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Abstract. A human-computer interface interposes objects between a person and 
the underlying representation with which the person interacts. Previously, we 
introduced two interaction objects, alternatives and their collections in an 
interactive design gallery. We revisit the terms, refining their definitions, and 
introduce the explicit notion of a “view” to accommodate multiple references to 
the same alternative or collection in an interface. We outline fundamental 
interactions over alternative and collection views. Finally, we outline a special 
type of collection called the Parallel Coordinate View.  
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1 Introduction 

In computational design, the case for design alternatives is established, and need not be 
repeated here. What is not widely understood is the need for a complete and effective 
suite of direct interactions with design alternatives. Instead, the literature largely reports 
techniques and systems for presenting to a user the results of some automated generative 
process. Yet, as Bradner et al. [1] point out, “Professionals reported that the computed 
optimum was often used as the starting point for design exploration, not the end 
product.” We aim to remedy this situation by devising and evaluating a suite of direct 
interactions with design alternatives. We meet these aims through the iterative design 
and evaluation of prototype systems that represent multiple alternatives. For both 
intellectual and practical reasons, we build these prototypes on top of existing 
commercial parametric modeling systems. First, parametric systems are mature and 
increasingly used in practice–they are the best type of system for gaining research 
participants and external impact. Second, parametric systems yield a particularly simple 
and useful abstraction for representing alternatives [2], allowing clean separation of 
modelers from what we call design galleries for supporting alternatives. We have 
devised a general, flexible system architecture that enables us to rapidly prototype new 
interaction concepts.  
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2  Alternative Views 

We revisit the definition of an alternative provided in [2] reproduced nearly verbatim 
(correcting only the capitalization of variables) herein.  
 

1. An alternative is a selection and abstraction of nodes from a parametric model 
such that the nodes of the alternative each correspond to a property of a model 
node.  
 

2. An alternative may contain both graph-independent and graph-dependent 
properties of the model it abstracts. The graph-independent properties enable 
alternatives to be edited; the graph-dependent properties enable performance 
to be assessed by evaluations tools, which are commonly available within a 
parametric modeler.  
 

3. The operation apply assigns values from an alternative f to a model m. 
Specifically, it assigns the property values from the f only to properties that, in 
m, are graph-independent.  

 
This led to overloading of the term “alternative” as a logical alternative (a subset of 
model nodes) and its interface counterpart, the interface alternative (a logical 
alternative plus a parametric model). It introduced two problems. First, it is verbose and 
its terms are not memorable. Second, it failed to separate underlying symbolic models 
from human-computer interfaces to them. Here we resolve the first problem by 
introducing the term “aspect” to replace “alternative,” and using “alternative” to 
describe the former “interface alternative.” The second problem we address through the 
term “view.” In Model-View-Controller (MVC) frameworks, a common software 
architecture pattern for graphical user interfaces [4], a view is a representation of 
underlying information, and multiple views of the same information are possible. This 
is also consistent with information visualization principles where multiple visual 
representations of data should be available to support users with different tasks and 
requirements [5,6]. Our definition thus becomes the following. 
 

1. A model aspect (or just aspect) is a selection and abstraction of nodes from a 
parametric model such that the nodes of the aspect each correspond to a 
property of a model node.  
 

2. An aspect may contain both graph-independent and graph-dependent 
properties of the model it abstracts. The graph-independent properties enable 
aspects to be edited; the graph-dependent properties enable performance to be 
assessed by evaluations tools, which are commonly available within a 
parametric modeler.  

 
3. The operation apply assigns values from an aspect p to a model m to produce 

an alternative a. Specifically, it assigns the property values from p only to 
properties that, in m, are graph-independent.  



Using this new definition, since an alternative is a representation of the underlying 
aspect and parametric model, we adopt the term alternative view, and introduce it as a 
more nuanced concept. 

In the Design Gallery implementation, an aspect and a model are stored in the 
alternative data structure, and an alternative view visually represents the alternative and 
is the primary interface object with which users interact. There may exist, as alternative 
views, multiple references to an alternative across the Design Gallery, and each may or 
may not be a different visual representation or view. 

 
p = aspect  

m = parametric model 
 

An alternative = ja = <p,m>, where 
 

j indexes alternatives, i.e., in a gallery G (galleries contain alternatives), ja ∈G is 
the jth alternative contained in G. 

 
We introduce the concept view, denotes by v, and specialize is to alternatives. 

 
alternative view = jva

i, where 
 

a denotes alternative, that it is of type alternative, as contrasted with an interface 
view of type collection.  
 
j indexes alternatives, i.e., in a gallery G, j refers to the jth alternative.  

 
i is a view index. If, in a gallery G, multiple alternative views jva

i of ja were to exist, 
i denotes the ith alternative view of the jth alternative contained in the gallery. To 
elucidate, in the Design Gallery [3] , ja exists as views jva

0 glyph with thumbnail 
image, jva

1 larger thumbnail image, and jva
2 thumbnail and text, and would be denoted 

as jva
1, jva

2, and jva
3 respectively.  

 
Note that these view kinds (thumbnail, large thumbnail, and thumbnail and text) are not 
exhaustive, and as our research progresses, we propose and design novel kinds of 
alternative views. 

The model defaults to the one from which the alternative was initially 
abstracted, but is not restricted to it. Therefore, alternatives can be created by tuples 
selected from collections P of aspects and M of parametric models. This is consistent 
with the notions described in [3], i.e., an aspect can be applied to any model, even if the 
model changes. Such applications produce effects to the extent at node names 
correspond across models. Fault tolerance in the modeler prevents system crashes, and 
partiality allows aspects to be applied to models in which node mappings are either (or 
both) incomplete or extraneous.  

This notation also gives rise to a novel way of generating alternatives within 
the Design Gallery. Sheikholeslami [9] describes the Cartesian product of values stored 
in an alternative or in a subjective node, whereas [7] extends this to products of 
parametric models. The Cartesian product A = P X M, where P is a collection of aspects, 



and M a collection of parametric models, is a collection A of all possible applications of 
p ∈ P to m ∈ M.  

3  Collection Views 

Many desired operations act over multiple objects [3], that is collections of alternative 
views. A collection is 
 

C = {va}. 
 
Collections are mutually non-exclusive and collectively exhaustive. Mutual non-
exclusion means that views to the same alternative can exist across multiple 
collections, that is, collections C and D can each contain a jva

i with the same j value. 
Collective exhaustion means that every alternative has an alternative view in some 
collection. We guarantee collective exhaustion by providing a universal collection 
containing one view of each alternative in a gallery. Collections are sets with respect 
to the alternatives underlying a gallery, that is, a collection can contain at most one 
alternative view of a given alternative. A collection is denoted as  
 

C = {0va
i, 1va

j, ……, nva
k}, where 

{0,…,n} indexes alternatives, and 
i,j,k index their respective alternative views across all collections in the gallery. 

 
This means that, alternative views of a single alternative may exist in multiple 
collections as a similar or dissimilar representation or view, but no collection contains 
more than one reference to the same ja even if the view is different. Effectively, in jva

i,, 
i indexes across all alternative views of j present in the gallery. 

Interacting with collections of alternative views necessitates that there be 
different representations of these collections, again in line with information 
visualization research [5,6]. An example may be visualizing relations between elements 
of collections. Thus, we introduce the term collection views. A collection view is a 
visual representation of a collection C--collection views form the primary interface 
objects by which users interact with collections. Following the convention set 
previously, we denote a collection view as  

 
jvc

i, where 
 

j indexes collections, i.e., in a gallery G, j refers to the jth collection.  
 
i is a view index. If, in a gallery G, multiple collections jC were to exist, i denotes 
the ith collection view of the jth collection contained in the gallery.  
 
c indexes collection view types, an extensible set of visualization types provided 
by the gallery. Currently, the gallery defines three collection view types: 
c = c.general. The general or default view of a collection, where alternative views 



appear clustered in a user directed layout (Figure 1.right),  
c = c.parallel. A parallel coordinate controller view (Figure 1.left). 
c = c.pareto. Multiple Pareto graphs in which properties of an alternative may be 
plotted against each other (Figure 2),  

 
These would be denoted as  

v1
c.general

, v2
c.pareto

, v3
c.parallel 

 

 

 

 
 

Fig. 1. (left) Parallel coordinate view controller (left) showing alternatives and handles, 
details on demand show 3D view, and (right) brushes corresponding general alternative view as 
a glyph in general collection. 

 
 

4  Interactions 
 
The fundamental interaction with interface objects is selection. The two primary 
interface object types va and vc give rise to two distinct selection sets sa and sc. Users 
should be able to select discretely or continuously, multiple va and/or vc preceding any 
operations that may follow. Selecting an object adds it to its type’s selection set. A 
selection set is also a collection (though this is not strictly true for sc), except that it is 
ephemeral in nature. We describe here a core set of interactions upon which more 
detailed interactions depend.  

 



 
 

Fig. 2. A collection view as multiple pareto views showing representative 
performance criteria evaluated against each other. One jva is highlighted across all views.  

 
The primary acts of interaction using a mouse pointer in the gallery are “click” 

and “drag”. A modifier, which may be one or more key-presses, different mouse 
buttons, click sequences, or any combination thereof, is applied to specialize these. 
Tables 1, 2 & 3 show primary interactions on the two principal types of target objects, 
the modifier used, and the result. For modifiers, we indicate both an integer identifying 
the modifier and our current design decision binding a particular action to the modifier. 
The following interactions we explicitly define hold true for v1

c.general; while being 
theoretically valid for v2

c.pareto
 and v3

c.parallel, they have case specific implications that 
are a work in progress.  

The selection convention found in most interfaces is exactly the reverse, i.e., 
unmodified clicks select single objects, and deletes existing selection sets. Since our 
tasks almost always involves working with multiples, we eschew this convention in 
favor of its reverse. This is less error prone, as large selection sets can be lost by 
unintentional clicks, frustrating users. Accidental deselection is harder, because actions 
required are more deliberate. Explanatory tool-tips or introductory screens during 
adaptation will improve the learnability of this new convention.  
 
 

 



 
Table 1. Interaction on null objects with modifiers and results. At the time of writing, 

we bind modifier 1 to SHIFT, modifier 2 to the ALT key and modifier 3 to CTRL. 
 

Target 
object 

Interaction  Modifier Result 

Null Click Null Null  
Null Click 1 Clears sc, the collection 

selection set. 
Null Drag Null Adds to the selection set sc all 

vc within the boundary of the 
selection rectangle. This 
implies that selection is 
cumulative. 

Null Drag 1 Subtracts all vc within the 
boundary of the selection 
rectangle from sc. Deselection 
is also cumulative.  

Any  Double-click  Null Creates a vc of a new 
collection C from sc. if sc is 
empty, create a new empty 
collection. This effectively 
merges all collections in sc. No 
effect on selected vc. The 
original sc persists, but now 
includes the new vc. 

Null Click 1 & 2 Clears sa, the alternative 
selection set. 

Null Drag 2 Adds to the selection set sa all 
va within the boundary of the 
selection rectangle. This 
implies that selection is 
cumulative. 

Null Drag 1 & 2 Subtracts all va within the 
boundary of the selection 
rectangle from sa. Deselection 
is also cumulative.  

Any Double-click 2 Creates a new ja and 
corresponding jv0

c for each va 

in sa. No effect on selected va. 
The original sa persists.  

	

	

	



Table 2. Interactions on alternative views va with modifiers and results.  
Target 
object 

Interaction  Modifier Result 

va Click Null Adds clicked va to sa. (Figure 
3) 

va Click 1 Subtracts target from sa. 

va Click 1 & 2 Clears sa, and adds the clicked 
va to sa. 

va or sa Drag from 
source to 
target vc 

Null Adds a new va to the collection 
C of target vc. Does not 
remove the target va from 
source vc. Clear sa and add the 
new va to sa. (Figure 4) 

va or sa Drag within 
vc 

Null Changes screen position of va 
in vc if the type of vc so allows, 
otherwise NULL. 

va or sa Drag from 
source to 
target vc 

1 Adds the va to the collection C 
of target vc. Removes it from 
source vc. Clear sa and add the 
new va to sa. (Figure 5) 

va or sa Drag within 
vc 

1 Null.  

 
 

Table 3. Interactions on collection views vc with modifiers and results. For brevity 
and clarity, we omit cases where a source vc and target vc refer to the same C.  

 Target 
object 

Interaction  Modifier Result 

vc Click Null Adds clicked vc to sc.  (Figure 
6) 

vc Click 1 Clears sc, and adds the clicked 
vc to sc. 

vc or sc Drag Null  Changes screen position of vc 
in gallery. (Figure 7)  

vc or sc Drag 2 Add all va from the collection 
C of source vc to that of target 
vc. The display of va in vc 
depends on the type of vc. No 
effect on selected vc. (Figure 8) 

vc or sc Drag 3  Makes a new vc of the 
collection at the end-of-drag 
screen location. 

 
	



	

	

	

	

	

Fig. 3. Clicked va will be added to sa. 
 

 



 

 

 

Fig. 4. Dragging from source ivc to target jvc (top) adds va  to target jvc  (bottom) 
without deleting from source ivc

. 



 

 
Fig. 5. Dragging from source to target vc (top) adds va to the target collection and 

removes the dragged va from the source collection (bottom). 



 

 
Fig. 6. Clicking on a vc adds it to the sc . 

 
 

 
 

Fig. 7. Dragging a vc on another vc superposes the selected vc  without affecting the vc located 
underneath.  



  

 
Fig. 8. Dragging a vc with Modifier 2 (top) on another vc adds the va from the dragged collection 

to the target collection based on the type of the destination type (bottom). 
 
 



5  Introducing the Parallel Coordinate View-Controller 
 
5.1  Motivation 

Woodbury et al. [8] propose the idea of combining designers’ past decisions in new 
arrangements, by which designers may be able to discover new meaningful alternatives. 
They coin the term design hysteresis to describe operators that perform such 
recombination. They call the set of states already visited the explicit design space, and 
the set all possible states the implicit design space. They introduce the concept of 
hysterical space (after hysteresis, the lagged entry of an effect into a system) to describe 
the result of operations that use states in the explicit space to access those in the implicit 
space.  

Sheikholeslami [9] describes a specific case of such an operator, the Cartesian 
product of graph independent properties of an invariant parametric model, and coins the 
term hysterical state to describe states derived out of this recombination and, after 
Woodbury and Burrow, calls the set of such states the hysterical space (Figure 9). In 
this context, the explicit design space is the set of states visited by the designer, and the 
implicit design space is the set of states achievable by exhausting all parameter values, 
which in the case of continuous parameters, is indenumerably infinite. The hysterical 
space is the Cartesian product of all parameter settings recorded by the designer.  

To interact with the hysterical space, Sheikholeslami proposes the Dialer 
(Figure 10), comprising concentric rings, where each ring represents one parameter and 
the divisions on the ring correspond to the recorded values of that parameter. The 
outermost ring contains the Cartesian product recorded parameters. Each ring has a 
slider with an adjustable size that selects the values on the rings. By moving and resizing 
the sliders, one can select the desired values for highlighting the corresponding items in 
the outermost ring (hysterical space). The shortcomings of this interface are that it is 
not scalable, as the number of divisions increases with number of recorded variations; 
and the number of concentric rings increases with parameters. The hysterical space also 
increases exponentially, thus making the dialer unreadable.  

We use the Cartesian product in the Design Gallery as the expand operator. 
Interactions in the gallery closely follow the interaction model described by 
Sheikholeslami. Graph-independent node properties of every aspect in the gallery 
corresponds to the recorded parameters in the explicit design space. In our 
Grasshopper™ implementation, users may choose to create a “pool” by recording 
states, or pick individual parameter values from alternatives in the gallery as candidates 
for the Cartesian product. In both cases, the exhaustive Cartesian product is calculated 
in the modeler, and a dialer (Figure 11) lets users browse through members of the 
product in rapid serial visual presentation. In our study [2], we found that participants 
extensively used the expand operator and to rapidly generate variations and scan 
through them using the dialer before selecting alternatives of value. This strategy was 
dominant across all users, and participants verbally confirmed preference for this form 
of interaction. However, participants used only a few “seed” alternatives to generate 
relatively fewer variations--foresight tells us that, as the Cartesian product expands 
exponentially, linear scan through results by rapid serial visual presentation will become 
a less meaningful way of interacting with alternatives.  



 
This brings to us the design challenge of visualizing, interacting with, and 

navigating large hysterical spaces (e.g., as generated by a Cartesian product), in the 
specific case described by Sheikholeslami, as well as the larger problem of design space 
exploration. Hysterical space is multi-dimensional data in nature, and we turn to 
parallel coordinates, a widely used and effective way of visualizing multi-dimensional 
data [10]. A vast body of literature exists on efficient and enhanced use of parallel 
coordinates for data visualization and exploratory data analysis, as well as widespread 
use of it in academia and industry.  

 
 

 
Fig. 9. Brushed paths depicts the explicit design space that a designer passes to reach a solution. 
Unbrushed paths depict other possible paths not taken, i.e., implicit design space. Note that the 
implicit paths would not be represented in any interface as to do so would make them explicit in 
some sense. Image credit Sheikholeslami [9].   
 

 
 

Fig. 10. A Dialer for a simple parametric model of a cylinder with radius, height, and 
color as input. Outer ring represents hysterical space, Cartesian product of recorded inputs. Image 



credit Sheikholeslami [9].  

 
 

Fig. 11. Cartesian Product dialer in GrasshopperTM implementation of Design Gallery 
(a) record button to record parameters (b) Cartesian product or hysterical space as vectors (c) 
dialer, and (d) parameters of member at selected index.  
 
5.2  Design Overview   
 
The choice of using parallel coordinates follows nearly directly from parametric 
modeling interfaces. Extant parametric modeling tools use horizontal sliders as the most 
common interface for varying input parameters. It is not uncommon to find complex 
graphs with numerous slider nodes aligned horizontally. In information visualization, 
parallel coordinates are typically vertically oriented, where the up direction signifies an 
increasing value and vice versa. In our Parallel coordinate view-controller (henceforth 
abbreviated as PCVC), we change this to a horizontal alignment to match sliders, 
maintaining familiarity in the design discipline.  

A PCVC is a special case of a vc. Graph independent and dependent nodes from 
all m ∈	M ∈	C form each axis in the PCVC. The property values of the p ∈	P ∈	C in the 
vc are plotted on the axes, marked by a circular “handle”. In the case of ordinal 
properties, they increase from left to right, and default bounds are set by minima and 
maxima found by querying the property. In the case of nominal properties, discrete 
points are formed whose order may be changed. A va is therefore represented by a line 
running through the handles. Selecting a line selects the va, and selecting a handle selects 
the individual property value for that va only. Selecting an axis selects every value for 
all va that intersect that axis. Multiple lines may be selected independent of multiple 
handles across axes. Handles may overlap, and on selection attempts, a pick parade is 
proposed. Handle selection sets up an create or edit operation described later.   

The ordering of the axes themselves are arbitrary, or in the order they were 
encountered from when the aspect was created, however it is typical in implementations 
of parallel coordinates to allow re-ordering. This is necessary because parallel 



coordinates transform the search of multivariate relations in the dataset to a pattern 
recognition problem, and such rearrangements help in gaining insights[10]. However, 
independent and dependent nodes remain in separate groups for clarity.  

Selection of two or more lines and computing the Cartesian product will yield 
all the possible lines through handles of those lines. As new alternatives are added to 
the vc, the axes are automatically populated. There are many methods of maintaining 
and enhancing readability of dense parallel coordinates in the literature that may be 
applied when the view is densely populated. Brushing and filtering are some common 
operations. Therefore, the PCVC avoids at least some of the scalability issues that 
plague Sheikholeslami’s Dialer. A parallel coordinate view may be brought up by 
toggling any vc, or it may be viewed side-by-side in combination with other view types 
of vc. As an example of a vc.general interaction valid in vc.parallel, dragging lines (jva or sa) 
from vc.parallel to any target vc will add jva or sa in the default view. Dragging within 
vc.parallel results in a null operation.  

 
5.3  Generative use  

We propose that, in addition to visualizing values, each axis also behave as an input 
interface, hence the suffix “controller”. Moving a handle will effect changes in the 
corresponding graph independent properties in the aspect p. As a consequence, a new 
alternative a’ will be computed by applying this modified aspect p’ to m. Multiple 
handles can be changed, and this will create multiple new a’ in parallel. (Figure 12) If 
the choice is not to retain the original p, then this operation will be an edit. Drawing a 
line through the graph independent axes by dragging the mouse will create a p (Figure 
12) by creating values at the intersection points of the line and axes, while the user has 
freedom to choose the associated m for the <p,m> tuple to create a new a. Thus, the 
model may vary, unlike Sheikholeslami’s proposal. This new a appears in the 
controller’s vc. We propose that moving handles for graph dependent properties trigger 
multiple goal seeking operations which result in new alternatives that meet the new 
performance criteria. Currently, we have implemented parallel generation/editing of 
new alternatives using graph independent properties. We employ a server-client 
architecture. A request from the gallery sends the new <p,m> to a remote server running 
an instance of the same modeler, which applies p to m to create a new a. Sufficient 
computing power will allow continuous and realtime update of the 3D view.  
 
5.3 Summary 

The PCVC is our current focus of work. It is evident from the short overview that there 
are numerous possibilities for rich interactions to be designed and evaluated. We are 
possibly the first to propose that a visualization tool be also used as a generative tool. 
Information visualization principles go hand in hand with creativity support guidelines. 
A large literature in each area poses problems that need to be addressed and solutions 
that can be applied. However, as with the Design Gallery system, our immediate goal 
is to describe the most fundamental interactions.  

 



 
Fig. 12. (1) Dragging handles computes new alternatives. (2) Drawing a line through 

the axes creates a new aspect.  
 
6  Future work 
 
There exist a finite set of available interaction controls (e.g., CTRL, ESC, ALT, right- 
and left-mouse click). Despite finiteness, it is evident that a sufficiently rich set of 
interactions arise, and devising a coherent and consistent encoding commands using 
these controls is a major design challenge. For example, Modifier 1 and Modifier 2 in 
the above may both be mapped to CTRL. This is our current work and the subject of a 
future paper. 

The gallery system is also designed for high-resolution large displays [3]. This 
too adds to the design challenge on every interaction aspect, for example, selecting 
distant objects in the gallery. It also raises the question whether the traditional mouse 
and keyboard is adequate for such a challenge [11,12] given the easy availability of 
advanced pointing devices and touch enabled displays. This too is the subject of our 
future research.  
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