
Speed versus Accuracy in Neural
Sequence Tagging for Natural Language

Processing
by

Xinxin Kou

B.Sc. (Hons.), Dalhousie University, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Xinxin Kou 2017
SIMON FRASER UNIVERSITY

Fall 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Xinxin Kou

Degree: Master of Science (Computing Science)

Title: Speed versus Accuracy in Neural Sequence
Tagging for Natural Language Processing

Examining Committee: Chair: Dr. Arrvindh Shriraman
Professor

Dr. Anoop Sarkar
Senior Supervisor
Professor

Dr. Fred Popowich
Supervisor
Professor

Dr. Jiannan Wang
Examiner
Assistant Professor

Date Defended: 12 September 2017

ii

Abstract

Sequence Tagging, including part of speech tagging, chunking and named entity recognition,
is an important task in NLP. Recurrent neural network models such as Bidirectional LSTMs
have produced impressive results on sequence tagging. In this work, we first present a Bidi-
rectional LSTM neural network model for sequence tagging tasks. Then we show a simple
and fast greedy sequence tagging system using a feedforward neural network. We compare
the speed and accuracy between the Bidirectional LSTM model and the greedy feedfor-
ward model. In addition, we propose two new models based on Mention2Vec by Stratos
(2016): Feedforward-Mention2Vec for named entity recognition and chunking, and BPE-
Mention2Vec for part-of-speech tagging. Feedforward-Mention2Vec predicts tag boundaries
and corresponding types separately. BPE-Mention2Vec uses the Byte Pair Encoding al-
gorithm to segment words first and then predicts the part-of-speech tags for the subword
spans. We carefully design the experiments to demonstrate the speed and accuracy trade-
off in different models. The empirical results reveal that the greedy feedforward model can
achieve comparable accuracy and faster speed than recurrent models for sequence tagging,
and Feedforward-Mention2Vec is competitive with the fully structured BiLSTM model for
named entity recognition while being more scalable in the number of named entity types.

Keywords: Natural Language Processing; Sequence Tagging; Neural Networks

iii

Dedication

To my beloved families who always support me and encourage me.

iv

Acknowledgements

I would like to express my profound sense of gratitude to my supervisor Dr. Anoop Sarkar
for introducing me to this research topic and providing his continuous support and valuable
guidance throughout my graduate study. I can not imagine having a better advisor and
mentor. In addition, I would like to express my sincere appreciation to Dr. Fred Popowich
for his useful advice and feedback on this work, and Dr. Jiannan Wang for being my defence
examiner and reading my thesis.

Thanks to all of my Natural Language Processing lab mates who helped me. I enjoy
spending time with them.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Sequence Tagging Task . 1

1.1.1 Part-of-Speech Tagging (POS) . 1
1.1.2 Named Entity Recognition (NER) 2
1.1.3 Chunking . 3

1.2 Motivation . 4
1.3 Contribution . 5
1.4 Overview . 6

2 Bidirectional Long Short Term Memory Network Models 8
2.1 Model Description . 8

2.1.1 Bidirectional Bidirectional Long Short Term Memory 8
2.1.2 Character Embeddings . 9
2.1.3 Conditional Random Fields . 10

2.2 Experiments and Results . 11

3 Feedforward Neural Network Models 14
3.1 Feedforward-History Model . 14
3.2 Experiments and Results . 16

vi

4 Mention2Vec Models 19
4.1 Model Description . 19

4.1.1 Feedforward-Mention2Vec for NER 19
4.1.2 BPE-Mention2Vec for POS . 22

4.2 Experiments and Results . 22

5 Discussion 27

6 Conclusion and Future Work 33
6.1 Contribution . 33
6.2 Future Work . 34

Bibliography 35

vii

List of Tables

Table 1.1 Number of Words and Labels in Each Training, Validation and Test
Section of Different Data Sets . 2

Table 1.2 Name Entity Types in OntoNotes . 3

Table 2.1 Experiments Specification . 11
Table 2.2 Hyperparameters used in BiLSTM Models 12
Table 2.3 Performance of BiLSTM Models on POS 12
Table 2.4 Performance of BiLSTM Models on NER CoNLL 2003 Data 12
Table 2.5 Performance of BiLSTM Models on Chunking 12
Table 2.6 BiLSTM Models Decoding Speed (words/sec) 13

Table 3.1 Hyperparameters used in Feedforward Models 17
Table 3.2 Performance of Feedforward Models on POS 17
Table 3.3 Performance of Feedforward Models on NER CoNLL 2003 17
Table 3.4 Performance of Feedforward Models on Chunking 17
Table 3.5 Feedforward Models Decoding Speed (words/sec) 18

Table 4.1 Hyperparameters used in Feedforward-Mention2Vec and BPE-Mention2Vec 24
Table 4.2 NER F1 Score and Decoding Speed Comparison on CoNLL 2003 . . . 24
Table 4.3 Chunking F1 Score and Decoding Speed Comparison on CoNLL 2000 24
Table 4.4 NER F1 Score and Decoding Speed Comparison on OntoNotes 25
Table 4.5 Per-label F1 Score on OntoNotes . 25
Table 4.6 POS Tagging Systems Performance and speed Comparison 26

Table 5.1 Neural Network Models Accuracy and F1 Score 27
Table 5.2 Neural Network Models Decoding Speed 29
Table 5.3 F1 Scores and Decoding Speed on CoNLL 2003 and OntoNotes . . . 32

viii

List of Figures

Figure 1.1 An example of POS . 1
Figure 1.2 An example of NER . 2
Figure 1.3 An example of Chunking . 4

Figure 2.1 The architecture of BiLSTM on an NER example 9
Figure 2.2 The word embedding derived from the character embeddings 10
Figure 2.3 The architecture of BiLSTM-CRF on an NER example 11

Figure 3.1 The architecture of a greedy tagging system using the Feedforward-
History model on a POS example. 15

Figure 4.1 The first step of Mention2Vec for NER 20
Figure 4.2 The second step of Mention2Vec for NER 20
Figure 4.3 The first step of Feedforward-Mention2Vec 21
Figure 4.4 An example of using BPE for word segmentation 22
Figure 4.5 An example of using BPE-Mention2Vec to find POS tags 23

Figure 5.1 An Comparison between BiLSTM-CRF and Feedforward-History on
an NER Example . 28

Figure 5.2 An Comparison between BiLSTM-CRF and Feedforward-Mention2Vec
on an NER Example . 28

Figure 5.3 Results of the POS system using different Neural Network Models . 29
Figure 5.4 Results of the NER system using different Neural Network Models

on CoNLL 2003 . 30
Figure 5.5 Results of the Chunking system using different Neural Network Mod-

els on CoNLL 2000 . 31

ix

Chapter 1

Introduction

In this chapter, we first describe sequence tagging tasks and introduce the motivation of
this thesis. Then, we summarize our major contributions and describe the structure of the
thesis.

1.1 Sequence Tagging Task

1.1.1 Part-of-Speech Tagging (POS)

Part-of-Speech Tagging (POS) is a basic sequence tagging task, which assigns each word
with a unique tag that indicates its syntactic role, such as noun, adverb, verb, etc. Figure
1.1 illustrates a typical POS task.

 Natural Language Processing is a field of Computer Science

JJ NN NN VBZ DT NN IN NN NN

Figure 1.1: An example of POS

Most POS systems are evaluated on the English Penn TreeBank data set (Marcus et al.,
1993), which contains 45 part-of-speech tags. The standard split uses section 1-18 of the
Treebank for training, section 19-21 for tuning, and section 22-24 for testing (Toutanova
et al., 2003). The experimental data are summarized in Table 1.1. Many existing models are
linear models, such as Maximum entropy Markov models (MEMMs) which obtain 96.46%
per word accuracy (McCallum et al., 2000); and the averaged perception discriminative
model which obtains 97.11% per word accuracy (Collins, 2002). More recently, neural
network models have been proposed to improve the state-of-the-art score. The Bidirectional
LSTM network model proposed by Huang et al. (2015) reaches 97.55% per word accuracy.

1

Ling et al. (2015) presents the compositional character-to-word LSTM model which reaches
the state-of-the-art performance: 97.78% per word accuracy.

Table 1.1: Number of Words and Labels in Each Training, Validation and Test Section of
Different Data Sets

Training Validation Test labels
Penn Treebank 950011 40068 56671 45
CoNLL 2000 211727 N/A 47377 22
CoNLL 2003 204567 51578 46666 9
OntoNotes 1088503 147724 152728 18

1.1.2 Named Entity Recognition (NER)

Named Entity Recognition (NER) identifies expressions that refer to named entities, such as
people, places, organizations and others. The main difference between NER and POS is that
each named entity label can span multiple words while each part-of-speech tag is only for
one word. A popular convention in NER is to use the “IOB” label scheme (Inside, Outside,
Beginning): if the word is the beginning of a named entity label, it is marked with B-label;
if the word is inside a named entity label but not the first one, it is marked with I-label; if
the token is outside the named entity, it is marked with “O”. An example of NER is shown
in Figure 1.2. There are different numbers of named entity types in different NER tasks.
For example, the shared task of CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003)
contains 4 types of named entities: locations (LOC), persons (PER), organizations (ORG),
and miscellaneous (MISC); and the OntoNotes English data set (Hovy et al., 2006) contains
18 types of named entities shown in Table 1.2. The predefined training, development, and
testing split of the data sets are shown in Table 1.1.

Paris Hilton went to Lincoln

B-PER I-PER O O B-LOC

PER LOC

Figure 1.2: An example of NER

Most NER models are evaluated on CoNLL 2003 data set and are measured by the F1
score, which is the harmonic mean of precision and recall.

F1 = 2× precision× recall
precision + recall (1.1)

2

Table 1.2: Name Entity Types in OntoNotes

Types Named Entities
PERSON People, including fictional
NORP Nationalities or religious or political groups

FACILITY Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions
GPE Countries, cities, states
LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Vehicles, weapons, foods, etc. (Not services)
EVENT Named hurricanes, battles, wars, sports events

WORK OF ART Titles of books, songs
LAW Named documents made into laws

LANGUAGE Any named language
DATE Absolute or relative dates or period
TIME Times smaller than a day

PERCENT Percentage
MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance
ORDINAL First, Second, etc.
CARDINAL Numerals that do not fall under another type

Since CoNLL 2003 has a relatively smaller amount of training data, most of the existing
models make use of pretrained word embeddings along with the training data. A commonly
used pretrained word embedding is GloVe (Pennington et al., 2014) which contains 40K
words. The best system presented at the NER CoNLL 2003 challenge by Florian et al.
(2003) obtains 88.76 F1 score. The model using Bidirectional LSTM by Huang et al. (2015)
reaches 88.83 F1 score. Both of these two models use many external features along with a
gazetteer1. Lample et al. (2016) proposed two NER models with no external features or a
gazetteer: the first one makes structured prediction using Bidirectional LSTM, Character
Embeddings (Ling et al., 2015) and Conditional Random Fields (CRF) (Lafferty et al.,
2001); and the second one uses a Shift-Reduce framework with Stack-LSTM (Dyer et al.,
2015). The first model achieves 90.94 F1 score, while the second one performs slightly worse
and achieves 90.33 F1 score.

1.1.3 Chunking

Chunking is also known as shallow parsing which labels segments of a sentence with syntax
tags, such as NP, VP, PP, etc. An example of chunking is shown in Figure 1.3. The “IOB”
label scheme is used in chunking. Most Chunking systems are trained and evaluated on
the CoNLL 2000 data set (Tjong Kim Sang and Buchholz, 2000). Same as CoNLL 2003,

1Gazetteers are language-specific knowledge resources

3

the number of training data in CoNLL 2000 is limited, and a pretrained word embedding
is commonly used in training Chunking models. The best system using SVMs presented
at the CoNLL 2000 challenge by Kudoh and Matsumoto (2000) obtains 93.48 F1 score.
The current state-of-the-art score is 95.23 which is achieved by Shen and Sarkar (2005).
They use part-of-speech tags as features and a voting classifier for chunking. Indig and
István (2016) replicated their model and got 95.08 F1 score. Recently, Huang et al. (2015)
employs Bidirectional LSTM to solve chunking and achieved 94.46 F1 score with a number
of hand-crafted features.

 Rockwell said the agreement calls for it to supply additional shipsets

B-NP B-VP B-NP B-NP B-VP B-SBAR B-NP B-VP I-VP B-NP B-NP

Figure 1.3: An example of Chunking

1.2 Motivation

Recurrent Neural Networks (RNNs) have obtained impressive results in many NLP tasks,
such as speech recognition (Graves et al., 2013) and machine translation (Cho et al., 2014).
Bidirectional Long Short Term Memory (BiLSTM) (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005) is one of the RNN architectures that can maintain long-
distance information from the past and future elements in an input sequence. Based on the
existing work (POS system by Ling et al. (2015) and NER system by Lample et al. (2016)),
state-of-the-art results on POS and NER can be obtained by using a BiLSTM network with
Character Embeddings and Conditional Random Fields (CRF). Some work has also shown
that feedforward neural networks can achieve comparable accuracy to recurrent models in
tasks such as POS and Dependency Parsing (Andor et al., 2016). One approach presented
in this thesis is to employ a greedy transition system with a feedforward network to make
independent classification decisions on each word. While the state-of-the-art model focuses
on sentence level and computes the score of every possible output sequence during decoding,
the greedy system makes decisions on word level and can produce output sequence faster.
However, the greedy system is limited when there are strong correlations between output
labels. NER is one such task which has grammar constraints on output label sequences. For

4

example, “I-PER” cannot follow “B-LOC” in NER. We want to build a fast neural network
model that can capture the dependencies among output tags.

Since the labels in Chunking and NER often span multiple tokens, most neural archi-
tectures for Chunking and NER predict the boundaries and types of entities together using
the “IOB” label scheme. Mention2Vec (Stratos, 2016) is proposed to address the natural
segment-level representation by separating the NER task into boundary detection (I, O,
B) and type prediction (PER, LOC, etc.). While Mention2Vec employs two BiLSTMs for
each sub-task, we replace the BiLSTM layer for boundary detection with a feedforward
network in order to obtain a simpler and faster model. This new model is denoted as
Feedforward-Mention2Vec in this thesis.

We use Byte Pair Encoding (BPE) (Gage, 1994) to deal with rare words in sentences for
machine translation (Sennrich et al., 2016), and we propose a new model combining BPE and
Mention2Vec for POS, which is denoted as BPE-Mention2Vec in this thesis. We use BPE
to segment the input words in the hope of capturing the orthographic evidence of the words
without using spelling features (like prefixes and suffixes) or Character Embeddings. After
we segment input words, POS becomes an NER-like task. Then, we can use Mention2Vec
to solve the rest of the problem. Since boundaries of output tags are known in POS, we
only need to use a BiLSTM network for type prediction in BPE-Mention2Vec.

There is increasing demand for faster sequence tagging systems to decode real time nat-
ural language data, such as Twitter, Facebook, Wikipedia, and even the web. Improving
decoding speed will benefit many real world sequence tagging applications, but there is
very little research into examining the decoding speed and accuracy relationship of different
models. In this thesis, we will explore the speed and accuracy trade-off in different neural
network models for sequence tagging. We re-implement many different types of feedfor-
ward models and BiLSTM models using Tensorflow (Abadi et al., 2016) and systematically
compare the performance and decoding speed between them on sequence tagging tasks.

1.3 Contribution

The three main contributions of this thesis are:

1. We implement the state-of-the-art sequence tagging model:BiLSTM with Character
Embeddings and CRF, and we apply the fully structured BiLSTM model on all three
sequence tagging tasks.

There is little work examining how the configurations of the fully structured BiL-
STM model affect the decoding speed, such as whether the model is using Character
Embeddings or the model is using CRF. We conduct experiments to compare the
performance and decoding time of different configurations. Our implementation can
be found in https://github.com/sfu-natlang/neural-network-tagger

5

2. We build a greedy tagging system with a feedforward neural network, denoted as
Feedforward-History.

Feedforward-History takes word features in context, spelling features, and previous
tag features as input, and uses a feedforward neural network to predict tags word by
word. There is little existing work measuring the decoding time using feedforward
networks on sequence tagging, so we conduct experiments on sequence tagging and
record the performance and decoding speed. To test the robustness of the feedforward
networks, we also conduct experiments using a feedforward network with only word
features, which also serves as the baseline. We compare the feedforward model with
the fully structured BiLSTM model and provide analysis on the results.

3. Last but not least, we introduce two new neural architectures based on Mention2Vec:
Feedforward-Mention2Vec for Chunking and NER, and BPE-Mention2Vec for POS.

Originally, Mention2Vec was designed for NER and used BiLSTMs to detect named
entity boundaries and predict corresponding types separately. We propose Feedforward-
Mention2Vec for Chunking and NER, in which we use a feedforward network with
CRF to predict named entity boundaries instead of using a BiLSTM. We denote this
new model as Feedforward-Mention2Vec. We also adapt Mention2Vec for POS by
combining Byte Pair Encoding (BPE) with BiLSTM in the model. BPE is used to
segment the input words in our model, and it converts POS into a NER-like task.
We denote this new model for POS as BPE-Mention2Vec. In BPE-Mention2Vec, we
use a feedforward network to compute the hidden embeddings of the input segmented
words. Since the boundaries of subword units are known, BPE-Mention2Vec does
not need to predict the boundaries. It takes the hidden embeddings, tag boundaries,
and a BiLSTM network to predict the actual POS tags. We benchmark these two
multitask models against the state-of-the-art BiLSTM model on POS and NER. Since
different NER tasks have different numbers of named entity types, the decoding time
of a fully structured BiLSTM model grows quadratically in the number of types. In
Mention2Vec and Feedforward-Mention2Vec, we only apply CRF on boundary labels
(I, O, B), so the decoding time grows linearly in the number of types. To show the
time difference on different NER tasks, we conduct the NER experiments on CoNLL
2003 which contains 4 different named entity types and OntoNotes which contains 18
different named entity types.

1.4 Overview

The thesis is organized as follows:
In Chapter 2 we present the fully structured BiLSTM model, which combines BiL-

STM, Character Embeddings and CRF. We denote the fully structured model as the

6

BiLSTM-CRF model. We explain the training and decoding process of BiLSTM-CRF,
apply BiLSTM-CRF on sequence tagging tasks, and conduct experiments using three differ-
ent configurations: BiLSTM with word features only, BiLSTM with Character Embeddings,
and BiLSTM model with Character Embeddings and CRF.

In Chapter 3 we present a greedy tagging system using a feedforward neural network.
Since the greed system takes into account the previous tag information and use a feedforward
network to predict tags, we denote this model as Feedforward-History. In order to show the
robustness of this model, we also build a greedy feedforward model with only word features
(denoted as Feedforward). We explain the training and decoding process of the feedforward
models, describe the experiment design, and compare the performance and decoding time
between feedforward models and BiLSTM models.

In Chapter 4 we present two new multitask models based on Mention2Vec: Feedforward-
Mention2Vec for Chunking and NER and BPE-Mention2Vec for POS. The intuition behind
the multitask models is to capture the boundary information of tags and to reduce the de-
coding time. We explain the architectures of these two models and compare the performance
and speed between multitask models and other models in this thesis.

In Chapter 5 we discuss the empirical results from the previous chapters. We also
analyze the trade-off between performance and speed in different neural network models.

In Chapter 6 we summarize the contributions of this thesis and discuss ongoing and
related future work.

7

Chapter 2

Bidirectional Long Short Term
Memory Network Models

In this chapter, we first describe the fully structured BiLSTM model: the state-of-the-art
model combining BiLSTM with Character Embeddings and Conditional Random Fields
(CRF). Then, we show the performance and decoding speed of BiLSTM models with dif-
ferent configurations on POS and NER.

2.1 Model Description

2.1.1 Bidirectional Bidirectional Long Short Term Memory

Recurrent neural networks (RNNs) (Mikolov et al., 2010) have shown impressive results on
sequence tagging tasks. RNNs can keep the future and the past data persistent by using
memory cells with loops in them. However, RNNs are biased towards the most recent
data in practice. Long Short Term Memory Networks (LSTMs), special RNNs with Long
Short Term memory cells (Graves and Schmidhuber, 2005), are designed to combat the bias
problem. LSTMs learn long dependencies in a sequence with the help of Gates (Graves and
Schmidhuber, 2005). Gates control how much of the input information to pass to the next
LSTM cell, and how much of the previous information to forget.

Given a sentence with n words each of which is represented as a dense vector xi, a
LSTM makes use of x1:n to compute a forward representation

−→
hi for the ith word. In

general, computing a backward representation
←−
hi would be useful for sequence tagging.

Bidirectional LSTM (BiLSTM) is an extension to LSTM which takes into account both
the past elements and the future elements in a sequence. A BiLSTM generates both

−→
hi

and
←−
hi for the ith word in a sequence. The hidden embedding hi is the concatenation of

−→
hi and

←−
hi . BiLSTM mapping is defined as BiLSTMθ: hi = BiLSTMθ (x1:n, i) where θ

represents trainable parameters in BiLSTM. Figure 2.1 illustrates the application of the
BiLSTM model on an NER example.

8

hidden embeddingsh5h4h3h2h1

←−
h5

←−
h4

←−
h3

←−
h2

←−
h1

−→
h1

−→
h2

−→
h3

−→
h4

−→
h5

x1 x2 x3 x4 x5 input embeddings

input sentence

BiLSTM

w5w4w3w2w1

Paris Hilton went to Lincoln

Figure 2.1: The architecture of BiLSTM on an NER example

2.1.2 Character Embeddings

Instead of using hand-engineered features listed in Chapter 2 (like prefixes and the suffixes of
a word), we can use a BiLSTM network to construct word representations from characters
in it (Lample et al., 2016). This architecture is denoted as Character Embeddings. It
has been shown that learning character embeddings has been found useful for capturing
morphological evidence (Ling et al., 2015). Figure 2.2 describes the architecture using
character embeddings and BiLSTM to generate word embedding for word “Paris”. The input
to the BiLSTM is the letter sequence of a word. We define a character dictionary which maps
each character to a d-dimensional vector representation. The English character dictionary
contains uppercase and lowercase letters, numbers, and punctuation. We look up each ci

of the input letter sequence from the dictionary and get the character embedding vectors
X : {x1, x2, . . . , xn}. Then, character embedding vectorsX are fed into BiLSTM to generate
forward and backward hidden embeddings of the character sequence. We concatenate the
last forward hidden embedding

−→
hn and the last backward hidden embedding

←−
h1 with the

embeddings from word embedding dictionary lookup to obtain the final word embedding.
We add Character Embeddings in the sequence tagging system by concatenating the

output of Character Embeddings and the word embeddings from lookup to form input
embeddings. Then, we feed the input embeddings to BiLSTM and CRF, and we get the
fully structured BiLSTM model (BiLSTM-CRF) for sequence tagging. The character em-
beddings and word embeddings are learned together during training. There are existing
implementations of BiLSTM-CRF, such as NeuroNet by Dernoncourt et al. (2017) which

9

input characters
c5c4c3c2c1

P a r i s

word embeddings−→
h5

←−
h5

←−
h4

←−
h3

←−
h2

←−
h1

−→
h1

−→
h2

−→
h3

−→
h4

−→
h5

x1 x2 x3 x4 x5 character embeddings

BiLSTM

←−
h1

⊕

Figure 2.2: The word embedding derived from the character embeddings

achieves state-of-the-art performance. In order to compare BiLSTM-CRF with other models
in this thesis, we re-implement the model.

2.1.3 Conditional Random Fields

Conditional Random Fields (CRF) models make decisions on sentence levels instead of
making independent decisions on each word. We combine the BiLSTM model with a CRF
layer to form the BiLSTM-CRF model. The architecture of BiLSTM-CRF is shown in
Figure 2.3.

In BiLSTM-CRF, given a sequence of output predictions y = (y1, y2, . . . yn), the score
of the output sequence is:

S (y) =
n∑
i

Ti,i+1 +
n∑
i

pi (yi) (2.1)

where T is a matrix of transition scores such that Ti,j represents the score of a transition
from the label i to label j, and pi (yi) is the probability of yi being the label of word i.

During training, we score every possible output sequence, and use a softmax layer
(Dugas et al., 2001) to generate the probability distribution of output sequences: P (y) =
softmax(S (y)). Then, we minimize the negative log likelihood over the training sentences.
During decoding, we can recover the tag sequences of test data using dynamic program-

10

Paris Hilton went to Lincoln

 B-PER I-PER O O B-LOC

Forward

Backward

CRF

Figure 2.3: The architecture of BiLSTM-CRF on an NER example

ming. Thereby, decoding time grows quadratically in the number of tag types, and grows
linearly in the number of sentences.

2.2 Experiments and Results

To evaluate BiLSTM models, we run BiLSTM with three configurations on POS, NER, and
Chunking: BiLSTM with word features only (BiLSTM); BiLSTM with Character Embed-
dings (BiLSTM-Char); BiLSTM with Character Embeddings and a CRF layer (BiLSTM-
CRF). We report the performance and decoding speed of the models on Penn Treebank
data set for POS, CoNLL 2003 data set for NER, CoNLL 2000 data set for Chunking. The
details of the data sets are shown in Table 1.1.

Table 2.1: Experiments Specification

CPU Intel i7-5820k
GPU NIVID GeForce GTK 1080
OS Ubuntu 16.04.03

CUDA 8.0
Tensorflow 1.0
Python 2.7.13

The experiments were conducted on a Linux server with a single 10G Nvidia GeForce
GPU. The experiment specifications are shown in Table 2.1. We use the hyperparameters
defined in NeuroNER (Dernoncourt et al., 2017), which uses BiLSTM-CRF for NER and
is shown to achieve near the state-of-the-art performance. Since dropout training (Hinton
et al., 2012) can improve the performance by encouraging the model to depend on both
character embeddings and word embeddings, we apply a dropout mask on the input em-

11

Table 2.2: Hyperparameters used in BiLSTM Models

Hyperparameters Values
character embedding size 50
word embedding size 100
feedforward layer size 200
feedforward layer 1
BiLSTM layer size 100
BiLSTM layer 2

optimizer Adam
learning rate 0.01
batch size 32
dropout 0.5

beddings before the BiLSTM layer. The dropout rate is set to 0.5 in the experiments.
Table 2.2 shows the hyperparameters used in BiLSTM models. We use the pretrained word
embeddings from GloVe which contains 40K words, and initialize all the weight parameters
using Xavier initialization (Glorot et al., 2011).

Table 2.3: Performance of BiLSTM Models on POS

Model Accuracy Error Reduction (words)
BiLSTM 96.1 −

BiLSTM-Char 97.21 (+1.11) 629
BiLSTM-CRF 97.34 (+1.24) 702

Table 2.4: Performance of BiLSTM Models on NER CoNLL 2003 Data

Model Precision Recall F1
BiLSTM 84.27 83.22 83.74

BiLSTM-Char 87.07 88.81 87.93 (+4.19)
BiLSTM-CRF 89.93 90.16 90.05 (+6.31)

Table 2.5: Performance of BiLSTM Models on Chunking

Model Precision Recall F1
BiLSTM 91.26 92.33 91.79

BiLSTM-Char 92.51 93.45 92.98 (+1.19)
BiLSTM-CRF 93.91 93.81 93.86 (+2.07)

Table 2.3, Table 2.4 and Table 2.5 describe the final performance of BiLSTM models on
the POS, NER and Chunking. Table 2.6 reports the decoding speed of BiLSTM models.
In terms of performance, the fully structured BiLSTM model outperforms the other two.
Compared to BiLSTM, the structure of Character Embeddings increases the performance,
but BiLSTM networks do not heavily depend on features other than words. CRF layer is
more helpful for NER than POS and Chunking. In terms of decoding speed, it is obvious

12

Table 2.6: BiLSTM Models Decoding Speed (words/sec)

Model POS NER (CoNLL 2003) Chunking
BiLSTM-CRF 9009 10100 5390
BiLSTM-Char 13992 (1.55×) 11271 (×1.12) 6616 (×1.23)

BiLSTM 23036 (2.56×) 20740 (×2.05) 10321 (×1.91)

that the more features the model has, the slower it would be. Adding a CRF layer will
increase the performance but decrease the decoding speed.

13

Chapter 3

Feedforward Neural Network
Models

In this chapter, we the greedy tagging system with a feedforward network, which is denoted
as Feedforward-History. In the experiments, we show the performance and decoding speed
of feedforward models on POS and NER.

3.1 Feedforward-History Model

Inspired by the greedy parser system by Chen and Manning (2014), we present a similar
greedy transition system for sequence tagging in this thesis. The greedy parser system
employs a basic arc-standard system (Nivre and Scholz, 2004), which consists of three types
of transitions (LEFT-ARC, RIGHT-ARC, and SHIFT), a stack, and a buffer. While the
greedy parser system has three types of actions, the sequence tagging system only needs the
SHIFT action which predicts the tag of the current word in the buffer and shifts the word
to the stack. Syntaxnet from Google also uses the same model for POS and dependency
parsing and achieves near the state-of-the-art performance on both tasks (Alberti et al.,
2017).

In our greedy tagging system, we use a feedforward network to make decisions on indi-
vidual words, and we assume that the word to be labeled depends mainly on its neighbor
words instead of the whole sentence. Besides the word features, the system also takes into
account the lexical composition of the words (spelling features), and the previous tag deci-
sions (previous tag features). Thereby, we represent this architecture as the Feedforward-
History model. The way Feedforward-History incorporates word features is the same with
the window approach proposed in Collobert et al. (2011). The difference between these two
models is that Feedforward-History uses spelling features and previous tag features while
the model in Collobert et al. (2011) only uses word features.

Figure 3.1 illustrates the process of how a greedy tagging system uses Feedforward-
History to decode a POS example. Since the focused word only depends on its neighbors

14

Natural Language Processing is a field of

Stack

Computer Science

Buffer

sparse feature extraction

 JJ NN NN VBZ DT NN IN

Buffer.word = Computer

Stack.word = of

word.prefix = Com

Stack.tag = IN

Embedding
Concatenation

Softmax

Hidden Layer

NN

Figure 3.1: The architecture of a greedy tagging system using the Feedforward-History
model on a POS example.

in this greedy tagging system, we use a fixed size window around the current word to
generate features. In order to generate features for the words at the beginning and at the
end of the sentence, we add special padding words at the beginning and at the end. To
generate dense word features, we convert each word in the input sequence to a d-dimensional
vector representation ewi . Meanwhile, we have a full vocabulary embedding dictionary Ew.
Given a word wi, we look up its embedding ewi in Ew. According to Ratnaparkhi et al.
(1996), spelling features of a word can help predict the part-of-speech tag. The examples of
spelling features are upper and lower case features, prefix and suffix features, digit features,
etc. Each spelling feature of a word is also associated with an embedding vector esi , and
it can be looked up from a embedding vector dictionary Es. Besides word features and
spelling features, we incorporate the previous tag features in this model. Each previous tag
decision is represented as ehti and can be looked up from a tag dictionary represented as
EHT .

The input layer X = (x1, x2, . . . xn) to the feedforward network is obtained by concate-
nating the word feature vectors, spelling feature vectors, and previous tag feature vectors.
In general, generating a lot of hand-engineered features for sequence tagging is expensive:
selecting useful features is an empirical process based on trials and errors, and computing
feature vectors requires searching feature strings in huge dictionaries and concatenating
them together. We try to use as little hand-engineered features as possible to save the
time from feature generation while keeping the model accurate. In our implementation, we
extract the following spelling features of each word: whether it starts with a capital letter;
whether it has all capital letters; whether it has a mix of letters and digits; whether if has

15

punctuation; and letter prefixes and suffices of length two and three. We also extract 4
previous tags as parts of input features.

While the input layer is the concatenation of the feature vectors of the focused word,
the the output layer is a probability distribution over tags. The input unit xi is mapped to
a hidden unit hi through the rectifier activation function (ReLU) (Nair and Hinton, 2010):

ReLU (x) = Max (0, x) (3.1)

hi = ReLU
(
Ww

1 x
w
i +W s

1x
s
i +W l

1x
l
i + b1

)
, (3.2)

where xw represents the word features, xs represents the spelling features, xl represents
previous tag features, W1 is the weight parameters in the hidden layer, and b1 is the bias
of in the hidden layer. The output of the network is a probability distribution over tags,
and its dimension is the size of all tags. The tag probability distribution is modeled by a
softmax layer:

pi = softmax (W2hi + b2) , (3.3)

where W2 is the weight parameter in the softmax layer and b2 is the bias in the softmax
layer. The network is trained by minimizing a negative log likelihood over the training
data. Embedding vectors are trained together with weight vectors and bias in the model.
We denote all trainable parameters as θ. Given a sequence predictions, Y = (y1, y2, . . . yn),
the score of the output sequence is the sum of the probability of each decision yi:

S (Y) =
n∑
i

pi (yi) , (3.4)

and the loss function is:

L (θ) = −log
(

n∑
i

pi (yi)
)
, (3.5)

3.2 Experiments and Results

In POS experiments, we train the models using the Penn Treebank training data and
development data. Then, we decode the test data using trained models and record the per
word accuracy and decoding time. In NER experiments, we train the models using the
CoNLL 2003 training data and development data. Then we decode the test data using
the trained models, and record the F1 score and decoding time. In Chunking experiments,
we train the models using the CoNLL 2000 training data and development data. Then we
decode the test data using the trained models, and record the F1 score and decoding time.

16

The speed is measured by the average number of words decoded per second. We are also
interested in the robustness of the Feedfoward-History model, so we build a model using
a feedforward network with only word features, which serves as the baseline model in our
experiments. The tagging system using a feedforward network with only word features is
denoted as Feedforward in this thesis.

Table 3.1: Hyperparameters used in Feedforward Models

Hyperparameters Values
window size 8

word embedding size 100
feedforward layer 1

feedforward layer size 200
optimizer Adam

learning rate 0.01
batch size 32

Table 3.2: Performance of Feedforward Models on POS

Model Accuracy Error Reduction (words)
Feedforward 95.89 −

Feedforward-History 97.28 (+1.39) 788
BiLSTM-CRF 97.34 (+1.45) 822

Table 3.3: Performance of Feedforward Models on NER CoNLL 2003

Model Precision Recall F1
Feedforward 82.99 83.59 83.29

Feedforward-History 87.68 87.27 87.47 (+4.18)
BiLSTM-CRF 89.93 90.16 90.05 (+6.76)

Table 3.4: Performance of Feedforward Models on Chunking

Model Precision Recall F1
Feedforward 89.35 91.55 90.43

Feedforward-History 92.52 92.69 92.61 (+2.18)
BiLSTM-CRF 93.91 93.81 93.86 (+3.43)

The hardware specifications are listed in Table 2.1. In NER experiments, because of the
small amount of training data, we use GloVE pretrained word embedding where each word
corresponds to a 100-dimensional embedding vector. We use the hyperparameters defined
in Syntaxnet (Alberti et al., 2017), which contains a greedy POS tagging system shown to
achieve near the state-of-the-art performance. Specifically we use Adam (Kingma and Ba,
2014) for stochastic optimization, and set the learning rate to be 0.01. We use 1 hidden
layer and set the hidden layer size to be 200. We have a batch implementation which can

17

Table 3.5: Feedforward Models Decoding Speed (words/sec)

Model POS NER (CoNLL 2003) Chunking
Feedforward 30967 26819 16920

Feedforward-History 19474 (-1.59×) 17609 (-1.52×) 10067 (-1.68×)
BiLSTM-CRF 9009 (-3.43×) 10100 (-2.65×) 5390 (-3.14×)

process multiple sentences at the same time, and we set the batch size to be 32 in the
experiments. Table 3.1 shows the hyperparameters. We initialize all the weight parameters
using Xavier initialization (Glorot et al., 2011). The experiments specification is shown in
Table 2.1.

Table 3.2 presents the POS results achieved by greedy feedforward models and BiLSTM-
CRF. Table 3.3 presents the final benchmark results including Precision, Recall, and F1
score of feedforward models on NER. Table 3.4 presents the performance of the models on
Chunking. In all three sequence tagging tasks, BiLSTM-CRF outperforms Feedforward-
History. BiLSTM-CRF improves the NER performance the most because of the depen-
dencies among output tags. Table 3.5 shows the decoding speed of Feedforward and
Feedforward-History. Feedforward-History has faster decoding speed then BiLSTM-CRF
on all three sequence tagging tasks.

18

Chapter 4

Mention2Vec Models

In this chapter, we introduce multitask models based on Mention2Vec. We conduct experi-
ments using the multitask models on sequence tagging tasks and compare their performance
and decoding speed with Feedforward and BiLSTM-CRF

4.1 Model Description

4.1.1 Feedforward-Mention2Vec for NER

Mention2Vec is a neural network model for NER, which uses BiLSTMs to predict boundaries
and entity types separately (Stratos, 2016). We summarize Mention2Vec into two steps.
The first step uses a BiLSTM to generate hidden embeddings the same way in the BiLSTM-
CRF model and predicts the boundaries using hidden embeddings. Unlike usual NER labels
(B-LOC, I-LOC, . . .), boundary labels in this step do not have NER types attached. Since
the boundary labels have strong correlations, Mention2Vec uses CRF to capture correlations
and produce boundary label sequences.

Figure 4.1 illustrates the first step of Mention2Vec on an NER example. We denote
the input word sequence as W : {w1, w2, . . . , wn}, input embeddings as X : {x1, x2, . . . , xn}
which are the concatenations of the character embeddings and the word embeddings, and
the hidden embeddings as H : {h1, h2, . . . , hn}.

The output boundary label probability distribution is denoted as pi for word wi, and
the gold boundary label sequence is denoted as Ylabel. In each training step, the boundary
detection loss is given by the negative log likelihood of the gold boundary label sequence,
shown in Equation 4.1

L1 (θ1) = − log (p (Ylabel|h1, h2 . . . hn)) (4.1)

The second step of Mention2Vec is type prediction which finds actual types for named
entity spans in a sequence. It makes use of the hidden embeddings and the entity boundaries
from the first step. The model first looks up the hidden embeddings for the words in entity

19

Paris Hilton went to Lincoln

 B I O O B

CRF

Hidden Layer

BiLSTM

h1 h2 h3 h4 h5

Figure 4.1: The first step of Mention2Vec for NER

named entity types

h1 h2 h3 h4 h5

hidden embeddings

h1 h2

h4

boundary labels

I B O O I

BiLSTM

PER
LOC

Figure 4.2: The second step of Mention2Vec for NER

20

Paris Hilton went to Lincoln

 B I O O B

CRF

h1 h2 h3 h4 h5

Feedforward

Hidden Layer

Figure 4.3: The first step of Feedforward-Mention2Vec

spans. Then, it feeds the hidden embeddings into an additional BiLSTM and obtains the
type probability distributions. Figure 4.2 illustrates the third step of Mention2Vec.

The gold type output of an input sequence is denoted as Ytype. Assuming there are l
named entities in a sequence, and the index of the first word in a named entity is represented
as s, and the index of the last word in a named entity is represented as e, the type prediction
loss is computed by 4.2:

L2 (θ2) = −
∑
l

logP
(
rl|hls. . .hle

)
(4.2)

During training, the model uses the gold boundaries and gold types to compute the
boundary detection loss and the type prediction loss. In each training step, the boundary
detection loss and the type prediction loss are minimized jointly: the training objective is
to find boundary sequences and type sequences that minimize the sum of L1 and L2.

In order to further speed up Mention2Vec as well as capture the correlation between
boundary tags, we consider using a different network for boundary detection. Shown in
Chapter 3, feedforward networks can produce relatively good performance on sequence
tagging with faster speed than BiLSTM. We then replace the BiLSTM in the first step
of Mention2Vec with a feedforward network. We denote this new model as Feedforward-
Mention2Vec. Feedforward-Mention2Vec still has two steps where the second step is the
same in Mention2Vec. The first step uses a feedforward network to produce the hidden
embeddings, which is illustrated in Figure 4.3.

In both Feedforward-Mention2Vec and Mention2Vec, the run time of decoding bound-
aries is constant with the number of types, since there are only three types of boundaries
(I, O, B) to decode in the CRF layer. In other CRF based models, like BiLSTM-CRF, the
decoding time grows quadratically in the number of named entity types.

21

4.1.2 BPE-Mention2Vec for POS

In POS, each word in the input sentence is assigned a unique part-of-speech tag. Since
there is no tag span existing in POS, it’s not necessary to use a multitask model on POS.
However, we propose a way to convert POS into an NER-like task through the help of
Byte Pair Encoding. Inspired by the successful results obtained by using BPE in machine
translation (Sennrich et al., 2016), we initially wanted to use BPE to capture morphological
decomposition of the words and replace spelling features like prefixes and suffixes. BPE is
a compression algorithm which replaces frequent pairs with an unused byte. Sennrich et al.
(2016) presents a way to adapt BPE for word segmentation: using BPE to segment words
into subword units of different length, and building a vocabulary dictionary using word
frequency. In POS tagging system, we first learn BPE merge operations on the training
data. To segment training data and test data, we first split each word in characters and
then apply BPE to merge characters into larger chunks. In order to restore the words, we
use the “IOB” label scheme to label the subword units. Since there can be multiple subword
units sharing the same tag, POS becomes a task similar with NER. Figure 4.4 shows an
example of using BPE to segment a sequence with POS tags.

Figure 4.4: An example of using BPE for word segmentation

In our proposed BPE-Mention2Vec model for POS, there are three main steps. In the
first step, given a sequence, we use BPE to segment the words and convert the corresponding
tags using the “IOB” label scheme. After the first step, we have an NER-like task with
known boundary of each entity span, so we can apply the same method in Feedforward-
Mention2Vec to predict the POS types for entity spans. In the second step, we use a
feedforward network to produce the hidden embeddings of the input words. CRF is not
used here because the boundary labels are known in both training and decoding. The
third step of BPE-Mention2Vec uses a BiLSTM to predict the POS tags for each entity
span based on the hidden embeddings and the known boundaries. Figure 4.5 describes the
process of using BPE-Mention2Vec to find POS tags for a sequence.

4.2 Experiments and Results

We empirically evaluate the Mention2Vec model and the Feedforward-Mention2Vec model
for NER, and the BPE-Mention2Vec model for POS. The hardware specifications are listed

22

BiLSTM

h2 h3

h1

JJ

h4 h5

h5h4h3h2h1

hidden embeddings of tag spans

NN
NN

part-of-speech tags

I B I B I

POS tag boundary labels

Natural Langu age Process ing

segmented word input

Feedforward

Figure 4.5: An example of using BPE-Mention2Vec to find POS tags

23

in Table 2.1. The experiments were conducted on a Linux server with a single 10G Nvidia
GeForce GPU. The experiments specification is shown in Table 2.1. In the implementation
of Mention2Vec, we use the same set of hyperparameters from the origin model (Stratos,
2016). We perform minimum hyperparameter tuning for Feedforward-Mention2Vec and
BPE-Mention2Vec over hidden layer size, learning rate, and dropout rate. The hyperpa-
rameters we use in Feedforward-Mention2Vec and BPE-Mention2Vec are shown in Table
4.1.

Table 4.1: Hyperparameters used in Feedforward-Mention2Vec and BPE-Mention2Vec

Hyperparameters Values
character embedding size 50
word embedding size 100
feedforward layer size 200
feedforward layer 1

optimizer Adam
learning rate 0.001
batch size 32

dropout rate 0.5

Table 4.2: NER F1 Score and Decoding Speed Comparison on CoNLL 2003

Model Precision Recall F1 Speed
Feedforward 82.99 83.59 83.29 26819
BiLSTM-CRF 89.93 90.16 90.05 (+6.76) 10100 (-2.65×)
Mention2Vec 89.14 88.99 89.06 (+5.77) 9701 (-2.76×)

Feedforward-Mention2Vec 88.98 88.21 88.6 (+5.31) 13450 (-1.99×)

Table 4.3: Chunking F1 Score and Decoding Speed Comparison on CoNLL 2000

Model Precision Recall F1 Speed
Feedforward 89.35 91.55 90.43 16920
BiLSTM-CRF 93.91 93.81 93.86 (+3.43) 5390 (-3.14×)
Mention2Vec 93.03 93.13 93.08 (+2.65) 5465 (-3.09×)

Feedforward-Mention2Vec 92.61 92.62 92.61 (+2.18) 7601 (-2.23×)

In Chunking and NER experiments, we compare Feedforward-Mention2Vec with Men-
tion2Vec on the CoNLL 2003 data set. We use the BiLSTM-CRF and Feedforward as
baseline models because BiLSTM-CRF achieves the highest F1 score and Feedforward has
the fastest decoding speed among the previous models we built. Table 4.2 shows the NER
performance and decoding speed of these neural network models on the CoNLL 2003 data
set.Table 4.3 shows the Chunking performance and decoding speed of these neural network
models on the CoNLL 2000 data set. Mention2Vec and Feedforward-Mention2Vec obtain
lower F1 score than BiLSTM-CRF. Feedforward-Mention2Vec is faster than Mention2Vec

24

Table 4.4: NER F1 Score and Decoding Speed Comparison on OntoNotes

Model Precision Recall F1 Speed(words/sec)
Feedforward 82.98 62.09 71.03 22829
BiLSTM-CRF 86.59 85.21 85.90 7667 (-2.97×)
Mention2Vec 86.24 84.25 85.23 8433 (-2.71×)

Feedforward-Mention2Vec 85.40 79.92 82.57 10812 (-2.11×)

Table 4.5: Per-label F1 Score on OntoNotes

Labels Feedforward Feedforward-Mention2Vec BiLSTM-Char-CRF
CARDINAL 72.38 78.03 80.33

DATE: 72.45 80.61 81.24
EVENT: 30.01 45.81 61.40
FAC: 29.08 46.27 57.94
GPE: 89.62 92.84 94.84

LANGUAGE: 45.16 43.42 51.43
LAW: 20.02 43.62 57.97
LOC: 52.79 64.71 73.51

MONEY: 77.73 81.66 86.98
NORP: 84.11 87.80 92.15

ORDINAL: 71.26 72.77 77.24
ORG: 72.05 79.92 85.27

PERCENT: 84.43 89.27 88.73
PERSON: 82.72 86.98 90.65
PRODUCT: 51.66 50.00 64.38
QUANTITY: 65.78 74.77 81.13

TIME: 41.68 56.44 58.85
WORK OF ART: 26.29 37.63 47.21

and BiLSTM-CRF. The empirical results demonstrate that the Feedforward-Mention2Vec
model performs competitively on Chunking and NER while being faster than original Men-
tion2Vec model and the state-of-the-art model. Feedforward is still the fastest but it has
the lowest F1 score on both tasks.

Different NER corpus may have different named entity types. We have noted that
Feedforward-Mention2Vec and Mention2Vec scale linearly in the number of named entity
types while BiLSTM-CRF grows quadratically. We want to show the time difference of
the same model on NER data sets with different numbers of named entity types. We have
obtained the performance and decoding speed of these models on CoNLL 2003 which has
4 types of named entity. Then we conduct the experiments on the OntoNotes English
data set which has 18 types of named entity. Table 4.4 reports the final results of the
experiments. The same model obtains lower F1 score on OntoNotes. Table 4.5 shows the
per label performance of Feedforward-Mention2Vec, BiLSTM-CRF, and Feedforward. They
reveal that some labels in OntoNotes are classified poorly, such as “WORK OF ART” and

25

“LANGUAGE”. We suspect this is due to OntoNotes is more noisy than CoNLL 2003 as
OntoNotes data is extracted from a wide variety of sources with more named entity types.
In terms of decoding speed, while Feedforward-Mention2Vec is 1.3 times faster than the
BiLSTM-CRF model on the data set with 4 named entity types, Feedforward-Mention2Vec
is 1.4 times faster on the data set with 18 named entity types. Mention2Vec is slightly slower
than BiLSTM–CRF on CoNLL 2003, but it’s faster than BiLSTM-CRF on OntoNotes.

Table 4.6: POS Tagging Systems Performance and speed Comparison

Model Accuracy Error Reduction Speed
Feedforward 95.89 − 30967

BPE-Mention2Vec 96.04 (+0.15) 85 4923 (-6.29×)
BILSTM-CRF 97.34 (+1.45) 822 9009 (-3.43×)

In the POS experiments, we compare BPE-Mention2Vec with BiLSTM-CRF which is the
state-of-the-art model for POS, and with Feedforward which is the fastest among the models
we have built. Table 4.6 demonstrates the performance and decoding speed of them on the
Penn Treebank data set. BPE-Mention2Vec obtains lower accuracy than BiLSTM-CRF and
higher accuracy than Feedforward. Since using word segmentation increases the number of
words to be processed and introduces more preprocessing time, BPE-Mention2Vec is slower
than the BiLSTM-CRF and Feedforward. The empirical results conclude that BiLSTM-
CRF is a better model than BPE-Mention2Vec on POS.

26

Chapter 5

Discussion

In this Chapter, we put together the final experiment results of the network models presented
in this thesis, and provide an analysis of the results.

Table 5.1 records the performance of the neural network models for POS, NER, and
Chunking. The POS performance is measured on the Penn Treebank test data set, the NER
performance is measured on the CoNLL 2003 test data set, and the Chunking performance is
measured on CoNLL 2000 test data set. Table 5.1 also includes the results from the state-of-
the-art models. While our implementations obtain lower accuracy scores and F1 scores than
the state-of-art results, we emphasize that our main goal of this thesis is to compare different
neural networks. Since the performance scores of the state-of-the-art model are already
high, we are willing to trade in some performance scores for speed improvement. Figure
5.1 and Figure 5.2 display two NER examples extracted from CoNLL 2003 test data where
BiLSTM-CRF performs better than Feedforward-History and Feedforward-Mention2Vec.

Table 5.1: Neural Network Models Accuracy and F1 Score

Model Penn Treebank CoNLL 2003 CoNLL 2000
Ling et al. (2015) 97.78 − −

Lample et al. (2016) − 90.94 −
Shen and Sarkar (2005)
Indig and István (2016) − − 95.23

95.08
Feedforward 95.89 83.29 90.43

Feedforward-History 97.28 87.47 92.61
BiLSTM 96.1 83.74 91.79

BiLSTM-Char 97.21 87.93 92.98
BiLSTM-CRF 97.34 90.05 93.86
Mention2Vec − 89.06 93.08

Feedforward-Mention2Vec − 88.6 92.61
BPE-Mention2Vec 96.04 − −

Table 5.2 records the decoding speed of different neural network models on the Penn
Treebank, CoNLL 2003 and CoNLL 2000 test data. The models are sorted by their decoding

27

 Kim Do Hoon opened the scoring for South Korea

B-PER B-LOC I-LOCI-PERI-PER

(a) Result Obtained by BiLSTM-CRF

 Kim Do Hoon opened the scoring for South Korea

B-PER B-LOC I-LOCB-PER

(b) Result Obtained by Feedforward-History

Figure 5.1: An Comparison between BiLSTM-CRF and Feedforward-History on an NER
Example

 Students were dissatisfied with the State Law and Order Restoration Council's handling of their
demands.

 B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG

(a) Result Obtained by BiLSTM-CRF

 Students were dissatisfied with the State Law and Order Restoration Council's handling of their
demands.

 B-ORG I-ORG B-ORG I-ORG I-ORG

(b) Result Obtained by Feedforward-Mention2Vec

Figure 5.2: An Comparison between BiLSTM-CRF and Feedforward-Mention2Vec on an
NER Example

28

Table 5.2: Neural Network Models Decoding Speed

Model Penn Treebank CoNLL 2003 CoNLL 2000
Feedforward 30967 26819 16920
BiLSTM 23036 20740 10321

Feedforward-History 19474 17609 10067
Feedforward-Mention2Vec − 13450 7601

BiLSTM-Char 13992 11271 6616
BiLSTM-CRF 9009 10100 5390

BPE-Mention2Vec 4923 − −

speed in descending order. The decoding speed is measured by the number of words decoded
per second in the test time. It is obvious that the fewer features used in the same model
the faster the decoding speed of the model will be. In general, the greedy tagging systems
using feedforward models are faster then the systems using BiLSTM models. Since the CRF
based models introduce a transition matrix and uses dynamic programming algorithm to
decode the sequence, they are slower than the models without the CRF layer.

0.5 1 1.5 2 2.5 3
·104

95.8

96

96.2

96.4

96.6

96.8

97

97.2

97.4

Words/Sec

A
cc
ur
ac
y

POS Accuracy VS Speed

Feedforward
Feedforward-History

BiLSTM
BiLSTM-Char
BiLSTM-CRF

BPE-Mention2Vec

Figure 5.3: Results of the POS system using different Neural Network Models

Figure 5.3 illustrates the trade-off between performance and decoding speed in POS
systems using different neural network models. Among the neural network models for POS,
BiLSTM-CRF achieves the best per word accuracy 97.34%, and Feedforward-History ob-

29

tains the second best per word accuracy 97.28%. Feedforward achieves the fastest decoding
speed since it employs a simple neural network without extra features. The line in Figure
5.3 connects BiLSTM-CRF which is the most accurate model and Feedforward which is
the fastest model. The models above the line are faster but perform slightly worse than
BiLSTM-CRF, such as Feedforward-History and BiLSTM-Char. Models below the line such
as BPE-Mention2Vec are slower and less accurate, which makes them less ideal for POS.
Feedforward-History is the fastest model with competitive performance on POS, and it is
about 2 times faster than BiLSTM-CRF.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
·104

83

84

85

86

87

88

89

90

Words/Sec

F
1
sc
or
e

NER F1 Score VS Speed

Feedforward
Feedforward-History

BiLSTM
BiLSTM-Char
BiLSTM-CRF
Mention2Vec

Feedforward-Mention2Vec

Figure 5.4: Results of the NER system using different Neural Network Models on CoNLL
2003

Figure 5.4 illustrates the trade-off between performance and speed of using different
neural network models on CoNLL 2003. BiLSTM–CRF achieves the highest F1 Score
90.05, and Mention2Vec obtains the second best F1 Score 89.06. Feedforward achieves the
fastest decoding speed since it employs a simple neural network with no extra features. The
line in Figure 5.4 connects the BiLSTM-CRF model which is the most accurate model and
the Feedforward model which is the fastest model. The models above the line are faster but
perform slightly worse than BiLSTM-CRF, such as Feedforward-History. Our new model,
Feedforward-Mention2Vec, comes very close to the line, and it achieves 88.6 F1 score which

30

is close to the best performance, and it is 1.3 times faster than the fully structured BiLSTM
model.

0.6 0.8 1 1.2 1.4 1.6 1.8
·104

90.5

91

91.5

92

92.5

93

93.5

94

Words/Sec

F
1
sc
or
e

Chunking F1 Score VS Speed

Feedforward
Feedforward-History

BiLSTM
BiLSTM-Char
BiLSTM-CRF
Mention2Vec

Feedforward-Mention2Vec

Figure 5.5: Results of the Chunking system using different Neural Network Models on
CoNLL 2000

Figure 5.5 illustrates the trade-off between performance and speed of using different
neural network models on CoNLL 2000. BiLSTM-CRF achieves the highest F1 Score 93.86,
and Mention2Vec obtains the second best F1 Score 89.06. Feedforward achieves the fastest
decoding speed since it employs a simple neural network with no extra features. The line
in Figure 5.4 connects the BiLSTM-CRF model which is the most accurate model and the
Feedforward model which is the fastest model. The models above the line are faster but
perform slightly worse than BiLSTM-CRF, such as Feedforward-History. Models below the
line are slower and less accurate, which makes them less ideal for Chunking.

As illustrated in Figure 5.3, Figure 5.4 and Figure 5.5, the greedy sequence tagging
systems using a feedforward network (Feedforward-History) can achieve comparable per-
formance and faster speed than the systems using recurrent models; the multitask model
(Feedforward-Mention2Vec) performs competitively with the state-of-the-art model on NER.

Table 5.3 compares the performance and decoding speed of BiLSTM-CRF and Feedforward-
Mention2Vec on CoNLL 2003 and OntoNotes. It shows that Feedforward-Mention2Vec with
a simpler architecture can achieve competitive performance with BiLSTM-CRF on CoNLL

31

Table 5.3: F1 Scores and Decoding Speed on CoNLL 2003 and OntoNotes

F1 Score Decoding Speed (Words/Sec)
CoNLL 2003 OntoNotes CoNLL 2003 OntoNotes

Feedforward-Mention2Vec 88.6 82.57 13445 (1.3×) 10812 (1.4×)
BiLSTM-CRF 90.05 85.90 10100 7667

2003 and OntoNotes. The speed gap between Feedforward-Mention2Vec and BiLSTM-CRF
grows as the number of named entity type increases. There is more speed benefit in using
a multitask model like Feedforward-Mention2Vec when there are more named entity types
to classify.

32

Chapter 6

Conclusion and Future Work

This thesis presents and compares different neural network models for sequence tagging
tasks. The empirical results reveal that simple feedforward networks can achieve competitive
results while being significantly faster than the BiLSTM networks. The empirical results
also demonstrate that Feedforward-Mention2Vec performs well on Chunking and NER, and
it is more scalable in the number of named entity types in NER.

6.1 Contribution

In this thesis, we first built the the state-of-the-art model for sequence tagging: BiLSTM-
CRF. We ran the BiLSTM model with different configurations on three sequence tagging
task: POS, Chunking and NER.

Then, we implemented the greedy feedforward sequence tagging system. We compared
the decoding speed and performance between BiLSTM models and feedforward models.
As the experiments show, BiLSTM models are more accurate then feedforward models
in general. Since feedforward models have a simpler architecture and fewer parameters,
feedforward models are faster then BiLSTM models. Experiments also show that the feed-
forward models are not strongly dependent on hand engineered features, and the models
are able to automatically learn the useful features for making decisions.

In addition to feedforward models and BiLSTM models, we presented Feedforward-
Mention2Vec for Chunking and NER which is a combination of feedforward models and
Mention2Vec, and BPE-Mention2Vec for POS which is based on BPE and Mention2Vec.
Both of these two models are multitask models. Feedforward-Mention2Vec predicts bound-
aries of tags and types of the tags separately: it uses a feedforward network and CRF for
boundary detection, and a BiLSTM for type prediction. BPE-Mention2Vec first segments
words using BPE, and predicts the part-of-speech tags for the subword units using a BiL-
STM network. Feedforward-Mention2Vec performs slightly worse than the state-of-the-art
model (BiLSTM-CRF), but its decoding speed is faster. In NER, as the number of named

33

entity types grows, the decoding time of Feedforward-Mention2Vec grows linearly while the
decoding time of BiLSTM-CRF grows quadratically.

Lastly, we summarized all the experiment results and compared the performance and
decoding speed of all the models presented in this thesis. We provided analysis on the
speed and accuracy trade-off in different models. Feedforward is the fastest among all
models, since it contains no extra features and employs a simple network architecture.
Our re-implementation of BiLSTM-CRF achieves near state-of-the-art performance on POS
and NER. Feedforward-History performs better on POS then on Chunking and NER with
a faster decoding speed than BiLSTM-CRF. Feedforward-Mention2Vec performs slightly
worse than BiLSTM-CRF on NER, but its decoding speed is faster and grows linearly in
the number of named entity types.

6.2 Future Work

There are several potential extensions of this thesis we would like to work on in the future:
First, even though the main goal of this thesis is to compare different neural network

models and reveal the speed vs accuracy trade-off, we would like to improve the perfor-
mance of our models and minimize the accuracy gap between the our implementations and
the state-of-the-art results, especially for Chunking. Since the number of training data in
CoNLL 2000 for Chunking is limiting, the performance of Chunking can be improved by
increasing the amount of training data by self-training. We can train a model on labeled
training, run on lot of unlabeled data and then re-train on combined data sets. The same
method can be applied on NER and POS.

Second, we would like to compare our implementations with the off-the-shelf sequence
tagging tools, such as spaCy. We can further develop our models into applications with
high data throughput. The applications can be used to analyze real time natural language
data, such as Twitter, Facebook, Wikipedia, and even the web.

Third, we would like to explore multitasking models which combine POS, Chunking
and NER. We can build a neural network tagging system to train and predict POS tags,
Chunking tags, and NER tags jointly. The intermediate representations would benefit from
considering linguistic hierarchies in the training process.

34

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283.

Alberti, C., Andor, D., Bogatyy, I., Collins, M., Gillick, D., Kong, L., Koo, T., Ma, J.,
Omernick, M., Petrov, S., Thanapirom, C., Tung, Z., and Weiss, D. (2017). Syntaxnet
models for the conll 2017 shared task. CoRR, abs/1703.04929.

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and
Collins, M. (2016). Globally normalized transition-based neural networks. In ACL (1).
The Association for Computer Linguistics.

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural
networks. In Moschitti, A., Pang, B., and Daelemans, W., editors, EMNLP, pages
740–750. ACL.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties
of neural machine translation: Encoder-decoder approaches. In Wu, D., Carpuat, M.,
Carreras, X., and Vecchi, E. M., editors, SSST@EMNLP, pages 103–111. Association
for Computational Linguistics.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In EMNLP, pages 1–8. Association for
Computational Linguistics.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).
Natural language processing (almost) from scratch. Journal of Machine Learning Re-
search, 12(Aug):2493–2537.

Dernoncourt, F., Lee, J. Y., and Szolovits, P. (2017). NeuroNER: an easy-to-use program
for named-entity recognition based on neural networks. EMNLP.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., and Garcia, R. (2001). Incorporating second-
order functional knowledge for better option pricing. In Advances in neural information
processing systems, pages 472–478.

35

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015). Transition-
based dependency parsing with stack long short-term memory. In ACL (1), pages
334–343. The Association for Computer Linguistics.

Florian, R., Ittycheriah, A., Jing, H., and Zhang, T. (2003). Named entity recognition
through classifier combination. In Proceedings of the seventh conference on Natu-
ral language learning at HLT-NAACL 2003-Volume 4, pages 168–171. Association for
Computational Linguistics.

Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2):23–38.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Domain adaptation for large-scale senti-
ment classification: A deep learning approach. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 513–520.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks, 18(5):602–610.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and Weischedel, R. (2006). Ontonotes:
the 90% solution. In Proceedings of the human language technology conference of the
NAACL, Companion Volume: Short Papers, pages 57–60. Association for Computa-
tional Linguistics.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional lstm-crf models for sequence tagging.
CoRR, abs/1508.01991.

Indig, B. and István, E. (2016). Gut, Besser, Chunker – Selecting the best models for
text chunking with voting. In Computational Linguistics and Intelligent Text Process-
ing - 17th International Conference, CICLing 2016, Konya, Turkey, April 3-9, 2016.
Springer.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

36

Kudoh, T. and Matsumoto, Y. (2000). Use of support vector learning for chunk identifi-
cation. In Proceedings of the 2Nd Workshop on Learning Language in Logic and the
4th Conference on Computational Natural Language Learning - Volume 7, ConLL ’00,
pages 142–144, Stroudsburg, PA, USA. Association for Computational Linguistics.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International Conf.
on Machine Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016). Neural
architectures for named entity recognition. In Knight, K., Nenkova, A., and Ram-
bow, O., editors, HLT-NAACL, pages 260–270. The Association for Computational
Linguistics.

Ling, W., Dyer, C., Black, A. W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L.,
and LuÃŋs, T. (2015). Finding function in form: Compositional character models for
open vocabulary word representation. In MÃărquez, L., Callison-Burch, C., Su, J.,
Pighin, D., and Marton, Y., editors, EMNLP, pages 1520–1530. The Association for
Computational Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

McCallum, A., Freitag, D., and Pereira, F. C. (2000). Maximum entropy markov models
for information extraction and segmentation. In Icml, volume 17, pages 591–598.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recurrent
neural network based language model. In Interspeech, volume 2, page 3.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814.

Nivre, J. and Scholz, M. (2004). Deterministic dependency parsing of english text. In
Proceedings of the 20th international conference on Computational Linguistics, page 64.
Association for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–1543.

Ratnaparkhi, A. et al. (1996). A maximum entropy model for part-of-speech tagging. In
EMNLP, volume 1, pages 133–142. Philadelphia, PA.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words
with subword units. In ACL (1). The Association for Computer Linguistics.

37

Shen, H. and Sarkar, A. (2005). Voting between multiple data representations for text
chunking. In Conference of the Canadian Society for Computational Studies of Intelli-
gence, pages 389–400. Springer.

Stratos, K. (2016). Mention2vec: Entity identification as multitasking. CoRR,
abs/1612.02706.

Tjong Kim Sang, E. F. and Buchholz, S. (2000). Introduction to the conll-2000 shared task:
Chunking. In Proceedings of the 2nd workshop on Learning language in logic and the
4th conference on Computational natural language learning-Volume 7, pages 127–132.
Association for Computational Linguistics.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the conll-2003 shared
task: Language-independent named entity recognition. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4, pages 142–
147. Association for Computational Linguistics.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pages 173–180. Association for Computational
Linguistics.

38

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Sequence Tagging Task
	Part-of-Speech Tagging (POS)
	Named Entity Recognition (NER)
	Chunking

	Motivation
	Contribution
	Overview

	Bidirectional Long Short Term Memory Network Models
	Model Description
	Bidirectional Bidirectional Long Short Term Memory
	Character Embeddings
	Conditional Random Fields

	Experiments and Results

	Feedforward Neural Network Models
	Feedforward-History Model
	Experiments and Results

	Mention2Vec Models
	Model Description
	Feedforward-Mention2Vec for NER
	BPE-Mention2Vec for POS

	Experiments and Results

	Discussion
	Conclusion and Future Work
	Contribution
	Future Work

	Bibliography

