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Abstract 

Brain-computer interfaces may enable the collaboration between human and 

machines. They can in fact potentially translate the electrical activity of the brain to 

understandable commands to operate a machine or a device.  

In this thesis, a method is proposed to improve the accuracy of a BCI by 

leveraging an established electromyography (EMG) pattern recognition scheme. Such a 

pattern recognition scheme extracts time-domain features, which include autoregressive 

(AR) model coefficients, root mean square (RMS), waveform length (WL) and classifies 

them using an optimized support vector machine (SVM) with a radial basis kernel 

function (RBF).  

Upon validating that such a method can indeed process EMG signals to classify 

different fifteen movements of the arm with high accuracy (> 90%), this thesis 

investigates the possibility of implementing it for the design of a BCI based on 

electroencephalographic (EEG) signals. The discrimination of rest, imaginary grasp and 

imaginary elbow movement of the same limb was selected as test case to validate the 

designed BCI. This classification task is particularly challenging because imaginary 

movements within the same limb have close spatial representations on the motor cortex 

area.  

The use of the proposed method was demonstrated to be suitable for identifying 

imaginary movements using EEG signal. In fact, the investigated method achieved an 

average accuracy of 91.8 % and 90 % for identifying the user intention corresponding to 

imaginary grasps and imaginary elbow movements (2-class BCI). An average 

classification accuracy of 74.2 % was achieved for classification of rest versus imaginary 

grasps versus imaginary elbow movements (3-class BCI).  

The investigated method outperformed methods that are widely used in the BCI 

literature such as common spatial patterns (CSP), filter bank CSP (FBCSP), and band 

power methods. These results are encouraging and the proposed method could 

potentially be used in the future in BCI-driven robotic devices to assist individuals with 

impaired upper extremity functions in performing daily tasks. 

Keywords: Brain-computer interface; Classification; Feature extraction; Support vector 
machines. 
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Chapter 1. Introduction  

1.1. Introduction 

This chapter provides an overview of the necessary background knowledge for 

BCI research. The types of movements explored for interpretation by BCIs are discussed 

and the combination of motor imagery of grasping and elbow movements of the same 

arm are deduced to be novel to BCI literature to the best of the author’s knowledge. The 

objectives of the research and outline of thesis are also discussed in this chapter. 

1.2. Motivation 

Brain-computer Interface (BCI) is a direct communication pathway between the 

brain and external electronic devices aiming at translating brain activities into control 

commands. In recent years, the use of BCI has been shown to be promising for 

detecting the users’ intention and controlling robotic devices [1]. A BCI system detects 

electrical changes in brain and attempts to find patterns that are related to the thoughts 

or specific movements.  Electroencephalographic (EEG) signals can be correlated to the 

tasks performed by an individual [2]. Such tasks include imagining motor movements [3], 

imagining speech [4] and mental computation [5]. 

Several different classification schemes with a variety of complexity and 

efficiency in different domains were suggested for EEG signal analysis and identifying 

the correlation with tasks performed [6, 7]. Palaniappan trained the Elman Neural 

Network by the resilient backpropagation (BP) and a classification accuracy of 86% was 

obtained [8]. Hema et al. employed a fuzzy classifier and extracted power of the spectral 

frequencies  for classification of five mental tasks and an accuracy of 65% to 100% was 

obtained [9]. Diez et al. used empirical mode decomposition for feature extraction and 

classification accuracy of 87±5% was achieved when multilayer perceptron (MLP) 

network was implemented and an accuracy of 91±5% was obtained when linear 

discriminant analysis was used [10]. Huan and Palaniappan utilized MLP-BP and 

adaptive auto regression and classification accuracy of 81.80% was obtained [11].  



2 

Although there were several attempts, the detection of the task the user intends 

to perform is however still a field of research. It is not straightforward to apply existing 

BCI systems to control devices such as robotic assistive devices. The main reason is 

that these BCI systems can only recognize a limited number of mental tasks as control 

commands. Left hand, right hand, and foot motor imagery tasks are among the most 

frequently used motor imagery tasks in controlling BCI systems [12]. The task of 

detecting the intention or discriminating the motor imagery of different movements within 

the same limb is particularly challenging. This is due to the fact that these motor tasks 

activate regions that have close representations on the motor cortex area of the brain. 

To date, not many studies addressed this problem [13, 14]. 

Some of the studies look into the decoding of different wrist movements [15, 16]. 

The classification of four different imaginary wrist movements namely wrist extension, 

flexion, pronation, and supination were demonstrated in [17] and unfortunately, the 

accuracies achieved are not satisfactory (approximately 35%). There are BCIs that only 

classify two classes such as left versus right motor imagery or mostly rest versus motor 

imagery [18-22]. Existing multi-classes classification schemes do not result in acceptable 

classification accuracies using EEG signals. Therefore, a solution to identify multiple 

classes of the upper extremity is needed which potentially benefits the individuals with 

upper extremity impairment. A classification scheme is proposed in this thesis to improve 

the classification accuracies using EEG signals. The proposed classification scheme 

could potentially be used to identify the activities of the upper extremity.  

1.3. Objectives 

The overall goal of this thesis is to investigate the proposed classification scheme 

if it could provide references for further enhancing the recognition rate of EEG and make 

BCI more practical.  

In previous study (PS) [23] performed by Dr. Xinyi Yong, a former member of the 

MENRVA research group nine different classification schemes which were combinations 

of  nine  different feature extraction and classification methods were used to discriminate  
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the different classes of EEG signals. The reported accuracy for each participant was the 

highest cross-validation accuracy obtained from one of the nine algorithms.  

The goal of this thesis is to investigate if the proposed classification scheme, 

which extracts time-domain features, could lead to higher performance. The proposed 

time-domain feature extraction method is compared to widely used methods such as 

CSP, FBCSP and band power methods. 

Motor imagery of grasping and elbow movements were chosen due to their 

potential use in controlling the robotic exoskeleton [24] developed in the MENRVA 

research lab. For example, the user could imagine elbow movements to move the 

robotic device close to a cup, and then imagine grasping movements to grab the cup.  

In order to achieve the overall goal of the thesis, two research objectives are 

proposed and presented in the following sections. 

Objective 1: Binary classification problem 

The first objective of this thesis is to explore the feasibility of the classification 

scheme focusing on the binary classification of functional activities of the same upper 

limb. Binary classification is the task of classifying the EEG signal into two groups. 

Binary classification determines if a participant has motor movement intention or not – 

the classification result specifies the presence of the intention. This thesis, first 

investigates the binary classification of the following combinations (objective 1.1 and 

objective 1.2): 

Objective 1.1: Rest versus motor imagery of grasp 

Objective 1.2: Rest versus motor imagery of elbow flexion and extension 

Objective 2: Multi-class classification problem 

This second objective is to investigate the feasibility of utilizing EEG in a multi-

class BCI system that discriminates EEG signals corresponding to rest or other 

imaginary of the functional movements within the same limb. This objective is set to 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Medical_test
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assess the possibility of designing a 3-class BCI that discriminates rest, imaginary grasp 

movements and imaginary elbow movements. 

1.4. Outline of Thesis 

The following chapters of this thesis are organized as follows:  

 Chapter 2 briefly explains the anatomical structures of the brain and their 

functions. 

 Chapter 3 summarizes the state of the art in the field of brain-computer 

interfacing. 

 Chapter 4 presents the proposed classification scheme adopted from the 

electromyography (EMG) literature including feature extraction and classification 

method for upper extremity pattern recognition.  

 Chapter 5 investigates the performance of the classification scheme in identifying 

multiple classes of the upper extremity using EMG signals. This chapter 

demonstrates how accurate the classification scheme is. 

 Chapter 6 describes the experimental procedure including signal acquisition and 

analysis for different motor imageries. 

 Chapter 7 presents the performance for predicting the neutral state of the brain 

versus the upper extremity gestures involved in a functional imagery movement.  

 Chapter 8 presents recognition performance for the multi-class upper extremity 

imagery movements.  

 Chapter 9 is dedicated to the comparison between the proposed approach and 

the more popular approaches for imaginary movement recognition.  

 Chapter 10 draws the conclusion of the thesis and summarizes the work done 

toward achieving the objectives as well as the scientific contributions of the 

thesis. 
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The two objectives of the thesis are addressed in the following chapters: 

 Objective 1 is addressed in chapters 7. Chapter 7 presents the optimal binary 

classification models and the corresponding classification results.   

 Objective 2 is addressed in chapters 8. Specifically chapter 8 presents the 

optimal multi-class classification model for each participant. The obtained 

classification results of objective 2 are also presented in this chapter. 

 Objective 1 and objective 2 are also addressed in chapters 9. In chapter 9 the 

obtained results of the proposed method are compared with the obtained results 

of the well-known methods.  

1.5. Conclusion 

This chapter introduced the limitations of current classification schemes. Same 

limb grasp and elbow motor imageries were selected in order to their potential use in 

controlling the robotic arm [24] developed in the MENRVA research lab to provide basic 

hand functionality and aid daily activities. The overall objective of the research was 

defined. The objective was split into two investigations and the purpose of each were 

detailed. 

The next chapters provide some basic background knowledge and relevant 

terminology pertaining to the research. The design and implementation of the method 

used is documented and the consequential results are thereafter presented and 

discussed. Future work is briefly discussed and the research is concluded. 
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Chapter 2. Physiological Background 

2.1. Introduction 

Brain-computer interface research involves and integrates researchers from 

different fields including engineering, neuroscience, computer science and rehabilitation 

[25, 26]. Thus in order to contextualise this research, some basic background is provided 

in this chapter. This includes necessary terminology, relevant neural anatomical and 

physiological knowledge. 

In this chapter the anatomical structures of the brain and their functions are 

briefly explained. Then the focus is on the brain generating electrical activities that can 

be recorded on the scalp.  

2.2. The Brain 

The supreme commander of the human body is the brain which governs the 

functions of various organs in the body. The brain can be divided into three major parts; 

cerebrum, cerebellum and brainstem [27] as illustrated in Figure 2.1.    

 

Figure 2.1: Anatomical areas of the brain [27]. 



7 

2.2.1 Cerebrum 

The cerebrum is the most important and largest part of the human brain. The 

cerebrum is generally associated with brain functions related to thoughts, movements, 

motor functions and emotions. The cerebrum is divided into two hemispheres, the left 

and right hemispheres. Each hemisphere has four lobes that are named after the bones 

that cover them: frontal lobe, parietal lobe, temporal lobe and occipital lobe (Figure 2.1).  

A central sulcus separates the frontal and parietal lobes (see Figure 2.2). The 

precentral gyrus (region 1 in Figure 2.2) is located immediately anterior to the central 

sulcus, and it contains the primary motor area of the cerebral cortex. The postcentral 

gyrus (region 2 in Figure 2.2), located immediately posterior to the central sulcus, 

contains the primary somatosensory area of the central cortex. 

 

Figure 2.2: The brain. The cerebrum is divided into four lobes: frontal lobe parietal lobe, 
temporal lobe and occipital lobe. Region 1 and region 2 represent the primary motor 
area and the primary somatosensory area, respectively. Adapted from Pearson 
Education, Inc.  

The primary motor area controls voluntary contractions of specific muscles of the 

body. The primary motor area and the primary somatosensory area, jointly called 

sensorimotor cortex. Over this region (Figure 2.3) the representation of human body 

muscles was mapped by Penfield and Rasmussen. This mapping was done by 

electrically stimulating the different areas of the sensorimotor cortex.The size of the area 
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is related to the importance and complexity of movement of a particular body muscle. It 

is possible to notice that more than half of the entire sensorimotor cortex is concerned 

with controlling the muscles of hand and speech (see Figure 2.3) [28].  

 

Figure 2.3: Homunculus: representation of the different body muscles over the 
sensorimotor cortex. Adapted from Antranik.org.  

2.3. Human brains’ neurophysiology 

The human brain consists of about 100 billion nerve cells called neurons. The 

electrical charge of the brain is maintained by these neurons. Neurons share the same 

characteristics and have the same parts as other cells. The electrochemical aspect lets 

them transmit electrical signals and pass messages to each other. In general terms a 

neuron consists (Figure 2.4) of a cell body (soma) that contains the nucleus, an axon 

that carries the neuron’s output in the form of action potentials and a dendritic tree that 

together with the soma, receives inputs from other elements through specialized 

structures called synapses. 
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Figure 2.4: A simple structure of neuron. 

The nucleus is the heart of the cell, providing it with instructions on what to do. 

The axon connects the nucleus of its own neuron to the dendrite of another neuron. 

Through the axon-dendrite link, neurons can communicate between each other.  

2.4. EEG Recordings 

Large populations of active neurons can generate electrical activity recordable on 

the scalp [29-31]. In the EEG measurement, the cerebral cortex is the most relevant 

structure as it is responsible for tasks such as movement, problem solving, processing of 

complex visual information and language comprehension. Due to its surface position, the 

electrical activity of the cerebral cortex has the greatest influence on EEG recordings.  

2.4.1. Electrodes 

A cap with a number of electrodes is placed on the user’s head. Each electrode 

has a letter to identify the lobe and a number to identify the hemisphere location. The 

letters F, C, T, P and O stand for Frontal, Central, Temporal, Parietal and Occipital 

respectively. A “z” or zero refers to an electrode placed on the midline. Even numbers (2, 

4, 6 and 8) refer to electrode positions on the right hemisphere, whereas odd numbers 

(1, 3, 5 and 7) refer to those on the left hemisphere.  
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Electrodes pick up the signal from the head surface. These scalp measurements 

detect potential changes over time in a basic electric circuit between an active electrode 

and a reference electrode. Many different physical references can be chosen, but vertex 

(Cz electrode) is the frequently used reference electrode. This signal is then amplified, 

digitalized and stored in a computer.  

2.5. Neurophysiological phenomena  

Neurophysiological phenomena may be used to extract information from scalp-

recorded EEG signals. Such phenomena are generated consciously by the user 

(endogenus BCI), or unconsciously in response to an external stimulation (exogenous 

BCI). Exogenous BCIs are based on Event Related Potentials (ERPs), whereas 

endogenous BCIs are based on Sensory-Motor Rhythms (SMR). In the following 

paragraphs these neurophysiological phenomena are briefly exposed.  

2.5.1 Event Related Potentials  

Event-related potentials can be measured in the EEG before, during or after a 

certain event. Event-related potentials have a fixed time delay to the stimulus and their 

amplitude is usually much smaller than the ongoing spontaneous EEG activity. They can 

be detected by averaging many recordings time-locked to the event. The averaging 

cancels out the background activity, which is not synchronized with the stimulus and 

leaves only ERPs. P300 and Steady State Visual Evoked Potentials (SSVEP) are the 

commonly used ERPs. 

2.5.2 Sensory-Motor Rythms  

Sensory-Motor Rhythms are oscillatory activities observable in sensory-motor 

areas of the cortex. It is known that motor imagery, preparation for movement, or 

movement is usually accompanied by a decrease in the mu and beta rhythms over the 

sensorimotor cortex area especially the contra-lateral region [32, 33]. This decrease is 

also known as event-related desynchronization (ERD).A recent study suggested that the 

degree of this decrease might be quantitatively associated with an increase in neuronal 

activity [33]. Besides ERD, an increase in the beta rhythm also occurs after a motor 
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imagery or a movement is executed. This increase is known as event-related 

synchronization (ERS). Mu and beta rhythms are relevant in the scope of this thesis as 

imagery movement are associated with mu and beta rhythm desynchronization. 

2.6. Conclusion 

The theoretical background necessary to understand the anatomic and 

physiologic fundamentals of the brain were presented. Also, a brief description of the 

electroencephalography and its phenomenology was given. This is relevant information 

needed to contextualise the problem to decipher the EEG for different motor imageries 

using an EEG-based BCI. The next chapter is an overview of brain-computer interfaces. 
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Chapter 3. Brain Computer Interface  

3.1. Introduction 

This chapter summarizes the state of the art in the field of brain-computer 

interfacing. Section 3.2 describes a generalized BCI system and presents the main 

components along with their dependences and interconnections. Section 3.3 deals with 

the main techniques available to acquire brain signals. The following sections are about 

EEG signal feature extraction (Section 3.4) and classification (Section 3.5).  

3.2. Generalized BCI system 

 A Brain-Computer Interface is a communication system that allows controlling an 

external device using signals measured from the brain. A BCI bypasses any muscle or 

nerve mediation and establishes a direct communication pathway from the human brain 

to the outer world. BCI systems aim to provide a means of communication and control 

for people who suffer from neuromuscular disorders or motor disabilities, such as spinal 

cord injuries, brainstem stroke, multiple sclerosis and limb amputations [2, 34-35]. BCIs 

could allow the use of assistive devices such as wheelchairs, prosthetics and orthotics in 

order to improve the quality of life of such individuals [35]. 

3.2.1 BCI Components 

 In general a BCI system consists of the following main components, as depicted 

in Figure 3.1: 
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Figure 3.1: Generalized BCI system 

3.2.1.1 Signal Acquisition 

In the first stage a signal related to neuronal activity is recorded from the brain. 

This signal may be acquired with several techniques having different spatial and 

temporal resolutions, different levels of invasiveness and different characteristics of the 

recording equipment. 

3.2.1.2 Processing and Translation  

Signal processing and translation is the most important component of any BCI 

system.Its goal is to convert signals recorded from the brain into a control signal suitable 

for an external device. In the processing part the signal is filtered and relevant features 

are extracted in order to discriminate relevant brain activities. In the translation part 

these features are used to generate a continuous or discrete control signal. 
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BCI analysis can be done online or offline [34]. In the case of offline analysis, 

data is recorded and techniques are applied to the data thereafter [34]. Methods that 

appear promising offline can be executed by extensive online testing, where the 

individual’s neural signals are analyzed in real-time [34, 35].  

Following sections describes the mentioned BCI components in more detail. 

3.3. Signal Acquisition 

There are several ways to acquire signals from the brain, all falling into two main 

categories: invasive and non-invasive techniques. Invasive BCIs use activity recorded by 

brain implanted micro-electrodes, whereas non-invasive BCIs use brain signals recorded 

from outside the body boundaries. 

Invasive recording methods either measure the neural activity of the brain within 

the cortex or on the cortical surface (electrocorticography, ECoG). While having strong 

advantages in terms of signal quality, the invasive methods require delicate and risky 

surgeries with all the problems related to protection from infections and stability of 

implants. 

Non-invasive methods based on electrical brain activity are mainly divided into 

two categories: magnetoencephalography (MEG) and electroencephalography (EEG). 

MEG is sensitive to the magnetic fields induced by the electric currents in the brain. 

MEG provides a precise spatial resolution (about 5 millimeters) and a good temporal 

resolution, but the recording equipment is bulky and expensive. To date, this method is 

used only in laboratory settings and is consequently not suitable for controlling a BCI in 

the patient’s home environment. 

Electroencephalography makes use of electrodes on the scalp to sense the 

electrical fields. EEG recordings provide good temporal resolution (in the order of 

milliseconds) but suffer of a poor spatial resolution (in the order of centimeters). This 

limitation in signal localization is mainly due to the diffusive effects caused by all 

intermediate tissues between the brain cortex and the scalp. However EEG is still the 

preferred choice for non-invasive BCIs, because of its fine temporal resolution, ease of 
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use and portability. Electroencephalography is acquisition technique adopted in this 

thesis.  

3.4. Feature Extraction 

The main goal of a BCI is to discriminate the user’s intentions by means of brain 

activity. For this purpose relevant features need to be extracted from the EEG so that 

neurophysiological phenomena underlying the recorded brain activity can be identified 

and successively translated into control signals. These features may be extracted in the 

time, frequency or spatial domain. 

3.4.1 Time-Domain Features 

           Features extracted in the time domain relate how the amplitude of the EEG signal 

vary to specific tasks performed by the user. In order to separate relevant information 

from background activity, filtering and windowing techniques are normally adopted for 

time-domain features. Since time-domain features are adopted in this thesis a more 

detailed explanation of these features is reported in Section 4.3.1. 

3.4.2 Frequency Domain Features 

Frequency domain features are related to changes in the oscillatory activity of the 

EEG signal. Such changes may be generated by the user concentrating on a specific 

mental task. Frequency domain features are employed with BCI systems.  

3.4.3 Spatial Domain Features 

The main goal of spatial domain features is to combine information coming from 

different EEG channels in order to identify patterns in brain activity related to different 

neurophysiological phenomena. Several spatial filtering techniques have been employed 

for this purpose, the most common being CSP, PCA and ICA. Spatial features were 

widely adopted for motor-imagery. Indeed neuronal activity is recorded from multiple 

electrodes and spatial variations of EEG potentials have been proven to be source of 
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discriminative information. Since the proposed time-domain features are compared with 

these widely used features, more detailed explanation is reported in Section 6.6. 

3.5. Classification 

The classification of EEG signals plays an important role in BCI research. 

Classification is the procedure of assigning one of a given number of categories to a 

given piece of input data. There are two types of classification: supervised and 

unsupervised classification. In supervised classification, observations of a set of data are 

associated with class labels, whereas in unsupervised classification, observations are 

not labelled and are not assigned to a known class. 

3.5.1 Supervised Classification 

Supervised classification is preferred in the majority of BCI research. The 

algorithms of supervised classification deal with data that class label information is given 

within the dataset. Data with class labels are used for training the classifier. In this type 

of classification algorithm, a supervisor instructs the classifier during the construction of 

the classification model. Supervised classification schemes assume that a set of training 

data are provided, consisting of a set of instances that are properly labelled. 

In the supervised approach, there are pairs of labelled data in the training dataset 

which can be mathematically expressed as:  D = {(x1, t1), (x2, t2),........, (xN, tN)}. x1, 

x2,............,xN are the observations and t1, t2,............,tN are the class labels (targets) of 

the observations. In this type of classification, the aim is to find the transformation 

between the feature space X and the class label space T. For example for the case of a 

binary classification problem (objective 1 of this research), the classes are divided into 

two categories, such as the target and non-target classes. In binary classification the 

existence of a target is detected. For the case of a multiclass classification problem 

(objective 2 of this research), the classes are divided into n categories and a one-versus-

one strategy was applied. A more detailed explanation is reported in Section 4.3.2. 

Support vector machine (SVM), Linear discriminant analysis (LDA), Decision 

trees, K-nearest-neighbor (KNN) algorithms and Neural networks (NN) are the examples 
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of algorithms used in supervised classification procedure for predicting categorical 

labels. In this research, a supervised procedure was used in the classification.  

In the BCI system developed for this thesis, the classification is performed by 

means of the support vector machine. Section 4.3.2 describes in details the classification 

model applied and provides motivations for adopting this classifier. 

3.5.2 Unsupervised Classification 

The unsupervised classification procedure involves grouping data into categories 

based on some measure of inherent ability. In unsupervised learning, no information 

about the class labels is available. This procedure attempts to find patterns in the data 

that can then be used to determine the correct class label for new data instances. The 

common algorithms used in unsupervised classification are K-means clustering, 

Hierarchical clustering and Hidden Markov Models. 

3.6. Conclusion 

Some background knowledge on EEG acquisition and BCIs is outlined in this 

chapter. This chapter introduced two types of classification used in control. This is 

relevant information needed to categorize the EEG signals using EEG-based BCIs. The 

next chapter details the design and implementation of the proposed method including 

feature extraction and classification to perform the investigations. 
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Chapter 4. Rationale and Investigated 
Classification Scheme 

4.1. Introduction 

This chapter presents the established classification scheme adopted from EMG 

literature. This approach is based on feature extraction (section 4.3.1) and classification 

(section 4.3.2). The classification scheme presented in this chapter is utilized to address 

objectives 1 and 2 of this thesis.  

4.2. Rationale 

There is a significant power increases in EEG during both motor execution and 

motor imagery [37]. EEG measurements during motor execution and motor imagery are 

correlated with EMG activity and EMG measurements [37]. In this chapter the pattern 

recognition schemes was presented to improve EEG classification accuracy of single 

limb movements by exploring and then leveraging established EMG pattern recognition 

scheme.  

4.3. The classification scheme 

The classification scheme is the established pattern recognition scheme 

proposed in EMG literature [38-44]. In this section the classification scheme including 

feature extraction and classification method are explained and followed by a case study 

which is a practical evidence of capability of such a scheme in the EMG field of use. The 

combination of single limb motor imagery of grasping and elbow movements which is 

deduced to be novel to BCI literature was used for classification. No time-domain BCI 

research exploring these imagery movements was found. This approach is based on 

feature extraction and support vector machine classification. The relevant features were 

extracted and translated into control signals.  
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4.3.1 Feature extraction  

Feature extraction highlights important information and eliminates redundant or 

non-informative data. Feature extraction transforms the signals to a feature vector. In 

this study, time-domain features that are computed based on the signals’ amplitudes 

were used. These features require no transformation or complex calculation [45]. The 

first extracted feature set consists of autoregressive (AR) model coefficients. The 

mathematical representation of an AR model is expressed by (1): 
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where {a for i = 1,. . . , p } are AR model coefficients and p is the model order. AR 

models the data such that the current sample is a weighted linear combination of its 

previous samples and thus, provides information regarding the previous samples.  

 The second feature set is waveform length (WL), which is the cumulative length 

of the waveform over the segment. This feature provides a measure of the waveform 

amplitude, frequency, and duration all within a single parameter [46]. It can be 

mathematically represented by (2): 
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where wi is the amplitude of the ith sample and N is the number of samples. 

The third extracted feature set is root mean square (RMS). This feature provides 

information regarding the amplitudes of the signals. The feature is computed by (3): 
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where ri is the amplitude of the ith sample and n is the number of samples. 
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The signals were segmented using a window size of one second. For each 

segment, the time domain features were extracted from each channel. AR generated 

four features and RMS and WL provided one feature for each channel respectively.   

4.3.2. Classification 

Classification is a popular approach in BCI research. Classification was used to 

identify patterns of brain activity and to translate these patterns into control commands. 

SVM is an efficient state-of-the-art classifier. SVM was used as a classifier. SVM finds 

discriminant hyper-planes that separate the data that belong to different classes with the 

maximum possible margin [47]. Maximizing the margins increases the generalization 

capabilities of the SVM classifier.  In its general formulation, SVM [47] requires solving 

the following optimization problem: 
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Where N is the number of data points,    is the vector representing a data point,    is the 

label associated with a data point, y is the learned model, w is the vector representing 

adaptive model parameters,  
 
 is the slack variable and c > 0 is the penalty factor.  

A linear SVM can make nonlinear decision boundaries by using the ‘kernel trick’. 

It is generally done by mapping the data to higher dimensionality space, with the help of 

a kernel function [47]. SVM supports well-known kernels such as the polynomial, linear 

and radial basis function (RBF) to extend SVM for classification. The mathematical 

representation of the RBF, linear and polynomial kernel is respectively given by (6), (7) 

and (8): 
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                

where r, d and are kernel parameters and       are training vectors. 

RBF was selected as the kernel function. The RBF kernel nonlinearly maps 

samples into a higher dimensional space. RBF has the least number of hyper-

parameters compared to other kernel function such as polynomial kernel function [48]. 

Thus, it’s computationally less expensive.  

To optimize the performance of the classifier, it is crucial to find the optimal 

values for the cost (c) and the kernel parameter gamma (). The penalty weight c, acts 

like a regularization parameter that controls the misclassification rate of the training data 

and the kernel parameter gamma , is the convergence tolerance. The optimal values of 

these parameters were obtained from a grid search along with 10-fold cross-validation 

[49]. The data set was randomized and divided into ten folds. Nine of the folds were 

used to set up the classifier and the remaining one fold was used to test the classifier. 

This procedure was repeated for ten times [49]. The values of the parameters that 

resulted in the highest cross-validation accuracy were selected as the optimal pattern 

recognition model. The cross-validation procedure could help prevent over-fitting. 

To achieve multiclass classification using SVM, one-versus-one strategy was 

employed [49]. In the one versus one voting scheme, n (n−1)/2 binary classifiers for n-

way multi-class problem are trained. During testing, all the binary classifiers are applied 

to an unseen sample and the class that receives the highest number of votes wins [49]. 

More specifically, every classifier assigns the data to one of the two classes [49]. Then, 

the assigned class receives one vote. The class that receives the highest number of 

votes is selected as the final class. In this case, n = 3 and for each 3-class classification 

problem, 3 binary classifiers were set up.  

In a three-class classification problem, the output of the classifier had one of the 

three discrete states ‘0’, ‘1’, or ‘2’ and was not a continuous function. The logical states 

‘1’ and ‘2’ indicated the user’s intention to activate a device (e.g. a robotic arm). The 

logical state ‘0’, on the other hand, implied that the user did not intend to activate the 

system. 
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4.4. Conclusion 

A method aimed at improving the interpretation of EEG is presented in this 

chapter. It is designed to allow the differentiation of EEG for different types of imagery 

movements and its general structure was applied to investigations of this thesis. 
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Chapter 5. A Case Study with EMG 

5.1. Introduction 

The proposed classification scheme provides high accuracy in identifying multiple 

classes of the upper extremity using EMG signals. The following case study in this 

chapter shows how accurate is the classification scheme. This chapter is an attempt to 

validate the use of the SVM classification approach to be used later on the BCI method. 

This chapter validates the hypothesis that, although there are significant neurological 

and physical changes occurring in humans while ageing, the proposed method could 

potentially be used by hand assistive devices controlled by the older people.  

The content of this chapter was slightly modified from what first appeared in print 

in: 

Tavakolan, M., Xiao, Z. G., & Menon, C. (2011). A preliminary investigation 

assessing the viability of classifying hand postures in seniors. Biomedical engineering 

online, 10(1), 1. 

5.2. Abstract 

Surface electromyography (sEMG) controlled assistive devices for the upper 

extremities could potentially be used to augment seniors’ force while training their 

muscles and reduce their fear of frailty. In fact, these devices could both improve self-

confidence and facilitate independent leaving in domestic environments. The successful 

implementation of sEMG controlled devices for the elderly strongly relies on the 

capability of properly determining seniors’ actions from their sEMG signals. In this 

research we investigated the viability of classifying hand postures in seniors from sEMG 

signals of their forearm muscles. 

Nineteen participants, including seniors (70 years old in average) and young 

people (27 years old in average), were recruited for this study and sEMG signals from 

four of their forearm muscles (i.e. Extensor Digitorum, Palmaris Longus, Flexor Carpi 
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Ulnaris and Extensor Carpi Radialis) were recorded. The feature vectors were built by 

extracting features from each channel of sEMG including autoregressive model 

coefficients, waveform length and root mean square. Multi-class support vector 

machines was used as a classifier to distinguish between fifteen different essential hand 

gestures including finger pinching. 

Classification of hand gestures both in the pronation and supination positions of 

the arm was possible. Classified hand gestures were: rest, ulnar deviation, radial 

deviation, grasp and four different finger pinching configurations. The obtained average 

classification accuracy was 90.6% for the seniors and 97.6% for the young participants. 

The obtained results proved that the pattern recognition of sEMG signals in seniors is 

feasible for both pronation and supination positions of the arm and the use of only four 

EMG channel is sufficient.  

5.3. Background 

Improving independent living of seniors and maintenance of their autonomy are 

compelling research goals for our society. Some simple activities of daily living such as 

opening and closing the screw cap of a bottle or turning a tap handle can be difficult 

tasks for a senior. By increasing the age, the skeletal muscles lose their strength [50]. In 

order to do every day simple operations, seniors would need using assistive devices that 

could provide an additional force for their hand movements and also train their muscles 

[51].  

A compelling challenge in the development of assistive devices is how to acquire 

information from input signals that provide us with the information regarding the action 

the user is undertaking. Acquiring the input signals from the neurological activity of the 

user would provide us with the desired information. sEMG is a suitable technique for 

evaluating and measuring the electrical activity produced by skeletal muscles and can 

also provide us with important information regarding neuromuscular disorders [52].Using 

sEMG, we are able to detect the electrical signals generated by muscle cells when they 

are neurologically or electrically activated and if we interpret this information correctly, it 

can guide us towards the intention of the user [51, 52]. 



25 

EMG signals have been considered to control prosthetic hands and assistive 

devices. Different prosthetic hands have been prototyped including the Smart Hand [53] 

and the Cyber Hand [54]. Some EMG driven prostheses have also been 

commercialised; examples are the Otto Bock’s Sensor Hand Speed [55] and the iLimb 

[56]. In the mentioned researches, the goal was to obtain a prosthetic hand that could 

perform movements similar to a human hand. A challenging part in the development of 

these prosthetic hands is the design of an intuitive control achieved by detection and 

interpretation of the user’s neurological activity [43, 57]. Whether used for controlling 

prosthetic, rehabilitative or assistive devices, sEMG signals should be processed to 

identify the intention of the user. 

One of the main challenges related to the processing and classification of sEMG 

is related to the synergistic use of upper extremity muscles. For example, raising the 

shoulder to lift the forearm results in forearm signal changes [43]; similarly, contracting 

the index finger results in co-contraction of forearm muscles [58-60]. 

Different pattern recognition techniques have been used for classification of 

sEMG and identification of hand gestures in young participants [61, 62]. For example, 

multilayer perceptron [63, 64], SVM [9, 65-68], hidden markov model [69], neural 

networks [70], bayesian classifier [71] and fuzzy classifier [72-74] techniques have been 

proposed. Multiple features have been investigated including AR model coefficients 

[70,72,74-75], mean absolute value [75,76], slope sign changes [77,78], zero crossings 

[75-77], waveform length [77,78] and wavelet packet transform [79]. 

Most of the research has been performed with populations involving young 

healthy participants and amputees. Little research has however been carried out to 

assess if aging prevents a successful sEMG classification, which is needed to control 

assisted devices developed to augment force and reduce fear of frailty in the older 

people. It should be noted that there are significant neurological and physical changes 

occurring in humans while ageing [80]. This study therefore focuses on assessing the 

viability of classifying hand postures in seniors. 
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5.4. Methods 

5.4.1 Data collection 

A custom rig was used to measure hand force and torque exerted by the 

participants. The rig (see Figure 5.1) consisted of a force sensor (Futek LCM-300) which 

measured contraction force. This sensor was placed between two plastic halves, which 

formed together a semi-sphere to enable the participants to comfortably hold the rig with 

their hand. These two plastic halves were connected to a metallic platform through a 

torque sensor (Transducer Techniques TRT-100) that recorded torque produced by the 

participant while performing ulnar or radial deviation movements. 

             

Figure 5.1: Custom rig. 

Guidelines presented in the sEMG for the non-invasive assessment of muscles 

(SENIAM) project [81] were followed to obtain a fine skin contact with the electrodes. 

According to these guidelines, the skin was cleaned with an alcohol swab and electrodes 

were placed at the locations shown in Figure 5.2. sEMG electrodes were attached to the 

participants’ forearms using medical adhesive bands that made the electrodes’ active 

faces adhere the skin. 

sEMG signals were recorded from the following four muscles in order to detect 

movement of wrist and fingers [82]: Extensor Digitorum (ED), Palmaris Longus (PL), 

Flexor Carpi Ulnaris (FCU) and Extensor Carpi Radialis(ECR). Function of each muscle 
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is summarized in Table 5.1. sEMG signals were acquired through a Noraxon system 

(Myosystem 1400L). A data acquisition board from National Instruments (USB-6289) 

was used in this study for acquiring both the sEMG signals and the data obtained from 

the custom rig used to measure hand force and torque. Since the EMG signal has 

usable energy in the 0-500 Hz range [83], the acquired sEMG signal was digitized at 

1024 samples per second and stored on a computer through an application developed in 

LabVIEW software. The developed LabVIEW application also had a graphical interface 

to enable participants visualizing force they were exerting during the tests. For each 

participant, the maximum force exerted to the rig was used to define the participant’s 

maximum voluntary contraction (MVC). According to [84], the applied force should not 

exceed 40-50% of the MVC in order to prevent upper extremity musculoskeletal injuries. 

For this reason, all the protocols were defined to prevent exceeding this limit. 

 

Figure 5.2: Location of surface electrodes on the forearm. 

5.4.2 Protocol 

12 seniors (70 years old on average) and 7 young participants (27 years old on 

average) participated in this study. The Office of Research Ethics, Simon Fraser 

University approved this study and each participant signed a consent form. Each 

participant followed the eight predefined protocols summarized in Table 5.2. These 

protocols were defined to simulate simple activities of daily living involving the wrist and 

fingers such as opening and closing the screw cap of a jar or grasping an object. The 

identified protocols considered a combination of several hand movements including 

grasping, finger pinching, wrist ulnar/radial deviation and forearm pronation/supination. 

Each participant started at rest position as shown in Figure 5.3(a). 

In protocol A, as shown in Figure 5.3(b), the participant was asked to squeeze 

the custom rig with maximum force in pronation position of the arm for two times. The 

recorded maximum force was used to define MVC for squeezing. 
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In protocol B, as shown in Figures 5.3(c)-(d), the participant was asked to apply 

maximum torque in ulnar and radial deviation for two times (pronation position of the 

arm). Maximum torques for ulnar and radial deviations were used to identify ulnar/radial 

MVCs. 

In protocol C, the participant was asked to squeeze the custom rig at 50% of 

her/his MVC for 5 seconds (pronation position of the arm). The participant repeated this 

protocol three times. Using the graphical interface of the developed LabVIEW 

application, the participant had visual feedback for the force applied to the custom rig. 

In protocol D, the participant was asked to alternate radial and ulnar deviation for 

5 seconds at 50% of MVC (pronation position of the arm). The participant repeated this 

procedure three times. 

In protocol E, as shown in Figures 5.3(e)-(h), the participant pinched the force 

sensor firstly with thumb and index finger, secondly with thumb and middle finger, thirdly 

with thumb and ring finger, and finally with thumb and little finger (pronation position of 

the arm). The pinching was repeated two times for each combination of fingers. 

Table 5.1: Muscle function 

Muscle Function 

FCU Assists in wrist flexion with ulnar 

deviation 

PL Assists in wrist flexion 

ED ED Assists in extension of four fingers 

and the wrist 

ECR ECR Assists in extension and radial 

abduction of the wrist 
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Table 5.2: Protocols 

Protocols Definitions Arm position 

Protocol A Apply maximum force by squeezing the custom rig two times. Pronation 

Protocol B Apply maximum torque for radial deviation two times 

and then apply maximum torque for ulnar deviation two times. 

Pronation 

Protocol C Apply 50% MVC force while squeezing for three 

seconds. Repeat for three times. 

Pronation 

Protocol D Apply 50% MVC torque for alternate radial and ulnar 

deviation for three seconds. Repeat for three times. 

Pronation 

Protocol E Pinch two times with a comfortable force using thumb 

and index finger, then two times using thumb and middle 

finger, then two times using thumb and ring finger and finally 

two times using thumb and little finger. 

Pronation 

Protocol 

FC 

Apply 50% MVC force while squeezing for three 

seconds. Repeat for three times. 

Supination 

Protocol 

FD 

Apply 50% MVC torque for alternate radial and ulnar 

deviation for three seconds. Repeat for three times. 

Supination 

Protocol 

FE 

Pinch two times with a comfortable force using thumb and 

index finger, then two times using thumb and middle finger, 

then two times using thumb and ring finger and finally two 

times using thumb and little finger. 

Supination 
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In Protocols FC, FD and FE (see Figures 5.4(a)-(h)), each participant started at 

rest position and repeated protocols C, D and E but with their arm in supinated position. 

Figure 5.5 presents the output recorded by the force and torque sensors for one of the 

participants following protocols A, B, C and D. Figure 5.6 presents a sample output of 

the force and torque sensors related to protocols E, FC, FD and FE. 

Protocols A and B (see Table 5.2) were followed to record the maximum torque 

produced by the user. Protocols C, D, E, FC, FD, and FE were instead used to generate 

data for the formation of the different hand gesture classes summarized in Table 5.3. 

Specifically, protocols C, D and E enabled extracting data for classification purpose in 

the pronation position of the arm (classes 2-8 in Table 5.3) whereas protocols FC, FD 

and FE were used to extract data for classification in the supination position of the arm 

(classes 9-15 in Table 5.3). 

5.4.3 Feature Extraction and Classification 

Signals recorded from the Noraxon measurement system were processed in 

MATLAB for feature extraction of the raw sEMG input. Three types of features including 

waveform length, RMS and AR model coefficients were extracted. Specifically waveform 

length and RMS provided one feature each, whereas AR model coefficients provided 

four features for each channel. The features were extracted and classified as explained 

in the previous sections 4.3.1 and section 4.3.2. 
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Figure 5.3: Hand gestures and motions chosen for classification in the pronation position 
of the arm. (a) rest, (b)grasp, (c) ulnar deviation, (d) radial deviation, (e)finger pinching: 
index finger, (f) finger pinching: middle finger, (g) finger pinching: ring finger, (h) finger 
pinching: little finger. 
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Figure 5.4: Hand gestures and motions chosen for classification in the supination 
position of the arm. (a) rest, (b) radial deviation, (c) ulnar deviation, (d) grasp, (e) finger 
pinching: index finger, (f) finger pinching: middle finger, (g) finger pinching: ring finger, 
(h) finger pinching: little finger. 
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Figure 5.5: Forces and torques representing predefined protocols A, B, C and D. (a) 
Protocol A, (b) Protocol B, (c) Protocol C and (d) Protocol D. 
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Figure 5.6: Forces and torque representing predefined protocols E, FC, FD and FE. (a) 
Protocol E, (b) Protocol FC, (c) Protocol FD and (d) Protocol FE. 
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Table 5.3: Class Definition 

Class 

number 

Class definition 

1 Rest 

2 Pronation arm position: grasp 

3 Pronation arm position: radial deviation 

4 Pronation arm position: ulnar deviation 

5 Pronation arm position: finger pinching - index finger 

6 Pronation arm position: finger pinching - middle finger 

7 Pronation arm position: finger pinching - ring finger 

8 Pronation arm position: finger pinching - little finger 

9 Supination arm position: grasp 

10 Supination arm position: radial deviation 

11 Supination arm position: ulnar deviation 

12 Supination arm position: finger pinching - index finger 

13 Supination arm position: finger pinching - middle finger 

14 Supination arm position: finger pinching - ring finger 

15 Supination arm position: finger pinching - little finger 
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5.5. Results and discussion 

The optimal values for the parameters c and  were selected according to the 

highest value of the cross validation accuracy for each participant. Table 5.4 presents 

the selected c and  parameters for each of the twelve seniors (denoted with capital 

letters A-Q in Table 5.4) who participated in this study. Each pair of c and  parameters 

was used to build a model for classifying the hand gestures of the participant. Results of 

the classification accuracies for the 12 seniors are presented in Table 5.5. An average 

accuracy of 90.62% was observed. 

The accuracy reached over 95% in the case of the senior Q and less than 85% in 

the case of the senior L (see Table 5.5). The senior Q controlled the hand functions well, 

which resulted in an accurate separation between patterns. As an illustrative example, 

the torque output recorded for the senior Q is shown in Figure 5.7(a). It is clear from this 

figure that the senior Q was executing the protocol FD (three repetitions of alternating 

radial and ulnar deviation). On the other hand, the senior L controlled hand functions 

poorly, which resulted in small separation between patterns. The torque output recorded 

for the senior L is shown in Figure 5.7(b); it is clear that this senior was not able to 

correctly follow protocol FD. It should be noted that, although the classification accuracy 

was smaller for the senior L (see Tables 5.5), it was still acceptable (above 83%). 
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Table 5.4: The senior cross validation accuracy and model parameters c and  

Senior c and  Cross validation accuracy (%) 

A 10, 1.2 99.17 

B 10, 1.5 97.92 

C 10, 0.6 90.42 

D 10, 0.8 91.67 

I 10, 0.4 90.42 

K 10, 0.6 96.67 

L 10, 0.4 88.75 

M 10, 0.5 99.17 

N 10, 0.6 98.33 

O 10, 0.4 99.58 

P 10, 0.2 95.42 

Q 10, 2.4 97.92 
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Table 5.5: The senior pattern recognition accuracy 

Senior Accuracy percentage (%) Maximum force (N) Maximum torque 

(Nm) 

A 91.67 1.79 4.13 

B 91.67 2.53 7.03 

C 91.67 1.90 5.55 

D 87.50 8.84 10.05 

I 91.67 1.05 2.14 

K 91.67 3.58 7.45 

L 83.33 2.12 6.91 

M 91.67 3.00 6.45 

N 87.50 0.97 1.92 

O 91.67 7.01 8.75 

P 91.67 1.67 3.58 

Q 95.83 2.84 7.10 

 

The system was therefore able to accurately classify the action of the seniors’ 

hand with minimum misclassification, which occurred mainly for finger pinching. Figure 

5.8 shows, for example, sEMG signals extracted from ECR, ED, PL and FCU muscles of 

senior A (Figures 5.8(a)-(d)), the “predicted classes” identified by our classification 

system (Figure 5.8(e)) and the “actual classes” corresponding to the different protocols 
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(Figure 5.8(f)). It can be seen that misclassification occurred for consecutive classes 

related to the finger pinching (see highlighted boxes in Figure 5.8(e)). Specifically, class 

7 (ring finger pinching in pronation position) was confused with class 6 (middle finger 

pinching in pronation position) and class 14 (ring finger pinching in supination position) 

was confused with class 13 (middle finger pinching in supination position) (see Table 

5.3). It should be noted that this misclassification, which probably resulted by a co-

contraction of the forearm muscles, is believed to be acceptable for future potential 

devices assisting finger movements, as generally middle, ring and little fingers have 

synergistic patterns during functional grasping [85]. 

 

Figure 5.7: The output recorded by the torque sensor for seniors. (a) Senior Q following 
the protocol FD correctly and (b) Senior L following the protocol FD incorrectly. 
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Figure 5.8: System performance. (a) ECR muscle activation, (b) ED muscle activation, 
(c) PL muscle activation, (d) FCU muscle activation, (e) Predicted class by the system, 
(f) Actual class. 

Table 5.5 also reports the maximum force and the maximum torque each senior 

was able to exert. The average maximum force was 3.11N and the average maximum 

torque was 5.92 Nm. No clear relationship was identified between classification accuracy 

and maximum force or maximum torque exerted by the participants. For example, 

participants D and N had equal classification accuracy but their maximum force and 

torque were respectively the highest and the smallest of the entire group of seniors. 

Table 5.6 and Table 5.7 respectively present the selected c and  parameters 

and the corresponding classification accuracies for the group of young participants. An 

average classification accuracy of 97.6% was obtained. Table 5.7 also reports the 

maximum force and maximum torque each young participant was able to exert. The 
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average maximum force was 4.20N and the average maximum torque was 3.37 Nm. In 

this case, data suggests a linear relationship between classification accuracy and 

maximum force and maximum torque, as shown in Figure 5.9. It should however be 

noted that the number of young participants participating in this study was limited to 7. 

A comparison between results obtained for seniors and the young participants 

shows that while maximum force decreased of about 26%, classification accuracy 

decreased of only 7% with age. Although there are major physical changes occurring in 

humans while ageing [80], successful sEMG classification is therefore possible in 

seniors. 

Table 5.6: The young participant cross validation accuracy and model parameters c,  

Young 

participants 

c and  Cross validation accuracy (%) 

Y_R 15, 0.9 99.17 

Y_S 10, 0.9 94.58 

Y_T 10, 1.1 93.33 

Y_U 10, 0.2 96.67 

Y_V 10, 0.5 97.50 

Y_W 10, 0.3 93.75 

Y_X 70, 0.2 99.58 
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Table 5.7: The young participant pattern recognition accuracy 

Young 

participant 

Accuracy percentage (%) Maximum force (N) Maximum torque 

(Nm) 

Y_R 91.67 1.86 0.38 

Y_S 100.00 5.91 2.65 

Y_T 100.00 5.27 5.89 

Y_U 95.83 4.44 3.57 

Y_V 100.00 4.09 3.82 

Y_W 95.83 1.88 2.61 

Y_X 100.00 5.90 4.69 
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Figure 5.9: The relationship between the maximum force/torque and the classification 
accuracy. 

5.6. Conclusions 

This chapter was an attempt to validate the use of the SVM classification 

approach to be used later on the BCI method. The possibility of associating forearm 

sEMG patterns to different hand postures was investigated. Results support the 

hypothesis that successful pattern recognition can be performed to distinguish different 

hand gestures in vital activities of daily living. 

The identified classes in this study were grasping, radial/ulnar deviation and four 

different finger pinching in both pronation and supination positions of the arm. The use of 

only four sEMG channels demonstrated to be suitable for classifying the fifteen different 

hand gestures considered in this study. In fact, the implemented pattern recognition 

strategy was able to identify the different hand gestures with average accuracy greater 

than 90%.  
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Chapter 6. Experimental Procedure 

6.1. Introduction 

This chapter provides a brief description of experimental procedure including 

signal acquisition and analysis for different motor imageries. The EEG data collected 

from each experiment contained a mixture of different mental states. Two mental states 

were utilized to address objective 1.1 and objective 1.2. Three mental states were 

utilized to address objective 2. 

6.2. Signal Acquisition 

There are several ways to acquire signals from the brain, all falling into two main 

categories: invasive and non-invasive techniques. Invasive BCIs use activity recorded by 

brain implanted micro-electrodes, whereas non-invasive BCIs use brain signals recorded 

from outside the body boundaries. Non-invasive technique is adopted in this study. 

6.3. EEG Recording 

Twelve able-bodied individuals were recruited for the experiment. Participants 

gave a written informed consent before participating in the experiment. Each individual 

was seated comfortably in front of a computer monitor and the computer provided a 

simple Graphical User Interface that displays commands or cues to the participant. A 32-

channel EGI’s Geodesic sensor net [86] was applied on the participant’s head. The 

locations of all the electrodes are shown in Figure 6.1. The letters and numbers used in 

these labels were described in chapter 2. 
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Figure 6.1: The EEG electrode positions 

The labeled electrodes were those employed for the proposed BCI system. The 

remaining unlabeled electrodes, on the other hand, were not considered in this study 

because they were very close to sources that generate muscle activities or artifacts. All 

these electrodes were referred to the vertex (Cz position in Figure 6.1) of the participant. 

This reference was selected as it is very commonly used [87], often the one adopted by 

equipment designed to record EEG signals, including the one we used (EGI system) [88, 

89], and is the same that was used in PS. The EEG signals were amplified and sampled 

at 1000 Hz using a Geodesic Net Amps 400 series amplifier [90]. Throughout the 

experiment, the electrode impedance was maintained below 50 k. 
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6.4. Experimental Procedure 

Each experiment for each participant lasted for approximately 1.5 hours. The 

experiment consisted of four sessions. Each session lasted 12 minutes. The participant 

was asked to perform different repetitive tasks according to the visual cues displayed on 

the computer monitor. Three different visual cues were presented to the participant, as 

illustrated in Figure 6.2. They are listed as follows: 

• Rest (REST): rest and relax [Figure 6.2 A] 

• Motor imagery of grasp (MI-GRASP): imagine opening and closing all the 
fingers to grab an object [Figure 6.2 B] 

• Motor imagery of elbow flexion and extension (MI-ELBOW): imagine moving the 
forearm up and down [Figure 6.2 C] 

 

 

A 

 

B 
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C 

 
Figure 6.2: Visual cues presented during the experiments. (A) Rest: rest and relax. (B) 
Motor imagery of grasp: imagine opening and closing all the fingers to grab an object. 
(C) Motor imagery of elbow flexion and extension: imagine moving the forearm up and 
down 

Each session consisted of 20 trials for each tasks. Each trial lasted from 8 to 10 s 

(see Figure 6.3). Each visual cue was randomly selected and displayed on the screen 

for 3 s, indicating which task to perform. The participant was asked to perform each 

designated task for 3 s, followed by 5 to 7 s of rest. Throughout the experiment, the 

participant could take a break whenever needed. 

 

Figure 6.3: Experimental paradigm. At 0 s, a visual cue is randomly selected and 
presented. After 3 s, a blank screen appears for 5 −7 s before another visual cue is 
presented. During this period of time, the participant is requested to rest. 

To collect data for both objectives 1 and 2, the EEG data collected from each 

experiment contained a mixture of three different mental states: REST, MI-GRASP, and 

MI-ELBOW. First the binary classifications of the following combinations were performed 

(objective 1): 
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1. REST versus MI-GRASP 

2. REST versus MI-ELBOW 

Then, the classifications of the following three classes were performed (objective 2): 

1. REST versus MI-GRASP versus MI-ELBOW 

6.5. Data Preprocessing 

The EEG data were down sampled to 250 Hz and then band-pass filtered to the 

6–35 Hz frequency band. This frequency band encompasses the beta and mu rhythms 

of EEG signal which desynchronizes during motor movement imagery [91]. The band 

power changes of the beta and mu rhythms were successfully used in BCI systems for 

classifying EEG signals related to motor movement imagery [92–94].  In addition, ocular 

artifacts caused by the low frequency components of the EEG data were minimized by 

band-pass filtering the data. 

6.6. CSP, FBCSP and Band Power 

Common Spatial Patterns (CSP) [93], Filter-Bank Common Spatial Patterns 

(FBCSP) [95] and Logarithmic Band Power [12] feature extraction methods, which are 

widely used in BCI research, were employed in this study. CSP, FBCSP and band power 

methods [12, 96-97] were used in order to compare their performances with the 

performance obtained using the proposed classification scheme.  

An open-source MATLAB toolbox, BCILAB [98], was utilized to process the 

acquired EEG data. The EEG data was pre-processed as previously mentioned in the 

pre-processing section. Following PS [23], EEG data was divided to epochs from 1 to 3 s 

after the cue was given to the participant. CSP [93], FBCSP [95], and band power [12] 

methods were applied to these EEG epochs.  For each EEG epoch, 6, 18, and 20 

features were respectively obtained from CSP [93], FBCSP [95], and band power [12] 
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methods. For the FBCSP method, as in PS [23], the signal was further broken down into 

7–15 Hz, 15–25 Hz, and 25–30 Hz frequency sub-bands. 

 CSP has been widely used in BCI research to extract features from EEG signals. 

This algorithm can effectively extract discriminatory information from two classes of EEG 

signals [93]. The algorithm finds the directions where the EEG signals should be 

projected onto so that the differences between any two classes of EEG signals are 

maximized (i.e. the variance of one class is maximized while at the same time, the 

variance of the other class is minimized) [92]. These directions are provided by a weight 

matrix in which its rows give the weights of the EEG channels. 

Here, the formulation of the CSP algorithm for a 2-class problem is described. 

This same formulation of the 2-class CSP algorithm was also used when classifying the 

three classes of EEG signals. More specifically, for a 3-class problem, three different 

binary classifiers were trained and a voting scheme was employed to determine the 

class label. 

Given two classes of EEG signals: Class 1 and Class 2, the CSP algorithm finds 

a spatial filter such that the signals can be projected into a 1-dimensional space where 

one class of signals is maximally scattered and the other is minimally scattered. High 

variance of the signals indicates strong rhythms whereas low variance indicates 

attenuated rhythms [92]. Let S = {S1, S2 . . ., SM} where          denotes the filtered i-

th trial EEG signal, M the number of EEG trials, Nc the number of EEG channels, and N 

the number of samples in the signal. The optimization problem is expressed as: 

   
 

    

    

                                                                          

                

  

   

                                                             

where    represents all Class 1 EEG trials,        is the unknown weight vector of the 

spatial filter and var is the variance. In this study, the CSP features selected for 

classification were the log-variance of the EEG signals projected using six different 

spatial filters. These spatial filters were a) the three most important spatial filters that 
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explain the largest variance of Class 1 and the smallest variance of Class 2 and b) the 

three most important spatial filters that explain the largest variance of Class 2 and the 

smallest variance of Class 1. 

 FBCSP is an extension of the CSP algorithm [95]. First, a filter bank is used to 

bandpass filter the EEG signals. Then, for each filtered EEG band, spatial filters are 

found using the CSP algorithm discussed earlier. The FBCSP features selected for 

classification were the log-variance of each of the filtered EEG band projected using six 

different spatial filters. 

The third method logarithmic band power is a simpler method. The features used 

for classification were the log-variance of the band-pass filtered EEG signals from every 

channel. 

6.7. Topographical Analysis for Different Motor Imageries 

Figure 6.4 illustrates the topographical distribution on the scalp of the difference 

between rest and imaginary grasp movements. The    values for frequency bands 

ranging from 8 to 24 Hz at each electrode locations were computed for all participants. 

   measures the difference between two classes, i.e., the proportion of the single-trial 

variance that is due to the task [34]. The topographical map of one of the participants 

(P06) is shown in Figure 6.4. The topographical map demonstrates prominent scalp 

difference between rest and imaginary grasp movements. Large    values are observed 

at electrode locations near the contra-lateral motor cortex area. Such prominent 

differences occur as a result of the ERD of the beta and mu rhythms when motor 

imagery tasks are executed. 
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Figure 6.4:    values for REST versus MI-GRASP for participant P06.    measures the 

difference between REST and MI-GRASP classes. The    values for frequency bands 
ranging from 8 to 24 Hz at each electrode locations were computed for all participants. 

Large    values were observed at electrode locations near the contralateral motor cortex 
area. 

Topographical analysis could highlight the difference that could be observed in 

different areas of the brain for each participant during imagery movements. Such 

information could be useful in building a customized model for each participant. The 

topographical distribution on the scalp for these motor imagery tasks was measured by 

   values. The topographical difference was participant-specific and no consistent 

patterns could be observed. An example of the results obtained from the topographical 

analysis to study the EEG signals for MI-GRASP and MI-ELBOW for participants P06 

and P07 is presented in Figures 6.5 A and B respectively. Larger difference was 

observed in the contra-lateral of the motor cortex in participant P06 for the case of MI-

GRASP versus MI-ELBOW. However, in participants P07, larger difference was 

observed in the ipsi-lateral of the motor cortex for the case of MI-GRASP versus MI-

ELBOW. 
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Figure 6.5:    values when different MI tasks were performed. (A) MI-GRASP versus MI-

ELBOW for participant P06. (B) MI-GRASP versus MI-ELBOW for participant P07. 
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6.8. Conclusion 

The experimental setup, the data acquisition stage and the preprocessing stage 

were explained. Widely used methods, CSP, FBCSP and Band power were also briefly 

described. The next chapters present the performance of the proposed method, which 

are compared with the performance of these well-known methods. 
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Chapter 7. Identifying Rest State versus Upper 
Extremity Imagery Motor Movement  

7.1. Introduction 

This chapter presents the obtained optimal kernel parameters for binary 

classification of REST versus MI-GRASP and REST versus MI-ELBOW. Objective 1.1 

and objective 1.2 are addressed in this chapter and the classification accuracies 

obtained for each participant are reported. The content of this chapter was slightly 

modified from what first appeared in print in: 

Tavakolan M, Yong X-Y, Zhang, X, and Menon C (2016) Classification Scheme 

for Arm Motor Imagery, Journal of Medical and Biological Engineering. Vol 36, No.1, pp 

12-21. 

7.2. REST versus MI-GRASP, REST versus MI-ELBOW 
Classification Models 

In order to obtain the specific binary classification model for each participant, the 

optimal values for the kernel parameters were selected according to the highest value of 

the cross-validation accuracy. The obtained optimal kernel parameters were then used 

to build a model for binary classification of rest versus imagined arm movements. Figure 

7.1 shows the obtained results for the kernel parameters for binary classification of MI-

GRASP and MI-ELBOW versus REST for a single participant. As shown, the highest 

cross-validation accuracy occurred in the interval (0, 3) for  and (0, 100) for c. These 

intervals were selected for the identification of the optimal kernel parameters for all 

participants. 

The obtained optimal kernel parameters for binary classification of REST versus 

MI-GRASP and REST versus MI-ELBOW are respectively presented in Tables 7.1 and 

Table 7.2 for each of the twelve participants (denoted as P01-P12). These selected 

parameters were then used to build the optimal pattern recognition model for each 

individual. The reported classification accuracy for each participant is the percentage of 

data which were correctly classified. The pattern recognition accuracies obtained using 

the optimal models of the proposed method are presented in the following tables. The 
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obtained classification accuracy of REST versus MI-GRASP is presented in Table 7.1 

and the obtained classification accuracy of REST versus MI-ELBOW is presented in 

Table 7.2. 

 

A 

 

B 

Figure 7.1: Cross-validation accuracies based on c and parameters. (A) REST versus 
MI-GRASP. (B) REST versus MI-ELBOW. 
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Table 7.1: Binary classification result – REST versus MI-GRASP 

Participants Optimal parameters c and   

REST versus MI-GRASP 

Classification accuracy  

REST versus MI-GRASP 

Participant P01 10, 0.2 100 

Participant P02 10, 0.2 100 

Participant P03 10, 2.3 83 

Participant P04 10, 1.9 88.5 

Participant P05 15, 1.7 87.8 

Participant P06 15, 1.1 86.7 

Participant P07 10, 1.4 87.9 

Participant P08 10, 1.9 87.4 

Participant P09 10, 1.6 94.4 

Participant P10 70, 1 98.5 

Participant P11 90, 1 95.9 

Participant P12 10, 2.5 90.8 
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Table 7.2: Binary classification result – REST versus MI-ELBOW 

Participants Optimal parameters c and  

REST versus MI-ELBOW 

Classification accuracy  

REST versus MI-ELBOW 

Participant P01 10, 1.7 89.3 

Participant P02 90, 0.4 89.6 

Participant P03 10, 1.6 83.6 

Participant P04 10, 1.5 89.4 

Participant P05 10, 2.2 87 

Participant P06 15, 1.1 86.2 

Participant P07 10, 2 89.9 

Participant P08 10, 2.3 87 

Participant P09 10, 2 95.2 

Participant P10 35, 2.3 97.7 

Participant P11 30, 2.1 94.9 

Participant P12 10, 1.4 90.3 
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7.3. Kernel Parameters 

Optimizing the kernel parameters was the key factor in improving the 

performance of the proposed method. It was demonstrated that on average the 

performance of the RBF kernel function with optimal parameters was higher compared 

to that with non-optimal parameters. Figure 7.2 compares the obtained performances 

using optimal and non-optimal parameters for each individual. As shown, the pattern 

recognition accuracy of the RBF kernel function with optimal parameters was higher 

compared to that of the RBF kernel function with non-optimal parameters for all 

participants. On average, the pattern recognition rate increased by more than 9% for 

identifying MI-GRASP and MI-ELBOW patterns versus the REST pattern when the 

optimal parameters were used (see Figure 7.3).  

The overall results obtained for the proposed method is acceptable and 

promising. 100% accuracy was obtained for participants P01 and P02 for binary 

classification of REST versus MI-GRASP. Accuracies of over 90% were obtained for 

participants P09, P10, P11, and P12 for both cases of REST versus MI-GRASP and 

REST versus MI-ELBOW.  

With the use of the RBF kernel SVM, the postures associated to the imaginary 

tasks were predicted with an average overall accuracy of 91.8% and standard deviation 

of 5.8% for the case of REST versus MI-GRASP and an average overall accuracy of 

90% and standard deviation of 4.1% for the case of REST versus MI-ELBOW.  
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              A 

 

B 

Figure 7.2: Classification accuracies of proposed method using optimal and non-optimal 
parameters for each individual. (A) REST versus MI-GRASP. (B) REST versus MI-
ELBOW. 
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A 

 

B 

Figure 7.3: Average classification accuracies of proposed method using RBF kernel for 
optimal and non-optimal parameters. (A) REST versus MI-GRASP. (B) REST versus MI-
ELBOW. 
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7.4. Conclusion 

The results of the implementation of the method for both two investigations were 

presented in this chapter. For each investigation, the results obtained for different 

parameters used for selecting optimal parameters were plotted, followed by the 

classification accuracies, which were shown for individual subjects based on optimal and 

non-optimal parameters. The next chapter discusses the results in relation to the 

purpose of the research for identifying multi-classes of motor imageries. 
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Chapter 8. Recognition Performance of the Multi-
Class Classification Model for the Upper Extremity 
Imagery Motor Movement  

8.1. Introduction 

This chapter presents the obtained optimal kernel parameters for multi-class 

classification of REST versus MI-GRASP versus MI-ELBOW. Objective 2 is addressed 

in this chapter and the classification accuracies obtained for each participant are 

reported. The content of this chapter was slightly modified from what first appeared in 

print in: 

Tavakolan, M, Frehlick, Z, Yong X-Y, Menon, C (2017) Classifying three 

imaginary states of the same upper extremity using time-domain feature, PLoS ONE, 

Vol.12, No3, 18pp. 

8.2. REST versus MI-GRASP versus MI-ELBOW 
Classification Model 

The goal was to build the specific multi-class classification model for each 

participant for classifying REST versus MI-GRASP versus MI-ELBOW. The performance 

obtained from different model parameters for participant P01 is presented in Figure 8.1 

A. The highest cross-validation accuracy occurred in the interval (0, 3) for  and (0, 100) 

for c. Figure 8.1 B-L also shows that the highest cross-validation accuracy occurred in 

the same interval for other participants (participants P02 - P12). These intervals were 

selected for the identification of the optimal range of the SVM parameters for all the 

participants. 
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Figure 8.1: Cross validation accuracies of REST versus MI-GRASP versus MI-ELBOW 

based on c and  parameters.  (A) Participant P01. (B) Participant P02. (C) Participant 
P03. (D) Participant P04. (E) Participant P05. (F) Participant P06. (G) Participant P07. 
(H) Participant P08. (I) Participant P09. (J) Participant P10. (K) Participant P11. (L) 
Participant P12. 
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8.3. Kernel Parameters 

Table 8.1 presents the classification accuracy obtained using the selected 

optimal parameters and other kernel parameters for each participant. Table 8.2 presents 

the corresponding selected optimal values of c and for each participant. The proposed 

method using the selected optimal parameters achieved an average accuracy of 74.2%, 

which was significantly higher than that obtained using the non-optimal parameters 

(55.2%). The importance and sensitivity of selecting the optimal SVM parameters is 

clear. For instance, the proposed method selected c = 25 and  = 2.3 for participant P04, 

and the classification accuracy achieved was 74.8%. However, if, for example, c = 10 

and  = 0.2 were selected, the accuracy dropped to 50.7%; if c = 50 and  = 0.9, the 

accuracy was 72.1%. The same trend can be observed in other participants when 

different values for c and  parameters were used.  

Similar to the case of binary classification, optimizing the SVM parameters was 

also found the key to improving the performance of the proposed method for multi-class 

classification. It was demonstrated that on average, the accuracy of the SVM using RBF 

kernel function and optimal parameters was higher compared with the accuracy of SVM 

using RBF kernel function with non-optimal parameters (see Figure 8.2 A). The 

performance gain was 19% on average. Figure 8.2 B presents in detail the comparison 

of classification using the optimal and non-optimal parameters for each participant. For 

all the participants, the classification accuracy of the SVM with optimal parameters was 

higher than that with non-optimal parameters. 

The optimal SVM parameters used in the proposed multi-class classification 

scheme and the average cross-validation accuracy achieved for each participant using 

the parameters in the selected interval are presented in Table 8.2. The overall results 

obtained from the proposed method is encouraging as the accuracies achieved as 

greater than 70.0% for nine participants in this study. 
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Table 8.1: Comparison of the performance obtained when different  and c values of the 
SVM were used in the proposed method. 

Participant Accuracy 

c,

 

c,

 

c,

 

c,

 

c,

 

c,

 

c,

 

c,

 

c,

 

  P01 
76.8 59.6 65.5 70.7 72.9 73.4 73.9 75.2 75.3 76.7 

P02 70.3 56.1 61.0 66.1 68.2 68.5 68.9 69.0 69.3 70.2 

P03 77.2 61.7 66.7 71.6 73.9 75.2 75.9 76.3 76.6 76.9 

P04 74.8 50.7 57.8 63.5 69.0 72.1 73.1 73.3 73.2 74.6 

P05 73.2 52.9 56.7 58.9 62.1 65.0 67.4 69.5 71.2 73.0 

P06 75.0 56.9 62.9 68.5 69.7 71.8 73.3 73.6 73.8 75.0 

P07 71.9 55.8 63.0 67.9 69.9 69.6 69.9 70.6 70.9 71.6 

P08 75.5 51.2 60.5 66.9 69.9 71.1 71.5 72.4 72.5 74.7 

P09 72.2 55.0 61.1 68.6 69.6 70.3 71.7 71.4 71.7 72.1 

P10 73.9 61.8 65.1 68.5 71.8 73.0 73.3 73.4 73.6 73.0 

P11 75.7 48.9 54.8 61.1 67.8 69.6 70.7 72.7 73.4 75.5 

P12 74.5 52.1 58.5 66.6 70.0 70.8 72.0 72.3 73.2 74.1 

Mean 74.2 55.2 61.1 66.6 69.6 70.9 71.8 72.5 72.9 74 
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Figure 8.2: (A) The average classification accuracies of REST versus MI-GRASP versus 
MI-ELBOW by applying the proposed method using RBF kernel for optimal and non-
optimal parameters. (B) The classification accuracies of REST versus MI-GRASP versus 
MI-ELBOW by applying the proposed method using optimal and non-optimal parameters 
for each participant.  
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Table 8.2: The average cross-validation accuracy of the proposed method, the optimal c 

and values for each participant are presented. 

  Participant Selected c Selected  Proposed Method 

Accuracy (%) 

Participant P01 10 2.5 73.7 ± 3.1 

Participant P02 10 2.5 68.3 ± 2.6 

Participant P03 10 2.4 74.8 ± 3.0 

Participant P04 25 2.3 70.9 ± 4.7 

Participant P05 40 2.5 66.5 ± 5.4 

Participant P06 15 2.5 71.9 ± 3.5 

Participant P07 25 2.1 70.0 ± 2.3 

Participant P08 10 2.5 71.0 ± 4.1 

Participant P09 15 2.3 70.1 ± 3.0 

Participant P10 45 1.4 71.8 ± 2.4 

Participant P11 25 2.4 69.6 ± 6.1 

Participant P12 10 2.4 71.1 ± 4.2 
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8.4. Conclusion 

The overall results of the multi-class classifications were discussed in this 

chapter. The investigations and the research were discussed in terms of the importance 

and sensitivity of selecting the parameters. The average accuracy achieved for each 

participant using the parameters in the selected interval were presented and discussed.  

The improving EEG interpretation to differentiate between imagery of different types of 

hand movements, using proposed technique, is clearly defined in the next chapter. 
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Chapter 9. Proposed Classification Scheme and 
CSP, FBCSP and Band Power Methods for Upper 
Extremity Imagery Motor Movement Recognition  

9.1. Introduction 

This chapter compares the results obtained from addressing objectives 1 and 2 

with the results obtained using well-known methods that are widely used in BCI 

literature.  The results obtained using the proposed method, are compared with CSP, 

FBCSP and band power methods. The content of this chapter was slightly modified from 

what first appeared in print in: 

Tavakolan, M, Frehlick, Z, Yong X-Y, Menon, C (2017) Classifying three imaginary 

states of the same upper extremity using time-domain feature, PLoS ONE, Vol.12, No3, 

18pp. 

Tavakolan M, Yong X-Y, Zhang, X, and Menon C (2016) Classification Scheme for 

Arm Motor Imagery, Journal of Medical and Biological Engineering. Vol 36, No.1, pp 12-21. 

9.2. Performance Comparison 

Figure 9.1 presents in detail comparison between the proposed method and 

CSP, FBCSP and band power methods. As it is presented, the pattern recognition 

accuracy of the proposed method was higher compared with the accuracy of CSP, 

FBCSP and band power methods for binary classification of REST versus MI-GRASP 

and REST versus MI-ELBOW. 

 

A 
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B 
 

Figure 9.1: The classification accuracies of the proposed, CSP, FBCSP and band power 
methods for each individual. (A) REST versus MI-GRASP. (B) REST versus MI-ELBOW. 

The average classification accuracies of REST versus MI-GEASP and REST 

versus MI-ELBOW for each method is presented in Figure 9.2. The average 

classification accuracy for the proposed method is higher compared to those of the CSP, 

FBCSP and band power methods. The analysis of variance results show that there were 

statistically significant differences (p < 0.01) between the results obtained using the 

proposed method and those obtained using the other methods. The average 

classification accuracy results indicate that the CSP, FBCSP, and band power methods 

are all powerful and that there is a small difference in their pattern recognition 

performances.  

 

A 
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B 

Figure 9.2: Average classification accuracies of proposed, CSP, FBCSP, and band 
power methods. (A) REST versus MI-GRASP. (B) REST versus MI-ELBOW. 

The obtained cumulative error rates using the optimal model of the proposed 

method, CSP, FBCSP and band power methods are presented in Figure 9.3. As it is 

presented in Figure 9.3, there was relatively low classification error rate for participants 

P01 and P02 using the CSP, FBCSP and band power pattern recognition models for MI-

GRASP and REST classification. The error rate was zero for these participants using the 

proposed optimal model. The higher cumulative error rates for participants P08, P11 and 

P12 show that, there was a high classification error rate using the CSP, FBCSP and 

band power pattern recognition models. The overall error rates was however small and 

acceptable for these participants using the proposed optimal model, which shows that 

for BCI applications, these features – classifier can be considered as a potential option 

for classification. 

 

A 



77 
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Figure 9.3: The cumulative error rates of the proposed, CSP, FBCSP and band power 
methods for each individual. (A) REST versus MI-GRASP. (B) REST versus MI-ELBOW. 

The performance of the proposed method was also compared with those 

obtained when CSP, FBCSP and band power methods were used for classification of 

REST versus MI-GRASP versus MI-ELBOW. The results show that the proposed 

scheme outperformed the other methods for each individual. Figure 9.4 illustrates the 

comparison of the performance of the proposed method with that obtained when CSP, 

FBCSP and band power methods were used for each individual.  

 

Figure 9.4: The classification accuracies of REST versus MI-GRASP versus MI-ELBOW 
by applying the proposed method, CSP, FBCSP, PS and band power methods. 

The average classification accuracies in addition to the maximum and minimum 

accuracies are presented in Figure 9.5 A and B for each method. Figure 9.5A shows that 

the accuracy obtained from the proposed method was on average higher compared to 

those obtained from other methods. CSP, FBCSP and band power methods achieved an 
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average classification accuracy of 53 ± 9.3%, 53.7 ± 10.4% and 51.7 ± 6.5% 

respectively for the classification of REST versus MI-GRASP versus MI-ELBOW. To 

compare the results of the different methods, a pairwise statistical analysis between the 

proposed method and each of the well-known methods based on CSP, FBCSP, band 

power, and PS was performed. ANOVA was used since the data were normally 

distributed as assessed by Shapiro-Wilk Test (p > 0.05) [99]. The analysis showed that 

the means of the performance of the BCI for the proposed method and the previously 

mentioned methods were statistically significant (p < 0.01). 

For the 3-class problem investigated in this study the best classification accuracy 

(i.e., an average of 74.2% ± 2.1%) was achieved by the proposed scheme (see Figure 

9.5 B). The maximum accuracy achieved was 77.2% (participant P03) using the 

proposed method whereas the lowest accuracy was 33.4% (participant P08) using the 

CSP method. The performance of the FBCSP method was very close to that of the CSP 

method (i.e., 35.2% for participant P08). 

Figure 9.6 presents the cumulative error rates for each participant. Small 

cumulative error rate is presented for participant P10 for REST, MI-GRASP, and MI-

ELBOW classification using different methods.  For this participant, a relatively low 

classification error rate was achieved in the CSP, FBCSP and band power. However, the 

error rate was the lowest for this participant when the proposed optimal model was used. 

Higher cumulative error rates were observed in participants P08, P11 and P12 (see 

Figure 9.6). The overall error rate was lower for these participants when the proposed 

optimal model was used. However, high classification error rates were obtained when 

using other methods. These results show that for BCI applications, the proposed method 

can be considered as a potential option. 



79 

 

Figure 9.5: (A) The average classification accuracies of REST versus MI-GRASP versus 
MI-ELBOW by applying the proposed method, CSP, FBCSP, PS and band power 
methods. (B) The minimum and maximum performance obtained by applying the 
proposed method, CSP, FBCSP, PS and band power methods. 

 

 

Figure 9.6: The cumulative error rates of the proposed method, CSP, FBCSP, PS and 
band power methods for each individual. 



80 

The ability of predicting different postures of the upper extremity using EEG was 

investigated. The obtained results confirmed that the EEG data captured from the EGI’s 

Geodesic sensor net produced distinct patterns for the selected upper-extremities 

postures of the imagined motor movement tasks. The data were reasonably separable 

and well modelled by the extracted features and optimal SVM model. Binary-class BCI 

system was proposed that discriminates EEG signals corresponding to REST versus MI-

GRASP and REST versus MI-ELBOW movements within the same limb. Multi-class 

classification study was also designed to assess the performance of the proposed 

classification scheme. The patterns of MI-GRASP, MI-ELBOW and REST were 

successfully recognized.  An acceptable classification performance was obtained for the 

classification of arm motor imagery using the proposed method.  

The results obtained from the proposed BCI are promising. The obtained results 

therefore point out that the proposed scheme has potential for providing intention of the 

participant during imaginary functional movements. The proposed method could 

potentially be used in BCI-driven assistive devices, such as portable exoskeletons for 

assisting with arm movements. The proposed three-class BCI could for instance 

increase the controlled number of degrees of freedom of the robotic device paired with 

functional electrical stimulation (FES) designed in MENRVA laboratory for assistive 

purposes or for stroke rehabilitation [24]. In case of assistance, for example, the 

participant could imagine “to move her/his elbow” to control the robotic device, which can 

assist with extending the arm when reaching out for an object, and imagine instead 

“grasping with her/his hand” to activate FES, which can assist with grasping the targeted 

object. For rehabilitation purposes, a similar strategy could be implemented to assist with 

repetitions of task-specific exercises (e.g. picking up a bean bag and place it on a 

different location). Task-specific training after stroke has been shown to produce long-

lasting cortical reorganization compared to traditional stroke rehabilitation and potential 

for better functional outcomes [100-102]. 

9.3. Conclusion 

The differences in the results for imagined movements were discussed in this 

chapter. The investigations and the research were discussed in terms of the features 
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used and the accuracies of the results. This chapter compared the results obtained from 

addressing objectives 1 and 2 with the results obtained using well-known methods that 

are widely used in BCI literature. The next chapter concludes the research and future 

works are suggested. 
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Chapter 10. Conclusion  

The overall goal of this thesis, improving EEG classification accuracy of single 

limb imaginary movements was met by addressing the following objectives: 

Objective 1: Binary classification  

1.1: Rest versus motor imagery of grasp 

1.2: Rest versus motor imagery of elbow flexion and extension 

Objective 2: Multi-class classification - Rest versus motor imagery of grasp 

versus motor imagery of elbow flexion and extension 

Objective 1 was met by optimizing two different binary classification models for  

identifying rest state versus motor imagery of grasp (objective 1.1) and identifying rest 

state versus motor imagery of elbow flexion and extension  (objective 1.2). The AR 

model coefficients, RMS amplitude, and WL were extracted from the acquired EEG 

signals. The SVM classifier was used for discriminating the REST and imagined arm 

movements of participants. Selecting optimized kernel function parameters and 

appropriate features were addressed as the key factors to obtaining satisfactory 

recognition results in chapter 7 and chapter 8.  

Objective 2 was addressed in chapter 8 which the optimal multi-class 

classification models were built for each participant. The possibility of associating EEG 

patterns with the imagining of arm movements was investigated. The identified classes 

were rest versus motor imagery of grasp versus motor imagery of elbow flexion and 

extension. The obtained results support the hypothesis that successful pattern 

recognition can be achieved when discriminating imagined arm movements of users in 

vital activities of daily living.  

Chapter 9 compares the obtained binary-classification results of the Objective 1.1 

and objective 1.2 with the well-known methods, which are widely used in the literature. 

Average accuracies of 91.8 ± 5.8 % and 90 ± 4.1 % were obtained for distinguishing rest 

versus  grasping and  rest  versus  elbow  flexion.  The  results  show  that  the proposed                                          
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scheme provides 18.9 %, 17.1 %, and 16.5 % higher classification accuracies for 

distinguishing rest versus grasping and 21.9 %, 17.6 %, and 18.1 % higher classification 

accuracies for distinguishing rest versus elbow flexion compared with those obtained 

using filter bank common spatial pattern, band power, and common spatial pattern 

methods.  

Objective 2 was also addressed in chapter 9. For the case of multi-class 

classification, it was shown that the investigated method achieved an average accuracy 

of 74.2%, which is at least 20.0% higher compared to other methods. The implemented 

pattern recognition strategy identified various imagined arm movements within the same 

limb. The pattern recognition strategy outperformed methods that are widely used in the 

literature such as CSP, FBCSP, and band power methods.  

In future work, The feasibility of classifying the EEG signals related to rest and 

the imaginary grasp and elbow movements within the same limb will be investigated 

among individuals with neurological disorders, including individuals with stroke with 

different levels of impairments. A higher density EEG system would be used in order to 

obtain higher resolution maps especially close to the motor cortex. In fact, the 

investigated motor imagery tasks activate regions that have very close representations 

on the motor cortex area of the brain [13, 14]. Real-time classification will be conducted 

to validate that acceptable performance can be obtained. 

Future research will focus on developing a hybrid human machine interface 

system that combines the proposed EEG-based BCI  with EMG placed on the arm to 

further engage individuals with a hemiparetic arm resulting from a stroke for facilitating 

motor recover of their arm. 
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