
Estimating Conditional Intensity Function of a
Neural Spike Train by Particle Markov Chain

Monte Carlo and Smoothing
by

Haixu (Alex) Wang

B.Sc., Simon Fraser University, 2015

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

Department of Statistics and Actuarial Science

Faculty of Science

c© Haixu (Alex) Wang 2017

SIMON FRASER UNIVERSITY

Summer 2017

Copyright in this work rests with the author. Please ensure that any reproduction or re-use
is done in accordance with the relevant national copyright legislation.

Approval

Name: Haixu (Alex) Wang

Degree: Master of Science (Statistics)

Title: Estimating Conditional Intensity Function of a Neural Spike
Train by Particle Markov Chain Monte Carlo and
Smoothing

Examining Committee: Chair: Tim Swartz
Professor

Jiguo Cao
Senior Supervisor
Professor

Qian (Michelle) Zhou
Supervisor
Associate Professor

Liangliang Wang
Internal Examiner
Associate Professor

Date Defended: August 14, 2017

ii

Abstract

Understanding neural activities is fundamental and challenging in decoding how the brain processes

information. An essential part of the problem is to define a meaningful and quantitative characterization

of neural activities when they are represented by a sequence of action potentials or a neural spike

train. The thesis approaches to use a point process to represent a neural spike train, and such

representation provides a conditional intensity function (CIF) to describe neural activities. The

estimation procedure for CIF, including particle Markov Chain Monte Carlo (PMCMC) and smoothing,

is introduced and applied to a real data set. From the CIF and its derivative of a neural spike

train, we can successfully observe adaption behavior. Simulation study verifies that the estimation

procedure provides reliable estimate of CIF. This framework provides a definite quantification of

neural activities and facilitates further investigation of understanding the brain from neurological

perspective.

Keywords: Neural data analysis; neural spike train; point process; state-space model; particle Markov

Chain Monte Carol; smoothing

iii

Acknowledgements

I would like to thank my parents and wife for unlimited support during the past 2 years.

I would also like to thank my supervisors Jiguo and Michelle for their guidance.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Literature review 3

3 Methodology 9

3.1 Model Description . 9

3.2 Particle filtering . 11

3.3 Particle marginal Metropolis-Hasting (PMMH) algorithm 16

3.4 Smoothing . 18

4 Real data application 22

4.1 Introduction to experiment and data . 22

4.2 PMMH result . 24

4.3 Smoothing result . 28

5 Simulation study 30

v

5.1 Simulation method . 30

5.2 Simulation results . 31

6 Conclusion and Discussion 32

vi

List of Tables

Table 4.1 Statistics of posterior samples of parameters 27

vii

List of Figures

Figure 2.1 The first recording of an action potential. Reprinted from "Action potentials

recorded from inside a nerve fibre", by A. Hodgkin and A. Huxley, 1939,

Nature, 144, 710-711 . 4

Figure 2.2 Four equivalent representations of a point process. Reprinted from "Analysis

of Neural Data (p.536)", by Robert E. Kass, Uri Eden, and Emery N.

Brown, 2014, New York: Springer-Verlag. Copyright 2014 by Springer

Science+Business Media New York . 6

Figure 3.1 State-space model: Observation and latent process 10

Figure 3.2 The bootstrap filter. Reprinted from Sequential Monte Carlo Methods in

Practice (p. 12), by Doucet, Arnaud, De Freitas, Nando , and Gordon,

Neil, 2001, New York: Springer-Verlag. 15

Figure 4.1 Detection and sorting of spikes . 23

Figure 4.2 12 neural spike trains detected from 4 membrane potential recordings . . . 24

Figure 4.3 PMMH sampling result of paramters µ 25

Figure 4.4 PMMH sampling result of paramters ρ 25

Figure 4.5 Autocorrelation functions of MCMC chains of µ (left) and ρ (right). . . . 26

Figure 4.6 Posterior density and 90% high posterior density region of µ 26

Figure 4.7 Posterior density and 90% high posterior density region of ρ 26

Figure 4.8 Unsmoothed and smoothed conditional intensity function 28

Figure 4.9 Derivative estimate of conditional intensity function 28

Figure 5.1 Estimated conditional intensity function for 50 simulated spike trains . . . 31

Figure 5.2 95% point-wise confidence interval for true CIF 31

viii

Chapter 1

Introduction

A definite and quantitative characterization of neural activities provides foundations to recognizing

how neurons process information received from external stimulations. It can also help us to understand

how signals are being transmitted within the nervous system. One fundamental assumption of

neural data analysis is that information is represented by the sequence of action potentials or spikes

generated by neuron. Hence, we need to decode the sequence for understanding the language that

neurons use for transmitting and processing information. Rate coding scheme is the most popular

way to describe neuron behaviours, but there are several different definitions for the rate code

(Gerstner). First, the rate code can be referred to as a spike count rate which corresponds to the

average number of spikes occurred within an experimental period. The use of spike count rate

is limited to the case when neuron’s response is stationary across the experiment. However, that

case is ideal and only reason. The spike count rate is not desirable in current researches, since

we are interested in how neurons respond to complex and dynamic stimulus. Another rate code is

calculated by averaging over repeated experiments. Neural response (sequence of action potentials)

from several trials are aligned in parallel to form a raster plot. Define time bins with size of ∆, the

firing rate at each time bin of a neuron is calculated by diving the number of spikes from all trials by

the number of trials during that time bin. This rate code can be summarized by a Peri-Stimulus-Time

Histogram (PSTH). This coding scheme is easy to implement but ignores trial-to-trial variability. In

addition, it cannot be applied to case when stimulation or experiment is unrepeatable. As a result,

we need a reliable rate coding scheme utilizing probabilistic approach with single trial response.

An intuitive probability model for neural spike trains is point process model. A point process is

a random process containing a sequence of binary events defined in continuous time (Daley), and

1

it has a conditional intensity function which can be considered as a rate function for quantifying

observed neural spikes. When stimulus is not quantifiable or explicit, examining how neurons

react and adapt to the stimulation can be done using the state-space model from signal processing

framework (SmithandBrown). A state-space model contains two components: a latent process

governing the system and an observation equation representing the output of the system. In this case,

we assume that there exists a latent process modulating how a neuron generates spikes, and neuron’s

spike train corresponds to the consequence or output. Smith and Brown (2003) use approximate

Expectation-Maximization algorithm to estimate parameters in the point process observations and

latent states. Yuan11235 suggest to employ a more powerful class of estimation method which is

Markov Chain Monte Carlo (MCMC). PMCMC proposes a new variant of MCMC methods called

the particle Markov Chain Monte Carlo (PMCMC), and it is particularly suitable for inference about

state-space models.

The purpose of this work is to investigate how wide dynamic range (WDR) neurons respond

to the pain stimulation. Neural spike trains are recorded for WDR neurons under pain stimulation,

and we wish to calculate the conditional intensity function if we consider spike trains as point

process observations. In addition, we assume that the conditional intensity, uniquely defining a point

process, is governed by a latent process through a log-linear model, and the focus is to estimate

the latent process and parameters of the log-linear model. The rest of the thesis is arranged as

follows. Chapter 2 provides a literature review about works contributing to neural data analysis.

Chapter 3 presents the methodology of PMMH used for parameter estimation and state inference

given neural spike train data. A smoothing procedure is also introduced in the section for obtaining

better estimation of intensity given PMMH sampling result. Moreover, the derivative of intensity is

immediately available after smoothing. Chapter 4 focuses on the application of PMMH sampler and

smoothing technique for a real data example. Chapter 5 is dedicated for simulation study‘’ to verify

the variability and reliability of the estimation procedure. Finally, a conclusion and discussion is

provided in section 6.

2

Chapter 2

Literature review

Hubel1988 provides a well-organized and appealing introduction to how we can understand the

brain from a neurological perspective with the example of visual system. He mentions that large

parts of the brain are still mysteries to solve despite the knowledge we have about some regions like

visual or motor cortex. He states that the main part of the brain is nerve cells, or neurons. Neurons

are responsible for exchanging information by their chemical transmission. In order to understand

the functionality of the brain, it may be better to start from studying how single neuron behaves

in transmitting information. There are three components of a neuron: the cell body, dendrites for

receiving information , and axon for delivering information. They are all enclosed by the cell

membrane to build up the entire neuron. The form of information understood and transferred by

neurons are impulses. As Hubel points out:

In the first cell, an electrical signal, or impulse, is initiated on the part of an axon closest

to the cell body. The impulse travels down the axon to its terminals. At each terminal,

as a result of the impulse, a chemical is release into the narrow, fluid-filled gap between

one cell and the next-the synaptic cleft-and diffuses across this 0.02-micrometer gap to

the second, postsynaptic, cell. There it affects the membrane of the second cell in such

a way as to make the second cell either more or less likely to fire impulses. (p.30)

First, we have to define a measurement quantifying neural activities, and the most common one

is membrane potential indicating the difference in electrical potential between the inside and the

outside of a neuron. Hubel gives a brief explanation about the importance and reason of membrane

potential. He describes the membrane of a neuron as not a continuous and closed surrounding but a

structure with many passages, pumps, or channels. In addition, neurons are filled with and embedded

3

in salt water enriched with charged ions, and channels are only responsible for allowing one specific

kind of ions to flow in and out. Then, the membrane potential is determined by the concentration of

positively charged ions inside of a neuron.

To understand the structure and functionality of neurons, we must recognize the series of 5

papers by Alan Hodgkin and Andrew Huxley in 1952. Their works, including one paper collaborated

Bernard Katz, provide fundamental concepts with a quantitative model in neurophysiology. Neural

impulses are also defined as spikes or action potentials in their works. HH1952 provide evidence

that initiation of an action potential depends three current components: sodium ions, potassium ions,

and a combination of chloride and other ions. Even before their works in 1952, HH1939 present the

first intracellular recording of an action potential from a giant squid axon.

Figure 2.1: The first recording of an action potential. Reprinted from "Action potentials recorded
from inside a nerve fibre", by A. Hodgkin and A. Huxley, 1939, Nature, 144, 710-711. Reprinted
with permission

In Hubel (1988), we can find a short but complete description of the generation an action

potential from ionic movements.

When the nerve is at rest, most but not all potassium channels are open, and most

sodium channels are closed; the charge is consequently positive outside. During an

impulse, a large number of sodium pores in a short length of the nerve fiber suddenly

open, so that briefly the sodium ions dominate and that part of the nerve suddenly

becomes negative outside, relative to inside. The sodium pores then reclose, and meanwhile

even more potassium pores have opened than are open in the resting state. Both events-the

sodium pores reclosing and additional potassium pores opening- lead to the rapid restoration

of the positive-outside resting state. The whole sequence lasts about one-thousandth of

4

a second. All this depends on the circumstances that influence pores to open and close.

(p. 16)

Knowledge of action potentials is fundamental for understanding the brain since it offers a way

to define neural and brain activities. However, information perceived from the outside world to our

brain is not reflected in each action potential but translated by a sequence of action potentials or

spikes. The sequence of neural spikes is sometimes referred to as a neural spike train. If we assume

that information received by sensory neurons are transformed into neural spike trains, understanding

the brain can be accomplished by identifying the correspondence between information and neural

spikes. Rieke1999 focuses his attention on the problem of "what can the spike train of this one

neuron tell us about events in the world". He claims that decoding the sequence of binary events

can help us to recognize the functions of neurons, groups of neurons, and eventually the brain. The

second chapter of his book provides quantitative foundations to describe and characterize neural

spike trains.

Rieke investigates rate coding schemes to characterize neural responses. He starts from a rate

code calculated from averaging number of spikes given a window of time from different trials.

The rate function gives a probability of observing a spike in a small window. However, this coding

scheme relies on the assumption that temporal information of spikes is not taken into account for

decoding neural responses. The assumption of this rate code is contradictory to its calculation and

result since it cannot provide a time-dependent rate function without using temporal information

of spikes. In addition, he presents several experiments "suggesting that the elements of neural

signal transmission and computation are capable of preserving precise temporal relationships."

(Rieke1999 p.36) He then proceeds to use a Poisson model to describe activities and statistics of a

single neuron. The choice of a Poisson model adopts the idea of rate code, that is, Poisson model

has its rate function tracks the probability of spike occurrence per unit time. Furthermore, Poisson

models preserve temporal information of spikes for calculating statistics of spike train. Poisson

model has a chance of working but is often expected to underperform in real spike trains, and Rieke

has stated that:

At the very least we know that spikes cannot come too close together in time, because

the spike generating mechanism of all cells is refractory for some short time following

5

the firing of an action potential. Thus the occurrence time of one spike cannot be

completely independent of all the other occurrence times, as assumed in a Poisson

model. When Poisson models give a good approximation to the data, it just means

that the refractory time scale-or, more generally, any memory time scale in the spike

generating mechanism-is short compared to the interesting time scales such as the mean

interspike interval. (p. 53)

Poisson model provides a good basis for characterizing neural spike trains, hence, we can use

a more general version of Poisson processes to relax the independence assumption of occurrences

of spikes. Poisson process is the simplest example of a point process. A point process is used to

represent a sequence of discrete events defined in continuous time. In this case, discrete events

become binary events which indicating whether a spike occurs at a certain time. There are four

equivalent specifications of a point process for a spike train: (1) spike times, (2) waiting times

(interspike times), (3) counting function, and (4) sequence of binary indicators.

Figure 2.2: Four equivalent representations of a point process. Reprinted from "Analysis of
Neural Data (p.536)", by Robert E. Kass, Uri Eden, and Emery N. Brown, 2014, New York:
Springer-Verlag. Copyright 2014 by Springer Science+Business Media New York. Reprinted with
permission

Kass2014 serves as a thorough guide for understanding, interpreting, and analyzing neural data,

and the book includes one chapter covers how to decode neural spike trains under point process

framework. They suggests that the general point process improves the simple Poisson model by

considering the history dependence in neural spike trains. The history dependence is included in

6

the conditional intensity function of a point process which generalizes the intensity functions of

homogeneous and non-homogeneous Poisson processes. The conditional intensity function λ(t|H(t))

is defined as follows

λ(t|H(t)) = lim
∆→0

P (N(t+ ∆)−N(t) = 1|H(t))
∆ (2.1)

where H(t) contains information of previous spikes up to time t. The conditional intensity function

is an essential component for constructing the joint probability distribution or likelihood function

for a neural spike train. Furthermore, Daley and Vere-Jones (2003) claims that "the conditional

intensity function determines the probability structure of the point process uniquely." (p. 233). In

that case, we can build a model for the conditional intensity in order to characterize a neural spike

train.

Two approaches for modelling the conditional intensity function of a single neuron are generalized

linear model (GLM) and signal processing method. truccolo2005 proposes a method combining

point process and GLM framework for decoding neural responses which is point process-GLM

framework. First, they discuss three components to consider in modelling spiking activities: extrinsic

stimulus applied to sensory neurons, past activities of a neuron, and interaction between neurons.

An ideal statistical model should be able to evaluate how these three effects influence the spiking

activities of a neuron. The paper proceeds to define the likelihood function of a neural spike train

which corresponds to the joint probability of the sequence of binary events. The likelihood can also

be expressed as a function the conditional intensity. Modelling the conditional intensity suffices

to characterize the neural spike train, then we can use a log link function to establish a model

for intensity based on history effect, extrinsic stimulus effect, and influence from other neurons.

Eventually, the likelihood function of intensity is the same as a likelihood function for a GLM with

a log link function. As a result, we can use maximum likelihood estimation for obtaining parameter

estimates in the intensity model.

Another approach to study neural spike trains is to use signal processing method or filtering. It

usually involves using a state-space model as explained in Smith and Brown (2003). The motivation

of signal processing method is that the stimulus applied to experimental units are not always measurable

or explicit. When stimulus is implicit, the previous point process-GLM framework cannot be applied

7

since we cannot examine how neural activities depend on the stimulus quantitatively. On the other

hand, a state-space models can model neural activities with implicit stimulus since it can include

stimulus effect into an arbitrary latent process. A state-space model can be decomposited into two

parts: an observable process and a latent process assumed to modulate the evolution of observations.

In their paper, the latent process is represented by a Gaussian autoregressive model driven by

external stimulus. The observation process is a general point process characterized by its conditional

intensity function. Given the state-space mode, estimations will be focused on latent process with its

parameters and parameters of the point process. For that matter, they use approximate expectation-maximization

(EM) method to obtain estimates.

Subsequently, Yuan, Girolami, and Niranjan (2012) suggest to use a more flexible and powerful

class of method for inference about state-space model with point process observations (SSPP).

The model description in Yuan, Girolami, and Niranjan (2012) is the same as that in Smith and

Bronw (2003), and they replace approximate EM method with Markov Chain Monte Carlo (MCMC)

methods. Two MCMC algorithms introduced in their paper are particle marginal Metropolis-Hasting

(PMMH) by Andrieu, Doucet and Holenstein (2010) and the Riemann manifold Hamiltonian Monte

Carlo (RMHMC) in RMHMC PMMH relies on a particle filtering or sequential Monte Carlo

(SMC) method to obtain estimates of latent process and likelihood conditioned on a parameter

candidate. A comprehensive guide to SMC is provided by guildtoSMC

Due to the fact that the latent process is assumed to follow a first order autoregressive model,

resulting estimate of latent process or intensity function is often too ’wiggly’ even with a constant

stimulus effect. In that case, it does not obey the assumption that neural response should be moderate

if there is no significant change in stimulation. To comply this assumption, the following methodology

propose a smoothing step as introduced in fdaRamsay in addition to the previous work.

8

Chapter 3

Methodology

3.1 Model Description

Let [0, T] be an observation interval which contains J spikes from a single neuron. We define

{sj}Jj=1 to be the set of spike times such that 0 ≤ s1 ≤ s2 ≤ ... ≤ sJ ≤ T . Let N(t) be a counting

function which tracks the number of spikes that have been observed up to and including the current

time t, and it contains all the information of the point process observations in the interval [0, t].

Then, a neural spike train can be denoted as N0:T = {0 ≤ s1 ≤ ... ≤ sJ ≤ T ∩ N(T) = J}.

LetH(t) be the history information including spiking historyN0:t or the effect of extrinsic stimulus

applied to the neuron during time interval [0, t], any point process can be completely characterized

by its conditional intensity function (Daley) defined as

λ(t|H(t)) = lim
∆→0

P (N(t+ ∆)−N(t) = 1|H(t))
∆ . (3.1)

It follows that λ(t|H(t))∆ gives an approximate of the probability for observing a spike in the time

interval [t, t+ ∆) for small ∆.

In addition, we assume that there exists a latent process x(t) modulating the observed neural

activities. Both processes can be defined in continuous time, but a discrete representation provides

a simpler notation and facilitates particle filtering algorithms. We partition the observation interval

[0, T] into K subintervals with length of ∆ = T
K given time points {tk}Kk=0. ∆ or K is chosen to

ensure that there is at most one spike in each subinterval (tk−1, tk]. Under discrete representation,

N(t) = Nk, N0:t = N1:k, λ(t) = λk, and x(t) = xk at time t ∈ (tk−1, tk]. Let θ be the vector

9

containing static parameters, the likelihood of a neural spike train is the joint probability density of

observing J spikes in the time interval [0, T] denoted as:

P (N0:T |θ) =
J∏
j=1

λ(sj |H(sj),θ)exp

{
−
∫ T

0
λ(u|H(u),θ)du

}
. (3.2)

In discrete time, the above likelihood can be approximated by the following likelihood function

L(θ) = P (N1:k|θ) = exp

{
K∑
k=1

log(λk∆)dNk −
K∑
k=1

λk∆
}

(3.3)

where dNk = Nk −Nk−1 representing whether a spike has occurred in the k-th subinterval.

Let the dependence between latent process and observations be defined through the following

CIF model

λk = exp(µ+ βxk). (3.4)

where xk represents latent states in discrete time bins. The latent states are assumed to follow an

AR(1) model, that is,

xk = φxk−1 + εk (3.5)

where εk represents a Gaussian noise with mean of 0 and variance of σ2. β and σ are fixed as

constants for identifiability of the model, hence the static parameter vector is θ = (µ, φ). The

latent states can be characterized by (1)initial density fθ(X1), (2) transition density fθ(Xk|Xk−1),

and (3) conditionally independent observations Nk with density gθ(Nk|X1:k) conditioned on the

latent states. Joining the latent process with point process observations, we are able to utilize the

state-space model framework for which has a graphic illustration as follows:

Figure 3.1: State-space model: Observation and latent process

10

Bayesian inference for state-space model is focused on exploring the posterior distributions of

latent states

P (X1:K |N1:K ,θ) (3.6)

where θ is known. When θ is not available , inference relies on the the joint posterior distribution

of X1:k and θ

P (X1:K ,θ|N1:K) ∝ P (X1:K |N1:K ,θ)P (θ) (3.7)

given a prior distribution of θ which isP (θ). For applications to real data, above posterior distributions

do not possess a closed form when the state model does not have a Gaussian noise. Hence, only

simulation-based approaches are applicable for approximating the posterior distributions.

3.2 Particle filtering

First, we consider the case where the static parameters are available. Based on Bayes’ theorem,

the posterior distribution p(x1:k|N1:k,θ) can be derived from

p(x1:k|N1:k,θ) = p(x1:k, N1:k|θ)
p(N1:k|θ) (3.8)

where the joint density of observed and hidden process is

p(x1:k, N1:k|θ) = fθ(x1)
k∏
j=1

fθ(Xj |Xj−1)
k∏
i=1

gθ(Ni|X1:i) (3.9)

It follows that the joint density can be written in a recursive form

p(x1:k|N1:k,θ) = p(x1:k−1|N1:k−1,θ)fθ(xk|xk−1)gθ(Nk|xk)
p(Nk|N1:k−1,θ) (3.10)

It is usually impossible to directly sample from the posterior p(x1:k|N1:k,θ). For that matter,

importance sampling method proposes to draw samples from an alternative distribution which is

less complex and has a parametric form. Importance sampling is an essential part of SMC, and it

can be used to approximate an expectation of the target distribution with a weighted average of

random samples from a known importance distribution (ImportanceReview). Let ft ≡ f(x1:k) be

11

some function of interest which is integratable with the posterior density p(x1:k|N1:k,θ). Then, the

expectation of ft can be computed from evaluating the integral (guildtoSMC)

I(ft) = Ep(x1:k|N1:k,θ)[ft] =
∫
ftp(x1:k|N1:k,θ)dx1:k (3.11)

Given N i.i.d samples or particles {x(i)
1:k}Ni=1 from the importance distribution π(x1:k|N1:k), we can

compute importance weights of particles as follows

w(x(i)
1:k) = p(x(i)

1:k|N1:k)
π(x(i)

1:k|N1:k)
. (3.12)

Then, the integral can be approximated as a weighted average of functions evaluated

Î(ft) = 1
N

N∑
i=1

ft(i)
w(x(i)

1:k)∑N
i=1w(x(i)

1:k)
= 1
N
w̃(x(i)

1:k)
N∑
i=1

f
(i)
t (3.13)

with normalized importance weights

w̃(x(i)
1:k) = w(x(i)

1:k)∑N
i=1w(x(i)

1:k)
,

N∑
i=1

w̃(x(i)
1:k) = 1 (3.14)

An approximation to the posterior p(x1:k|N1:k,θ) is also immediate and defined to be

P̂N (dx1:k|N1:k) =
N∑
i=1

w̃(x(i)
1:k)δx(i)

1:k
(dx1:k) (3.15)

One limitation of importance sampling in the state-space model setting is that it requires all

observation N1:k up to the current time bin (tk−1, tk] for any computation. The computational

effort and complexity grow rapidly as time progresses, since we need to generate high-dimensional

samples and compute their corresponding importance weights at each time point. Hence, we need

a method that does not require to revisit past samples once importance sampling at a given time is

finished. For that purpose, SMCsampler propose a method to investigate the posterior p(x1:k|N1:k,θ)

with SMC sampler which is based on the importance sampling method but does not modify the

existing particles.

12

First, we can observe that the posterior distribution (3.7) of latent states is in a recursive form.

Ignoring the normalizing constant in the posterior, then the posterior becomes

p(x1:k|N1:k,θ) ∝ p(x0:k−1|N1:k−1,θ)fθ(xk|xk−1)gθ(Nk|xk). (3.16)

SMC sampler modifies the importance sampling method in a way that it decomposites the importance

distribution π(x1:k|N1:k) into a sequence of intermediate densities. As a result, we can generate

samples at current time without browsing the entire history of each particle and compute importance

weights. In addition, we let the importance distribution to mimic the state model, that is,

π(x1:k|N1:k) = π(xk|xk−1, Nk)π(x1:k−1|N1:k−1) = fθ(x1)
k∏
k=2

fθ(xk|xk−1). (3.17)

where π(xk|xk−1, Nk) = fθ(xk|xk−1) and π(x1) = fθ(x1). Then, the importance weights w(i)
k ≡

w(x(i)
1:k) of particles {x(i)

1:k}Ni=1 are computed as

w
(i)
k ∝

p(x1:k−1|N1:k−1,θ)fθ(xk|xk−1)gθ(Nk|xk)
π(x1:k|N1:k)

∝ p(x1:k−1|N1:k−1,θ)fθ(xk|xk−1)gθ(Nk|xk)
π(xk|xk−1, Nk)π(x1:k−1|N1:k−1)

∝ w(i)
k−1

fθ(xk|xk−1)gθ(Nk|xk)
π(xk|xk−1, Nk)

∝ w(i)
k−1gθ(Nk|xk)

(3.18)

Letting the importance distribution to be the same as marginal density of state model does not

guarantee a good approximation for the SMC sampler but only to facilitate the computation of

importance weights.

SMC sampler decomposites a single importance distribution into a sequence of tractable proposal

densities that allow us to sample from a complex posterior distribution. This sampling scheme

becomes naturally suitable since the state-space model also has a similar decomposition. At time

tk, SMC sampler produces N particles {x(i)
1:k}Ni=1 with with importance weights w(x(i)

1:k). However,

these particles often encounter the degeneracy issue. As the sampler advances in time, importance

weights are concentrated on a small group of significant particles since they are calculated proportional

to the product of their past weights. On the other hand, most of the particles have really small

13

weights in sampling and negligible contributions in the later approximation. Degree of degeneracy

can be measured by calculating the effective sample size

Neffective = 1∑N
i=1w(x(i)

1:k)
(3.19)

Effective size decreases as k increases given that the variance of importance weights also tends to

increase (SMCsampler), eventually, particles fail to represent the posterior distribution given that

the sampling distribution is severely skewed.

One solution of the degeneracy issue is to include a resampling filter, or a bootstrap filter, in the

propagation of particles, and that allows interactions between different particles whereas particles

are generated independently in before. Resampling filter prevents particles with small weights to

be propagated further, and distribute important particles approximately according to the posterior

distribution (tutorialfilter). Resampling step corresponds to take a bootstrap sample (sample with

replacement) from current particles depending on their importance weights. Particle with large

weights will survive through the filter with high probability, or equivalently, particle with small

weights will be replaced by those with larger weights. Consequently, particles will have equal

weights 1
N after filtering, and the posterior distribution is not approximated by the weighted average

rather the unweighted average of filtered particles x̃(i)
1:k, i.e.,

P̂N (dx1:k|N1:k) = 1
N

N∑
i=1

δ
x̃

(i)
1:k

(dx1:k). (3.20)

An graphical illustration of the bootstrap filter is provided in guildtoSMC as the following

14

Figure 3.2: The bootstrap filter. Reprinted from Sequential Monte Carlo Methods in Practice (p.
12), by Doucet, Arnaud, De Freitas, Nando , and Gordon, Neil, 2001, New York: Springer-Verlag.
Reprinted with permission

SMC sampler does not only provide an approximation to the posterior distribution p(x1:k|N1:k,θ)

but also produces an estimate of the marginal likelihood p(N1:k|θ). The marginal likelihood can be

computed by integrating the latent states from the joint density:

p(N1:k|θ) =
∫
p(N1:k, x1:k|θ)dx1:k. (3.21)

with a chain-like decomposition as

p(N1:k|θ) = P (N1|θ)
K∏
k=2

P (Nk|N1:k−1,θ) (3.22)

Each component can be estimated by the sum of importance weightsw(x(i)t1:k) of particles {x(i)
1:k}Ni=1

as

P̂ (Nk|N1:k−1,θ) =
N∑
i=1

w(x(i)
1:k) (3.23)

15

, and the marginal likelihood has an estimate

P̂ (N1:k|θ) = P̂ (N1|θ)
K∏
k=2

P̂ (Nk|N1:k−1,θ). (3.24)

The SMC algorithm for filtering can be summarized as follows:

Algorithm 1: Sequential Monte Carlo for partilce filtering
Input: θ

Output: P̂N (x1:k|N1:k,θ),P̂ (N1:k|θ)

if k = 1 then compute

Generate samples {x(i)
1 }Ni=1 ∼ fθ(x1)

Compute importance weights w(i)
k and normalized weights w̃(x(i)

k)

Use resampling filter to obtain N equally weighted particles x̃(i)
1 .;

for k = 2 : K do

Generate samples {x(i)
k }Ni=1 ∼ fθ(xk|x̃

(i)
k−1)

Compute importance weights w(i)
k and normalized weights w̃(x(i)

k)

Use resampling filter to obtain N equally weighted particles x̃(i)
1:k.

end

3.3 Particle marginal Metropolis-Hasting (PMMH) algorithm

Ideally, the joint posterior distribution P (θ, x1:k|N1:k) can be approximated by Markov Chain

Monte Carlo methods. The proposal density of a marginal Metropolis-Hasting sampler for updating

both static parameters and latent states can be defined as:

Q((θ∗, x∗1:k)|(θ, x1:k)) = Q(θ∗|θ)P (x∗1:k|N1:k,θ
∗) (3.25)

whereQ(θ∗|θ) is the marginal proposal for θ andP (x∗1:k|N1:k,θ
∗) produces updates x∗1:k conditioned

on the proposed θ∗. Then, the proposal (θ∗, x∗1:k) is accepted based on the Metropolis-Hasting ratio

16

as

min

{
1, P (θ∗, x∗1:k|N1:k)Q(θ, x1:k|θ∗, x∗1:k)
P (θ, x1:k|N1:k)Q(θ∗, x∗1:k|θ, x1:k)

}

= min
{

1, P (N1:k|θ∗)P (θ∗)Q(θ|θ∗)
P (N1:k|θ)P (θ)Q(θ∗|θ)

} (3.26)

However, direct sampling from the posterior P (x∗1:k|θ∗, N1:k) is not feasible by standard MCMCs

method, and the marginal likelihood of static parameters cannot be explicitly computed given that

the state-space model is not Gaussian or linear.

PMCMC proposed a class of MCMC methods that can produce exact approximations to ideal

MCMC algorithms, where an ideal algorithm can either sample directly from the the joint posterior

or the posterior of latent states. One sampler of PMCMC methods is the particle marginal Metropolis-Hasting

(PMMH) sampler. PMMH is designed to perform as an ideal marginal Metropolis-Hasting(MMH)

sampler and utilizes the same proposal procedure (3.25). Ideal MMH sampler relies on the access

of P (x∗1:k|θ∗, N1:k), whereas, PMMH sampler employs SMC to approximate the posterior of latent

states as well as the marginal likelihood of static parameters P (N1:k|θ). One advantage of the

PMMH sampler in inferences for state-space models is that the sampler does not require great

effort to construct the proposal density for states. If transition density of latent process is used to

construct the importance distribution in SMC step, then the proposal of states only depends on the

static parameters. That is, we only need to design a proposal density Q(θ∗|θ). In addition to easy

implementation, PMMH sampler ensures that invariant distribution of samples x(j)
1:k,θ

(j) is the joint

posterior P (x∗1:k|θ∗, N1:k). PMMH algorithm is described as follows

17

Algorithm 2: PMMH sampler

Input: θ(0), prior P (θ)

initilization:

Use SMC to obtain samples x(0)
1:k from P (x1:k|θ(0), N1:k);

Compute marginal likelihood P̂ (N1:k|θ(0))

for i = 1 : maxiter do
Propose θ∗ from proposal density Q(θ∗|θ(i−1));

Use SMC to obtain samples x∗1:k from P (x1:k|θ∗, N1:k) and compute P̂ (N1:k|θ∗);

Compute the acceptance probability

α = P̂ (N1:k|θ∗)P (θ∗)Q(θ(i−1)|θ∗)
P̂ (N1:k|θ(i−1))P (θ(i−1))Q(θ∗|θ(i−1))

Generate u from Uniform[0,1] ;

if u < α then

Update θ(i) = θ∗, x(i)
1:k = x∗1:k, P̂ (N1:k|θ(i)) = P̂ (N1:k|θ∗) ;

else

Keep θ(i) = θ(i−1), x(i)
1:k = x

(i−1)
1:k , P̂ (N1:k|θ(i)) = P̂ (N1:k|θ(i−1)) ;

end

end

3.4 Smoothing

Since we have discretized the point process to associate it with a latent process, the intensity

function will be represented by a sequence of discrete samples evaluated from the model

λk = exp(µ+ βxk) (3.27)

given the estimates of latent states. However, the true intensity function should be able to be

evaluated at anytime in the observation period rather than only a set of sample time points. If we

join discrete samples to construct an estimate of the intensity function, the resulting curve is often

18

too wiggly. In addition, the unsteadiness of the estimate may overshadow any significant pattern

we could observe as if we consider the intensity function as a single entity during the observation

interval. Therefore, we can use interpolation or smoothing techniques from functional data analysis

framework to obtain a smooth estimate of the intensity. Smoothing can reduce fluctuations in a curve

estimate and help us to capture the entire perspective of the intensity function. Derivative of the

intensity estimate is also immediately available if we use basis expansion methods for smoothing.

One approach is to express the intensity function by a set of basis functions. Let the discrete

samples λ̂k to be the pseudo-observations yk from the intensity function λ(t) such that

yk = λ(tk) + εk (3.28)

where εk corresponds to the observational noise. The function λ(t) is represented by a linear

combination of known basis functions φc(t):

x(t) =
C∑
c=1

βcφc(t) (3.29)

with basis coefficients (β1, ..., βC). Then, the coefficients can be estimated by minimizing the sum

of squared error, i.e.,
N∑
k=1

[yk −
C∑
c=1

βcφc(tk)]2 (3.30)

Let β be the vector containing C basis coefficients and Φ be a N ∗ C matrix storing evaluations of

C basis functions at time points (t1, ..., tN). Then, the sum of squared error can also be represented

by

||y − βTΦ||2 = (y − βTΦ)T (y − βTΦ) (3.31)

where y is the vector containing n observations.

Smoothing by basis expansion method is similar to a multiple regression problem and able

to provide a smooth and well-behaved estimate of the intensity function. Employ cubic B-spline

basis functions for its compact support property, and use L2 penalization to alleviate the burden of

choosing the number of knots and their locations. As a result, estimated intensity trajectory is more

19

stable and can avoid overfitting. The L2 or roughness penalty is defined as

γ

∫ T

0

[d2λ(t)
dt2

]2
dt (3.32)

with smoothing parameter γ which controls the roughness of the trajectory given the total curvature

of the function over time. Then, basis coefficients are estimated by minimizing the penalized mean

squared error criterion as follows

l(β) = (y − βTΦ)T (y − βTΦ) + γ

∫ T

0

[d2λ(t)
dt2

]2
dt. (3.33)

Define a C * C matrix V with entries vij =
∫ T

0 φ′′i (t)φ′′j (t)dt, it follows that the roughness penalty

can be evaluated by matrix multiplication as

∫ T

0

[d2λ(t)
dt2

]2
dt =

∫ T

0

[C∑
c=1

βcφ
′′
c (t)

]2
dt = βTV β (3.34)

Integrals can be well approximated by the composite Simpson’s rule. We define an even number Q of

quadrature points (t0, t1, ..., tQ) for the integration interval [0, T] such that t0 = 0 and tq = tq−1 +h

for h = T/Q. For any integral
∫ T

0 φ′′i (t)φ′′j (t)dt, the rule gives an approximation as

∫ T

0
fij(t)dt = h

3
[
fij(t0) + 2

Q
2 −1∑
s=1

fij(t2s) + 4
Q
2∑

s=1
fij(t2s−1) + fij(tQ)

]
(3.35)

where fij(t) = φ′′i (t)φ′′j (t). The penalized sum of squared error with matrix representation becomes

l(β) = 1
N
||y − βTΦ||2 + γβTΦβ (3.36)

Similar to least square estimation, we set the derivative of l(β) to be 0 with respect to θ and solve

the estimating equation

(ΦTΦ + γV)β = Φy (3.37)

Solution to estimating equation has a closed form as

β = (ΦTΦ + γV)−1ΦTy (3.38)

20

Knots can be equally spaced since the density of observations of intensity is constant through

out the observational period. Then, there are two tuning parameters to consider: the number of basis

function and the smoothing parameter. We need more basis functions or knots to ensure good local

estimation and use penalization to avoid overfitting. We can consider several candidates for the

number of basis functions, and choose the minimum when the estimated curves are similar. Once

the number of basis function is fixed, smoothing parameter can be determined by the generalized

cross validation (gcv) method with grid search. Given a choice of λ, the gcv scores is defined as

gcv(λ) = 1
N

N∑
k=1

(yk − λ̂(−k)(tk))2 (3.39)

where λ̂(−i)(tk) represents the estimate of intensity with k-th sample being removed from estimation.

Optimal γ has the minimum gcv score.

21

Chapter 4

Real data application

4.1 Introduction to experiment and data

Neural data were acquired from the experiments conducted by Tianjin University in 2012.

Experimental units were adult male Sprague-Dawley rats with weights of around 200 grams. Neurons

of interest are wide dynamic range (WDR) neurons located in the dorsal horn of the spinal cord,

since they are believed to be responding to pain stimuli applied to the Zusanli acupoint on the right

leg. After anesthetizing the rat and exposing its lumbosacral spinal cord, micro-electrodes were

then vertical inserted into spine for recording electric signals from multiple WDR neurons. Pain

stimulation was done by lifting and thrusting stainless steel needles to the acupoint for 120 times

per minute. The entire experiment lasted for 16 minutes: (1) 2 minutes without any stimulation for

rat to be in a resting state, (2) 2 minutes for which the needle was only kept in the acupoint, (3)

2 minutes for which pain stimulation was applied to the acupoint, (4) 5 minutes after where pain

stimulation is stopped with needle kept in the acupoint, and (5) 5 minutes with no stimulation for

rats to return to a resting state. Under stimulation, we could observe fluctuations in neural activities.

Signals recorded by each electrode contain not only membrane potentials of several neurons

but also noises, hence we need to detect individual spikes and assigning them to each neuron for

further analysis. sorting have proposed a spike detecting and sorting algorithm which consists of

three steps: (1) spike detection, (2) feature extraction, and (3) clustering. First, the raw signal is

processed through a band-pass filter (300 - 3000 Hz). Let x be the filtered signals, then a spike is

22

detected when signals pass a threshold V defined as

σx = median
{ |x|

0.6745

}
, V = 4σx. (4.1)

Then, we take a sample of signals around each detected spike for feature extraction. Applying

wavelet transform defined in sorting to each sample, we are able to obtain 64 wavelet coefficients

that characterize the features of spike shapes at different scale and times. Selecting two coefficients

that can separate different class of spikes the best, we can employ superparamagnetic clustering

(SPC) algorithm to assign spikes with similar features to one cluster which represents one of the

neuron being monitored.

Figure 4.1: Detection and sorting of spikes

Top panel presents the entire signals recorded by the electrode after band-pass filtering, and the red line
corresponds to the threshold V . All samples of spikes are collected for wavelet transform which provides
wavelet coefficients. Running SPC algorithm on two coefficients that can separate different types of spikes,
we obtain clusters of spikes where each cluster represents each neuron.

After sorting signals and detect spikes for all neurons , we are able to identify 12 neurons and

their corresponding spike train data as shown in Figure 4.2. Spike train data of Neuron 1 is then

used for particle filtering and intensity estimation.

23

Figure 4.2: 12 neural spike trains detected from 4 membrane potential recordings

4.2 PMMH result

For latent states and parameters estimation, we choose an observation interval with length of T

= 3000 ms at the start of the third phase of the experiment when a constant puncture stimulus is

applied. The time resolution is chosen to be ∆ = 3 ms to ensure that there is at most one spike per

time bin. Before running MCMC on parameters, a one-to-one transformation is made on φ, i.e., we

introduce a new parameter φ = tanh(ρ) to ensure the stationarity of latent process when a random

walk proposal is used for both µ and ρ. Proposal density for particles is chosen to be the transition

density of the latent process, and 500 particles are used in the SMC algorithm.

The priors used for µ and ρ are normal priorsN(−5, 2) andN(1, 0.1) respectively. The random

walk proposal for parameters in PMMH is defined as N(µ(i−1), 0.15) for µ and N(ρ(i−1), 0.05) for

ρ where i corresponds to the iteration number. Andrieu, Doucet and Holenstein (2010) states that

a high acceptance rate is desirable in particle filtering, and the acceptance rate of PMMH is 82%

under this setting. Sampling result is illustrated in the following figures:

24

Figure 4.3: PMMH sampling result of paramters µ

Figure 4.4: PMMH sampling result of paramters ρ

Trace plots indicate satisfactory mixing of MCMC chains of both µ and ρ. We see a higher

autocorrealtion for MCMC chain of µ compared to that of ρ as shown in Figure 4.5. Even though

mixing of ρ appears to be better than µ, we see better shrinkage of the prior for µ in Figure 8 and

Figure 9. The highest probability density (HPD) region for both parameters are included in Figure

4.6 and 4.7, and summary statistics is illustrated in Table 1.

25

Figure 4.5: Autocorrelation functions of MCMC chains of µ (left) and ρ (right).

Figure 4.6: Posterior density and 90% high posterior density region of µ

Figure 4.7: Posterior density and 90% high posterior density region of ρ

26

Table 4.1: Statistics of posterior samples of parameters

Posterior mean Posterior variance Effective sample size

µ -4.985 1.968 367

ρ 1.019 0.106 527

27

4.3 Smoothing result

Using posterior means of both parameters and latent states, we can obtain a single trajectory

estimate of the conditional intensity function as the black line in the following figure.

Figure 4.8: Unsmoothed and smoothed conditional intensity function

The unsmoothed estimate of intensity appears to have too many fluctuations, and local changes

may overshadow the overall pattern of neural activities under stimulation. Applying smoothing

technique allows us to have a stable estimate that focuses on capturing the general behavior. Moreover,

using basis expansion method can give immediate estimate of derivative of conditional intensity

function as shown in the following figure:

Figure 4.9: Derivative estimate of conditional intensity function

28

We can observe the adaption behaviour of neuron based on the derivative. The derivative starts

high in magnitude at the beginning of stimulation and declines quickly to a normal state. It shows

that the neuron has adapted to the stimulation since the derivative remains closely to 0. On the

other hand, we cannot observe the adaption behavior from the unsmoothed trajectory since it is

constantly surging back and forth throughout the observation period. In addition, the unsmoothed

trajectory seems too sensitive to the individual spikes, whereas, the smoothed trajectory is able to

capture clusters of spikes.

29

Chapter 5

Simulation study

5.1 Simulation method

Simulation study is based on synthetic neural spiketrains and aims to verify that the estimation

procedure would produce stable and reliable estimates. Synthetic spike trains are generated by

thinning algorithm described in simThinning Thinning algorithm generates a non-homogeneous

Poisson process without the need of integrating the conditional intensity function and can be used

for any rate or conditional intensity function. Let λu be the maximum for a conditional intensity

function λ(t). First, we generate a homogeneous Poisson process according to the constant intensity

λu. Each spike in the simulated process is then accepted with probability λ(t)
λu . The remaining spikes

will resemble a non-homogeneous Poisson process with conditional intensity function λ(t). The

details of thinning algorithm is summarized as follows:

Algorithm 3: Thinning algorithm for simulating neural spike trains
Input: λu, interval length T

Output: Spike times s1, ..., sk

Set t = 0 and k = 1 ;

while t < T do

Generate an exponential variable E with rate parameters λu and let t = t+ E ;

Generate U from the uniform distribution U(0,1) ;

if U < λ(t)
λu then

sk = t and k = k + 1 ;

end

end

30

5.2 Simulation results

For simulation study, 50 spike trains are generate to run both PMMH and smoothing based on

the smoothed intensity estimate as shown in Figure 4.8. Then, we run PMMH (same proposals as for

the real data) and smoothing (tuned by GCV) for each simulated spike train. Using posterior means

from each PMMH result, we can obtain a smoothed trajectory as an estimate of conditional intensity

function for that spike train. The following figure includes intensity estimates for 50 simulated

spike trains and the true intensity used for simulation. Also, a 95% point-wise confidence interval

is calculated based on intensity estimates from simulated spike trains. We can observe that the true

intensity is well covered by the confidence interval.

Figure 5.1: Estimated conditional intensity function for 50 simulated spike trains

Figure 5.2: 95% point-wise confidence interval for true CIF

31

Chapter 6

Conclusion and Discussion

In this work, PMMH sampler and smoothing technique are studied with neural spike train data.

PMMH is able to provide excellent estimate of conditional intensity function for a real neural spike

train given implicit stimulus. In addition, PMMH is easy to implement and does not require great

effort in tuning. Smoothing technique ensures that any estimated intensity from PMMH can be

further refined to become a more stable trajectory. For both real data analysis and simulation study,

smoothing is a suitable solution for estimates to comply the assumption that neural responses should

be moderate under constant stimulation. Consequently, a reliable estimate of intensity allows us to

correctly quantify neuron responses and examine how neurons process stimulation information.

Point process model is perfectly adequate for characterizing a neural spike train. It offers a

conditional intensity function serving as a rate code to understand neural activities. Moreover, it

simplifies the modelling problem to modelling the conditional intensity, since its likelihood can

be uniquely and completely expressed in terms of CIF. If stimulus is explicit (measurable and

quantifable), then we can construct a parametric CIF model including stimulus effect directly as

shown in Turccolo et al. (2005). However, the brain or sensory neurons are often receiving stimulations

that cannot be defined with a precise and consistent unit of measurement. Implicit stimulus gives

rise to a latent process determining how stimulus influences the underlying behaviour of neurons.

Paralleling the observed neural spike train and the latent process suggests a state-space model

framework. The central problem of a state-space model is state inference, and SMC algorithm

is ideal for estimating latent states. PMMH sampler adopts SMC algorithm so that it can update

parameters of observed point process given estiamtes of latent states and marginal likelihood.

In order present any trajectory of CIF from estimation, the trajectory needs to be smoothed for

32

reducing local fluctuations that overshadow the overall neural behaviour. In chapter 4, we can see

that trajectory calculated by posterior mean of parameters and states becomes less locally variable

after smoothing. More importantly, smoothing by basis expansion is able to provide the derivative of

intensity which can offer another angle to understand neural behaviour. In this case, we can observe

that the adaption process of neuron can be reflected in the derivative. As a result, the smoothed

trajectory, combined with its derivative, is able to provide a more general and direct picture of

neural activities under stimulation.

One disadvantage of PMMH algorithm is its computational complexity O(TN). Given longer

observation time T , PMMH algorithm requires huge increase in particle size N to maintain an

acceptable effective sample size of both parameters and latent states. Even though it is convenient to

use transition density of latent process as a proposal density for SMC, the choice can be suboptimal

sometimes. Hence, it may require great effort to construct a good proposal prior to running PMMH

algorithm. The state-space model is able to include stimulus effect and spiking history of neuron

itself, but it ignores interaction effect received from other neurons when neurons are usually group

together to form a network structure. Current measuring techniques allow simultaneous recording of

multiple neurons, and an extension of the current modelling approach is to investigate the influence

from other neurons in the group.

33

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature review
	Methodology
	Model Description
	Particle filtering
	Particle marginal Metropolis-Hasting (PMMH) algorithm
	Smoothing

	Real data application
	Introduction to experiment and data
	PMMH result
	Smoothing result

	Simulation study
	Simulation method
	Simulation results

	Conclusion and Discussion

