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Abstract 

Both experiment and first principles calculations unequivocally indicate that properties of 

elements and their compounds undergo a tremendous transformation at ultra-high 

pressures due to the fact that the difference between intra- and intermolecular interactions 

disappears under such conditions. Yet, even at much milder pressures, when molecules 

still retain their individual identity, their chemical properties and reactivity change 

dramatically. We propose a set of techniques, based on molecular dynamics simulations 

and quantum mechanical calculations, which can aid in the understanding and prediction 

of the behavior of chemical systems over a wide range of high pressures. 

Experimentally, the effects of pressure on reaction rates and equilibrium constants are 

described by their pressure derivatives, known as volumes of activation and reaction 

volumes respectively. These quantities are directly linked to partial molar volumes of 

reactants, transition states, and products. We formulate a molecular dynamics method for 

the accurate calculation of molecular volumes. This method can be applied to both stable 

and transient species, which makes it suitable for quantitative analysis of experimental 

volumes of activation and reaction volumes. The calculated partial molar volumes, as 

well as reaction and activation volumes obtained from them, agree well with 

experimental data. To assess the reliability of the experimental activation and reaction 

volumes, we also present an analysis of the most common empirical analytical functions 

used to obtain them from pressure dependences of the rate and equilibrium constants.  

Since mechanisms of chemical reactions are often described in terms of properties of 

their potential energy surfaces (PES) or Gibbs energy surfaces (GES), we present an 

analysis of pressure-induced deformations of GES of solvated reaction systems and use 

quantum mechanical and molecular dynamics simulations to construct energy surfaces 

and reaction profiles of compressed species, and to analyze how their shapes and 

topography change in response to compression. We also discuss the important role of 

volume profiles in assessing pressure-induced deformations of GES.  
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Chapter 1.  

 

Introduction 

1.1. Effect of Pressure on Reaction Kinetics and Equilibria: 

Activation and Reaction Volumes 

Along with temperature, pressure is one of the most important physical 

parameters significantly affecting reaction rates and equilibria over even a relatively 

modest range of 1−10 kbar
1-2

. The sign and magnitude of the pressure effects vary with 

the type of reaction. For example, compared to their values at ambient conditions, the rate 

of the Diels-Alder dimerization of cyclopentadiene increases by a factor of 30 at 4 kbar
3
, 

the rate of Menshutkin reaction between dimethylanaline and isopropyliodide is increased 

by a factor of 25 at 3 kbar
4
, whereas the rate of decomposition of benzoyl peroxide is 

decreased by 20% at 1.5 kbar
5
. 

The thermodynamic expressions describing the effect of pressure on chemical 

equilibria is given by van’t Hoff equation
6
 

 (
𝜕𝑙𝑛𝐾

𝜕𝑃
)
𝑇
= −

∆𝑉

𝑅𝑇
 (1.1) 

where ΔV, known as the reaction volume, is the difference: 

 ∆𝑉 = 𝑉𝑃 − 𝑉𝑅 (1.2) 

between the product and reactant partial molar volumes, VP and VR. Similarly, the 

pressure dependence of the reaction rate constant is given by 
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  (
𝜕𝑙𝑛𝑘

𝜕𝑃
)
𝑇
= −

∆𝑉≠

𝑅𝑇
 (1.3) 

where ΔV
≠
 is the so called activation volume

1
. Although equation (1.3) was already 

known to van’t Hoff in the late 1800’s
7
, there was no theory available at that time capable 

of providing a physical interpretation of the activation volume term. In fact, it would be 

more than thirty years later that Evans and Polanyi could provide a molecular 

interpretation of the activation volume within the framework of transition state theory 

(TST)
1a

, and identified ∆V
≠
 as the difference in volume between transition states (TS) and 

reactants: 

 ∆𝑉≠ = 𝑉≠ − 𝑉𝑅 (1.4) 

When solvent-solute interactions are strong, as in the case of polar reactions in 

polar media, solvent restructuring in response to the solute rearrangement can result in 

substantial volume effects
1
. In recognition of this fact, the overall activation (or reaction) 

volume is frequently presented as a sum of two terms – a structural contribution, ΔV
≠

struc, 

and the solvation contribution, ΔV
≠

solv: 

 ∆𝑉≠ = 𝛥𝑉𝑠𝑡𝑟𝑢𝑐
≠ + 𝛥𝑉𝑠𝑜𝑙𝑣

≠  (1.5) 

In some cases, 𝛥𝑉𝑠𝑜𝑙𝑣
≠  can be the dominant component of ΔV

≠
, and can reverse its sign. 

Thus, the activation volume of a homolytic bond cleavage, where 𝛥𝑉𝑠𝑜𝑙𝑣
≠  is expected to be 

negligible (and thus ∆𝑉≠ ≈ 𝛥𝑉𝑠𝑡𝑟𝑢𝑐
≠ ), is around 10 cm

3
/mol, whereas the activation 

volume for an ionic dissociation dominated by 𝛥𝑉𝑠𝑜𝑙𝑣
≠  is about -20 cm

3
/mol

2a
. 

1.2. Mechanistic Application of Activation Volumes 

In combination with reactant volumes VR, readily available experimentally, 

activation volumes ∆V
≠ 

give a useful piece of mechanistic information in the form of the 

transition state volumes V
≠
, thus providing a valuable insight into the mechanistic details 

of organic and inorganic reactions
1-2,8

. In general, interpretation of experimental 
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activation volumes is done at a qualitative level, where different types of reactions and 

processes are characterized by typical ranges of activation volumes (Tables 1 and 2). 

Table 1.1. Activation volume contributions from different processes (adapted from 

Ref. 2a) 

Type of Reaction ΔV
≠
 (cm

3
/mol) 

Bond Cleavage +10 

Bond Formation -10 

Displacement -5 

Ionic Dissociation -20 

Ion Recombination +20 

Charge Dispersal +5 

Charge Concentration -5 

Table 1.2. Typical ranges of activation volumes for different types of reactions 

(adapted from Ref. 8g) 

Type of Reaction ΔV
≠
 (cm

3
/mol) 

Homolysis 5 to 20 

Radical Polymerization ≈ -20 

Diels-Alder Cycloadditions -25 to -40 

Intramolecular Cycloadditions -25 to -30 

Dipolar Cycloadditions -40 to -50 

Ester Hydrolysis (basic) -10 to -15 

Ester Hydrolysis (acidic) > -10 

An important example of the utility of activation volumes in the mechanistic 

context is their application to the discussion of the mechanism of cycloaddition 

reactions
9
. As illustrated in Scheme 1 for the case of the Diels-Alder reaction of ethene 

and butadiene, there are two possible pathways for cycloaddition reactions – concerted 

and stepwise. For the concerted pathway, the TS is product-like with both new bonds 

being nearly formed, which means that 𝑉≠ ≈ 𝑉𝑃. In accordance with equations (1.2) and 

(1.4) this implies that 𝛥𝑉≠ ≈ 𝛥𝑉. On the other hand, the transition state for the stepwise 

diradical pathway is considerably less compact so ΔV
≠
 is expected to be less negative: 

(both 𝛥𝑉≠ and 𝛥𝑉 are negative). Therefore, the ratio of 𝛥𝑉≠/𝛥𝑉 can be used to 
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discriminate between these two pathways, since this ratio is expected to be considerably 

less than 1 for the stepwise mechanism. 

Scheme 1.1. Concerted (top) and stepwise (bottom) mechanisms of the Diels-Alder 

reaction between butadiene and ethene. 

 

The dimerization of chloroprene (2-chloro-1,3-butadiene) 1
10

 serves as an 

excellent example. As shown in Scheme 1.2, this reaction leads to a complex product 

mixture that includes a [2+2] cycloadduct 2, and three different [4+2] cycloadducts 3-5. 

The activation and reaction volume for each of these products are listed in Table 1.3. 

Inspection of the 𝛥𝑉≠/𝛥𝑉 ratios given in the last column of the table shows that 

mechanisms of the [2+2] cycloaddition leading to products 2 is stepwise, while the [4+2] 

cycloaddition forming 3 and 4 is concerted, which is consistent with the predictions of 

the Woodward-Hoffmann rules.
11

 The case of product 5 is quite interesting because, in 

accordance with these rules, it can be expected to be formed through a concerted [4+2] 

cycloaddition, which is inconsistent with a relatively low 𝛥𝑉≠/𝛥𝑉 ratio of 0.69. 

Subsequent detailed stereochemical studies of dimerization of deuterated chloroprene 

confirmed that formation of product 5 is indeed a result of a stepwise process
12

. 
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Scheme 1.2. Dimerization of chloroprene. 

 

Table 1.3. Activation and reaction volumes for the product of chloroprene 

dimerization
 

Product ΔV (cm
3
/mol) ΔV

≠ 
(cm

3
/mol)

 
ΔV

≠
/ ΔV 

2 -27 -10 0.37 

3 -32 -31 0.97 

4 -32 -29 0.91 

5 -32 -22 0.69 

The first attempt at rationalizing activation volumes from a microscopic 

molecular point of view was made by Stearn and Eyring
1b

, who proposed a model 

considering a reaction system as a cylinder of constant cross section σ and variable length 

L. The volume of the system could then be obtained as a product of these parameters 

 V = σL (1.6) 

Cross section σ is estimated from eq. (1.6) by dividing the experimental value V of the 

reaction system by the length parameter L found as the sum of incremental contributions 

of constituent bonds. On the assumption that σ does not change in the course of reaction, 

the activation volume can then be found as 
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 ∆𝑉≠ = 𝜎∆𝐿≠ (1.7) 

where Δ𝐿≠ is the change in length of the reaction system between the reactant and 

transition state: Δ𝐿≠= L
≠
 - LR (see Fig. 1.1). 

 

Figure 1.1. Cylindrical Stearn-Eyring model for a simple reaction A+B → AB: the 

length of the system L changes on going from the reactant (top) to 

transition state (bottom), whereas its cross section 𝜎 remains constant, 

which allows the activation volume to be obtained as ΔV
≠
 = σΔ𝐿≠ 

Although this model has proven to be useful in qualitative and semi-quantitative 

discussions of pressure effects on reaction kinetics
13

, its validity is limited to relatively 

simple reaction systems as it completely ignores the complexity of molecular shape. 

Figure 1.2 illustrates an example of a reaction where this model would significantly 

overestimate the activation volume due to unevenness of the cross section along the 

molecular axis. Obviously, the “proper” cross section that needs to be used in eq. (1.7) is 

the cross section σ1 near the reaction center, whereas the cross section σ estimated from 

eq. (1.6) is closer to σ2 describing a much wider part of the molecule. 
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Figure 1.2. Cylindrical model for a system of complex shape, where the choice of σ 

becomes ambiguous. If σ2 is used for calculation, the activation volume 

will be significantly overestimated. 

To avoid this problem, Gonikberg and Kitaigorodskii
14

 proposed to calculate activation 

volumes by focusing only on the parts of the molecules which overlap upon reaction and 

to use for that the change in van der Waals volume of a hard sphere model of the reaction 

system (Figure 1.3).  

 

Figure 1.3. Illustration of the Gonikberg-Kitaigorodskii model where the activation 

volume is calculated as the volume of the overlapping van der Waals 

spheres (black). 

Although this method could be expected to offer an improved structure-sensitive 

alternative to the Stearn-Eyring model, in reality it provides very poor estimates of the 

activation volume, even in comparison with the latter
15.

 This is due to the fact that this 

approach completely ignores the effects of packing (the void volume) and of thermal 

expansion (the expansion volume), which are shown to give substantial contributions to 
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the volumes of activation
16

. Figure 1.4 illustrates a case where the neglect of the void 

volume contribution in the Gonikberg-Kitaigorodskii model results in a significant 

underestimation of the activation volume. 

 

Figure 1.4. The void volume contribution is the volume of the shaded part of space 

outside the van der Waals spheres of constituent atoms, which is 

inaccessible to solvent molecules in a course of reaction. In this example, 

the void volume significantly exceeds the volume of the van der Waals 

overlap (black) used by Gonikberg and Kitaigorodski to estimate the 

activation volume. 

Subsequently, a number of more refined models became available for the calculation of 

molecular volumes
17

, however most of them were never used for calculation of activation 

volumes. Most of these models treat a molecule as an object with distinct geometrical 

boundaries defined by model-specific parameters and, with the exception of the Stranks-

Hush-Marcus thermodynamic model
17c

, do not account for solvent effects
18

. Poor 

accuracy combined with inadequate structural sensitivity is the common problem of these 

models, severely limiting their applicability as a mechanistic tool. We provide a full 

review of these models in Chapter 2 of this thesis. We also outline a new volume 

calculation method, which utilizes constant pressure molecular dynamics (MD), and 

show that this method allows one to obtain accurate partial molar volumes with 

appropriate sensitivity to molecular geometry and specific solvent-solute interactions. 
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1.3. Volume Profiles 

In discussing reaction mechanisms, activation and reaction volumes are frequently 

presented in the form of three-state diagrams visually comparing volumes or reactants, 

products, and transition states
2
. Examples of such diagrams, usually referred to as volume 

profiles, are shown in Fig 1.5. In general, the concept of a volume profile does not have 

to be limited to a discrete case of these three-state diagrams. The notion of a continuous 

volume profile
13,19

 generalizes this concept and defines it as a continuous function V(x) 

describing the evolution of volume V of the reaction system along its reaction coordinate 

x. The schematic continuous volume profiles corresponding to discrete diagrams of Fig. 

1.5 are shown in Fig. 1.6. Construction of such continuous volume profile for a reaction 

system requires a series of volume calculations for its various configurations along the 

reaction coordinate. 

  

Figure 1.5. Three-state volume profile diagrams for Diels-Alder addition of methyl 

acrylate to cyclopentadiene
20

 (a), and ligand exchange reaction of 

Cu(tren)H2O
2+

 and pyridine
21

(tren=tris-(2-aminoethyl)amine) (b). 

Horizontal bars represent the volumes of the reactant, transition, and 

product states; the connecting blue lines serve merely as logical links 

between these states and do not represent any physical quantities.  
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Figure 1.6. Schematic continuous volume profiles (blue lines) corresponding to 

discrete diagrams of Fig. 1.5: (a) Diels-Alder addition of methyl acrylate 

to cyclopentadiene, (b) ligand exchange reaction of Cu(tren)H2O
2+

 and 

pyridine. Now the blue lines represent actual volumes of transient species 

encountered along the reaction path that connects the reactant, transition, 

and product states (shown on the profiles as filled circles) 

In the past, continuous volume profiles V(x) were used to assess the effects of 

pressure on the energy profiles of chemical reactions
13

. Pressure-dependent enthalpy 

profiles 

 𝐻(𝑥, 𝑃) ≅ 𝑈(𝑥) + 𝑃𝑉(𝑥) (1.8) 

were used for this purpose, obtained by a combination of the zero-pressure energy profile 

U(x) with the expansion work term PV(x). Significant pressure-induced deformations of 

the reaction energy profiles were predicted, but the scope of this early work was severely 

limited by the lack of a dependable method of generating volume profiles. We will show 

in Chapter 4 of this thesis that reliable volume profiles can be constructed using our MD 

volume calculation method outlined in Chapter 2. We then further expand this approach 

by introducing the concept of a volume surface V(x), where x is a multidimensional 

coordinate of the reaction system, and show that this concept offers a powerful tool for 

generating high pressure energy surfaces and for studying pressure induced deformations 

of their landscapes.  
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1.4. Experimental Determination of Activation and Reaction 

Volumes 

In accordance with eq. (1.3), the experimental values of activation volumes ΔV
≠
 

are obtained as the logarithmic derivatives of the observed pressure dependencies of the 

rate constants k(P). Similarly, when the direct determination of reaction volumes ΔV as 

the difference of VP and VR is impossible, as in the case of fast conformational equilibria, 

the values of ΔV are obtained as the logarithmic derivatives of the equilibrium constants 

K(P) from equation (1.1)
1-2

. The difficulty arising in these cases is the inaccuracy of 

numerical differentiation of k(P) or K(P) due to experimental errors. Therefore, the ΔV
≠
 

values are typically obtained by differentiation of empirical analytical functions ln k(P) 

fitted to the experimental data. With few exceptions, these functions can be presented in 

the form
22 

 )()(ln 3210 PPfaPfaPaak   (1.9) 

with one of the following three choices of f(P): 

 𝑓(𝑃) = 𝑃2 (1.10a) 

 𝑓(𝑃) = 1/(1 + 𝑎4𝑃) (1.10b) 

 𝑓(𝑃) = ln⁡(1 + 𝑎4𝑃) (1.10c) 

The eleven most common functions used in the literature are listed in Table 1.4. 
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Table 1.4. Most common empirical equations describing pressure dependence of rate 

and equilibrium constants and their classification. 

 Equation Type 

E1 2

210/ln PaPakk   

Polynomial E2 3

310/ln PaPakk   

E3 3

3

2

210/ln PaPaPakk   

E4  PaPakk 430 1/ln   
Hyperbolic

 

E5  PaPaPakk 4310 1/ln   

E6  Paakk 420 1ln/ln   

Logarithmic 

E7  PaaPakk 4210 1ln/ln   

E8  PaPaPakk 4310 1ln/ln   

E9    PaPaaPakk 44210 1ln1/ln   

E10    PaPaPaaPakk 434210 1ln1ln/ln   

E11 523.1

210/ln PaPakk   Pseudo-logarithmic 

Since the above analytical expressions are quite different, the values of V
≠
 obtained 

from the same experimental data set using different equations can turn out to be different. 

This creates an additional problem in the context of the use of activation volumes as a 

tool for mechanistic insight. We address this matter in Chapter 5, where we present a 

detailed analysis of the situation and suggest the ways of mitigating the problem. 

1.5. Computational Methods 

The two principal computational tools used in this thesis are classical MD 

simulations and quantum mechanical (QM) calculations. These techniques allow us to 

relate changes in molecular structure to the resulting changes in energy, volume, and 

other properties. Although first principles (or QM) MD simulations can provide a more 

accurate description of the systems of interest, they become prohibitively expensive when 

system sizes are large or the required dynamic trajectories are long. Classical MD offers a 

reasonable and much less computationally expensive alternative when knowledge of the 
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electronic structure is not required, however its accuracy critically depends on the quality 

of the utilized empirical force field. In our studies, we tried to maintain a proper balance 

in using static QM and classical MD to obtain appropriately accurate results at a 

reasonable computational expense. A brief outline of specific computational details 

pertaining to these two methods is presented below. 

1.5.1. MD Simulations 

Classical MD simulations
23

 were used to obtain volumes, energies, free energies, 

and other thermodynamic properties of pure liquid substances and solutions, as well as to 

assess dynamic behavior and microscopic parameters of the systems of interest. These 

properties were obtained by averaging over an MD trajectory r(t) in the 3N-dimensional 

coordinate space of a system of N particles (atoms, molecules, or ions). The time 

dependence of the multidimensional coordinate vector r was obtained by leap-frog 

integration
24

 of coupled Newtonian equations of motion 

 𝑚𝑖

𝜕2𝑟𝑖
𝜕𝑡2

= 𝐹𝑖 (1.11) 

where t is time, and mi and Fi are the mass and force associated with coordinate ri. The 

flow chart of an MD run is shown in Fig. 1.7. Unless stated otherwise, a time step of 1 fs 

was used for numerical integration of eqs. (1.11). Forces Fi are calculated as components 

of the negative gradient of potential energy function U(r) 

 𝐹𝑖 = −
𝜕𝑈

𝜕𝑟𝑖
 (1.12) 

The functional form and parameters of U(r) are determined by the choice of an empirical 

force field used in MD simulations. For organic systems, we used the popular OPLS 

(Optimized Potential for Liquid Simulations) force field
25

 the functional form of which is 

given by eq. (1.13) 
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𝑈 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝑈𝑣𝑑𝑊 + 𝑈𝑒𝑠 

𝑈𝑏𝑜𝑛𝑑 = ∑ 𝑘𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

 

𝑈𝑎𝑛𝑔𝑙𝑒 = ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 

𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ ∑
𝑉𝑛
2
[1 + (−1)𝑛+1 𝑐𝑜𝑠{𝑛(𝜑 − 𝜑0)}]

4

𝑛=1𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

 

𝑈𝑜𝑜𝑝 = ∑ 𝑘𝜓(𝜓 − 𝜓0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 

𝑈𝑣𝑑𝑊 = 𝑈𝐿𝐽 =∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

])

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

⁡𝑈𝑒𝑠 =∑ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

 

(1.13) 

The bond and angle contributions, Ubond and Uangle, are modelled by a quadratic 

dependence of the energy on the deviation of a bond length b or a bond angle θ from their 

equilibrium values b0 and θ0. Due to its periodic nature with respect to dihedral angles φ, 

the torsion contribution Utorsion is described by the first four cosine terms of its Fourier 

series. Out of plane bending, Uoop, is treated using a quadratic dependence of the so-

called improper torsions angle ψ. The nonbonded interactions are represented by the van 

der Waals term UvdW modelled by a 6-12 Lennard Jones (LJ) potential and an electrostatic 

term Ues described by a Coulomb potential. In principle, the summation in nonbonded 

terms should be extended over all pairs of atoms i and j in the system, however the 

strength of van der Waals interactions rapidly approaches zero as the distances between 

atoms increase. Therefore, for computational efficiency, these interactions are assumed to 

be zero for the distances exceeding an established cutoff. In this work, this cutoff distance 

was set at 1 nm. The same cutoff was used for electrostatic interactions in nonpolar 

systems. In cases of polar systems, where long-range electrostatic interactions converge 
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much slower, we employed the particle mesh Ewald (PME) method 
26

 extending 

summation over the entire space. 

 

Figure 1.7. Flowchart of MD simulation. 

The water force field was predominantly described by the SPC (single point 

charge) model
27

, although TIP4P (4-point-transferable intermolecular potential)
28

 and 

flexible SPC
29

 models were occasionally used as well (Figure 1.8). In some instances we 

also used a model solvent composed of monoatomic LJ particles with parameters m = 40 

amu, σ = 0.35 nm, ε = 2.0 kJ mol
-1.
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Figure 1.8.  SPC (left) and TIP4P (right) models for the water molecule. In the SPC 

model, the charges are localized on the three constituent atoms, whereas in 

the TIP4P models, the negative charge of the oxygen atom is offset to the 

dummy atom M to provide a better description of the electrostatic 

properties of the molecule. 

All MD calculations were performed using the GROMACS package
30

. Periodic 

boundary conditions were utilized for a cubic cell. All simulations were run in the NPT 

ensemble. In all cases Berendsen temperature coupling
31

 was used with a coupling 

constant τT = 0.1ps. This was typically combined with Berendsen pressure coupling
31

 

with τ = 0.5ps, however in some instances which will be indicated, the Parinello-Rahman 

barostat
32

 was employed with τP = 1ps. Solvent excluded volumes were calculated using 

the g_sas program included in the GROMACS package with van der Waals radii taken 

from ref 18(d). Graphic presentation of MD trajectories were done using the VMD 

package
33

. 

1.5.2. Quantum Mechanical Calculations 

QM calculations were used in this work to construct potential energy surfaces of 

chemical species at zero and elevated pressures and to generate the missing force field 

parameters for MD simulations. All QM calculations were performed with the Gaussian 

09 suite
34

, usually at the B3LYP/6-31++G(d,p) level. In some cases, the calculations 

were done at the HF/6-31G level, which offered a reasonable compromise between 

computational cost and quality, adequate for the exploratory nature of those calculations. 
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1.6. Brief Outline of this Work 

We begin Chapter 2 with a review of the existing models of molecular volume 

and then proceed to the formulation of a new approach toward calculation of such 

volumes based on the constant pressure MD simulations of the solute-solvent systems of 

interest. Further in that chapter we present the evidence of the efficiency of this method 

in generating accurate molar and partial molar volume values consistent with the 

experimental data and propose a method of assessing molecular surfaces that incorporates 

this technique. 

In Chapter 3 we expand the application of our MD method to the calculation of 

reaction and activation volumes and discuss the QM based approach for evaluating the 

MD force field parameters for TSs, required to perform our ΔV
≠
 calculations. 

As a further extension of our approach, in Chapter 4 we discuss calculations of 

volume profiles and volume surfaces of reactions, and their use in constructing high 

pressure reaction profiles and energy surfaces. We illustrate our methodology by its 

application to study of pressure induced deformations of energy profiles and surfaces in a 

number of hydrogen and methyl transfer reactions. 

In Chapter 5 the general properties of the empirical analytical functions used to 

describe the effect of pressure on rate and equilibrium constants in solution are reviewed 

and the effects of experimental errors on the accuracy of activation and reaction volumes 

predicted by these equations are compared. Based on the analysis of fitting these 

equations to simulated and experimental data, we propose a set of general 

recommendations for using them as a tool for obtaining accurate activation and reaction 

volumes. 
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Chapter 2.  

 
Molecular Dynamics Calculation of Molecular Volumes 

As outlined in Chapter 1, the concept of molecular volume is crucial for 

microscopic interpretation of activation and reaction volumes. It is also widely used in 

rheology, QSAR (quantitative structure-activity relationships), biochemistry, and many 

other chemical applications
1
. In most of the existing approaches a molecule is treated as 

an object with geometrical boundaries. Four examples of that kind are shown for a 

benzene molecule in Fig. 2.1. 

 

Figure 2.1. Four most common geometrical models of benzene molecule defined by 

the following types of molecular boundaries: (a) van der Waals (RC = 0.17 

nm, RH = 0.12 nm), (b) solvent-accessible (RC = 0.17 nm, RH = 0.12 nm, 

Rsolvent = 0.14 nm); (c) solvent-excluded (RC = 0.17 nm, RH = 0.12 nm, 

Rsolvent = 0.14 nm); (d) isodensity (ρ = 0.01). See the text below for a 

detailed description of these models and their comparison. 

Although molecular volume as a geometrical concept is intuitively appealing, it is 

not well defined, primarily because molecules do not actually possess distinct 

geometrical boundaries. In addition, the definitions of these boundaries are often rather 

arbitrary and are not transferable to volume calculations in different solvents or under 

different physical conditions, and are thus insensitive to the context of their environment. 
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Molecular dynamics serves as an excellent instrument that properly places molecules in 

this context. In this chapter we formulate a MD method for the accurate calculation of 

molecular volumes
2
. The calculated volumes are sensitive to the molecular geometry as 

well as to the specifics of physical conditions and solvent-solute interactions, and thus are 

perfectly suited to microscopic interpretation of experimental and reaction activation 

volumes.  

The outline of this chapter is as follows: In Section 2.1, a review of available 

molecular volume models is given, along with a discussion of their limitations. The 

concept and procedure of our MD method for calculating molecular volumes is outlined 

in detail in Section 2.2. In Sections 2.3 and 2.4, the performance of the method is tested 

for the calculation of volumes of various systems. Technical aspects are discussed in 

Section 2.5. In Section 2.6, we show that our method, in combination with a geometrical 

model, can be used in calculations of molecular surface areas that are sensitive to 

physical conditions. Finally, in Section 2.7, the results and conclusions of this chapter are 

summarized. 

2.1. Review of Molecular and Activation Volume Models 

2.1.1. Cylindrical Model 

As discussed in Section 1.3 the earliest approach toward molecular interpretation 

of activation volumes was formulated by Stearn and Eyring
3
, who proposed to consider a 

reaction system as a cylinder of constant cross section σ and variable length L (Fig. 1.1). 

The volume of the system was then presented as a product of these parameters, with the 

volume change in the course of reaction being proportional to the change in L. 

Despite its utmost simplicity, this model proved to be useful in describing the 

effects of pressure on reaction kinetics at a qualitative and semi-quantitative level
3-6

. 

However, although this model is able to predict how volume of a relatively simple 
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reaction system would change in response to its structural changes, it is obviously 

unsuited for calculation of molecular volumes based on molecular structure. 

2.1.2. Van der Waals Volume 

Hard sphere models of molecular volume
7-9

 offer a more refined approach with a 

stronger connection between molecular structure and molecular volume. The simplest 

model of that kind defines the volume of a molecular system, which in this case is 

referred to as the van der Waals volume, as the total volume of the set of overlapping van 

der Waals spheres centered at the nuclei of constituent atoms. The van der Waals 

volumes can be easily calculated either numerically
7c,d,g-j

 or analytically.
7e,f,k-m

 However, 

the choice of van der Waals radii is rather arbitrary
10

. More importantly, van der Waals 

volumes completely ignore the effects of packing and of thermal expansion thus seriously 

underestimating the value of the molecular volume. As can be seen from the example 

shown in Table 2.1, the contributions of van der Waals volume to the total molar volume 

vary over a wide range depending on solute, solvent, and temperature conditions and can 

be as low as 25% as in the case of methane in hexane solvent. 

Table 2.1. Experimental (Vexp) and van der Waals (VW) volumes and their ratios for 

methane, ethane and benzene in various solvents at 1 bar. 

Hydrocarbon VW, cm
3
/mol Solvent T Vexp, cm

3
/mol VW/ Vexp 

Methane 15.6 
n-Hexane 25°C 60.0

a
 26% 

Water 25°C 37.3
b
 42% 

Ethane 26.2 
n-Hexane 25°C 69.3

a
 38% 

Water 25°C 51.12
b
 51% 

Benzene 62.1 

Water 25°C 83.1
b
 75% 

Benzene 

50°C 92.3
c
 67% 

90°C 97.1
c
 64% 

130°C 103.2
c
 60% 

a
 data from Ref 11 

b
 data from Ref 12 

c
 data from Ref 13 
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As discussed in Section 1.3, the idea of using van der Waals volumes for 

activation volume calculations was proposed by Gonikberg and Kitaigorodskii
14

 as a 

structure-sensitive alternative to the Stearn-Eyring model. However, since the void and 

expansion volume contributions are not included in the model, despite being the main 

components,
15

 van der Waals volumes considerably underestimate the values of reaction 

and activation volumes. For example, the reaction volume of the Diels alder reaction of 

ethene and 1,3-butadiene to form cyclohexene calculated using van der Waals volumes is 

found to be only -11.2 cm
3
/mol compared to the actual experimental value  of -41.7 

cm
3
/mol,

16i
 i.e. the van der Waals contribution constitutes only 27% of the total value. 

2.1.3. Solvent Accessible and Solvent Excluded Volumes 

An alternative definition of the molecular boundary that takes the finite size of the 

solvent particles into consideration and thus properly accounts for the contribution of the 

void volume was proposed by Lee and Richards
8
. The molecular surface, known as the 

solvent accessible surface, is traced by the center of a probe sphere, representing the 

solvent, rolling over the van der Waals surface of the molecule (see Fig. 2.2). 

 

Figure 2.2. Illustration of a section through the solvent accessible surface for a set of 

two van der Waals spheres. The solvent accessible surface is defined by 

the locus of the centre of the probe sphere (gray circle) as it rolls around 

the van der Waals surface (black circles). 
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Figure 2.3. Illustration of a section through the solvent excluded surface for a set of 

two van der Waals spheres. The solvent excluded surface is defined by the 

the boundary of the region inaccessible to the probe sphere. 

The solvent accessible volume outlined by this surface clearly overestimates the 

molecular volume, which is better approximated by the so-called solvent excluded 

volume,
9
 defined as the volume of the region inaccessible to the probe sphere (Fig. 2.3). 

The results in both models crucially depend on the choice of the probe sphere radius, 

representing properties of the solvent. In addition, neither of them includes the effects of 

thermal expansion. A possible fix to the latter problem lies in the use of a temperature-

adjusted probe sphere radius. The data in Table 2.2 indicate that with properly chosen 

probe sphere radii, specifically adjusted for each solvent-solute system at a given 

temperature, the calculated solvent excluded volumes can be made equal to the 

experimental values. It is also important to emphasise, however, that this match is 

achieved through a highly empirical ad hoc fitting process, and the wide range of 

variation the adjusted probe radii is hard to rationalize. The lack of a properly defined 

procedure of choosing the probe radius makes application of the excluded volume model 

to calculation of molecular volumes somewhat problematic. 
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Table 2.2. Experimental (Vexp) and solvent excluded (VSE) volumes of methane, 

ethane and benzene in various solvents at 1 bar, along with the adjusted 

probe sphere radii (r). 

Hydrocarbon Solvent 

T 

Vexp, 

cm
3
/mol 

VSE, 

cm
3
/mol r, nm 

Methane n-Hexane 25°C 60.0
a
 60.1 0.103 

Water 25°C 37.3
b
 37.1 0.052 

Ethane n-Hexane 25°C 69.3
a
 69.5 0.085 

Water 25°C 51.12
b
 51.2 0.052 

Benzene Water 25°C 83.1
b
 82.6 0.019 

Benzene 

50°C 92.3
c
 92.0 0.030 

90°C 97.1
c
 96.6 0.035 

130°C 103.2
c
 102.9 0.041 

a
 data from Ref 11 

b
 data from Ref 12 

b
 data from Ref 13 

2.1.4. Quantum Mechanical Models 

The hard sphere models described previously depend heavily on the selection of a 

set of van der Waals and probe sphere radii in their definition of molecular surface. 

Quantum mechanics offers an alternative approach based on electronic properties of a 

molecule
17

. Bader
17a-b

 proposed to use electron density for this purpose and defined 

molecular boundaries by an isodensity surface. The method has been used to calculate 

molecular surfaces and volumes for systems of different complexity
17c-g

. The isodensity 

level (usually 0.001 a.u.) is the only parameter needed in the model; however, this 

parameter is not universal
17d-f

 and its different values are necessary to describe different 

molecular species.
18,19

 When compared with experimental molar volumes for a large 

selection of organic compounds it was found that molecular volumes calculated using the 

isodensity surface model with the typical 0.001 a.u. envelope tended to significantly 

underestimate the volume by about 25%.
17f

 The quality of the fit can be improved by 

choosing an isodenisty level different from 0.001 a.u., but that would break the 
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universality of that parameter and make it hard to define a priori. Even at that cost, the 

model remains insensitive to the temperature and solvent effects. 

Another quantum mechanical approach is based on the concept of molecular 

face
20

, a surface defined by the classical turning point of electron movement in the 

molecule. The volumes confined by these surfaces show a strong linear correlation with 

those calculated using the electron isodensity model
20d

and suffer from the same 

limitations. 

2.1.5. Emperical Scaling 

The calculation of ΔV
≠ 

using the volumes provided by any of the above models 

ignores the effects of thermal expansion as well as the effects of the changes in the 

surrounding medium. A scaling procedure has been suggested
21

 to relate geometrically 

defined volumes, such as van der Waals volumes Vw, to the observed partial molar 

volumes V by so-called packing coefficients  Vw/V. This ratio gives an indication of 

the amount of the volume that can be attributed to contributions from the void volume 

and thermal expansion. The value of  for neutral molecules in the liquid phase ranges 

from about 0.4-0.6, and tends to be larger for cyclic compounds when compared to their 

acyclic analogues.
16

 

If packing coefficients are the same for the reactant and transition states, they can 

be obtained from the experimental partial molar volumes of reactants and then used to 

calculate activation volume ΔV
≠
 from its van der Waals component ΔVw

≠
 as ΔV

≠
 = 

ΔVw
≠
. If the values of  and ≠ are different, the latter can be either approximated by 

the packing coefficients for the similar stable species or estimated by computer 

simulations,
16

 however the quality of such determination is rather poor. 

2.1.6. Stranks-Hush-Marcus Thermodynamic Model 

All of the above models, even with empirical adjustments to their parameters, are 

hardly applicable to polar reactions where significant solvent reorganization gives the 
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major or a substantial contribution to the activation volume. A typical example of a 

highly polar reaction is outer-sphere electron transfer. This process is well described by 

Marcus theory,
22

 according to which the total Gibbs energy of activation ΔG
≠
 includes 

contributions of internal reorganization of the reaction system, ΔG IR
 ≠

, reorganization of 

the surrounding solvent, ΔGSR
≠
, the Coulombic work required to bring the reactants 

together in the transition state, ΔGCOUL
 ≠

, and the effect of interionic interactions, ΔGDH
≠
. 

Differentiation of ΔG
≠ 

with respect to pressure gives the activation volume of the process 

which in turn can be represented as the sum of four terms:
 23

 

 ΔV
≠
 = ΔVIR

 ≠ 
+ ΔVSR

≠ 
+ ΔVCOUL

 ≠ 
+ ΔVDH

≠
 (2.1) 

 ∆𝑉𝐼𝑅
≠ ≈ 0.6⁡ 𝑐𝑚3 𝑚𝑜𝑙⁄  (2.2) 
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 ∆𝑉𝐷𝐻
≠ = −𝑅𝑇𝑍1𝑍2

𝐴√𝐼

1 + 𝐵𝑎√𝐼
(
3

𝜀

𝜕𝜀

𝜕𝑃
− 𝜅𝑠) (2.5) 

 

where σ is the internuclear separation at which the electron transfer occurs and is 

assumed to be pressure independent along with ionic radii r1 and r2; The values of these 

terms are dependent on the properties of the solvent, as well as the radii of the reactants 

and the geometry of the reaction system.  

Eq. (2.1) was thoroughly examined by Swaddle
24

 who showed that the model 

reproduces well the experimental activation volumes of many outer-sphere self-exchange 

electron transfer reactions in aqueous solution if ΔVIR
≠ 

term can be neglected or 

approximated with a constant value of 0.6 cm
3
/mol. However, the predictions become 

inaccurate when solute restructuring is important or when ion pairing is expected to be 

significant.
24

 Morover, the model is not designed to work for reactions, other than 

electron transfer processes.  
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2.1.7. Monte Carlo and MD models 

Despite certain success each of the above models might have enjoyed in 

describing various components of partial molar volume, they all suffer from poor 

accuracy and/or inadequate structural sensitivity, severely limiting their applicability as 

mechanistic tools. An attempt to overcome this problem by using Monte Carlo (MC) 

simulations of solvent-solute systems was made twenty years ago by Klärner et al.
21

 but 

their work was never followed up, likely because of insufficient accuracy of calculations 

affordable at that time. At the current state of computer technology, MC and MD 

methods reached precision that rivals the experimental level, which has led to a wider use 

of MD simulations to discuss volumetric properties of chemical and biochemical 

systems.
25

 In the subsequent section we will formulate an MD-based method toward 

calculation of molecular volumes, which provides an accuracy sufficient for mechanistic 

applications. 

2.2. Displacement Model of Molecular Volume 

As discussed in Chapter 1, mechanistic interpretation of activation and reaction 

volumes requires molecular volume calculations which are sensitive to the structure and 

specific solvent environment of the solute, as well as temperature and pressure. Constant-

pressure MD provides a tool suitable for these purposes. Thermodynamically, the partial 

molar volume VX of solute X in solvent S is defined as 

 
TPX

X
n

V
V

,















  (2.6) 

where V is the total volume of the solution and nx is the number of moles of the solute. 

For dilute solutions this can be replaced with a finite-difference expression, 
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X

n
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V
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and in the limit of infinite dilution represents the change in volume upon addition of a 

single solute molecule. Using constant-pressure MD we can obtain the volume of a single 

solute molecule as an Archimedean displacement volume, i.e. as the volume difference 

between a pure solvent (N particles: N·S) and a system containing, in addition, one solute 

molecule (N+1 particles: X + N·S): 

 V(X) = V(X+N·S) – V(N·S) (2.8) 

This concept is illustrated by Fig. 2.4 for the case of a model diatomic solute in a 

LJ solvent (described in Section 1.5). The solute, atoms of which are shown as blue balls 

of van der Waals diameter (assumed here to be equal to the LJ parameter σ), is immersed 

in the solvent, represented in the figure by small white balls marking positions of the 

centers of the solvent particles averaged over the entire MD trajectory. The solvent 

trajectory shows a clear pattern of avoidance due to the short-range solvent-solute 

repulsion resulting in the formation of a cavity around the solute. The size and the shape 

of the cavity depend on the geometry of the solute, the strength and type of the solute-

solvent interactions, as well as the temperature and pressure. The incremental increase of 

the volume of the overall system due to cavity formation, described by eq. (2.8), is the 

partial molar volume of the solute in a given solvent under specified temperature and 

pressure conditions. 
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Figure 2.4. Model diatomic in a LJ solvent. The solvent trajectory is represented by an 

overlay of solvent configurations acquired at different instants of time. 

The solute atoms are shown as blue balls of van der Waals radii; the small 

white balls mark instantaneous positions of the solvent particles. The 

yellow curve is the solute-solvent radial distribution function. 

The image in Fig. 2.4 has a remarkable resemblance to that of Fig. 2.2 illustrating 

the concept of solvent accessible surface. In Fig. 2.4 this surface can be identified with 

the first coordination sphere, defined by the first maximum of the solute-solvent radial 

distribution function and seen in the figure as the cavity wall. The appearance of the 

cavity depends on the rendering chosen for the solvent particles. Thus, when both solute 

and solvent particles are represented by their van der Waals spheres (Fig. 2.5a), they 

seem to be tightly packed, leaving no empty space with the exception of the ‘void’ 

volume near the geometrical center of the diatomic. The new shape of the solvent cavity 

can be better seen if the radii of the solute atoms are significantly reduced, just to mark 

the positions of their centers (Fig. 2.5b). 
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 (a) (b) 

Figure 2.5. Model diatomic in a LJ solvent (the same configuration as in Fig. 2.4): (a) 

both solute atoms (blue) and solvent particles (white) are shown as balls of 

van der Waals radii; (b) the small blue balls mark positions of the centers 

of the solute atoms. 

The surface of this cavity matches in its concept and appearance with the solvent 

excluded surface of Fig. 2.3. Interestingly, as can be seen in Fig. 2.6, the cross-section of 

the cavity remains constant for interatomic distances R ranging from 0.1 to about 0.25 

nm, and its volume is described well by linear eq. (1.6) of the Stearn-Eyring cylindrical 

model. At longer interatomic distances, a narrowing develops in the middle of the cavity, 

resulting in a marked nonlinearity of the volume dependence. The radius of the circular 

cross-section estimated from the linear dependence of Fig. 2.6 is 0.31 nm, which is by a 

factor of 1.8 greater than the van der Waals radius of the atoms of the diatomic (0.18 nm) 

estimated by its LJ parameter σ, and constitutes 82% of the radius of the first 

coordination sphere (0.38 nm) defined by the first maximum of the radial distribution 

function or 88% of the solvent accessible radius (0.35 nm) defined as the sum of van der 

Waals radii of the solvent and solute. 
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Figure 2.6. Dependence of the displacement volume of the model diatomic on its size 

measured by the interatomic distance R (blue diamonds) in comparison 

with the straight line (red squares) predicted by Stearn-Eyring model. The 

insets, labeled by the values of R, show the evolution of the sizes and 

shapes of the solvent cavity. 

 

Figure 2.7. Hydrocarbons immersed in LJ solvent (clockwise from the top left 

corner): hexane, cyclopentadiene, benzene, and toluene. The solvent 

trajectory is represented by an overlay of solvent configurations acquired 

at different instants of time. Solvent particles (white) avoid the solute, thus 

forming a cavity of the matching size and shape. 
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Fig. 2.7 provides illustration for more structurally complex solutes, showing four 

hydrocarbons immersed in the LJ solvent. For these molecules we see again that the 

geometries of the systems are reflected in the size and shape of the solute cavity. 

Depending on the nature of interactions between the solvent and solute the partial molar 

volume of a solute may vary substantially (see discussion in Section 2.6). Importantly, 

while experimental determination of partial molar volumes is limited to stable species, 

our MD method is equally applicable to calculation of partial molar volumes of stable 

and short lived and transient species (such as conformers and TS), which is crucial for the 

theoretical analysis of activation volumes, volume profiles, and conformation equilibria 

presented in the subsequent chapters. 

2.3. MD Volumes 

In order to test the suitability of the OPLS force field
26

 for the displacement 

volume calculations we performed MD simulations and obtained the molar volumes for a 

number of hydrocarbon systems. The results shown in Tables 2.3 and 2.4 demonstrate 

good agreement between calculated and experimental volumes for pure hydrocarbons and 

octane-benzene mixtures of various compositions. 

Table 2.3. Experimental (Vexp) and calculated (Vcalc) molar volumes (cm
3
/mol) of octane-

benzene mixtures at 1 bar and 25°C arranged in the order of increasing mole 

fraction of octane, xoctane. 

xoctane Vexp
a 

Vcalc 

0 89.4 89.7 

0.1 97.9 98.4 

0.2 105.1 105.2 

0.3 112.2 112.4 

0.4 120.3 120.4 

0.5 127.4 127.5 

0.6 133.8 133.8 

0.7 141.8 141.5 

0.8 148.8 148.2 

0.9 156.6 156.1 

1 163.5 162.7 

a
 data from Ref 27 
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Table 2.4. Experimental (Vexp) and calculated (Vcalc) molar volumes (cm
3
/mol) of 

pure hydrocarbons at 1 bar. 

Hydrocarbon T Vexp 
a 

Vcalc 

Cyclopentadiene 20°C 82.4 83.5 

Cyclopentene 20°C 88.2 90.9 

Cyclopentane 20°C 94.0 97.8 

Benzene 20°C 89.1 89.2 

1,3-Cyclohexadiene 20°C 95.3 96.4 

Cyclohexene 20°C 101.4 103.8 

Cyclohexane 20°C 108.1 109.8 

n-Hexane 25°C 130.4 129.3 
b 

Toluene 25°C 106.9 105.0 

Methylcyclohexane 20°C 127.6 127.8 

n-Octane 25°C 163.5 162.7 

n-Dodecane 25°C 227.3 225.8 
b 

a 
data from Ref 28 

b 
data from Ref 29 

2.4. Displacement Volumes 

The molecular volumes were then calculated using eq. (2.8) as differences V257 – 

V256 of volumes of 257- and 256-molecule systems. The results are listed in Table 2.5 and 

are of a comparable quality to the bulk volumes listed in Table 2.4. The convergency of 

the displacement volumes to the experimental values is good over sufficiently long MD 

trajectories, as illustrated by Fig. 2.8 for the case of isoprene. 
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Figure 2.8. Displacement volume of a single isoprene molecule calculated using eq. 

(2.8) as a difference between volumes of 257- and 256-particle systems in 

comparison with the experimental molar volume of isoprene. 

To study how well the displacement volumes of eq. (2.8) predict the solvent 

dependence of the partial molar volumes, we performed MD simulations of selected 

hydrocarbons in polar and nonpolar solvents. Inspection of the results listed in Table 2.5 

shows that with the exception of methane in hexane, the experimental partial molar 

volumes of hydrocarbons in nonpolar solvents are well reproduced by the calculated 

displacement volume. We believe that the mentioned discrepancy for methane may be 

due to a somewhat inaccurate experimental value. Indeed, as can be seen from Table 2.6, 
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Table 2.5. Experimental (Vexp) and calculated (Vcalc) partial molar volumes (cm
3
/mol) 

of some hydrocarbons in nonpolar and polar solvents. The hydrocarbons 

are arranged in the order of increasing molar mass; the solvents are 

arranged in the order of increasing polarity. 

Hydrocarbon Solvent Solvent 

model 
Vcalc 

a 
Vexp T 

Methane n-Hexane OPLS 55.1 60.0 
b
 25°C 

Water TIP4P
 c 

41.4 37.3 
f 

25°C 

SPC 
d 

42.5 (42.0) 

Flexible SPC 
e 

36.3 

Ethane n-Hexane OPLS 69.5 69.3 
b
 25°C 

Water TIP4P
 c
 60.5 51.2 

f
 25°C 

SPC 
d
 62.1 (60.3) 

Flexible SPC 
e
 

49.4 

Benzene n-Octane OPLS 92.0 
g 

91.4 
g
 25°C 

Benzene OPLS 89.7 
h 

89.4 
h
 25°C 

Di-n-butyl 

ether 

OPLS 87.4 (90.1) 89.7 
j
 25°C 

Water TIP4P
 c
 93.7 83.1 

f
 25°C 

SPC 
d
 96.0 (90.6) 

Flexible SPC 
e
 

86.3 

Cyclohexane Cyclohexane OPLS 109.8 
i
 108.1 

i
 20°C 

Di-n-butyl 

ether 

OPLS 112.6 

(110.1) 

109.9 
j 

25°C 

n-Hexane n-Hexane OPLS 129.3 
i
 130.4 

i
 25°C 

Di-n-butyl 

ether 

OPLS 128.9 

(130.9) 

131.5 
j
 25°C 

a
 Coulombic energies were calculated by direct summation with cut-off radius of 0.9-

1.0 nm; the volumes calculated using PME
30

 are given in parentheses for comparison; 
b
 data from Ref. 11; 

c
 rigid water model, Ref. 31; 

d
 rigid water model, Ref. 32; 

e
 flexible water model, Ref. 33; 

f
 data from Ref. 12; 

g
 a three-point estimate based on the data of Table 2.3; 

h
 data from Table 2.3; 

i
 data from Table 

2.4; 

j
 data from Ref. 34 
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Table 2.6. Experimental partial molar volumes (cm
3
/mol) of methane and ethane in 

various solvents at 25°C (adapted from Ref. 11). 

Solvent Vmethane Vethane 

n-perfluoroheptane 68.4 82.9 

n-hexane 60.0 69.3 

carbon tetrachloride 52.4 65.9 

benzene 52.2 66.0 

carbon disulphide 56.1 67.4 

comparing partial molar volumes of methane and ethane in various solvent, 55-57 

cm
3
/mol volume may be a more reasonable estimate for methane in hexane, as it fits 

better with the rest of the data. A greater error in methane data may be attributed to a 

much lower solubility of methane.
35 

Direct summation of electrostatic interactions with the cut-off radius of 0.9-1.0 

nm works reasonably well, although the use of the more accurate PME technique
30

 offers 

some improvement. Thus, in the cases of hexane and cyclohexane (Table 2.5), the use of 

PME reduces the difference bewteen calculated and experimental molar volumes from 

2.6-2.7 cm
3
/mol to 0.2-0.6 cm

3
/mol. The strongest effect of 5.4 cm

3
/mol volume 

reduction was observed for benzene in water calculations using the SPC
32

 model. 

However, even an improved PME result (90.6 cm
3
/mol) is still much greater than the 

experimental value of 83.1 cm
3
/mol. Overall, partial molar volumes for aqueous 

solutions, obtained with the standard rigid models of water (SPC or TIP4P
31

) appear 

completely inadequate. However, switching to a flexible water model
33

 brings the 

displacement volumes within a 1-3 cm
3
/mol margin of the experimental data and 

somewhat improve the results of a recent study
25o

. Fig. 2.9 illustrates the difference 

between the cases of the rigid and flexible water models. Although the cavity sizes seem 

roughly the same in both cases, their shapes are distinctly different. Flexible water 
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molecules seem to be able to reach further in some angular directions, thus reducing the 

overall volume of the cavity. It is interesting to note that this “penetration” effect of the 

flexible water cannot be detected by comparing C-O radial distribution functions (Fig. 

2.10), likely due to spherical averaging of the latter. 

 

Figure 2.9. Methane molecule in a rigid (left) and flexible (right) water solvent. 

Although the rough sizes of cavities are equal, their shapes are somewhat 

different, which results in a 6 cm
3
/mol difference in the calculated partial 

molar volumes. 

 

Figure 2.10. Radial distribution functions (C-O distances) for a methane molecule in 

rigid and flexible water solvents. 



 

42 

We have also applied our method to the calculation of partial molar volumes of 

polar solutes. The displacement volumes calculated for a number of aqueous amino acids 

in their zwitterionic forms are given in table 2.7, showing good agreement with the 

experimental values. 

Table 2.7. Experimental (Vexp) and calculated (Vcalc) partial molar volumes (cm
3
/mol) 

of some aqueous amino acids in their zwitterionic forms at 25°C 

Zwitterion Vcalc
a 

Vexp
b 

Glycine 42.4 43.2 

Alanine 58.4 60.3 

Valine 89.5 91.3 

Isoleucine 105.4 106.8 

Leucine 107.0 107.5 

a
 Coulombic energies were calculated by direct summation with cut-off radius of 0.9-1.0 

nm; 
b
 data from Ref. 36; 

2.5. Technical Aspects 

The volume fluctuations in a constant-pressure MD simulation are quite 

significant. In fact, they exceed the value of an incremental volume increase due to a 

single molecule (see fig 2.11). These large fluctuations complicate the determination of 

volumes; however, reasonably short correlation times (Fig. 2.12) allow us to use the 

standard block-averaging procedure
37

 to obtain average volumes with sufficient accuracy. 

The error of volume determination decreases as the square root of the length of the MD 

trajectory and, as seen from Fig. 2.13, good convergency can be achieved over a 

reasonable period of simulation time. 
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Figure 2.11. The instantaneous and average MD volumes of a system of 256 LJ 

particles. The incremental contribution from a single particle is ca. 0.05 

nm
3
. Large amplitude fluctuations of the instantaneous volume are 

somewhat stabilized by averaging over 10 ps intervals. Further 

improvement is reached by using a cumulative average. 

 

Figure 2.12. Volume autocorrelation function 𝐶(𝑡) =
〈(𝑉(𝜏)−𝑉̅)(𝑉(𝜏+𝑡)−𝑉̅)〉𝜏

〈(𝑉(𝜏)−𝑉̅)2〉𝜏
 for the 

system of 256 LJ particles at 300 K and 1 kbar. 
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Figure 2.13. Displacement volume of a single LJ solvent particle calculated using eq. 

(2.8) as a difference between volumes of 257 and 256-particle systems. 

2.6. An MD-enhanced Geometrical Model 

2.6.1. The MD Based Calculation of Molecular Surface Area 

Molecular surface, or more precisely its area, is a concept widely used in various 

empirical correlations, such as QSAR
38

. Although our MD volume model does not 

directly provide the value of a physically nonexistent molecular surface area, this area, as 

an empirical parameter, can be obtained by a combination of the MD volume model with 

a simple geometrical model, such as solvent accessible model discussed in Section 2.1, 

where molecular surface plays a key role. The molecular surface and the volume 

delimited by it depend on the choice of the probe sphere radius, which can be adjusted so 

that the molecular volume defined by this radius matches the MD-generated volume of 

the system. The probe radius thus defined emulates the combined effect of solvent, 

packing, and thermal expansion. Clearly, this eliminates any predictive power of the 

model with respect to volume, but affords a more reasonable estimate of the molecular 

surface area matching the proper molecular volume.  
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2.6.2. Volumes and Surface Areas of Disubstituted Benzenes 

The environmental fate of organic compounds, including pesticides and 

insecticides, is an important problem due to its environmental implications and the 

resulting economic impact. Partition of these compounds between soil components, 

biophases, and water is crucial to understanding of their environmental degradation.
39

 

This interface equilibrium is frequently described in terms of the octanol-water partition 

coefficient Kow,
40

 which can be expected to correlate with the hydrophobic (n=nonpolar) 

and hydrophilic (p=polar) surface areas of organic compounds in octanol (o) and water 

(w) solvents in terms of the following linear QSAR:
41

  

 𝑙𝑜𝑔𝐾𝑜𝑤 = 𝛼𝑛𝑜𝑆𝑛𝑜 + 𝛼𝑝𝑜𝑆𝑝𝑜 + 𝛼𝑛𝑤𝑆𝑛𝑤 + 𝛼𝑝𝑤𝑆𝑝𝑤 + 𝛼𝑜𝑤 (2.9) 

To obtain the molecular surface areas needed in eq. (2.9), we applied the approach 

described in Section 2.6.1. The compounds of interest were the ortho, meta, and para 

isomers of diethoxy-, dipropoxy-, and diallyloxy-benzene (Fig. 2.14), which are being 

developed as new insect behavioral control agents for agricultural applications
42

 because 

they mimic naturally occurring plant odorants and have been shown to affect olfactory 

responses of moths
38

  

  

Figure 2.14. Dialkoxybenzenes studied. 

Experimental molecular volumes for these compounds were not available, so their partial 

molar volumes in aqueous solvent and octanol were calculated using the MD 

displacement volume method. It was then possible to match the accessible surface 
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volumes to these results by adjusting the probe radii. Using these same radii we were then 

able to obtain the hydrophobic and hydrophilic surface areas for each compound in water 

and octanol. The results are listed in Table 2.8. 

Table 2.8. Calculated volumes and surface areas for dialkoxybenzenes of Fig. 2.14. 

 

Volume 

(cm
3
/mol) 

Augmenting radii 

increments (nm)
a 

Hydrophobic 

Surface Area 

(nm
2
)

b 

Hydrophilic 

Surface Area 

(nm
2
)

b 

octanol water octanol water octanol water octanol 
wate

r 

1,2-diethoxybenzene 163.4 165.1 0.084 0.085 2.35 2.36 0.15 0.15 

1,2-dipropoxybenzene 198.3 197.6 0.088 0.088 2.81 2.81 0.12 0.12 

1,2-diallyloxybenzene 182.2 185.4 0.079 0.081 1.86 1.87 0.96 0.98 

1,3-diethoxybenzene 165.1 163.2 0.085 0.084 2.36 2.35 0.12 0.12 

1,3-dipropoxybenzene 194.5 195.1 0.085 0.086 2.78 2.80 0.11 0.11 

1,3-diallyloxybenzene 191.0 183.2 0.084 0.080 1.92 1.88 0.93 0.91 

1,4-diethoxybenzene 164.0 165.0 0.085 0.085 2.36 2.36 0.14 0.14 

1,4-dipropoxybenzene 197.1 197.5 0.086 0.087 2.76 2.77 0.14 0.14 

1,4-diallyloxybenzene 187.1 187.3 0.083 0.083 1.86 1.86 0.98 0.98 

The molecular surface areas listed in the table were then used to obtain 

coefficients α of eq. (2.8) by the least squares fit to the experimental values of partition 

coefficients. With the exception of p-diethoxybenzene, the values of logKow obtained 

from eq. (2.9) correlated well with experimental data
39

(Fig. 2.15). 
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Figure 2.15. Correlation between experimental octanol–water partition coefficients and 

those estimated from the hydrophobic/hydrophilic molecular surface areas. 

2.7. Conclusion 

The results presented in this chapter demonstrate that the displacement volume 

model is sufficiently accurate to be used for theoretical calculation of molecular volumes 

of stable molecules and that the standard OPLS force field works well for both polar and 

nonpolar systems. We can therefore proceed to the calculation of theoretical activation 

and reaction volumes as described in the subsequent chapters. It was also shown that our 

MD displacement volumes can be used as a tool to improve the performance of the 
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solvent accessible surface model, allowing for the inclusion of previously neglected 

effects of the solvent and thermal expansion in the determination of the molecular surface 

area.  
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Chapter 3.  

 

Reaction and Activation Volumes 

The utility of reaction and activation volumes as mechanistic tools has been 

outlined in Chapter 1. As discussed, the main limitation restricting their use to a 

qualitative level is the lack of a reliable method for relating the volumes of molecular 

systems to their structure. The displacement model of molecular volume introduced in 

Chapter 2 resolves this problem, allowing for quantitative analysis of experimental 

reaction and activation volumes. In this chapter we will show that this method is capable 

of generating accurate theoretical values of reaction and activation volumes with errors 

comparable to those of experiment. 

3.1. Reaction Volumes 

As discussed in Chapter 1, the reaction volume ΔV is defined as the difference 

∆𝑉 = 𝑉𝑃 − 𝑉𝑅 between partial molar volumes of reactants (VR) and products (VP). For 

stable species, the values of VR and VP can be directly measured, thus giving ΔV by eq. 

(1.2). In cases involving unstable and short-lived compounds, as in conformational 

equilibria where individual conformers cannot be isolated, the value of ΔV is determined 

by the reversal of eq. (1.1)
1
  

 ∆𝑉 = −𝑅𝑇 (
𝜕𝑙𝑛𝐾

𝜕𝑃
)
𝑇

 (3.1) 

as the isothermal logarithmic pressure derivative of the equilibrium constant K, usually 

assessed spectroscopically.
2
 The errors of such determination, typically based on a linear 
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approximation for K(P), can be relatively high in comparison with the values of ΔV, as 

illustrated in Table 3.1 by the case of anti-gauche isomerization of 1,2-dichloroethane.
3
 

Table 3.1. Conformational volume changes, ΔV, reported for the anti-gauche 

isomerization of 1,2-dichloroethane by different authors.
3 

Literature 

source 
Solvent 

Pressure 

range, kbar 

Rough 

appearance of 

K(P) 

ΔV, cm
3
/mol 

Reported
a Linearly 

estimated
b 

Ref 3a 
20% in hexane 0 – 4 linear –3.5 –3.2 

30% in hexane 0 – 5 linear –3.8 –3.8 

Ref 3b neat 0 – 2.3 linear –2.7 –3.1 

Ref 3c 2-methylbutane 0 – 7.5 linear –2.9 –2.7 

Ref 3d diethyl ether 

0 – 26.4 nonlinear –2.4
c 

– 

0 – 5.2 linear – –5.1 

0.6 – 5.2 linear – –3.7 

5.2 – 26.4 linear – –1.4 

Ref 3e neat 0.6 – 5.0 linear –0.6 –0.6 
a
 ΔV value as reported in the literature source 

b
 ΔV value obtained in the present work by linear regression based on K(P) values 

reported in the literature source 
c
 ΔV value reported in the literature source based on the exponential fit to K(P) data 

Our displacement model of molecular volume
4
 is applicable to all molecular 

species regardless of their stability. It is therefore suitable for calculation of molar 

volumes of conformers, and thus conformational volume changes. In this section we use 

this model for calculation of the volume changes for conformational equilibria in 1,2-

dichloroethane,
3
 2-chloro- and 2-bromobutane,

5,6
 1-chloro- and 1-bromo-2-

methylpropane,
5,6

 and 1-bromo-butane, pentane, and hexane.
7 

Further, to mimic the 

experimental procedure and for the purpose of comparison, we also generate theoretical 

values for the corresponding equilibrium constants over a range of pressures and obtain 

reaction volumes for these equilibria from eq. (3.1) using a variety of empirical equations 

describing their pressure dependence.
8
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3.1.1. Direct Calculation of Reaction Volume for Conformational Change 

Conformational volume changes were calculated directly from eq. (1.2) using the 

MD-based displacement volume method,
4
 as illustrated by Fig. 3.1 for the case of anti-

gauche isomerization of 1,2-dichloroethane. 

 

Figure 3.1.  1,2-dichloroethane in anti (left) and gauche (right) conformations 

immersed in a solvent (represented here by an overlay of solvent particles, 

positions of which are sampled along the MD trajectory). Due to a short-

range repulsion, the solvent avoids the solute, which results in the creation 

of a solvent cavity of size and shape specific to the solute conformation. 

Color scheme: H – white, C – light blue, Cl – green, solvent – light grey. 

 

Figure 3.2. Newman projection of anti (left) and gauche (right) conformations of 1,2-

dichloroethane immersed in a solvent (the color scheme is the same as in 

Fig. 3.1). Despite an obvious difference in the shapes of solvent cavities 

for these conformations, their volumes do not seem to differ too much. 
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It is interesting to note that, although the shapes of the solvent cavities differ 

significantly for the gauche and anti conformations of 1,2-dichloroethane, their volumes 

are quite similar (see Fig. 3.2). This situation seems to be quite typical for the observed 

conformational volume changes, the reported values of which are usually small.
2
 

Consequently, to obtain these small values theoretically, the volumes of conformers must 

be calculated with an extreme accuracy, preferably within a fraction of 1 cm
3
/mol. As can 

be seen from the convergency plots of Fig. 3.3, this stringent accuracy requirement was 

met by our calculations. 

 

Figure 3.3. Convergency of the conformational volume changes calculated using the 

displacement volume method.
4
 The level of convergency is measured by 

the deviation ΔΔV(t) = ΔV(t) – ΔV∞ of the cumulative average ΔV(t) from 

the trajectory average ΔV∞. 
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Table 3.2. Calculated and experimental conformational volume changes, ΔV, for 

selected neat halogenated hydrocarbons. 

Halogenated 

hydrocarbon 

Conformational 

transformation  

ΔV, cm
3
/mol Literature 

source Calculated
a 

Experimental 

1,2-dichloroethane eq. (3.2) –3.6 
–2.7 Ref 3b 

–0.6 Ref 3e 

2-chlorobutane 
eq. (3.3) –0.9 –1.5 Ref 5 

eq. (3.4) –0.3 –0.8 Ref 5 

2-bromobutane 
eq. (3.3) –0.8 2.0 Ref 5 

eq. (3.4) –0.4 0.6 Ref 5 

1-chloro-2-

methylpropane 
eq. (3.5) –0.8 0.5 Ref 5 

1-bromo-2-

methylpropane 
eq. (3.5) –1.2 –1.7 Ref 5 

1-bromobutane 

eq. (3.6) 

–1.0 –0.8 Ref 7 

1-bromopentane –1.0 –1.0 Ref 7 

1-bromohexane –0.9 –0.5 Ref 7 
a
 ΔV values calculated using the displacement volume method

4
 using eq. (1.2)  

Table 3.2 lists the calculated and experimental values of the conformational 

volume changes for selected neat halogenated hydrocarbons, undergoing conformational 

transformations described by eqs. (3.2)-(3.6): 

 

 

(

(3.2) 

 

 

(

(3.3) 
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(

(3.4) 

 

 

(

(3.5) 

 

 

(

(3.6) 

Comparison of the experimental and MD calculated ΔV values shows a close 

match in most cases, with the exception of 2-bromobutane and 1-chloro-2-methylpropane 

for which the reported experimental ΔV are positive. We believe that these discrepancies 

are due to inaccuracy in the experimental values. As can be seen in Table 3.3, ΔV values 

reported for the same transformations in hexane solvent are all negative and are closely 

matching our values calculated for neat solution. Since such solvent-dependent switch in 

the sign of the volume changes is not observed for the similar cases of 2-chlorobutane 

and 1-bromo-2-methylpropane, it seems likely that the positive experimental ΔV values 

for 2-bromobutane and 1-chloro-2-methylpropane are erroneous. 
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Table 3.3. Experimental conformational volume changes, ΔV, for selected 

halogenated hydrocarbons in hexane. 

Halogenated hydrocarbon 
Conformational 

transformation  
ΔV, cm

3
/mol

a 

2-chlorobutane 
eq. (3.3) –1.8 

eq. (3.4) –0.5 

2-bromobutane 
eq. (3.3) –1.4 

eq. (3.4) –0.9 

1-chloro-2-methylpropane eq. (3.5) –0.6 

1-bromo-2-methylpropane eq. (3.5) –0.5 
a
 Ref 6 

3.1.2. Conformational Volume Changes Obtained From Equilibrium 

Constants 

Due to the small size of the halogenated hydrocarbons considered in our 

calculations, direct MD simulations of their conformational equilibria was feasible and 

was performed for temperature and pressures matching the experimental conditions. 

These calculations were limited to the subset of the systems and processes listed in Table 

3.2, for which the experimental K(P) were available. The simulated equilibrium constants 

were obtained as the ratios of the resident times spent by the systems in the targeted 

conformations. The convergency trends are shown in Fig. 3.4. The calculated equilibrium 

constants plotted in Figs. 3.5-3.9 match the experimental constants within the limits of 

the experimental errors. In all cases the pressure dependences of the equilibrium 

constants, both experimental and simulated, look roughly linear. The conformational 

volume changes, ΔV, obtained from the slopes of their linear regressions are also included 

in the figures. 
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Figure 3.4. Convergency of the ambient pressure equilibrium constants obtained by 

MD simulations of conformational equilibria. The level of convergency is 

measured by the deviation ΔlnK(t) = lnK(t) – lnK∞ of the cumulative 

average K(t) from the trajectory average K∞. In the energy scale, ΔlnK = 

0.05 corresponds to the Gibbs energy difference of only 0.12 kJ/mol. 

 

Figure 3.5. Calculated and experimental equilibrium constants at 298K and various 

pressures for anti-gauche conformational equilibrium in 1,2-

dichloroethane (eq. 3.2). The indicated values of the conformational 

volume changes were obtained using eq. (3.1) from the slopes of the 

respective linear regressions. 
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Figure 3.6. Calculated and experimental equilibrium constants at 298K and various 

pressures for ± synclinal conformational equilibrium in 2-chlorobutane 

(eq. 3.3). The indicated values of the conformational volume changes were 

obtained using eq. (3.1) from the slopes of the respective linear 

regressions. 

 

Figure 3.7. Calculated and experimental equilibrium constants at 298K and various 

pressures for anti-gauche conformational equilibrium in 1-bromobutane 

(eq. 3.6). The indicated values of the conformational volume changes were 

obtained using eq. (3.1) from the slopes of the respective linear 

regressions. 
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Figure 3.8. Calculated and experimental equilibrium constants at 298K and various 

pressures for anti-gauche conformational equilibrium in 1-bromopentane 

(eq. 3.6). The indicated values of the conformational volume changes were 

obtained using eq. (3.1) from the slopes of the respective linear 

regressions. 

 

Figure 3.9. Calculated and experimental equilibrium constants at 298K and various 

pressures for anti-gauche conformational equilibrium in 1-bromohexane 

(eq. 3.6). The indicated values of the conformational volume changes were 

obtained using eq. (3.1) from the slopes of the respective linear 

regressions. 
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Although the idea of using linear regression for obtaining ΔV from K(P) might 

seem reasonable, there is ample evidence in the literature that linear (and often quadratic) 

regression is inadequate for this purpose for the data spread over a wide pressure range.
8,9

 

As discussed in Section 1.4, a variety of more elaborate empirical fitting functions has 

been proposed for that purpose, the most reliable of which (see Chapter 5) are listed 

below starting with the quadratic eq. (3.7):
8
 

 
2

210/ln PaPaKK   (3.7) 

  PaPaKK 430 1/ln   (3.8) 

  PaPaPaKK 4310 1/ln   (3.9) 

  PaaKK 420 1ln/ln   (3.10) 

  PaaPaKK 4210 1ln/ln   (3.11) 

The ΔV values obtained from equations (3.7)-(3.11) fitted to the experimental and 

simulated K(P) data of Figs. 3.5-3.9 are listed in Tables 3.4 and 3.5. 

Table 3.4. Conformational volume changes, ΔV (in cm
3
/mol), obtained from eq. (3.1) 

using linear regression and nonlinear functions (3.7)-(3.11) fitted to the 

experimental K(P) data of Figs. 3.5-3.9. 

System 
Literature 

source 

Fitting function 

Linear eq (3.7) eq (3.8) eq (3.9) 
eq 

(3.10) 

eq 

(3.11) 

1,2-dichloroethane
 

Ref 3b –2.7 –4.3 –4.2 –4.3 –4.2 –4.3 

1,2-dichloroethane Ref 3e –0.6 –1.1 –2.0 –2.1 –2.3 –2.1 

2-chlorobutane Ref 5 –1.5 –1.1 –1.5 –1.1 –1.5 –1.5 

1-bromobutane
 

Ref 7 –0.8 –1.6 –1.6 –1.6 –1.6 –
a 

1-bromopentane Ref 7 –1.0 –1.2 –1.3 –1.2 –1.3 –1.2 

1-bromohexane Ref 7 –0.5 –0.6 –0.6 –
a 

–0.6 –
a 

a
 Failed fit (see text). 
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Table 3.5. Conformational volume changes, ΔV (in cm
3
/mol), obtained from eq. (3.1) 

using linear regression and nonlinear functions (3.7)-(3.11) fitted to the 

simulated K(P) data of Figs. 3.5-3.9. 

System 

Fitting function 

Linear 
eq 

(3.7) 

eq 

(3.8) 

eq 

(3.9) 

eq 

(3.10) 

eq 

(3.11) 

1,2-dichloroethane
 

–1.8 –2.7 –3.0 –3.4 –3.2 –3.5 

2-chlorobutane –0.8 –1.3 –2.0 –
  a 

–2.7 –
  a

 

1-bromobutane
 

–0.6 –0.7 –0.7 –0.7 –0.7 –0.7 

1-bromopentane –0.6 –0.9 –1.0 –0.9 –1.0 –0.9 

1-bromohexane –0.5 –0.6 –0.6 –
  a 

–0.6 –
  a 

a
 Failed fit (see text). 

There was a notable difference in the case of 1,2-dichloroethane between ΔV 

values obtained using eqs. (3.7)-(3.11) and those assessed by linear regression, both for 

the volume changes derived from the experimental and simulated K(P) data, with the 

simulated values matching very closely the average of the values obtained from two of 

the available experimental sources.
3b,e

 In the case of monohalogenated hydrocarbons of 

Tables 3.3 and 3.4, this difference was no longer essential, which should likely be 

attributed to the smaller absolute values of ΔV resulting in a much lesser pressure 

dependence of K. In a few instances eqs. (3.9) and (3.11) failed to produce a reasonable 

fit and generated obviously wrong conformational volume changes. This is consistent 

with our analysis
8b

, presented in Chapter 5 of this thesis, of the performance of various 

fitting functions, including eqs. (3.7)-(3.11), which indicates that tri-parametric eq. (3.9) 

and (3.11) tend to display an instability of the fit when the level of errors in K(P) is 

relatively high. 

3.2. Activation Volumes 

So far, all calculations in this work using the MD displacement volume method 

have been carried out for stable systems well described by the OPLS force field
10

. 

However, neither OPLS nor any other common empirical force field
11

 is parameterized 
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for TS’s. Therefore, the major challenge in obtaining activation volumes from our MD 

simulations is the lack of available force field parameters for the TS’s. Fortunately, this 

problem can be resolved using QM based approaches toward parameterization, which 

have become increasingly widespread in recent years.
12

 In these approaches, force field 

parameters are obtained by fitting classical force fields to the QM deformation energies. 

We adopt this approach in order to generate the necessary OPLS parameters for transient 

species. 

3.2.1. Parameterization of Transition States 

In the OPLS force field, the total energy of a molecule can be separated into two 

contributions – intra- and intermolecular: 

 𝑈 = 𝑈𝑖𝑛𝑡𝑒𝑟 + 𝑈𝑖𝑛𝑡𝑟𝑎 (3.12) 

The intramolecular contribution 𝑈𝑖𝑛𝑡𝑟𝑎 includes bond angle, and out-of-plane 

deformation terms described by harmonic potentials and torsion terms described by a 

combination of cos functions of the torsion angles: 

 

𝑈𝑖𝑛𝑡𝑟𝑎 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑜𝑜𝑝 + 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

𝑈𝑏𝑜𝑛𝑑 = ∑ 𝑘𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

 

𝑈𝑎𝑛𝑔𝑙𝑒 = ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 

𝑈𝑜𝑜𝑝 = ∑ 𝑘𝜓(𝜓 − 𝜓0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 

𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ ∑
𝑉𝑛
2
[1 + (−1)𝑛+1 𝑐𝑜𝑠{𝑛(𝜑 − 𝜑0)}]

4

𝑛=1𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

 

 

(3.13) 
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The intermolecular contribution, U
inter

, consists of van der Waals, Uvdw, and electrostatic 

interactions, Ues, between molecules and is represented by the Lennard-Jones and 

Coulomb potentials, respectively: 

 

𝑈𝑖𝑛𝑡𝑒𝑟 = 𝑈𝑣𝑑𝑊 + 𝑈𝑒𝑠 

𝑈𝑣𝑑𝑊 = 𝑈𝐿𝐽 =∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

])

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

⁡𝑈𝑒𝑠 =∑ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

(3.14) 

Though intermolecular parameters 𝜀, σ, and q can also be parameterized using QM, in 

this work we rely on their values previously adapted from OPLS,
4
 and focus primarily on 

obtaining the intramolecular parameters kb, kθ, kψ and Vn.  

The required parameters were obtained by minimizing the function 

 𝛷𝑖𝑛𝑡𝑟𝑎 = ∑ (𝑈𝑛,𝑄𝑀
𝑖𝑛𝑡𝑟𝑎 − 𝑈𝑛,𝑀𝐷

𝑖𝑛𝑡𝑟𝑎)
2

𝑁𝑐𝑜𝑛𝑓

𝑛=1

 (3.15) 

where Nconf  is the number of sampled geometrical configurations of the target molecule, 

𝑈𝑛,𝑄𝑀
𝑖𝑛𝑡𝑟𝑎 is the QM calculated energy, and 𝑈𝑛,𝑀𝐷

𝑖𝑛𝑡𝑟𝑎 is the intramolecular part of the classical 

force field described by eq. 3.13 obtained for n-th configuration. Configurations were 

sampled from an MD trajectory with the TS structure constrained along the reaction 

coordinate but flexible in all remaining degrees of freedom. The initial guess parameters 

were taken from OPLS. This approach is implemented in the program ForceBalance
12c,d

 

which was used for the parameterization of all TS in this work.  
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3.2.2. Calculation of Activation Volumes 

Activation volumes were calculated according to eq. (1.4) as the differences 

∆𝑉≠ = 𝑉≠ − 𝑉𝑅 for two non-polar reactions: Diels-Alder dimerization of isoprene, and 

hydrogen transfer from methane to methyl radical. 

 

 

(3.16) 

  (3.17) 

The MD calculated activation volumes for reactions 3.16 and 3.17 are given in table 3.6 

and show good agreement with the experimental data. 

Table 3.6. Comparison of experimental (ΔV
≠

exp) and calculated (ΔV
≠

calc) activation 

volumes for reactions (3.16)-(3.17). 

Reaction Solvent ΔV
≠

calc ΔV
≠

exp  

Dimerization of Isoprene Bromobutane
a
 -31.0 ± 1.9 -33.9 

Hydrogen Transfer Hexane -18.9 ± 2.2 ~ -20
b
 

a
 Kinetic data from ref. 13 

b
 Estimated from experimental data for similar reactions

2 

3.3. Computational Details 

MD simulations were performed using the GROMACS software package
14

 for 

systems with 1000 molecules maintained at constant pressure and temperature conditions 

using Berendsen temperature and pressure coupling
15

 with τT = 0.1 ps and τP = 1.0 ps. For 

the displacement volume calculations of conformational volumes, 10 molecules locked in 

the desired conformations by harmonic restraints (see Fig. 3.10) were added as solutes. 

For the activation volume calculations 1 molecule, either reactant or TS, was added as the 

solute. The MD trajectories were obtained via leap-frog integration
16

 with a time step of 1 

fs in a cubic box with periodic boundary conditions and an interaction cutoff of 1.0 nm 

CH3H +   CH3
. .

CH3   + HCH3
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for Lennard-Jones interactions. The long-range electrostatic interactions were calculated 

using the particle mesh Ewald method
17

 with a real-space cut off of 1.0 nm. The lengths 

of the trajectories were determined by the convergency of the calculated quantities and 

ranged from 0.8 to 1.5 ns for volume calculations and from 13 to 85 ns for equilibrium 

constant calculations. The OPLS force field
10

 was used for organic molecules in all cases. 

Intramolecular parameters for TS were parameterized using ForceBalance
7d,e

, with 

conformational sampling of 5000 configurations taken from an MD simulation of 1000 

TS “molecules” at temperature and pressure conditions matching the experiment. Single 

point energy calculations for the conformers were performed using Gaussian 09 suite
18

 at 

the B3LYP/6-31G++G(d,p) level.  

 

Figure 3.10. Torsional profiles of the unconstrained 1,2-dichloroethane and its 

harmonically restrained anti and gauche conformations. 



 

69 

3.4. Conclusion 

A comparison of the data listed in Table 3.2-3.4 proves that ΔV values obtained 

by the displacement volume method and those assessed from the pressure dependence of 

the equilibrium constant, both experimental and simulated, match quite closely, which 

recommends the displacement volume technique as a reliable tool for theoretical 

assessment of the conformational volume changes. The rather quick convergence of the 

volume values obtained using this technique makes its application feasible for studying 

conformational equilibria in much more complex molecular systems than the halogenated 

hydrocarbons discussed here. 

The choice of a fitting function for K(P) remains an important issue in analysis of 

the experimental data. Quadratic equation (3.7) worked quite well for all conformational 

equilibria considered in this work, likely due to the fact that the absolute values of the 

conformational volume changes did not exceed 5 cm
3
/mol, resulting in only slight 

curving of K(P). For that reason even linear regression worked reasonably well. This 

situation is dramatically different from the case of the pressure dependence of the rate 

constants for reactions with significant activation volumes, where quadratic equation fails 

quite badly in its application to kinetic data over the pressure ranges exceeding 1-2 

kbar.
8b

 Chapter 5 of the thesis offers a thorough examination of this topic. 

No less importantly, the results shown in Table 3.5 demonstrate that, paired with a 

reliable parameterization protocol, the displacement volume method can provide accurate 

values of theoretical activation volumes. These volumes are sensitive to the geometry of 

the TS and thus can be used, together with the high-pressure kinetic data, for the analysis 

of the reaction mechanisms, similar to the traditional analysis based on the comparison of 

the calculated and experimental activation energies. 
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Chapter 4.  

 

Reaction Profiles and Energy Surfaces of Compressed 

Species 

4.1. Volume Profiles 

As discussed in Section 1.3, the concept of a volume profile V(x), describing how 

the volume of a reaction system changes along its reaction coordinate x, is frequently 

used in the mechanistic analysis of many chemical reactions.
1 

In most cases, volume 

profiles are treated as discrete three-point schematics describing the volumetric properties 

of the reactant, transition, and product states.
2
 A continuous-curve approach offers a 

significantly stronger alternative and has been explored in the past in the context of 

studies of high pressure effects on the structure and energy of transition states.
3

 Until 

recently, this approach faced a major limitation stemming from the lack of an adequate 

computational technique to produce the necessary continuous volume function. However, 

now this no longer presents an obstacle
4
 since our MD method can be used for 

calculations of volumes of transient species along the reaction path, thus giving the 

continous volume profile as V(x) = V(Z(x)), where Z(x) is a transient structure sampled at 

point x along reaction coordinate. Correspondingly, an “adjusted” continuous volume 

profile V(x) = V(x) – V(x0), that measures change of volume relative to the reactant state 

Z0  is merely a difference. 

 V(x) = V(Z(x)) – V(Z0) (4.1) 

It follows from eq. 1.2, 1.4, and 4.1 that the activation volume V≠ = V(x≠), and the 

reaction volume V = V(xP). 
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4.1.1. Bistable Diatomic 

An example of a volume profile obtained using the above procedure is shown in 

Fig. 4.1 for a model bistable diatomic described by a quartic double-well potential 

  22

2

1 1)( xxxU    (4.2) 

with  = -3600 kJ mol
-1

 nm
-2

 and   = 50 nm
-2

 (see Fig. 4.2). The variable bond length x 

serves as a reaction coordinate that describes the isomerization process between two 

states of the diatomic represented by two stable minima of potential (4.2) located at 

x=0.15 nm (“short state”) and x=0.35 nm (“long state”). The minima are separated by a 

barrier of 9 kJ/mol with a TS at x=0.25 nm. MD simulations were performed at T = 300K 

and P = 1 kbar, under which conditions the solvent was liquid.
5 

 

Figure 4.1. Volume profile V(x) of a model diatomic at the reference pressure of 1 

kbar (red diamonds). The linear profile predicted by Stearn-Eyring model 

is shown in blue for comparison. The insets, labeled by the values of x, 

illustrate the evolution of the sizes and shapes of the solvent cavity. 
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Figure 4.2. Energy profile of a model diatomic described by eq. (4.2). The insets show 

solvent cavities around the diatomic in its short and long states.  

As can be seen from the insets in Fig. 4.1, the solvent cavities retain nearly 

constant cross-sections  for x ranging between 0.1 and 0.3 nm. As a result, the volume 

profile for this system is well described by the linear equation V(x) = (x-x0) of the 

Stearn-Eyring model.
6
 The radius of the circular cross-section estimated from this linear 

dependence is 0.31 nm. At x > 0.3 nm, a narrowing develops in the middle of the cavity, 

resulting in a marked nonlinearity of the volume profile. 

4.1.2. Linear Triatomic System 

The volume profile for the bistable diatomic is predictably a monotonic function 

of x since this variable describes the size of the system. The same can be expected for 

other simple processes, such as dissociation/association,
7
 where a single distance 

parameter serves as a reaction coordinate for the duration of the entire process. The 

situation is quite different in most other cases, where the reaction coordinate involves 

more than one internal coordinate of a system. Substitution reactions constitute an 

important case; collinear exchange reactions A + BC → AB + C being a classic example 

of this type. A linear triatomic system ABC that undergoes this transformation is 
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described by two geometrical parameters – A-B distance RAB and B-C distance RBC. A 

typical potential energy surface
8
 (PES) for a homonuclear case A = B = C is shown in 

Fig. 4.3 (the numerical values of the potential energy function U(RAB,RBC) determining 

this PES can be found in the Appendix A). 

 

Figure 4.3. PES for model homonuclear linear triatomic system A-B-C (A = B = C). 

The white line is the BEBO reaction path 

The reaction path can be approximated reasonably well by the Bond Energy Bond 

Order
9 

(BEBO) parametric equation 

 {
𝑅𝐴𝐵 = 𝛼 − 𝛽𝑙𝑛⁡(𝑛)

𝑅𝐵𝐶 = 𝛼 − 𝛽𝑙𝑛⁡(1 − 𝑛)
 (4.3) 

 

A 
B C 
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with  = 0.093 nm and  = 0.028 nm. The bond order parameter n can serve as a 

nonuniformly scaled reaction coordinate with values of n = 0, 0.5, and 1 for reactant, TS, 

and product, respectively. Alternatively, a uniformly scaled reaction coordinate x (with 

the reference x = 0 for TS) can be defined as a signed length of the reaction path. 

 𝑥(𝑛) = 𝛽 ∫
√𝜂2 + (1 − 𝜂)2

𝜂(1 − 𝜂)
𝑑𝜂

𝑛

0.5

 (4.4) 

The volume profile along coordinate x calculated for the above triatomic system at T = 

300K and P = 1 kbar is shown in Fig. 4.4. As could be expected, the graph represents a 

curve with a minimum at x = 0 corresponding to the TS. Remarkably, the volume profile 

matches closely the linear dimension of the triatomic L(x) = RAB+RBC. The graph 

becomes linear if, instead of reaction coordinate x, the volume profile is plotted against 

parameter L (Fig. 4.5), as it was originally suggested by Stearn and Eyring.
6
 The 

estimated radius of the circular cross-section in this case is 0.30 nm, which is consistent 

with the value found for the bistable diatomic. 

 

Figure 4.4. Volume profile V(x) (red diamonds) and length profile L(x) (blue line) for 

a model collinear triatomic exchange reaction at the reference pressure of 

1 kbar. 
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Figure 4.5. Volume profile V(L) of a model triatomic at the reference pressure of 1 

kbar (red diamonds). The linear profile predicted by Stearn-Eyring model
6
 

is shown in blue for comparison. Its equation and correlation coefficient 

are shown in the upper right part of the figure. 

4.1.3. Stearn-Eyring Model 

The Stearn-Eyring model, which has earlier been discussed in Section 1.2 and 2.1, 

gives a simple expression for a volume profile as a linear function of the size parameter 

L(x)  

 V(x) = [L(x) – L(x0)] (4.5) 

The requirement of  = const needs to be satisfied only for the part of the cavity adjacent 

to the reaction center. The rest of the system does not change in the course of reaction 

and its volume remains constant, thus giving zero contribution to the volume profile. As 

an illustration, we will consider the case of two reaction series of hydrogen atom 

abstraction by bromine radical from the aliphatic hydrogen of substituted toluenes:
10

 

Series A: X-Ph-CH2H  +  Br
•
  →  X-Ph-CH2

•
  +  HBr 
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and  

Series B: Ph-CY’Y”H  +  Br
•
  →  Ph-CY’Y”

•
  +  HBr 

with  X = H, p-CH3, m-CH3, p-Cl, m-Br, and Y’Y” = HH, CH3H, CH3CH3, PhH. The 

images of the solvent cavities around the reactant state and TS of the unsubstituted 

toluene (X = H, Y’Y” = HH) are shown in Fig. 4.6. The major change in the cavity 

occurs in the course of reaction in the region adjacent to the reaction center C-H-Br (the 

“neck” of the rubber-duck-shaped cavity). The situation is similar in other reactions of 

series A and B (see Appendix B). 

 

Figure 4.6. Solvent cavities around the reactant state (a) and TS (b) of abstraction of 

hydrogen atom (white) by bromine (red) from toluene (blue and white 

wire frame) 

In all cases, the C-Br distance serves as the linear dimension parameter, L = RCBr 

= RCH + RHBr. The values of RCH and RHBr for the B3LYP/6-31++G(d,p)-optimized
11

 TSs 

of reactions of both series are listed in Table 4.1 along with the experimental values
10

 of 

activation volume differences V
≠
 = V

≠
  V

≠
ref determined with reference to the 

reaction of unsubstituted toluene. As can be seen from Fig. 4.7, these TSs cluster fairly 

close to the common BEBO reaction path  

 

(b) (a) 
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 {
𝑅𝐻𝐵𝑟 = 0.142 − 0.039𝑙𝑛⁡(𝑛)

𝑅𝐶𝐻 = 0.108 − 0.039𝑙𝑛⁡(1 − 𝑛)
 (4.6) 

This allows one to use the same reaction coordinate x for all reactions of these series. If 

the Stearn-Eyring model applies, the value of V
≠
 can be expressed in terms of eq. (4.7) 

as  

 V
≠
 = V(x

≠
)  V(x

≠
ref) = [L(x

≠
) – L(x0)]  ref[L(x

≠
ref) – L(x0)] (4.7) 

where x
≠
 is the reaction coordinate of a TS, and x0 is assumed to be the same for all 

reactions. 

Table 4.1. B3LYP/6-31G++G(d,p)-optimized RCH and RHBr distances in TS’s of 

hydrogen transfer reactions of series A and B and the experimental 

values
10

 of activation volume differences V
≠
 

 Substrate RCH, nm RHBr, nm V
≠
, cm

3
/mol 

reference toluene 0.1616 0.1534 0 

Series A 

m-xylene 0.1619 0.1535 1.5 

p-xylene 0.1628 0.1533 3.0 

m-bromotoluene 0.1589 0.1540 -3.0 

p-chlorotoluene 0.1601 0.1540 -1.2 

Series B 

ethylbenzene 0.1579 0.1546 -4.8 

cumene 0.1515 0.1570 -5.5 

diphenylmethane 0.1423 0.1624 -2.4 
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Figure 4.7. TSs for reactions of series A and B plotted in coordinates (RCH , RHBr) 

together with BEBO reaction path (4.7). 

If the cavity cross-section  for a given reaction is close to that of the reference 

reaction, ref, then eq. (4.7) simplifies to  

 V
≠
 = [L(x

≠
) – L(x

≠
ref)] = L

≠
 (4.8) 

That is, if  is constant in a reaction series, the relative values of activation 

volumes, V
≠
, can be expected to be proportionate to the relative values of C-Br 

distances L
≠
 in the TS’s. As can be seen in Fig. 4.8, such linear correlation is indeed 

observed for series A where cavity cross-sections are roughly equal due to the fact that 

substituents X are removed sufficiently far from the reaction center. In the case of series 

B, the substituents are introduced directly into the reaction center, which results in a 

substantial variation of  and, consequently, in the loss of linearity between V
≠
 and 

L
≠
. 
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Figure 4.8. A plot of experimental activation volume differences,
10

 V
≠
, vs. the 

differences in C-Br distances, L
≠
, in TSs for hydrogen abstraction by 

bromine radical from substituted toluenes: blue circles – Series A, red 

squares – Series B. The insets show solvent cavity cross-sections 

orthogonal to C-H-Br line and passing through H atom. 

4.2. Reaction Profiles and Energy Surfaces for Model Systems 

4.2.1. Reaction Profiles 

Volume is an isothermal pressure derivative of Gibbs energy. Therefore, the 

Gibbs energy profile G(x;P) at a given pressure P can be obtained from the Gibbs energy 

profile G0(x)=G(x;P0) at a reference pressure P0 by integration of the pressure dependent 

volume profile V(x;P): 
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 𝐺(𝑥; 𝑃) = 𝐺0(𝑥) + ∫𝑉(𝑥; 𝑝)𝑑𝑝

𝑃

𝑃0

 (4.9) 

If the pressure dependence of V(x) can be neglected, eq.(4.9) reduces to a much simpler 

approximate relation 

 𝐺(𝑥; 𝑃) ≈ 𝐺0(𝑥) + (𝑃 − 𝑃0)𝑉(𝑥) (4.10) 

We used these equations to evaluate the effect of pressure on the shapes of reaction 

profiles for the short-to-long isomerization of a bistable diatomic and model collinear 

triatomic exchange reaction described in the previous section. The necessary reference 

Gibbs energy profiles G0(x) were obtained from the gas-phase energy profiles U(x) by 

adding to them MD solvation Gibbs energies acquired by thermodynamic integration
13

 at 

a reference pressure P0 = 1 kbar. The results are shown in Fig. 4.9. The approximate 

pressure-dependent profiles G(x;P) calculated using eq. (4.10) compare favorably with 

the exact profiles obtained directly from U(x) using thermodynamic integration at the 

target pressure P.  
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Figure 4.9. Exact and approximate energy profiles for a bistable diatomic (left) and a 

model collinear triatomic exchange reaction (right): magenta – gas-phase 

energy profile U(x), eq. (4.2); green – reference Gibbs energy profile G0(x) 

at P0 = 1 kbar; red –G(x;P) at P = 1.5 kbar ; blue –G(x;P) at P = 3 kbar; 

solid lines – exact G(x;P); open circles – approximate G(x;P), eq. (4.10). 

Despite neglecting the pressure dependence of the volume profile, approximate 

equation (4.10) works quite well. This can probably be attributed to the fact that the 

major pressure-induced restructuring of the solute happens along its softest coordinate x, 

which is considered explicitly in the equation. This restructuring is substantial: both the 

barrier height and positions of stationary points (minima and TS) are affected by 

pressure. The direction of these shifts can be assessed using eq. (4.10).
3b

 If x = a0 is a 

stationary point of G0(x) and x = aP is the corresponding stationary point of G(x;P), their 

relative shift aP  a0 can be estimated in the first iteration of the Newton-Raphson 

optimization
14

 as  
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 𝑎𝑃 − 𝑎0 ≈ −{(
𝑑𝐺(𝑥; 𝑃)

𝑑𝑥
) (

𝑑2𝐺(𝑥; 𝑃)

𝑑𝑥2
)⁄ }

𝑥=𝑎0

 (4.11) 

By virtue of eq. (4.10) and since the first derivative of G0(x) at its stationary point 

a0 is zero, eq. (4.11) reduces to eq. (4.12). 

 

𝑎𝑃 − 𝑎0 ≈ −(𝑃 − 𝑃0) {(
𝑑𝑉(𝑥)

𝑑𝑥
) (

𝑑2𝐺(𝑥; 𝑃)

𝑑𝑥2
)⁄ }

𝑥=𝑎0

= −(𝑃 − 𝑃0)𝑉′(𝑎0)/𝐺"(𝑎0; 𝑃) 
(4.12) 

For reactant and product minima, the second derivative 𝐺"(𝑎0; 𝑃) is positive. Therefore, 

for the bistable diatomic, where the volume profile V(x) is an increasing function of x, 

both short- and long-state minima shift to the left with pressure. On the contrary, 

since⁡𝐺"(𝑎0; 𝑃) is positive for the TS it shifts to the right. In the case of the triatomic 

exchange reaction, V′(x) is negative for the reactant, positive for the product and zero for 

the TS. As a result, the reactant minimum moves to the right, the product shifts to the left, 

and the TS does not change its position with pressure. 

4.2.2. Energy Surfaces  

The bistable diatomic is a one-dimensional (1D) system and its energy profile 

U(x) constitutes its full potential energy surface (PES). The situation is different for 

multidimensional systems, such as the linear triatomic system where the energy profile 

U(x) is just a cross-section of its 2D PES. Solvation modifies this PES and, consequently, 

the reaction path, which redefines reaction coordinate x and energy profile U(x). 

Compression is expected to further magnify this effect. Therefore, above a certain 

threshold, the effect of pressure on such systems is more appropriately described by its 

effect on their PES’s rather than reaction profiles. Equations (4.9) and (4.10) can easily 
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be upgraded to a multidimensional case by simple replacement of reaction coordinate x 

with a multidimensional coordinate vector x: 

 G(𝐱; 𝑃) = 𝐺0(𝐱) + ∫𝑉(𝐱; 𝑝)𝑑𝑝

𝑃

𝑃0

≈ 𝐺0(𝐱) + (𝑃 − 𝑃0)𝑉(𝐱) (4.13) 

V(x;P) and V(x) thus become multivariable functions and should therefore more 

appropriately be referred to as volume surfaces rather than volume profiles. We 

calculated the V(x) surface for the model linear triatomic for P0 = 1 kbar and used it, in 

conjunction with eq. (4.13), to construct an approximate pressure-dependent Gibbs 

energy surface (GES) for this system at P = 3 kbar. The reference-pressure GES G0(x) 

and the exact GES G(x;P) were obtained from the gas-phase PES U(x) of Fig. 4.3 by 

augmenting them with MD solvation Gibbs energies generated by thermodynamic 

integration at P0 = 1 kbar and P = 3 kbar, respectively. The results are shown in Fig. 

4.10. As can be seen from the figure and Table 4.2 listing parameters of the GES’s, the 

exact and approximate surfaces are fairly similar. 
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Figure 4.10. Reference 1 kbar GES G0(x) (a) and the exact (b) and approximate (c) 

pressure-dependent GES G(x;P) of the model linear triatomic system at P 

= 3 kbar. The contour spacing is 2 kJ/mol. 

Table 4.2. Geometrical parameters of stationary points and reaction barriers of three 

high pressure GES’s for the collinear triatomic exchange reaction. 

Pressure, 

kbar 
Energy surface 

Reactant TS Reaction 

barrier, 

kJ/mol RAB, nm RBC, nm RAB, nm RBC, nm 

1.0 
Reference GES 

(Fig 4.10a) 
0.0916 0.1897 0.1094 0.1094 14.9 

3.0 

Exact GES  

(Fig. 4.10b) 
0.0912 0.1737 0.1086 0.1086 13.4 

Approximate GES 

(Fig. 4.10c) 
0.0914 0.1761 0.1085 0.1085 13.1 

 

 

(a) (b) 

(c) 
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As in the case of Gibbs energy profiles, reaction barriers and stationary points of 

the GES’s are strongly affected by pressure. The pressure-induced displacement of the 

stationary points is roughly described by eq. (4.14), generalizing eq. (4.12) to a 

multidimensional case:  

 𝜆𝑖𝑃 − 𝜆𝑖0 ≈ −(𝑃 − 𝑃0) {(
𝜕𝑉(𝒙)

𝜕𝜆𝑖
) (

𝜕2𝐺(𝒙; 𝑃)

𝜕𝜆𝑖
2 )⁄ }

𝒙=𝒂𝟎

 (4.14) 

where iP and i0 are normal coordinates at the stationary points a and a0 of G(x;P) and 

G0(x). In the case of the triatomic described by the GES of Fig. 4.10, the normal modes 

for the TS are L (the total length of the triatomic) and x (the reaction 

coordinate). Since 𝜕𝑉 𝜕𝑥⁄ = 0, x
≠
 = x

≠
0, i.e. the TS does not shift along the reaction 

coordinate in the multidimensional case either. At the same time, 𝜕𝑉 𝜕𝐿⁄ > 0 and 

𝜕2𝐺 𝜕𝐿2⁄ > 0, and as a result, the TS is somewhat shifted with pressure in the diagonal 

direction toward the lower left corner. For the reactant and product minima, the normal 

modes are ≈RAB and ≈RBC, and the minima shift in both directions due to the fact 

that 𝜕𝐺 𝜕𝜆𝑖⁄ > 0 and 𝜕2𝐺 𝜕𝜆𝑖
2⁄ > 0. Since the second derivative of G(x;P) along the 

reaction coordinate x is smaller than that across, both reactant and product minima are 

shifted toward the TS to a much greater degree than in the lateral direction. This lateral 

deformation of GES can likely be ignored at lower pressures and the reaction path 

remains practically unchanged, which makes volume and reaction profiles a meaningful 

tool for studying high pressure effects over the 0-10 kbar range. However, as we show 

below, the situation becomes dramatically different as pressure is further increased. 

4.3. Energy Surfaces for Hydrogen Transfer and SN2 Reactions 

at Extreme Pressures 

To extend our study of high-pressure effects on the energy landscape we have 

chosen to look at two classes of system that are close realistic analogs of the model 
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triatomic system discussed in the previous sections: hydrogen transfer reactions X + HY 

→ XH + Y between halogen atoms (X and Y = F, Cl, Br) or hydrocarbon systems R'-H-

R" (R',R" = Me, Et, i-Pr), and anionic X-CH3-Y

 systems (X,Y = CN, F, Cl, Br) 

modeling SN2 reactions.
15

 We modeled the effect of extreme pressures on their PES’s by 

embedding the reaction systems into compressed 1D and 3D neon matrices as shown in 

Figs 4.11 and 4.12. The PES were calculated by scanning RXH and RHY on a 2525 grid 

with a step of 0.005 nm. 

 

Figure 4.11. XCH3X

 system in a 1D Ne matrix: X is green, C is cyan, H is white, Ne 

is red. Pressure exerted on the reaction system is generated by a 

compressed Ne chain with terminal atoms fixed at distance L. 

 

Figure 4.12. Linear X-H-X system in a 3D Ne matrix: X atoms are green, H atom is 

white, the Ne atoms of a 1D submatrix are red, and all other Ne atoms of 

the matrix are grey. 

4.3.1. 1D Matrix 

Reaction systems were inserted coaxially within a chain of Ne atoms (one to three 

Ne atoms on each side), and positions of the terminal Ne atoms were adjusted to attain 
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the desired degree of compression, while the geometry of the rest of the system was 

optimized. The PESs were then constructed by scanning the RXH and RHY parameters in 

X-H-Y, C-H distances, RR'H and RHR" in, R'HR", or X-C and C-Y distances, RXC and RCY, 

in XCH3Y

 with positions of the terminal Ne atoms held fixed and the rest of the 

parameters of the system optimized. The force exerted onto the system was calculated as 

a negative derivative  F = dU/dL of the optimized energy U(L) with respect to distance 

L between terminal Ne atoms. We considered three regimes, referred to as low, medium, 

and high compression. For X-H-Y systems the regimes corresponded to compression 

forces of 0.15, 0.75, and 2.0 hartree/nm, while for the R'HR and XCH3Y

 forces of 0.1, 

0.5, and 1.0 hartree/nm were used. Compression of 0.1 hartree/nm is roughly equivalent 

to 100 kbar in the case of the F-H-F system (see Section 4.4.4.3). Varying the number of 

Ne atoms in the solvent matrix did not seem to have a significant effect on the energy 

surfaces (see Table 4.3).  
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Table 4.3. Parameters of the HF/6-31G PES of symmetric X-H-X systems (X = F, 

Cl, Br) embedded in Ne matrices of varying number of shells, with the 

outer shell frozen. Parameters of the gas-phase PES are also included for 

comparison. 

System Compression 
Matrix 

size 

Reactant TS 

RXH, nm RHX, nm RXH, nm 
Reaction barrier, 

kJ/mol 

F-H-F 

Zero gas phase 0.092 0.214 0.113 152 

Low 

1-shell 0.091 0.189 0.110 130 

2-shell 0.091 0.189 0.112 124 

3-shell 0.091 0.189 0.113 124 

Medium 

1-shell 0.089 0.140 0.107 65 

2-shell 0.090 0.142 0.106 65 

3-shell 0.090 0.142 0.105 65 

High 

1-shell 0.087 0.111 0.098 14 

2-shell 0.087 0.113 0.098 17 

3-shell 0.088 0.118 0.100 23 

Cl-H-Cl 

Zero gas phase 0.130 0.301 0.154 82 

Low 

1-shell 0.129 0.228 0.153 58 

2-shell 0.129 0.229 0.153 56 

3-shell 0.129 0.229 0.150 54 

Medium 

1-shell 0.128 0.169 0.145 9 

2-shell 0.128 0.169 0.144 8 

3-shell 0.128 0.169 0.145 8 

High 

1-shell 0.133 0.133 
single 

minimum 
no reaction 2-shell 0.133 0.133 

3-shell 0.135 0.135 

Br-H-Br 

Zero gas phase 0.141 0.280 0.167 56 

Low 
1-shell 0.141 0.223 0.165 38 

2-shell 0.141 0.230 0.165 27 

Medium 
1-shell 0.143 0.170 0.155 2 

2-shell 0.143 0.173 0.155 2 

High 

1-shell 0.145 0.145 
single 

minimum 
no reaction 2-shell 0.144 0.144 

3-shell 0.144 0.144 
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Table 4.4. Parameters of the HF/6-31G PES of asymmetric X-H-Y systems (X, Y = F, Cl, Br) embedded in the Ne matrix with the 

outer shell frozen. Parameters of the gas-phase PES are also included for comparison. 

System Compression 
XH + Y X + HY TS Reaction barrier, kJ/mol 

RXH, nm RHY, nm RXH, nm RHY, nm RXH, nm RHY, nm XH + Y X + HY 

F-H-Cl 

Gas phase 0.092 0.275 0.248 0.130 0.120 0.148 164 95 

Low 0.092 0.221 0.190 0.128 0.118 0.147 137 72 

Medium 0.090 0.177 0.149 0.125 0.116 0.138 77 19 

High 0.089 0.148 single minimum no reaction 

F-H-Br 

Gas phase 0.092 0.261 0.246 0.142 0.124 0.159 165 78 

Low 0.092 0.224 0.193 0.140 0.120 0.158 140 53 

Medium 0.089 0.158 single minimum no reaction 

High 0.089 0.152 single minimum no reaction 

Cl-H-Br 

Gas phase 0.130 0.272 0.295 0.142 0.159 0.163 80 60 

Low 0.129 0.241 0.231 0.141 0.155 0.162 65 40 

Medium 0.128 0.180 single minimum no reaction 

High 0.130 0.147 single minimum no reaction 
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The parameters of the stationary points obtained for symmetric and asymmetric systems 

are summarized in Tables 4.3-4.8. In all cases, pressure has a tremendous effect on the 

PES topography. With increasing pressure, the reactant and product minima shift toward 

the TS, as predicted by eq. (4.15), and the reaction barrier gets lower. At sufficiently high 

compressions the systems collapse into a single minimum. This behavior is common for 

both symmetric and asymmetric systems, with one notable difference, whereas the single 

minimum of a highly compressed PES for a symmetric system appears as the limit of the 

TS sequence; for the asymmetric system it appears as the limit for the sequence of the 

exothermic minima. The trends are illustrated in Fig. 4.13-4.16 by PES’s for the 

representative F-H-F, F-CH3-F

, CH3-H-CH3, and F-CH3-Cl


 systems. The full set of 

PES’s for all A-B-C systems (A=X,R'; B=H,CH3; C=Y,R") systems at various 

compressions is included in Appendix C.  

Table 4.5. Parameters of the B3LYP/6-31++G(d,p) PES of symmetric R'HR' systems (R' 

= Me, Et, i-Pr) embedded in compressing Ne matrices. Parameters of the 

zero-compression gas-phase PES are also included for comparison. 

System Compression 
Reactant TS 

RR'H, nm RHR', nm RR'H, nm Reaction barrier, kJ/mol 

Me-H-Me 

Zero no minimum 0.135 64 

Low 0.110 0.220 0.135 45 

Medium 0.110 0.165 0.130 9 

High 0.120 0.120 single minimum no reaction 

Et-H-Et 

Zero no minimum 0.135 68 

Low 0.110 0.225 0.135 50 

Medium 0.110 0.165 0.125 14 

High 0.125 0.125 single minimum no reaction 

i-Pr-H-i-Pr 

Zero no minimum 0.135 70 

Low 0.110 0.230 0.135 54 

Medium 0.110 0.170 0.130 17 

High 1.15 1.35 1.25 2 
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Table 4.6 Parameters of the B3LYP/6-31++G(d,p) PES of asymmetric Me-H-R" systems (R" = Et, i-Pr) embedded in 

compressing Ne matrices. Parameters of the zero-compression gas-phase PES are also included for comparison. 

System Compression 
Me-H + R" Me + CH3-R" TS Reaction barrier, kJ/mol 

RMeH, nm RHR", nm RMeH, nm RHR", nm RMeH, nm RHR", nm Me-H + R" Me + H-R" 

Me-H-Et 

 

Zero no minimum no minimum 0.135 0.130 77 58 

Low 0.105 0.260 0.225 0.105 0.135 0.130 64 32 

Medium 0.105 0.170 single minimum no reaction 

High 0.105 0.140 single minimum no reaction 

Me-H-iPr 

 

Zero no minimum no minimum 0.140 0.130 84 49 

Low 0.108 0.228 0.213 0.108 0.138 0.128 72 25 

Medium 0.108 0.178 single minimum no reaction 

High 0.108 0.153 single minimum no reaction 
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Table 4.7 Parameters of the B3LYP/6-31++G(d,p) PES of symmetric X-CH3-X
 

systems (X = CN, F, Cl, Br) embedded in compressing Ne matrices. 

Parameters of the zero-compression gas-phase PES are also included for 

comparison. 

System Compression 

Reactant TS 

RXC, nm RCX, nm RXC, nm 
Reaction barrier, 

kJ/mol 

NC-CH3-CN 

Zero 0.150 0.300 0.210 167 

Low 0.150 0.295 0.205 159 

Medium 0.150 0.260 0.195 137 

High 0.100 0.240 0.185 121 

F-CH3-F
 

Zero 0.145 0.255 0.185 43 

Low 0.145 0.240 0.180 35 

Medium 0.145 0.215 0.180 25 

High 0.145 0.190 0.165 7 

Cl-CH3-Cl 

Zero 0.185 0.320 0.235 37 

Low 0.185 0.295 0.235 33 

Medium 0.180 0.265 0.225 28 

High 0.180 0.240 0.205 20 

Br-CH3-Br 

Zero 0.200 0.335 0.255 28 

Low 0.200 0.295 0.245 26 

Medium 0.200 0.270 0.230 18 

High 0.195 0.215 0.220 13 
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Table 4.8 Parameters of the B3LYP/6-31++G(d,p) PES of asymmetric X-CH3-Y

 

systems (X, Y = NC, F, Cl, Br) embedded in compressing Ne matrices. 

Parameters of the zero-compression gas-phase PES are also included for 

comparison. 

System 
Compressio

n 

X-CH3 + Y X + CH3-Y TS Reaction barrier, kJ/mol 

RXC, 

nm 

RCY, 

nm 

RXC, 

nm 

RCY, 

nm 

RXC, 

nm 

RCY, 

nm 

X-CH3 + 

Y 

X + CH3-

Y 

NC-CH3-F

 

Zero 0.145 0.265 0.265 0.150 0.200 0.185 130 60 

Low 0.140 0.290 0.255 0.145 0.200 0.185 126 53 

Medium 0.140 0.255 0.230 0.145 0.200 0.175 121 30 

High 0.140 0.230 0.215 0.140 0.190 0.160 117 12 

NC-CH3-

Cl

 

Zero 0.145 0.315 0.320 0.185 0.235 0.210 190 24 

Low 0.145 0.300 0.280 0.185 0.220 0.205 187 20 

Medium 0.140 0.275 0.240 0.185 0.215 0.200 179 7 

High 0.140 0.255 0.220 0.180 0.210 0.190 177 1 

NC-CH3-

Br

 

Zero 0.145 0.345 0.305 0.200 0.240 0.225 204 13 

Low 0.145 0.300 0.280 0.200 0.235 0.225 198 18 

Medium 0.145 0.290 0.260 0.200 0.225 0.220 191 4 

High 0.14 0.265 single minimum no reaction 

F-CH3-Cl

 

Zero 0.14 0.33 0.245 0.19 0.215 0.21 109 2 

Low 0.14 0.305 0.24 0.19 0.215 0.195 100 1 

Medium 0.14 0.285 single minimum no reaction 

High 0.14 0.265 single minimum no reaction 

F-CH3-Br

 

Zero 0.145 0.315 single minimum no reaction 

Low 0.145 0.29 single minimum no reaction 

Medium 0.14 0.28 single minimum no reaction 

High 0.14 0.255 single minimum no reaction 

Cl-CH3-Br

 

Zero 0.185 0.34 0.305 0.205 0.24 0.245 46 20 

Low 0.185 0.31 0.295 0.2 0.235 0.245 40 17 

Medium 0.18 0.28 0.26 0.2 0.23 0.22 31 11 

High 0.175 0.26 0.24 0.195 0.205 0.215 27 9 
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Figure 4.13. PES for FHF system at ambient conditions (a), low compression (b), 

medium compression (c), and high compression (d). The corresponding 

TS positions (marked by symbols) shift in the diagonal direction with 

increasing pressure. The arrows project TS positions between lower and 

higher compression PES’s. The contour spacing is 10 kJ/mol. 
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Figure 4.14. PES for F-CH3-F

  system at ambient conditions (a), low compression (b), 

medium compression (c), and high compression (d). The corresponding 

TS positions (marked by symbols) shift in the diagonal direction with 

increasing pressure. The arrows project TS positions between lower and 

higher compression PESs. The contour spacing is 10 kJ/mol. 
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Figure 4.15. PES for CH3-H-CH3 system at ambient conditions (a), low compression 

(b), medium compression (c), and high compression (d).  The 

corresponding TS positions (marked by symbols) shift in the diagonal 

direction with increasing pressure. The arrows project TS positions 

between lower and higher compression PESs. At high compression the 

system collapses into a single minimum. The contour spacing is 10 

kJ/mol. 
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Figure 4.16. PES for F-CH3-Cl

 system at ambient conditions (a), low compression (b), 

medium compression (c), and high compression (d). The corresponding 

TS positions are marked by symbols. The arrows project TS positions 

between lower and higher compression PES’s. At medium and high 

compression the TS has been annihilated and the system collapses into the 

endothermic minimum. The contour spacing is 10 kJ/mol. 

At lower compressions, the reaction paths are fairly similar to the zero-pressure 

paths despite the notable shift of reactant and product minima along the reaction 

coordinate. However, as pressure increases and deformation of the PES becomes more 

significant, the reaction paths shift in the diagonal direction towards the lower left corner. 

Symmetric systems show a progression of the TS position diagonally collapsing to a 

symmetric single minimum, while the TS for asymmetric systems collapses to the 

exothermic minimum. This behaviour is illustrated in Figure 4.17. 
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Figure 4.17. Plots of the minima and TS positions for symmetric and asymmetric X-H-

Y systems at ambient conditions (purple), and low (blue), medium (green), 

and high (black) compression. The red boxes highlight the sequence of the 

stationary points (TSs for symmetric and exothermic minima for 

asymmetric systems) leading to a single minimum at high compressions. 

The dashed lines are BEBO reaction paths. 

It is interesting to note that the energy profiles along the reaction pathways for the 

A-B-C reaction systems are reasonably well represented by a combination of two 

parabolic diabatic terms, which is consistent with the fact that hydrogen and alkyl transfer 

reactions obey the Marcus relationship.
19

 The two-parabola model seems to offer an easy 

pictorial interpretation of the observed trends in the pressure dependencies of reaction 

profiles, as illustrated by an example for three XHY systems (X,Y = F,Cl) shown in Fig. 

4.18. As two parabolas are shifted by pressure toward each other, the reaction barrier 

roughly estimated by their crossing point gets smaller. The TSs of a symmetric XHX 
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system remain exactly in the middle, between reactant and product minima, up to the 

moment when the two parabolas fully overlap and these two minima collapse into a 

single one, thus fully eliminating the TS and reaction barrier. The situation is somewhat 

different for asymmetric XHY systems, where the TS and reaction barrier disappear 

when the minimum of the “endothermic” parabola crosses the branch of the “exothermic” 

parabola, thus leaving the exothermic minimum the only stable state on the PES, with the 

remainder of the “endothermic” parabola manifesting itself as a dissymmetric shoulder 

on the reaction profile.  

 

Figure 4.18. Reaction profiles for X-H-Y systems at different levels of compression. 

Red circles represent adiabatic QM energy profiles along scaled reaction 

coordinate; solid and dashed lines represent parabolic approximations for 

diabatic terms describing the reactant and product state, respectively.  



 

104 

The pressure dependencies of the reaction barriers for symmetric systems are 

shown in Fig. 4.19. Radical systems displayed a stronger pressure dependence than the 

anionic system, which could be traced to a lesser shift of the reactant minimum along the 

reaction coordinate in the latter, as predicted by eq. (4.14) for stiffer systems (see Fig. 

4.20 where the energy profiles for the radical and anionic systems are compared at the 

bottom of their reactant wells).  

 

Figure 4.19. The dependence of the reaction barriers Ea on the strength of compression 

force F for symmetric exchange reaction systems: open circles – XHX, 

filled circles – XCH3X

, filled squares – R'HR". The graphs for 

CNCH3CN

 and FHF are plotted with a reference to the secondary energy 

axis. 
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Figure 4.20. Energy profiles at the bottom the reactant wells for FH–F (green), FH–F
–
 

(red) and FCH3–F
–
 (blue) systems. The horizontal axis is a scaled 

displacement from the equilibrium distance re. 

The activation energies EABC(P) for asymmetric A-B-C systems obeyed the 

Marcus relation
20 

  𝐸𝐴𝐵𝐶 =
𝐸𝐴𝐵𝐴 + 𝐸𝐶𝐵𝐶

2
(1 +

1

2

𝐸𝐴𝐵𝐶 − 𝐸𝐶𝐵𝐴
𝐸𝐴𝐵𝐴 + 𝐸𝐶𝐵𝐶

)
2

 (4.15) 

at various pressures, as evidenced by the linear correlation of Fig. 4.21 between their 

values obtained by direct QM calculations and from eq. (4.15). 
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Figure 4.21. Correlation between reaction barriers EABC for A-B-C systems (A=X,R'; 

B=H,CH3; C=Y,R") obtained by direct QM calculations and from the 

Marcus relation: open circles – XHY (X,Y=F,Cl,Br), filled circles – 

XCH3Y
–
 (X,Y=F,Cl,Br), filled squares – R'HR" (R',R"=Me,Et), red – zero 

compression, purple – low compression, green – medium compression, 

blue – high compression. 

4.3.2. Approximate Energy Surfaces 

Since approximate eq. (4.13) offers a considerable computational saving in 

comparison to the full quantum-mechanical calculations, it is important to know if the 

description of high-pressure PESs provided by this equation is sufficiently accurate. We 

investigated this for the X-H-X systems. Since all calculations in this section refer to zero 

temperature, the Gibbs energy function G(x;P) reduces to the enthalpy function H(x;P). 

In addition, for a 1D model, the expansion work term PV(x) becomes FL(x), where L(x) 

is the linear size of the system and F is the compression force, playing the roles of 1D 

volume and 1D pressure, respectively. By virtue of the linearity of the X-Y-H system, 

L(RXH,RHY) = RXH + RHY and, with T = 0 and P0 = 0, eq. (4.13) turns into 
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 H(RXH,RHY;F) ≈ U0(RXH,RHY) + F×L(RXH,RHY) = U0 + F×(RXH+RHY) (4.16) 

The approximate high-pressure PES’s H(RXH,RHY;F) were derived from the zero-

pressure PES U0(RXH,RHY) using eq. (4.16) and showed a remarkable similarity to the 

exact PES described in the previous subsection. Parameters of the approximate PES’s for 

symmetric X-H-X systems are listed in Table 4.9 in comparison with the corresponding 

parameters of the exact PESs. 

Table 4.9. Parameters of the approximate PES of symmetric X-H-X systems (X = F, 

Cl, Br) obtained using eq. (4.16). The figures in parentheses represent 

their relative deviation from the corresponding parameters of the exact 

PES listed in Table 4.3. 

System Compression 

Reactant TS 

RXH, nm RHX, nm RXH, nm 
Reaction 

barrier, kJ/mol 

F-H-F 

Low 0.091 (0%) 0.185 (2%) 0.110 (2%) 115 (7%) 

Medium 0.089 (1%) 0.144 (1%) 0.106 (0%) 63 (3%) 

High 0.088 (1%) 0.117 (4%) 0.110 (12%) 20 (18%) 

Cl-H-Cl 

Low 0.129 (0%) 0.231 (1%) 0.151 (1%) 50 (11%) 

Medium 0.128 (0%) 0.170 (1%) 0.143 (1%) 8 (0%) 

High 0.133 (0%) 0.133 (0%) single min  no reaction  

Br-H-Br 

Low 0.141 (0%) 0.231 (0%) 0.164 (1%) 33 (22%) 

Medium 0.142 (1%) 0.173 (0%)  0.154 (1%) 2 (0%) 

High 0.143 (1%) 0.143 (1%) single min  no reaction  

Average deviation 0.5% 1% 2% 7% 

4.3.3. 3D Matrix 

The 1D model of Fig. 4.11 was adequate to describe the effects of the longitudinal 

compression but left the lateral compression of a reaction system outside of its scope. It 

was also unsuitable for calculation of the pressure equivalent of a given compression 

force. To address these issues, we considered a 3D matrix built by encasing the linear 

model in a rectangular 3×3×9 prism of uniformly spaced Ne atoms as shown in Fig. 4.12. 
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As in the case of the 1D matrix, the compressing forces were calculated as negative 

partial derivatives of energy with respect to the linear dimensions of the prism: Fi = 

dU/dLi (i = x,y,z). The pressure equivalents were found by dividing the forces by the 

appropriate cross-section areas to which the forces were applied. Both isotropic (Px = Py 

= Pz) and axially anisotropic (Px ≠ Py = Pz) compressions were considered for the 

symmetric F-H-F system aligned along the x axis. The resulting PES’s were very similar 

to those shown in Fig. 4.13 for the 1D matrix, at least in the part of the PES adjacent to 

the reaction path. As an example, a comparison of the PES generated for the F-H-F 

system at medium compression in the 1D and 3D matrices is shown in Fig. 4.22 (PES for 

low and high compression can be found in Appendix D). The PES were similar due to the 

fact that while the longitudinal compression by a 3D matrix had a profound effect on the 

PES topography, the effect of the lateral compression by that matrix was rather marginal. 

 

Figure 4.22. PES for F-H-F system at medium compression generated using the 1D 

matrix (left) and 3D matrix (right). The contour spacing is 10 kJ/mol. 

4.4. Linear H3
−
 System 

Recent studies of potassium, rubidium, cesium, and barium polyhidrides
21

 have 

observed the formation of a symmetric linear H3

 anion at elevated pressures. At lower 

pressures this ion disproportionated into a linear H

···H2 complex, stable at ambient 
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conditions.
22

 The exact pressure of this transition depended on the nature of the metal 

cation and crystal stoichiometry, and for RbH5 it was about 300 kbar.
23

 To check the 

accuracy of the predictions based on our system-in-matrix calculations, we optimized the 

geometry of the linear H-H-H

 system embedded in a compressed 3D Ne matrix, as 

shown in Fig. 4.12 for F-H-F. The calculations were performed with PBE/6-311++G(d,p) 

to match the level of theory used in Refs. 21 and 22b. The results presented in Fig. 4.23 

predict a transition to the symmetric H3

anion above 300 kbar.  

 

Figure 4.23. Pressure dependence of the lengths of long (red squares) and short (green 

circles) HH bonds in the H-H-H

 system. 

4.5. Conclusion 

The reported results indicate that reaction profiles and energy surfaces of 

compressed systems can undergo a tremendous change with pressure, sometimes 

resulting in the complete annihilation of the reaction barrier separating reactants and 

products. Softer systems with lower activation barriers undergo a transition to a single-

minimum state at lower pressures as evidenced by the comparison of the radical X-H-Y 

and R′-H-R′′ systems to the stiffer anionic X-CH3-Y
−
 systems. Unsaturated systems 
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represent another example of softer species. It has been argued earlier
3b

 that the reaction 

barrier for Diels-Alder dimerization of cyclopentadiene gets reduced from about 70 

kJ/mol at ambient conditions to 20 kJ/mol at 50 kbar. If a high-pressure single minimum 

replaces the barrier of a thermoneutral process, as in the case of symmetric X-H-X 

systems, the high pressure species associated with that minimum are unstable at low 

pressures when the barrier is restored. The transition between high- and low-pressure 

forms is therefore expected to be reversible in such cases, as it was with the H3

 anion in 

polyhidrides.
21

 On the contrary, for exothermic processes, where high pressures 

simultaneously eliminate the barrier and the endothermic minimum, the high-pressure 

state is associated with the exothermic minimum and therefore remains stable at lower 

pressures. An example of this kind is high pressure polymerization of aromatic 

compounds,
24

 where static pressure of 100-350 kbar eliminates the barrier separating the 

endothermic minimum of the monomer state and the exothermic minimum of the 

polymer state. 

Approximate expressions (4.13) and (4.16), together with the compressed matrix 

approach used in this work promise remarkable saving and computational efficiency in 

producing high-pressure reaction profiles and energy surfaces, the knowledge of which is 

crucial to understanding reactivity and spectral properties of compressed species. 
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Chapter 5.  

 

A Comparative Analysis of Empirical Equations 

Describing Pressure Dependence of Reaction Rate 

Constants 

 

5.1. Introduction 

It has been shown in Chapter 3 of this thesis that our MD displacement volume model 

can be used to obtain accurate theoretical activation and reaction volumes. The usefulness 

of these calculated volumes for mechanistic analysis crucially depends on the availability 

and precision of the experimental ΔV and ΔV
≠
. As discussed in Section 1.4, the latter are 

usually obtained from kinetic or equilibrium data by differentiation of empirical 

analytical functions ln k(P) or ln K(P) fitted to the experimental data
1
. Since these 

functions utilize different analytical expressions, the values of the activation and reaction 

volumes obtained from the same experimental data set using different equations can vary 

substantially
1c-f

. Earlier
2
, various empirical equations (eleven most common of them are 

listed in Table 1.4
3
, which is reproduced here for convenience as Table 5.1) were 

analyzed in the context of their common features and their relationship to the volume 

changes in reactions. In the present study, we discuss the limits within which these 

equations remain physically meaningful, and assess how the level of errors in the 

experimental data and the choice of equations affect the accuracy of determination of 

activation and reaction volumes. Although in our analysis we refer specifically to ΔV
≠
, 

the same expressions, results, and conclusions equally apply to ΔV. 



 

115 

Table 5.1. Most common empirical equations describing pressure dependence of rate 

and equilibrium constants and their classification
2
. 

 Equation Type 

E1   

Polynomial 

eq. (1.9)/(1.10a) 
E2  

E3  

E4  Hyperbolic 

eq. (1.9)/(1.10b)
† 

E5  

E6   

 

Logarithmic 

eq. (1.9)/(1.10c) 

E7  

E8  

E9  

E10  

E11  Pseudo-logarithmic 

† 
Without loss of generality, a2 in the equations of hyperbolic type can be assumed to be 

equal to zero if a3 is appropriately adjusted. Equation E5 thus represents the most general 

form of a hyperbolic equation (1.9)/(1.10b). 

5.2. General properties and comparison of empirical functions 

describing pressure dependence of the rate and equilibrium 

constants 

General behavior of lnk as a function of pressure can be characterized by the signs 

and asymptotic values of its pressure derivatives – activation volume 𝑉≠ (eq. (1.4)), 

compressibility coefficient of activation
4
 

 ∆𝛽≠ = (
𝜕∆𝑉≠

𝜕𝑃
)
𝑇

= −𝑅𝑇 (
𝜕2𝑙𝑛𝑘

𝜕𝑃2
)
𝑇

 (5.1) 

and hypercompressibility coefficient of activation 

2

210/ln PaPakk 

3

310/ln PaPakk 

3

3

2

210/ln PaPaPakk 

 PaPakk 430 1/ln 

 PaPaPakk 4310 1/ln 

 Paakk 420 1ln/ln 

 PaaPakk 4210 1ln/ln 

 PaPaPakk 4310 1ln/ln 

   PaPaaPakk 44210 1ln1/ln 

   PaPaPaaPakk 434210 1ln1ln/ln 

523.1

210/ln PaPakk 
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 ∆𝜉≠ = (
𝜕∆𝛽≠

𝜕𝑃
)
𝑇

= −𝑅𝑇 (
𝜕3𝑙𝑛𝑘

𝜕𝑃3
)
𝑇

 (5.2) 

The values of 𝑉≠at zero and infinite pressure, 𝑉0
≠ and 𝑉∞

≠, in their relationships to 

parameters ai of eqs E1-E11 are listed in Table 5.2 together with similar expressions for 

higher order derivatives 𝛽0
≠ and 𝜉0

≠.  

Table 5.2. Activation volumes, and compressibility and hypercompressibility 

coefficients of activation for empirical functions listed in Table 1 (see also 

Table 6 in Ref. 2). 

Equation 𝑉0
≠/RT (Ref. 2) 𝑉∞

≠/RT (Ref. 2) 0
≠
/RT (this work) 0

≠
/RT(this work) 

E1 a1 ± ∞ 2a2 0 

E2 a1 ± ∞ 0 6a3 

E3 a1 ± ∞ 2a2 6a3 

E4 a3  2a3a4 6a3a4
2
 

E5 a1+a3) a1 2a3a4 6a3a4
2
 

E6 a2a4  a2a4
2
 2a2a4

3
 

E7 a1+ a2a4) a1 a2a4
2
 2a2a4

3
 

E8 a1 ± ∞ 2a3a4 3a3a4
2
 

E9 a1+a2a4) ± ∞ a2a4
2
 a2a4

3
 

E10 a1+a2a4) ± ∞ or a1
†
 a2a4

2
2a3a4 2a2a4

3
+3a3a4

2
 

E11 a1 ± ∞ ± ∞ ± ∞ 

Since the overall shape of functions E1-E11 depends on their parameters ai, it is 

of interest to assess general constraints on these parameters, within which these functions 

demonstrate a physically reasonable behavior in describing the pressure dependence of 

lnk. The following would seem to be a set of natural requirements if dynamic effects of 

solvent
5
 are unimportant: 

1. lnk is a monotonic function of pressure, i.e. 𝑉≠ retains its sign over a 

range of pressures where eq (1.7) is valid. That is,  

 ∆𝑉≠/∆𝑉0
≠ ≥ 0 (5.3) 

2. The relative value ⁡𝑉≠/𝑉0
≠ of ⁡𝑉≠ with respect to its reference 

value 𝑉0
≠ at zero pressure is a decreasing function of pressure, i.e.  
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 ∆𝛽≠/∆𝑉0
≠ < 0 (5.4) 

It follows directly from (5.3) and (5.4) that at high pressures 𝑉≠ asymptotically 

approaches its finite limit 𝑉∞
≠, such that 0≤ 𝑉∞

≠/𝑉0
≠

 < 1. 

3. Consistently with that, the graph of ⁡𝑉≠(P)/⁡𝑉0
≠ is a concave curve 

of positive curvature, i.e. 

 ∆𝜉≠/∆𝑉0
≠ > 0 (5.5) 

Inspection of Table 5.2 reveals that, strictly speaking, only equations E4-E7 can 

satisfy condition 0≤ 𝑉∞
≠/𝑉0

≠
 < 1 and thus demonstrate correct asymptotic behavior at 

infinite pressure. This is not surprising since none of the equations E1-E11 was intended 

to describe the rate constants at extreme pressures, which makes the above condition 

somewhat excessive. However, it is important to know the range of pressures over which 

conditions (5.3)-(5.5) are satisfied and to determine the validity threshold Pmax, above 

which at least one of these conditions is violated. Such thresholds, together with the 

constraints on parameters ai of equations E1-E11 imposed by conditions (5.3)-(5.5), are 

obtained in Appendix E and summarized in Table 5.3. 
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Table 5.3. The summary of constraints and thresholds for equations E1-E11. 

Equation Pmax Constraints 

E1 eq. (A5) a1a2 < 0 

E2 eq. (A7) a1a3 < 0 

E3 eq. (A8) a1a2 < 0   and   a1a3 < 0 

E4 + ∞ a4 > 0 

E5 + ∞ a4 > 0   and   a1a3 > 0 

E6 + ∞ a4 > 0 

E7 + ∞ a4 > 0    and   a1/(a2a4) > −1 

E8 eq. (A24) a4 > 0    and    a1a3 > 0 

E9 eq. (A26) a4 > 0,   a1/(a2a4) < −1,   and a1a2 < 0 

E10 + ∞ or eq. (A29) eqs. (A27)-(A30) 

E11 eq. (A35) a1a2 < 0 

In the case of equations E1-E9, the relationships of Table 5.2 can be inverted to 

produce expressions for coefficients ai in terms of physical parameters 𝑉0
≠, 𝛽0

≠, and 

𝜉0
≠ (see Appendix F). One, therefore, can compare equations E1-E9 by plotting them for 

the same set of physical parameters. Such plots are presented in Fig. 5.1 for a series of 

different pressure ranges. As a prototype model reaction, we chose high-pressure Z/E-

isomerization of 4-(dimethylamino)-4'-nitroazobenzene, for which equations E5 and E7, 

fitted to the experimental data
1e

 over a 0-4 kbar pressure range, give close values of 𝑉0
≠, 

𝛽0
≠, and 𝜉0

≠ listed in Table 5.4. In our graphs, we used the rounded averages of these 

values.  

Table 5.4. Equation coefficients and physical parameters for Z/E isomerization of 4-

(dimethylamino)-4’-nitroazobenzene
1e 

Equation Equation coefficients
†
 Physical parameters

†
 at 25ºC 

a1 a2 a3 a4 𝑉0
≠  𝛽0

≠ 𝜉0
≠ 

E5 0.1977  0.8105 0.2325 25.0 9.3 6.5 

E7 0.05706 2.266  0.4223 25.1 10.0 8.5 

Rounded average  10. 7.5 
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Figure 5.1. Graphs of equations E1-E9 for 𝑉0
≠ = 25 cm

3
mol

1
, 𝛽0

≠=  

cm
3
mol

1
kbar

1
, and 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
. Pressure ranges: (a) 0 to 

0.5 kbar; (b) 0 to 1 kbar; (c) 0 to 5 kbar; (d) 0 to 10 kbar; (e) 0 to 50 kbar. 

5.2.1. Graphs 

As can be seen from Fig. 5.1, for a relatively narrow pressure range of 0 to 0.5 

kbar the graphs cluster relatively close to each other. They remain close up to 1 kbar, 

although E2 start departing notably from the rest of equations. When the pressure range is 
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extended to 5 kbar, two more graphs split off and start demonstrating counter-intuitive 

unphysical behavior: cubic equations E2 and E3 produce curves that are concave up, 

whereas quadratic equation E1 passes its maximum and starts dipping down. Equations 

E4-E9 remain close at 5 kbar, but visibly deviate from each other by 10 kbar. Most of 

them also start showing unphysical behavior at higher pressures, and by the time the 

pressure range exceeds 50 kbar, only equations E4 and E6 remain physically reasonable
6
.  

 

Figure 5.2. Graphs of equation E10 for 𝑉0
≠ = 25 cm

3
mol

1
, 𝛽0

≠=  

cm
3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
, with the free parameter a3 = 

-0.4, -0.2, -0.1, 0, 0.02, 0.2, and 0.4. In the case of a3=0 equation E10 

reduces to equation E7. 

Since equation E10 contains four parameters, only three of them can be expressed 

in terms of 𝑉0
≠, 𝛽0

≠, and 𝜉0
≠, leaving the fourth parameter free. A family of E10 

curves consistent with the selected 𝑉0
≠, 𝛽0

≠, and 𝜉0
≠values is shown in Fig. 5.2, where 

a3 is chosen as an independent parameter. As can be seen from the figure, the shapes of 

the graphs vary significantly on a wider pressure range, depending on the value of the 

free parameter a3. In the shown examples, only the curves with a3 = -0.1 and 0.02 display 
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physically reasonable behavior over the 0-100 kbar range, the curves with a3 = -0.4, -0.2 

and 0 possess maxima, and the curves with a3 = 0.2 and 0.4 possess inflection points. At 

the same time, at lower pressures (see the inset), all curves of the family cluster closely, 

and since E10 reduces to E7 when a3 = 0, all these E10 curves are also quite close to E1-

E9 curves when pressures do not exceed 1 kbar.  

Equation E11 demonstrates unphysical behavior at zero pressure by producing 

infinite compressibility and hypercompressibility coefficients, and therefore the data on 

𝛽0
≠ or 𝜉0

≠ cannot be used to estimate its second coefficient a2. Fig. 3 shows a family of 

E11 curves parametrized by a2. With the exception of a2 = -0.04, all shown curves 

possess maxima on the 0-100 kbar pressure range. To get closer to curves of Fig. 1, say, 

the E7 curve, the value of a2 needs to become as low as -0.2. This is accompanied with a 

significant shift of the curve maximum to lower pressures: Pmax ≈ 40kbar for a2 = -0.1 

and 10 kbar for a2 = -0.2, i.e. Pmax is approximately proportional to the reciprocal square 

of a2, as predicted by eq. (A35) for E11, the exponent a4 of which is close to 1.5 (a4 = 

1.523). 
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Figure 5.3. Graphs of equation E11 for 𝑉0
≠ = 25 cm

3
mol

1
 and a2 = -0.20, -0.10, -

0.08, -0.04, and -0.06. The graph of equation E7 for 𝑉0
≠ = 25 cm

3
mol

1
, 

𝛽0
≠=  cm

3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
 is included for 

comparison 

5.2.2. Statistical Comparison 

Since experimental errors are unavoidable in kinetic data, it is of interest to assess 

to what degree these errors can interfere with discrimination between equations E4-E11. 

To incorporate the effect of random errors, we started with “ideal” rate constants (P) 

described by these equations and added relative random errors z of a given level  to 

simulate “experimental” rate constants k(P): 

 𝑘(𝑃) = 𝜅(𝑃)(1 + 𝜎𝑧) (5.6) 

The sets of 50 data points uniformly distributed over a given pressure range were 

generated for each equation with a random number z drawn from a standard normal 

distribution, z ∼ N(0, 1). The data sets were produced for three different pressure ranges 

(P = 0-1 kbar, 0-5 kbar, and 0-10 kbar) and three increasing levels of errors ( = 1%, 5%, 
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and 10%) and compared using a paired t-test (p < 0.05). The t-statistic for comparison of 

a given pair of equations a and b (a,b = E4-E11) was calculated as 

 𝜏 =
|𝑑𝑎𝑏̅̅ ̅̅ ̅|

𝑆𝑑/√𝑛
 (5.7) 

where 𝑑𝑎𝑏̅̅ ̅̅ ̅ and sd are, respectively, the mean and the standard deviation of the relative 

differences 

 𝑑𝑎𝑏(𝑃) =
⁡𝑘𝑎(𝑃) − 𝑘𝑏(𝑃)

⁡⁡
1
2 (⁡𝑘𝑎

(𝑃) + 𝑘𝑏(𝑃))
 (5.8) 

and n = 50 is the size of the compared data sets. The results are listed in Table 5.5 for 

various pressure ranges and levels of errors. It appears that, with few exceptions, the data 

sets for the lower pressure range of 0-1 kbar are not statistically different. On the 

contrary, for 0-10 kbar range the data sets are statistically different in most cases. The 

switch of behavior occurs at about 5 kbar, which is consistent with the general behavior 

of the functions shown in Fig. 5.1. It is worth noting that sometimes the functions of 

different types (e.g. hyperbolic function E4 and logarithmic function E6) appear to be 

closer to each other than to functions of their own type.  
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Table 5.5. Paired t-statistics calculated using eq. (5.7) for data sets generated by equations E4-E8 (50 data points evenly spread 

over the respective pressure range). The criterion identifying two data sets as statistically distinguishable at 95% 

confidence level is 𝜏 > 2.00 (shaded cells). 

  1% Error 5% Error 10% Error 

Pressure 

range 
Equation E5 E6 E7 E8 E5 E6 E7 E8 E5 E6 E7 E8 

 E4 1.87 0.23 1.20 1.57 2.77 1.07 1.99 0.26 2.88 1.18 2.09 0.51 

0-1 E5   1.40 0.50 3.06   1.19 0.57 1.92   1.11 0.56 1.76 

kbar E6     0.80 1.94     0.54 0.91     0.48 0.79 

 E7       2.69       1.41       1.24 

 E4 7.07 7.80 7.09 10.18 4.69 5.29 3.40 4.31 2.13 2.61 1.15 1.94 

0-5 E5   0.91 6.25 3.82   0.65 2.55 1.35   0.84 1.01 0.05 

kbar E6     8.04 4.45     3.06 2.25     1.69 0.89 

 E7       0.59       0.57       0.82 

 E4 8.24 9.02 8.97 0.66 7.68 8.61 7.21 0.17 6.77 7.31 5.10 0.19 

0-10 E5   5.53 7.21 6.40   3.57 6.93 6.00   1.97 5.76 5.34 

kbar E6     8.74 6.53     7.87 6.45     5.03 6.05 

 E7       5.56       4.76       3.72 
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5.3. Accuracy of Determination of Activation and Reaction Volumes 

Notwithstanding their asymptotic behavior at extreme pressures, most of the 

functions listed in Table 5.1 remain suitable for calculation of activation volumes from 

experimental kinetic data not exceeding 10 kbar. However, in order to rely on these 

experimentally determined 𝑉≠ values as a quantitative tool for mechanistic analysis, 

one must have a better understanding of how the accuracy of their determination may be 

affected by the choice of a fitting function and by the level of experimental errors in the 

kinetic data. Different fitting equations may demonstrate different tolerance to the level 

of experimental errors and this tolerance could also vary depending on the pressure range. 

To assess the situation, a full control over the error level in the kinetic data is important, 

which is impossible in the real life experiment. Therefore, we resorted to a model 

approach similar to the one used in Section 5.2 and generated simulated “experimental” 

rate constants k(P) using eq. (5.6) with functions E4-E8 for 𝑉0
≠=-25 cm

3
/mol, 𝛽0

≠ =  

cm
3
mol

1
kbar

1
, and 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
 (Table 5.4). The simulated kinetic data 

were produced for three different pressure ranges (P = 0-1 kbar, 0-5 kbar, and 0-10 kbar) 

and three increasing levels of errors ( = 1%, 5%, and 10%). In each specific case (i.e. 

for each combination of a specific generating equation E4-E8, a given pressure range, 

and a selected error level) the “experimental” data were produced in quintuplicate, thus 

emulating five repeated series of experimental measurements. These data were then 

approximated by each of the fitting equations E1-E11 using the least squares procedure. 

The values of activation volumes and their errors obtained by averaging the fitted 

parameters over the five repeated sets of “measurements” are summarized in Tables 5.6 

(self-fitting) and 5.7-5.9 (cross-fitting). The extended versions of these tables including 

the results for individual data sets and the optimized values of fitting parameters ai can be 

found in the Supplementary Information. 
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5.3.1. Self-fitting 

Table 5.6 shows the values of activation volumes predicted when the fitting 

functions and the generating equations were identical. The results listed in the table 

indicate that at 1% error level equations E4-E8 accurately reproduce 𝑉0
≠ to within 0.6 

cm
3
/mol of the expected value of –25 cm

3
/mol. The quality of the self-fit remained 

generally good when the level of experimental errors was increased to 5% with the data 

spread over a sufficiently wide pressure range (0-5 or 0-10 kbar). However, for a 

narrower range of 0-1 kbar, only equations E4 and E6 recovered the proper values of 

activation volumes, whereas equations E5, E7, and E8 demonstrated a significant 

instability, further increasing with the increasing level of errors. Widening of the pressure 

range helped in reducing this instability and for the 0-10 kbar range all equations 

produced reasonable values of 𝑉0
≠. When fitting 0-10 kbar data with higher error levels, 

regressions tended to underestimate activation volumes, whereas for 0-5 kbar range they 

showed an opposite trend toward overestimating 𝑉0
≠. Overall, equations E4 and E6 

demonstrated a higher level of stability, probably due to the fact that these equations use 

fewer fitting parameters – two for E4 and E6, compared to three for E5, E7, and E8. 
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Table 5.6. Activation volumes (cm
3
/mol) obtained by fitting equations E4-E8 to 

kinetic data generated using these equations with 𝑉0
≠ = 25 cm

3
mol

1
, 

𝛽0
≠=  cm

3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
 over various 

pressure ranges and various levels of random relative errors (see text for 

details). 

Pressure 

range 
Equation 

Error level 

1% 5% 10% 

0-1 kbar 

E4 -25.0 ± 0.3 -24 ± 1 -24 ± 2 

E5 -24.7 ± 0.6 -36 ± 18 -54 ± 43 

E6 -24.8 ± 0.3 -24 ± 1 -24 ± 2 

E7 -24.7 ± 0.6 -39 ± 22 -80 ± 90 

E8 -24.7± 0.6 -44 ± 31 -45 ± 38 

0-5 kbar 

E4 -25.6 ± 0.9 -26 ± 1 -27 ± 3 

E5 -24.9 ± 0.4 -25 ± 1 -25 ± 3 

E6 -25.2 ± 0.3 -26 ± 1 -27 ± 3 

E7 -24.9 ± 0.4 -25 ± 1 -25 ± 3 

E8 -24.9 ± 0.4 -25 ± 1 -25 ± 3 

0-10 kbar 

E4 -25.0 ± 0.2 -24.9 ± 0.9 -24.7 ± 2 

E5 -24.8 ± 0.3 -24 ± 1 -23 ± 2 

E6 -25.0 ± 0.2 -24.9 ± 0.9 -25 ± 2 

E7 -24.8 ± 0.3 -24 ± 1 -23 ± 2 

E8 -24.8 ± 0.3 -24 ± 1 -23 ± 3 

The high quality of fit for a given pressure range did not guarantee the proper 

behavior of the fitted function outside of the range of fitting. For example, although 

equation E5 fitted well the 1%-error data set on the 0-1 kbar range and predicted an 

accurate activation volume of -24.7 cm
3
/mol, it demonstrates unphysical behavior outside 

of the fitting range of pressures (Fig. 5.4), reaching a maximum at 3.5 kbar. 
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Figure 5.4. Fit of E5 (red line) to the data generated using E5 for the pressure range 0-

1kbar with relative error of 1% (blue diamonds). The best linear fit (green 

line) is shown for comparison. Although the E5 curve fits the data well 

over the range of 0-1 kbar, it shows unphysical behavior as its starts 

descending at pressures exceeding 4 kbar. 

Poor performance of equations E4-E8 in self-fitting to the 0-1 kbar range data 

with high error level can be traced to the fact that, as it can be seen in Fig. 5.1, their 

graphs are quasi-linear for the set of physical parameters for 𝑉0
≠=-25 cm

3
/mol, 𝛽0

≠ = 

 cm
3
mol

1
kbar

1
, and 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
 used to generate simulated kinetic 

data. As a result, to recover the proper value of the activation volume, these data need to 

be approximated by a quasi-linear fitting function. When the level of errors is low, the 

curving of the data set is sufficiently distinct to support determination of the nonlinear 

regression parameter a4. However, as the error level increases, the accuracy of such 

determination decreases. In the case of equations E4 and E6, the a4 parameter becomes 

small, turning them into linear functions a3P and a2ln(1+a4P) ≈ a2a4P, respectively. 

Three-parametric equations E5, E7, and E8 are more flexible and thus more prone to 
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bend in response to errors in the data, which results in large variations in the predicted 

activation volumes. Fig. 5.5 shows an example of how E5 is able to contort in the low 

pressure region, which in this particular case produces an error of over 85 cm
3
/mol in the 

estimated activation volume. In comparison, linear regression gives a much better 

estimate with an error of only 5.4 cm
3
/mol. 

 

Figure 5.5. Fit of E5 (magenta line) to the data generated using E5 for the 0-1kbar 

pressure range with a relative error of 10% (blue diamonds). Sudden 

curving of an almost linear E5 graph in the lower pressure region results in 

a significant overestimation of the activation volume determined by the 

slope of the graph. Linear regression (dashed line), included for 

comparison, gives a better estimate for the activation volume. 

5.3.2. Cross-fitting 

Functions, other than E4-E8, are frequently used to approximate equilibrium and 

rate constants
9
. We therefore expand the scope of discussion to include an analysis of the 

performance of all functions E1-E11. Tables 5.7-5.9 show the values of activation 

volumes obtained by fitting functions E1-E11 to the data sets generated using equations 
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E4-E8. In general, the results and trends observed are qualitatively similar to those seen 

for the self-fitting data listed in Table 5.6. 

As a rule, the choice of generator equation did not have much effect on the 

results, which is consistent with the statistical similarity of the simulated kinetic data sets 

(see Table 5.5). Equations E1-E2 and E11, graphs of which visibly deviate from those of 

equations E4-E8 (see Fig. 5.1), typically performed poorer. With the exception of E1-E2, 

all equations performed better on 1%-error data sets. Less flexible two-parametric 

equations E4 and E6 were better in the 0-1 kbar range at higher error levels, whereas 

more flexible functions E5 and E7-E10 demonstrated very low levels of accuracy in their 

prediction of activation volumes for this pressure range. As the pressure range widened to 

0-5 or 0-10 kbar, performance of the latter significantly improved, whereas that of the 

former somewhat deteriorated. The most general logarithmic equation E10 showed rather 

poor performance, giving unacceptably large errors in the estimated activation volumes. 

Simple quadratic equation E1 worked remarkably well on the 0-1 kbar range, however it 

did not perform as well outside that range, as it has been noted on multiple occasions in 

the past
5e,10

. 
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Table 5.7. Activation volumes (cm
3
/mol) obtained by fitting equations E1-E11 to the data generated using equations E4-E8 with parameters  𝑉0

≠ = 25 cm
3
mol

1
, 𝛽0

≠=  cm
3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 

cm
3
mol

1
kbar

2 for different levels of errors and the pressure range of 0-1kbar. The cells containing the results of self-fitting are shown in bold. In the cases of inconsistency of self-fitting, the equations 

showing such instability were not included as a generating equations and the respective rows were omitted from the table. 

  
Fitting Equation 

Error level Generating Equation E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

1% 

E4 -24.4 ± 0.2 -22.9 ± 0.2 -24.6 ± 0.7 -24.9 ± 0.3 -24.7 ± 0.6 -25 ± 0.3 -24.7 ± 0.6 -24.8 ± 0.6 -24.8 ± 0.6 -24.6 ± 0.8 -27 ± 0.3 

E5 -24.4 ± 0.2 -22.9 ± 0.2 -24.5 ± 0.7 -24.7 ± 0.2 -24.7 ± 0.6 -24.9 ± 0.3 -24.7 ± 0.6 -24.7 ± 0.7 -24.8 ± 0.7 -24.7 ± 0.9 -26.8 ± 0.3 

E6 -24.4 ± 0.2 -23.1 ± 0.2 -24.5 ± 0.7 -24.7 ± 0.2 -24.7 ± 0.6 -24.8 ± 0.3 -24.7 ± 0.6 -24.7 ± 0.6 -24.8 ± 0.7 -24.6 ± 0.9 -26.7 ± 0.3 

E7 -24.4 ± 0.2 -22.9 ± 0.2 -24.5 ± 0.7 -24.7 ± 0.2 -24.7 ± 0.6 -24.9 ± 0.3 -24.7 ± 0.6 -24.7 ± 0.6 -24.8 ± 0.7 -24.6 ± 0.9 -26.8 ± 0.3 

E8 -24.5 ± 0.2 -23.1 ± 0.2 -24.5 ± 0.7 -24.8 ± 0.2 -24.7 ± 0.6 -24.9 ± 0.3 -24.7 ± 0.6 -24.7 ± 0.6 -24.8 ± 0.6 -24.6 ± 0.8 -26.8 ± 0.3 

5% 
E4 -24 ± 1 -22.7 ± 0.7 -23 ± 4 -24 ± 1 -36 ± 16 -24 ± 1 -38 ± 20 -46 ± 33 -44 ± 31 -28 ± 16 -26 ± 2 

E6 -24 ± 1 -22.9 ± 0.7 -23 ± 4 -24 ± 1 -37 ± 18 -24 ± 1 -39 ± 24 -43 ± 30 -42 ± 28 -28 ± 17 -26 ± 2 

10% 
E4 -23 ± 2 -23 ± 1 -21 ± 7 -23 ± 2 -54 ± 42 -24 ± 2 -74 ± 83 -47 ± 40 -45 ± 38 -34 ± 33 -25 ± 3 

E6 -23 ± 2 -23 ± 1 -21 ± 7 -24 ± 2 -54 ± 44 -24 ± 2 -86 ± 108 -44 ± 40 -43 ± 35 -34 ± 33 -25 ± 3 
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Table 5.8. Activation volumes (cm
3
/mol) obtained by fitting equations E1-E11 to the data generated using equations E4-E8 with parameters 𝑉0

≠ = 25 cm
3
mol

1
, 𝛽0

≠=  cm
3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 

cm
3
mol

1
kbar

2 
for different levels of errors and the pressure range of 0-5kbar. The cells containing the results of self-fitting are shown in bold. In the cases of inconsistency of self-fitting, the equations 

showing such instability were not included as a generating equations and the respective rows were omitted from the table. 

 
 

Fitting Equation 

Error Generating Eq. E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

1% 

E4 -20.4 ± 0.3 -16.7 ± 0.1 -23.9 ± 0.9 -25.6 ± 0.9 -25.3 ± 1 -28.4 ± 1 -25.6 ± 1 -26.2 ± 1 -26.5 ± 1 -24.8 ± 0.6 -26.6 ± 0.6 

E5 -20.2 ± 0.1 -17.2 ± 0.1 -23.3 ± 0.2 -23.1 ± 0.2 -24.9 ± 0.4 -24.5 ± 0.3 -25.2 ± 0.4 -26.1 ± 0.5 -26.5 ± 0.6 -24.6 ± 0.4 -25.2 ± 0.2 

E6 -20.7 ± 0.1 -17.6 ± 0.1 -23.5 ± 0.2 -23.7 ± 0.2 -24.7 ± 0.3 -25.2 ± 0.3 -24.9 ± 0.4 -25.5 ± 0.4 -25.8 ± 0.5 -24.6 ± 0.4 -25.9 ± 0.2 

E7 -20.4 ± 0.1 -17.1 ± 0.1 -23.4 ± 0.2 -24.1 ± 0.2 -24.7 ± 0.3 -26 ± 0.3 -24.9 ± 0.4 -25.5 ± 0.4 -25.8 ± 0.5 -24.6 ± 0.4 -25.9 ± 0.2 

E8 -21.1 ± 0.1 -17.4 ± 0.1 -23.7 ± 0.2 -25.9 ± 0.2 -24.5 ± 0.3 -28.5 ± 0.3 -24.6 ± 0.3 -24.9 ± 0.4 -25.1 ± 0.4 -24.5 ± 0.4 -27.4 ± 0.2 

5% 

E4 -20.6 ± 0.6 -16.9 ± 0.4 -24 ± 1 -26 ± 1 -25 ± 2 -29 ± 2 -25 ± 2 -25 ± 2 -26 ± 2 -24.1 ± 1 -27 ± 0.9 

E5 -20.5 ± 0.6 -17.4 ± 0.4 -24 ± 1 -24 ± 1 -25 ± 2 -25 ± 1 -25 ± 2 -25 ± 2 -26 ± 2 -24 ± 1 -26 ± 0.9 

E6 -21.1 ± 0.6 -17.8 ± 0.4 -24 ± 1 -24 ± 1 -25 ± 2 -26 ± 1 -25 ± 2 -25 ± 2 -25 ± 2 -24 ± 2 -27 ± 0.9 

E7 -20.8 ± 0.6 -17.3 ± 0.4 -24 ± 1 -25 ± 1 -25 ± 2 -27 ± 1 -25 ± 2 -25 ± 2 -25 ± 2 -23 ± 2 -27 ± 0.9 

E8 -21.5 ± 0.6 -17.6 ± 0.4 -24 ± 1 -27 ± 1 -25 ± 1 -30 ± 2 -25 ± 2 -25 ± 2 -25 ± 2 -22 ± 4 -28 ± 0.9 

10% 

E4 -21 ± 1 -17.1 ± 0.7 -24 ± 2 -27 ± 3 -25 ± 3 -30 ± 3 -25 ± 3 -25 ± 3 -25 ± 3 -22 ± 5 -28 ± 2 

E5 -21 ± 1 -17.6 ± 0.7 -24 ± 2 -25 ± 2 -25 ± 3 -27 ± 3 -25 ± 3 -25 ± 3 -26 ± 3 -22 ± 5 -27 ± 2 

E6 -22 ± 1 -18.1 ± 0.7 -24 ± 2 -25 ± 2 -25 ± 3 -27 ± 3 -25 ± 3 -25 ± 3 -25 ± 3 -19 ± 8 -27 ± 1 

E7 -21 ± 1 -17.6 ± 0.7 -24 ± 2 -26 ± 2 -25 ± 3 -28 ± 3 -25 ± 3 -25 ± 3 -25 ± 3 -19 ± 8 -27 ± 2 

E8 -22 ± 1 -17.8 ± 0.7 -24 ± 2 -28 ± 2 -25 ± 3 -31 ± 3 -25 ± 3 -25 ± 3 -25 ± 3 -19 ± 7 -29 ± 2 
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Table 5.9. Activation volumes (cm
3
/mol) obtained by fitting equations E1-E11 to the data generated using equations E4-E8 with parameters 𝑉0

≠ = 25 cm
3
mol

1
, 𝛽0

≠=  cm
3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 

cm
3
mol

1
kbar

2
 for different levels of errors and the pressure range of 0-10kbar. The cells containing the results of self-fitting are shown in bold. In the cases of inconsistency of self-fitting, the equations 

showing such instability were not included as a generating equations and the respective rows were omitted from the table. 

  

Fitting Equation 

Error Generating Eq. E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

1% 

E4 -15.5 ± 0.1 -12 ± 0.1 -20.5 ± 0.1 -25.0 ± 0.2 -24.7 ± 0.4 -32.3 ± 0.3 -25.6 ± 0.5 -30.2 ± 0.8 -32 ± 1 -25 ± 0.4 -15.0 ± 0.2 

E5 -16.00 ± 0.04 -13.31 ± 0.02 -20.3 ± 0.1 -19.7 ± 0.1 -24.8 ± 0.3 -21.8 ± 0.2 -25.9 ± 0.3 -33.7 ± 0.3 -40.0 ± 0.7 -25.1 ± 0.4 -20.6 ± 0.1 

E6 -16.80 ± 0.04 -13.68 ± 0.02 -20.9 ± 0.1 -21.9 ± 0.1 -24.1 ± 0.2 -25 ± 0.2 -24.8 ± 0.3 -28.1 ± 0.4 -29.4 ± 0.4 -24.9 ± 0.4 -22.1 ± 0.1 

E7 -16.24 ± 0.04 -12.91 ± 0.02 -20.6 ± 0.1 -23 ± 0.1 -24 ± 0.2 -27.5 ± 0.2 -24.8 ± 0.3 -28.3 ± 0.4 -29.8 ± 0.4 -24.9 ± 0.4 -21.9 ± 0.1 

E8 -17.31 ± 0.04 -12.82 ± 0.02 -21.4 ± 0.1 -32.4 ± 0.2 -23.3 ± 0.2 -45.4 ± 0.4 -23.7 ± 0.2 -24.8 ± 0.3 -25.3 ± 0.3 -24.8 ± 0.4 -24.9 ± 0.1 

5% 

E4 -15.5 ± 0.2 -12 ± 0.1 -20.4 ± 0.6 -24.9 ± 0.9 -24 ± 1 -32 ± 2 -25 ± 1 -29 ± 2 -31 ± 2 -26 ± 3 -15.0 ± 0.6 

E5 -16 ± 0.2 -13.4 ± 0.1 -20.1 ± 0.6 -19.7 ± 0.5 -24 ± 1 -21.8 ± 0.7 -25 ± 2 -48 ± 34 -50 ± 31 >1∙10
5
 -20.6 ± 0.3 

E6 -16.9 ± 0.2 -13.7 ± 0.1 -20.7 ± 0.6 -21.9 ± 0.6 -23 ± 1 -24.0 ± 0.9 -24 ± 1 -27 ± 2 -28 ± 2 -25 ± 2 -22.2 ± 0.3 

E7 -16.3 ± 0.2 -13 ± 0.1 -20.4 ± 0.6 -22.9 ± 0.7 -23 ± 1 -27 ± 1 -24 ± 1 -27.1 ± 2 -28 ± 2 -25 ± 2 -22.0 ± 0.3 

E8 -17.4 ± 0.2 -12.9 ± 0.1 -21.2 ± 0.6 -32 ± 1 -22.9 ± 0.9 -45 ± 2 -23 ± 1 -24.1 ± 1 -25 ± 1 -22 ± 4 -25.0 ± 0.3 

10% 

E4 -15.6 ± 0.4 -12.1 ± 0.2 -20 ± 1 -25 ± 2 -23 ± 2 -32 ± 3 -24 ± 3 -27.3 ± 4 -29 ± 4 -25 ± 3 -15 ± 1 

E5 -16.1 ± 0.4 -13.4 ± 0.2 -20 ± 1 -20 ± 1 -23 ± 2 -22 ± 2 -24 ± 3 -44.8 ± 33 -31 ± 5 -26 ± 3 -21 ± 0.7 

E6 -16.9 ± 0.4 -13.8 ± 0.2 -20 ± 1 -22 ± 1 -23 ± 2 -25 ± 2 -23 ± 3 -25.3 ± 4 -26 ± 4 -24 ± 3 -22.2 ± 0.7 

E7 -16.4 ± 0.4 -13 ± 0.2 -20 ± 1 -23 ± 1 -23 ± 2 -27 ± 2 -23 ± 3 -25.5 ± 4 -26 ± 4 -24 ± 3 -22.2 ± 0.7 

E8 -17.4 ± 0.4 -12.9 ± 0.2 -21 ± 1 -32 ± 2 -22 ± 1 -44 ± 4 -23 ± 2 -23 ± 3 -23 ± 3 2 ± 55 -25.0 ± 0.7 
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5.3.3. Data Pooling: El’yanov-Gonikberg Approach 

An interesting approach toward reducing the errors of determination of activation 

volumes was proposed by El’yanov and Gonikberg
1cd

. It is based on an earlier 

observation
11

 that the pressure dependence of rate and equilibrium constants for a series 

of similar processes can be described by the equation  

 𝑙𝑛
𝑘

𝑘0
= (−

∆𝑉0
≠

𝑅𝑇
)Φ(𝑃) (5.9) 

where Φ(𝑃) is a universal function, common for all processes of a given type, and values 

of 𝑉0
≠

 vary for specific processes of a series. In accordance with (5.1) and (5.3), the 

universality of function Φ(𝑃) implies that compressibility, 𝛽0
≠/𝑉0

≠, and 

hypercompressibility, 𝜉0
≠/𝑉0

≠, are the same for all reactions of a given sufficiently 

narrowly defined class. Consistency of eqs. (1.3) and (5.9) also requires that  

at P = 0. Specific expressions for E4-E8 in El’yanov-Gonikberg format are listed in the 

Appendix G. 

Since only 𝑉0
≠ is a reaction-specific parameter and function Φ(𝑃) is common for 

the entire series, the El’yanov-Gonikberg approach opens a possibility of pooling data 

obtained for different reactions and different pressure ranges. It has been argued
1cd

 that 

such data pooling increased stability of 𝑉0
≠ predictions for Diels-Alder reactions

12
. One 

might hope, therefore, that this approach could remediate the instability noted for self-

fitting of E4-E8 in the case of high level of errors in the simulated data. To test this, we 

applied this approach to our simulated data generated for the 0-1 kbar and 0-5 ranges 

with 10% error level. The results are listed in Tables 5.10 and 5.11. As in Tables 5.6-5.9, 

the values reported are mean 𝑉0
≠ and their standard deviations were obtained over five 

replicated sets of simulated data.  

1/  dPd
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Table 5.10. Activation volumes (cm
3
/mol) obtained by fitting equations E4-E8 to 

kinetic data generated using these equations with 𝑉0
≠ = 25 cm

3
mol

1
, 

𝛽0
≠=  cm

3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
 over pressure 

range of 0-5 kbar with 10% error. The El’yanov-Gonikberg function Φ(𝑃) 
was parameterized by fitting more accurate 0-5 kbar data with 1% error. 

Equation 
Fitting Procedure 

Self-fitting (Table 5.6) El’yanov-Gonikberg data pooling 

E4 -27 ± 3 -25±0.4 

E5 -25 ± 3 -24.68±0.04 

E6 -27 ± 3 -25.0±0.4 

E7 -25 ± 3 -24.7±0.4 

E8 -25 ± 3 -24.7±0.4 

Table 5.11. Activation volumes (cm
3
/mol) obtained by fitting equations E4-E8 to 

kinetic data generated using these equations 𝑉0
≠ = 25 cm

3
mol

1
, 𝛽0

≠= 

 cm
3
mol

1
kbar

1
, 𝜉0

≠ = 7.5 cm
3
mol

1
kbar

2
 over pressure range of 0-

1 kbar with 10% error. The El’yanov-Gonikberg function Φ(𝑃) was 

parameterized by fitting data of the same accuracy (10% error) but for a 

wider pressure range of 0-5 kbar. 

Equation 
Fitting Procedure 

Self-fitting (Table 5.6) El’yanov-Gonikberg data pooling 

E4 -24 ± 2 -26±2 

E5 -54 ± 43
 

-24±2 

E6 -24 ± 2 -26±2 

E7 -80 ± 90 -24±2 

E8 -45 ± 38 -24±2 

Table 5.10 refers to a case, where function Φ(𝑃) is parameterized using accurate 

data “collected” over a 0-5 kbar range with an error of 1% and then used to obtain 𝑉0
≠ 

for the data set spread over the same pressure range but with an error of 10%. This 

mimics a situation where kinetic data for various reactions of a series are characterized by 

substantially different error levels. As can be seen from the table, such an approach 

allows one to increase the accuracy of 𝑉0
≠ for a less accurate set by pooling it with a 

more accurate set. Similarly, Table 5.11 demonstrates that pooling data sets with different 

pressure ranges, allows one to “transfer” higher stability of the solution of a wider (0-5 
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kbar) pressure range onto a narrower (0-1 kbar) pressure range and thus significantly 

increase the accuracy of the predicted 𝑉0
≠ for the latter. 

5.4. Analysis of Experimental Data 

Although the use of simulated data offers a unique degree of control over their 

physical parameters and error levels, it is significantly more interesting and important to 

see how equations E1-E11 perform as regression functions in fitting real experimental 

data. In this section, we discuss their performance in application to some Diels-

Alder
12a,13

, Menshutkin
10

, and solvolysis
14

 reactions, kinetic data for which are available 

in the literature for a wide range of pressures.  

5.4.1. Diels-Alder Reactions.  

The results for three Diels-Alder reactions in various solvents are listed in Table 

5.12. The error level estimated by the standard deviations of fit ranged between 1% and 

15%.  
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Table 5.12. Activation volumes (cm
3
/mol) obtained from fitting equations E1-E11 to data for Diels-Alder reactions 

Reaction 

Isoprene-Maleic 

Anhydride 

Addition 

Dimerization of Isoprene Dimerization of Cyclopentadiene 

Solvent  

(T, °C) 

Ethyl acetate 

(35°C)
a 

Isoprene 

(60°C)
b 

Bromobutane 

(40°C)
c 

Cyclopentadiene 

(20°C)
d 

Chlorobutane 

(20°C)
e 

Pressure Range 0-6 kbar 0-8 kbar 0-8 kbar 0-4 kbar 0-3 kbar 

Error Level 2 % 15 % 5 % 4 % 1 % 

E1 -30.2 -30.4 -26.7 -27.1 -21.9 

E2 -26.9 -26.3 -22.3 -24.4 -21.0 

E3 -34.6 -25.1 -33.1 -32.4 -21.4 

E4 -32.4 -32.8 -32.3 -28.8 -22.1 

E5 -37.2 -30.4 -35.9 -36.1 -21.9 

E6 -33.4 -33.8 -34.8 -29.4 -22.1 

E7 -37.8 -30.4 -36.2 -37.8 -21.9 

E8 -40.2 -30.4 -36.7 -115.0 -19.4 

E9 -41.0 -30.4 -37.4 -135.9 -21.9 

E10 >1∙10
5
 -20.8 -33.1 -37.9 -21.9 

E11 -35.8 -36.9 -33.9 -31.5 -23.5 

a
 Kinetic data from ref. 12a  

b
 Kinetic data from ref. 13a  

c
 Kinetic data from ref. 13b  

d
 Kinetic data from ref. 13c  

e
 Kinetic data from ref. 13d 
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Figure 5.6. Fit of E1-E11 to the kinetic data for the Diels-Alder addition of maleic 

anhydride to isoprene in ethyl acetate
12a

. 

Although all functions perform comparably well over the full range of pressures, the 

values of the obtained activation volumes vary in some cases quite dramatically. As with 

the simulated data discussed in the previous section, this can be attributed to the 

difference in behavior of functions E1-E11 in the low pressure region. As shown in Fig. 

5.6, only equations E5, E7, and E8 demonstrated proper behaviour at low pressures, 

producing consistent values of activation volumes of -37 to -40 cm
3
/mol for addition of 

maleic anhydride to isoprene. Function E10, although showing an equally good fit on the 

low pressure range, bent at 0 and predicted an absurd 𝑉0
≠  value of 1x10

5
 cm

3
/mol. Like 

in the similar cases previously observed in the self-fitting of E5 and E7 to the simulated 

data (Table 5.6), this happened due to a collapse of the optimization process resulting in 

an excessively large value of parameter a4, precipitating catastrophic behavior of the 

fitting function near zero. Other obviously wrong values of activation volumes, generated 
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by E8-E9 for cyclopentadiene dimerization, could be traced to the same origin. The 

remaining 𝑉0
≠ values were not unreasonable, however their relatively large variance 

necessitated further steps in selecting the most reasonable figures. Visual inspection of 

the behavior of the fitting functions identified equation E5 and E7 as the most promising 

candidates. These equations produced consistently close values of activation volumes for 

all Diels-Alder reactions included in Table 5.12.  

As described in the previous section, the use of El’yanov-Gonikberg eq. (5.11) 

allowed us to increase the accuracy of 𝑉0
≠ for a less accurate set of simulated data by 

pooling it with a more accurate data set. We therefore applied this approach here to the 

experimental kinetic data on Diels-Alder reactions in an attempt to improve the 

performance of equations E4-E9. Function Φ(𝑃) was parameterized in two different 

ways – by simultaneous fitting to all reactions included in Table 5.12 and by fitting to the 

more accurate maleic anhydride plus isoprene data. The results are listed in Table 5.13.  
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Table 5.13. Activation volumes (cm
3
/mol) obtained from fitting equations E4-E9 to data for five Diels-Alder reactions using 

El’yanov-Gonikberg data pooling. Function  was parametrized by simultaneous fitting to all reactions included in 

Table 12 and by fitting to the more accurate maleic anhydride plus isoprene data. Also included are the theoretical 

values of activation volumes previously obtained using molecular dynamics simulations. 

Reaction Dimerization of Isoprene Dimerization of Cyclopentadiene 

Solvent (T, °C) Isoprene (60°C)
b 

Bromobutane (40°C)
c Cyclopentadiene 

(20°C)
d Chlorobutane (20°C)

e 

Source of (P) 
All 

reactions 

Isoprene + 

Maleic 

Anhydride 

All 

reactions 

Isoprene + 

Maleic 

Anhydride 

All 

reactions 

Isoprene + 

Maleic 

Anhydride 

All 

reactions 

Isoprene + 

Maleic 

Anhydride 

E4 -34.4 -32.0 -29.3 -27.2 -28.4 -27.2 -24.5 -23.6 

E5 -32.5 -35.8 -27.8 -30.6 -26.7 -31.3 -23.3 -26.9 

E6 -35.8 -32.8 -30.6 -28.0 -29.6 -27.9 -25.5 -24.3 

E7 -32.5 -36.4 -27.8 -31.1 -26.7 -31.8 -23.3 -27.4 

E8 -32.8 -30.3 -28.0 -26.0 -26.7 -25.3 -23.3 -22.2 

E9 -32.8 -39.6 -28.0 -33.9 -26.9 -34.2 -23.4 -29.6 

  MD
e 

  -29.0 -35.8 -30.1 

a
 Kinetic data from ref. 12a  

b
 Kinetic data from ref. 13a  

c
 Kinetic data from ref. 13b  

d
 Kinetic data from ref. 13c  

e
 Kinetic data from ref. 13d 

e
 Data from ref.15 

)(P
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For comparison, the theoretical values of activation volumes obtained using molecular 

dynamics simulations
15

 were also included in the table. As expected, the El’yanov-

Gonikberg data pooling eliminated unreasonable 𝑉0
≠ values generated by equations E8-

E9 for cyclopentadiene dimerization. It also considerably increased the absolute values of 

the predicted activation volumes for this reaction in chlorobutane. The consistency of the 

𝑉0
≠ values produced by different fitting functions increased due to data pooling for all 

reactions. However, the results of molecular dynamics simulations better matched the 

data obtained using Φ(𝑃) parameterized by fitting to the more accurate maleic anhydride 

plus isoprene data. Equation E9 in El’yanov-Gonikberg format worked surprisingly well, 

particularly with maleic anhydride - isoprene parameterization of Φ(𝑃). 

5.4.2. Menshutkin Reaction.  

Experimental data
10

 for the Menshutkin reaction of tri-n-propyl amine with 

methyl iodide in various solvents were fitted with functions E1-E11. The results are 

shown in Table 5.14. 
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Table 5.14. Activation volumes (cm
3
/mol) obtained by fitting equations E1-E11 to data for the Menshutkin reaction of tri-n-propyl 

amine with methyl iodide in various solvents at 30°C
10

. 

Solvent Propionitrile Cyclohexanone Dichloromethane Nitrobenzene Nitromethane Acetone 

Error Level 4 % 2 % 5 % 2 % 3 % 4 % 

Pressure Range 0-2 kbar 0-2 kbar 0-2kbar 0-1 kbar 0-2 kbar 0-1.5 kbar 0-7 kbar 

E1 -29.5 -30.4 -31.3 -27.0 -31.9 -28.4 -18.5 

E2 -26.1 -26.4 -28.0 -26.3 -26.4 -25.7 -15.0 

E3 -23.9 -27.9 -28.9 -22.6 -27.4 -29.2 -25.6 

E4 -31.4 -33.4 -33.2 -27.0 -38.5 -29.9 -25.0 

E5 -29.5 -30.4 -31.3 -27.0 -31.9 -29.4 -32.9 

E6 -32.2 -34.8 -34.0 -27.1 -41.4 -30.5 -28.8 

E7 -29.5 -30.4 -31.3 -27.0 -31.9 -29.4 -33.5 

E8 -19.9 -30.4 -170.0 -27.0 -30.7 -29.5 -126.1 

E9 -19.9 -30.4 -31.3 -27.0 -30.7 -29.5 -168.5 

E10 -23.9 -27.9 -28.9 -22.6 -27.4 -29.5 -29.5 

E11 -35.4 -37.2 -37.1 -28.2 -41.4 -33.0 -24.3 
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Figure 5.7. Fit of E1-E11 to kinetic data for the Menshutkin reaction between tri-n-

propyl amine with methyl iodide in acetone
10

 over the pressure ranges of 

0-1500 kbar. 

A value of -28.6 cm
3
/mol was reported

10
 for the activation volume of the reaction 

in acetone by fitting E1 to the data limited to a maximum pressure of 1.5 kbar (Fig. 5.7). 

It was noted, however, that this fitting function no longer worked at higher pressures, 

when compression of the solvent exceeded 10%. Fitting data for different solvents with 

E1-E11 over a pressure range of up to 2 kbar (see Table 5.14) reveals that E1 produces a 

similar quality of fit and comparable activation volumes when compared to the other well 

behaved equations, such as E4-E8 with E5. As in previous cases, equations E2-E3 and 

E10-E11 produced substantially more inferior results. 

On a wider pressure range of 0-7 kbar, the failings of the polynomial equations, 

predicting activation volumes of significantly smaller absolute values, became clear (Fig. 

5.8); the complete cubic function E3 , despite showing a much smaller change in 𝑉0
≠, 
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adopted an unphysical curvature. Equations E8-E9 predicted substantially different and 

obviously wrong values of 𝑉0
≠; and only equations E5-E7 retained a reasonable stability 

of the results. Although El’yanov-Gonikberg data pooling with Φ(𝑃) parameterized by 

fitting to all reactions (see Table 5.15) partially resolved the problem of obviously 

unacceptable values for E8-E9 it did not fully eliminate the disparity of values for E4-E9. 

As in the case of Diels-Alder reactions, equations E5 and E7 produced consistently close 

values of activation volume for all solvents when data pooling was applied. 

 

Figure 5.8. Fit of E1-E11 to kinetic data for the Menshutkin reaction between tri-n-

propyl amine with methyl iodide in acetone
10

 over the pressure ranges of 

0-7 kbar. 
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Table 5.15. Activation volumes (cm
3
/mol) obtained by fitting equations E4-E9 to data for the Menshutkin reaction of tri-n-propyl 

amine with methyl iodide in various solvents at 30°C
10

 using the El’yanov-Gonikberg data pooling with Φ(𝑃) 
parameterized by fitting to all reactions. 

Solvent Propionitrile Cyclohexanone Dichloromethane Nitrobenzene Nitromethane Acetone 

Pressure Range 0-2 kbar 0-2 kbar 0-2kbar 0-1 kbar 0-2 kbar 0-7 kbar 

E4 -28.1 -27.9 -31.3 -29.1 -24.1 -26.9 

E5 -33.1 -33.1 -36.8 -32.8 -28.6 -31.8 

E6 -31.3 -31.3 -35.1 -31.6 -27.1 -30.1 

E7 -33.8 -33.8 -37.8 -33.6 -29.1 -32.3 

E8 -37.1 -37.1 -41.3 -37.3 -31.8 -34.6 

E9 -39.8 -39.6 -44.3 -39.8 -34.1 -36.8 
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5.4.3. Solvolysis.  

The data for the two solvolysis reactions discussed here – methanolysis of ethyl 

chloride
14a

 and allyl bromide
14b

 – are particularly interesting due to the extremely wide 

range of pressures over which their kinetics was measured. Not surprisingly, the results 

of fitting shown in Table 5.16 are much more dispersed than for the previously discussed 

Diels-Alder and Menshutkin reactions. The plots shown in Fig. 5.9 clearly display the 

unphysical behavior of many functions over the entire pressure range – E1-E2, E8-E9, 

E11 possess maxima and E3 has an inflection point. The graphs of functions E4-E7 and 

E10 look reasonable over the entire range, including the lower pressure region; E7 and 

E10 appear undistinguishable. The 𝑉0
≠ values produced by E6, E7, and E10 are very 

close for allyl bromide, but are much more disperse for ethyl chloride. Fitting of E8 and 

E9 results in an unbounded a4 parameter, leading to extremely unreasonable values of 

predicted activation volumes for both reactions. The El’yanov-Gonikberg treatment that 

resolved this issue in the case of Diels-Alder and Menshutkin reactions, does not seem 

possible in this case due to the lack of data necessary for pooling.  
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Table 5.16. Activation volumes (cm
3
/mol) obtained from fitting equations E1-E11 to 

data for Methanolysis reactions. 

Reactant (T, °C) Ethyl Chloride (65 °C)
a
 Allyl Bromide (23 °C)

b 

Pressure Range 0-31 kbar 0-45 kbar 

Error Level 3 % 3 % 

E1 -11.0 -8.0 

E2 -8.7 -6.0 

E3 -16.4 -12.8 

E4 -17.9 -19.8 

E5 -29.1 -26.6 

E6 -24.1 -31.7 

E7 -33.9 -31.9 

E8 -123.8 -92.2 

E9 -122.6 -108.7 

E10 -28.6 -31.3 

E11 -15.0 -11.6 
a
 Kinetic data from Ref 14a 

b
 Kinetic data from Ref 14b  
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Figure 5.9. Fit of E1-E11 to the kinetic data for the methanolysis of allyl bromide at 

23°C
14b

. 

5.5. Concluding Remarks 

The presented study of the general properties of equations E1-E11 and their 

performance as regression functions reveals that, although none of these equations is 

universally good, they remain, when applied properly, a useful tool for analysis of the 

experimental data on high-pressure kinetics or equilibria. The following is a summary of 

general observations and recommendations.  

1. All equations E1-E11 perform equally well if both the pressures and 

the level of experimental errors are sufficiently low (0-1kbar; 1-2%). 

2. Simple quadratic equation E1 works remarkably well on 0-1 kbar 

range, even if the level of experimental errors is relatively high, which 

makes it a better choice over that range compared to equations, such as 

E4-E10, that include nonlinear parameter a4 and are more sensitive to 

the level of experimental errors. 
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3. Equations E2-E3 and E10 should generally be avoided since they are 

prone to display unphysical behavior in many cases. Although this 

could reasonably be expected for cubic equations E2 and E3, it might 

seem somewhat more surprising for E10, the instability of which 

apparently arises from its excessive flexibility due to a greater number 

of adjustable parameters.  

4. Equations E4-E9, and especially E5-E7, appear to be the most reliable 

on wider pressure ranges, substantially exceeding 1 kbar. However, 

their behavior becomes rather unpredictable on narrower pressure 

ranges when the level of errors is high.  

5. El’yanov-Gonikberg data pooling offers an excellent tool for 

correcting this instability and significantly improves the quality of 

predictions based on equations E4-E9. With data pooling, functions 

E5, E7, and E9 seem to perform the best. 

Based on the above, it seems that equations E2-E3 and E10-E11 are less suitable 

for the purpose of obtaining activation or reaction volumes from experimental data. We 

also suggest the following to improve the quality of volumes predicted using the 

remaining functions E1 and E4-E9: For narrow pressure ranges, use quadratic equation 

E1. For wider pressure ranges, fit all functions E1 and E4-E9 to the experimental data 

and identify any irregularities in their appearances by visual inspection of their plots, 

paying particular attention to the presence of maxima or inflection points and unusual 

behavior in the vicinity of P = 0. Use data pooling to obtain more robust predictions. 
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Chapter 6.  

 

Concluding remarks 

6.1. Summary of achievements 

The work presented in this thesis clearly demonstrates the utility of our 

computational techniques in gaining understanding and predicting of the behaviour of 

chemical systems under pressure. The ability to accurately calculate molecular volumes 

using our MD displacement volume model is at the heart of our methodology. Figure 6.1 

summarizes six of the main applications
1
 of the displacement volume model to date – 

four of them have been discussed in the preceding chapters of this thesis; while the others 

remain the focus of investigation by other members of our research group. The 

application of the method to the study of protein folding has already shown promising 

results.
1c

 

 

Figure 6.1. Various applications
1
 based the MD displacement volume method

2
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6.2. Future work 

The next natural step is to further develop and improve our methodology in its 

application to various interesting types of reactions, on which pressure has a profound 

effect
3
 (see Table 1.2). Among those various cases, electron transfer reactions, for which 

a wealth of experimental high-pressure data is available,
4
 present a particular challenge 

for the classical MD simulations since they are not readily suited to study these 

processes.  

As discussed in section 2.1.6, the main instrument currently used to interpret high 

pressure effects in electron transfer processes is the Stranks-Hush-Marcus theory.
5
 

Predictions of this theory have shown good agreement with experiment for many outer-

sphere electron transfer systems.
4
 However, this approach does not offer a recipe for 

calculation of the effects of solvent/solute restructuring that goes beyond a simple change 

in ionic radii of the solute in a structureless solvent. Our MD displacement volume 

method is perfectly suited for describing the omitted effects of solute restructuring and 

specific solvation. However, to be used as a viable alternative to the Stranks-Hush-

Marcus treatment, it needs to be augmented with an MD-based description of 

nonequilibrium solvation to replace the continuum solvent model. 

The discrete solvent approach that we use to describe nonequilibrium polarization 

of the medium, playing the central role in Marcus theory, utilizes a procedure, similar to 

the one previously used to model nonequilibrium solvation by viscous solvents.
6
 In an 

equilibrium MD simulation, the total energy of a solvent-solute system is described as a 

trajectory average that depends on both the solvent trajectory, X(t), and solute trajectory, 

x(t): 

 𝐸 = ⁡ 〈𝐸(𝒙(𝑡), 𝑿(𝑡))〉 (6.1) 

Due to solvent-solute interactions, both of these trajectories and, as a result, the total 

energy are parametrically dependent on the solute parameters (such as solute charge 
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distribution). If such solute parameter is labeled as q, the equilibrium energy of the 

solvent-solute system is 

 𝐸(𝑞) = ⁡ 〈𝐸(𝒙(𝑡|𝑞), 𝑿(𝑡|𝑞))〉 (6.2) 

If a solvent trajectory is generated for the solute parameter q = Q  and the solute 

with q = Q is removed and replaced by the solute with q ≠ Q, which no longer matches 

the previously generated solvent trajectory X = X(t |Q), the resulting construct represents 

a situation of nonequilibrium solvation, and the energy of such system is  

 𝐸(𝑞, 𝑄) = ⁡ 〈𝐸(𝒙(𝑡|𝑞), 𝑿(𝑡|𝑄))〉 (6.3) 

This approach is illustrated in Fig. 6.2 for a model example of electron transfer 

between donor, M
Z1 (charge Z1), and acceptor, M

Z2 (charge Z2) where solute parameter q 

describes the charge distribution of the solute ion pair: q1 = Z1+q; q2=Z2–q. In the reactant 

state q1 = Z1 and q2 = Z2 (q=0), whereas in the product state q1 = Z1+1 and q2 = Z2–1 

(q=1). Nonequilibrium solvent trajectories corresponding to various intermediate states 

of partial charge transfer q1 = Z1+Q; q2 = Z2–Q (0<Q<1) can be generated by varying the 

solvent coordinate Q. Solvent trajectories thus produced are then recombined with the 

solute in either reactant or product state to give diabatic Marcus-type energy profiles. 
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Figure 6.2. Schematic representation of a construct describing nonequilibrium 

solvation of solute with charge distribution parameter q = 1not matching 

the solvent parameter Q = 0. 

Our preliminary results using this approach for a simple system of two 

structureless ions in aqueous solution with charges 2+ and 3+ at an interionic separation 

of 5 nm are compared in Fig. 6.3 to the curves generated using the Marcus equation
5 

 ∆𝐺 = (Δ𝑒)2 (
1

2𝑎1
+

1

2𝑎2
−
1

𝜎
) (

1

𝜀𝑜
−
1

𝜀
) ⁡ (6.4) 

where Δe is the amount of charge transferred, a1 and a2 are the Born radii of the donor 

and acceptor ions, and sigma is the internuclear separation distance equal to the sum of 

the two radii. The close match of the MD results and the prediction of Marcus theory is 

very encouraging and we hope that we will soon be in a position to formulate a consistent 

numerical procedure to cover the entire range of homogeneous high pressure reactions 

with a proper balance in description of structural and solvent effects. 
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Figure 6.3. MD generated free energy profiles for the pair of 2+/3+ structureless ions 

in aqueous solution (diamonds), with corresponding Marcus energy curves 

calculated using eq. 6.4 (lines).  
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Appendix A.  

 

Numerical Values of the Potential Energy Function for the Model Triatomic of Section 4.1.2. 

  
RAB, nm 

  
0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 

RBC, nm 

0.08 99.46 68.91 49.16 35.83 26.76 20.58 16.38 13.51 11.55 10.20 9.28 8.65 8.21 7.92 7.71 7.56 7.45 7.36 

0.09 68.91 47.00 33.48 23.88 16.9 11.88 8.32 5.80 4.04 2.79 1.93 1.32 0.89 0.59 0.37 0.21 0.09 0.00 

0.1 49.16 33.48 25.97 20.66 16.08 12.36 9.50 7.36 5.80 4.66 3.84 3.25 2.82 2.50 2.27 2.10 1.97 1.87 

0.11 35.83 23.88 20.66 20.00 18.71 16.79 14.89 13.27 11.97 10.97 10.21 9.64 9.22 8.90 8.66 8.47 8.33 8.22 

0.12 26.76 16.9 16.08 18.71 21.01 21.66 21.3 20.58 19.81 19.10 18.50 18.02 17.63 17.32 17.09 16.9 16.76 16.65 

0.13 20.58 11.88 12.36 16.79 21.66 24.76 26.18 26.69 26.77 26.67 26.50 26.32 26.15 26.00 25.88 25.77 25.68 25.61 

0.14 16.38 8.32 9.05 14.89 21.3 26.18 29.00 30.5 31.28 31.67 31.86 31.94 31.96 31.95 31.93 31.9 31.87 31.84 

0.15 13.51 5.8 7.36 13.27 20.58 26.69 30.5 32.69 33.94 34.66 35.08 35.32 35.46 35.53 35.57 35.59 35.59 35.59 

0.16 11.55 4.04 5.80 11.97 19.81 26.77 31.28 33.94 35.52 36.46 37.03 37.38 37.59 37.72 37.80 37.84 37.87 37.89 

0.17 10.2 2.79 4.66 10.97 19.10 26.67 31.67 34.66 36.46 37.55 38.22 38.64 38.91 39.07 39.18 39.25 39.29 39.32 

0.18 9.28 1.93 3.84 10.21 18.50 26.5 31.86 35.08 37.03 38.22 38.97 39.44 39.74 39.93 40.05 40.14 40.19 40.23 

0.19 8.65 1.32 3.25 9.64 18.02 26.32 31.94 35.32 37.38 38.64 39.44 39.94 40.26 40.48 40.62 40.71 40.77 40.81 

0.2 8.21 0.89 2.82 9.22 17.63 26.15 31.96 35.46 37.59 38.91 39.74 40.26 40.61 40.83 40.98 41.08 41.15 41.2 

0.21 7.92 0.59 2.50 8.9 17.32 26.00 31.95 35.53 37.72 39.07 39.93 40.48 40.83 41.06 41.22 41.33 41.40 41.45 

0.22 7.71 0.37 2.27 8.66 17.09 25.88 31.93 35.57 37.8 39.18 40.05 40.62 40.98 41.22 41.38 41.49 41.57 41.62 

0.23 7.56 0.21 2.10 8.47 16.9 25.77 31.9 35.59 37.84 39.25 40.14 40.71 41.08 41.33 41.49 41.6 41.68 41.74 

0.24 7.45 0.09 1.97 8.33 16.76 25.68 31.87 35.59 37.87 39.29 40.19 40.77 41.15 41.40 41.57 41.68 41.76 41.82 

0.25 7.36 0.00 1.87 8.22 16.65 25.61 31.84 35.59 37.89 39.32 40.23 40.81 41.2 41.45 41.62 41.74 41.82 41.87 
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Appendix B.  

 

Solvent Cavities Around the Reactant State and TS of the 

Substituted Toluene Systems. 

Reactant State (left) and TS (right) 

B.1 Series A: m-xylene  

 

B.2 Series A: p-xylene 
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B.3 Series A: m-bromotoluene 

 

B.4 Series A: p-chlorotoluene 
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B.5 Series B: ethylbenzene 

 

B.6 Series B: cumene 
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B.7 Series B: diphenylmethane 

 

  



 

163 

Appendix C.  

 

Compressed PES’s for A-B-C systems embedded in 1D Ne 

matrix. 

C.1 PES for BrHBr at low (A) medium (B) and high (C) compression. The contour spacing 

is 10 kJ/mol. 
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C.2 PES for ClHCl at low (A) medium (B) and high (C) compression. The contour spacing 

is 10 kJ/mol. 
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C.3 PES for ClHBr at low (A) medium (B) and high (C) compression. The contour spacing is 

10 kJ/mol. 
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C.4 PES for FHBr at low (A) medium (B) and high (C) compression. The contour spacing 

is 10 kJ/mol. 
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C.5 PES for FHCl at low (A) medium (B) and high (C) compression. The contour spacing 

is 10 kJ/mol. 
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C.6 PES for CN-CH3-CN at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 

  

S.1(a) PES for CN-CH3-CN at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.7 PES for Cl-CH3Cl at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.8 PES for Br-CH3-Br at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.9 PES for NC-CH3-Cl at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.10 PES for NC-CH3-Cl at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.11 PES for NC-CH3-Br at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.12 PES for F-CH3-Br at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.13 PES for Cl-CH3-Br at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.14 PES for Et-H-Et at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.15 PES for Et-H-Me at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 
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C.16 PES for Me-H-iPr at low (A) medium (B) and high (C) compression. The contour 

spacing is 10 kJ/mol. 

  

 

0.15 0.20

0.15

0.20

R
H-Me

nm

R
iP

r-
H
n
m

 

0.12 0.14 0.16

0.12

0.14

0.16

R
H-Me

nm

R
iP

r-
H
n
m

 

0.12 0.14

0.11

0.12

0.13

0.14

0.15

R
H-Me

nm

R
iP

r-
H
n
m

 

A 

B 

C 



 

179 

Appendix D.  

 

PES for the F-H-F System Embedded in a 3D Ne Matrix. 

D.1 PES for the FHF system at isotropic low (A) medium (B) and high (C) compression. 

The contour spacing is 10 kJ/mol. 

*Note the change in length scale between plots A-C. 

 

 

 

A 

B 

C 



 

180 

Appendix E.  

 

Validity Thresholds and Parameter Constraints of equations 

E1-E11 

Polynomial equations E1-E3. It follows from eqs. (1.9) and (1.10a) that in the case of 

polynomial equations E1-E3 conditions (5.3)-(5.5) take the form of eqs. (A1)-(A3) 

 (A1) 

 (A2) 

 (A3) 

Taken at P = 0, condition (A2) requires that 

        or       (A4) 

Equation E1 does not satisfy requirement (A3) and hence condition (5.5) since a3 = 0. 

Condition (A2), and hence (5.4), are satisfied if requirement (A4) is imposed. If, in 

addition, 

 (A5) 

conditions (5.3) and (A1) are also satisfied  

   Similarly, (5.4)/(A2) and (5.5)/(A3) are inconsistent for equation E2 since a2 = 0. 

However, condition (5.5) alone still can be satisfied, provided that 

        or       (A6) 

in which case eq. (A1) produces the pressure threshold 
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within which conditions (5.3) and (A1) are also satisfied. 

Finally, in the case of equation E3 conditions (A1)-(A3), and hence (5.3)-(5.5), are 

satisfied for  

 if  

  

or (A8) 

 if  

  

Hyperbolic equations E4-E5. In the case of hyperbolic equations conditions (5.3)-(5.5) 

take the form of eqs. (A9)-(A11) 

 (A9) 

 (A10) 

 (A11) 

which are satisfied for any pressure if  and  

Logarithmic equations E6-E10. In this case, conditions (5.3)-(5.5) take the form of eqs. 

(A12)-(A14) 

 (A12) 

 (A13) 

 (A14) 

It obvious from eq. (A12), that logarithmic equations have proper asymptotic behavior at 

infinite pressure only if a3 = 0 (equations E6 and E7).  
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Since    and  , eqs. (A12)-(A14) reduce to 

 (A15) 

 (A16) 

 (A17) 

Taken at P = 0, eqs. (A16) and (A17) give the following constraints on parameters ai:  

 (A18) 

 (A19) 

which for a3 = 0 (equations E6-E7) further reduce to 

 (A20) 

 (A21) 

It follows from inequalities (A20)-(A21) that for E6-E7 

    and     (A22) 

With these constraints, conditions (A12)-(A14), and hence (5.3)-(5.5), are satisfied for 

the entire range of pressures. 

Similarly, for a2 = 0 (equation E8) inequalities (A18)-(A19) produce constraints 

    and     (A23) 

which guarantee the validity of conditions (A13)-(A14) for all pressures. Condition 

(A12), although violated at sufficiently high pressures, is obeyed for pressures below the 
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 (A24) 

Again, for a3 = a2a4 (equation E9) eqs. (A18)-(A19) lead to 

,     ,     and      (A25) 

With these constraints, conditions (A13)-(A14) are valid for the entire range of pressures 

and condition (A12) for  

 (A26) 

In the general case of equation E10 with four independent parameters, it is difficult to 

obtain individual constraints on these parameters. To simplify the analysis of this 

equation we will assume that a4 > 0 as in all other cases of logarithmic equations. If, in 

addition, 

 (A27) 

then eq. (A18) follows from eq. (A19) and inequalities (A16)-(A17), and hence 

conditions (A13)-(A14), are satisfied for the entire range of pressures if eq. (A18) is 

obeyed.  

If, on the other hand, 

 (A28) 

then eq. (A19) follows from eq. (A18), and inequalities (A16)-(A17) are satisfied for a 

limited range of pressures  

 (A29) 

if eq, (A19) is obeyed. Since , it follows from eq. (A29) that 

 (A30) 

Pseudo-logarithmic equation E11. For this equation conditions (5.3)-(5.5) take the form 

of eqs. (A31)-(A33) 
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 (A31) 

 (A32) 

 (A33) 

 

which result in the following set of constraints: 

   and    (A34) 

Under these constraints, conditions (A32) and (A33) are satisfied for the entire range of 

pressures exceeding zero, and condition (A31) for  
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Appendix F.  

 

Inverse of Table 5.2. 

Equation a1 a2 a3 a4 

E1 -α -β/2 0 0 

E2 -α 0 -γ/6 0 

E3 -α -β/2 -γ/6 0 

E4 0 0 -α -β/2α 

E5 3β2/2γ-α 0 -3β2/2γ -γ/3β 

E6 0 -α2/β 0 -β/α 

E7 -α+2β2/γ 4β3/γ2 0 -γ/2β 

E8 -α 0 3 β2/4γ -2γ/3β 

E9 -α-β2/γ -β3/γ2 0 -γ/β 
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Appendix G.  

 

Explicit Expressions for Equations E4-E9 in their El’yanov-

Gonikberg Format. 

For consistency with eqs (1.9) function )(P  of eq (5.9) has to be presentable as 

 Φ(𝑃) = 𝑏1𝑃 + 𝑏2𝑓(𝑃) + 𝑏3𝑃𝑓(𝑃) (G1) 

where f(P) is described by eq (1.10) with nonlinear parameter a4. Linear coefficients bi of 

eq (G1) can be obtained from the corresponding coefficients ai of eq (1.9) by scaling: bi = 

-aiRT/V0
≠
. Condition 1/  dPd  at P = 0 translates into a constraint on bi, specific 

forms of which for equations E4-E8 are listed in Table 5.2 together with their explicit 

expressions for these equations in El’yanov-Gonikberg format. 

Table G1 Constraints on parameters bi of function )(P  stipulated by the condition 

1/  dPd  at P = 0 for empirical equations E4-E8 and their explicit 

expressions in El’yanov-Gonikberg form (eqs. 5.9 and G1). 
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Appendix H.  

 

Table of ai Parameters of Equations E1-E11 Generated From 

Table 5.4. 

Equation 
Equation Coefficients

† 

a1 a2 a3 a4 

E1 1.0084 -0.2017     

E2 1.0084   0.0504   

E3 1.0084 -0.2017 0.0504   

E4     1.0084 0.2000 

E5 0.2017   0.8067 0.2500 

E6   2.5211   0.4000 

E7 -0.0672 2.8684   0.3750 

E8 1.0084   -0.4034 0.5000 

E9 1.5463 -0.7171   0.7500 

E10 0.1580 2.1694 -0.0893 0.3920 

E11 1.0084 -0.2000     

† 
Pressure in kbar; 𝑉0

≠in cm
3
mol

1
; 0

≠
 in cm

3
mol

1
kbar

1
; 0

≠
 in cm

3
mol

1
kbar

2 

 


