependence and only obtains a numerical
solution. In the [27] study, the authors consider a temperature that has only radial depen-
dence in each horizontal slice of the canopy (as in many micrometeorology papers, they
usually divide the domain into horizontal slices and average) so that any directionality in
wind speed and radiation is lost, but the paper manages to derive some analytical results.
In both papers just mentioned, heat diffusion is the only mechanism of heat transfer. As for
[3], the author gives a fully 3D model of the tree as a porous medium that includes trunk,
branches and surroundings, but does not offer any analysis, and only offers a numerical tool
to solve the problem.

Studying the temperature distribution inside a tree, the boundary conditions pose a fun-
damental problem: the many aspects contributing to the boundary conditions and the vari-
ability during the day and throughout the year makes it difficult to specify the boundaries
in a mathematically simple yet physically useful way. The main contributing factors include
direct solar radiation, diffuse radiation, free and forced convection, evapo-transpiration and
root uptake of groundwater through the roots. In [51], the authors derive some formulas for
the convective heat transfer coefficients (both free and forced) and take into account direct
and diffuse solar radiation. The diffusivity inside the tree is assumed to be constant, and
the effect of sap flow inside the tree is neglected. The authors of [27] attempt to model the
energy changes in a tree canopy and give a more comprehensive picture of the boundary
conditions, taking into account a detailed model of radiation, transpiration and air moisture
effects.

In our modeling of the heat transport inside a tree, we assume a cylindrical tree stem
and ignore the branch and canopy structure, with diffusion and advection as the heat
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transport mechanism. Both convective and radiative boundary conditions are considered
with a constant interfacial heat convection coefficient. Later the model will be modified
to include the effects of sap flow on the heat diffusivity. Note that some aspects of the
following analysis bear resemblance to the results in [9].
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Chapter 9

Governing Equations for Heat
Transport

We start this chapter by a discussion of how the various environmental conditions determine
the heat flux at the boundaries of the tree, and obtain a sense of the orders of magnitudes
of these fluxes. We next derive the model equations, nondimensionalize and discuss the
possible values of the dimensionless parameters as discussed in the literature.

9.1 Boundary Conditions

If we consider a tree as a cylinder then we need to specify three boundary conditions for
temperature. The bottom at z = 0 will more or less have the soil temperature, which is
a Dirichlet boundary condition. This is easily justified: if we assume that the soil is wet
and the convective heat transfer coefficient is much larger for water than for air. Thus heat
transfer to the soil occurs much faster than to surrounding air. So on the time scales of
interest it is sufficient to assume the bottom temperature of the tree is the same as the soil
temperature.

The more interesting boundary condition is at the outer (lateral) surface of the tree,
where the heat flux [W/m2] crossing the outer stem boundary can be divided into five
physical types [27]:

• Natural convection: the tree surface heats or cools the air near the surface, thus
causing a change in its density compared with the surrounding air, thus causing surface
air to rise or sink and be replaced by the air further from the surface. The case of
natural convection from the surface of a vertical cylinder at r = r0 is discussed in [28],
where the formula for heat flux due to natural convection is

Jn = hn (ua − u) , (9.1)
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where hn [W/m2 K] is the natural convection coefficient that depends on the both
the trunk surface temperature u|r=r0

and the surrounding air temperature ua. For
an isothermal vertical cylinder, [34] provides an empirical formula for the average h̄n
in both laminar (for 10 < Gr Pr < 108) and turbulent (109 < Gr Pr) flow regimes for
air

h̄n = ka
z0


0.68 Pr 1

2Gr 1
4

(0.952+Pr)
1
4
, if 10 < Gr Pr < 108,

0.13 (GrPr)
1
3 , if 109 < Gr Pr,

where Gr is the Grashof number, which represents the ratio of buoyant to viscous
forces

Gr = gβ

ν2 |u− ua| z
3
0 ,

Pr ≈ 0.71 is the Prandtl number, ka ≈ 0.025 [W/m K] is the thermal conductivity,
β = 1

ua
≈ 3.66 × 10−3 [1/K] is the volumetric expansion coefficient for an ideal gas,

ν ≈ 1.51×10−5 [m2/s] is the kinematic viscosity, and ua [K] is the ambient temperature
of the surrounding air [45]. These estimates are made assuming air temperature is
approximately 293 [K]. Notice that u appears in the factor |ua − u|1/4 in the laminar
regime and as |ua − u|1/3 in the turbulent regime (through the Grashof number), but
we are already multiplying by ua − u in the natural convection flux term Jn [W/m2];
thus the net effect is to increase the exponent of the temperature difference from 1
to 1.25 and 1.33 respectively, which may be potentially important as the temperature
difference increases. We will nonetheless ignore this effect in the asymptotic analysis
to obtain a linear boundary condition. To get a sense of the magnitude of h̄n, we
calculate it using the above parameter values, assuming that |ua − u| = 1 [K] to get
Gr = 47.3× 109 so that h̄n ≈ 1.57 [W/m2K].

• Forced convection due to wind: the formula is of similar form to the natural
convection case

Jf = hf (θ) (ua − u) , (9.2)

but with a different forced convection coefficient hf is a function of wind speed and
angular position along the trunk surface. According to [34, 42, 24], for the forward
laminar portion of the cylinder

hf (θ) = 1.14
(
ka
2r0

)(2r0V∞
ν

)0.5
Pr0.4

[
1−

(2θ
π

)3]
, (9.3)

for 0 < θ . π
2 where θ is the polar angle around the trunk measured from the

stagnation point and where V∞ is the free stream air velocity. This empirical formula
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is valid for only part of the cylinder (turbulence may arise on the rear side). Notice
that there is both an angular dependence and a time dependence (through V∞) in
hf ; to simplify the analysis in the following chapters, we will assume that V∞ is fixed
and we will ignore any angular dependence. If we substitute the parameter values
above into (9.3) with θ = 0, we get the relation hf = 17.8V 0.5

∞ . Now for velocities of
1, 10 and 100 [km/hour], the resulting hf values are 9.38, 29.7 and 93.8 [W/m2K]
respectively.

• Long wave radiation: given by the Stefan-Boltzmann law [27, 45]

JL = εtrσ
(
εau

4
a − εtru4

)
+ εtrσ

(
εsoilu

4
soil − εtru4

)
,

where σ = 5.67 × 10−8 W/m2K4 is Stefan-Boltzmann’s constant, εa ≈ 0.74 is the
apparent emissivity of a hemisphere of air radiating towards the trunk [45], εtr ≈ 0.9
is the emissivity of the trunk surface [57], and εsoil ≈ 0.38 is the soil emissivity [57].
The value of εa corresponds to a clear sky and could vary otherwise, while εsoil value
is for a plowed soil and could also vary. Note that we can employ the following linear
approximation u4 = (ua + (u− ua))4 ≈ u4

a + 4u3
a (u− ua), since the temperatures

measured in Kelvin are close to each other, assuming the conditions are not too
extreme, leading to

JL = εtrσu
4
a (εa − εtr) + εtrσ

(
εsoilu

4
soil − εtru4

a

)
− 4σε2tru3

a (u− ua) . (9.4)

Substituting the above parameter values and assuming ua = usoil = 293 [K] we get
JL = −256− 5.13(u− ua) ≈ −256 [W/m2] for small temperature differences.

• Short wave direct sun radiation: as given by Beer’s law [39, 36]

JS = (1− αtr)Stτ sec(Z)
s cos(i), (9.5)

where St = 1368 W/m2 is the total solar irradiance [51], τs ≈ 0.76 is the atmospheric
transmissivity [51], Z is the solar zenith angle, and i is the solar incidence angle on
the trunk surface. Here the surface properties of the tree play a role in how much
radiation is absorbed through the reflectance value αtr ≈ 0.2 [27]. In any case, this
flux can not exceed the value of St.

• Diffuse sun radiation: for which one rough model is [51, 39, 38]

JD = 1
3St cos(Z) (1 + cos(Z))

(
ηs − τ sec(Z)

s

)
, (9.6)

where ηs ≈ 0.8 [51]. Note that St is the energy flux from the sun before entering the
atmosphere, with part of this flux Js reaching the earth surface directly, while the
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other part gets scattered and forms the diffuse flux JD. Of course part of St is lost
back to outer space. Thus the sum JS + JD is strictly less than St [45].

Now the tree leaves and branches have a shading effect, that causes a decay in the amount
of radiation reaching the tree trunk surface; this can be modelled by Beer-Lambert law of
decay; thus the amount of radiation reaching the tree trunk surface is an attenuated version
of the incident radiation on the canopy before getting absorbed by the leaves and branches
(see [27] for details). The attenuation factor is

ekdξs ,

where kd is the vegetative extinction factor, and ξs is the cumulative vegetation in the
radiation path. Thus long wave (JL), short wave JS and diffuse (JD) radiation fluxes must
be multiplied by such a factor.

In any case, the sum of the above heat fluxes Jn + Jf + JL + Js + JD from (9.1)-(9.2)
and (9.4)-(9.6) can be approximated by

Jtotal = h (u(1, θ, z, t)− ua(θ, z, t)) +W (θ, z, t),

where h depends on ua, hn, hf and the decay attenuation factor, while W depends on
ua, usoil and the direct solar radiation. Note that h has both a spatial (angular) and time
dependence due to the spatial and time dependence of hf and ua. Thus the lateral boundary
condition can be written as a Robin condition

k
∂u∗

∂r

∣∣∣∣
r=r0

= −hu∗ +W ∗,

where u∗ = u − ua is the temperature difference, and W ∗ is the resulting source at the
boundary after this transformation. We drop the * for the rest of the heat transport part.

9.2 Model for Heat Advection-Diffusion in a Tree with Spa-
tially Dependent Saturation

There are three main factors that affect heat transport in a tree: for one, spatially and
temporally varying porosity and saturation values in the tree mean that the diffusivity is not
constant because it depends on relative proportions of the various phases (solid wood, liquid
sap and air); second, the heat diffusion may be anisotropic due to the vertical orientation of
tracheids; third, there may be spatial and temporal variations in the boundary conditions.

The heat flux VH [W/m2] in the anisotropic case comes from a combination of diffusion
and advection

VH = −D(s)∇u+ uv
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Table 9.1: Variables and parameters used in the governing equations for the heat transport
problem. Any parameters not listed here are instead in Table 2.1.

Symbol Description Units Value Ref.
C0 Heat generation scaling= W0r0

u0(2k+hr0) − 0.509 (10.5)
Dg thermal diffusivity of air m2/s 2.2× 10−5 [34]
Dl thermal diffusivity of sap (water) m2/s 1.43× 10−7 [34]

Dr(s) radial thermal diffusivity m2/s − (9.9)
Dr0 average diffusivity in the radial direction m2/s 1× 10−7 Fig.9.1
Dw thermal diffusivity of spruce wood m2/s 1.24× 10−7 [34]
Dz(s) vertical thermal diffusivity m2/s − (9.8)
Dz0 average diffusivity in the vertical direction m2/s 1.5× 10−6 Fig.9.1
Dθ0 average diffusivity in the angular direction m2/s 1× 10−7 Fig.9.1
h natural convection heat transfer coefficient W/m2 K 10
k average radial thermal conductivity W/m K 0.32 [27]

N(r, θ) soil temperature K −
N0 order of magnitude of soil temperature K −
u trunk temperature K −
u0 maximum trunk temperature=W0/h K 293 (9.19)
vr0 magnitude of radial velocity= K0φζ

µ m/s 1.95× 10−7 (4.49)
vz0 magnitude of vertical velocity= K0φ

µ m/s 1.95× 10−5 (4.51)
W (θ, z) thermal heat flux from the lateral boundary W/m2 −
W0 maximum thermal heat flux W/m2 200
φp porosity of tree wood (max. saturation) − 0.5735
θ cylindrical coordinate angle radian −

where D(s) is the saturation dependent diffusivity, u(r, θ, z, t) [K] is the temperature at
location given by the cylindrical coordinates (r, θ, z) in the stem and at time t, and v(r, θ, z, t)
is the sap velocity in the stem. The continuity equation gives

∂u

∂t
= −∇ · VH . (9.7)

The thermal diffusivity matrix D in cylindrical coordinates is assumed to be anisotropic
and diagonal:

D =


Dr 0 0
0 Dθ 0
0 0 Dz

.


Here we assume that heat dissipation is negligible, which is achieved when we have local
thermal equilibrium between the different phases [66], while the case of local non-equilibrium
effects [61] is much more complicated and is not considered here. The diffusivities Dr and
Dz are assumed to be appropriate phase averages of the diffusivities of wood Dw, sap Ds

and air Da, and vary as the saturation s varies in time at each point. The average to be used
depends on the layering of the three phases: if the phases are to large extent layered parallel
to the vertical direction, then the thermal diffusivities in the vertical direction should be
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combined as a weighted arithmetic average

Dz = Dw (1− φp) +Da (φp − s) +Ds(s), (9.8)

so that the largest diffusivity (air in this case) dominates [43] as the heat is transported
through the connected air pathway. In contrast, in the radial and angular directions, heat
is transported across the layers so that the appropriate average is the harmonic average [43]

Dr = Dθ =
(1− φp

Dw
+ φp − s

Da
+ s

Ds

)−1
. (9.9)

(a) (b)

Figure 9.1: (a) Diffusivity saturation dependence for the radial/angular Dr = Dθ (blue)
and vertical Dz (red) diffusion components, using formulas (9.9) and (9.8) and the values
in Table 9.1. (b) Zoom in of the radial/angular diffusivity which varies over a much small
range than the vertical diffusivity.

In this case, the smallest diffusivity (wood) dominates. Figure 9.1 shows a plot of Dr

and Dz over a typical range of saturations, using (9.9) and (9.8). Notice that Dr ∼ 1×10−7

[m2/s] while Dz varies over an order of magnitude with an average Dz ∼ 1.5× 10−6 [m2/s],
so that Dz/Dr ∼ 10. Although the layering of wood and water is obvious due to the vertical
orientations of tracheids, it may be the case that the air does not form a continuous third
layer spanning the entire stem, since embolized tracheids may not be connected vertically.
Thus air, which has a much higher diffusivity than wood and sap, may not be able to
facilitate heat diffusion in the vertical direction. This could explain the measurements
made on wood for various saturation levels, that show that there is only a factor of 2
difference between the diffusivities in the transverse and vertical directions [40], so that
anisotropy is not a major contributor. In any case, in the following analysis, we do not rely
on any assumptions regarding anisotropy and so for the most part we assume the diffusivity
is constant and scalar.
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The boundary conditions are

k
∂u

∂r

∣∣∣∣
r=1

= −h u|r=1 +W (θ, z, t), (9.10)

k
∂u

∂z

∣∣∣∣
z=1

= −h u|z=1 +W (θ, 1, t), (9.11)

u|z=0 = N(r, θ, t), (9.12)

u|θ=0 = u|θ=2π , (9.13)

where k is the thermal conductivity, h is the convective heat transfer coefficient, W includes
the heat flux due to radiation (and it also includes the air temperature variation), and N
is the soil temperature (see Figure 9.2). Note here that the boundary conditions at r = r0

will drop out from the outer solution in the case that advection effects dominate diffusion
because sap entering from the roots at z = 0 exits from the leaves at this boundary. Note
also that the boundary condition at z = z0 diminishes in significance as we move away from
the boundary due to the relatively small magnitude of vertical diffusion, as we will see in
Section 9.3, and thus will be dropped out from our model when considering the asymptotic
solutions.

Figure 9.2: The boundary conditions for the heat transport problem: the Dirichlet boundary
condition at the bottom, and the outgoing heat fluxes from the lateral side and the top of the
tree. The upper boundary condition will be dropped out from our model when considering
the asymptotic solutions.
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9.3 Non-Dimensionalized Heat Transport Equations

Considering the advection-diffusion equation (9.7) in cylindrical coordinates, we get

∂u

∂t
=∇ · (D(s)∇u)−∇ · (u~v) ,

=1
r

∂

∂r

(
Drr

∂u

∂r

)
+ 1
r2

∂

∂θ

(
Dθ

∂u

∂θ

)
+ ∂

∂z

(
Dz

∂u

∂z

)
− 1
r

∂

∂r
(rvru)− ∂

∂z
(vzu) .

In the following development, we will assume that the sap flow velocity follows the equations
given in Part I of the thesis in Section 2.3 for the isotropic case κ = 1, and as will be shown
below it suffices to consider the constant transpiration steady state case for the sap flow
discussed in Section 4.5.

We use the following definitions for the dimensionless variables (starred variables)

r = r0r
∗, z = z0z

∗, u = u0u
∗, (9.14)

N = N0N
∗, vr = vr0v

∗
r , vz = vz0v

∗
z ,

Dr = Dr0D
∗
r , Dθ = Dθ0D

∗
θ , Dz = Dz0D

∗
z ,

W = W0W
∗, t = τt∗,

where r0 and z0 are the tree radius and height respectively, τ = 86400 is the number of
seconds per day, N0 is the maximum temperature at the boundary z = 0 from (9.10), W0

is the maximum of W at the boundary r = 1 from (9.10), u0 is the order of magnitude of u
defined in (9.19), Dr0, Dθ0 and Dz0 are the average values of the diffusivities in the radial,
angular and vertical directions respectively and vr0 and vz0 are the orders of magnitudes of
the velocity components vr and vz respectively (which will be defined in the next chapter
in (10.2)). Nondimensionalizing the advection-diffusion equation we get

(
u0
τ

)
∂u

∂t
=
(
Dr0u0
r2

0

) 1
r

∂

∂r

(
Drr

∂u

∂r

)
+
(
Dθ0u0
r2

0

) 1
r2

∂

∂θ

(
Dθ

∂u

∂θ

)
+
(
Dz0u0
z2

0

)
∂

∂z

(
Dz

∂u

∂z

)
−
(
vr0u0
r0

) 1
r

∂

∂r
(rvru)−

(
vz0u0
z0

)
∂

∂z
(vzu) ,

where we have used the same letters for the non-dimensional variables, and the letters with
0 subscript denote scaling constants for the corresponding variables.

Now due to diffusion across layers of air, sap and wood, we expect similar diffusivities
in the radial and angular directions. Rearranging under the assumption that Dr0 = Dθ0,
we get

M0
∂u

∂t
= 1
r

∂

∂r

(
Drr

∂u

∂r

)
+ 1
r2

∂

∂θ

(
Dθ

∂u

∂θ

)
+M1

∂

∂z

(
Dz

∂u

∂z

)
−M2

1
r

∂

∂r
(rvru)−M3

∂

∂z
(vzu) ,
(9.15)
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where the dimensionless parameters are

M0 =
(

r2
0

Dr0τ

)
, M1 =

(
Dz0
Dr0

ζ2
)
, (9.16)

M2 =
(
vr0r0
Dr0

)
, M3 =

(
vz0r0
Dr0

ζ

)
,

Notice that the Péclet numbers M2 = M3 are equal because ζ = vr0
vz0

, as will be seen in
Section 10.1.

It is worth mentioning some possible physical ranges of these parameters. First for the
Norway spruce (Picea abies) using the parameter values in Table 2.1 with vz0 ∼ K0φ/2µ ∼
10−5 [m/s] (see (4.51) and Figure 4.2 for γ = 0 case), we get the orders of magnitude
M0 ∼ 1, M1 ∼ 10−3 and M2 = M3 ∼ 10−1, so that the temporal, radial and angular
diffusion terms dominate. Next, if we consider the data provided in [19], where the authors
consider also spruce trees of radius r0 = 0.055 [m] at breast height, height z0 = 10.5 [m],
and with vz0 ≈ 4 × 10−4 [m/s], we obtain M0 ∼ 1, M1 ∼ 10−4 and M3 ∼ 1, so that
advection terms are now of the same order as the radial and angular diffusion terms. In
both of the two cases just described, the vertical diffusion is negligible. So in the next
chapter we will ignore the vertical diffusion contribution to heat transport, as incorporating
it into our model does not alter our leading order solutions, but introduces the unnecessary
complication of having to deal with the boundary layer at z = 1. We will also study two
cases when advection is insignificant (M3 � 1) and when it is important (M3 ∼ 1). The
case of M3 � 1 where advection dominates will also be considered briefly for completeness,
despite the fact that we do not yet have experimental evidence to support its existence.

Next if we take a look at the aboveM0 ∼ 1 values, we notice that the temporal effects are
present at leading order (considering a diurnal period) which means that both temperature
and velocity variations in small radius stems (r0 ∼ 1) vary over the same time scale, where
the time scale of the sap velocity variations is given by (4.4) as

η = s0z0
τK0

µ ∼ 1,

where we redefine η by dividing by 2π so that the definitions of the dimensionless time t for
both temperature and sap variation coincide. Note that the time variation in temperature
scales quadratically with radius, while the sap velocity variation scales linearly with radius
assuming fixed aspect ratio ζ = r0/z0 (recall that µ defined in (4.4) does not scale with z0

due to the restriction (4.27)). Thus for larger trees (r0 ∼ 1), assuming that the value of
Dr0 is more or less fixed (according to the discussion in Section 9.2), it should be the case
that M0 ∼ 102 while η ∼ 10 (assuming all other parameters are fixed). This means that
the temperature variations will occur more much slowly than sap velocity variations, and
thus only the average effect of velocity variations will matter. In this case the continuity
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equation (2.6) reduces to

∇ · v ≈ 0,

which simplifies the analysis in Section 10.2.1.
Next we nondimensionalize the boundary conditions (9.10) to get

∂u

∂r

∣∣∣∣
r=1

= −
(
hr0
k

)
u|r=1 +

(
r0W0
ku0

)
W (θ, z, t), (9.17)

u|z=0 =
(
N0
u0

)
N(r, θ). (9.18)

where we have dropped out the boundary condition at z = 1 as it is insignificant due to the
vertical diffusion being negligible (M1 � 1). Note that we assume both of the flux terms on
the right-hand side of the boundary condition at r = 1 affect the solution at leading order
by requiring (see Tables 9.1 and 2.1)

u0 = W0
h

(9.19)
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Chapter 10

Fourier-Bessel Series Solutions

In this chapter we set out to derive asymptotic and Fourier-Bessel series solutions to our
model equations. We start by deriving leading order steady-state solutions for the time-
constant boundary conditions for three asymptotic limits: advection and diffusion compa-
rable (M2 ∼ 1), advection dominated (M2 � 1) and diffusion dominated (M2 � 1). Next
we build on the steady state solutions to solve the equations when the boundary conditions
are time-varying. Finally, we discuss the effect of a saturation dependent thermal diffusivity
on the solutions.

10.1 Steady Heat Transport with Constant Transpiration

We first consider the constant-in-time boundary conditions case; as for the velocities of the
advection terms, we assume the constant axisymmetric steady state transpiration case in
Part I, with constant isotropic hydraulic conductivity K. Thus using the expressions for
velocity and saturation from (4.48), (4.50) and (4.28), we get the dimensionless velocities
(to first order)

vz =
∫ 1

z
f(w)dw and vr = 1

2rf(z),

which may be written in the alternate form

vz = g(z) and vr = −1
2rg

′(z), (10.1)

where we have defined
g(z) =

∫ 1

z
f(w)dw.

The dimensional velocity magnitudes are given by (4.49) and (4.51) as

vr0 = K0φζ

2µ and vz0 = K0φ

2µ , (10.2)
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so that M2 = M3. Note that the above velocity field is identically divergence free, so that
the heat equation (9.15) simplifies to

0 = L(u), (10.3)

where

L(u) = 1
r

∂

∂r

(
Drr

∂u

∂r

)
+ 1

r2
∂

∂θ

(
Dθ

∂u

∂θ

)
− M2

[
−
(
r

2

)
g′(z)∂u

∂r
+ g(z)∂u

∂z

]
. (10.4)

Now we transform the problem into one with homogeneous boundary conditions in r so
that we can apply separation of variables, by defining a new temperature variable

U = u− C0r
2W (θ, z),

where

C0 = W0r0
u0 (2k + hr0) . (10.5)

This transforms equation (10.3) into

0 = L(U) + C0L(r2W ), (10.6)

and the boundary conditions into(
k

r0

)
∂U

∂r

∣∣∣∣
r=1

= −h U |r=1 , (10.7)

U |z=0 = Ñ(r, θ), (10.8)

where

Ñ(r, θ) =
(
N0
u0

)
N(r, θ)− C0r

2W (θ, 0). (10.9)

In the following three sections, we assume that the diffusivities have no dependence on
saturation or space, so that the dimensionless diffusivities are

Dr = Dθ = Dz = 1

and we consider several cases:

• advection and diffusion are comparable (M2 ∼ 1),

• diffusion dominates (M2 � 1),

• and advection dominates (M2 � 1).
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10.1.1 Advection and Diffusion Comparable in Magnitude

Here we consider the case where horizontal diffusion and vertical advection are comparable
(M2 ∼ 1), which corresponds to relatively high transpiration rate, large radius and/or low
stem aspect ratio. We will assume the following in the analysis below

g0(z) = O(1),

g(z) = 1 + χg0(z),

χ ∼M
1
2

1 � 1,

ζ = 10−2.

We assume the velocity profiles correspond to the case of the sap flow problem we solved
in Part I of the thesis, with transpiration occurring mainly from the uppermost lateral tree
surface, with low transpiration rate from the rest of the lateral surface. This means that the
flow is nearly constant and in the vertical direction, with a small perturbation of magnitude
χ and form g0(z).

Proceeding with a regular asymptotic expansion in χ

U = U0 + U1χ+ ...,

we get the following leading order equation from (10.6):

0 = 1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2 −M2
∂U

∂z
+M2G(r, θ, z),

where
G(r, θ, z) = C0

M2

(
4W + ∂2W

∂θ2 −M2r
2∂W

∂z

)
.

Note that since we will be only considering the leading order solution in this chapter (see
the appendix for the first correction to this solution) we will be using U instead of U0 to
simplify the notation. This equation can be written as

∂U

∂z
= 1
M2

[
1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2

]
+G(r, θ, z), (10.10)

with boundary conditions at z = 0

U |z=0 = Ñ(r, θ), (10.11)
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and at r = 1 (
k

r0

)
∂U

∂r

∣∣∣∣
r=1

= −h U |r=1 . (10.12)

In the following we will assume that the left hand side is of lower order of magnitude, which
corresponds to the case of high convective flux due to windy conditions for example, and so

U |r=1 = 0. (10.13)

Other cases can be treated similarly, and the only difference is in the equation that deter-
mines the eigenvalues γnm (see below).

Now the solution can be written as a sum of solutions U = UA + UB to the following
two subproblems

∂UA

∂z
= 1
M2

[
1
r

∂

∂r

(
r
∂UA

∂r

)
+ 1
r2
∂2UA

∂θ2

]
, (10.14)

UA|r=1 = 0, (10.15)

UA|z=0 = Ñ(r, θ), (10.16)

and

∂UB

∂z
= 1
M2

[
1
r

∂

∂r

(
r
∂UB

∂r

)
+ 1
r2
∂2UB

∂θ2

]
+G(r, θ, z), (10.17)

UB|r=1 = 0, (10.18)

UB|z=0 = 0. (10.19)

Using separation of variables, the first problem has solution

UA(r, θ, z) =
∞∑

n,m=0
Jn(γnmr)e

− γ
2
nm
M2

z (Anm cos(nθ) +Bnm sin(nθ)) ,

where Jn is the Bessel function of nth order, while Anm and Bnm are determined by the
boundary condition at z = 0

Ñ(r, θ) =
∞∑

n,m=0
Jn(γnmr) (Anm cos(nθ) +Bnm sin(nθ)) , (10.20)

(see later formulas (10.24)) and γnm for m = 0, 1, ... are the roots of Jn (boundary condition
at r = 1)

Jn(γnm) = 0,
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where n = 0, 1, · · · .
As for the second problem, we will temporarily assign t∗ = z, so that

∂UB

∂t∗
= 1
M2

[
1
r

∂

∂r

(
r
∂UB

∂r

)
+ 1
r2
∂2UB

∂θ2

]
+G(r, θ, t∗),

UB|r=1 = 0,

UB|t∗=0 = 0,

which is just the nonhomogeneous heat equation on a disk with Dirichlet BC and homoge-
neous initial condition.

Now consider the following problem for t∗ > s

∂U s

∂t∗
= 1
M2

[
1
r

∂

∂r

(
r
∂U s

∂r

)
+ 1
r2
∂2U s

∂θ2

]
,

U s(1, θ, t∗) = 0,

U s(r, θ, s) = G(r, θ, s).

Then by Duhamel’s principle

UB(r, θ, t∗) =
∫ t∗

0
U s(r, θ, t∗)ds,

and letting t = t∗ − s and V s(r, θ, t) = U s(r, θ, t+ s) yields for t > 0

∂V s

∂t
= 1
M2

[
1
r

∂

∂r

(
r
∂V s

∂r

)
+ 1
r2
∂2V s

∂θ2

]
,

V s(1, θ, t) = 0,

V s(r, θ, 0) = G(r, θ, s).

Proceeding with separation of variables we get

V s(r, θ, t) =
∞∑

n,m=0
Jn(γnmr)e

− γ
2
nm
M2

t (Asnm cos(nθ) +Bs
nm sin(nθ)) ,

where Asnm and Bs
nm are determined by the equations

G(r, θ, s) =
∞∑

n,m=0
Jn(γnmr) (Asnm cos(nθ) +Bs

nm sin(nθ))
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and again γnm are roots of

Jn(γnm) = 0.

Formulas for Asnm and Bs
nm can be found in (10.23). Thus for t∗ > s

U s(r, θ, t∗) =
∞∑

n,m=0
Jn(γnmr)e

− γ
2
nm
M2

(t∗−s) (Asnm cos(nθ) +Bs
nm sin(nθ)) ,

and

UB(r, θ, z) =
∫ z

0

∞∑
n,m=0

Jn(γnmr)e
− γ

2
nm
M2

(z−s) (Asnm cos(nθ) +Bs
nm sin(nθ)) ds.

Thus the leading order approximation of the original problem (10.10), (10.11) and (10.13)
is

u(r, θ, z) =C0r
2W (θ, z) +

∞∑
n,m=0

Jn(γnmr)e
− γ

2
nm
M2

z (Anm cos(nθ) +Bnm sin(nθ)) (10.21)

+
∫ z

0

∞∑
n,m=0

Jn(γnmr)e
− γ

2
nm
M2

(z−s) (Asnm cos(nθ) +Bs
nm sin(nθ)) ds. (10.22)

Formulas for Series Coefficients

To obtain explicit formulas for the coefficients Anm, Bnm, Asnm, Bs
nm above, we start by

writing G(r, θ, z) in a simpler form

G(r, θ, z) = W1(θ, z) +W2(θ, z)r2,

where

W1(θ, z) = C0
M2

(
4W + ∂2W

∂θ2

)
,

W2(θ, z) = C0
M2

(
−M2

∂W

∂z

)
.
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Thus the Fourier-Bessel series coefficients of G are

Asnm =
( ∫ 1

0 rJn(γnmr)dr∫ 1
0 rJn(γnmr)2dr

)(∫ 2π
0 cos(nθ)W1(θ, s)dθ∫ 2π

0 cos2(nθ)dθ

)
(10.23)

+
(∫ 1

0 r
3Jn(γnmr)dr∫ 1

0 rJn(γnmr)2dr

)(∫ 2π
0 cos(nθ)W2(θ, s)dθ∫ 2π

0 cos2(nθ)dθ

)
,

Bs
nm =

( ∫ 1
0 rJn(γnmr)dr∫ 1

0 rJn(γnmr)2dr

)(∫ 2π
0 sin(nθ)W1(θ, s)dθ∫ 2π

0 sin2(nθ)dθ

)

+
(∫ 1

0 r
3Jn(γnmr)dr∫ 1

0 rJn(γnmr)2dr

)(∫ 2π
0 sin(nθ)W2(θ, s)dθ∫ 2π

0 sin2(nθ)dθ

)
,

Now considering the definition of Ñ in (10.9), and assuming that N can be decomposed as

N(r, θ) = N1(r)N2(θ),

the expressions for the coefficients Anm and Bnm in (10.20) simplify to

Anm =N0
u0

(∫ 1
0 rJn(γnmr)N1(r)dr∫ 1

0 rJ
2
n(γnmr)dr

)(∫ 2π
0 cos(nθ)N2(θ)dθ∫ 2π

0 cos2(nθ)dθ

)
(10.24)

− C0

(∫ 1
0 r

3Jn(γnmr)dr∫ 1
0 rJ

2
n(γnmr)dr

)(∫ 2π
0 cos(nθ)W (θ, 0)dθ∫ 2π

0 cos2(nθ)dθ

)
,

Bnm =N0
u0

(∫ 1
0 rJn(γnmr)N1(r)dr∫ 1

0 rJ
2
n(γnmr)dr

)(∫ 2π
0 sin(nθ)N2(θ)dθ∫ 2π

0 sin2(nθ)dθ

)

− C0

(∫ 1
0 r

3Jn(γnmr)dr∫ 1
0 rJ

2
n(γnmr)dr

)(∫ 2π
0 sin(nθ)W (θ, 0)dθ∫ 2π

0 sin2(nθ)dθ

)
.

Figure 10.1 shows the effect of the lateral flux W (z) = 1/2 (1 + cos(π(z − 1))) on the
temperature distribution inside the stem, where the bottom boundary condition effect is
insignificant. As the ratio r0h/k in (9.17) increases above 1, the maximum temperature
increases towards the ratio u0 = W0/h from (9.19).

Figure 10.2 shows the effect of the temperature at the roots (the Dirichlet boundary
condition at z = 0 in (9.17)) on the stem temperature at steady state, where we set W = 0
to eliminate the effect of the lateral flux. Notice that the ratio r0h/k determines the smallest
root γ0 of (10.12) when U = J0(γr). The temperature at z = 0 decays to 37% of its value
at z ≈ z0/γ

2
0 .

Figure 10.3 shows the temperature distribution along horizontal and vertical slices of the
stem for the general case of a flux with angular variationW (θ, z) = 1/2 (1− cos(πz)) cos(θ),
which simulates the case of a tree which is exposed to the sun from one side (mainly at the
top since the lower stem is shaded by leaves) yet effected by wind cooling currents from the
other side (assuming the ambient temperature is below zero). In all the above cases, we
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assumed a ratio u0 = W0/h = 20, so that the temperature inside the stem does not exceed
20 C.

(a) W0 = 100 (b) W0 = 200 (c) W0 = 400

Figure 10.1: Steady state temperature distribution for the advection-diffusion case, for
an axisymmetric lateral heat flux W (z) = 1/2 (1 + cos(π(z − 1))) and a Dirichlet bottom
boundary temperature N = J0(γ0). Here W0 = 100, 200, 400 (left to right), N0 = 1,
h = 5, 10, 20, k = 0.32, r0 = 0.129/2, z0 = 6.7, M2 = 1. Here the lowest eigenvalue
γ0 = 1.26, 1.60, 1.91. r0h/k = 1.01, 2.02, 4.03. This simulates the sun affecting the upper
part of the tree.

10.1.2 Advection Dominated Heat Transport

Here we consider the case of M2 � 1, which means that advection is more important than
diffusion at leading order. The influx is from the bottom of the trunk at z = 0, and the
outflux is from the branches at r = 1 and z = 1. In this case, the leading order equation
(9.15) and boundary condition (9.17) (only the influx at z = 0) are

0 = −
(
r

2

)
g′(z)∂u

∂r
+ g(z)∂u

∂z
,

u|z=0 =
(
N0
u0

)
N(r, θ).

Note here that we are not considering the boundary condition at r = 1, since we assume
this to be an outflux boundary. Thus we are only considering the outer solution. We will
briefly describe at the end of this section how to obtain the inner solution and the uniformly
valid solution but will not go into details, as we did not verify our results numerically.

Since diffusion is not present in the leading order equation, sap moving from the roots at
z = 0 to the branches at r = 1 and z = 1 maintains its temperature unchanged throughout
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(a) h = 5 (b) h = 10 (c) h = 20

Figure 10.2: Steady state temperature distribution for the advection-diffusion case, for an
axisymmetric lateral heat flux W (z) = 0 and a Dirichlet bottom boundary temperature
N = J0(γ0). Here W0 = 0 (left to right), N0 = 5, h = 5, 10, 20, k = 0.32, r0 = 0.129/2,
z0 = 6.7, M2 = 1. Here the lowest eigenvalue γ0 = 1.26, 1.60, 1.91. r0h/k = 1.01, 2.02, 4.03.

its journey. Next we employ the method of characteristics [20] to solve the resulting advec-
tion equation. Let s be the distance along the path (r(s), θ(s), z(s)), where a sap parcel has
travelled along its journey starting from the roots at (r(0), θ(0), 0) where we set z(0) = 0.
Since sap flow follows the velocity field, we expect that

ṙ(s) = −1
2rg

′(z), (10.25)

θ̇(s) = 0,

ż(s) = g(z),

where the second equation is a consequence of axisymmetry.
Next we set the temperature of the parcel f(s) at distance s along the path to

f(s) = u(r(s), θ(s), z(s)),

and since this is constant along the path, it should be the same as the temperature at the
roots at s = 0

f(s) = f(0) = u(r(0), θ(0), 0) =
(
N0
u0

)
N(r(0), θ).
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(a) (b)

(c) (d)

Figure 10.3: Steady state temperature distribution for the advection-diffusion case, for
the lateral heat flux W (θ, z) = 1/2 (1− cos(πz)) cos(θ) and a Dirichlet bottom boundary
temperature N = r2W (θ, 0). HereW0 = 100, 400 (left to right), N0 = C0u0 (so that Ñ = 0),
h = 5, k = 0.32, r0 = 0.129/2, z0 = 6.7, M2 = 1. Here the lowest eigenvalue γ0 = 1.26, 1.91.
r0h/k = 1.01, 4.03. (top) Horizontal cross-sections at z = jz0/8 for j = 1, ..., 8. (bottom)
vertical cross-sections at θ = jπ/8 for j = 0, 1, ..., 7.
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Now using (10.25) we obtain

ḟ(s) = −
(
r

2

)
g′(z)∂u

∂r
+ g(z)∂u

∂z
= 0.

The resulting differential equation governing the characteristic curve r(z) is then

dr

dz
= −rg

′(z)
2g(z) ,

with θ constant. Solving gives the characteristic equation

r(s)2g(z(s)) = r2(0)g(0),

which describes the relationship between the coordinates r and z along the path that starts
at (r(0), θ(0), 0) and follows the velocity field. Thus

f(s) = u (r(s), θ(s), z(s)) =
(
N0
u0

)
N

(√
g(z(s))
g(0) r(s), θ

)
,

or after eliminating s we get the outer solution

uouter(r, θ, z) =
(
N0
u0

)
N

(√
g(z)
g(0)r, θ

)
. (10.26)

Thus if g(z) is a decreasing function, then g′(z) < 0, which means according to (10.1)
that the radial velocity component vr > 0; consequently, the radius r(s) increases along
characteristics as the height z(s) increases, as is clearly indicated by the factor

√
g(z)/g(0) in

formula (10.26). Notice that if vz in (10.1) is constant in z and vr = 0 (i.e. g(z) = g(0) = 1),
we get

uouter(r, θ, z) =
(
N0
u0

)
N (r, θ) ,

which is the expected vertical translation of the lower boundary temperature through the
trunk when the lateral side at r = 1 is insulated.

Until now we were considering the outer asymptotic solution for our problem, which
only satisfies the boundary condition at z = 0. Next we provide a brief description of how
to obtain the inner solution at r = 1, where we expect the heat flux from the surroundings
to diffuse to some depth from the lateral boundary. SinceM−1

2 � 1, we can use it to expand
the region around the singularity at r = 1 through the transformation

r = 1− εr∗ (10.27)
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The resulting leading order equation will include the effect of radial diffusion, which when
solved gives the inner solution. Next we match the inner and outer solutions by taking
limits as they approach each other, and the resulting uniform solution shows an effective
lateral penetration depth of M−1

2 . The details have not been worked out yet, but would
form an interesting area for future research.

10.1.3 Diffusion Dominated Heat Transport

Here we consider the case ofM2 � 1, where the velocities are small enough so that diffusion
dominates over advection in (9.15). The resulting leading order equation is

0 = 1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2 +G(r, θ, z),

where

G(r, θ, z) = C0

(
4W + ∂2W

∂θ2

)
,

and boundary condition at r = 1(
k

r0

)
∂U

∂r

∣∣∣∣
r=1

= −h U |r=1 .

In the following we will assume that the left hand side is of lower order of magnitude than
the right hand side (hr0/k � 1), and so

U |r=1 = 0.

Other cases can be treated similarly, and the only difference is in the equation that deter-
mines the eigenvalues γnm.

Note that the resulting problem is nothing but the steady state heat diffusion problem
on a disk with Dirichlet BC. Here the temperature of each horizontal disk section of the tree
evolves independently from the rest of the tree. The solution of this problem is presented at
the end of Section 10.2.2 as the limit as t → ∞ of the time dependent case solution. Note
also that the boundary at z = 0 is dropped out since we are considering the outer solution
away from this boundary.

10.1.4 Comparing the Three Cases

In this section, we have discussed the steady state leading order solution of the heat trans-
port problem in a tree. We discovered that the order of magnitude of M2 determines the
importance of advection relative to horizontal diffusion of heat, with M2 ∼ 1 giving the
more interesting case where both diffusion and advection are equally significant. The so-
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lution of this case given by (10.21) shows the effects of the bottom (first summation) and
lateral (second summation) boundaries on the stem temperature. The effect of the bottom
boundary on the temperature of the stem decays exponentially with height, with a time
constant ≈M2/γ

2
0 (assuming axisymmetry). As we saw in Figure 10.2, this effect could be

quite substantial. Since the soil temperature can be different than the ambient temperature,
this can potentially help the tree to mitigate extremes of the air temperature. Compare this
with the pure horizontal diffusion case of M2 � 1, with the solution given by (10.33),where
the effects of the bottom boundary are constrained to a small boundary layer at the bottom,
with the lateral flux dominating. Similarly, the effect of the lateral flux in the M2 ∼ 1 case
(second summation in (10.21)) on the temperature at a certain height in the stem is not
constrained to the flux at that particular height. Instead, the temperature at height z is
affected by the lateral flux at all lower sections of the tree due to the vertical advection
effect. This may act to reduce the more extreme weather effects at the tree top. Compare
this with the case of pure diffusion M2 � 1, where only the lateral heat flux affects only
the horizontal section at that height. Now these two cases are the most probable cases.
As for the pure advection case M2 � 1, with the solution given by (10.26), if it exists in
the context of trees, then it isolates the tree completely from lateral flux effects, and the
temperature inside the stem will then be solely dependent on the soil temperature.

10.2 Time Varying Cases Asymptotic Analysis

10.2.1 Advection-Diffusion with Time-Dependent Boundary Conditions

This section is similar to Section 10.1.1, but with a slight modification to incorporate the
time variation of the boundary conditions. This means that W = W (θ, z, t) and N =
N(r, θ, t) in (9.17). Here we will assume that the velocity field is at steady state as given
by (10.1), which is a good approximation for large trees (r0 ∼ 1) on the time scale of heat
diffusion as explained at the end of Section 9.3. Now if we set

L̃(u) = L(u)−M0
∂u

∂t
,

where L(u) is defined by (10.4), then the time varying version of equation (10.6) has the
same form:

0 = L̃(U) + C0L̃(r2W ), (10.28)

with U = u − C0r
2W (θ, z, t). The boundary conditions are also modified by redefining

Ñ(r, θ, t) = (N0/u0)N(r, θ, t)−C0r
2W (θ, 0, t) at z = 0. The initial condition u(r, θ, z, 0) =

uI(r, θ, z) becomes after the transformation U(r, θ, z, 0) = UI(r, θ, z) = uI −C0r
2W (θ, z, 0).
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We will assume that UI = 0 to simplify the formulas in the following analysis (so we are
ignoring the initial transient behaviour).

The leading order equation we get from (10.28) is then

(
M0
M2

)
∂U

∂t
+ ∂U

∂z
= 1
M2

[
1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2

]
+G(r, θ, z, t), (10.29)

where
G(r, θ, z, t) = C0

M2

(
4W + ∂2W

∂θ2 −M2r
2∂W

∂z
−M0r

2∂W

∂t

)
.

Next we transform the leading order equation using

T = t− M0
M2

z,

to get

∂U

∂z
= 1
M2

[
1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2

]
+G

(
r, θ, z, T + M0

M2
z

)
.

Similarly the boundary conditions (10.7) become(
k

r0

)
∂U

∂r

∣∣∣∣
r=1

= −h U |r=1 , (10.30)

U |z=0 = Ñ(r, θ, T ). (10.31)

Similar to the steady state case, we will only consider the following case for the boundary
condition at r = 1, with other cases treated similarly

U |r=1 = 0. (10.32)

Notice that T can be treated as a parameter. This problem for each fixed T is now similar
to the steady state problem we solved in Section 10.1.1, and the solution is also similar:

U(r, θ, T, z) =
∞∑

n,m=0
Jn(γnmr)e

− γ
2
nm
M2

z [Anm(T ) cos(nθ) +Bnm(T ) sin(nθ)]

+
∫ Z

0

∞∑
n,m=0

Jn(γnmr)e
− γ

2
nm
M2

(z−s)
[
Asnm

(
T + M0

M2
s

)
cos(nθ) +Bs

nm

(
T + M0

M2
s

)
sin(nθ)

]
ds,
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where Asnm, Bs
nm and γnm are determined by the equations

G(r, θ, s, T ) =
∞∑

n,m=0
Jn(γnmr) (Asnm(T ) cos(nθ) +Bs

nm(T ) sin(nθ)) ,

Jn(γnm) = 0,

while Anm, Bnm are determined by

Ñ(r, θ, T ) =
∞∑

n,m=0
Jn(γnmr) (Anm(T ) cos(nθ) +Bnm(T ) sin(nθ))

for T > 0. Thus

u(r, θ, t, z) = C0r
2W (θ, r, t)

+
∞∑

n,m=0
Jn(γnmr)e

− γ
2
nm
M2

z
[
Anm

(
t− M0

M2
z

)
cos(nθ) +Bnm

(
t− M0

M2
z

)
sin(nθ)

]

+
∫ z

0

∞∑
n,m=0

Jn(γnmr)e
− γ

2
nm
M2

(z−s)
[
Asnm

(
t− M0

M2
(z − s)

)
cos(nθ)

+Bs
nm

(
t− M0

M2
(z − s)

)
sin(nθ)

]
ds,

where Anm, Bnm, Asnm and Bs
nm are zero for negative arguments. The only difference from

the steady state case solution (10.21) is the presence of the M0z/M2 and M0(z − s)/M2

terms in the arguments of Anm, Bnm, Asnm and Bs
nm. These terms take into account the

time delay for temperature at one horizontal level to affect temperature at a higher position
within the stem. Figure 10.4 shows the time variation (∆t = 1/8) in temperature for
time periodic lateral flux W (θ, z) = 1/2 (1− cos(πz)) cos(θ) cos(2πt) for a horizontal cross
section at z = z0/2 and for a vertical cross section at θ = 0. Notice the delay between the
maximum values of W and temperature.

10.2.2 Diffusion-Dominated Heat Transport with Time-Dependent Bound-
ary Condition

Here, we consider the case of M2 � 1 but with M0 = 1, so that the quasi-steady state
assumption is no longer valid, and there is a significant relaxation time. In this case,
equation (10.29) simplifies to

∂U

∂t
= 1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2 +G(r, θ, z, t).
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(a) z = z0/2 (b) θ = 0

Figure 10.4: Steady state temperature distribution for the advection-diffusion case, for
the lateral heat flux W (θ, z) = 1/2 (1− cos(πz)) cos(θ) cos(2πt) and a Dirichlet bottom
boundary temperature N = r2W (θ, 0). W0 = 100 , N0 = C0u0 (so that Ñ = 0), h = 5,
k = 0.32, r0 = 0.129/2, z0 = 6.7, M2 = 1, M0 = 1. The lowest eigenvalue γ0 = 1.26.
r0h/k = 1.01. (a) Horizontal cross-section at z = z0/2. (b) Vertical cross-sections at θ = 0.
We assume that the initial transient behaviour has passed, and we are in a time periodic
regime.
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Assuming a similar choice for boundary condition (10.32) at r = 1, and with

U(r, θ, z, 0) = UI(r, θ, z),

where UI is the initial condition, then our problem at each fixed height z is similar to the
problem (10.10), (10.11) and (10.13). This has the solution

U(r, θ, t) =
∫ t

0

∞∑
n,m=0

Jn(γnmr)e−γ
2
nm(t−s) (Aznm(s) cos(nθ) +Bz

nm(s) sin(nθ)) ds

+
∞∑

n,m=0
Jn(γnmr)e−γ

2
nmt (Cznm cos(nθ) +Dz

nm sin(nθ)) ,

where Aznm and Bz
nm are determined by the series expansion of G at each z

G(r, θ, z, t) =
∞∑

n,m=0
Jn(γnmr) (Aznm(t) cos(nθ) +Bz

nm(t) sin(nθ)) ,

Jn(γnm) = 0,

while Cznm and Dz
nm are determined by the series expansion of UI at each z

UI(r, θ, z) =
∞∑

n,m=0
Jn(γnmr) (Cznm cos(nθ) +Dz

nm sin(nθ)) .

In the case of time independence of G due to the time independence of the boundary
condition at r = 1, the transient behaviour simplifies to

U(r, θ, t) =
∞∑

n,m=0
Jn(γnmr)

( 1
γ2
nm

(
1− e−γ2

nmt
))

(Aznm cos(nθ) +Bz
nm sin(nθ))

+
∞∑

n,m=0
Jn(γnmr)e−γ

2
nmt (Cznm cos(nθ) +Dz

nm sin(nθ)) ,

and as t→∞, this expression reaches the steady state limit

U(r, θ, t) =
∞∑

n,m=0
Jn(γnmr)

( 1
γ2
nm

)
(Aznm cos(nθ) +Bz

nm sin(nθ)) . (10.33)

Thus at each height z the temperature is determined solely by the boundary condition at
that height.
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10.3 Saturation Dependent Thermal Diffusivities

Let’s consider the case of M2 � 1 where we also choose the time scale τ such that M0 = 1.
We assume that the sap saturation is constant in time, which is a good approximation in the
case of large radius r ∼ 1 (see Section 9.3). Now the saturation has only vertical dependence
to first order if we consider the isotropic hydraulic conductivity case (see 4.2). Thus if we
consider the saturation dependent thermal diffusivity (9.9), then the heat equation (10.28)
give the leading order diffusion equation

∂U

∂t
= Dr(s(z))

[
1
r

∂

∂r

(
r
∂U

∂r

)
+ 1
r2
∂2U

∂θ2

]
+Dr(s(z))G(θ, z, t),

where

G(θ, z, t) = C0

(
4W + ∂2W

∂θ2

)
,

Now z can be treated as a parameter in this equation, and thus if we define t∗ = Dr(s(z))t,
then the equation we get is similar to what we got in Section 10.2.2, and the solution is

U(r, θ, z, t) =
∫ t∗

0

∞∑
n,m=0

Jn(γnmr)e−γ
2
nm(t∗−s) (Anm(z, s) cos(nθ) +Bnm(z, s) sin(nθ)) ds

+
∞∑

n,m=0
Jn(γnmr)e−γ

2
nmt

∗ (Cznm cos(nθ) +Dz
nm sin(nθ)) .

Consequently, the thermal diffusivity variation acts to rescale the time variation at each
height z; that is the larger D(s(z)) is, the smaller the relaxation time at height z.
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Chapter 11

Numerical Simulations

11.1 Brief Algorithm Description

To avoid unnecessary repetition, the numerical discretization for the heat transport model is
similar to the sap flow scheme, and so we will only provide a brief description of the method
here. To simplify the code, we only considered the circular cylindrical axisymmetric case,
where the boundary conditions have no angular dependence. For each cell, we calculate
the physical variables at the edge (or face) as follows: temperature, saturation and sap
flow velocities are taken at cell centers from the previous time step, so we calculate the
diffusivities at cell centers then take an arithmetic average to get the diffusivities at cell
edges. We also average the velocities at from cell centers to get values at cell edges. As
for the heat flux, we use centered finite differences to calculate the temperature gradient,
and then multiply by the edge diffusivity to calculate the diffusive heat flux along edges.
The advection heat flux is just the product of the edge diffusivity and sap velocity. The
Dirichlet boundary condition at z = 0 is dealt with in a manner similar to the sap flow
problem, where we used fictitious cells at the boundary. The lateral boundary condition is
a flux condition, so we just assign this flux to the edge. The upper boundary condition is
similar. In the case of larger velocities in the vertical direction, we just extend the domain
in the vertical direction and thus do not assign a boundary condition there.

11.2 Numerical Verification of Asymptotics

To verify the asymptotic solution for the advection-diffusion time-varying case in Sec-
tion 10.2.1 we set M0 = 1, M1 = 1 × 10−4, M3 = 1 and hr0/k = 2.9, and take W =
1/2 (1− cos(2πz)) sin(2πt) and N = 0. We run the code on a 400× 400 grid and compare
the resulting solution to the leading order asymptotic solution. We consider two cases: one
is χ = 0 (i.e., constant vertical velocity vz and zero radial velocity vr) while in the other
we have χ = M

1/2
1 with g(z) = −z + sin(2πz)/(2π). In the first case, we expect a relative
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error of order M1 (or O(10−4)) and we get an error that ranges between 1 × 10−4 and
3.5× 10−3 as shown in Figure 11.3. A detailed look at the error in Figure 11.2 reveals that
the error originates from the lower left corner (see the numerical solution in Figure 11.1).
In the second case, we expect an error of order M1/2

1 (or O(10−2)), and this is what we get.
Second, to check the pure diffusion case in Section 10.2.2, we make the change M3 = M

1/2
1 .

The expected relative error is M3 (or O(10−2)), which is what we get.

(a) t = 0 (b) t = 3 (c) t = 6 (d) t = 9

(e) t = 12 (f) t = 15 (g) t = 18 (h) t = 21

Figure 11.1: Numerical solution when χ = 0 for the time varying W =
1/2 (1− cos(2πz)) sin(2πt) and N = 0.

11.3 Large Variation of Vertical Velocity

The numerical code allows us to further explore the case where χ ∼ 1. Other parameters
are set as in the previous section for the advection-diffusion case with M3 = 1. First notice
the vertical velocity profile in Figure 11.4. With such a velocity variation we expect that
any change in temperature due to heat flux from the lateral boundary will eventually be
advected vertically to the region z > 5 were vz ∼ 0. This is indeed what we observe in the
numerical simulations as shown in Figure 11.5. This could be potentially relevant to the
case of a tree in winter (or summer), where the lower parts which are exposed to less severe
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(a) t = 0 (b) t = 3 (c) t = 6 (d) t = 9

Figure 11.2: Difference between numerical and asymptotic solutions relative to the numer-
ical solution when χ = 0 for the time varying W = 1/2 (1− cos(2πz)) sin(2πt) and N = 0.

Figure 11.3: L1-norm of difference between numerical and asymptotic solutions relative to
the numerical solution when χ = 0 for the time varying W = 1/2 (1− cos(2πz)) sin(2πt)
and N = 0.
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weather conditions may be warmer (cooler), thus the warmth (coolness) is advected to the
upper more exposed part of the tree and settles down.

Figure 11.4: Vertical velocity component profile for χ = 1 case. This represents the situation
where there is a larger leaves concentration at the lower part of the tree.
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(a) t = 0 (b) t = 3 (c) t = 4 (d) t = 8

(a) t = 11 (b) t = 15 (c) t = 18 (d) t = 21

Figure 11.5: Effect of large variations in vertical velocity profile (χ = 1) on temperature
distribution time variation for the advection-diffusion case (M3 = 1).
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Chapter 12

Conclusion

We considered the heat transport problem in trees, with both diffusion and advection effects,
and general boundary conditions. For the steady state time constant boundary conditions
and constant flow case (which we argued is justifiable due to the difference in time scales
between heat transport and sap flow), we derived series solutions assuming a mainly vertical
constant sap flow with a constant perturbation, and assuming constant anisotropic diffusiv-
ities. In this case, we had three possibilities: diffusion dominated, diffusion-advection, and
advection dominated heat transport. We also derived time varying solutions for the case of
time varying heat transport boundary conditions. Next we considered the case of satura-
tion dependent thermal diffusivities, where the saturation has only a vertical dependence.
Finally, we verified our asymptotic solutions using a finite difference numerical code, and
using this code we further explored the effect of varying vertical velocity profile on heat
transport. In all of the above, we made only some minimal assumptions about the forms
for the boundary conditions.
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Appendix A

Correction Term for the
Advection-Diffusion Case

Proceeding with the expansion in Section 10.1.1 and going on to the next order O(χ)
equation we get

∂U1
∂z

= 1
M2

[
1
r

∂

∂r

(
r
∂U1
∂r

)
+ 1
r2
∂2U1
∂θ2

]
+ p(r, θ, z)

U1|r=1 = 0
U1|z=0 = 0

where
p(r, θ, z) =

(
r

2

)
g′0(z)∂U0

∂r
− g0(z)∂U0

∂z
(A.1)

This is similar to the subproblem (10.14) we solved above, with p replacing G as a source
term. Thus the solution is

U1(r, θ, z) =
∫ z

0

∞∑
n,m=0

Jn(γnmr)e
− γ

2
nm
M2

(z−s) (Csnm cos(nθ) +Ds
nm sin(nθ)) ds (A.2)

and Csnm and Ds
nm are the series coefficients for p(r, θ, s) in

p(r, θ, s) =
∞∑

n,m=0
Jn(γnmr) (Csnm cos(nθ) +Ds

nm sin(nθ)) (A.3)

Now assuming there is no θ dependence in either of the boundary functions N and W (thus
Ñ and G), so that n = 0 (thus will be dropped off as a subscript on J and γ), then the
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expressions for Anm in (10.24) and Anm(s) in (10.23) reduce to

Am =
∫ 1
0 rÑ(r)J0(γmr)dr∫ 1

0 rJ
2
0 (γmr)dr

Asm =
∫ 1
0 rG(r, s)J0(γmr)dr∫ 1

0 rJ
2
0 (γmr)dr

which simplifies to

Am = 2
J2

0 (γm) + J2
1 (γm)

×
[
N0
u0

∫ 1

0
rN(r)J0(γmr)dr − C0W (0)

(
(γ2
m − 4)J1(γm) + 2γmJ0(γm)

)
γ3
m

]

and

Asm = 2
J2

0 (γm) + J2
1 (γm)

(
C0
M2

)
×
[

4W (s)J1(γm)
γm

−M2W
′(s)

(
(γ2
m − 4)J1(γm) + 2γmJ0(γm)

)
γ3
m

]

Now for the correction term U1 equation (A.2), first we find the following expressions for
the derivatives of U0

∂U0
∂r

= −
∑
m

γmAmJ1(γmr)e
− γ

2
m
M2

z −
∫ z

0

∑
m

γmA
s
mJ1(γmr)e

− γ
2
m
M2

(z−s)
ds

∂U0
∂z

= −
∑
m

γ2
m

M2
AmJ0(γmr)e

− γ
2
m
M2

z +
∑
m

AzmJ0(γmr)−
∫ z

0

∑
m

γ2
m

M2
AsmJ0(γmr)e

− γ
2
m
M2

(z−s)
ds

Now lets assume for the sake of simplicity that the homogeneous boundary condition at
r = 1 for the correction term is still a Dirichlet boundary condition (similar to the leading
order term), which means that the eigenvalues γm do not change between the correction
term and the leading order term. Then to find an expression for Csm in (A.2), we first need
the following expressions∫ 1

0
r
∂U0
∂z

J0(γmr)dr =
∫ 1

0
rJ2

0 (γmr)dr
[
Azm −

γ2
m

M2

∫ z

0
Asme

− γ
2
m
M2

(z−s)
ds− γ2

m

M2
Ame

− γ
2
m
M2

z

]
(A.4)

and∫ 1

0
r2∂U0

∂r
J0(γmr)dr =

−
∑
m′

γm′
∫ 1

0
r2J0(γmr)J1(γm′r)dr

[∫ z

0
Asm′e

−
γ2
m′
M2

(z−s)
ds+Am′e

−
γ2
m′
M2

z

]
(A.5)
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Next using (A.1) and (A.3), we get

Csm =
∫ 1

0 rp(r, s)J0(γmr)dr∫ 1
0 rJ

2
0 (γmr)dr

(A.6)

=
1
2g
′
0(s)

∫ 1
0 r

2 ∂U0
∂r (r, s)J0(γmr)dr − g0(s)

∫ 1
0 r

∂U0
∂z (r, s)J0(γmr)dr∫ 1

0 rJ
2
0 (γmr)dr

Noting that in the axisymmetric case (A.2) simplifies to

U1(r, z) =
∑
m

J0(γmr)e
− γ

2
m
M2

z
∫ z

0
Csme

γ2
m
M2

s
ds

then the final expression we need is∫ z

0
Csme

γ2
m
M2

s
ds =

− 1
2
∫ 1
0 rJ

2
0 (γmr)dr

[∑
m′

γm′

(∫ 1

0
r2J0(γmr)J1(γm′r)dr

)

×
(∫ z

0

∫ s

0
g′0(s)As∗m′e

−γ2
m′

+γ2
m

M2
s
e
γ2
m′
M2

s∗
ds∗ds+

∫ z

0
Am′g

′
0(s)e

−γ2
m′

+γ2
m

M2
s
ds
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−
∫ z

0
Asmg0(s)e

γ2
m
M2

s
ds+ γ2

m

M2

∫ z

0

∫ s

0
As
∗
mg0(s)e

γ2
m
M2

s∗
ds∗ds+ γ2

m

M2

∫ z

0
Amg0(s)ds

where we have used (A.4), (A.5) and (A.6).
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