
Directly Interactive Design Gallery Systems:
Interaction Terms and Concepts

Arefin Mohiuddin1, Narges Ashtari1, and Robert Woodbury1

1Simon Fraser University, Surrey, British Columbia, Canada
{amohiudd, nashtari, robw}@sfu.ca

Abstract. A human-computer interface interposes objects between a person and
the underlying representation with which the person interacts. Previously, we
introduced two interaction objects, alternatives and their collections in an
interactive design gallery. We revisit the terms, refining their definitions, and
introduce the explicit notion of a “view” to accommodate multiple references to
the same alternative or collection in an interface. We outline fundamental
interactions over alternative and collection views. Finally, we outline a special
type of collection called the Parallel Coordinate View.

Keywords: Design exploration, design alternatives, computational models,
computer aided design, design tools.

1 Introduction

In computational design, the case for design alternatives is established, and need not be
repeated here. What is not widely understood is the need for a complete and effective
suite of direct interactions with design alternatives. Instead, the literature largely reports
techniques and systems for presenting to a user the results of some automated generative
process. Yet, as Bradner et al. [1] point out, “Professionals reported that the computed
optimum was often used as the starting point for design exploration, not the end
product.” We aim to remedy this situation by devising and evaluating a suite of direct
interactions with design alternatives. We meet these aims through the iterative design
and evaluation of prototype systems that represent multiple alternatives. For both
intellectual and practical reasons, we build these prototypes on top of existing
commercial parametric modeling systems. First, parametric systems are mature and
increasingly used in practice–they are the best type of system for gaining research
participants and external impact. Second, parametric systems yield a particularly simple
and useful abstraction for representing alternatives [2], allowing clean separation of
modelers from what we call design galleries for supporting alternatives. We have
devised a general, flexible system architecture that enables us to rapidly prototype new
interaction concepts.

Final version published as Mohiuddin, Arefin; Ashtari, Narges; Woodbury, Robert. Directly Interactive Design Gallery Systems:
Interaction Terms and Concepts. In Ji-Huyn Lee (ed) Computational Studies on Cultural Variation and Heredity. Singapore: Springer,
2017.

2 Alternative Views

We revisit the definition of an alternative provided in [2] reproduced nearly verbatim
(correcting only the capitalization of variables) herein.

1. An alternative is a selection and abstraction of nodes from a parametric model
such that the nodes of the alternative each correspond to a property of a model
node.

2. An alternative may contain both graph-independent and graph-dependent
properties of the model it abstracts. The graph-independent properties enable
alternatives to be edited; the graph-dependent properties enable performance
to be assessed by evaluations tools, which are commonly available within a
parametric modeler.

3. The operation apply assigns values from an alternative f to a model m.
Specifically, it assigns the property values from the f only to properties that, in
m, are graph-independent.

This led to overloading of the term “alternative” as a logical alternative (a subset of
model nodes) and its interface counterpart, the interface alternative (a logical
alternative plus a parametric model). It introduced two problems. First, it is verbose and
its terms are not memorable. Second, it failed to separate underlying symbolic models
from human-computer interfaces to them. Here we resolve the first problem by
introducing the term “aspect” to replace “alternative,” and using “alternative” to
describe the former “interface alternative.” The second problem we address through the
term “view.” In Model-View-Controller (MVC) frameworks, a common software
architecture pattern for graphical user interfaces [4], a view is a representation of
underlying information, and multiple views of the same information are possible. This
is also consistent with information visualization principles where multiple visual
representations of data should be available to support users with different tasks and
requirements [5,6]. Our definition thus becomes the following.

1. A model aspect (or just aspect) is a selection and abstraction of nodes from a
parametric model such that the nodes of the aspect each correspond to a
property of a model node.

2. An aspect may contain both graph-independent and graph-dependent
properties of the model it abstracts. The graph-independent properties enable
aspects to be edited; the graph-dependent properties enable performance to be
assessed by evaluations tools, which are commonly available within a
parametric modeler.

3. The operation apply assigns values from an aspect p to a model m to produce

an alternative a. Specifically, it assigns the property values from p only to
properties that, in m, are graph-independent.

Using this new definition, since an alternative is a representation of the underlying
aspect and parametric model, we adopt the term alternative view, and introduce it as a
more nuanced concept.

In the Design Gallery implementation, an aspect and a model are stored in the
alternative data structure, and an alternative view visually represents the alternative and
is the primary interface object with which users interact. There may exist, as alternative
views, multiple references to an alternative across the Design Gallery, and each may or
may not be a different visual representation or view.

p = aspect

m = parametric model

An alternative = ja = <p,m>, where

j indexes alternatives, i.e., in a gallery G (galleries contain alternatives), ja ∈G is
the jth alternative contained in G.

We introduce the concept view, denotes by v, and specialize is to alternatives.

alternative view = jva

i, where

a denotes alternative, that it is of type alternative, as contrasted with an interface
view of type collection.

j indexes alternatives, i.e., in a gallery G, j refers to the jth alternative.

i is a view index. If, in a gallery G, multiple alternative views jva

i of ja were to exist,
i denotes the ith alternative view of the jth alternative contained in the gallery. To
elucidate, in the Design Gallery [3] , ja exists as views jva

0 glyph with thumbnail
image, jva

1 larger thumbnail image, and jva
2 thumbnail and text, and would be denoted

as jva
1, jva

2, and jva
3 respectively.

Note that these view kinds (thumbnail, large thumbnail, and thumbnail and text) are not
exhaustive, and as our research progresses, we propose and design novel kinds of
alternative views.

The model defaults to the one from which the alternative was initially
abstracted, but is not restricted to it. Therefore, alternatives can be created by tuples
selected from collections P of aspects and M of parametric models. This is consistent
with the notions described in [3], i.e., an aspect can be applied to any model, even if the
model changes. Such applications produce effects to the extent at node names
correspond across models. Fault tolerance in the modeler prevents system crashes, and
partiality allows aspects to be applied to models in which node mappings are either (or
both) incomplete or extraneous.

This notation also gives rise to a novel way of generating alternatives within
the Design Gallery. Sheikholeslami [9] describes the Cartesian product of values stored
in an alternative or in a subjective node, whereas [7] extends this to products of
parametric models. The Cartesian product A = P X M, where P is a collection of aspects,

and M a collection of parametric models, is a collection A of all possible applications of
p ∈ P to m ∈ M.

3 Collection Views

Many desired operations act over multiple objects [3], that is collections of alternative
views. A collection is

C = {va}.

Collections are mutually non-exclusive and collectively exhaustive. Mutual non-
exclusion means that views to the same alternative can exist across multiple
collections, that is, collections C and D can each contain a jva

i with the same j value.
Collective exhaustion means that every alternative has an alternative view in some
collection. We guarantee collective exhaustion by providing a universal collection
containing one view of each alternative in a gallery. Collections are sets with respect
to the alternatives underlying a gallery, that is, a collection can contain at most one
alternative view of a given alternative. A collection is denoted as

C = {0va
i, 1va

j, ……, nva
k}, where

{0,…,n} indexes alternatives, and
i,j,k index their respective alternative views across all collections in the gallery.

This means that, alternative views of a single alternative may exist in multiple
collections as a similar or dissimilar representation or view, but no collection contains
more than one reference to the same ja even if the view is different. Effectively, in jva

i,,
i indexes across all alternative views of j present in the gallery.

Interacting with collections of alternative views necessitates that there be
different representations of these collections, again in line with information
visualization research [5,6]. An example may be visualizing relations between elements
of collections. Thus, we introduce the term collection views. A collection view is a
visual representation of a collection C--collection views form the primary interface
objects by which users interact with collections. Following the convention set
previously, we denote a collection view as

jvc

i, where

j indexes collections, i.e., in a gallery G, j refers to the jth collection.

i is a view index. If, in a gallery G, multiple collections jC were to exist, i denotes
the ith collection view of the jth collection contained in the gallery.

c indexes collection view types, an extensible set of visualization types provided
by the gallery. Currently, the gallery defines three collection view types:
c = c.general. The general or default view of a collection, where alternative views

appear clustered in a user directed layout (Figure 1.right),
c = c.parallel. A parallel coordinate controller view (Figure 1.left).
c = c.pareto. Multiple Pareto graphs in which properties of an alternative may be
plotted against each other (Figure 2),

These would be denoted as

v1
c.general

, v2
c.pareto

, v3
c.parallel

Fig. 1. (left) Parallel coordinate view controller (left) showing alternatives and handles,
details on demand show 3D view, and (right) brushes corresponding general alternative view as
a glyph in general collection.

4 Interactions

The fundamental interaction with interface objects is selection. The two primary
interface object types va and vc give rise to two distinct selection sets sa and sc. Users
should be able to select discretely or continuously, multiple va and/or vc preceding any
operations that may follow. Selecting an object adds it to its type’s selection set. A
selection set is also a collection (though this is not strictly true for sc), except that it is
ephemeral in nature. We describe here a core set of interactions upon which more
detailed interactions depend.

Fig. 2. A collection view as multiple pareto views showing representative
performance criteria evaluated against each other. One jva is highlighted across all views.

The primary acts of interaction using a mouse pointer in the gallery are “click”

and “drag”. A modifier, which may be one or more key-presses, different mouse
buttons, click sequences, or any combination thereof, is applied to specialize these.
Tables 1, 2 & 3 show primary interactions on the two principal types of target objects,
the modifier used, and the result. For modifiers, we indicate both an integer identifying
the modifier and our current design decision binding a particular action to the modifier.
The following interactions we explicitly define hold true for v1

c.general; while being
theoretically valid for v2

c.pareto
 and v3

c.parallel, they have case specific implications that
are a work in progress.

The selection convention found in most interfaces is exactly the reverse, i.e.,
unmodified clicks select single objects, and deletes existing selection sets. Since our
tasks almost always involves working with multiples, we eschew this convention in
favor of its reverse. This is less error prone, as large selection sets can be lost by
unintentional clicks, frustrating users. Accidental deselection is harder, because actions
required are more deliberate. Explanatory tool-tips or introductory screens during
adaptation will improve the learnability of this new convention.

Table 1. Interaction on null objects with modifiers and results. At the time of writing,

we bind modifier 1 to SHIFT, modifier 2 to the ALT key and modifier 3 to CTRL.

Target
object

Interaction Modifier Result

Null Click Null Null
Null Click 1 Clears sc, the collection

selection set.
Null Drag Null Adds to the selection set sc all

vc within the boundary of the
selection rectangle. This
implies that selection is
cumulative.

Null Drag 1 Subtracts all vc within the
boundary of the selection
rectangle from sc. Deselection
is also cumulative.

Any Double-click Null Creates a vc of a new
collection C from sc. if sc is
empty, create a new empty
collection. This effectively
merges all collections in sc. No
effect on selected vc. The
original sc persists, but now
includes the new vc.

Null Click 1 & 2 Clears sa, the alternative
selection set.

Null Drag 2 Adds to the selection set sa all
va within the boundary of the
selection rectangle. This
implies that selection is
cumulative.

Null Drag 1 & 2 Subtracts all va within the
boundary of the selection
rectangle from sa. Deselection
is also cumulative.

Any Double-click 2 Creates a new ja and
corresponding jv0

c for each va

in sa. No effect on selected va.
The original sa persists.

	

	

	

Table 2. Interactions on alternative views va with modifiers and results.
Target
object

Interaction Modifier Result

va Click Null Adds clicked va to sa. (Figure
3)

va Click 1 Subtracts target from sa.

va Click 1 & 2 Clears sa, and adds the clicked
va to sa.

va or sa Drag from
source to
target vc

Null Adds a new va to the collection
C of target vc. Does not
remove the target va from
source vc. Clear sa and add the
new va to sa. (Figure 4)

va or sa Drag within
vc

Null Changes screen position of va
in vc if the type of vc so allows,
otherwise NULL.

va or sa Drag from
source to
target vc

1 Adds the va to the collection C
of target vc. Removes it from
source vc. Clear sa and add the
new va to sa. (Figure 5)

va or sa Drag within
vc

1 Null.

Table 3. Interactions on collection views vc with modifiers and results. For brevity
and clarity, we omit cases where a source vc and target vc refer to the same C.

 Target
object

Interaction Modifier Result

vc Click Null Adds clicked vc to sc. (Figure
6)

vc Click 1 Clears sc, and adds the clicked
vc to sc.

vc or sc Drag Null Changes screen position of vc
in gallery. (Figure 7)

vc or sc Drag 2 Add all va from the collection
C of source vc to that of target
vc. The display of va in vc
depends on the type of vc. No
effect on selected vc. (Figure 8)

vc or sc Drag 3 Makes a new vc of the
collection at the end-of-drag
screen location.

	

	

	

	

	

	

Fig. 3. Clicked va will be added to sa.

Fig. 4. Dragging from source ivc to target jvc (top) adds va to target jvc (bottom)
without deleting from source ivc

.

Fig. 5. Dragging from source to target vc (top) adds va to the target collection and

removes the dragged va from the source collection (bottom).

Fig. 6. Clicking on a vc adds it to the sc .

Fig. 7. Dragging a vc on another vc superposes the selected vc without affecting the vc located
underneath.

Fig. 8. Dragging a vc with Modifier 2 (top) on another vc adds the va from the dragged collection

to the target collection based on the type of the destination type (bottom).

5 Introducing the Parallel Coordinate View-Controller

5.1 Motivation

Woodbury et al. [8] propose the idea of combining designers’ past decisions in new
arrangements, by which designers may be able to discover new meaningful alternatives.
They coin the term design hysteresis to describe operators that perform such
recombination. They call the set of states already visited the explicit design space, and
the set all possible states the implicit design space. They introduce the concept of
hysterical space (after hysteresis, the lagged entry of an effect into a system) to describe
the result of operations that use states in the explicit space to access those in the implicit
space.

Sheikholeslami [9] describes a specific case of such an operator, the Cartesian
product of graph independent properties of an invariant parametric model, and coins the
term hysterical state to describe states derived out of this recombination and, after
Woodbury and Burrow, calls the set of such states the hysterical space (Figure 9). In
this context, the explicit design space is the set of states visited by the designer, and the
implicit design space is the set of states achievable by exhausting all parameter values,
which in the case of continuous parameters, is indenumerably infinite. The hysterical
space is the Cartesian product of all parameter settings recorded by the designer.

To interact with the hysterical space, Sheikholeslami proposes the Dialer
(Figure 10), comprising concentric rings, where each ring represents one parameter and
the divisions on the ring correspond to the recorded values of that parameter. The
outermost ring contains the Cartesian product recorded parameters. Each ring has a
slider with an adjustable size that selects the values on the rings. By moving and resizing
the sliders, one can select the desired values for highlighting the corresponding items in
the outermost ring (hysterical space). The shortcomings of this interface are that it is
not scalable, as the number of divisions increases with number of recorded variations;
and the number of concentric rings increases with parameters. The hysterical space also
increases exponentially, thus making the dialer unreadable.

We use the Cartesian product in the Design Gallery as the expand operator.
Interactions in the gallery closely follow the interaction model described by
Sheikholeslami. Graph-independent node properties of every aspect in the gallery
corresponds to the recorded parameters in the explicit design space. In our
Grasshopper™ implementation, users may choose to create a “pool” by recording
states, or pick individual parameter values from alternatives in the gallery as candidates
for the Cartesian product. In both cases, the exhaustive Cartesian product is calculated
in the modeler, and a dialer (Figure 11) lets users browse through members of the
product in rapid serial visual presentation. In our study [2], we found that participants
extensively used the expand operator and to rapidly generate variations and scan
through them using the dialer before selecting alternatives of value. This strategy was
dominant across all users, and participants verbally confirmed preference for this form
of interaction. However, participants used only a few “seed” alternatives to generate
relatively fewer variations--foresight tells us that, as the Cartesian product expands
exponentially, linear scan through results by rapid serial visual presentation will become
a less meaningful way of interacting with alternatives.

This brings to us the design challenge of visualizing, interacting with, and

navigating large hysterical spaces (e.g., as generated by a Cartesian product), in the
specific case described by Sheikholeslami, as well as the larger problem of design space
exploration. Hysterical space is multi-dimensional data in nature, and we turn to
parallel coordinates, a widely used and effective way of visualizing multi-dimensional
data [10]. A vast body of literature exists on efficient and enhanced use of parallel
coordinates for data visualization and exploratory data analysis, as well as widespread
use of it in academia and industry.

Fig. 9. Brushed paths depicts the explicit design space that a designer passes to reach a solution.
Unbrushed paths depict other possible paths not taken, i.e., implicit design space. Note that the
implicit paths would not be represented in any interface as to do so would make them explicit in
some sense. Image credit Sheikholeslami [9].

Fig. 10. A Dialer for a simple parametric model of a cylinder with radius, height, and
color as input. Outer ring represents hysterical space, Cartesian product of recorded inputs. Image

credit Sheikholeslami [9].

Fig. 11. Cartesian Product dialer in GrasshopperTM implementation of Design Gallery
(a) record button to record parameters (b) Cartesian product or hysterical space as vectors (c)
dialer, and (d) parameters of member at selected index.

5.2 Design Overview

The choice of using parallel coordinates follows nearly directly from parametric
modeling interfaces. Extant parametric modeling tools use horizontal sliders as the most
common interface for varying input parameters. It is not uncommon to find complex
graphs with numerous slider nodes aligned horizontally. In information visualization,
parallel coordinates are typically vertically oriented, where the up direction signifies an
increasing value and vice versa. In our Parallel coordinate view-controller (henceforth
abbreviated as PCVC), we change this to a horizontal alignment to match sliders,
maintaining familiarity in the design discipline.

A PCVC is a special case of a vc. Graph independent and dependent nodes from
all m ∈	M ∈	C form each axis in the PCVC. The property values of the p ∈	P ∈	C in the
vc are plotted on the axes, marked by a circular “handle”. In the case of ordinal
properties, they increase from left to right, and default bounds are set by minima and
maxima found by querying the property. In the case of nominal properties, discrete
points are formed whose order may be changed. A va is therefore represented by a line
running through the handles. Selecting a line selects the va, and selecting a handle selects
the individual property value for that va only. Selecting an axis selects every value for
all va that intersect that axis. Multiple lines may be selected independent of multiple
handles across axes. Handles may overlap, and on selection attempts, a pick parade is
proposed. Handle selection sets up an create or edit operation described later.

The ordering of the axes themselves are arbitrary, or in the order they were
encountered from when the aspect was created, however it is typical in implementations
of parallel coordinates to allow re-ordering. This is necessary because parallel

coordinates transform the search of multivariate relations in the dataset to a pattern
recognition problem, and such rearrangements help in gaining insights[10]. However,
independent and dependent nodes remain in separate groups for clarity.

Selection of two or more lines and computing the Cartesian product will yield
all the possible lines through handles of those lines. As new alternatives are added to
the vc, the axes are automatically populated. There are many methods of maintaining
and enhancing readability of dense parallel coordinates in the literature that may be
applied when the view is densely populated. Brushing and filtering are some common
operations. Therefore, the PCVC avoids at least some of the scalability issues that
plague Sheikholeslami’s Dialer. A parallel coordinate view may be brought up by
toggling any vc, or it may be viewed side-by-side in combination with other view types
of vc. As an example of a vc.general interaction valid in vc.parallel, dragging lines (jva or sa)
from vc.parallel to any target vc will add jva or sa in the default view. Dragging within
vc.parallel results in a null operation.

5.3 Generative use

We propose that, in addition to visualizing values, each axis also behave as an input
interface, hence the suffix “controller”. Moving a handle will effect changes in the
corresponding graph independent properties in the aspect p. As a consequence, a new
alternative a’ will be computed by applying this modified aspect p’ to m. Multiple
handles can be changed, and this will create multiple new a’ in parallel. (Figure 12) If
the choice is not to retain the original p, then this operation will be an edit. Drawing a
line through the graph independent axes by dragging the mouse will create a p (Figure
12) by creating values at the intersection points of the line and axes, while the user has
freedom to choose the associated m for the <p,m> tuple to create a new a. Thus, the
model may vary, unlike Sheikholeslami’s proposal. This new a appears in the
controller’s vc. We propose that moving handles for graph dependent properties trigger
multiple goal seeking operations which result in new alternatives that meet the new
performance criteria. Currently, we have implemented parallel generation/editing of
new alternatives using graph independent properties. We employ a server-client
architecture. A request from the gallery sends the new <p,m> to a remote server running
an instance of the same modeler, which applies p to m to create a new a. Sufficient
computing power will allow continuous and realtime update of the 3D view.

5.3 Summary

The PCVC is our current focus of work. It is evident from the short overview that there
are numerous possibilities for rich interactions to be designed and evaluated. We are
possibly the first to propose that a visualization tool be also used as a generative tool.
Information visualization principles go hand in hand with creativity support guidelines.
A large literature in each area poses problems that need to be addressed and solutions
that can be applied. However, as with the Design Gallery system, our immediate goal
is to describe the most fundamental interactions.

Fig. 12. (1) Dragging handles computes new alternatives. (2) Drawing a line through

the axes creates a new aspect.

6 Future work

There exist a finite set of available interaction controls (e.g., CTRL, ESC, ALT, right-
and left-mouse click). Despite finiteness, it is evident that a sufficiently rich set of
interactions arise, and devising a coherent and consistent encoding commands using
these controls is a major design challenge. For example, Modifier 1 and Modifier 2 in
the above may both be mapped to CTRL. This is our current work and the subject of a
future paper.

The gallery system is also designed for high-resolution large displays [3]. This
too adds to the design challenge on every interaction aspect, for example, selecting
distant objects in the gallery. It also raises the question whether the traditional mouse
and keyboard is adequate for such a challenge [11,12] given the easy availability of
advanced pointing devices and touch enabled displays. This too is the subject of our
future research.

References

1. Bradner, E., Iorio, F. & Davis, M. Parameters Tell the Design Story: Ideation and
Abstraction in Design Optimization in Proceedings of the Symposium on Simulation
for Architecture & Urban Design (Society for Computer Simulation International,
Tampa, Florida, 2014), 26:1–26:8.

2. Mohiuddin, A., Woodbury, R., Cichy, M., Mueller, V. & Ashtari, N. A Design Gallery
System in ACADIA 2017: Disciplines & Disruption 414- 425 (ACADIA, Boston, MA,
2017).

3. Woodbury, R., Mohiuddin, A., Cichy, M. & Mueller, V. Interactive design galleries: A
general approach to interacting with design alternatives. Design Studies 52. Parametric
Design Thinking, 40 –72 (2017).

4. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software (Addison-Wesley Professional, 1995).
5. Tory, M. & Moller, T. Human factors in visualization research. IEEE transactions on

visualization and computer graphics 10, 72–84 (2004).
6. Munzner, T. Visualization analysis and design (CRC press, 2014).
7. Zaman, L., Stuerzlinger, W., Neugebauer, C., Woodbury, R., Elkhaldi, M., Shireen, N.

& Terry, M. GEM-NI: A System for Creating and Managing Alternatives In Generative
Design in Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (ACM, Seoul, Republic of Korea, 2015), 1201–1210.

8. Woodbury, R., Datta, S. & Burrow, A. Erasure in Design Space Exploration in
Artificial Intelligence in Design 2000 (Kluwer Academic Publishers, Worcester,
Massachusetts, 2000), 521–544.

9. Woodbury, R. Elements of Parametric Design With contributions from Brady Peters,
Onur Yüce Gün and Mehdi Sheikholeslami (Taylor and Francis, 2010)

10. Inselberg, A. Parallel coordinates: Visual multidimensional geometry and its
applications (Springer, New York, 2009).

11. Robertson, G., Czerwinski, M., Baudisch, P., Meyers, B., Robbins, D., Smith, G., and
Tan, D. (2005). The large-display user experience. IEEE Computer Graphics and
Applications 25, 44–51.

12. Czerwinski, M., Robertson, G., Meyers, B., Smith, G., Robbins, D., and Tan, D. (2006).
Large Display Research Overview. In CHI ’06 Extended Abstracts on Human Factors
in Computing Systems, (New York, NY, USA: ACM), pp. 69–74.

