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Abstract:  Delayed hydride cracking (DHC) is an important concern for pressure tubes used in 

nuclear reactors.  In this paper, an improved analytical process-zone model is developed based 

on the deformation fracture criteria.  A V-notch with rounded root, which is widely adopted in 

mechanical testing of DHC, is considered and the proposed model includes the effect of both 

notch angle and tip radius. Comparisons with experiments show that the proposed model has a 

prediction accuracy closer to the current engineering process-zone model but with slightly less 

conservatism. The model is extended to account for plasticity and constraint effects at the flaw 

tip by introducing an empirical factor that depends on key material and geometric parameters.   
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Nomenclature 

a   flaw depth or crack length 

E   elastic modulus 

Cδ   elastic-plastic correction factor in Eq. (30) 

Gc   work of separation 

Gc
*   modified Gc for the elastic-plastic process zone 

Ghyd
Ic   critical energy release rate for hydrided materials 

Keff   effective stress intensity factor in Eq. (26) 

KI   stress intensity factor for cracks 

Khyd
Ic   fracture toughness for hydrided materials 

KV
I   generalized sharp notch stress intensity factor 

KV
ρ,I   generalized blunt notch stress intensity factor 

KIH   isothermal threshold SIF associated with the onset of DHC 

KIH
*   modified KIH for the elastic-plastic process zone 

kt   stress concentration factor 

lY   length of the plasticity band 

pc   cohesive strength in the process zone model 

pH   normal stress in the process zone 

RI   stress rounding factor 

r, θ   polar coordinates with origin at the sharp notch tip 

s   length of process zone 

W   specimen thickness 

α   half of the solid wedge angle 

β   half of the notch opening angle 

γ   dimensionless load 

γTH   threshold value of γ 

δhyd
Ic   critical crack tip opening displacement for hydrided materials 

δT   flaw tip opening displacement 

𝛿𝑇   dimensionless notch-tip opening displacement 

δTc   critical crack/flaw tip opening displacement 

δTσn, δTσc  components of δT caused by the far-field nominal stress and cohesive stress 
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δy  opening displacement corresponding to the additional process zone that 

accounts for the effect of prior plastic relaxation 

   Poisson’s ratio 

ξ   empirical factor in the plasticity model 

   root radius of the blunt flaw tip 

σc   uniform cohesive stress 

σn   applied nominal stress remote from the flaw 

σp   peak flaw tip stress 

σpTH   threshold peak flaw tip stress for delayed hydride cracking initiation 

σyc   tensile stress in the additional process zone 

σYS   material yield strength 

σθθ, σrr, τrθ   components of the stress tensor 

ψ, ψ*   dimensionless loading parameters  
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1. Introduction 

Zr-2.5Nb alloy pressure tubes are an important component of the core of a CANada 

Deuterium Uranium (CANDU) reactor.  These tubes are prone to failure by a stable and time-

dependent crack growth mechanism called Delayed Hydride Cracking (DHC) which is caused by 

the presence of hydrogen and subsequent formation of brittle zirconium hydrides [1].  High 

levels of hydrogen equivalent concentration in the main body of pressure tubes are a result of 

deuterium pickup during service from a corrosion reaction. Manufacturing of pressure tubes also 

introduces hydrogen as an impurity element.  Hydrogen can diffuse to a high stress concentration 

region, such as a service-induced flaw in pressure tubes under operating stress, and further 

develop a hydrided region at a flaw tip [1].  Under suitable conditions, a hydrided region may 

fracture and is deemed to be the initiation of DHC.  Crack extension is driven by the DHC 

growth mechanism, which is a repetitive process of hydride formation and fracture [2-3]. 

One important procedure in the integrity assessment of CANDU pressure tubes is to 

evaluate the likelihood of DHC initiation from service-induced flaws, such as fuel bundle 

scratches, fuel bundle bearing pad fretting flaws, and debris fretting flaws [4].  Such fitness-for-

service assessment requires abundant experimental data obtained from pressure tube materials as 

well as a thorough understanding of the DHC mechanisms.  For simplicity, the initial approach 

in the assessment is to treat the flaws as sharp cracks such as those produced by fatigue pre-

cracking [5].  However, real flaws in pressure tubes are usually blunt and have finite root radii.  

The application of the acceptance criteria developed based on sharp cracks to evaluate real blunt 

flaws may lead to overly conservative estimates of the allowable operation load or service life of 

tubes, and the consequent cost penalties.  Therefore, the subsequent industry Fitness-for-Service-

Guidelines (FFSG) [6] developed the acceptance criteria for evaluating DHC initiation in Zr-

2.5Nb pressure tubes based on experimental data corresponding to blunt flaws with finite root 

radii. 
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Smith [7-9] and Scarth and Smith [10-11] further improved the flaw evaluation 

methodology by introducing a "process-zone model" to simulate the hydride region ahead of a 

flaw tip.  The process-zone model takes into account the effect of flaw geometry and stress 

relaxation due to hydride formation, which are not considered in the FFSG acceptance criteria.  

The process-zone methodology can be further classified into two subsets, namely theoretical 

process-zone (TPZ) model [7-9] and engineering process-zone (EPZ) model [10-12].  The 

former model is thoroughly developed based on analytical solutions whereas the latter model 

more or less requires finite element models or parametric solutions for the stress field.  The EPZ 

methodology has been implemented into the first version of Canadian Standards Association 

(CSA) Standard N285.8-15 [12] for the assessment of DHC initiation in Zr-2.5Nb pressure tubes.  

Reasonable agreement was observed between the experimental data [13-15] and model 

predictions on the threshold conditions for cracking in samples with different notch geometries. 

It is noted that the emphasis of the previous analytical studies invovling the TPZ models 

[7-9] are on a blunt flaw in the shape of semi-ellipses or intrusions, whereas it is more common  

to use specimen containing a V-shaped notch with rounded root in the DHC initiation tests (e.g. 

[13-15]).  The existing EPZ methods [10,11] for prediction of DHC initiation at such V-shaped 

flaws require the stress field directly obtained from a finite element model or access to 

parametric solutions for stress field [12]. EPZ models also require iterations as part of the 

solution process. On the other hand, if TPZ models could be improved to include both sharp and 

blunt V-shaped notches, it would provide an efficient alternative to the EPZ models and a good 

analytical basis to compare the EPZ solutions.  The analytical solution for the stress field of a 

body containing a blunt V-notch has been well-established in the literature (e.g. [16-25]).  

Specifically, Savruk and Kazberuk [22, 23] proposed a deformation fracture criteria for sharp and 

blunt V-notches based on analytical stress solutions.  The objective of this paper is to extend the 

TPZ method for V-shaped notches (sharp and blunt) by making use of the stress field and 
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fracture criteria given in Refs. [22,23] and include the notch tip constraint and plasticity effects 

in the improved TPZ model. 

 

2. Process-zone Methodology and Smith’s TPZ Model 

Figure 1 shows the schematic of the process-zone model proposed by Smith [7-9] and 

Scarth and Smith [10-12].  A blunt flaw in a two-dimensional (2D) semi-infinite solid is 

subjected to an applied nominal stress, σn.  The depth of the flaw and root radius of the flaw tip 

are denoted by a and ρ respectively.  The flaw-tip hydrided region is represented by an 

infinitesimally thin process zone of length s.  A uniform tensile stress, pH is assumed in the 

process zone, while the relative displacement across the zone is denoted as δ(x). 

 

Figure 1  Model of a blunt flaw with associated process zone in semi-infinite solid. 

 

The DHC initiation is deemed to occur when both the stress (pH) and flaw root 

displacement (δT = δ(x = 0)) in the process zone reach some critical values, i.e., pH ≥ pc and δT ≥ 

δTc, where pc and δTc are treated as material properties and independent of the notch geometry.  

The DHC initiation criterion based on the simutaneous satisfactions of these two conditions takes 

into account for the stress relaxation due to hydride formation [26] as shown in Fig 2.  The stress 

pc is measured as the threshold stress for DHC initiation at a planar surface assuming the 

δT

σn σn
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formation of an "infinitely long" hydride.  Specifically, for a long sharp crack at threshold 

condition such that pH = pc, the following relationship between pc and δTc is used. 

 

2

'

IH
Tc

c

K

E p
   (1) 

where E' = E for plane-stress condition and E' = E/(1 - v2) for plane-strain condition with E and v 

being Young’s modulus and Poisson’s ratio respectively; and KIH is the isothermal threshold 

stress intensity factor associated with the onset of DHC growth from a long sharp crack. 

As demonstrated in Fig 2, there exists a threshold peak flaw-tip stress σpTH.  At the 

threshold condition, the process-zone restraining stress pH decreases to pc as δT increases from 

zero to δTc.  σpTH can be determined through analytical methods [7-9] (i.e., TPZ model) or 

numerical methods [10-12] (i.e., EPZ model). 

 

Figure 2  Schematic of stress relaxation representation in process-zone model [10, 11]. 

Smith [7-9] developed a general expression of σpTH/pc that can cover a large variety of 

flaw configurations based on the "two extremes" method: 

pH

δTδTc

pc

σpTH
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Under Mode I tension loading, the parameter κ in Eq. (2a) varies between 1.14 for a sharp 

flaw (ρ/a = 0), and 1.24 for a circular flaw (ρ/a = 1) [9].  The parameter μ in Eq. (2b) equals 2 for 

an elliptical flaw [9].  Equation (2c) is an interpolation function between Eqs. (2a) and (2b).  

Equation (2a) with κ = 2 is adopted in the literature [10, 11] wheres Smith [9] pointed out that 

using Eq. (2c) with κ = 1.14 and μ = 2 leads to better prediction.  Smith [9] further suggested 

using Eq. (2a) combined with the following κ parameter to construct the TPZ model for an 

intrusion type flaw: 

 

1 1
1 12 2
2 22 2 2

0.81 2 1 / 1
3a a

 


    
                      

 (3) 

Figure 3(a) presents a comparison of the above-mentioned TPZ models proposed by 

Smith for 0.01 mm ≤  ≤ 0.5 mm.  This range of root radius is of interest to DHC initiation in 

zirconium pressure tubes.  Such a comparison has not been reported in the open literature 

according to our knowledge.  The EPZ solution for a 450 V-shaped notch reported in [10] is also 

shown in Fig. 3(a).  The plotted results are based on the experimental data reported in the 

literature [10], where pc = 450 MPa, KIH = 7 MPa√m and a = 0.5 mm.  These parameters are also 

used in the remainder of this study to examine the σpTH/pc - ρ relationship.  Figure 3(a) suggests 
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that Eq. (2c) with κ = 1.14 and μ = 2 agrees very well with the EPZ solution, while the predicted 

σpTH/pc from Eq. (2a) with κ = 1.14 to 1.24 and κ defined in Eq. (3) are slightly lower than the 

 

Figure 3  Variation of σpTH/pc with ρ for different TPZ models proposed by Smith [9]; (a) 0.01 

mm ≤  ≤ 0.5 mm, and (b) 0.01 mm ≤  ≤ 0.05 mm. 
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prediction from EPZ model.  Compared with the EPZ solution, Eq. (2a) with κ = 2 consistently 

overestimates σpTH/pc as mentioned in [10], whereas Eq. (2b) with μ = 2 underestimates it. 

Figure 3(b) presents a comparison focusing on small root radii values, i.e., 0.01 mm ≤  ≤ 

0.05 mm.  The prediction obtained from the elastic weight function-based process-zone (WFPZ) 

model [27] is also shown in this figure.  Note that the prediciton reported in [27] is in the form of 

the threshold value of effective stress intensity factor (KTH), and the relationship between KTH 

and σpTH is given in Section 4.2.  Figure 3(b)  indicates that for a small root radius, Eq. (2c) with 

κ = 1.14 and μ = 2 agrees well with the WFPZ solution.  For the notch root radius  = 0.01 mm, 

Eq. (2a) with κ = 2, Eq. (2b) with μ = 2 and Eq. (2c) with κ = 1.14 and μ = 2, lead to higher 

values of σpTH/pc, i.e. 5.5 ≤ σpTH/pc ≤ 6.5.  On the other hand, the predicted σpTH/pc from Eq. (2a) 

with κ = 1.14 to 1.24 and κ defined in Eq. (3) is between 4.2 and 4.5. The values of σpTH/pc from 

these three solutions tend to converge to the solution from Eq. (2b) with μ = 2 as ρ increases 

from 0.01 mm to 0.05 mm. 

 

3. TPZ Models for Blunt V-Notches 

3.1 Near-tip stress field in sharp and blunt V-notches 

A typical elastic stress field near the tip of a sharp V-notch (see Fig. 4(a)) under Mode-I 

loading is expressed as: 
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 (4) 

where KV
I is a generalized sharp notch stress intensity factor (SN-SIF); r and θ are polar 

coordinates with the origin at notch tip [Fig. 4(a)]; σθθ, σrr and τrθ are components of the stress 

tensor; functions fθθ(∙), frr(∙) and frθ(∙) are reported in [28, 29]; β is half of the notch opening angle 
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as shown in Fig. 4(a); and the λ is the smallest real eigenvalue obtained from Eq. (5) given below 

[29]. 
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For notch opening angle 0 ≤ 2β ≤ π, Savruk and Kazberuk [22, 23] provided an empirical 

equation for λ as: 

  2 3 41 1.247cos 1.312cos 0.8532cos 0.2882cos          (6) 

 

Figure 4  Schematics of the coordinate system near (a) Sharp and (b) blunt V-shaped notches. 

 

Equation (6) is reported to have a absolute prediction error within 0.001.  In the limit 

when β = 0 and λ = 0.5, Eq. (4) reduces to the well known crack tip stress field and KV
I coincides 

with the stress intensity factor KI defined in classical fracture mechanics.  

 

For a V-Notch with blunt root (see Fig. 4(b)), the near-tip stress field is characterized by 

the blunt notch stress intensity factor (BN-SIF) KV
ρ,I [20, 21]: 
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where gθθ(∙), grr(∙) and grθ(∙) are functions given in [20, 21]; and λ is determined from Eq. (5) and 

independent of ρ. 

 

A stress rounding factor RI can be used to relate SN-SIF and BN-SIF, i.e. KV
ρ,I = RIK

V
I, 

when ρ approaches zero.  There have been a great deal of efforts in developing solutions of the RI 

factor (e.g., Strandberg [19]; Filippi et al. [20]; Lazzarin and Filippi [21]; Savruk and Kazberuk 

[22, 23]; Savruk [24], Benthem [25] and Lazzarin and Tovo [30]).  The main difference among 

these exisiting solutions is the different root tip profiles, e.g. circular, hyperbolic or curvilinear.  

Following solution given by Savruk and Kazberuk [22, 23] for a circular root is adopted in the 

present study. 
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The notch-tip peak stress, σp, is related to KV
ρ,I, and KV

I through Eqs. (9) and (10) as: 
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When the notch tip root radius ρ = 0, Eq. (7) reduces to Williams’s solution [29], i.e. Eq. 

(4).  σp can also be related to the remote nominal stress, σn, through the stress concentration 

factor (SCF), kt, as, 

 p t nk   (11) 
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The SCFs for a large variety of specimens and flaw geometries are given in the literature 

(e.g. [16, 23]).  To this end, the near-tip stress field can be determined if any of KV
I, K

V
ρ,I, σp or kt 

combined with σn is given for a specific loading and boundary condition. 

 

3.2 Deformation fracture criterion for bodies with blunt V-shaped notches 

Fracture initiation for elastic-plastic materials can be characterized by the deformation 

fracture criteria, which requires evaluation of plastic deformations near a flaw tip.  Fracture 

initiation occurs when the plastic (or cohesive) zone reaches a critical length or when the notch 

tip opening displacement reaches a critical value [22, 23].  The well-known Dugdale–Bilby–

Cottrell–Swinden (DBCS) plasticity band model [31, 32] is usually used in the analyses to 

establish the deformation fracture criteria.  The model is based on assumption that plastic strain 

is confined to infinitesimally thin layers stemming from a crack tip [31, 32] or a blunt flaw [8, 22, 

23].  The plasticity bands can be simulated as surfaces of displacement discontinuity at which 

cohesive stress are loaded, while materials outside the plasticity bands behave elastically.  In 

such a way, the analysis is reduced to solving the boundary value problem within the realm of 

elasticity. 

 

Figure 5  Schematics of the (a) plasticity band model and (b) fictitious crack representation for 

an infinite rounded V-shaped notch [23]. 
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Figures 5(a) and 5(b) show the schematics of the plasticity band model for an infinite rounded 

V-shape notch.  The plastic band is representd by a fictitious crack propagating from the tip of the 

notch (see Fig. 5(b)).  Elastic-perfectly plastic materials is assumed in the plasticity band and 

therefore uniform cohesive stress equal to material yield strength (σYS) is loaded on the crack surface.  

The length of the plasticity band (lY) can be solved from the condition of zero stress intensity factor 

in the tip of the fictitious crack (KFC
I): 

      , , , , , , 0
n c

FC FC V FC

I I cK K K K            (12) 

where σc denotes the uniform cohesive stress; KFC
σn and KFC

σc are the components of KFC
I caused 

by the far-field nominal stress and cohesive stress, respectively.  The dimensionless load, γ, and 

geometry parameter, ε, are given: 
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Similarly, the opening displacement at the notch tip (δT) can be calculated as the 

superposition of the components caused by the far-field nominal stress (δTσn) and cohesive stress 

(δTσc): 

      , , , , , , ,
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Note that KFC
σn and δTσn are described by KV

I that is induced by σn and without the 

presence of a fictitious crack.  Crack initiation or propagation is considered when δT reachs a critical 

value, δTc, which is a material property and related to σc following a cohesive separation law [33]. 

Define the dimensionless notch-tip opening displacement, 𝛿𝑇, as the following: 
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Based on a complex variable method, Savruk and Kazberuk [23] calculated KFC
I and δT in 

Eqs. (12) and (14) for the boundary value problem shown in Fig. 5(b), and determined 𝛿𝑇  by 

solving a singular integral equation consisting of kernel functions of displacement discontinuity 

in the plasticity band.  Stable numerical results of 𝛿𝑇 corresponding to π/36 ≤ 2β ≤ 130π/180 and 

0.3365 ≤ γ ≤ 10 are obtained and shown in Fig. 6 [23]. 

 

 

Figure 6  Numerical results of 𝛿𝑇 by Savruk and Kazberuk [23]. 

 

3.3 TPZ model based on Savruk and Kazberuk’s solution 

The process-zone models for DHC initiation reported in [8, 10, 27] were developed based 

on the same plasticity bands model as described in the previous section, while the uniform 

cohesive stress is set equal to the cohesive strength of the process zone, i.e. σc = pc (pc < σYS).  

For TPZ models in [8], Eqs. (12) and (14) were solved by using complex variable and conformal 

mapping methods.  While for EPZ models [10, 27], these equations were solved with the aid of 

finite element analyses or parametric solutions for stress field.  The cohesive separation law for 

the process zone is given as: 

𝛿𝑇

 



16 

 

 2

'

IH
c Tc c

K
G p

E
 

 (16) 

where Gc is the work of separation.  Note that Eq. (16) is consistent with Eq. (1). 

In this paper, the solution of 𝛿𝑇 obtained by Savruk and Kazberuk [23] is used to construct 

the TPZ model.  Based on the condition σc = pc and Eq. (13a), Eq. (15) is rearranged as: 
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For practical applications, parameter 𝑄̃ is expressed as a cubic function of (γ - 1/RI) 
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where Qk (k = 1, 2 or 3) are the coefficients of the cubic expansion based on the least square 

regression of the curves shown in Fig. 6. 

Table 1 lists Q1, Q2 and Q3 for different β values.  The curve fitting accuracy corresponds 

to R2 ≥ 0.9999.  It is found that 𝛿𝑇 is not sensitive to β when 2β ≤ 45°, therefore the coefficients 

Qk for 2β = 45° in Table 1 also apply to 2β ≤ 45°. 

 

Table 1  Coefficients Qk in Eq. (18) and Q* in Eq. (24). 

2β 45° 60° 75° 90° 105° 120° 

λ 0.5049 0.5120 0.5246 0.5446 0.5742 0.6159 

RI 2.9997 2.9870 2.9577 2.9024 2.8085 2.6603 

Q1 0.8244 0.7747 0.6851 0.568 0.3113 0.0854 

Q2 2.2118 2.2485 2.3131 2.387 2.5579 2.5958 

Q3 -0.0289 -0.0058 0.016 0.0686 0.1657 0.4434 

Q* 2.1247 2.2329 2.3411 \ \ \ 
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Based on Eqs. (9) and (13a), γ can be related to σp as, 

 1

2

V
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c Ic
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p Rp




 


   (19) 

Combining Eqs. (17) - (19), the DHC initiation is triggered when δT = δTc and γ reaches a 

threshold value, γTH defined by: 
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The DHC initiation also requires σpTH/pc ≥ 1 and therefore γTH ≥ 1/RI.  Invoking Eqs. (1), 

(2d) and (20a), (γTH - 1/RI) can be solved as the real root of the following cubic function. 
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σpTH/pc can be expressed as: 
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where 
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For simplicity, if 2β ≤ 75°, Eq. (18) can be reduced to a quadratic function of γ with 

similar fitting accuracy:  

   * 1
, -

I

Q Q
R

   


 
 

%  (24) 

where the fitting coefficient Q* is given in Table 1. 

Accordingly, σpTH/pc is given as, 
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   
 
 

 (25) 

Figure 7(a) shows the values of σpTH/pc obtained from Eq. (22) for 90° ≤ 2β ≤ 120° and 

Eq. (25) for 2β ≤ 75° corresponding to 0.01 mm ≤  ≤ 0.5 mm.  Equation (2c) with κ = 1.14 and 

μ = 2 as well as the EPZ solution [10] are also shown for comparison.  A zoomed-in view of this 

figure in the range 0.01 mm ≤  ≤ 0.05 mm is shown in Fig. 7(b).  It is observed from Fig. 7(a) 

that the proposed TPZ solution has a minor dependence on the β values when ρ ≥ 0.1 mm.  On 

the other hand, as observed in Fig. 7(b), the opening angle has a relatively large influence on the 

predicted σpTH/pc for small root radii.  For example, when ρ = 0.02 mm, the predicted σpTH/pc for 

2β ≤ 45° is 16% higher than the solution corresponding to 2β = 120°.  Figures 7(a) and 7(b) also 

indicate that the proposed TPZ solution agrees well with the EPZ solutions.  These figures 

suggest that Eq. (2c) with κ = 1.14 and μ = 2 is in general consistent with the proposed TPZ 

solution with 75° ≤ 2β ≤ 105° when 0.01 mm ≤  ≤ 0.5 mm.  The new results of Eqs. (22) and 

(25) are more advantageous than the theoretical model of Eq. (2c) with fixed values of μ and κ 

because the current model takes into acount for the influence of the opening angle of a V-shaped 

notch. 
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Figure 7  Proposed TPZ model based on Savruk and Kazberuk’s solution [23] corresponding 

to (a) 0.01 mm ≤  ≤ 0.5 mm, and (b) 0.01 mm ≤  ≤ 0.05 mm. 
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4. Experimental Verification of the Proposed TPZ Model 

4.1 V-notched specimens with root radius larger than 0.05 mm 

The results from DHC initiation tests on two groups of small notched cantilever beam 

specimens with notch opening angle 2β = 45° reported in Ref. [27] are used to verify the 

proposed theoretical process-zone model.  Specimens from Group I were cut from the ex-service, 

pre-irradiated pressure tube [34] while the Group II specimens were made by un-irradiated 

pressure tube materials [34].  Table 2 lists the mean and lower-bound values of KIH and yield 

strength, σYS for these materials.  The cohesive strength in the process zone model, pc, is set to be 

450 MPa for these predictions.  All specimens were loaded to a specified outer-fiber bending 

stress at room temperature and then held at a certain temperature to simulate flaw-tip stress 

relaxation due to creep under normal operating conditions.  After the creep cycle, the specimens 

were subjected to hydride ratcheting thermal cycles that simulated reactor heat-up/cool-down 

cycles under a specified constant loading.  For specimens with root radii larger than 0.05 mm, the 

maximum (peak) temperature of the entire thermal cycle is 275°C and the duration of the creep 

cycle is 120 hours.  A total of 22 out of the 176 specimens in Group I and 13 out of 65 specimens 

in Group II failed. 

Figures 8(a) and 8(b) show the DHC initiation experimental data of threshold peak flaw-

tip stress σpTH for specimens in Groups I and II, respectively.  For comparision, the predicted σpTH 

obtained from Eq. (25) as well as the EPZ solutions [10, 11] incorporating the elastic FEA are 

shown.  All specimens had 45° V-notches with 0.06 mm ≤  ≤ 0.32 mm and 0.1 mm ≤ a ≤ 1.1 

mm for Group I test, and 0.1 mm ≤  ≤ 0.5 mm and 0.5 mm ≤ a ≤ 1.2 mm for Group II test.  The 

predictions in these figures were based on the notch depth a = 0.5 mm.  It is observed from Fig. 

8(a) that Eq. (25) as well as the elastic EPZ model give reasonable agreement with the 

experimental results.  As shown in Fig. 8(b), the proposed TPZ model and the EPZ model in Ref. 
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[11] lead to very similar and conservative predictions for ρ > 0.1 mm.  For ρ = 0.1 mm, Eq. (25) 

based on mean KIH leads to a higher and less conservative prediction than the elastic EPZ 

solution according to the Group II test data of failed samples. 

 

Table 2  Material property and Cδ factors for the process-zone model. 

 
Mean KIH 

(MPa√m) 

Lower- 

bound KIH 

(MPa√m) 

Peak 

Temperature 

of the entire 

thermal 

cycle (°C) 

σYS 

(MPa) 

Cδ in Eq. (31) for  = 0.015 mm 

 ξ  

0 0.08 0.16 0.24 0.32 0.4 

Group I 

(Irradiated 

material) 

7.0 6.4 
275 749 1.000 1.170 1.340 1.510 1.680 1.850 

300 720 1.000 1.197 1.393 1.590 1.786 1.983 

Group II 

(Un-

Irradiated 

material) 

9.0 7.3 

275 582 1.000 1.219 1.437 1.656 1.875 2.094 

300 571 1.000 1.248 1.496 1.744 1.992 2.239 

 

 

Figure  8  Elastic process-zone prediction and experimental results of σpTH corresponding to (a) 

Group I, and (b) Group II specimens with ρ ≥ 0.05 mm (Experimental results were digitized from 
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Ref. [27]). 

 

4.2 V-notched specimens with root radius smaller than 0.05 mm 

The test specimens with notch root radii smaller than 0.05 mm in Group I and Group II 

were subjected to a pre-hold under load at 300°C for 1000 hours (120 hours for Group II) to 

induce notch-tip stress relaxation due to creep, followed by hydride ratcheting thermal cycles 

with a peak temperature of 270°C.  A total of 6 out of the 32 specimens in Group I and 16 out of 

42 specimens in Group II failed. 

For specimens with root radii smaller than 0.05 mm, the peak stress is very high and 

therefore not a practical measure of the threshold conditions for DHC initiation [1].  For such 

small root radii, it is more convenient to characterize the loading level in terms of the effective 

SIF [1, 15, 27], Keff, as calculated for a crack with the same planar dimension as the notch. Note 

that, 

 
p

eff

t

a
K aF

k W




 
  

 
 (26) 

where W = 4.2 mm [15] is the specimen thickness (tube wall thickness), and the function F(a/W) 

for a pure bending single-edge notched specimen is given by Tada et al. [35] as: 

 
2 3 4

1.122 1.4 7.33 13.08 14
a a a a a

F
W W W W W

         
             

         
 (27) 

Stress concentration factor kt for the arc cantilever beam (with geometry given in [14]) 

under bending loading are evaluated from two-dimensional elastic FEA using the computer code 

ANSYS [36] and listed in Table 3. 

The threshold value of Keff, KTH, can be evaluated from Eq. (26) based on the given σpTH.  

Similarly, σpTH can be backcalculated from the given KTH.  In this way, the σpTH for very small 

root radii corresponding to the WFPZ model [27] are calculated as shown in Figs. 3(b) and 7(b). 
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Table 3 Values of kt in Eq. (26). 

ρ (mm) kt 

0.01 19.894 

0.015 16.326 

0.02 14.197 

0.025 12.745 

0.03 11.673 

0.035 10.846 

0.04 10.172 

0.045 9.624 

0.05 9.150 

 

 
Figure  9  Elastic process-zone prediction and experimental results of KTH corresponding to (a) 

Group I, and (b) Group II specimens with ρ ≤ 0.05 mm (Experimental results were digitized from 

Ref. [27]). 
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TPZ and elastic WFPZ [27] predictions of KTH for irradiated specimens with a = 0.75 mm and 

0.01 ≤ ρ ≤ 0.05 mm.  These figures indicate that although both the proposed TPZ model and the 

elastic WFPZ model consistently underestimate the test data of KTH, the proposed TPZ model 

yields slightly less conservative predictions compared to the WFPZ model. 

 

4.3 Impact of Plasticity and Flaw Tip Constraint 

Aforementioned TPZ and EPZ solutions are based on the assumption that DHC initiation 

occurs under elastic loading conditions.  To satify this requirement, pc must be less than the 

material yield strength, σYS, and the root radius ρ should be sufficiently large.  In the case when ρ 

is small, plastic deformations occur at the root of the flaw prior to hydride formation [1].  Recall 

that the process zone is represented by an infinitesimally thin hydride layer, the process-zone 

displacement (δ), measured as the expansion of the thickness of the hydride region, is considered 

totally contributing to DHC initiation [1].  The flaw-tip plasticity prior to hydride formation has 

an impact on the magnitude of δT.  To analytically account for stress relaxation by plastic 

deformation and the constraint effects, Scarth and Smith [11] introduce an additional process 

zone with the uniform tensile stress (σyc) that is both greater than pc and σYS.  The elastic-plastic 

flaw-tip opening displacement δT(ep) is then calculated as [1],  

    T T yep e   
 (28) 

where δT(e) is the elastic flaw-tip opening displacement and determined through Eq. (14); and δy 

is the opening displacement corresponding to the additional process zone that accounts for the 

effect of prior plastic relaxation. 
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Figure  10  Separation laws for the process zone models 

 

It was found that both the elastic-plastic threshold applied nominal stress, σnTH, and KTH 

are underestimated through the use of elastic TPZ and EPZ models [1, 11].  In the sample 

calculation reported in [1, 11], when pH = pc in the hydride process zone, DHC initiation is 

considered to occur assuming flaw tip elastic behavior since δT(e) already exceeds δTc, whereas 

no DHC initiation is predicted when plasticity is taken into account as δT(ep) < δTc.  Figure 10 

demonstrates different separation laws associated with the elastic-plastic process-zone models.  

For certain separation law, the work of separation, Gc, is described by the area under the σc – δ 

curve [33].  The correction provided by Eq. (28) is considered as an approximation to show the 

plasticity effect [1] while it is not clear how to obtain reliable values of σyc and δy.  Using 

Dugdale’s model (see Fig. 10) to simulate both plasticity and hydride region can be another 

option as the following separation law is well accepted: 
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where Ghyd
Ic , K

hyd
Ic and δhyd

Ic are the critical energy release rate, fracture toughness and critical 

crack tip opening displacement for hydrided materials, respectively. 

However, the experimental data of Khyd
Ic is very limited.  Using KIH rather than Khyd

Ic to 
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build up the process-zone separation law is more practical because the former is reliably obtained 

based on a large number of different ex-service pressure tubes under a range of service 

conditions [1].  In fact, if materials hardening behavior as well flaw tip constraint needs to be 

considered, the actual cohesive law is much more complicated and hardly characterized by the 

uniform cohesive stress representation.  In this paper, a simple elastic-plastic cohesive model is 

proposed that can potentially reduce the conservatism caused by the flaw-tip plasticity and 

constraint effect. 

Assume a new process zone with a cohesive strength equal to pc but a higher critical 

notch-tip opening displacement, δTc
* = CδδTc and Cδ ≥ 1 (see Fig. 10).  The proposed model can 

be interpreted from the view of energy, more external work is required to drive the DHC 

initiation because part of the energy will be dissipated due to flaw-tip plasticity.  The values of 

Gc, KIH and ψ for this new process zone are denoted as Gc
*, KIH

* and ψ* and defined as, 
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 (30) 

The proposed elastic-plastic TPZ solution is characterized by Equation (25) with ψ being 

replaced by ψ* determined from Eq. (30c).  The following empirical expression of Cδ is proposed 

to account for both plasticity and constraint effect on the process-zone model. 

 1 ln 1c

YS

p a
C 

 

 
   

 
 (31) 

where ξ (ξ ≥ 0) is an empirical factor depending on the level of conservatism. 

Equation (31) is proposed in a similar logarithmic form that expressing the maximum 

normal stress in the plastic zone ahead of the notch [14], while the terms a/ and pc/σYS are also 
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similar to the ones used in Ref. [27].  It is clear that Cδ increases as a/ or pc/σYS increases, 

corresponding to a higher constraint level.  For specimen without a flaw/crack, i.e. a/ = 0, Cδ = 

1.  The proposed Cδ defined by Eq. (31) also accounts for the temperature effects on the 

prediction because σYS is temperature-dependent.  Figure 11 shows the Cδ - ρ relations for ξ = 0 

to 0.4 associated with Group I specimens with σYS = 749 MPa and a = 0.5 mm.  The figure 

suggests that Cδ increases with increasing ξ and decreasing , as expected.  The Cδ values 

corresponding to  = 0.015 mm are between 1 and 1.85.  Table 2 lists the values of Cδ 

corresponding to  = 0.015 mm and ξ = 0 to 0.4 for Group I and Group II specimens.  Note that 

when ξ = 0, the elastic-plastic TPZ model will be reduced to the elastic one.  

 

Figure  11  Values of Cδ for Group I specimens with σYS = 749 MPa and a = 0.5 mm. 
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predicted σpTH(KTH) - ρ relation from the proposed elastic-plastic TPZ model tends to shift up and 

therefore reduce the conservatism when ξ ≤ 0.16.  For example, the prediction errors associated 

with the lowest KTH corresponding to  = 0.015 mm in Figs. 13(a) and 13(b) are about 17% and 

25% if elastic TPZ model (i.e. ξ = 0) is adopted.  These errors are reduced to 4% and 10% if 

elastic-plastic TPZ model with ξ = 0.16 is used in the prediction.  On the other hand, elastic-

plastic TPZ model with ξ ≥ 0.24 may lead to nonconservative prediction.  Based on a trial and 

error procedure on the available test results, ξ = 0.2 can lead to optimized predictions 

corresponding to Eq. (25). It must be noted that the proposed approach for developing the 

elastic-plastic TPZ solution is based on limited number of experimental results, and must be 

further validated before being applied to the evaluation of in-service flaws in pressure tubes. 

 

 

 

Figure  12  Elastic-plastic TPZ predictions based on lower-bound KIH and experimental results of 

σpTH corresponding to (a) Group I, and (b) Group II specimens with ρ ≥ 0.05 mm (Experimental 

results were digitized from Ref. [27]). 
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Figure  13  Elastic-plastic TPZ predictions based on lower-bound KIH and experimental results of 

KTH corresponding to (a) Group I, and (b) Group II specimens with ρ ≤ 0.05 mm (Experimental 

results were digitized from Ref. [27]) . 
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solutions for the notch tip stress field.  

3) An empirical Cδ factor that depends on the ratios of process zone strength to yield 

strength (pc/σYS) and flaw depth to notch root radius (a/) and an empirical constant ξ determined 

through trial and error, is proposed to account for plasticity and constraint effects.  It is shown 

that the modified TPZ model with Cδ presents a further improvement of DHC prediction. 

However, this model requires further validation with extensive experimental results.  

The proposed models can facilitate the design and integrity assessment of nuclear reactor 

pressure tubes through a computationally efficient procedure that also reduce conservatism in 

predictions. 
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