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Abstract 

 
Recent advances in the study of mathematics embodiment have given rise to renewed 

interest in how mathematical learning relates to our bodily actions and the sensorimotor 

system. In this dissertation, I explore the embodiment of mathematics learning with a 

particular focus on the relationship among gestures, hand and finger movements, and 

the use of mathematical tools. The theoretical lens of perceptuomotor integration 

enabled me to articulate mathematics learning through the development of tool fluency 

within a non-dualistic view of mathematical tools.  

The dissertation is structured as three stand-alone descriptive case studies that adopt 

Husserl’s phenomenological attitude in analysing participants’ lived experience while 

using mathematical tools. Drawing on the work of Nemirovsky, one of the main 

intentions is to provide a thick description of learners’ perceptual and motor activities, 

which may result in the emergence of perceptuomotor integration in Husserlian 

experiential time.  

The results provide evidence for a high degree of gestural and bodily engagement while 

learning, communicating, and playing with mathematical tools. For example, in the first 

study, we discuss the process of learning cardinality for a young child in the context of 

mathematical explorations with a multimodal iPad application named TouchCounts. We 

identifying the development of ‘finger-touching’ action while the child is playing with it. In 

the second study, I present and discuss the notions of ‘active sensation’ and ‘tactile 

perception,’ in the context of a blind undergraduate student explaining the behaviour of a 

rational function. In the third study, which involves a prospective teacher identifying 

types of geometric transformation in a touchscreen geometry software (Geometer's 

Sketchpad (GSP) on iPad), I identify new modes of Arzarello’s active interactions. 

Identifying, analysing, and exploring different modes of interactions with touchscreen-

based mathematical tools leads me to propose a new methodological approach for 

analysing video data. This methodological approach enabled me to catalogue 

interactions in order to monitor and assess the emergence of mathematics expertise 

while the learner interacted with the mathematical tool. 
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Chapter 1. Introduction 

I have always loved mathematics, from kindergarten to the university level. After 

passing all the pure mathematics courses successfully in my undergraduate program, I 

decided to change my field to mathematics education and become a mathematics 

teacher. Since schools in Iran are single-gendered, there were few female mathematic 

teachers to teach in all-girls schools. Also, it was believed that the best mathematics 

teachers are male. So, I was hoping to become someone who loves teaching and 

learning mathematics and computer programming, especially for those studying in 

economically difficult situations and following their academic goals in STEM. 

My fascination with using technology to teach and learn mathematics began 

when I was doing my bachelor’s degree and was introduced to computer programming. 

It then developed through teaching mathematics and computer programming 

simultaneously in my home country, Iran (starting in 2000). Although there was no 

technology incorporated in the mathematics lesson plans and textbooks, I was always 

seeking new ways of introducing and visualizing mathematical concepts to my students 

through digital technology. At that time, there were very limited amounts of digital 

material and resources available, especially in Persian. So, I started making Flash 

animations (for example, I used Adobe Flash to show graphs of sinusoidal functions) to 

illustrate the dynamic nature of the mathematical concepts. However, sometimes it 

became tough to manage the class time, given that comprehensive and intensive 

mathematical concepts had to be taught in only a short period of time. Meanwhile, my 

innovative and creative efforts in teaching mathematics and geometry brought me 

several district and nationwide awards. 

Followed by more than ten years of teaching mathematics and computer 

programming, my vast enthusiasm for learning novel ways of integrating digital 

technology in teaching and learning mathematics guided me to the Mathematics 

Education with Information Communications Technology (ICT) program at the University 
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Malaya in Malaysia (2009), because there was not such a program offered in Iran. 

During my Masters’ studies, I was introduced to many mathematics educational software 

programs along with major theoretical frameworks. I was very captivated to learn about 

Radical Constructivism from Prof. Nik Aziz Nik Pa, who was a former doctoral student of 

Ernst von Glasersfeld. von Glasersfeld introduced "radical constructivism and spent 

large parts of his life on elaborating his theory upon Jean Piaget's genetic epistemology, 

Bishop Berkeley's theory of perception, James Joyce's Finnegan’s Wake, and other 

important texts” (Wikipedia, 2016).  

Research shows there are several reasons that educational software is not fully 

integrated into the classroom practices to support, expand and enhance existing 

teaching and learning. For example, although there was a feeling of inevitability and 

acceptance of the vital role of technology, teachers often employed a conservative 

approach, exhibited caution about changing the core subject practice, and struggled to 

modify their practice (Hennessy, Ruthven, & Brindley, 2005). So, I conducted my 

Masters’ thesis on the "Effects of using Cabri3D on Geometric Thinking among Grade 

Ten Students” (2010). In this study, the research team and I utilized Cabri3D in actual 

classrooms to explore geometric 3D constructs. A set of activities based on the 

pedagogical goals was practiced in the classroom by students, while minimal instruction 

was provided to them on how to use the software. Also, I modified and adapted the 

instruction and textbook’s exercises in Cabri3D environment. The results showed the 

effectiveness of using Cabri3D in teaching 3D-geometrical concepts on students’ 

geometric level of thinking compared to a control group learning the same concepts in a 

traditional way. Also, from a teacher’s perspective, this study gave me a sense of how 

utilizing Cabri3D in an actual classroom could be at the same time interesting and 

challenging.  

Since I started my doctoral studies, I was introduced to the vital role of the body 

and gestures in learning mathematics and the embodiment of cognition. Especially, I 

was fascinated with TouchCounts, an iPad application that Jackiw and Sinclair had 

designed for young children to explore numbers (Jackiw & Sinclair, 2014). By working on 

this project as one of Dr. Sinclair’s research assistants, I found numerous relevant 

articles in the field of neuroscience (Andres, Seron, & Olivier, 2007; Dehaene, 2009; 

Rusconi, Bueti, Walsh, & Butterworth, 2011), psychology and education (Bender & 
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Beller, 2012; Brannon & van de Walle, 2001, 2002; Butterworth, Varma, & Laurillard, 

2011; Domahs, Moeller, Huber, Willmes, & Nuerk, 2010; Klemmer, Hartmann, & 

Takayama, 2006; Miller, Zanos, Fetz, den Nijs, & Ojemann, 2009; Moeller et al., 2012; 

Novack, Congdon, Hemani-Lopez, & Goldin-Meadow, 2014) that strongly support the 

role of fingers (as the primary and always available tool) for learning numbers and 

operations. This is also in congruence with other research indicating there is a mental 

link between hands and numbers (Butterworth, 2000; Gracia-Bafalluy & Noël, 2008). In 

Penner-Wilger’s (2007) study, the three most important component abilities for counting 

skills (viz: subitizing, fine motor ability, and finger gnosis) were found to be a significant 

unique predictor of number system knowledge that are all some of the TouchCounts 

affordances. Also, consistent use of fingers positively affects the formation of number 

sense, and thus, the development of calculation skills (Gracia-Bafalluy & Noël, 2008). 

Along with this line, other researchers have suggested that finger-based counting may 

facilitate the establishment of number practices (Andres et al., 2007; Sato, Cattaneo, 

Rizzolatti, & Gallese, 2007). 

Fuson’s extensive research on young children learning to count resulted in 

documenting the path of development for children aged two to eight in producing correct 

sequential number words (Fuson, 1992a, 1992b, 1998). She also documented children’s 

developmental path in connecting oral numbers to the cardinality of a set of objects. 

However, contrasting results of further research rejects age-related production of 

number strings and patterns of oral counting behaviour (Threlfall, 2008). 

In addition, traditionally it is suggested that children’s early encounters with the 

action of counting are initially performed on real-world objects and follow a one-to-one 

correspondence among objects, numbers, and pointing. Therefore, children’s numerical 

ability develops when they move from associating numbers with real-world objects, to 

comprehending numbers as mathematical entities that can be operated on through the 

flexible use of symbols (Gray & Tall, 1994; Tall et al., 2001).  

Furthermore, in recent years there is an apparent shift in the way that children 

are using touch-based devices. They learn how to play with their parents’ cellphone or 

other touchscreen devices as young as one or two years old. TouchCounts benefits from 

the multimodal affordance of the iPad and offers one-to-one correspondence among 
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numbers, touch, visual and audible senses. This feature could break down the 

suggested linkage between counting actions and real-world objects, and instead provide 

the one-to-one correspondence between touching, naming aloud, and symbolic 

representation of the number and the object. TouchCounts also provides children with 

the opportunity to do addition or subtraction by performing pinching or spreading 

gestures. Connecting the strong neurological, psychological, educational, and 

technological affordances of TouchCounts inspired me to learn more about the ways that 

touch-based interaction and digital technology contribute to learning mathematics 

concepts – which led to the writing of the second chapter of my thesis.  

  Organization and Structure of the Thesis 

This dissertation consists of three stand-alone chapters written in paper format. 

Each paper has its own goals, framework, and participants; however, they all have some 

common themes, which I will discuss after introducing each of the papers.  

1.1.1. First Study: Exploring Cardinality in The Era of Touchscreen-
Based Technology1 

 The first article comes from Dr. Sinclair’s larger research project aimed to 

understand how children engage with TouchCounts. The goal of this article is to 

demonstrate ways in which perceptuomotor integration emerges and partially constitutes 

mathematical learning. It explores how a young child named Alex builds an 

understanding of the cardinality principle through multimodal communicative, 

touchscreen-based activities involving talk, gesture, and body engagement. 

 

1 The study is co-authored with Dr. Stephen Campbell. Professor Campbell was 

instrumental in helping me tease out, illustrate, and enhance phenomenological aspects of 

Nemirovsky and colleagues' framework, particularly regarding the distinctions between 

phenomenological and natural attitudes, experiential and objective time, and the notions 

of retention and protention. 
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The study also provides an overview of the literature that argues the strong link 

between finger counting and bodily engagements in early childhood and numerosity. By 

analyzing three short episodes, it indicates how touchscreen-based interactions with 

TouchCounts provide a novel co-ordination of time, body engagement, and semiotic 

resources to support the development of Alex’s numerical perception and motor 

understanding in general, and cardinality in particular. Using Nemirovsky’s 

perceptuomotor integration theoretical lens, I show how the child develops expertise in 

using TouchCounts to operate with numbers and some ways in which the perceptual 

and motoric aspects of learning holistically emerge.  

1.1.2. Second Study: Advanced Mathematics Communication Beyond 
the Modality of Sight  

The second paper is part of the research project that I conducted as the principal 

investigator, entitled ‘Advanced mathematics communication beyond the modality of 

sight.’ While working as a tutor assistant in the department of mathematics, I was 

introduced to a blind undergraduate student named Anthony, who was very passionate 

to pursue his studies in health science. At that time, there was no special teacher and no 

tactile or auditory materials designed to help him with the course.  

The processes of comprehending, interpreting, and visualizing mathematical and 

pictorial graphs all play a vital role in learning mathematics in general and pre-calculus in 

particular. The visual images and visual reasoning are important components that 

involve thinking in pictures and images “to perceive, transform and recreate different 

aspects” of them (Armstrong, 1993, p.10). This is not to say visually impaired students 

are not capable of visualizing, instead visualization goes beyond "seeing" and it can be 

developed in the absence of vision (Cattaneo & Vecchi, 2011). Understanding the visual 

aspect of a graph could be accomplished by other learners’ sensorial perceptions such 

as touch. Also, with the verbalization and relationships with previous knowledge and 

experiences (Healy, 2015; Healy & Fernandes, 2014, 2011). In addition, the history of 

mathematics includes several visually impaired mathematicians, such as Leonhard Euler 

(1707–1783), Nicholas Saunderson (1682–1739), Lev Semenovich Pontryagin (1908–

1988); Louis Antoine (1888–1971), and Lawrence Baggett, a blind emeritus mathematics 

professor who taught sighted students at Colorado University (Jackson, 2002). 
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Since the visuospatial understanding for people who do not see relies on auditory 

and tactile activities, I sought substitutes for the visual components of the course 

materials. Accordingly, the second paper discusses part of the journey that Anthony and 

I undertook to tackle difficulties (in class, in tutoring sessions, and while studying 

independently) encountered in learning pre-calculus concepts such as reading, writing, 

graphing, and comprehending graphical/pictorial materials. 

The third chapter demonstrates how Anthony explains and demonstrates 

graphing a rational function and its behaviour. The results show Anthony’s high degree 

of sensory and body engagement in understanding pre-calculus concepts in non-visual 

modes. Anthony’s body coordination, words, and gestures manifested a high degree of 

integrated perceptual and motor activity in terms of learning mathematics, to an extent 

that would be culturally recognizable in the community of mathematics (Husserl, 1991; 

Nemirovsky, Kelton, & Rhodehamel, 2013).  

1.1.3. Third Study: Touch-Based Technology in Exploring Geometric 
Transformation: Use of Timeline as an Analytical Tool 

Prior studies of the utilization of the dragging tool in computer programs, from a 

cognitive perspective, suggest that dragging mediates relationships between conceptual 

and perceptual entities (Arzarello, Olivero, Paola & Robutti, 2002). Beyond dragging, 

however, touch-based manipulation requires further definition in terms of the modes of 

interaction, because it is different than dragging with a mouse. So, extending this 

perspective, in this study I suggest that each application and designed task needs its 

own way of identifying modes of interaction. Hence, to determine the types of touch-

based interactions in a Dynamic Geometry Environment (DGE) and trace the path of 

identified interactions I draw on both interaction theory (Arzarello, Bairral, & Danè, 2014) 

and perceptuomotor integration (Nemirovsky et al., 2013). 

I adapted Arzarello’s theory of interaction and innovated a new methodology to 

analyze video data. To do so, firstly, theory-based codes for modes of touch-based 

interactions in a DGE are defined as ‘active’ or ‘basic’ actions (Arzarello et al., 2014). 

Basic actions are primary ways of interacting with a touchscreen application such as a 

DGE. A combination of basic actions and performed finger actions are classified as 
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‘active action'. So, ‘active actions' mostly are identified as interactions with the screen 

that a learner uses to reach a target or solve a given problem. An example is the use of 

drag-touch-to-approach, which involves dragging to draw a geometrical shape to justify 

or reason, or to deal with some particular geometric property, shape or construction. 

To analyze video data, I adopted Vogel and Jung’s (2013) video-coding 

procedure. Upon identifying the basic and active actions (codes), I utilized StudioCode2 

software to verify the codes and analyse video data. Code verification resulted in the 

development of an integrated coding system informed by the theoretical framework. 

Consequently, the integrated coding system was used to code video data and produce a 

coded timeline. The distribution of codes on the video timeline produced the ‘paths of 

interaction’, which enabled me to analyse and assess tool fluency and mathematical 

learning (Nemirovsky et al., 2013).  

 Tracing the Common Themes 

Although the three studies presented in this thesis stand alone and follow their 

own goals, there are significant themes shared by them all. The common themes arise 

out of the perceptuomotor integration theoretical framework: embodied mathematical 

tool (instrument) fluency is intertwined with learning mathematics, and touch interactions 

play a vital role in tool fluency and mathematics learning. I elaborate on each of these 

common themes below. 

1.2.1. Embodied Mathematics: Perceptuomotor Approach  

There are recent theories that highlight the importance of embodied 

mathematics. Theories of embodied cognition (Lakoff & Nunez, 2000) suggest concepts 

are mapped onto a person’s sensory-motor system and activities (Arzarello, Pezzi, & 

Robutti, 2007; Gallese & Lakoff, 2005; Nemirovsky & Ferrara, 2009). For example, 

Gallese and Lakoff (2005) write:  

 
2 StudioCode is a video analysis tool that lets the researcher capture, categorize, review, and 

analyze video data, qualitatively and quantitatively.  
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Conceptual knowledge is embodied, that is mapped within our sensory-
motor system… the sensory-motor system not only provides structure to 
the conceptual content but also categorizes the semantic content of 
concepts regarding the way that we function with our bodies in the world. 
(p. 456)  

Accordingly, a given sensory arrangement engages in comprehending and 

classifying concepts alongside motor activities: hence “perceptuomotor.” This approach 

questions the divisibility of knower and known, bodily activity, thinking and learning: it 

foregrounds sense, sensations, and motor actions in learning. This kind of learning 

intertwines action and perception, and is constituted by perception and motor activities 

such as manipulation of a mathematical instrument, bodily actions, gestures, tone of 

voice, facial expressions, and so on. A perceptuomotor way of learning thus comprises 

multimodal activities taking advantage of the conceptual learning inherent in bodily 

extension. 

While modulated by shifts of attention, awareness, and emotional states, 
understanding and thinking are perceptuomotor activities; furthermore, 
these activities are bodily distributed across different areas of perception 
and motor action (Nemirovsky, 2003, p. 108). 

One of the core assumptions of perceptuomotor integration is to consider 

meaning and matter as bound together. In this way thinking is identified as “bodily 

activity” (Nemirovsky et al., 2013; Gallese & Lakoff, 2005) rooted in a perceptuo-motor-

sensory system. However, the assumption that the sensory-motor system is generative 

of conceptual knowledge perhaps implies the brain as the registrar of such bodily 

activities. The theory could be accused here of reductionism by attempting to study 

neurobiology as the fundamental architecture of learning (de Freitas & Sinclair, 2013). 

In addition, within the above mathematics embodiment frameworks, the human 

body is recognized as an active force in learning and mathematical thinking involving 

various parts of the learner’s body as well as multimodal ways of learning but it is not 

clear “what is to be a body and how mathematics itself partakes of the body” (de Freitas 

& Sinclair, 2013, p. 454). Without a clear view of what the “body” entails, the “integration” 

proposed by the theory, is difficult to parse in finer details of both biology and 

philosophy. 
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Despite acknowledging these problems, in this thesis, I look at embodiment 

through the lens of perceptuomotor integration, focusing on the role of the body in using 

‘mathematical instruments’ such as tactile mathematical graphs or touch-based digital 

technology. I hope that this thesis will shed light on the practical implications for learning 

of embodied tool-based mathematics – opening up discussion about the potential use of 

touch-based interactions in learning mathematics. ‘Practical term’ here means to focus 

more of the application of the theory rather than the theory itself. In what follows I 

discuss the multimodality of mathematical instruments, followed by mathematical 

embodied learning in their use. 

1.2.2. Multimodality of Mathematical Instruments 

 There is no doubt that learning is inherently multimodal because it configures the 

relationship among different senses and modalities such as sight, hearing, touch, and 

motor actions. In the touchscreen-based technology employed for teaching/learning, 

many of these modalities are used in combination. In two of my studies programs on 

iPad are employed as the mathematical tool, whereby its capabilities incite multimodal 

interaction. In the other study, a tactile graph serves a similar function. Here I shall 

summarise the theme of multimodality in the three studies below:  

• First study: TouchCounts benefits from the iPad’s various affordances 

and provides a multimodal correspondence between finger touching, 

naming aloud, symbolising, and the object itself. Therefore, it satisfies the 

traditional view in mathematics education that insists on a one-to-one 

correspondence among counting, object-pointing, and naming.  

 

• Second study: Working with a blind learner in this study, hearing and 

touch play fundamental roles. The tactile graphs help the visually 

impaired leaner to communicate multimodally (via talk and gesture) in 

explaining a mathematical function’s behaviour, as evidenced in the 

coordination of his body and words. 
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• Third Study: One of the main features of using DGEs with multitouch-

screen devices is enabling a multimodal environment to communicate 

and support a convergence of “modes” of interactions. In the third study, 

GSP profits from a tracing affordance that leaves a trail behind finger 

movements, as well as object dragging in response to the preserved 

geometrical properties of the geometrical transformations.  

Nemirovsky and Borba (2003), with their perceptuomotor lens, incorporate 

contextual ingredients with the multimodal understanding of mathematics. For example 

they indicate:  

The understanding of a mathematical concept rather than having a 
definitional essence spans diverse perceptuomotor activities, which 
become more or less significant depending on the circumstances. For 
instance, seeing a trigonometrical function as a component of a circular 
motion or as an infinite sum of powers may entail distinct and separate 
perceptuomotor activities. (p. 108)  

It means that instead of learning the new concepts in terms of the theoretical definition, 

the learner engages via perceptuomotor activity, which differs based on the concept, and 

context.  

The role of cultural, social, and historical ingredients along with the symbols and 

semiotic activities in mathematical learning processes are vital (Arzarello & Robutti, 

2007). Part of these social-cultural components is defined as the mathematical tools. 

Just like de Freitas and Sinclair (2013), Nemirovsky rejects the assumption that artefacts 

are “inert and disposable” tools, which theories such as ‘instrumental genesis’ maintain. 

So, in the next section, I will elaborate the different definitions of the mathematical tool 

found in instrumental genesis (Artigue, 2002; Drijvers & Gravemeijer, 2005; Guin & 

Trouche, 1998; Trouche, 2005; Verillon & Rabardel, 1995), the theory of semiotic 

mediation (Falcade, Laborde, & Mariotti, 2007; Vygotsky, 1986), and perceptuomotor 

integration (Nemirovsky, 2003; 2013). 
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1.2.3. Approach to Mathematical instruments  

In this sub-section, I discuss three well-known theoretical approaches in learning 

by use of a mathematical tool: instrumental genesis, semiotic mediation and 

perceptuomotor integration. I elaborate their main differences and similarities to justify 

why perceptuomotor integration was chosen to be adapted for my studies. 

Instrumental genesis 

Taking a didactical approach, instrumental genesis navigates correspondence 

between action and conceptualization. There is a distinction between artefact and 

instrument. A tool, which can be a material or symbolic object, is called an artefact 

unless the user becomes aware of the particular use of it. The mathematical tool is 

clearly considered as the “extension of the mind” rather than body (Drijvers & Trouche, 

2008). For example, to understand what is the function of a pair of scissors in “the 

intended use” of it, the learner needs to spend some time to practice. She needs to learn 

how to hold it, in at least a “normal cultural way” (Butterworth, 2000): to put the thumb 

and fingers in the right position (thumb and index/middle finger go to the holes). After 

that, she likely needs to learn what the tool does, by using it to cut a shape out of cloth, 

paper, and other thin materials. This is all because of unfamiliarity with the artefact and 

its intended usages. 

Once the user learns the artefact’s function, it becomes an available tool for 

future tasks. When the mediator (teacher) asks the student to explain how the artefact 

(scissors) has been used for cutting thick cardboard, this can be considered as “a 

request of making explicit the utilization schemes” (Mariotti, 2009, p. 434). So, the 

mental utilization schemes define the artefact functionally via intended task 

accomplishment (Bartolini & Mariotti, 2008). Instrumental genesis works in two 

directions: toward subject and artefact. As time passes, the user will gain greater 

knowledge of additional features and where to use the tool. The process that the learner 

passes through is called instrumentation (Trouche, 2004). A certain amount of 

experience is necessary for the user to understand what the tool is not able to do, or to 

find other possibilities for the tool. For example, she needs to understand that an 

ordinary pair of scissors cannot cut a watermelon or metal. The process of loading 
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artefacts with their potential use is called instrumentalization (Artigue, 2002). For 

example, the user instrumentalizes the scissors, when she draws a circle with their 

sharp blade on a piece of wood, uses them as a paper weight or learns to position heavy 

cardboard close to the scissors’ pivot to cut it more easily.  

In this theory, a physically instantiated artefact and instrument are differentiated. 

Within the perspective of instrumental genesis, an artefact has no instrumental value 

originally. It is only through the process of instrumental genesis, that the artefact 

transforms into an instrument. That is when the learner transforms the artefact to fit the 

intended use and develops mental schemes identifying the artefact’s use under certain 

conditions (Artigue, 2002; Drijvers & Gravemeijer, 2005; Guin & Trouche, 1999; 

Trouche, 2005; Verillon & Rabardel, 1995). Therefore in short, “instrument = artefact + 

scheme for a class of tasks” (Drijvers & Trouche, 2008, p. 368). 

Semiotic mediation rooted in Vygotsky’s mediational theory 

For the genesis of human mental activity and cognitive development, Vygotsky 

refers to the mingling of two main streams, namely, the natural and the socio-cultural, for 

basic and higher mental functions, respectively. He explains that an artefact can be used 

as a tool, when the educator, who is aware of the semiotic potential of it, explores "the 

possibilities to guide students to connect personal meaning from the use of artefact to 

the mathematical meanings recognizable by an expert in such use” (Mariotti, 2009, p.   

430). Vygotsky differentiates between technical and psychological tools. He defines 

physically and externally oriented human-made objects as technical tools. These tools 

usually are used in human activities, where psychological tools are the internal 

representations of the technical tools. Vygotsky refers to internalization as the “internal 

construction of an external operation” (1987, p. 56), which usually is directed through 

socially shared experience, semiotic process and dialectical engagement.  

Also, Vygotsky declared "like words, tools, and non-verbal signs provide learners 

with ways to become more efficient in their adaptive and problem-solving efforts" (1987, 

p. 127). This means that for cognitive development, not only natural and socio-cultural 

streams are vital, but tools and signs also play a contributing role. In other words, a 

teacher with the use of appropriate tools and tasks offers an environment that mediates 

the emergence of new mathematical knowledge, which is internally orientated. In this 
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process, when the learner searches for the solution, she develops new artefact signs 

using the tool and related tasks, which later transforms into mathematical signs by the 

teacher. 

So far, I have discussed the theoretical perspectives of instrumental genesis and 

semiotic mediation regarding mathematical tools. The subsections highlighted how a 

physical artefact becomes a psychological tool or mathematical instrument through 

semiotic mediation and instrumental genesis. The dualisms intrinsic in the two theories 

are challenged by perceptuomotor theory’s consideration of the mathematical instrument 

as both a mathematics tool and a semiotic device together (Nemirovsky et al., 2013). It 

rejects models of knowledge acquisition that take the form of creating mental 

representations or schemes in the use of tools. There are no scaffolding stages in which 

a teacher must define the potentiality of the artefact for the learner though a dialectical 

approach. Within perceptuomotor integration, the fundamental role of the teacher, as 

well as the lack of originally instrumental value for the mathematical tool is critiqued. In 

the next section, I discuss where signs, artefacts and mathematical instruments are 

situated in the framework of embodied cognition. 

Mathematical instrument: Within an embodied perspective 

It is widely agreed that signs and artefacts are culturally rooted (Radford, 2005; 

Arzarello & Robutti, 2008; Nemirovsky, 2003, 2013) and deeply embedded in the history 

of humankind by carrying signs, values, and meanings. There have been valuable efforts 

to promote the socio-cultural factors as well as mathematical tools involved in learning. 

For example, Arzarello, Paola, and Robotti (2006) introduced The Space of Action and 

Relations, Production, and Communication (APC-space). In ACP-space, the use of 

artefacts in the learning of a concept is exemplified by a mathematics laboratory. Within 

this embodied tool-use perspective, a set of activities for practicing, communicating, 

seeing and doing is needed for constructing mathematical knowledge. Arzarello et al. 

also add the vital mediating role of a teacher to their framework. Three main components 

of the APC model are the body, physical world and the cultural context, which are 

dynamically involved. The APC-model aims to describe and analyze didactical 

phenomena by way of a semiotic bundle (Arzarello, 2006). “A semiotic bundle is a 

collection of semiotic sets and the relationships between the sets of the bundle” 
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(Arzarello & Robutti, 2008, p. 727). For example, the semiotic representation of the unity 

of speech and gesture, which are the different sides of an underlying mental process, is 

a semiotic bundle that is intentionally made (McNeill, 1992). Therefore, the semiotic 

bundle functions to deepen the process described by Vygotsky’s term “internalization”. 

According to Vygotsky (1978), internalization is based on "the semiotic activities with 

tools and signs, externally oriented, which provides a new psychological tool, internally 

oriented, completely transformed but still maintaining some aspects of their process of 

their origin" (p. 727) with language as the main component of social interactions. Such 

assumptions, demote material processes of learning, treat the body in a simplistic way, 

and treat technologies used to learn mathematics as disposable and inert artefacts. 

de Freitas and Sinclair’s (2013) materialist approach complements previous 

theories, which see mathematics as the historical and culturally rooted domain of 

embodied cognition (a view common to perceptuomotor integration). Their proposed 

materialist framework aims to “embrace the body of mathematics, as well as the body of 

her tools/symbols/diagrams, in the ‘dance of agency’ that makes up mathematical 

activity” (p. 454). This view allows the authors to theorize mathematics in material terms. 

Although this theory seems fruitful in providing new rich insights into learning 

procedures, the role of a learner’s body in and of mathematics and mathematical tools, I 

found Nemirovsky’s perceptuomotor integration easier to operationalize at a practical 

level because of the microanalytical tools he provides.  

Sense-making in Perceptuomotor Integration 

 Before discussing the perceptuomotor approach to mathematical tool use, I shall 

elaborate how the mathematics concept is conceptualised in this framework. First, I 

address what sense-making means in perceptuomotor integration.  

Inspired by the process of growth, individualization and decay, he defines 

concepts as crystalline images, metaphorically speaking. Nemirovsky (2017) uses the 

crystalline metaphor of the genesis of a geological formation to describe the process of 
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conceptualization. He explains that concepts are always under growth, decay and 

formation by the unpredicted flows of virtuals3, affects4 and senses5 of a human being:  

Concepts offer transient shelters and places, shaping and shaped by all 
the varieties of life inhabiting them, such as birds and worms. Inhabiting a 
concept entails going roughly along — doing, making, and perceiving — 
meshes of trails carved out over periods spanning natural and social 
history. (p. 3) 

Nemirovsky (2017) introduces this crystalline process in opposition to the classic class-

based view of concepts6. In the classical model, each concept is like a tree of predication 

or properties. It means different predications add different branches to the tree. For 

example, the classical view appeals to given a priori definitions of shape, such as ‘a 

closed two-dimensional shape with four straight sides’ to define a quadrilateral versus ‘a 

closed two-dimensional shape with three straight sides’ to define a triangle. Each 

definition then can be split into new branches (classes). In the next step, to define a 

parallelogram in the class of quadrilaterals, the shape must be in the class of 

‘quadrilaterals that have the opposite sides parallel or equal’. In contrast, the view of 

concepts as crystalline process rejects concepts as trees of predicated classes. This 

view also assumes humans do not "have" concepts but metaphorically “inhabit” them, by 

their ways of life (virtuals) and sense making, and that inhabiting is a matter of affective 

 
3 Creatures “carry out their lives by dealing with different virtuals” (Nemirovsky, 2017, p. 4). For 

example, choosing a place to sleep could be inspired by a sense of its virtuality such as 
comfortability and safeness. That is, a “virtual” is a horizon of meaning that helps guide action, 
but it is not a specific fixed goal. 

 
4 The circulation of affects is defined as multiplicities of interpretations and feelings and their 

mutual relationships to stimulate and displace each other.  

 
5 Sense is conceptualised through Nemirovsky’s use of Deleuze (1990), which is broader than 

Frege’s conception of sense because it is infinite: “Sense is infinite, since no finite list of 
determinations will suffice to fully articulate it” (Nemirovsky, 2017, p. 5). For example, having a 
sense of a neighbourhood being safe or dangerous can be understood in an infinite number of 
ways depending on different conditions, contexts and situations.   

 
6 To define a class here, I will appeal to set theory. So, a class could be defined as a collection 

of sets (or sometimes other than mathematical objects) that can be unambiguously defined by 
a property that all its members share. 

 

https://en.wikipedia.org/wiki/Set_(mathematics)
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or perceptuomotor activities. So, the learner needs to go through webs of trials for doing, 

building, creating, performing and understanding over periods of social and cultural 

history to “inhabit” the concept. To that end, mathematics “concepts are vast dwellings, 

landscapes to inhabit by virtue of their being amenable to hosting certain forms of life 

and not others, while, at the same time, those who inhabit a concept transform it as they 

go on living in it” (Nemirovsky, 2017, p. 13). Perceptuomotor integration questions a 

dualist view and asserts that people who “inhabit” a mathematical concept transform it. 

Therefore, mathematical learning implies a transformation in lived bodily experience7 

and it manifests through perceptual and motor integration and unification.  

Instrumental genesis and semiotic mediation agree with the necessity of bodily 

and mathematical tool interaction in a cultural-historical way and follow ‘tool fluency’, 

however, their approach in interpreting and analysing such interactions is different. 

Presumably, this is the perspective that perceptuomotor integration tries to deconstruct. 

In other words, while semiotic mediation and instrumental genesis dig onto the process 

of ‘instrumentalization’ and ‘internalization’, perceptuomotor integration takes a 

descriptive phenomenological attitude to assess different degrees of tool fluency in 

temporal flows of the learners’ lived bodily experience. An in-depth analysis of 

transformations in the participants’ lived bodily activities is another subject that I follow 

through my thesis. 

Mathematical instruments in a perceptuomotor integration approach: A 
comparison  

There have been different attempts to tackle dualistic approaches toward 

mathematical tools; for example, through the dialectical premise in mediation theory as 

discussed before (Artigue, 2002; Vygotsky, 1978). In this thesis, in order to reject the 

ontological duality between bodily and tool-mediated expressions, and mental structures 

of schemas, I shall use Nemirovsky et al.’s (2013) view on the mathematical instrument. 

In perceptuomotor integration, the mathematical instrument is “a material and semiotic 

device together with a set of embodied practices that enable the user to produce, 

 
7 In this thesis, “experience” and “mind” terms are viewed from the perspective of embodied 

cognition, embodied experience, embodied mind (e.g., Varela, Thompson, & Rosch, 1991). 
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transform or elaborate on expressive forms (e.g., graphs, equations, diagrams, or 

mathematical talk) that are acknowledged within the culture of mathematics” (p. 376). In 

this view, there is not such a process of internalization or instrumentalization to explore 

mental schemes to change mathematical tools from artifacts (which would then become 

disposal physical objects) into signs or psychological tools. However, one of the 

commonalities among instrumental genesis, semiotic mediation and perceptuomotor 

integration is the existence of a link between using the mathematical instrument, tool 

fluency and sense-making. That is to say, mathematics learning involves appropriate 

skillful use of mathematical instruments, which are cultural tools that mediate 

mathematical activity. However, instrumental genesis and semiotic mediation take 

different approaches and look into the process of instrumentation or internalization rather 

than analysing learners’ “lived experiences, in other words, the temporal flows of 

perceptuomotor activities they inhabited bodily, emotionally, and interpersonally” 

(Nemirovsky et al., 2013, p. 375). 

The other common theme among the approaches of instrumental genesis, 

semiotic mediation and perceptuomotor integration is to focus on mathematical learning 

when the student makes use of the mathematical tool. However, instrumental genesis 

takes a dialectical approach and considers an instrument as a “mixed entity” (Artigue, 

2002, p. 250) as part artefact and part cognitive schemes. The artefact becomes an 

instrument through the process of instrumental genesis. Studies taking this approach 

have documented mental schemes associated with instrumental genesis while using 

symbolic calculators and computer algebra (Drijvers & Trouche, 2008; Guin & Trouche, 

1998; Trouche, 2005).  

Although there are many scholars that appreciate the sensorimotor origin of 

mathematical thoughts such as Piaget (1962), the key components of the 

perceptuomotor integration aim to overcome the opposition between bodily, tool-

mediated expressions and mental schemes. So, in the perceptuomotor integration 

approach, the phrase mathematical “instruments” is intentionally chosen to make an 

analogy to the culture of music. To explain, a pianist’s expertise can be imagined as the 

quick and skillful finger, hand, body and perhaps eye movements over the piano keys. 

Similarly to how we cannot imagine a pianist without playing piano, “it is equally 
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objectionable to cleave mathematical expertise from the skillful motoric and perceptual 

engagement with the tools of the discipline” (Nemirovsky, 2013, p. 7). 

Instrumental genesis and perceptuomotor integration question understanding the 

relationship between technical work and conceptualisation as a “technical-conceptual 

cut” (Artigue, 2002, p. 247). However, perceptuomotor integration takes a non-dualist 

approach to overcome this theoretical need instead of dialectical one. Also, instead of 

privileging conceptual dimensions in meaningful learning, perceptuomotor integration 

considers mathematical thinking, mathematical learning and tool fluency in the process 

of learning. So, to track how mathematical learning emerges, perceptuomotor integration 

does not monitor correspondences between observed bodily and gestural activities, 

inferences, and processes of formal mathematical thought (Nemirovsky, 2013). 

 To explain, learning a new skill always goes through stages, in which perceptual 

and motor aspects of activities move from discordance to become synchronized and 

coordinated. In other words, tool fluency would be described as the interpenetration of 

motoric and perceptual aspects of the activity that allows the performer to “act with the 

holistic sense of unity and flow” (p. 373). For instance, a second language adult learner 

may feel discordance and incongruity with the sound that she hears and movements of 

her tongue, lips and vocal cords. The transition from discordance of perceptual and 

motor activities to fluidity is common in many other skill-learnings such as driving, 

playing music or soccer, prior to their integration. For example, in a given dynamic 

geometry environment (DGE), dragging a geometrical object could demonstrate 

integration of motoric aspects (dragging) and perceptual aspects (visual or haptic 

consequences of dragging, while the geometrical object preserves geometric 

properties). 

There is an explicit tie between “tool fluency” and “mathematical thinking” and 

“mathematics learning”. With perceptuomotor integration, instead of digging into the 

process of internalization, mental faculties, and refining/creating schemes, mathematical 

thinking is defined as bodily activities that involve different degrees of implicit and explicit 

expressions. Accordingly, mathematical learning is the transformation in lived bodily 

activities, coordination, and engagement when the learner participates in the 

mathematical activity. Thus, “First, motor activity is involuntarily enacted as part of 
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perceiving. Second, partial motor and perceptual components have the power to elicit 

the enactment of the activity as a whole over time” (Nemirovsky, et al. 2013, p. 380). 

Therefore, mathematical learning is intertwined with tool fluency but does not necessarily 

follow a dialectical approach (Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2013; 

Nemirovsky, Rasmussen, Sweeney, & Wawro, 2011).  

1.2.4. Perceptuomotor Integration in Learning Mathematics Through 
Touch-Based Interactions 

To operationalize mathematical learning in terms of perceptuomotor integration, 

just like Nemirovsky I appeal to Husserl's (1991) phenomenological attitude in 

experiential time. This approach enables producing the phenomenological descriptions 

of participants’ experience over a given segment of time. Husserl’s perspective allows 

the researcher to develop a possible description of retention and protention constituting 

that particular experiential present and follow the tool fluency in terms of integration of 

perceptual and motor activities. The notions of retention (just-past) and protention 

(about-to) implicate recalled and anticipated aspects of lived experience within 

experiential time, which consists of a collection of sequential moments. 

With a phenomenological attitude, I define one of the main goals of this thesis, 

which is common to all three studies. That is to understand the temporally extended 

course of actions that the participants experience. To clarify, lived experience of the 

learner is understood as a temporal flow of perceptuomotor activity. It is worth clarifying,  

The temporal flow of perceptuomotor activity cannot be characterized in 
terms of self-contained structures, schemes, or patterns, and 
necessitates an irreducible immersion in the particulars of the actors’ 
gestures, tone of voice, gaze, and facial expression, steadily emerging 
from their creative being-in-the-world. (Nemirovsky et al., 2013, p. 375) 

I also follow the path of interactions between the mathematical tool and the learner’s 

body, seeking the emergence of mathematics expertise and learning through tool 

fluency. I elaborate this goal in each study below. I have explained my contributions on 

each study as well in chapter five.  
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First Study: “Exploring Cardinality in The Era of Touchscreen-Based Technology” 

Working with Dr. Stephen Campbell, in this study we describe the 

perceptuomotor motor integration theoretical framework. The difference between natural 

attitude and phenomenological attitude is elaborated as well as the notion of lived 

experience in experiential time. This is to highlight the Husserlian phenomenological 

attitude that all temporal experiences have duration, consisting of an ongoing flux of 

retention (just-past), present time (just-now) and protention (about-to). We exemplify this 

ongoing continuing change in the use of TouchCounts.  

Then we discuss and illustrate how tool fluency, and therefore mathematical 

learning, emerges when Alex engages with the mathematical tool (TouchCounts) in 

terms of what has just occurred and what is anticipated to occur, how the temporal flows 

of Alex’s perceptual and motor activities integrates from an initial discordance. In this 

regard, we define finger-showing (known as finger-montring8) and finger-counting before 

introducing a new form of body coordination that may illustrate perceptual and motor 

integration as “finger-touching”. 

Second study: “Advanced Mathematics Communication Beyond the Modality of 
Sight”  

 Taking the same Husserlian attitude, the second study reports on and discusses 

a blind undergraduate student named Anthony and his journey in learning pre-calculus 

concepts. The mathematical tool mainly involves tactile graphs (sketch graphs and 

permanent graphs). The process of developing these tools is also discussed. In terms of 

perceptuomotor integration, I trace Anthony’s learning regarding tool fluency by 

analysing his temporal streams when he is invited to illustrate a given rational function’s 

behaviour for a sighted audience. This is in order to find out how he discusses the 

function’s behaviour in a way that is culturally recognized in the mathematical 

community, “just like fluency with a musical instrument can be a crucial skill for certain 

forms of music playing and for one’s membership in sociocultural communities that value 

and preserve such musical practices” (Nemirovsky, 2013, p. 406). 

 
8 Please see Di Luca & Pesenti, et al. (2008). 
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I also discuss Anthony’s development and unifying of retentions and protentions 

from an early stage of discordance of motor and perceptual aspects of the concept to 

their integration. Anthony’s early stage of perceptuomotor understanding is 

characterised as ‘active sensation’. Later, he actively refines sensations according to the 

goals. I explore how Anthony’s bodily performance and motor enactments combined with 

his verbal explanations is perceived as perceptuomotor integration. Anthony’s 

demonstration of a fluent use of tactile graphs as well as gestural and bodily 

coordination in a rational function’s behavioral representation will be discussed. I look for 

the moments when sensation is processed, organized and interpreted; so, Anthony uses 

the information to guide his behaviour based on his understanding of the environment. I 

introduce this phenomenon as ‘tactile perception’. Adapting Nemirovsky et al.’s 

perceptuomotor integration, I hypothesize that emergence of perceptuomotor integration 

is evidenced by the ‘tactile perception’ if performed fluently and recognized by the 

mathematics community.  

Third Study: “Touch-based technology in exploring geometric transformation: use 

of timeline as an analytical tool” 

I pursue the same theoretical framework of perceptuomotor integration in this 

study, and discuss how a prospective teacher, named Anna, learns about geometric 

transformation using a touchscreen-based DGE. The study not only traces Anna’s 

temporal flows of lived experience, but also analyses her touch interactions with the 

DGE, in terms of active and basic actions introduced by Arzarello et al.’s theory of 

touchscreen interaction (Arzarello et al., 2014). However, in this study I revisit basic and 

active codes and modify them based on this study’s specific goals, tasks and specific 

DGE tool. I look for Anna’s interpenetration of perceptual and motor activities highlighted 

by the performance of active actions (e.g. drag-touch-to-approach9). 

I also use StudioCode software and suggest an innovative methodology to 

analyse video data. Using this methodology enables the researcher to use a video 

 
9 Drag-touch codes the touchscreen interactions when the learner drags the point to create a 
geometrical shape, justify and/or explain the geometrical relations. For more information please 
see table 4.1.  
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timeline as an analytical tool to analyse and assess the paths of interaction and trace 

emergence of tool fluency over the given stretch of time. 

 Summary 

In this chapter, I outlined the three stand-alone papers and the common themes 

that go through these papers, which focus on multimodality of mathematical instruments, 

tool fluency and mathematical learning using the perceptuomotor integration approach 

and taking a Husserlian phenomenological attitude. I have also discussed two other well-

known theories about the use of mathematical tools named instrumental genesis and 

semiotic mediation, following this discussion by describing and critiquing the 

perceptuomotor integration approach. Finally, I discuss the differences between 

instrumental genesis, semiotic mediation, and perceptuomotor integration theories.  
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Chapter 2. Exploring Cardinality in The Era of 
Touchscreen-Based Technology10 

This paper explores how a young child (56m) builds understanding of the 

cardinality principle through communicative, touchscreen-based activities involving talk, 

gesture and body engagement working via a multimodal, touchscreen interface using 

contemporary mobile technology. Drawing upon Nemirovsky’s perceptuomotor 

integration theoretical lens and other foundational aspects of Husserlian 

phenomenology, we present an in-depth case study of a pre-school child developing 

mathematical expertise and tool fluency using an iPad application called TouchCounts to 

operate with cardinal numbers. Overall, this study demonstrates that the one-on-one 

multimodal touch, sight, and auditory feedback via a touchscreen device can serve to 

assist in a child’s development of cardinality. 

The current generation of children have grown up in a world saturated with digital 

technology and media. They are, so to speak, digital natives (Prensky, 2001). Clements 

and Sarama (2009, 2014) suggest that the affordances of computers make them more 

advantageous for developing mathematical thinking than physical objects because, 

“computer representations may even be more manageable, flexible, extensible”, and 

free of potentially distracting features “than their physical counterparts” (p. 324). There 

are many educational software programs for mathematics that have been developed for 

desktop computers or laptops. These programs require interaction via mouse, keyboard 

or/and electronic pens and not through a touchscreen. Interacting with computers via 

 

10 This chapter is co-authored with Dr. Stephen Campbell. Professor Campbell was 

instrumental in helping me tease out, illustrate, and enhance phenomenological aspects of 

Nemirovsky and colleagues' framework, particularly regarding the distinctions between 

phenomenological and natural attitudes, experiential and objective time, and the notions 

of retention and protention. 
 



 

25 

these devices requires hand-eye coordination, which can be a hard task for young 

children (Ladel & Kortenkamp, 2014). 

Nowadays, mobile digital technologies are becoming much more widely used, at 

work, in schools, and within the home environment. The touch-sensitive interface of the 

tablet (such as an iPad) enables children to ‘directly’ interact and manipulate objects via 

their hands and all their fingers. Additionally, auditory, visual and tactile senses, as well 

as kinaesthetic touch through gestures, such as flicking, sliding, taping, nudging, 

pinching and spreading, engage children bodily in deep learning (Lane, 2015). 

Furthermore, preliminary research on tablets indicates a fascinating educational 

potential for young children. For example, Geist (2012) found that children as young as 

two adapt to the intuitive interface of the touch-based tablet as-easy-as with play-dough 

toys. Despite preschool children’s lack of familiarity with the tablets, they show a high 

level of independence and take to the devices quickly and persist through technical 

challenges (Chau, 2014; Couse & Chen, 2010; Sinclair & Sedaghatjou, 2013). 

In relation to development of early number learning, researchers have shown that 

children first engage in rhythmic counting, and only gradually learn how the words they 

learn by heart in a sing-song way are related to individual ordinal or cardinal numbers 

(Fuson, 1988; Wynn, 1992). Also, it is asserted that most children develop knowledge of 

“how to count” including the one-to-one principle, the stable-order principle, and the 

cardinality principle before entering kindergarten (Jordan, Kaplan, Nabors Olah, & 

Locuniak, 2006). However, the literature also suggests that counting is considerably 

more complex than solely reciting counting words and requires the understanding of 

several underlying principles, such as the last-word rule and part-whole principles (see 

Fuson, 1988; Gelman & Meck, 1983; Wynn, 1992). Resnick et al. (1991) assert that the 

transition from ordinality to cardinality is the main key in the formation of the part-whole 

concept, which refers to additive compositions. 

Developing a sense of how numbers decompose is important for children when 

they are trying to master the basic number combinations, specifically, for ‘five’ and ‘ten’. 

More generally, the key concepts of ordinality and cardinality further implicate the 

foundational perceptuomotor dimensions of time and space respectively, and thereby 

may have broader implications for child and adolescent development. 
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 The Role of Fingers in Numerical Development 

It has become increasingly apparent that the use of fingers fosters flexible 

calculation strategies, such as composing and decomposing numbers, especially with 

respect to five and ten, which are essential (Brissiaud & Greenbaum, 1992). Number 

representation with finger symbols is related to the nonverbal-symbolical form of 

representation (Domahs, Moeller, Huber, Willmes, & Nuerk, 2010). This is rooted in 

sensory and bodily experience and enhances embodied cognition, which is termed 

‘embodied numerosity’ by Moeller et al. (2012). Butterworth (2000) notes that 

developmental and cross-cultural studies have shown that children use their fingers 

early in life, while learning basic arithmetic operations and the conventional sequence of 

counting words. In addition, Crollen et al. (2011) summarize the fingers contribution to 

number sense, specifically regarding: the iconic representation of numbers; keeping 

track of number words uttered; base ten and sub-base five numerical systems; and 

developing the one-to-one correspondence and stable-order principles by tagging 

fingers and countable objects with the saying of number words in sequential culturally-

specific ways. 

Hence, various modalities of verbal counting, numeral notation and fingers are 

used to represent a cardinal number. We distinguish between showing a cardinal 

number (1-10) on one’s fingers, or finger-showing, from obtaining a number via finger-

counting, which in turn implicates an ordinal process (Di Luca & Pesenti, et al., 2008, 

and others use less intuitive term finger-montring [sic] for finger-showing).  

We note that finger-counting, and finger-showing are not necessarily the same 

(e.g., consider showing versus counting two), and both have been found to be culturally 

relative (Bender & Beller, 2012; Domahs et al., 2010). We also use the term finger-

touching when one uses one’s fingers to create a cardinal number all at once (or a 

‘herd’) using TouchCounts, which may follow upon finger-showing and finger-counting. It 

means the child touches the screen, only once, with his stretched fingers that are 

showing the given number.  
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 Touchcounts: Connecting Touch-Based Technology 
with Finger-touching 

TouchCounts (Jackiw & Sinclair, 2014) supports the substantial role of body 

engagement and senses in education. Having indicated the important role of the fingers 

for numerosity, we postulate that using fingers to create numbers, when it is supported 

by tactile, auditory and visual modes of perception, will support and augment cardinal 

and ordinal understanding of numbers. TouchCounts utilizes the multi-touch features 

and gestures of the iPad. It enables young learners to summon numbers into existence 

and manipulate them in a digital space; it also offers visual and audible provisions in two 

sub-applications, namely the Enumerating and Operating Worlds. Multi-touch affordance 

of the iPad empowered through TouchCounts, enables one-to-one correspondence 

among tap, count and object (de Freitas & Sinclair, 2013; Sinclair & Pimm, 2014). This 

paper focuses on the Operating World, which offers a model of cardinality for learners to 

create and manipulate numbers.  

2.2.1. TouchCounts: Operating World. 

 In the Operating World, learners simultaneously place one or more fingers on 

the screen to create a given number or ‘herd’, or in standard parlance, a cardinal 

number. If seven fingers simultaneously touch the screen, then a disc appears with the 

symbol 7 in the centre of the disc as well as seven smaller circles arranged around the 

symbol, all coloured in the same way. Additionally, the number name “seven” is 

announced as the herd is created (Figure 1A).  

https://www.youtube.com/watch?v=oJxdNJlHBNk&list=PLBZIoLoBe0L3wMzFb5fergIzNIZxzeAHM&index=12
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Figure 2.1  The Operating World in TouchCounts.  

Note. After making different herds of numbers (A), with pinching herds (B) a 
new herd of number will be created including the inherited subset colours 
(C) while the resultant number is announced as the new herd is created. 

If a new herd is created, its inner circles will have a different colour. Pinching 

herds together enacts one of the fundamental metaphors of addition, which is gathering 

(Lakoff & Núñez, 2000) (i.e., Figure 1B and 1C). This pinched herd inherits all the 

‘subset colours’ and appears as a ‘bigger size’, which is intended to support the part-

whole principle. 

 Theoretical Framework 

We first describe our conceptualisation of cardinality. We follow Vergnaud 

(2009), who argues that understanding cardinality implies more than knowing that the 

last number-word of the counting sequence applied to a set of objects represents the 

numerosity of the set. Understanding cardinality also means being capable of using 

numbers and operations and, in particular, being able to use strategies such as ‘counting 

on’ from a given number. According to Vergnaud: a child has developed an adequate 

sense of cardinality if, given a set of objects, she can answer correctly the question ‘How 

many objects are there?’ and then after other objects have been added to the set, she 

can still answer accurately. Vergnaud also points to the movement of fingers, eyes and 

words as ‘three different repertoires of gestures’ where one-to-one correspondences 

amongst them help to secure the effectiveness of counting strategies, all of which can be 

accommodated through playing with TouchCounts.  
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For this study, we offer a phenomenological analysis of a child’s interactions with 

TouchCounts using the perceptuomotor integration approach, which focuses specifically 

on tool fluency and how mathematical expertise develops through a systematic 

interpenetration of perceptual and motor aspects of working with mathematical 

instruments (Nemirovsky, Kelton, & Rhodehamel, 2013). Nemirovsky, et al., adopt 

Husserl’s phenomenological framework for experiential time (in contrast to objective 

time), as a key component in their perceptuomotor approach to analysing lived 

experience (p. 385). Husserl’s phenomenological approach was to reflect upon lived 

experience in manners by which one seeks to identify and describe structural features of 

lived experience (Campbell, 1998, 2002; Husserl, 1991). 

Accordingly, we seek to identify and describe temporal flows of perceptuomotor 

activity in a lived experience. By lived experience, we refer to the events and 

transformations that occur through on-going covert and overt experiential embodied 

alterations infused with recall of the immediate past coupled with expectations of the 

immediate future; or, more specifically, what has just occurred and what is anticipated to 

occur as a learner engages with a mathematical tool. For instance, in using a compass 

to draw a circle, the learner, having anchored the pointed end of the compass on a piece 

of paper (immediate past), adjusts (uses their body to transform) the radius of the 

compass (in the present) in anticipation of creating a circle of a given size (immediate 

future). Also, within the perceptuomotor integration approach perceptual and motor 

aspects of working with a compass (as a mathematical instrument) are inextricable from 

the concept of circle and learning the tool is intertwined with learning mathematics and 

exhibits as transformations is lived bodily experience. “… concepts are vast dwellings, 

landscapes to inhabit by virtue of their being amenable to hosting certain forms of life 

and not others, while, at the same time, those who inhabit a concept transform it as they 

go on living in it” (Nemirovsky, 2017, p. 13). 

In conducting our analysis, unlike Nemirovsky, et al., we further incorporate 

Husserl’s foundational distinction between phenomenological and natural attitudes. 

Simply put, the natural attitude is the attitude one brings to bear on being in the world, as 

being but a part situated within a larger whole, so to speak. The phenomenological 

attitude is the attitude taken when one comes to realise that the natural attitude is in fact 

just our lived experience of the world rather than the world as it is in itself. That is to say, 
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the phenomenological attitude is concerned with the structure of lived experience, per 

se. It is important to note that objective time implicates the natural attitude, whereas 

experiential time implicates the phenomenological attitude. The natural attitude of being 

in the world requires being in the world now, at the present moment in objective time, 

whereas within the phenomenological attitude, notions of retention and protention 

implicate remembered and anticipated aspects of lived experience within experiential 

time. Experiential time affords the simultaneous presence and collection of sequential 

moments in objective time, thereby rendering cardinality, and number sense more 

generally, possible. 

Beyond lived experience, Nemirovsky et al. (2013) further suggest: “While 

perceptuomotor integration constitutes a transformation that is experienced by an 

individual, it is (a) shaped by relatively local social interaction and relatively global 

cultural factors and (b) socially consequential because one’s degree of instrumental 

fluency has bearing on one’s membership to various social groups” (p. 381). 

Accordingly, Nemirovsky, et al.’s framework also shares many similarities with the 

emerging body of theories and attention in mathematics education that moves away 

from a mentalist focus on structures and schemas towards a rich description of lived 

experiences in which learners’ activities are at once bodily, emotional and interpersonal 

(de Freitas & Sinclair, 2013; Radford 2011; Arzarello, 2006; Roth, 2009). This 

sociocultural orientation incorporates a strong position with respect to embodiment, 

whereby TouchCounts is not just an instrument, but with tool fluency becomes a quasi-

extension of one’s own embodiment. Mathematics learning entails transformations within 

the lived body situated within a social context. In this paper, we explore ways in which 

cardinal aspects of numerical abilities can be developed and expedited through playing 

with TouchCounts and the impact of touch-based interactions on the development of 

young children’s perception and motor understanding of the cardinality principle in small 

group activities. 

 Method 

The phenomenon of interest in this paper is the lived experience of a single child 

engaged in the use of TouchCounts within a classroom context. There are two 
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interrelated aspects of the child's lived experience that provides our focus here. First, 

how does the child develop tool fluency with TouchCounts, and secondly, in what ways 

might tool fluency implicate and be implicated in the child's understanding of cardinality? 

2.4.1. Procedure 

Data for this study is part of a larger research project which aims to understand 

ways in which young children between three and seven years-old develop numerical 

abilities through embodied interactions with TouchCounts in small group and one-on-one 

activities. The two researchers set up a station in the corner of the room in a daycare 

facility where children were invited to play with TouchCounts on the iPad. See Appendix 

B for daycare floor plan and classroom arrangement. The children were free to come 

and go as they pleased, which is common practice in most daycares. This meant eight to 

ten children at times crowded around, but sometimes only one child. It also meant that 

some of the twenty-four children in the daycare did not participate in the study. 

Conversely, some children participated multiple times. Most of the time, there were three 

or four children taking turns playing with TouchCounts. The researchers also combined 

this instrument with other manipulatives such as cards (see Appendix A), so children 

could play with numbers in a variety of ways when not engaged with TouchCounts. 

Seventeen exploration sessions (see Appendix C for more detail) of about one hour 

each took place once every one or two weeks. The children tended to spend between 

five to fifteen minutes at a time but not necessarily the same children. One of the 

researchers worked with the children, by asking questions, helping them work together 

(so that each child had an opportunity to play) and posing various problems, while the 

other videoed the sessions. The interviewer-researcher is referred to herein as “N” or 

“researcher”, as context indicates. 

2.4.2. About Alex 

Because phenomenology is concerned with the lived experience of individuals, 

we limit our focus to a single child where the recorded data could offer a thick description 

(Miles, Huberman & Saldana, 2016). The child we focus on in this study is a four-year 

and eight-month-old boy (56m) that we shall call ‘Alex’. Alex has a twin brother ‘John’. 
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The twins’ daycare teacher reported that Alex, along with the other children, exhibited 

good social interaction combined with a high desire to learn and find explanations about 

what he saw around himself. He enjoyed expressing his theories in drawings, clay, and 

other ways. Alex also liked to manipulate loose materials and make elaborated figures, 

and was able to count to 10 starting from one, when our study started. The teacher also 

reported that the children were exposed to no formal mathematics instructions in the 

daycare during the academic year prior or in parallel to our study.  

2.4.3. Selected Episodes 

Considering the descriptive nature of the research design, research aims, and 

the perceptuomotor framework, we selected three episodes drawn, respectively, from 

three separately recorded sessions at the daycare over a five-week period. These 

episodes demonstrate Alex’s experiences in developing tool fluency and his 

understanding of cardinality. Although other children are involved in all three of these 

episodes, we focus here mainly on Alex’s experiences and interactions with 

TouchCounts and the researcher. In the first episode Alex begins to gain tool fluency 

hampered by a dependence on ordinality. In the second episode we include two 

activities that contribute to Alex’s evolving understanding of cardinality and 

perceptuomotor integration. The third episode illustrates Alex’s increasingly high level of 

perceptuomotor expertise. Taken together, these three selected episodes provide a rich 

illustration of mathematical learning through the development of tool fluency.  

 Description and Analysis 

In what follows, we begin by providing a brief description of Alex’s actions, 

including gestures directly or not directly engaging TouchCounts, his interaction with the 

researcher, and on occasion with other children as well. We describe his “…lived 

experiences in terms of temporal flows of perceptuomotor activity, which are at once 

[embodied] and interpersonal” (Nemirovsky et al., 2013, p. 6). We analyse multiple 

streams of observed embodied activities that implicate Alex’s lived experiences of 

mathematical thinking and learning (Campbell, 1998; Husserl, 1991; Nemirovsky et al., 

2013) in terms of Alex’s developing tool fluency and understanding of cardinality. 
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2.5.1. First Episode: Doing Six 

The researcher shows a card that contains two hands, each showing three 

fingers. She asks Alex: “Can you do three and three?”, inviting Alex to add three plus 

three. Alex enumerates by touching the screen using one, then two, then three (but just 

two finger tips actually touch the screen), and then four fingers, making TouchCounts 

say “one”, “two”, “two”, “four” and produce the herds that each have small disks with the 

same colour (See figure 2.2).  

The researcher notes, “We are missing a number [She points to the herds on the 

screen]. We have one, two, two, and four. What number is missing?” 

 

 

Figure 2.2  Alex makes 1, 2, 2 and 4. Each herd has small disks with the same 
colour. 

Alex looks at the numbers on the screen and points to one of the twos: 

11 Alex One, two, three [in a low pitch] … three! 

Alex resets TouchCounts. The researcher asks Alex:  

12 N  Let’s see ‘just three’  
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Alex, however, follows the same enumerative steps as he did before and makes 

one, two (with two fingers simultaneously), three (with three fingers simultaneously), four 

(with four fingers simultaneously), and five (with five fingers simultaneously). 

TouchCounts says “one, two, three, four, five” (Figure 2.3) and there are five herds on 

the screen. Alex refused to make ‘just three’ not starting at one and count on from there 

to five, indicating an underdeveloped sense of cardinality. 

 

Figure 2.3  Alex makes 1, 2, 3, 4, 5 sequentially.  

Moreover, up to now Alex had made all the herds using his left hand. He looks at 

his left hand, stretches all fingers, curls them, stretches just his left thumb, looks again at 

his hand, curls all his fingers and looks at the interviewer with a confused expression.  

13 Alex I don’t know, I don’t know … [pause] … how to do “six” 

The researcher pretends she also does not know how to make six: “Let’s think 

about it. How could we do six?” She asks Alex to count on his fingers up to six. Alex 

finger-counts by stretching his curled fingers starting from his left thumb “one”, “two”, 

“three”, “four”, “five” (Figure 2.4 A), again he curls all his left fingers, leaving just his left 

thumb. Alex looks at the researcher and says: “Six” (Figure 2.4 B).  
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Figure 2.4  (A) Alex is not using both hands to count up to 6; (B) He shows his 
left thumb again as ‘six’. (C) Alex counts on fingers using his lips 
and he always starts from one to make a six when he is asked to put 
‘just 6’ on screen. 

Seeing that Alex refers to the last counted finger as ‘six’, but is no longer finger-

showing “six”, the researcher asks him to use both hands to make a ‘six’. Alex opens his 

left hand and right thumb and index fingers (showing seven fingers), then counts his 

fingers by touching them one by one with his lips while he counts, starting from his right 

index finger, counting out “one”, “two”, “three”, “four”, “five”, “six” (Figure 2.4 C). He looks 

at the researcher, notices he is showing one extra finger, so he folds his left pinkie. 

 14 Alex So, six [Touches his ring finger with his lips]. 

Alex then moves his stretched fingers towards the screen, but one of his fingers 

touches the screen first, making TouchCounts say “one”. The researcher resets 

TouchCounts and invites Alex to try again and make ‘just six’, but Alex makes the 

sequence, starting from ‘one’ again, as he did before (Figure 2.4 C). While he produces 

many other numbers, he never makes a successful six on TouchCounts during this 

episode. What is evident, aside from his difficulties with finger-showing ‘six’, is that Alex 

was experiencing difficulties in moving from finger-showing numbers greater than ‘two’ to 

finger-touching the screen to generate some of the larger herds intended (i.e., three and 

four). Yet, in his struggle to touch the screen with all fingers shown up to five, he was 

clearly developing tool fluency. 

 Alex was able to finger-show numbers up to ‘five’ and at least attempt to finger-

touch the screen accordingly. Making five all at once with five fingers is an important 

step toward cardinality, but it is not enough for understanding fiveness in and of itself, as 



 

36 

a cardinal number. In trying to make ‘six’ Alex was always finger-counting and finger-

touching up from one and not starting ‘just from three’ [12]. 

Nevertheless, in his first attempt to make ‘six’, Alex was clearly counting up from 

one with an aim to complete his task at ‘six’. This supports Jordan et al.’s (2006) finding 

that the development of ordinality precedes cardinality. It also clearly indicates the role of 

retention and protention, as retention is evident, proceeding from the onset of finger-

counting, with protention evident in Alex’s recognising the completion of the process. So, 

the problems encountered thereafter were not with finger-counting, but rather, with 

finger-showing, further indicating a problem with cardinality. 

With the broader protentions of finger-showing ‘six’ in order to finger-touch ‘six’ 

using TouchCounts, Alex’s method of finger-counting to ‘six’ with just his left hand was 

inadequate to the task. That is to say, his protention to finger-show ‘six’ was disrupted 

[13], evidently due to his underdeveloped sense of cardinality. We see further evidence 

of his underdeveloped sense of cardinality as well as his ordinal retention of having 

counted up to five on his left hand disrupted when the researcher requests that he use 

two hands. For, rather than re-finger-showing ‘five’ on his left hand and counting forward 

to ‘six’ on his right hand, he extends both the fingers on his left hand and his right thumb 

and index finger. Then, once again, he counts up to ‘six’, at which point he is left with a 

non-standard finger-showing of ‘six’, which he then unsuccessfully, due to dexterity 

difficulties, attempts to finger-touch on the screen. What this does show, however, is that 

he retained his protention of making ‘six’ on TouchCounts, which indicates an on-going 

improvement in tool fluency. 

As further evidence of developing retention and protention, Alex seemed to know 

there were six fingers in total on the card that he was shown, but he was not successful 

in re-creating the manual configuration shown on the card using TouchCounts, which is 

three fingers outstretched on each hand. Nor was there much indication that he even 

tried to mimic this finger-showing. This may be because he still requires counting 

ordinality to approach cardinality for numbers greater than ‘five’, so he does have some 

degree of protention as an aim and outcome. This could also be evidence of a lack of 

one-to-one correspondence amongst fingers, words and cardinality of the set, as 

suggested by Vergnaud (2009), and a lack of tool fluency (Nemirovsky et al. 2013). So, 



 

37 

we suggest, the interpenetration of perceptuomotor skills, and retentions and protentions 

regarding ordinality and especially cardinality, was still at an early stage. 

2.5.2. Second Episode: Expanding the Sense of 
Cardinality  

The researcher met with the children four weeks later. In this episode, we 

illustrate three incidents that describe multiple streams of embodied mathematical 

activities, which we hypothesise supports Alex’s on-going co-development of tool fluency 

and cardinality. This episode demonstrates how guided and collaborative playing with 

TouchCounts, along with cards illustrating different finger-showings, can contribute to 

the enhancement of Alex’s perceptuomotor skills, and his capacity for retention and 

protention in the development of his understanding of cardinality in three different 

sections entitled: Missing addend, fine motor ability and eye-hand coordination, and 

making six. 

In this session, the researcher continued with a card playing game introduced in 

the previous session from which the first episode above was drawn. In this game, 

children were asked to make the total number of fingers that are shown on each card. 

Each card contained one or two hands that finger-showed numbers in non-standard 

ways (see Appendix 1). The broader research aim of this task was to give the children a 

chance to explore the world of cardinality and the extent to which the children would not 

mimic the hand gestures shown on the cards when using TouchCounts, as a higher 

perceptuomotor integration of the cardinal number were required to finger-touch.  

Missing addend 

After about twenty-minutes of the researcher card playing with a child named 

‘Sara’, a group of six children forms around her, including the twins. The researcher 

explains to them “the game we were playing was that I was making something and Sara 

was making something [on TouchCounts], and when we put them together we had to get 

to five”. The goal of this game was to explore different combinations of the number five. 

So, some of the children make ‘fives’ with different combinations: One and four, two and 

three, and three and two, while Alex is looking through the cards. The researcher 
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proceeds to ask the children how to make ‘five’, when there is already a herd of three on 

screen. Alex shows two cards to the researcher and asks, “like this?” (Figure 2.5 A), 

illustrating that Alex was contributing to the number composition game. However, the 

researcher did not notice it. After a few minutes, the researcher notices Alex is playing 

with the cards and asks him what is he doing. 

21 Alex I’m just putting the pictures… and …and putting [numbers] 

together to make different numbers.  

 

Figure 2.5  (A) Alex shows two and three asserting that it makes five. (B) Alex 
makes the second ‘four’ with the same gesture but is now careful 
enough to touch the screen just with his fingertips. 

Perhaps Alex’s understanding of cardinality, as part-part-whole, is beginning to 

improve, evidently by the temporal flows of tool fluency in using appropriate cards. The 

card game specifically targeted cardinality of the set by asking children to create the 

same number on TouchCounts regardless of the number configurations shown on each 

card by raised fingers. The game also aimed at subitizing, encouraging children to 

expand sense of finger-showing (finger showed on the cards) to finger-touching on the 

iPad. In this episode, although Alex did not try finger-touching yet, he was actively 

involved in blended finger-showing and finger-counting activities. We also observe 

children were actively engaged in ongoing mathematical debates which are not reported 

here in detail, until they developed a relatively stable social understanding of cardinality 

of five (Hall, Ma, & Nemirovsky, 2015). This incident, with the following one, 
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demonstrates a smooth and concurrent trajectory of mathematical and embodied 

expertise. 

Fine motor ability and eye-hand coordination 

Because of the direct modes of number manipulation on TouchCounts, the 

“mediation” term is no longer accurate enough to capture the role of children’s hands 

and fingers on the screen. In other words, no interaction instrument is needed to mediate 

between user and touch-interface than human senses: touch, sight and hearing.  

I found the same Deleuzean relationships (2003) between hand and eye (digital, 

haptic, manual and tactile) as discussed earlier in Sinclair and de Freitas’s article (2014). 

These relations11 range from maximum to the minimum in terms of domination of eye 

over hand. For example, hand subordinated the observant eye in Deleuze’s “digital” 

sense when children carefully finger-showed. Also, when Alex used his lips rather than 

eyes to finger-count up to six he demonstrated a “tactile” relationship between hand and 

eye, while his hand dominated the eye (see Figure 2.4 C). Within the perceptuomotor 

integration perspective, I look for coordination of eye and hand in form of “tactile”, when 

the hand and eye mutually and equally contribute to create the given number through 

successful finger-touches on TouchCounts. 

In this episode, Alex asks the researcher if he could make the numbers shown on 

one of the cards, which has two hands each finger-showing four. He touches the screen 

with four-tightly-grouped fingers and his palm and hear/sees ‘seventeen’ (Figure 2.5 B), 

because he had inadvertently touched the screen with too many parts of his hand. On 

the second and third tries, he successfully makes two ‘fours’ and pinches them well to 

make ‘eight’.  

Inspired by Alex’s enthusiastic card play, the children ask the researcher to make 

all the cards on TouchCounts (Figure 2.6 A). After about five minutes, some children 

leave the room and the twins get another chance to play with the cards and 

TouchCounts. They line up the cards and continue the game collaboratively. They count 

the fingers on each card and create them with TouchCounts while noting the total. This 

 
11 I will discuss hand-eye relationships with more details in 5.1. 
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activity provides the twins time to become more fluent in using TouchCounts (Figure 2.6 

B & C). 

 

Figure 2.6  Children are actively engaged in making cards' numbers using 
TouchCounts.  

Note. (A) Children ask the researcher to make cards on TouchCounts. (B & C) 
The twins make combination of card numbers on TouchCounts 

We found playing this game, which involved finger-counting and finger-showing, 

in conjunction with finger-touching using TouchCounts could facilitate coordination of 

body, gestures and using mathematical tool. Comparing with the first episode, a greater 

interpenetration of perceptual and motor aspects was observed. Also, hand-eye 

relationships in terms of “digital”, “tactile” and “manual” in forms of finger-show; finger-

touch and finger-count offering evidence of emerging early stage of perceptuomotor tool 

fluency were observed (Deleuze; 2003; Sinclair & de Freitas, 2014). We agree with 

Andres, et al. (2007) that finger-counting contributes to structure activities, so when 

children make one-to-one-to-one correspondences among total fingers on cards, 

number names and their own finger-touching, culminating with creating the associated 

number herds on TouchCounts, produces an enriched number processing activity in a 

collaborative environment. 

Making six  

A few minutes later, with Alex looking on, Yan, a four-year-old child, makes a ‘six’ 

with two fingers and then four fingers. Alex intervenes when the researcher invites Yan 

to make six in another way. Alex askes: 

22 Alex  […] one and two and three?  
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The researcher does not hear the ‘one’ in Alex’s sentence and says, “a two and a 

three? Do you think two and three makes six? Let’s see if two and three makes six”. 

Alex finger-touches a herd of two and a herd of one, then without finger-touching, 

he says “Three!” The researcher asks him to “put them [‘one’ and ‘two’] together”. Alex 

slides the herd of one over the herd of two, but nothing happens. He then finger-showed 

‘three’, saying “three”. The researcher reminds him to pinch the herds together (instead 

of sliding one on top of the other). “So, you got a three and…” N says, as Alex finger-

touches a ‘four’ on the screen.  

23 N and a four? Do you think if you put them together you’ll make a 

six? 

Alex successfully pinches the herds of three and four together and makes a 

seven. He looks at the researcher, smiles and says, “too many”. 

24 N too many, you’re right. So, what do you think we should do if we 

have three already. What do you think goes with three to make it six? 

 

Figure 2.7  Making six using three and three. Alex thinks (A) what goes with 
three to make it six. (B) He finger-shows 3 and 3. (C) Alex hi-fives 
after a successful finger-touch for making a herd of 6. 

Alex scratches his cheek, pauses and thinks (Figure 2.7 A). Nolan, who is 

drawing his hands in the other corner of the room, says “Another three”. Alex very 

quickly makes two herds of three with his fingers (Figure 2.7 B); then he pinches the two 

herds of three together and makes a herd of six, and celebrates with a high-five (Figure 

2.7 C). The researcher points to Yan, “You made a six by two and four”; and points to 
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Alex “and you did three and three”. The researcher continued to engage the children 

with all possible combinations of six. 

 These three consecutive incidents happened within an hour, documenting Alex’s 

improving tool fluency. Overall, this episode also highlights the role of researcher as a 

facilitator rather than a director [22 to 24]. In contrast to the first episode, Alex’s 

responses were more immediate and fluent. For example, in the first episode [11 to 13] 

Alex was following rhythmic counting, always starting from one on TouchCounts, to 

make a ‘six’, while in the above incidence Alex used his fingers to make three 

proficiently. He also became proficient in pinching herds together, rather than 

ineffectually sliding one on top of the other. In addition, an imprecise attempt to make a 

four, which later turned into making a successful four, points to Alex’s awareness of the 

need to be precise making herds with TouchCounts meteorically.  

Alex’s increased perceptuomotor skills and improved understanding of cardinality 

is accompanied by more seamless continuity between retention and protention. He is 

better able to retain his image of the cards. In this experiential time, Alex’s action does 

not include retention of necessity of sequentially in making six, rather higher level of 

motor action and present emerge of protention regarding cardinality principle. This 

precision in using the tool is conjoined with the precision of gesturally articulating each of 

the numbers. In this sense, the process of developing a practical understanding of 

numbers is enhanced via perceptuomotor integration. 

These activities comprising episode two happened within an hour. In contrast to 

the first episode, Alex’s responses were more immediate and fluent. For example, in the 

first episode [11 and 14] Alex was following rhythmic counting, always starting from one 

on TouchCounts, to make a ‘six’. 

Later, in episode two, it was observed that Alex used his fingers to make three 

proficiently. He also became more proficient in finger-pinching herds together. In 

addition, an imprecise attempt to make a four, which later turned into making a 

successful four, points to Alex’s awareness of the need to be more precise in making 

herds with TouchCounts.  



 

43 

2.5.3. Third Episode: Playing ‘I wish – I have’ on 
TouchCounts  

A week later, the daycare was visited once again. Alex, his twin John, and two 

other children were sitting beside the researcher on the carpet and waiting for their turn, 

while observing other children interacting with TouchCounts. After about 20 minutes, the 

researcher gave Alex a turn to play an ongoing game called: ‘I wish I have’. The game 

was designed to further explore cardinality through the part-part-whole principle, but the 

children were not provided with cards or other manipulatives.  

The researcher made a ‘three’ on the screen, then offered the iPad to Alex and 

asked him “Okay, this is your turn. I have three here and I wanna get up to six. What 

could I do?” Alex looked at his fingers and murmured to himself “six, six”. Immediately, 

John (Alex’s twin) finger-showed eight fingers (five on one hand and three on the other), 

curled two of them in a way that just three fingers on each hand remained (Figure 2.8 A). 

At that point, Alex proceeded to count John’s fingers, initially starting from his bent pinky. 

 31 Alex  One, two 

 

 

Figure 2.8  (A) Alex counts on and with his twin’s and his fingers and then (B) 
finger-touches three. 
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John said “No”, and looked at his left ring finger indicating to start counting from 

there. John accompanied Alex’s counting up to six by outstretching corresponding 

fingers “one, two, three”. Then, he stretched out his three right fingers and let Alex count 

up to six.  

Alex stretched four fingers, folded his pinkie and finger-touched a herd of three to 

match the herd of three the researcher had placed on the screen (Figure 2.8 B). Then, 

he collides (a forceful-rapid touch-pinch of two herds using his two index fingers) the two 

threes (Figure 2.9 A), making TouchCounts form a combined herd of six and say: “Six” 

(Figure 2.9 B). The researcher inquires of Alex, who sits back proudly with thumbs up, 

“How did you get that?” to which John pipes up and responds “three, three” while 

pointing to the herd of six on the screen. Alex then examines the herd of six [inset to 

Figure 2.9 B], counting the small circles of different colours to count out the two parts of 

three that comprise six as a whole. 

32 Alex  Four, five, six. 

Alex stretched four fingers, folded his pinkie and placed three fingers on the 

screen (Figure 2.8 B). Then, he collide two threes and makes TouchCounts to say: “Six” 

(Figure 2.9 A). While other children in our research pinched numbers on the screen to 

make a bigger set of numbers, Alex made a new herd of numbers (six here) from the 

collision of two threes (Figure 2.9 A).  
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Figure 2.9  (A) Alex ‘collides’ two herds (B) and examines the outcome. 

Evidently, his way of thinking using TouchCounts about how to make six involved 

starting with the two numbers and then operating on them, which is different than the 

usual written and verbal order a numbers, followed by the operation, followed by the 

number. More importantly, whereas he slid one number on the other before, which may 

indicate that his thinking of a sequential process, this colliding gesture was much more 

of a simultaneous process. Such a simultaneous process is different than how we speak 

addition and write addition, but is like how we gather things together. So, we suggest 

Alex’s experiential present consist of emerging new pattern of motor action and 

perception, which is an evidence of a breakdown of the previous retention in process of 

emerging protention that demonstrates high level of bodily and numerical expertise. 

We would argue that the colliding gesture is produced by a perceptuomotor 

simulation and may be infused by sociocultural norms of kids’ mathematical games. The 

second episode and its sub-incidents, also clearly illustrates the influence of cultural and 

social interactions on developing tool fluency. The speed at which Alex figured out the 

answer and made a ‘six’ by colliding two threes may also suggest an understanding of 

the part-whole principle. Although he benefited from his brother’s contribution, he was 

confident that ‘three and three’ makes ‘six’. It seems that at this point, Alex has a well-

developed expertise that enables him to not only count on his fingers, but also count with 

his twin’s fingers (see Sinclair & Pimm, 2014).  

The researcher congratulates Alex for ‘getting to six’ and asked him “How did you 

get to that?” Alex smiles and shows two thumbs up. Then the twins bent over the screen. 
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Alex counts the small green and purple circles inside the herd of six by pointing to them 

on the screen “by three and three!” (see Figure 7B). 

Apparently, TouchCounts not only supported Alex's understanding of the 

cardinality with visual and vocal feedback, but also its features in inheriting all subsets of 

colours in new sets provided Alex with a record of his operations, which maintains 

retention; and we conjecture supports the part-whole principle understanding. We 

suggest that Alex’s emerging perceptuomotor fluency is characterized here by smaller, 

finer and faster overt and covert motor actions in his lived experience. His infusing of 

past and future in the lived present, retention and protention, respectively enabled him to 

articulate his brother’s participation and complete the task. 

2.5.4. Triangulation 

Methodological rigor for this study was attained through the application of 

verification and validation (Creswell, 2013). Verification is the first step in achieving 

validity of the research project. The standard was fulfilled through literature research and 

review adhering to the phenomenological descriptive method, bracketing out 

researchers’ past experiences, which Husserl called epoché was considered to suspend 

the authors' possible presupposition bias of effects of using TouchCounts on developing 

number sense in reflective mode (Husserl, 1991; Huberman & Saldana, 2016). 

Nevertheless, the researchers had to “mediate” between the phenomenological 

approach and the natural view that is described in the theoretical framework section (van 

Manen, 2016, p. 26). 

We also provide an essence of experience, a combined of textural description of 

the experience of the child and a detailed structural description of how the child 

experienced it, in terms of condition, context and situation (Creswell, 2013). In addition, 

validation within project evaluation was accomplished by multiple methods of data 

collection (observation, interviews and video recording). In addition, data analysis was 

discussed in small group of experienced researchers (during a doctoral seminar) to 

check researchers’ interpretation and conclusion.  
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Evidently, Alex’s way of thinking with TouchCounts about how to make six in this 

instance began collaboratively, starting with the task provided by the researcher, then 

with the help of John, observing and counting his twin’s finger-showing. Thereby, he 

recognized that two threes constituted a total of six, and then noted that one of the two 

herds of three was missing from the screen. At this point, he recognized that the goal set 

to him was now within his reach. By finger-showing his own three and finger-touching 

the screen to provide the missing herd of three, he was then finally able to manifest his 

protention by colliding the two herds of three into a herd of six. A job well done. Thumbs 

up, indeed! 

 Discussion 

We have seen in episode one that Alex is struggling with the concept of 

cardinality, and that his nascent understanding of number is predicated on counting on 

from one. Indeed, his approach seems almost ritualist, but lays bare the bare bones of 

retention and protention, a sequence of moments with a definite beginning flowing 

seamlessly toward a definite end. Until now, that is, Alex comes to finger-count beyond 

five and is required to finger-show six. What is particularly compelling with TouchCounts 

is that finger-showing is a prerequisite to finger-touching, which emphasises the 

simultaneous versus sequential nature of cardinality versus ordinality. Episode one with 

Alex served well to illustrate that. 

In episode two, it was evident that Alex was improving his perceptuomotor skills, 

particularly with regard to finger-showing and finger-touching, and thereby was 

improving his tool fluency with TouchCounts. His improved tool fluency, as demonstrated 

by making two herds of four and combining them into a herd of eight suggested that 

perhaps Alex was also improving in his understanding of cardinality. At the very least, 

there was a seamless continuity between retention and protention. Alex knew what he 

wanted to do and he set about doing it quite deliberately and successfully, with only a 

minor disruption. 

Although Alex was clearly improving his tool fluency with TouchCounts, was he 

just mimicking the finger-showing configurations on the cards when he finger-touched 
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two herds of four, and then finger-pinched them to obtain a herd of eight? Episode three, 

a week later, seems to have answered that question in the affirmative. It was clear in 

that last episode that Alex still had work to do in transitioning from ordinality to 

cardinality. Remarkably, the limitations Alex had experienced in episode one with finger-

showing were ameliorated vicariously with the assistance of his twin brother John, by 

lending his hands to finger-show a group of three fingers on each hand. This enabled 

Alex to use a free hand to count his brother’s fingers. This collaboration enabled Alex to 

maintain his protentions without disruption, and eventually successfully complete the 

task that was set to him.  

TouchCounts appears to have supported Alex's developing understanding of 

cardinality with tactile, visual and vocal feedback. Particularly, its feature of inheriting all 

subsets of colours in new herds provided Alex with a visual record of his operations, 

which helps support retention and, we conjecture, further supports the part-part-whole 

principle, which provides important support toward cardinality. We suggest that Alex’s 

emerging perceptuomotor skills are characterized here by smaller, finer and faster overt 

and covert motor actions in his lived experience. His infusing of past and future in the 

lived present, retention and protention, respectively enabled him to articulate his 

brother’s participation and complete his task.  

 Conclusion 

There is a complex interplay between the natural attitude of observing objective 

time unfolding from moment to moment, and the phenomenological attitude, which 

augments the experiential present with moments retained from the immediate past, while 

also protentively maintaining various ends in view. Perhaps nowhere is this complex 

interplay more aptly illustrated, and perhaps canonically so, than with the process of 

developing an understanding of ordinality and cardinality.  

What we see with a child’s developmental understanding of ordinality and 

cardinality is even more complex, as it seems apparent, if not quite likely, that what is 

unconsciously co-developing with this understanding is one’s capacity for retention and 

protention, per se. A significant consequence thereof is to expand experiential time 
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beyond the bounds of objective time, laying important cognitive foundations for memory 

and anticipation. This is not to say that the child development of memory and 

anticipation is totally dependent upon developing an understanding of ordinality and 

cardinality, but rather only to point out that developing such an understanding is deeply 

implicated in those crucial cognitive functions. As such, any pedagogical innovations at 

hand that can encourage, enhance, and expedite such understandings should be given 

close consideration. We have endeavoured to do so with this case study of Alex within 

an embodied phenomenological framework that emphasises the role of perceptuomotor 

integration and tool fluency using TouchCounts.  
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Chapter 3. Advanced Mathematics Communication 
Beyond Modality of Sight  

 

I have been totally blind since birth and have studied algebra, geometry, 
and calculus. I found geometry especially difficult because I lacked the 
understanding of many spatial concepts.... I found that I had difficulty 
understanding such concepts as how four walls meet the ceiling, and I 
actually stood on a chair to study this. 

- Bev Wieland, Programmer-Analyst, University of Delaware 

History has shown that visual impairments in general, and blindness, in 

particular, are not insoluble impediments for learning mathematics. Euler (1707–1783) 

and Saunderson (1682–1739) are two well-known mathematicians who struggled with 

blindness. Although representation and understanding mathematical visual cues are 

assumed to be at the core of understanding in mathematics, the contemporary blind 

mathematician Jackson (2002) suggests that the lack of access to the visual field does 

not diminish a person’s ability to visualize but morphs it. He argues that spatial 

imagination amongst people who do not see with their eyes relies on tactile and auditory 

activities. Inspired by these possibilities, in this study I illustrate how mathematical 

communication and learning are inherently multimodal and embodied; hence, sight-

disabled students are also able to conceptualize visuospatial information and 

mathematical concepts through tactile and auditory activities. Adapting Nemirovsky, 

Kelton and Rhodehamel’s (2013) perceptuomotor integration approach, I shall show that 

the lack of access to the visual field in an advanced mathematics course does not 

obstruct a blind student’s ability to visualize, but transforms it. The goal of this chapter is 

not to compare the visually impaired student with non-visually impaired students to 

address the ‘differences’ in understanding; instead, I will discuss the challenges that a 
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blind student, named Anthony, has encountered and the ways that we12 tackled those 

problems. I also demonstrate how the proper and precise crafted tactile materials 

empowered Anthony to learn about mathematical functions.  

 Learning Mathematics in Absence of Sight 

Following the UNESCO’s World Conference on Special Needs Education (1994) 

in Spain, the Salamanca Statement affirmed the necessity and urgency of providing 

education for children, youth, and adults with special educational needs within the 

regular education system. Within this system, most (under) graduate students with vision 

disabilities avoid taking mathematics courses at higher levels of education, and tend to 

feel anxious and negative about mathematics. As a result, these students are hindered 

in moving toward their desired fields of study, and careers (Janiga & Costenbader, 2015; 

Moon, Todd, Morton, & Ivey, 2012).  

Also there are some studies on learning and teaching mathematics for learners 

with visual impairments from early childhood to the secondary level ( Figueiras & Arcavi, 

2015; Barwell et al., 2016; Dick & Kubiak, 1997; Healy, 2015; Healy & Fernandes, 2011; 

Marson, Harrington, & Walls, 2013.; Quek, McNeill, & Oliveira, 2006; Vygotsky, 1978). 

There is also limited research focused on university-level students tackling advanced 

mathematical concepts (Janiga & Costenbader, 2015; Marcone, 2013; Moon et al., 

2012). To help redress this situation in this paper I report a blind student’s journey 

toward understanding pre-calculus concepts.  

One of the central tasks for learning mathematics in general and pre-calculus in 

particular, is to understand and interpret mathematical concepts, graphs, and objects 

(Healy, 2015; Healy & Fernandes, 2011, 2014). Healy (2015) claims that understanding 

the visual cues goes beyond "seeing" and can develop in the absence of vision, because 

such an understanding consists of other sensorial perceptions, relationships with 

previous experiences and knowledge, verbalization, and more. This view that blindness 

does not necessarily entail or result in any impairment of the visual cortex, is well 

 
12 In this study, “we” refers to Anthony, I, sometime his instructor and tutor. 
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established in the neurosciences (Burton, 2003; Hawellek, Schepers, Roeder, Engel, 

Siegel, & Hipp, 2013; Klinge, Eippert, Röder & Büchel, 2010; Jiang et al. 2009; Thaler, 

Arnott & Goodale, 2011). Moreover, there is substantial evidence indicating that the 

visual cortex involves and readily adapts itself to the other spatial sensory modalities of 

hearing and touch (for an example see: Spence, Nicholls, Gillespie, & Driver, 1998). 

Further explanations and more detailed discussion of neuroscience literature and 

instructional aspects of mathematics communication are beyond the scope of this paper. 

 Complexity of the Mathematical Graphs 

Most mathematical and statistical graphs contain a concise, complete, and 

precise summary of functions, equations, and information such as: ordered pairs, axes, 

origin, grid lines, tick marks, intersections and labels. Obviously, these components are 

all visual. Thus, for students with impaired vision, understanding the mathematical 

concepts behind them or learning the concepts themselves becomes an extremely 

challenging task. It is even the case that students who can see find it hard to ‘read’ this 

information—being visual doesn’t necessarily mean understanding what you see. 

Teachers working with visually impaired students struggle to convey the concept of a 

graph, especially when the concept begins to get more advanced and complicated. This 

suggests that to understand the learning processes of visually impaired and blind 

mathematics learners, it is important to investigate the particular ways in which they 

access and process information, how this shapes their mathematical knowledge, and the 

learning trajectories through which that knowledge is attained.  

3.2.1. Complexity of Mathematics Communication 

Mathematics communication and conceptualization have strong embodied 

components (Arzarello et al., 2014; Arzarello, Robutti, & Thomas, 2015; Campbell, 2010; 

Charoenying, 2015; de Freitas, 2016; de Freitas & Sinclair, 2012, 2013; Ginsberg, 2015; 

Mowat, 2010; Nemirovsky & Ferrara, 2008; Nemirovsky, Kelton, & Rhodehamel, 2012; 

Nemirovsky et al., 2013; Radford, 2013, 2014; Tall, 2006; Wilson, 2002). Embodied 

communication, gesticulation, gaze, pointing, and body language in mathematics 

discourse have critical roles in communication between sighted individuals when 
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discussing math concepts. In “The Emperor’s New Mind”, mathematician and physicist 

Roger Penrose (1989) wrote: 

Almost all my mathematical thinking is done visually and in terms of 
nonverbal concepts, although the thoughts are quite often accompanied 
by inane and almost useless verbal commentary, such as ‘that thing goes 
with that thing and that thing goes with that thing. (p. 424) 

This is an example that shows the tremendous role played by mathematically 

grounded gesticulation involved with deixis. Deixis refers to words and phrases such as 

“this” and “that”, “there” and “here”, that cannot be fully understood without additional 

contextual information, such as pointing, gaze, and body language. Comprehending 

different uses of deixis is one of the main difficulties that a visually impaired student 

encounters during lecture time or tutoring sessions. There are many forms of deixis in 

verbal communication that make sense only with accompanying gestures such as 

pointing to a specific component of a graph. Often, sighted instructors forget that there is 

a student in the class who is not able to follow their gesticulations. 

Despite the availability of supporting resources such as Braille/tactile coursework 

materials, and skilled vision teachers (vision teachers are educators who have all the 

skills of an ordinary teacher, but receive specialized training to work with visually 

impaired students) for blind students within K-12 schools, very little support is offered in 

higher education. For example, at the university at which study took place, there was no 

mathematics-vision-professor to teach the calculus course. Also, the tutor and assistant 

(myself) were all sighted individuals without specialized training. Therefore, no one knew 

how to use/read Braille or Nemeth codes with Anthony. Thus, we had to find a common 

way to communicate – understandable to all parties including instructor, tutor, assistant 

– that was also comprehensible to Anthony. 

 Structure of the Chapter 

 The chapter is organized into two main sections. In the first section, under the 

title methodology, I will discuss who Anthony is, what obstacles he encountered through 

pre-calculus course and how those challenges were tackled. In the second section, I 
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extend Nemirovsky et al.'s perceptuomotor integration framework (2013) to explore 

mathematical learning and sense making using the tactile tools. I analyse Anthony’s 

temporal flows of perceptuomotor activities that are inhabited bodily in Husserlian 

experiential time (1991) when he describes a rational function’s behavior. 

 

 Research Questions 

The research questions pertaining to this study aim at examining how a blind 

undergraduate student overcame obstacles in learning pre-calculus concepts. So, this 

study explores:  

a) How do mathematical tools and resources (such as tactile graphs, screen 

readers, etc.) make mathematical communication and learning possible 

for the blind learner in a pre-calculus course?  

I expected the blind student to face difficulties in graphing and explaining the 

function's behaviour. So, I was interested to find out if tactile graphing could be 

accomplished with enough precision and whether these new practices preserved the 

mathematical properties of the function. Accordingly, the analysis presents how a 

specialized mathematical tool (precise tactile graphs) supports the process of learning 

that coordinates the body in mathematical activity. 

b) How does the emergence of the blind student's bodily activities and 

gestures embody and express mathematical learning? 

 Theoretical Framework: Perceptuomotor Integration 

Generally, in learning a new skill, there are phases in which perception and 

motor aspects of the activity seem discordant. For example, a novice driver experiences 

incongruence among his bodily motor arrangements of eyes, hands, and feet when he 

encounters a road hazard. The same can be applied for the learning of dance, music, 
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playing soccer, and many other skills. Nemirovsky suggests: “transition from 

discordance between perceptual and motor aspects to their integration is common to all 

learning; that is, perceptuomotor integration is a milestone for fluency in any [other] field 

[such as mathematics]” (p. 380). So, involuntary motor activity develops as a part of 

perception, while the achievement of perceptuomotor integration requires different 

periods of time for learning. For example, consider the backwards-brain bicycle, created 

for Destin Sandlin. The backwards-brain bicycle is a regular bike that has been modified, 

so that if the rider turns the handlebars to the right, the bike goes left. In this case, 

although the rider has the knowledge of operating a regular bike and the information 

about the unique bike, he cannot ride it because of a lack of perceptuomotor integration. 

Individuals cannot go even few feet without putting a foot on the ground or falling. In this 

experiment, the bike shifts or inverts the rider’s direction of movements. It is reported 

that after riding the backwards-brain bicycle over a few months, the movement starts to 

be accepted as normal. After adaptation, returning to a regular bicycle also demands its 

own period to learn, because involuntary motor participation in perception is crucial 

(Nemirovsky et al., 2013, p. 381). 

3.5.1. Tool Fluency  

Mathematical learning includes appropriating skillful use of mathematical 

instruments, which are cultural tools that mediate mathematical activity. A mathematical 

instrument is a “material and semiotic tool together with the set of embodied practices for 

its use within the discipline of mathematics. So, the fluent use of mathematical 

instrument allows for the culturally recognized creation in mathematical domain, just as 

members of the musical communications acknowledge” (Nemirovsky, 2013, p. 373).  

The tool fluency involving perceptuomotor integration is an interpenetration of the 

perceptual and motor aspects of the activity that allows the performer to “act with the 

holistic sense of unity and flow” (p. 373). With an explicit approach to embodiment, “tool 

fluency” includes mathematical thinking and learning. Within perceptuomotor integration 

‘mathematical thinking’ is defined as bodily activities that involve different degrees of 

explicit/implicit expression. Also, ‘mathematical learning’ is defined as the 

transformations and coordinations of lived bodily engagements while the subject 
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participates in mathematics activities. Since learning mathematics relies on skillful 

embodied tool use – acquired in practice – the teacher’s mediating intervention is not 

necessary (Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2013, 2011). This is distinct 

from other theories, such as instrumental genesis (Artigue, 2002; Guin & Trouche, 1998) 

and semiotic mediation (Bartolini Bussi & Mariotti, 2008; Falcade, Laborde, & Mariotti, 

2007; Mariotti, 2013), which rely on a teacher’s didactical involvement. It means, within 

perceptuomotor integration, there are no scaffolding stages in which a teacher must 

define the potentiality of the artefact for the learner though a dialectical approach. 

Nemirovsky et al. (2013) exemplified tool fluency with the enactments of overt 

skillful motoric and perceptual engagements, in the form of finger arrangements and 

movements when a pianist listens to a piano piece. In contrast, lack of fluency would be 

described when there is not such a holistic integration. For example, a beginner soccer 

player may not be skillful enough to coordinate his body and pass the ball to his 

teammates in a proper direction with suitable speed, power, and accuracy. The lack of 

fluency for him could be shown through the separation between the motoric articulation 

of a standard pass and the perceptual qualities of that pass. So, there is a mismatch 

between the pass and perceptual components of it. 

3.5.2. Lived Experience 

The analytical approach centers on the phenomenology of lived experience. By 

lived experience, I mean the temporal streams of perceptuomotor activities that are at 

once bodily, gestural, and interpersonal. The temporal flows of perceptuomotor activities 

are not categorized in terms of schemas or patterns, forms of reasoning, cognitive 

structures, procedural strategies, or any other mentalist approach. This view informs an 

emerging body of literature in mathematics education that aims to find how multiple flows 

of embodied activities constitute the experience of mathematical learning (Arzarello, 

2006; Arzarello et al., 2015; Arzarrello & Domingo, 2016; de Freitas & Sinclair, 2012; 

Radford, 2008, 2013, 2014; Roth & Thom, 2009). 

 By temporal flows within Husserl’s phenomenological attitude, I mean any 

perceptuomotor activity infused with past and future: i.e., an activity at a certain moment 

is not isolated, rather it is comprised of partial enactments of retentions (just-past), now 
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phases, and protentions (about-to) (Husserl, 1991). For example, when Anthony places 

a Wikki Stix (wax sticks. More elaboration will be provided in 3.6.5 subsection) on the 

graph paper to mark a vertical asymptote of the given rational function, instead of 

describing his hand movements, gestures, body movements, and his words as outer 

manifestations of his mental schemes for the concept of rational functions, I try to 

understand a temporally extended course of actions that he experiences during the act 

of identifying vertical asymptotes. This is according to what Husserl argues about the 

experience of a particular note in a melody which is not solely based on the “present” 

sounding note, rather this temporally extended experience includes retention of the note 

sounding “just before”, and immediate anticipation (protention) of the upcoming note, 

about to sound in experiential time. Taking a Husserlian perspective on Anthony’s lived 

experience of marking vertical asymptotes with his integrated tool fluency implies the 

retention of knowing vertical asymptotes are vertical lines which correspond to the 

denominator zeroes of a rational function, where the function is undefined; and in 

anticipating (protention) the path that graph follows but never touches.  

3.5.3. Tactile Perception Verses Active Sensation: 
Perceptuomotor Integration and Tool Fluency in Tactile 
Touch 

For a blind learner, tactile touch is not a passive sensation. He actively picks, and 

refines sensations according to a goal (Gibson, 1962). Lepora (2016) argues:  

Sensation refers to the first stages in the functioning of the senses, 
related to the effect of a physical stimulus on touch receptors in the skin 
and their transduction and transmittal from the peripheral nervous system 
to the sensory areas of the brain; tactile perception refers to later stages 
where the sensation is processed, organized and interpreted so that [the 
subject] may use the information to guide its behaviour based on 
understanding its environment. (p.151) 

Active sensing refers to deliberately controlling finger movements, while 

contacting a stimulus, with a goal in mind. Accordingly, lived experience of an active 

sensation for a tactile graph would refer to ongoing covert and overt experiential 

embodied transformations. More specifically, they reference what has just happened and 

adjust the bodily movements on the sensory tool according to what is anticipated to 
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happen. For instance, in tracing a rational function on an embossed printed paper, the 

learner, having just placed the vertical asymptotes (immediate-past or just-past), uses 

his fingers to sense and place the function on the graph (present) in anticipation of 

graphing the function in a way that approaches the asymptote but does not intersect it 

(immediate future/about-to). 

Consequently, active sensation transforms to tactile perception when the 

acquired learning and information guides gestures and behaviour of the subject in an 

environment (Lapora, 2015). Therefore, for a visually impaired individual who constantly 

traces different components of a tactile graph with his fingers, active sensation is a 

continuous process of transition from discordance between the procedural and motoric 

aspects of the stimulus in experiential time. In this case, the active sensation would be 

expressed as mathematical thinking infused by explicit and implicit expressions of bodily 

activities.  

Taking a perceptuomotor integration perspective, I will follow the role of 

embodiment in the use of the mathematical tools. I will trace the development of 

Anthony’s tool fluency, which emerges with body orientation and coordination, and 

appropriate use of the mathematical instrument. As suggested by perceptuomotor 

integration theory, I expect the retention and protention involved in active sensation to be 

clearly associated with motor or perceptual aspects. Later, when the active sensation 

merges with the tactile perception, it becomes an integration of perceptual and motor 

aspects of tool fluency.  

 Methodology 

3.6.1. Who Is Anthony? 

This study is part of a larger research project exploring ‘Issues and Aids for 

Teaching and Learning Mathematics to Undergraduate Students with Visual Impairment.' 

Prospective participants, who are visually impaired, are identified and invited by the 

Centre for Students with Disabilities’ (CSD) specialists to participate in the study. The 
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participant focused on here is a blind student named Anthony, who was taking a pre-

calculus course.  

Anthony is a twenty-eight-year-old male, who is doing his sixth year of 

undergraduate studies in kinesiology and health science at a Canadian university. He is 

an active student both in sport and social activities, and usually participates in many 

school events. Anthony was born with a profound visual disability and is completely blind 

now. At the time of the study, he had successfully passed Mathematics Foundations the 

previous semester, fulfilling the prerequisite for enrolling in pre-calculus. Anthony had 

excellent mental calculation skills, which enabled him to do basic calculations without a 

calculator. He was very keen to create a pathway for other sight-disabled students to 

pursue their academic dreams by taking mathematics courses. What follows is a brief 

description of the material and software used in the study and the procedures that we 

employed to assist Anthony through his pre-calculus journey. In this journey my role was 

to assist Anthony in class and tests, to prepare class notes. 

3.6.2. Written/Printed Materials 

Braille is well known as a tactile writing system designed for blind and visually 

impaired individuals. This method of writing is commonly used in Canada up to grade 

twelve, but not very often afterward. One of the significant shortfalls for Braille, limiting its 

adaptation for mathematics courses, is that it involves strictly linear notation and is not 

generally useful for mathematics and its various notations (Marcone, 2013). Besides, 

Braille readers can only perceive what is under their fingers at the time, so it can be 

tough for them to obtain a general and holistic view of algebraic expressions and graphs 

as a whole. The Braille extension specialized for mathematical notation is known as the 

Nemeth Code (Nemeth, 1972). Nemeth Braille was first developed in 1952 by Abraham 

Nemeth and has a different coding system than Braille does. But it is still linear in nature. 

In this study, neither the instructor, nor the teaching assistant, nor the tutor knew how to 

write and read Braille codes. Considering Braille and Nemeth Code’s limitations, we 

chose LaTex to translate mathematical language and formulas and prepare other written 

and printed materials for Anthony. LaTex is used to prepare textbook content, and class 
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and lecture notes; and then all the files were shared through DropBox among different 

parties. 

 

Figure 3.1  An example of expressions in Nemeth. Adapted from Microsoft 
Developer Network 

3.6.3.  LaTex 

Blind and visually impaired students face serious challenges when they need to 

translate mathematical equations and materials from print to Nemeth, or Nemeth to print, 

specially for sighted instructors, tutors or classmates. LaTex is a text-based and non-

graphical language in nature, which can be used by anyone, blind or sighted. The most 

important reason that we chose to adopt LaTex was that we found LaTex to be a 

common language that all parties involved in teaching and learning the course 

(instructor, learner, tutor, and Anthony’s assistant) could communicate with. So, we 

supplemented LaTex language with our own individual typographic codes while using 

Word files for mathematical communications. For example: 

\frac{numerator}{denominator} is used for fractions, % for comments, and all the 

mathematics formulas are placed between $s. So, for example, $d = \sqrt{(x_2-

x_1)^2+(y_2-y_1)^2}$ means d = √(x2 − x1)2 + (y2 − y1)2. However, employing the 

adapted code in the LaTex and Word files made another level of complication for 

Anthony. For example, in the Word files, after each section I meaningfully entered four 

blank lines, and marked where the explanation started or finished. Anthony became 

confused if three or five line spaces were accidentally entered instead of four. See 

Figure 3.2. 
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Figure 3.2  A screenshot from a lecture note; written in a Word document. 

 A table of contents (items) at the top of each LaTex and Word file was used to 

give insight into what was compiled in each file. So, Anthony did not have to go through 

the whole document to figure out what was in it. Anthony also suggested that descriptive 

file titles were best for identification purposes rather than the date of the class (as were 

previously used to record class notes in other courses) (Figure 3.3). 
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Figure 3.3   Descriptive approach were used to name Word files 

Note. The numbers indicates order of file creation, following by the title of its 
contents. 

3.6.4. JAWS 

Digital technologies can facilitate conversions between written text spoken 

versions of written materials and mathematics equations. Furthermore, use of spoken 

rather than written materials suggests that the ears can also be used as alternates for 

the eyes. Having outlined the limitations and possibilities of incorporating non-visual 

senses for a blind learner, for conducting this research we mostly relied on auditory and 

tactile materials.  

JAWS (Job Access with Speech), is a computer screenreader program for 

Microsoft Windows, which is produced by the Blind and Low Vision Group of Freedom 

Scientific, St. Petersburg, Florida, USA. The software allows blind and visually impaired 



 

63 

users to read the screen either with a text-to-speech output or by a Refreshable Braille 

display. JAWS reads most of the programs: such as Word documents, LaTex files, 

browser’s content and actions in Windows. Anthony’s Windows laptop read using JAWS. 

VoiceOver is another function designed for Mac users and works in Mac iOS. In addition, 

the PDF reader was used when a PDF file had to be read. 

3.6.5. Tactile Graphs: A Real Challenge  

One of the very challenging problems in learning and teaching mathematics to 

visually impaired students is to help them with printed/drawn mathematical graphs and 

figures as the concepts become complicated. Anthony faced these difficulties in various 

forms, in reading a textbook's pictorial information and graphs, on sketched figures on 

the board during the lecture time or tutoring sessions, and when he was doing exercises 

at home. To tackle these challenges, we used different novel approaches such as 

speedy sketch graphing using a net-board and crayon, or Wikki Stix and a wheel-tracing 

tool (a sewing tool), as well as permanent raised graphing. In the following subsections, I 

will provide more details about each method. 

 Sketch graphing 

Anthony found it difficult to follow lectures when there was an image or figure 

displayed on the board. The problem was worse when the lecturer used deixis such as 

“this” and “that” for describing a mathematical idea or graph pointing to different sections 

of the figure on the board. To tackle this trouble and assist Anthony, I rapidly made 

graphs using net-board and crayons (Figure 3.4 A & B) or Wikki Stix (Figure 3.4 C). I 

shall call this sketch graphing. 
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Figure 3.4 Sketch graphing   

Note. (A) & (B) “sketch graphing”: An innovative way for drawing graphs during 
lectures and tutoring sessions using a “metal net-board”, crayons and 
normal paper. (C) Examples of using Wikki Stix on a dotted line graph 
paper at Georgia Academy for the Blind Learner. Each non-mathematical 
raised point on the graph (the tack used to hold down the “stix”) places a 
new level of confusion for the blind learner. 

A net-board is a wooden board with a metal net (screen mesh) installed on it. As 

shown in Figure 3.4 A&B, using crayons while paper is placed on the net-board creates 

a texture that is raised and tangible for Anthony. I also marked axes and other relevant 

parts of the graph using a wheel-tracing tool that I bought from a fabric store. Figure 1B, 

shows a paper located on net-board and axes (in blue) that are scored by the tracing 

wheel.  

The other approach was using Wikki Stix for graphing. Wikki Stix are wax sticks 

that can be pressed down with the fingertips, and no glue is needed. They are also easy 

to peel up and reposition. Wikki Stix were also used on embosser13 printed graph 

papers, with dotted and dashed grids and axes to bring out different textures. 

Wikki Stix are problematic in graphing, because there is no distinction between 

different components of the graph (such as asymptotes) and different parts of the 

function. However, using Wikki Stix was helpful and precise when Anthony was graphing 

on embosser-printed papers (especially during test/quiz times). Practically, sketch 

graphing was fast and adequate to provide a tangible ‘image’ of the graph to the learner, 

 
13 Braille embossers are printers for Braille. Braille embossers usually need special braille paper 

which is thicker and more expensive than standard paper. 

A

 

B
 

C
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and provide a sufficiently precise graph for the instructor to evaluate Anthony’s 

understanding. See figure 3.5. 

 

Figure 3.5   Another form of Sketch graphing using Wikki Stix on embosser- 
printed papers. 

 Permanent graphing 

To present the textbook, assignments, class notes and pre-designed class 

diagrams and graphs, I plotted permanent graphs. To do so, firstly we examined The 

Swell-Form Graphics Machine that cooks graphs and “swells” all black inks. As the 

swell-touch paper goes through this machine, the heat reacts with only the black ink and 

causes it to “swell” or puff up, creating a tactile image. We found swelled graphs not 

helpful in term of providing precise tactile graphs/lines. The texture that was produced 

with the Swell-Form Graphics Machine was homogeneous, and would not allow the 

learner to precisely distinguish different components of the graph such as axes, function, 

and intersections. For instance, Figure 3.6 A shows a grid paper produced by The Swell-

Form Graphics Machine. Here, it is not difficult to imagine all the swelled lines, curves 

and grid lines are homogeneous and therefore not distinguishable. 

Therefore, we decided to innovate a new way to create graphs of functions. 

When there was enough time, I (as Anthony’s assistant) created graphs using various 

materials and textures, trying to make them as precise as possible. For this purpose, 

axes and grids were first printed on a graph paper using a Braille embosser. The 

approach was to design and build axes and grids with different textures with the 
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computer and send it for printing to the embosser. Then, I drew graphs using hot 

glue/glue gun, a wheel tracing tool, and stickers. For labeling, I used Nemeth Code on 

top of the graph paper, in a similar way that was represented in the original source 

(Figure 3.6 B). 

 

Figure 3.6  Permanent graphing  

Note. (A) Grid paper printed by Swell-Form Graphics Machine. (B) Permanent 
graph – created on a grid paper printed with an embosser. X and Y-axes 
are marked by tick lines. In this graph: A– is the title of the graph, 
including section and page number (Nemeth Coded). B– Origin marked 
by a sticker. C– x-intercept and its coordinates (Nemeth Coded). D– 
Function created by a glue gun. E– Vertical asymptotes made by a 
tracing wheel). (C) Shows embosser grid paper with color and thick lines. 
Tick lines would be printed with two width dots and grid lines with a single 
dot. 

Therefore, figures and graphs, particularly the ‘permanent graphs’, could provide 

all the details as precisely as the pictorial parent. Here is a summary of the 

characteristics of a permanent graph:  

• Printed grids as well as marked x and y-axes, the origin (0,0), and x-

intercepts. 

• The function drawn by a glue gun (a regular line). 
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• Asymptotes and other guidelines drawn by glue gun or tracing tool 

(dashed lines). 

• Function notation, figure labels, and other necessary information provided 

using Nemeth Codes. 

• Direction of the paper was marked at the top of the paper with an arrow. 

To exemplify how mathematical tools and resources (such as tactile graphs, 

screen readers, etc.) make mathematical communication and learning possible for the 

blind, I summarize how Anthony graphed f(x) =  
𝐱𝟐−𝟓𝐱

𝐱𝟐−𝐱−𝟔
 . In section 3.7, l elaborate how 

Anthony described the function behaviour. 

Anthony entered the function in a Word document in LaTex  as $f(x) = \frac{(x^2 - 

5*x}{x^2 - x - 6}\$ , let the VoiceOver read it several times, copied the equation and 

pasted in the next line, deleted the denominator, set the nominator equal to zero ($\(x^2 

- 5*x) = 0\$) and identified x-intercepts at 0 and 5. Then, Anthony copied the equation 

again. This time he deleted the numerator, set the denominator equal to 0, and factored 

the equation ($\(x^2 - x - 6) = (x – 3)*(x + 2) = 0\$). He identified vertical asymptotes at 3 

and -2. Anthony typed explanations for each step. Again, Anthony copied the function 

notation and identified horizontal asymptote at y = 1. Copying and pasting the equation 

to solve the given equation was a common practice when Anthony was solving 

equations. In each step, he copied and pasted the last form of the equation and 

simplified it depending on the goal (Figure 3.7 A). In this practice, Anthony utilized 

VoiceOver, Word and LaTex to read and work through the equation. In this case, these 

tools were supporting his movement back and forth between just-past and present time 

in anticipating the next step. For example, the tools helped Anthony to remember, read 

(retention) and identify zeros of the denominator (present) in anticipating where the 

function is undefined (protention). 

After doing all the calculations, Anthony used Wikki Stix to mark horizontal and 

vertical asymptotes, and graph the function. In each step, Anthony went back to his 

computer to check if he was on the right track. After about 20 minutes Anthony could 

graph the function correctly (Figure 3.7 B). But this form of graph could not be used later 

efficiently. Wikki Stix could peel off easily. Also, unlike with permanent graphs (Figure 
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3.7 C), it was not easy to distinguish Wikki Stix representing graph lines from those 

representing asymptotes. 

 

In the above section, I have discussed different obstacles encountered in 

teaching and learning mathematics at the university level, as well as strategies that we 

employed to tackle those difficulties in written, graphical and verbal materials. In 

particular, I have discussed how perceiving and graphing functions was challenging in 

the different contexts and situations. I approached the obstacles with the “sketch 

graphing” and “permanent graphing” strategies. During the lecture time the use of deixis 

in communication brought another level of confusion for the blind student, who had no 

access to visual cues.  

In the next section, I will discuss how Anthony took advantage of using my 

innovative tactile graphs to communicate the concept. Also, I will draw attention to his 

high level of bodily engagement—particularly his gestures and talk.  

A

 

B C
 

Figure 3.7  Anthony’s graphing process 

Note. (A) VoiceOver is reading the screen, while Anthony was continuously 
copying and pasting the function notation in each step to solving it. He let 
the VoiceOver read each step, sometimes from a few lines above. (B) 
Anthony graphed $f(x)= (x^2-5x)/(x^2)$ using Wikki Stix. (C) The same 
function illustrated as a permanent graph. 
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 Demonstrating the Behaviour of a Rational Functions  

To examine the emergence of Anthony’s coordination of motor, perception, and 

gestures, I asked Anthony to graph f(x) =  
x2−5x

x2−x−6
 and consequently explain the graph’s 

behaviour. Here, I first describe and analyse Anthony’s lived experience in experiential 

time (Husserl, 1991); and then explain aspects of the episode that were especially 

illustrative of developing perceptuomotor integration. Accordingly, the quality of these 

activities could establish Anthony’s tool fluency if the retentions and protentions 

demonstrate an excellent interpretation of both perceptual and motor aspects, especially 

in comparison to the early stages of the perceptuomotor integration where there is not 

such a holistic integration, unity and flow (Nemirovsky & Ferrara, 2009; Nemirovsky et 

al., 2013; Nemirovsky et al. 2011).  

As I reported earlier, Anthony used a Word document and VoiceOver to do the 

required computation and in solving relative equations. He determined vertical and 

horizontal asymptotes, intercepts, and marked them with Wikki Stix on raised grid paper. 

Then he drew the graph with the same materials. The following episode happened right 

after Anthony graphed the function. The researcher asked Anthony to explain the 

function’s behaviour for her, a sighted audience. Anthony’s words are underlined.  

Anthony taps on the second quadrant on the permanent graph  

00  I'm in quadrant two, the function goes like this. He moves his left hand 

from left to right horizontally. 

01 and hugs the vertical asymptote at y=1. Anthony brings his right forearm 

parallel and just below the left forearm. So, his right forearm functions as the 

horizontal asymptote and left forearm as the function. It seems that the function 

(left forearm) moves from the -∞ and hugs the horizontal asymptote (right 

forearm) at y=1. 

02  and as it gets closer to [pause]…the y-axis... [pause]...[left and right 

forearm move upward] it goes up.. [long pause, Anthony seems unsure]. This 

pause could be a sign of discordances between Anthony’s motor and perception 
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activities in the experiential time. That is to say, the retentions of the y-axis as the 

first left-to-right vertical asymptote (perceptual) in moving his left and right 

forearm upward (motor activity) in anticipating the functions’ behaviour – are not 

synchronized and integrated yet. 

With an active sensation, Anthony touches the graph again, and accordingly 

recognizes he missed the horizontal asymptote at x = -2. This is an evidence of an 

“active sensation” of the tactile graph because that occurred through on-going 

experiential embodied adjustments infused with the recall of the experience of the past 

(identifying vertical asymptotes x = -2 and x = 3), and expectations of not crossing x = -2 

in the immediate future. So, Anthony wanted to adjust his bodily movements (motoric 

activities) for what he anticipated to occur (perceptual aspects of graphing). This also 

explains an early perceptuomotor learning phase because of the clear association of 

motor and perceptual activities to retention and protention, respectively (Nemirovsky et 

al., 2013).  

Then, Anthony “waves” his left hand to emphasize that this will demonstrate the 

function. He moves the left hand from left to the right horizontally. It seems that by 

“waving” the hand, he wipes off his last sketch.  

03 The function [left hand-marked with yellow vector in Figure 3.8], goes 

horizontal; hugs up the horizontal asymptote [blue vector- Figure 3.8] at y = 1 

[two forearms touch each other] (Figure 3.8 A) and then, it goes up to the vertical 

asymptote at x = -2 [two hands move upward, he “taps” on the left wrist with his 

right forearm] (Figure 3.8 B). That means that [function] doesn’t cross it [vertical 

asymptote] and it comes up (Figure 3.8 C). 

Anthony uses the “taps” (Figure 3.8 C) gesture to show the function approaching 

the vertical asymptote closely but not crossing it. Tapping is a motoric bodily activity and 

an enactment of perceptual learning where a vertical asymptote corresponds to the 

zeroes of the denominator for a rational function (where the function does not touch or 

cross it). The action of ‘tapping’ in present time with the retention of coordinates and 

characteristics of the vertical asymptote at x=-2, anticipates an approach but not a 
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crossing. Therefore, the ‘tapping’ gesture is an emergence of integrated perceptual and 

motor aspects in the form of tactile perception. 

Anthony again touches the permanent haptic graph, instead of his sketch by 

Wikki Stix, to refresh his short-term memory (Figure 3.8 D). He explained that it is hard 

to recognize different components of the graph – distinguishing asymptotes from 

function, for instance – on his sketch graphing because they use the same material and 

texture. In the permanent graph, asymptotes are drawn with a tracing tool and are 

dotted, while the function is in the form of raised line/curve. 

04 …and the middle [part of the] function, is where the function is between 

the two vertical asymptotes [-2<x<3]; doesn’t cross either one [waves both his 

forearms to emphasize they are vertical asymptotes] (Figure 3.8 E- vertical 

asymptotes marked with the red dashed vectors). But, it does cross upward, over 

the origin, and over the horizontal asymptotes at y= 1 and comes toward the 

vertical asymptote at x=3 [‘Taps’ his right wrist (asymptote) to his left forearm 

(function)], and again, never crosses it (vertical asymptote) (Figure 3.8 F). And 

this is the middle part of the function [taps on the middle part of the graph]. 
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Figure 3.8 Anthony explains a rational function’s behaviour using his hands, 
forearms and body. 

Note. Anthony explains the rational function behaviour for 𝑓(𝐱) =  
𝐱𝟐−𝟓𝐱

𝐱𝟐−𝐱−𝟔
 . Each 

arrow shows the direction and path of the function’s movement (red 
dashed arrows=vertical asymptote; blue dashed arrow=horizontal 
asymptote; yellow arrow=function; green arrow=body movement). 

This is an evidence of a gradual transformation in Anthony’s bodily experience. 

His motor and perceptual activities of showing graph behaviour, as well as its vertical 

and horizontal asymptotes, are now synchronized and adjusted. He also verbally 

explained the situation clearly with a fine-tuned perceptuomotor integration of his bodily 

activities. The role of tactile and ‘permanent graph’ and his calculations on the screen is 

not only to refresh his memory but also to provide an ongoing active sensation toward a 
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tactile perception on a different scale. In other words, Anthony adapts the tactile graphs 

to re-scale the graph and coordinate his body. 

05 Afterward, Anthony taps in each quadrant, while naming them. He 

explains the behaviour of the right side of the function, for x>3. It appears that 

Anthony has switched hands as needed. He ‘points’ and ‘taps’ on his right hand 

to stress the change of roles of this hand. So, from now on, the right-hand plays 

the function role and not the asymptote (Figure 3.8 G). 

06 This is my function (Figure 3.8 G). It comes up along the vertical 

asymptote at x=3 [from -∞ ] (Figure 3.8 L). And, as it comes up, instead of 

crossing over horizontal asymptote at y=1, it gets close to it [bends both 

forearms, while they hug each other. Bends his hands and body to the right], and 

does not cross it (Figure 3.8 M).  

During this episode, Anthony was involved in active sensation and perception 

because he was deliberately picking and refining active sensations to accord with his 

body movement. The activate sensation was undergoing a transformation into tactile 

perception in terms of gestural and body coordination, while Anthony was illustrating the 

function’s behaviour (Gibson, 1962; Lepora, 2016). Evidently, Anthony’s thinking and 

learning with the mathematical tools started from calculating vertical and horizontal 

asymptotes, zeros of function and x-intercepts. Then, his bodily orientations transformed 

from an active sensation to a tactile perception with an integrated perceptuomotor 

learning evidenced not only on his forearms [01-03] but his whole body [04-06]. This is 

also where Anthony harmonized words and involuntary bodily activity (motor) in bending 

his body along with the moving hands [Figure 3.8 M], providing evidence of his ability to 

anticipate the next move of the function (perceptual). Anthony’s motor activities were 

involuntary and enacted as a part of perceiving.  

The selected episode also presented how embodiment can work as a visual cue 

for a blind learner. Anthony was demonstrating the behaviour of the function with his 

body in a way that represented the dynamic nature of the function’s graphing. In 

addition, the verbs that were used by Anthony (e.g.: moves, hugs, crosses, etc.) suggest 
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that he also perceives mathematic entities as dynamic objects (Sinclair & Gol Tabaghi, 

2010).  

 Discussion  

To answer my first research question: in the first section of this paper I drew 

attention to the variety of obstacles that a visually impaired undergrad student, his 

instructor, and tutor encountered in teaching, learning and communicating pre-calculus 

concepts in written, graphical, and verbal materials. I also shared our experience of 

some solutions and tools that enabled a blind student named Anthony to overcome 

those struggles effectively. I explained how the lack of access to the visual cues in 

mathematics communication involving gestures, pointing, and deixis could hinder 

comprehension. I discussed how perceiving and graphing functions were challenging in 

a variety of situations (during lecture, textbook components, exams, and practice time). 

We tackled these obstacles with two novel strategies called ‘sketch graphing’ and 

‘permanent graphing.’  

In the next part of the study, I analysed temporal flows of perceptuomotor 

activities that are inhabited bodily and interpersonally to address the emergence of the 

blind student's coordination of gestures embodying and expressing mathematical 

learning (Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2013; Nemirovsky et al. 2011). 

I described and analysed Anthony’s responses to the given rational function’s behaviour. 

In this context, I focused on Anthony’s gestures and body movements, when he 

positioned his body in the  mathematical practice. I found mathematical embodiment to 

be the process of learning and cultural invention that coordinated his body in the 

mathematical activity. This is in accordance with Hall and Greeno’s (2008) assertion that 

“If concepts are bundles of social and technical practice that develop over historical time, 

learners’ bodies are positioned or placed in these practices just as are technologies” (as 

cited in Hall, Ma, & Nemirovsky, 2015, p. 113).  

The tactile graphs appear to have supported Anthony’s learning and enabled his 

active sensation and tactile perception. Anthony actively engaged in sensation, 

controlling the finger’s movements and course while contacting the tactile stimulus 
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(active sensation) as a bodily enactment of mathematical thinking, which later integrated 

into the use of learnt information to guide his gestures and motor activities while 

demonstrating the behaviour of a rational function (tactile perception). So, tactile graphs 

maintained an on-going infusion of retention of perceptual and/or motor activity in 

anticipating the function’s behaviour (protention).  

In addition, the tactile graphs—along with other tools—changed the scale and 

modality of mathematical practices, which invited the blind learner to create and stabilize 

new forms of embodied mathematical activity. I found the multimodality of mathematical 

activity as a relatively stable, culturally understandable demonstration of a rational 

function’s behaviour with a great deal of detail in representing its properties. So, in this 

case, tool fluency was attained when Anthony’s demonstration of the function’s 

behaviour was seen as “culturally recognized creation” by the members of “mathematical 

communities” (Nemirovsky et al., 2013, p. 373).  

My study supported past research that found lack of access to the visual field 

does not obstruct a blind student’s ability to visualize, but rather morphs it ( Healy & 

Fernandes, 2011, 2014). In other words, Anthony’s haptic exploration of the tactile graph 

involved exploratory procedures: active touch patterns to optimize the extraction of 

information the he needed to obtain (Klatzky, Lederman, & Reed, 1987). He used his 

fingertips to explore diverse information from tactile graphs and other written resources 

(active sensation). Anthony’s different body parts, such as his forearms and wrists, 

demonstrated a high level of body engagement and mathematical embodiment, 

especially in terms of his gestures (wave, trace, touch, slide and tap) in the form of 

tactile perception, which demonstrates integrated perceptual and motor activities.  

Having a non-dualistic and non-representational view of the mind and starting 

from the premise that cognition and environment are intertwined entities, the basic idea 

is that cognition is a feature of living material bodies characterized by a capacity for 

responsive sensation. In Anthony’s case, I observed a high level of mathematical 

embodiment in terms of those responsive sensations, thinking and learning, which may 

be called cognitive constructs, but which are located in the flesh. In other words, his 

body gestures exhibited thinking not as a process “that takes place ‘behind’ or 

‘underneath’ bodily activity, but is the bodily activity itself” (Nemirovsky & Ferrara, 2009). 
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In addition, mathematical tools became extensions of the learner’s body. This 

sociocultural orientation incorporates “a strong position with respect to embodiment, 

whereby the mathematical tool is not just an instrument, but with tool fluency becomes a 

quasi-extension of one’s own embodiment” (Sedaghatjou  ،  Campbell, 2017, p. 7). 

 Conclusion 

Mathematics understanding is multimodal in nature (Radford, 2013, 2014; 

Radford, Edwards & Arzarello, 2009). Although teaching and learning mathematics at 

the secondary level seems challenging and time-consuming for sight-disabled learners, 

it is not impossible. I found a high degree of non-visual sensory and body engagement in 

Anthony’s comprehension of the pre-calculus concepts. This is in accordance with 

neurological evidence to support this position suggested by Gallese and Lakoff (2005) 

that “cortical pre-motor areas are endowed with sensory properties” (p. 459), and that “. . 

. circuitry across brain regions links modalities, infusing each with properties of others” 

(p. 456). I also found, as Vygotsky (1986) claims, that providing proper and timely 

semiotic or material tools “alters its entire structure and flow”, while the learner is actively 

engaging in processes (Healy, 2015, p. 2).  

My study took different a theoretical approach than Healy (2011, 2015, 2016, 

Healy & Fernandes, 2014). Instead of adopting Vygotskian mediation theory and digging 

into the abstraction, mental function and process, discussing artefact and sign 

separately I looked at the integrated motor and perceptual integration in terms of 

perceptuomotor tool fluency. For example, Healy & Fernandes (2011) argue “gestures 

are illustrative of imagined reenactions of previously experienced activities and that they 

emerge in instructional situations as embodied abstractions, serving a central role in the 

sense-making practices associated with the appropriation of mathematical meanings.” 

(p. 157). However, the finding questions gestures as only the “imagined reenactions of 

previously experienced activities” as well as their emergence only in an “instructional 

setting”. The mathematical gestures I observed could be perceived as unified perceptual 

and motor activities in the form of tactile perception (Lepora, 2016, Nemirovsky, et al. 

2013). Specifically, the emergence of harmonized temporal flows of perceptual and 

motor activities in using a mathematical tool is not necessarily related to “instructional 
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situations”. So, the mathematical tool is at once a semiotic tool, material and set of 

embodied practices that aided the learner to explore mathematics regardless of visually 

disability. Importantly, I am not arguing that the blind or sighted learner inhabits non-

intersecting mathematical concepts and world. The distinguishing characteristic of this 

theory lies in the methods of using and exploring the mathematical instrument; or 

exploring mathematical concepts via instruments and therefore become fluent in their 

use. 

This study also suggested that the digital technology that facilitated conversation 

between text and other written materials could support learning and practicing 

mathematics. This suggests a response to one of the questions raised by Healy and 

Fernandes (2014). However, the limitation in this study is the participation of only one 

student.  

Future research could reveal what kind of mediators could be used to help 

visually disabled learners to successfully pass other courses, such as advanced biology 

or statistics at the university level. In addition, I found that learning advanced 

mathematics is very time consuming for visually disabled learners. This is not because 

they mentally process the information with a delay, but rather searching information in 

digital and tactile files, remembering each algebraic equation while working through 

problems, and revisiting each step takes much more time than it does for sighted 

learners. So, more studies are needed to figure out how university policies should be 

modified for those learners. Also, exploring the use of tactile graphs for students with 

Autism or attention disorders is recommended. 

Lastly, because of budget limitations, I could not examine the role of 3D-mouse, 

Haptic-mouse, and 3D printers in leaning mathematics concepts or creating 

mathematical graphs. Other proposals could explore haptic feedback through 

touchscreen-based DGEs for visually impaired students.  
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Chapter 4.  Touch-Based Technology in Exploring 
Geometric Transformation: Use of Timeline as an 
Analytical Tool 

 

The first goal of this study is to explore how a prospective teacher learns 

geometric transformation by interacting with a touchscreen-based dynamic geometry 

environment (DGE) The Geometer’s Sketchpad- GSP. I will analyse a four-minute 

excerpt from a video clip, centred on the touchscreen-based interactions of a 

prospective teacher as she thinks aloud to solve the problem of identifying the particular 

geometric transformation relating two shapes. As the second aim of the study, I 

introduce and employ an innovative methodology for video coding using StudioCode, 

which offers both qualitative and quantitative forms of analysis. To do so, I first discuss 

how to identify codes using Arzarello’s theory of touchscreen-based interaction. I use the 

video timeline as an analytical tool to track the designated codes in video data, which 

enables tracing the path of interactions over the stretch of time. Also, I justify how this 

method decreases video analysis’ subjectivity and enhances reliability and validity. 

Overall, this study demonstrates that the multimodal touch and sight feedback via a 

touchscreen device can serve to assist in the learning of the concept of rotation. 

 Geometric Transformations and a Dynamic Geometry 
Environment (DGE) 

Geometric transformations have been advocated as an essential part of the K-12 

geometry curriculum. The National Council of Teachers of Mathematics (NCTM) 

Standards (2015) has included transformations as one of the four central content areas 

in K-12 geometry that teachers should know. 
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To be prepared to support the development of student mathematical 
proficiency, all elementary mathematics specialists should understand the 
following topics related to geometry and measurement with their content 
understanding and mathematical practices supported by appropriate 
technology and varied representational tools, including detailed models: 

C.3.2 Transformations including dilations, translations, rotations, 
reflections, glide reflections; compositions of transformations; and the 
expression of symmetry and regularity regarding transformations (NTCM, 
2015, p. 2). 

Also, transformations are a fundamental topic that links geometry and algebra. 

They provide a powerful tool for analyzing mathematical and real-life situations and 

make connections between different mathematical concepts and representations 

(Coxford, 1973). The topic has been given much attention in various provinces across 

Canada. For example, the Ontario Ministry of Education (2014) indicates the value of 

learning geometric transformation as part of spatial reasoning. The Newfoundland grade 

six mathematics curriculum (2015) also brings particular attention to the geometric 

transformation under the title of "motion geometry". BC’s revised curriculum also 

emphasizes learning geometric transformations in primary school aiming to develop the 

students’ core competence in communication, critical thinking, personal, and social life 

(BC’s New Curriculum, Mathematics, 2016; Newfoundland Ministry of Education, 2015; 

Ontario Ministry of Education, 2014). 

4.1.1. The Role of Dragging in DGEs 

DGE offers construction of diverse, dynamic, and complex examples in real time 

that area difficult to render with paper-and-pencil representations or with concrete 

manipulative shapes (Presmeg, 1986). One of the most important features of DGE is 

dragging. Dragging figures/constructs offers continuous and real-time transformations 

that maintain the geometrical relationships integrated among the construct’s 

components. In this case, constructs, unlike drawings, move and transform while 

preserving the invariant geometric properties. For instance, dragging a parallelogram 

may produce any desired orientation, shape, side-lengths parallelogram (visually 

apparent) but the transformed shape is always a parallelogram, even if it transforms to a 

rhombus, square or rectangle. The notion of “continuous motion” was introduced by J.V. 
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Poncelet (1864). The principle states that “if we suppose a given figure to change its 

position by having its points undergo a continuous motion without violating the conditions 

initially assumed to hold between them, the [...] properties which hold for the first position 

of the figure still hold in a generalized form for all the derived figures” (as cited in Nasim, 

2008, p. 144). Battista (2008) hypothesized that geometric relationships could be 

perceived “as invariants in the continuous moving of the draggable figures” (p. 350), 

which supports human’s ability to notice of invariance. Dragging changes the shape’s 

representation and thus the way it is perceived, while the learner remains attendant to 

the visual modes of what changes or remains invariant. Furthermore, DGE prompts an 

environment for reasoning, and explicit descriptions of geometric relationships and 

shapes. Also, direct manipulation allows students to conceive a construction closer to 

the theoretical definition of a geometrical figure (Pratt & Ainley, 1997).  

There are ample research findings in which the affordances of DGEs, and 

dragging in particular, can help to support student’s reasoning, and ability to formulate 

conjectures and proofs. For examples see what is cited in Leung (2008). They go so far 

as to claim that no counterpart in traditional learning environments could raise the same 

level of conjecturing, thinking and reasoning as DGEs (Battista, 2002, 2007 & 2008; 

Hollebrands, 2003; Mariotti, 2000; Yu & Barrett, 2002). 

Research also shows learning geometric transformation can help students 

develop spatial ability with geometric objects (Clements & Battista, 1992). Having 

established the DGE’s value in learning geometry, geometric reasoning, and formulating 

conjectures, it has been asserted that teachers should have high levels of content as 

well as technological knowledge in order to create classroom environments where 

students develop reasoning and justification skills (Parsons, 1993).  

There is no doubt that technological devices provide much flexibility in the 

learning of geometric transformations. DGE provides an environment enriched with 

multiple representations and direct, continuous, real-time and interactive manipulation 

(Abrahamson & Sanchez-Garcia, 2016; Arzarello, 2015; Battista, 2008; Leung, 2008; 

Nasim, 2008; Ng, 2016; Sedaghatjou & Norul Akmar, n.d.; Sinclair & Moss, 2012; 

Sinclair & Yurita, 2008; Vrahimis, 2016). In order to increase the use of multitouch-based 

technology in daily life and educational systems and contexts, many schools are 
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equipped with iPads, tablets, interactive whiteboards (IWB) and so on. Therefore, each 

mathematics teacher is expected to take advantage of using those devices in teaching. 

Nevertheless, prospective elementary teachers face difficulties in understanding 

various concepts related to transformations (Thaqi, Giménez & Rosich, 2011; Harper 

2003; Son & Sinclair, 2010). For example, "while they could rotate the figure when a 

rotation axis was provided, they failed to rotate it in the absence of an axis. Also, 

prospective elementary mathematics teachers were unsuccessful in finding the center of 

the given rotated figures" (Turgut, Yenilmez, & Anapa, 2014, p. 1). Additionally, teachers 

often have only slight coursework experience in the topic of geometric transformations 

(Wang, 2011). The results of Kurtulus's (2010) study showed that performing rotations 

was the primary challenge to elementary prospective teachers. Therefore, in this study, I 

decided to place the focus only on the concept of rotation, while a prospective 

elementary teacher explored different forms of geometric transformations in the 

BlackBox task using touchscreen-based technology (GSP on iPad). 

 Studies show the positive impact on teaching and learning of manipulating 

mathematical objects virtually (Bakar, Ayub, & Tarmizi, 2010; Edwards & Zazkis, 1993; 

Harper, 2002; Hoyles & Healy, 1997; Laborde, 2000; Leong & Lim-Teo, 2003; 

McClintock, Jiang, & July, 2002; O. Ng, 2016; Rahim, 2002). However, few studies have 

focused on how digital technologies may contribute to prospective teachers’ 

understanding of geometric transformations, in particular for touch-based devices. Thus, 

I aim to find how a prospective teacher identifies geometrical rotation while interacting 

with a given task in a touchscreen-based DGE.  

 Manipulating Geometrical Objects on Touchscreen 
Devices  

As discussed above, prior studies on the use of DGEs have considered dragging 

as the main feature of DGE. Also, different types of dragging in the DGE can indicate 

various levels of cognitive domain of mathematical thinking (Arzarello, Olivero, Paola, & 

Robutti, 2002). Arzarello et al. (2002) suggest that dragging mediates the relationships 

between conceptual and perceptual entities: “dragging supports the production of 
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conjectures: exploring drawings by moving them, looking at the ways after which their 

forms change (or do not change), [and] allows users to discover their invariant 

properties” (p. 66). They identified different types of dragging modalities such as 

wandering dragging, guided dragging, dummy-locus dragging, and line dragging. For 

example, guided dragging involves dragging an object to locate a particular 

configuration, where wandering dragging refers to moving or dragging an object 

randomly or without a plan to explore the relationships among the other parts of the 

object in the sketch. However, touch-based manipulation requires its own specific mode 

of interaction because dragging on a touchscreen device is different than dragging with a 

mouse. Also, each application and even each designed task needs its own way of 

identifying interactions. Nevertheless, it became a difficult task to track all the various 

forms of interactions while using a touch-based mathematical tool, either because of the 

complexity of the interactions or the method of analysis (Hulon, 2015).  

Some studies have investigated the growth of knowledge of transformations by 

identifying changes in mental schemas (e.g., Flanagan, 2001; Yanik & Flores, 2009). 

The fundamental assumption for these studies is that the concepts are mental 

representations that develop in different stages and are located in individual minds, and 

that therefore learning means developing a representation (Cobb & Yackel, 1996). 

However, this approach supresses the learner's experiences as well as her interactions 

with the physical and social world by following learning trajectories and looking for 

mental schemas mainly in clinical interviews. For example see Yanik and Flores, (2009).  

Considering the dynamic and flexible environment of digital technology, and the 

ability to directly interact with a geometrical shape on a touchscreen DGE, I will attend to 

gestures, bodily interactions with geometrical figures, and mathematical communications 

as institutional parts of learning (Roth, 2010; Roth & Lee, 2007; Roth & Radford, 2011, 

2013; Nemirovsky, 2013). I am interested neither in studying what happens in the 

learner’s mind when she solves a task in a DGE, nor in analysing the learner's 

utterances in a non-multimodal sense. Instead, as with Nemirovsky et al. (2013), I trace 

and analyse the temporal flows of perceptuomotor activities that constitute the 

experience of mathematical learning and the transition from a discordance between 

procedural and motor aspects to their perceptuomotor integration in experiential time 

(Arzarello, 2006, Radford, 2009; Roth, 2011, Nemirovsky et al., 2013). In other words, I 
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trace the emergence of perceptuomotor integration during the interaction with a 

touchscreen DGE, and the role of embodiment in a learner's mathematical instrument 

fluency by identifying different forms of (active and basic) actions (Arzarello, 2015). 

Theoretically, basic actions are defined as the basic ways of interacting with the touch 

interface (e.g. tap & slide), while active actions are goal-oriented interactions performed 

by the user (e.g. drag-touch). In the theory section, I elucidate the theories of 

touchscreen-based interactions and perceptuomotor integration in greater depth. 

 Structure of the Chapter 

This chapter’s structure is meant to reflect the importance of my methodological 

approach. Though the conventional approach is to start with theory and work towards 

phenomena by way of research questions and methodology. In this case, the theory will 

be easier to elaborate by using terms from my methodology. Therefore, my theoretical 

approach is discussed after research questions and methodology.  

 Research Questions  

In this chapter, I analyse the modes of interaction of a prospective teacher 

working with a BlackBox sketch in touchscreen GSP. I make a case for creating codes to 

extend Arzarello's touchscreen interaction framework, proposing that new codes need to 

be developed depending on the tool and the task. I also use an innovative methodology 

to analyse the prospective teacher's explorations. Therefore, this study addresses the 

following research questions:  

• What are the modes of interactions in a touchscreen GSP for 

BlackBox sketch? 

• How do customized expansions on Arzarello's (2014) codes of 

touchscreen-based GSP interactions clarify emergence of tool fluency 

on a mathematical instrument?  
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• How does a prospective teacher learn geometric transformation by 

interacting with a touchscreen-based GSP? 

 Methodology 

For this descriptive case study, I invited a group of prospective teachers who had 

received low marks (0 to 4 out of 10) on a mathematics quiz in geometrical 

transformation. Another volunteer student joined simply out of interest in the topic. The 

case reported here is a part of a larger study that included five prospective teachers and 

analyzed their inactions with the touchscreen-based GSP. None of the five participants 

had experience working with GSP or with Sketchpad Explorer (the iPad version of GSP). 

The study took place in a classroom located in a Canadian university. Participants were 

asked to work on four tasks involving two-dimensional transformations (viz., reflection, 

rotation, scaling, and translation) and their interactions were videoed for future analysis. 

These tasks were the subject of the quiz with which they had struggled. 

In this descriptive case study, I played the role of the participant-observer.  I have 

chosen to report only on the specific part of the interaction where rotation was involved 

because of the reported complexity of the concept for prospective teachers (Turgut et 

al., 2014; Ada & Kurtuluş, 2010). In this paper, by focusing on only one prospective 

teacher's interactions, I aim to provide a thick description of the event. I selected to 

report on this one participant, whom I shall call Anna, because she spoke aloud while 

conjecturing and interacting with the given task. Also, the recorded video provided a full 

picture and rich data of her activities and interactions on and off the screen. 

4.5.1. Design of the Task 

The tasks were designed based on the syllabus for the university course in which 

the teachers were enrolled, but were different than the textbook exercises. In the 

textbook, two types of tasks were provided to the students. First, to decide the particular 

isometry that relates two shapes. Second, to find the image of a given shape under a 

particular isometry using a paper tracing method. For example: performing translation 

using a given vector (direction and distance); reflection using the line of reflection; 
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rotation using the centre of reflection, direction, and the angle. Later in the chapter, 

students were introduced to the composition of two rigid motions (for example, a glide-

reflection where a translation and a reflection over a line parallel to the vector of 

translation are combined). The textbook chapter ended by introducing tessellation to the 

prospective teachers, and some problems they could use to help students visualize 

geometrical transformations. 

Following Arzarello et al. (2014) and Leung (2011), I postulate that a 

mathematical task should provide conjecture, exploration, and explanations that allow 

multimodal communications. Therefore, for this study, the task (a BlackBox task 

designed by Dr. Sinclair) was used. This task consists of five different geometric 

transformations in the form of “mysteries.” Users are invited to drag either one or two 

points A and Aʹ (where Aʹ is the transformed image of point A). See Figure 4.1. 
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Figure 4.1 BlackBox screenshots.  

Note. (A) The main page for all mysteries shows only two points visible on the 
screen. (B): Mystery 1- Reflection; (C): Mystery 2- Rotation; (D): Mystery 
3- Scaling; (E): Mystery 4: Translation. (F): Mystery 5: Reflection. 

 

However, in this paper, I focus only on the second mystery, which is a 45° 

counter-clockwise rotation (see Figure 4.2). 

A B C 

D E F 



 

87 

 

Figure 4.2 Mystery two: 45° counter-clockwise rotation. Density of the trail 

demonstrates the speed of movement.  

 The tracking feature was enabled for the task so that the participant could see 

the shape produced by the dragging of both B and B’ (see Figure 4.1). The faster a point 

moves, the more spread out its trail; the slower the point moves, the denser its trail.  B 

and B’ are positioned where the movement ends. It is impossible to tell what kind of 

transformation relates B and B’ without dragging or pushing. However, by dragging, it is 

possible to find the type of transformation as well as the centre and angle of rotation. 

 What is rotation?  

Rotation is one of the rigid geometric transformations. Rotation about point M of 

𝛼 (-π< 𝛼 < π) takes each point A in the plane to its image point A' such that A and A' lie 

on the same circle centre at M and the measure of angle AMA' is 𝛼, which can be written 

as 𝑅𝑀,𝛼  (A) = A'. The centre M and angle measure 𝛼 are the parameters of the rotation 

(Figure 4.3). 
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Figure 4.3  Rotation 𝑹𝑴,𝜶 about centre M by 𝜶, counter clockwise (A) for point 

A; (B) for triangle ABC. 

Figure 4.3 shows the properties of rotation:  

1) The centre of rotation is the only fixed point. In other words, in the designed task, 

the centre is the only spot where the two points of the screen ever meet. 

2) Rotation preserves distance between points. 

3) Rotation preserves the shape (lines, measure of angles and curves).  

4) Rotation preserves chirality. It means the image of all non-collinear points maintain 

the order of points (A'B'C' has the same orientation as ABC). 

So, in the second mystery, the learner was expected to identify the above 

statements by dragging the points on the screen. For example, the learner creates a 

trace or a shape and its image that may reveal: (a) the centre of the rotation is fixed on 

the screen, (b) the transformation preserves the shape, and (c) the rotation’s attributes. I 

will discuss modes of interaction in the theoretical section to give a broader picture of 

what I am analyzing after describing what happened in the session. 

A B 
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 Theoretical Approach: Tracing the Paths of Interaction 

The theoretical frameworks that form the current study consist of two parts. The 

first part discusses Arzarello et al.'s (2014) theory of touchscreen-based interactions and 

formulation of active and basic actions. This offers an answer to my first research 

question: “What are the modes of interactions in a touchscreen GSP for BlackBox 

sketch?” 

 In the second part of this section, Nemirovsky et al.'s (2013) perceptuomotor 

integration approach will be presented alongside its application in DGE. This provides 

insight into my second research question: “How do customized expansions on 

Arzarello's (2014) codes of touchscreen-based GSP interactions clarify emergence of 

tool fluency on a mathematical instrument?”  

4.6.1. Theory of Interaction: Active actions vs Basic 
Actions 

In order to answer the first research question, I adapted Arzarello’s (2014) theory 

of interaction to identify and trace types of interactions on touchscreen-based DGE, in 

particular for BlackBox sketch. The theory of interaction follows a non-dualistic approach 

to categorize different types of touchscreen-based interactions. Arzarello et al. (2014) 

describe the two main categories of interactions as basic and active actions. Basic 

actions are described as the basic ways of interacting with the touch interface ( e.g. to 

reset the program). Also, exploratory interactions made with no plan or at random are 

classified as basic actions. For example, tapping, sliding or random spinning, or pushing 

a point on the screen in BlackBox are categorized as basic actions. However, a 

combination of basic actions and/or non-random finger actions are classified as active 

actions. In this study, active actions are identified as learners’ interactions with the task, 

made in order to reach a target or solve a given problem. For instance, drag-touching 

and rotating a point to draw a shape and find the direction of rotation are active actions. 

That is because drag-touch refers to the touchscreen interactions wherein the learner 

drags the point to create a geometrical shape, to justify and/or to explain the geometrical 

relations. In BlackBox rotating the point also is an active action because it occurs when 

identifying the direction of rotation, centre of rotation, making related conjectures, etc.  
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The focus in this chapter represents interactions with active actions rather than 

basic ones; however, I have identified both active and basic actions in Table 4.1 and in 

the video timeline.  
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Table 4.1  Basic and active modes of action for touchscreen-based interaction 
(specified for BlackBox GSP task). Adapted from Arzarello et al. 
(2014) 

 

BASIC ACTIONS 

Slide 
User puts finger on screen, moves in any direction without touching the 

points (few of these happened in a random way). 

Hold 
A long tap- (more than 2 sec). Mostly happened before making a 

decision. 

Tap Performed to switch between tabs/tasks/reset.  

Free Free exploration of the application 

ACTIVE ACTIONS 

Push 

Towards 
Dragging one point toward the other one (e.g.: to 

find the centre of rotation) 

Away 
Dragging one point away from the other one (e.g.: to 

find the direction of the rotation) 

Along 

Dragging one point along the other one (e.g.: to find 

the line of symmetry or to find the number of times 

that two points meet) 

Rotate 

(gesturally)  

Clockwise 

(CW) 

Dragging the point in a clockwise circular rotation 

repeatedly (to find the type of transformation).  

Counter 

clockwise 

(CCW) 

Dragging the point in a counter-clockwise circular 

rotation repeatedly (to find the type of 

transformation). 

Drag-

touch-to-

approach 

 

Dragging the point to draw a geometrical shape (to justify, or reason, or 

deal with some particular geometric property, shape, or construction). 

Drag-

touch-free 

Moving the point freely to create a geometrical shape (to visualize and 

explain). 
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In this study, basic and active modes of action are classified by the specific 

nature of touchscreen-based interactions for the given task. This means that these 

modes of interaction could be identified differently in other touchscreen DGEs or 

different tasks. For example, Arzarello et al. (2014) observed that "push action" 

happened relatively few times in "a random way," while it is one of the active actions 

here. The process of determining active and basic actions is explained in detail in 

section 4.7 (video coding process). 

4.6.2. Tracing Tool Fluency in Touchscreen DGE 

To answer the second research question (how do customized expansions on 

Arzarello's (2014) codes of touchscreen-based GSP interactions clarify emergence of 

tool fluency on a mathematical instrument), I have adapted Nemirovsky et al.’s (2013) 

perceptumotor integration approach. To analyse modes of interactions, instead of 

digging into “geometrical thinking” as suggested by  Arzarello et al. (2014), the lived 

experience of the learner is explored in Husserl’s experiential time. In other words, I 

trace the emergence of perceptuomotor integration and tool fluency in experiential time 

(Husserl, 1991; Nemirovsky et al., 2013). To do so, I analyse temporal flows of 

perceptual and motor activities regarding identified modes of action. By temporal flows, I 

mean lived experience infused with recall of the past and expectation of future. 

Perceptuomotor activity always constitutes a temporal flow, insofar as, at a given 

moment it is never isolated. Rather it is constituted by partial enactments of retentions 

(immediate past), “now phases,” and protentions (immediate future) (Husserl, 1991). For 

example: in the BlackBox task, when Anna pushes point B towards/away from B´ 

repeatedly; I avoid describing her finger movements, gestures, body movements, and 

words as outer manifestations of her mental schemes for the concept of rotation. 

Instead, I try to understand the temporally extended course of actions that she 

experiences in the act of identifying the place that two points meet, (i.e., centre of 

rotation).  

Perceptuomotor integration insists that mathematical concepts are “inhabited” 

(Nemirovsky, 2017). Also, according to the theory, mathematical learning includes 

appropriate skillful use of the mathematical instrument as a cultural tool that mediates 
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mathematical activity. Generally, in learning a new skill there are phases in which 

perception and motor aspects of the activity seem discordant. “… the transition from 

discordance between procedural and motor aspects to their integration is common to all 

learning; that is, perceptuomotor integration is a milestone for fluency in any field.” 

(Nemirovsky. et al., 2013, p. 380). This means that once fluency is achieved, involuntary 

motor activity becomes a part of perception (Ibid). Nemirovsky et al. also consider a 

mathematical instrument as a “material and semiotic tool together with the set of 

embodied practices for its use within the discipline of mathematics. So, the fluent use of 

mathematical instruments allows for the culturally recognized creation in mathematical 

domains, just as members of the musical communications acknowledge.” (p. 373). 

Appealing to Nemirovsky et al.’s perceptuomotor integration theory (2013) allows 

me to trace the emergence of tool fluency in terms of integration of temporal streams of 

perceptual and motor activities using a video timeline as an analytical tool. Tool fluency 

is an intertwining of the perceptual and motor aspects of an activity that allows the 

performer to “act with the holistic sense of unity and flow” (p. 2). With an explicit 

approach to embodiment, tool fluency constitutes mathematical thinking and learning. 

Within perceptuomotor integration ‘mathematical thinking’ is “constituted by bodily 

activity at varying degrees of overt and covert expression” (p. 376). Further, 

transformations in lived bodily engagements while the subject performs mathematics 

activities are defined as ‘mathematical learning’. In this sense, mathematical learning is 

not imparted didactically, but rather established by embodied tool fluency (Nemirovsky & 

Ferrara, 2009; Nemirovsky et al., 2013, 2011). Therefore, the answer to the third 

research question on “how does a prospective teacher learn geometric transformation 

via interacting with the touchscreen-based GSP” is intertwined with the answer to the 

second research question. In other words, the answer to both lies in appealing to 

Nemirovsky’s perceptuomotor tool fluency, which provides the foundation for learning 

geometric transformations. According to the theory, when tool fluency is evident, the 

prospective teacher has learned. 
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 Tracking Paths of Interaction (TPI): A Methodology for 
Video-coding  

 “Without verification, you are just another researcher with a hunch” (Miles, 

Huberman & Saldana, 2016, p. 276). Video coding demands careful attention to 

language, gestures, gazes, body movements, etc., and deep reflection on the emerging 

patterns and meaning of human experiences. Huberman and Saldana (2016) claim 

when a researcher is working on a piece of video data, sometimes (s)he notes repeating 

patterns, themes or gestalts arising from different parts of video data, pulling together 

commonalities. These patterns of variables may involve similarities or differences among 

categories, or include connections in time and context. The patterns can also be 

constructed from the researchers' observations or a reoccurrence of the phenomena. It 

is advised that the researcher searches for additional evidence to the same pattern and 

remains open contradictory results. Skepticism about emerging patterns, and conducting 

conceptual and empirical testing for validation, will better support researchers’ results. I 

shall add, every identified pattern should be revisited and re-examined either by the 

analyst or other researcher-collaborators. That is to say, the video timeline could serve 

as the “analytical tool” if utilized effectively. The video timeline also enables the 

researcher to analyse paths of interaction as temporal flows of perceptual and motor 

activities rather than points of interaction. Per Arzarello et al (2014, p. 43), it is 

“inappropriate to reduce the data of a trace to a single point.”  

Having discussed the importance and capability of the video timeline as an 

analytical tool that enables tracing of themes and codes in mathematical learning, I 

adapted Vogel and Jung’s (2013) procedure for video coding due to its explicit cycle of 

verification and consolidation of data. This approach allows me to identify Arzarello’s 

codes in the video data and trace perceptuomotor activities in the emergence of tool 

fluency. I postulate that using the video timeline as the analytical tool can provide a 

research instrument that validates emerging patterns or codes and marks them 

elsewhere in data. Taking this approach enables the researcher to draw procedural 

conclusions along the way. To identify patterns and categories – which are called active 

and basic actions in this study – and develop codes, I modified and adapted Arzarello's 
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theory of touch-screen interaction. In the next section, I discuss the process of video 

coding and determine the categories. 

 Video Coding Process 

In this study, categories and codes are identified based on different modes of 

interactions with the touchscreen application. The first step is taken by preparing video 

data to analyze: by watching it a few times. Preparing video data for coding provides 

familiarity with the content, initiates possible codes and reduces ‘pre-coding' bias. This 

step is called “Identifying categories and codes inductively”. Besides, preparing video 

data especially in a collaborative environment suggests collaborative-coding, which may 

reduce the subjectivity concern in solo-coding. Then, a “verification” step is taken to find 

if codes are informed by, or consolidated with, the chosen theory (in this case, Arzarello 

et al.'s (2014) theory of interaction).  These steps taken together, while considering the 

video-data, make a cycle that helps researcher to produce, verify, and consolidate codes 

informed by theory.  In the next phase, the researcher develops and checks the 

integrated system of coding and creates a standardized system of codes via “rating 

accordance.” “Rating accordance” rates and verifies the degree to which categories and 

codes conform with the theory. This could be contextually varied depending on the 

scope of study, theoretical framework, and/or available coding software. 

 For example, I considered theories of interaction (Arzarello, et al., 2014) and 

perceptuomotor integration (Nemirovsky, et al., 2013) in order to identify categories and 

codes. I identified basic and active modes of actions using the theory of interaction. I 

also examined active actions with respect to the emergence of tool fluency. The process 

of developing video coding is shown in figure 4.4. 
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Note.     Adapted and modified from Vogel and Jung (2013). 

To establish the standard by which the interactions were assessed, the 

researcher and a colleague identified and examined codes using an agreed-upon list of 

basic and active actions. After identifying the codes, video data was coded via 

StudioCode14 software for further analysis. Table 4.1 (above) shows categories of active 

and basic actions and codes, as well as related definitions used to code the prospective 

teacher’s modes of interactions with the touchscreen GSP (BlackBox) in this study.  

 

14 StudioCode is a professional program and a video analysis tool that captures, codes 
and categorizes video assets to review and analyze. StudioCode 10.6 is utilized to analyze data 
in depth and trace actions and interaction of participants with the iPad.  

Rate accordance   

Theory-based categories 

and codes determination 

Considering video data 

Identifying categories and 

codes inductively 

  

Developing integrated system of coding 

  

Verification and 

consolidation of codes 

Figure 4.4.  Video coding process for categories and codes determination 
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After identifying the categories and codes discussed above, the video data was 

analysed while capturing frequency and duration of emerging actions via StudioCode. 

StudioCode connects codes to each segment (instance) and allows timeline analysis. 

Figure 4.5 shows a snapshot of the coding window in StudioCode for the BlackBox task 

on GSP. 

 
Figure 4.5.  StudioCode coding window  

Note. The screenshot shows two categories of "Basic Actions" [including: Slide; 
Hold; Tap; Free]; and "Active actions" [including, Push: Towards, Away & 
Along; Rotate: Clockwise (CW) and Counter clockwise(CCW); Drag-
touch-to-approach; and Drag-touch-free] 

What follows is an analysis of Anna’s modes of interaction with the touchscreen 

GSP on rotation section of BlackBox task. 

4.8.1. Video Timeline: An Analytical Tool to Trace Paths 
Of Interactions 

In this episode, Anna was challenged with five “mysteries.” By dragging, pushing 

and/or rotating the given points on the screen at different speeds, she drew a variation of 

lines, curves and geometrical shapes to determine given geometrical transformations, in 

a more dynamic way than in the textbook. 



 

98 

In this section, with the use of StudioCode and the video coding procedure 

explained above, I construct a timeline illustrating Anna’s modes of interactions (see 

Figure 4.6).  

Before I discuss my findings in terms of timeline analysis, I shall describe Anna’s 

lived experience while interacting with the BlackBox task. In this way, the below section 

also aims to answer the third research question of “how does a prospective teacher 

learn geometric transformation via interacting with the touchscreen-based GSP.” To 

explain Anna’s learning I appeal to Nemirovsky’s perceptuomotor tool fluency (2013) and 

describe her lived experience in Husserl’s experiential time (Husserl, 1991).  

Figure 4.6  StudioCode snapshot.  

Note. (A) shows the video that is being coded, (B) is the coding window where 
researcher selects code buttons and their Boolean relationships, (C)  
StudioCode codes video by creating corresponding coding-rows on the 
timeline. By clicking on the codes’ name on each row all the related 
coded instances will be combined and played. (D) matrix window 
provides counts of incidence of codes, labels during the specified interval 
and indicates all the overlaps. Duration, time of start and end of each 
frequency could be exported to Excel or SPSS file too. 

A 

B 

C 
D 
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 Description and Analysis 

The study was conducted while the participants were enrolled in a blended 

geometry and pre-calculus course designed for elementary and secondary prospective 

teachers. Anna is an adult student who had no previous experience of working with 

iPads or smartphones. Anna was selected among the five participants because she 

showed a high level of active engagement by speaking aloud while interacting with the 

task. As a participant-observer, I began by inviting Anna to touch and move one of the 

points on the screen to examine Anna's possible conjectures. The vignette below 

includes only the second mystery sketch, which was a rotation. (…) indicates pauses 

that last more than two seconds. After exploring the first mystery, Anna read the 

question aloud for the second mystery. 

01   “Mystery two, Okay, can the two points ever meet? If so, how often? 

Describe in your words how the two points relate to each other. Okay, do they ever 

meet?”… [Anna asks herself, pushes two points toward, away and along each other] 

02 “hmm… okay… [locates two points on each other]. Okay… so... yes, they do 

meet… but wait [pushes points away and then towards each other. Rotates point B, 

so Bʹ goes away] … they don’t meet when you [drags point B along Bʹ]... Okay, so it 

has to be… may be… a glide translation? [be]’cause when you rotate them [rotates B 

counter-clockwise (CCW)] you could make them meet. But if you move them toward 

each other… one turns away” [pushes points towards and away repeatedly]. 

03  “Okay, when you move one towards another [pushes points towards]… one 

goes down, and one goes across...hmm…" (Figure 4.7 A).  

04 “… and if you rotate counter clockwise, they both rotate counter-clockwise 

[Anna notices both points are approaching to the centre of rotation] ooh, ooh! How 

they get through?... Do they ever meet? [rotates B CW]. No, no... don't rotate 

them [CW]”, Anna says to herself. "But if you rotate them counter-clockwise 

[rotates point B CCW]… oh, now they are chasing each other” [rotates and 

pushes points slowly and precisely trying to make them meet]. 

01 - 04, I observed instances of discordance between perceptual and motor 

aspects of Anna’s course of activities when she was trying to identify the centre of 
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rotation. Anna conjectured and anticipated the dependency between modes of action 

[rotations (CCW or CW); push (along, away, toward)] and center of transformation 

(meeting point). In other words, Anna’s temporal flows of motor arrangements (marked 

as active actions) in present time were incongruent with identifying the centre of rotation 

(protention). Her trial and error approach in identifying the point of meeting was to repeat 

a variety of active actions (rotating, dragging and pushing), which were continued until a 

possible answer emerged. Since the sketch preserved geometrical properties of rotation, 

it did not allow Anna to reach her protention of identifying ‘the centre of rotation 

dependent on the type of motor action’. Also, Anna’s ongoing retentions and protentions 

were clearly associated with the motor or perceptual aspects of learning, but not 

integrated with them (Nemirovsky, 2013). This indicates Anna’s early stage of tool 

fluency. For example, Anna, expects (protention) the existence of a meeting point to 

depend on the direction of rotation (CCW) from her just-past remembered experience 

(retention). She then examines another CCW rotation (present), and finds B and B’ may 

not meet even with a CCW rotation if not dragged to the centre of rotation. She therefore 

experiences a breakdown of the previous retention in the process of emerging new 

protention. As is evident, in the next step (05) Anna examines a CW rotation to find if the 

points meet. 

05  Anna presses the reset button to erase the traces. Then she slowly turns 

point B clockwise and makes the points coincident. It seems she has recognized 

where the centre of rotation on the screen is. In addition, CW action makes the 

points meet. "... So, these two can meet… (nods head) but how often?” Anna 

asks herself. 
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Figure 4.7 Some example of Anna's active actions. (A) pushing toward; (B) 
rotating counter-clockwise; (C) Drag-touch-to-approach  

06 Anna rotates the points counterclockwise again with a bigger radius and 

they meet again at the same place. “Okay, so this can meet once on a rotation 

[regardless of direction of rotation] … we think this is a glide-translation, but we 

don't know!...There is no reflection". Anna erases the traces and makes another 

counterclockwise rotation.  

Anna anticipated the geometrical transformation as a “glide-translation”, however 

her present activities did not support her anticipation (there is no reflection). As a result, 

Anna’s past and future lived experience were not seamlessly infused and she 

experienced disruptions. She also found the centre of rotation’s location on the screen, 

but struggled with the type of movement or active action that may cause two points to be 

coincident (06).  

07 “Look ... this changes every time we do it” [it seems she is referring to 

different traces] (Figure 4.7 B) [10 second pause] … [several pushes and 

rotations]. I think this is a rotation. This [points meeting] only happens when it 

rotates …” 

Apparently, touchscreen GSP’s well-preserved invariant in the “continuous 

moving of the draggable” points supports Anna’s noticing of the invariance (Battista, 

2008, p. 350). Different actions (push, drag, rotate) changed the points’ position and 

their rotated images; created several invariant traces and thus the way they were 

perceived. Meanwhile the learner remained attendant to the visual modes of what 

changes or remains invariant.  
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At the same time the dynamic nature of DGE brought a new assumption of the 

relation between the centre of rotation and type of active action (rotation), this may not 

exist in paper-and-pencil forms of tasks. “This [points meeting] only happens when it 

rotates”, Anna said. As the researcher-observer I decide to challenge Anna’s protention 

and conjecture of such a relation. 

08 Noticing Anna’s struggle to visualize geometrical transformations that she 

encountered from the textbook, Mina suggested: "Oh, is that the reason? The 

[type of] movement? What if you make a geometrical shape?"  

09 Anna makes a circle [with the rotation action and the drag-touch-to-

approach] and then a square [push action in different directions but same 

direction and the drag-touch-to-approach]. “That is, I think, a glide translation. 

Because one [shape] is not exactly in the same place as the other [shape]… 

(Figure 4.7 C). 

10  Hold on... hold on, hold on here... but they also have a rotation [rotates 

CW; drag-touch-to-approach; drag-touch-free]… which is, may be, about 45 

degrees? Anna whispers. 

11  “How often do they meet then?” I said. “once, once per shape,” Anna 

answers and makes the points coincident again [drag-touch-free].  

In the related course work, Anna had learned that when rotating a shape, the 

centre of rotation should be given first. The hidden centre of rotation in BlackBox activity 

illustrated new conceptual aspects of rotation. In agreement with Arzarello et al.’s 

(2014), it implied that “the centre does not have to be determined (explicitly) in advance” 

(p. 45).  

Anna remained attendant to the task and invariances in traces, which paid off in 

recognizing the geometric transformation as rotation. To put it more simply, Anna’s 

infusing of past and future in the lived present, retention and protention respectively, 

enabled her to articulate the type of transformation at this point.  

 In this respect, to examine the geometric relation between two given points, 

Anna performed ‘drag-touch-to-approach’ actions followed by a ‘drag-touch-free’ to 
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explain findings (see Table 4.1, above). These actions are coded to demonstrate the 

moments that, at the very least, there was a seamless continuity between retention and 

protention. Anna knew what she wanted to do and she set about doing it. In other words, 

with drag-touch-to-approach and drag-touch-free actions, she reached her goal quite 

deliberately and successfully with only a minor disruption. These active actions enabled 

Anna to maintain her protentions without disruption, and eventually successfully 

complete the task. That is where tool fluency emerged as an “interpenetration 

[intertwining] of the perceptual and motor aspects of an activity, allowing the performer to 

act with a holistic sense of unity and flow” (Nemirovsky et al, 2013, p. 373). Then Anna 

explored the other three mysteries one after another. She preferred to explain each 

mystery and the type of transformation after she explored all of them.  

12 Consequently, in the discussion phase, Anna rapidly and confidently (in 

only 20 seconds) demonstrated and explained the geometric relationship between two 

points by performing active actions such as drag-touch-to-approach and rotation via 

drawing a few geometrical shapes. This exploring phase for the second mystery took 

03:34 and Anna was unsure if the transformation was a glide-reflection or rotation. At 

this stage, Anna’s lived experience of performing a drag-touch-to-approach action, while 

supported by the integrated and holistic perceptuomotor activities, established tool 

fluency: the manifestation of embodied mathematical learning. 

 Timeline Analysis and Discussion 

In this section, I use a timeline as an analytical tool to demonstrate the 

emergence of perceptuomotor activity integration in terms of tool fluency over a period of 

time. This section expands discussion to the second and third research questions. It 

provides evidence for the emergence of tool fluency and mathematical learning using 

video-timeline as an analytical tool.  

Using a timeline as an analytical tool not only extends the trustworthiness of the 

findings but also provides visual cues for each defined code and category. I have 

suggested a framework for video coding, and defined categories and codes based on a 

suitable theoretical framework in the ‘video coding’ section: 4.7. Consequently, the 
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timeline illustrates how the different types of touchscreen-based interactions are coded – 

namely as active and basic actions – and are developed through the exploration and 

discussion phases. This approach enabled a new way of looking at touchscreen-based 

interactions that may be unique for each given task or exploration. I report only on the 

second mystery, identified by the orange transparent box and labeled "2" in two different 

phases named exploration (1:58 to 5:35) and discussion (11:59 to 12:19) on the timeline 

(Figure 4.8). Exploration and discussion phases are named based on Anna's terms, as 

she decided to explore all the mysteries first and discuss them later. By timeline 

analysis, a series of evidence in the form of codes was built that demonstrated Anna's 

high level of bodily engagement with the mathematical tool. 

 
Figure 4.8 Coded Timeline in StudioCode 

Note. The numbers 1-5 indicate the 5 mysteries in the BlackBox task. The 
orange boxes labelled (2) are the time intervals during which Anna was 
exploring and discussing the second mystery. Code Rows (e.g.: Tap, 
slide, free, etc.) are populated from code buttons. The first four codes 
including tap, slide, free and hold are basic actions. The next four codes 
including drag-touch-to-approach, rotate, push and drag-touch-free are 
defined as active action. The ‘boxes’ in each row are created in the 
chronological order in which codes are observed. They display actions 
and where they happened within the timeline. 

Looking at the first orange box in Figure 4.8 from the left (4:46 to 5:33), there is a 

dense and high number of long active actions on the right side, that began earlier but 

increase in density. For example, although rotations (CCW or CW) and pushes in the red 

and blue rows are distributed semi-evenly in this box, the ‘drag-touch-to-approach' is 

performed only at the end of this segment. Also, the timeline shows the last drag-touch-

to-approach is a combination of rotation, push, and even drag-touch-free actions. Data in 

Section 4.9 shows that during this time Anna has been justifying and illustrating her 

answers while actively engaged with the mathematical instrument. Considering what is 
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reported in the vignette [09 to 11], the dense and overlapping actions, the making of 

conjectures and the drawing of geometrical shapes by Anna, all combine to illustrate the 

multimodality of her communication (see Figure 4.8). 

The same pattern of blended rotation action and drag-touch-to-approach is 

evident in the discussion phase while Anna was confidently illustrating that the mystery 

transformation is a rotation (11:59 to 12:19). I suggest that overlapped drag-touch-free 

and drag-touch-to-approach actions demonstrate the occurrence of complex 

combinations of active actions. These can function as a sign of mathematical 

embodiment regarding tool fluency in the form of holistic temporal flows of 

perceptuomotor integration. I have explained this in detail in Section 4.9 (09-11). 

The timeline analysis enables the following interpretations: First, I observed 

many active actions such as push (along, away and towards), and rotate (CCW & CW), 

before drag-touch-to-approach and drag-touch-free actions occur. Despite Arzarello et 

al.’s findings (2014), I found “singularity” in the active and basic modes. “Singularity” 

here refers to the places where Anna used only one finger to interact with the software. 

Single-finger actions could be due to the nature of the designed activity, or the absence 

of instruction, or Anna’s lack of experience in working with a touchscreen-based device. 

Therefore, two types of possible rotations were observed, both using a single finger: 

rotation clockwise (CW) and rotation counter-clockwise (CCW). Although theoretically 

both may seem mathematically identical, in Anna’s case they provided different forms of 

insight about a geometric transformation. Second, rotation in various directions was also 

an important phenomenon because Anna conjectured a relationship between the 

direction of rotation and the existence, and coordinates of, the centre of rotation.  

Anna conjectured about the type of transformation and then examined her 

conjectures by performing active actions. For example, she postulated that there was a 

relation between the kind of dragging/pushing and the geometric transformation [02 to 

04]. Her retentions were challenged when observing unmet protentions (Husserl, 1991). 

Notions of retention and protention implicate remembered and anticipated aspects of her 

lived experience of playing in DGE. Anna restarted the activity three times to have a 

fresh look. Each reset meant she started either a new construction or aimed to 

demonstrate new traces to support her arguments or examine her conjectures.  
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4.10.1. The Features and Benefits of StudioCode in Video 
Timeline Analysis  

Considering the video timeline as an analytical tool may address some concerns 

regarding video analysis: such as tracing certain codes and patterns over time, tracing  

specific codes over different videos (with same or different participants), or analyzing 

video data collaboratively. So, this method decreases video analysis’ subjectivity, and 

enhances reliability and validity concurrently. Also, StudioCode can be utilized to trace 

categories and codes in small segments data taken from a larger sample. This helps 

investigators revisit the coded themes to revalidate and verify a hunch or hypothesis, 

and therefore keeps the investigation analytical and prevents bias. Utilizing StudioCode 

for analysing video data offers many more features than are covered here. These 

features include, but not limited to:  

• visualizing difficult-to-verbalize codes and actions over a given time span, 

• tracing categories and codes in small segments of the data taken from a 

larger sample of data, 

• providing an excellent tool to count and measure the duration of 

occurrences of different codes over the time. This tool is named ‘matrix’, 

• drawing shapes (arrows, lines, circles, etc.) on the video , 

• finding overlaps using Boolean operations. For example, in what 

segments do codes A and B but not C show up? This feature assists in 

identifying new emerging codes and revalidating the analysis of data in an 

innovative way. This also helps researchers envision the relations, such 

as direct association or inverse, between and among different variables or 

codes,  

• transcribing the video and synchronizing it with the timeline, 

• collaboratively coding video data and validating coding across a group of 

analysts (thereby minimize subjectivity).  
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 Conclusion and Remarks 

The study found that the coordinated interaction of body, tool, and talk invited a 

different lived experience of the concept of rotation – its properties and relations. Also, 

tracing the development of those lived experiences in terms of active actions on a 

timeline allowed us to identify the emergence of tool fluency concerning mathematical 

learning. In this section I elaborate how, according to Nemirovsky et al.’s (2013) 

perceptuomotor integration lens, tool fluency emerges in terms of embodied 

mathematical thinking and learning: 

Mathematical thinking emerged in the form of temporal flows of bodily activities in 

Anna’s lived experience and proposed conjectures. In the exploration phase, although 

Anna noticed that the shape and its image were not positioned in the same place, she 

was unable to identify the form of transformation in the absence of prototypical examples 

that she had encountered previously in the class. She also used the term "glide-

translation” rather than “glide-reflection” repeatedly, which may indicate her lack of 

knowledge of the concept. Anna was also unsure if the existence of the meeting point 

was related to the type of rotation (CCW vs. CW) or action (rotation vs. push). Those 

conjectures along with different types of speculative active actions can be considered 

early forms of tool fluency. In this early stage, she experienced breakdowns of 

memorized retention (an erroneous conjectured relationship between the direction of 

rotation and the existence, and coordinates of, the centre of rotation). She then 

experienced results that did not align with her expectations. Her perceptual and motor 

activities were not yet integrated (Nemirovsky, 2013).  

I found that Anna's lived bodily engagement transformed in terms of performed 

active actions. That is to say, push and rotate (CW and CCW) actions that were the main 

active actions when she was in an early stage of tool fluency, developed into free and 

drag-touch-to-approach actions to illustrate how rotation influences the image of the 

shape to the participant-observer. The overlapped active actions were observed when 

Anna distinguished a rotation transformation from a “glide-translation.” 

Anna constantly attempted to draw a shape to figure out the geometric 

transformation. Her response to the mystery within different modes of interaction (e.g.: 
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pushing, rotating and dragging) was productively different from simple paper-and-pencil-

based drawing. This finding supports the body of literature that discusses DGE’s feature 

of offering various complex examples in real time to the learner (Presmeg, 1986). The 

DGE could also offer continuous and real-time transformations that maintain the 

geometrical relationships among components. That is to say, constructions transform 

while preserving the invariant geometric properties. This supported Anna’s recognition of 

invariance and patterns. Thus, it promoted an environment for conjecturing, reasoning, 

and describing the geometric relationships and shapes by drawing different sketches 

(Battista, 2008; Leung, 2008; Nasim, 2008; Ng & Sinclair, 2015; Ng, 2016; Vrahimis, 

2016). 

In this study, I introduced an innovative methodology to analyze video data. I 

explained and exemplified how to identify categories and codes. Then I used this 

method to analyse a particular mathematical interaction in a digital touchscreen 

environment. I adapted Arzarello et al.'s theory of touch-based interaction, but specified 

active and basic actions for the GSP BlackBox task. I utilized StudioCode software to 

track identified active actions on a prospective teacher’s interactions with the task. 

By timeline analysis, evidence was built that demonstrated the prospective 

teacher’s high level of bodily engagement with the tool. Also, modes of active actions 

gradually moved from pushing and rotating (CCW or CW) to drag-touch-to-approach and 

drag-touch-free, when she interacted with the iPad and task to draw a conclusion, and 

explained her reasoning. Her conjecture of dependency between the direction of rotation 

and the centre of rotation failed. Evidence of tool fluency and a new form of embodied 

engagement with the tool consisted of explicit transformations in the learner's lived 

bodily engagements in mathematical practice. I illustrated how Anna’s active actions 

transformed from discordance between perceptual and motor aspects of learning, to a 

holistic sense of unity and flow in terms of mathematical tool fluency. 

Also, GSP appears to have supported Anna's lived experience in learning 

geometric transformation (rotation here) with tactile and visual feedback. For instance, a 

new conceptual aspect of rotation emerged from touchscreen-based interaction: that the 

centre of rotation does not have to be visible for learners to identify a transformation as a 

rotation. Notably, GSP’s feature of tracing could support retention. I suggest that Anna’s 
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emerging perception and motor skills, characterized here as overlapping active actions, 

can become finer, overt and covert motor actions in her lived experience. This is not to 

argue that geometric understanding and protention are entirely dependent upon 

developing an understanding of rotation or use of touchscreen technology; but rather to 

point out that developing such an understanding could be implicated in interacting bodily 

with a mathematical tool. 

I suggest that further research using different theoretical frameworks or DGE 

may extend the methodological aspects of this investigation. For example Sfard's (2008) 

Comognition theory of analysing mathematics discourse (word use, visual mediators, 

endorsed narratives, and routines) can be used to analyse mathematical thinking and 

learning by identifying changes in discourse over time.  
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Chapter 5. Conclusion  

The three studies presented here focus on different aspects of the role of bodily 

interactions on mathematical tools, and therefore learning mathematics within a 

perceptuomotor integration approach. The first and last studies focused on learning 

mathematics via a touchscreen-based device, while the second study investigated the 

role of tactile graphs in teaching a pre-calculus course to a blind learner. I initially 

concentrated on the role of mathematical embodiment in learning mathematics. Having a 

non-dualistic view of mathematical instruments and beginning with an assumption of 

intertwined perceptual and motor aspects of tool use as perceptuomotor integration, I 

attended to the bodily gestures, activities and interactions with the mathematical 

instruments. This dissertation followed the statement that the interactions exhibited 

thinking not as a process that takes place ‘behind’ or ‘underneath’ bodily activity, but is 

the bodily activity itself (Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2013). Also, 

informed by my studies, I have broadened the notion of what constitutes a mathematical 

tool to include the body and extensions of embodiment in interacting with the world. 

 

 Mathematics Learning and Tool Fluency: The Role of 
Touch and Sight Interactions  

Learning through a sense of touch and direct manipulation of a mathematical 

object is one of the common themes among my three papers, either by touchscreen- 

based device or physical manipulatives. So, I appeal to the body or research on 

embodiment that suggests that learning is affected by our interaction with the 

environment and embodied interaction involves different human senses. In addition, 

interacting with the digital device is rooted in embodied cognition and bodily interactions. 

Embodied interaction is when the users create, communicate, and share meaning 
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through their interactions with the system. In other word, mathematical tool use intensely 

involves the use of human sense, and therefore, the use of human sense and body can 

be seen as the most natural state of user interfaces, when playing with mathematical 

tools (Dourish, 2001). A coordinated touch-see-bundle of sensations involved in the 

BlackBox and touch-see-hear in TouchCounts provided immediate feedback to the 

learner. It has been suggested that this kind of immediate feedback, received through 

the hands (and other senses), may allow for better learning for students who directly 

manipulate mathematical objects, compared with learners who could not manipulate 

objects on the screen directly (Chan and Black, 2006).  

In this regard, new touchscreen-based technologies suggest novel opportunities 

including multimodal senses such as touch, auditory, and physical movement. These 

can benefit learning in contrast to the less direct, somewhat inert and passive mode of 

interactions by pencil and paper, or mouse and keyboard. For example, in my pervious 

chapter when the prospective teacher controls the pace, speed, direction and magnitude 

of the shape that she is creating, she is actively engaged and participating in the 

meaning-making: exploring the mysteries, which yield a better understanding of the 

geometrical rotation concept.  

More specifically, in the first and last studies, utilizing dynamic geometry 

environment (DGE) on a touchscreen-based device (iPad) enabled learners to directly 

interact with the mathematical entities. That is because, in touchscreen-based DGEs a 

hand’s actions are directly related to the affective modes of communications and are 

informed by the modes of continuous dynamic changes. Also, the objects’ 

manipulation/creation takes place less through mediated impacts. In the touchscreen-

based DGEs the “mediation” term is no longer accurate enough to capture the role of 

hands and fingers on the screen. That is because modes of interactions qualitatively 

differ from computer-based interactions’ input modes. In the same way, Angel and Gibbs 

(2013) argue: 

 ...electronic environments have a strong relationship to the affective 
modes of communications, highlighted through their appeal to sensory 
novelty through technological innovation—new media platforms 
proliferate the potentials for combining visibility with aural and tactile 
modes (as cited in Sinclair & de Freitas, 2014, p. 354). 
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The vital role of hand in learning mathematics is investigated greatly. As an 

example, Zaporozhets (2002) studied three- to five-year-old children’s learning to 

discriminate variants of triangles and quadrilaterals. He found substantial number of 

errors at the beginning. So, the team of research invited children to systematically trace 

outline of the figures with a finger, attending to (a) directional changes of the motions at 

the vertices, (b) accompany such a tactile examination with a side counting. The study 

showed the tactile experience at this stage accomplished, while the eye performed and 

auxiliary role. Zaporozhets explained later: “the eye developed the ability to solve these 

types of perceptual tasks independently, consecutively tracing the outline of a figure, as 

it was earlier done by a touching hand” (2002, p. 31). Zaporozhets described the 

transformative change of the eye as: “initially, the eye motions have an extremely 

extensive nature, consecutively tracing the entire outline of the perceived figure and 

simulating its specifics in all details” (p. 32). Consequently, in a next stage, the eye’s 

motions “gradually begin to decrease and to focus on the individual, most informative 

attributes of the object” (p. 32). 

Throughout my thesis, although the first and last studies looked at different target 

sampling populations, both highlighted the role and the level of hand and eye 

engagement in response to the use of mathematical instruments. To understand the 

level of engagement between hand and eye, I appeal to Deleuze’s (2003) idea of 

relationships between hand and eye. Sinclair and de Freitas (2014) also first used 

Deleuze to conceptualise the relationship between hand and eye in the context of 

touchscreen interaction. 

In the book “The Logic of Sensation,” Gilles Deleuze (2003) explored and 

analysed the work of the English painter Francis Bacon. In considering Bacon’s art, 

Deleuze offers implicit and explicit insights into the origins and development of his own 

aesthetic and philosophical ideas. Enlightening Bacon’s paintings and the act of painting 

itself, Deleuze points beyond painting toward connections with other art forms such as 

music and cinema. Deleuze (2003) defines four relationships between eye and hand, 

which he names digital, haptic, manual and tactile. These relations range from maximum 

to the minimum degree of subordination of the eye to hand respectively. 
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To describe the relationship between the eye and the hand, and the 
values through which this relation passes, it is obviously not enough to 
say that the eye judges and the hands execute. The relationship between 
the hand and the eye is infinitely richer, passing through dynamic 
tensions, logical reversals, and organic exchanges and substitutions […]. 
There are several aspects in the values of the hand that must be 
distinguished from each other: the digital, the tactile, the manual proper, 
and the haptic (Deleuze, 2003, p. 124). 

Adopting Deleuze (2003), and building on Sinclair and de Freitas’s (2014) study, 

I will refer to these relationships by way of a spectrum marked with a red colour for the 

maximum eye domination over the hand, to the blue for the domination of hand over the 

eye (shown in Table 5.1). The spectrum is chosen to emphasise (a) the blurred 

borderlines between categories and (b) the difficulty of determining exactly when the 

relationship between hand and eye changes.  
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The analysis of interactions on the multitouch technology regarding streams of 

perceptuomotor integration could provide an opportunity to examine how the 

relationships between eye and hand fluctuate. For example, as shown in table 1, hand 

subordinated the observant eye in Deleuze’s “digital” sense when Alex carefully finger-

showed (p. 31) in TouchCounts, or Anna performed exploratory interactions in BlackBox, 

Digital Haptic Manual Tactile 

 
 
Eye dominates the 
hand 

Equal contribution of 
eye and hand 

Hand more 
dominates 
the eye 

Hand 
dominates 
the eye 

First Study 

 
 
Finger-show 
 

Finger-touch Finger-count  

Second Study 

 
 
N/A N/A N/A 

Active 
perception 
& Active 
sensation 

Third Study 

 
Exploratory active 
actions e.g. 
Rotate (CCW/CW)  
Push (toward/along/ 
away) 
 

Drag-touch-to-
approach 
 
Drag-touch-free 

Basic 
actions 
 
Or dragging 
a point with 
less focus 
on the 
traces  

 

Table 5.1  Four relationships between hand and eye introduced by Deleuze 
(2003). 
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such as rotating--CCW/CW-- and push--toward/along/away (pp. 88-89). Conversely, 

when the learner taps the screen accidentally or drags the point with less concentration 

on the consequence or effects, she enables a “manual” relationship. For example, the 

predominance of hand-over-eye in the studies provides a visual, tangible trace of the 

“manual”. However, these gestures are more than indexical. Subsequently, the parallel 

contribution between hand and eyes (and perhaps other senses), in Deleuze’s “haptic” 

(in combination with tool fluency) may indicate the integration of the motoric and 

perceptual aspects of learning. In addition, in TouchCounts and GSP, the left traces are 

important to highlight the ongoing process of retentions and protentions. 

But of course, such a situation involves more than the eye and hand. Sinclair and 

de Freitas also include the ear. They exemplified how the hand of a fiver-year-old girl 

(Katy) was subordinated to the ear when she was tapping on TouchCounts and looking 

up. In that moment the ear dictated the next tap. So, Katy’s hands were subordinated to 

auditory judgment. When several fingers touched the screen at once and caused 

TouchCounts’ voice to suddenly jump up to a bigger number, her eyes were drawn back 

to evaluate the situation. Further, the authors explained that even while the eye had 

overlooked the initial gesture, an unexpected trace on the screen could be announced 

by ear.  

In my second study, Anthony’s interactions with the tactile graphical tool, his 

hands were not subordinated at all by the eye and the relationship was a purely “tactile” 

one. However, other senses such as hearing and touching were involved. Therefore, in 

this case the haptic involvement may not refer to the sense coordination between eye 

and hand, but between touch, hearing, and body gestures. In this study, tactile 

perception and tool fluency explains this sense coordination. A visually impaired 

individual constantly traces different components of a tactile graph with his fingers, or 

listens to aural instructions. When doing this, the learner refines their finger movements 

accordingly. The active sensation of a discordance between perceptual and motoric 

activities translates to a coordinated form of ‘tactile perception.’  

Sinclair & de Freitas (2014) explain learning in a multitouch environment, 

expanding Deleuze’s hand-eye coordination: 
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..This seems part of the generative nature of these multitouch 
environments that do not overly fix interaction (as is the case in many 
prescriptive educational Apps currently available) and that invite 
movement not only between Deleuze’s different hand-eye relationships, 
but also with new relationships involving the ear. And we suspect that 
these are the kinds of encounters that allow for learning (p. 371). 

In short, the expanded model of eye-hand-ear coordination in Sinclair and de 

Freitas (2014) can clarify another aspect of perceptuomotor tool fluency. That is to say, 

under perceptuomotor integration the observant eye/ear moves from being subordinated 

to the hand, to become integrated with other senses in the use of the mathematical tool. 

For example in the first study, tool fluency and perceptumotor integration can be 

explained when finger-touching emerges as coordinated finger-showing (digital) and 

finger-counting (manual). See table 5.1. 

In the next section, I present summaries of the three studies. These summaries 

not only highlight the common themes across three papers but also address my 

research contributions in each study. Then, implications of the studies as well as 

limitations, and suggestions for the further researches are discussed.  

 Summary of the results  

5.2.1. First Study 

The first study “Exploring Cardinality in The Era of Touchscreen-Based 

Technology”15, explored how a fifty six-month-old boy named Alex, learned cardinality 

through using a multimodal, touchscreen-based interface on an iPad application called 

TouchCounts.  

The most prominent focus of the study was the role of hands in the development 

of number sense, as well as the role of TouchCounts in preserving this development in a 

digital world. In TouchCounts fingers and gestures are used to transform touches (and 

taps) to be counted, to summon numbers into existence and to operate on them. 

 
15 The first study was co-authored with Dr. Stephen Campbell. 
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TouchCounts also preserves various modalities of verbal counting, numeral notation and 

finger-counting to represent an ordinal or cardinal number.  

The research questions pertaining to this study aimed to examine: 

• How does the child develop tool fluency with TouchCounts?  

• In what ways might tool fluency implicate and be implicated in the child's 

understanding of cardinality? 

We utilized Nemirovsky et al.’s (2013) perceptuomotor integration, Vergnaud’s 

(2009) definition of cardinality, and a Husserlian descriptive phenomenological attitude 

(1991) to conduct an in-depth case study, when Alex was developing mathematical 

expertise and tool fluency using TouchCounts. We reported on Alex’s emerging 

perception and motor integration: from not being able to make a six out of necessity of 

sequentially, to the development a successful six by using his twin’s fingers and colliding 

two herds of threes. The discussion progressed through analysis of three different 

episodes when Alex was playing with cards and TouchCounts in the classroom setting. 

We found Alex’s gradual increase of perceptuomotor skills and an improved 

understanding of cardinality, accompanied by a unified and holistic continuity between 

his temporal flows in experiential time. Our study highlighted playing with TouchCounts 

preserves what Vergnaud (2009) called ‘effectiveness of counting strategies’ as the one-

to-one-to-one correspondences amongst the movement of fingers, eyes and words 

represents ‘three different repertoires of gestures’. 

We distinguished between showing a cardinal number (1-10) on young learners’ 

fingers, or finger-showing (known as finger-montring [“montring,” is the original spelling]); 

obtaining a number via finger-counting, which links an ordinal process; and the 

development of both in creating numbers on TouchCounts via Finger-touching. The role 

of TouchCounts in transforming children’s finger-showing and finger counting to finger-

touching through card play also was addressed. This could be seen as the transition 

from Deleuze’s (2003) “digital” relationship to the “tactile”. Finger-touching in 

TouchCounts permitted Alex to coordinate his sense organs__ eye, hand, ear __ and 

gestures in different modes: e.g., number of fingers touches the screen in form of taps, 

number on the created herd on the screen, number name such as three and spoken 
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“three”. So, the results highlighted the integration of a perceptual understanding of 

cardinality (e.g.: for 3) and motor activities that manifested in terms of successful finger-

touching. In other words, the perceptuomotor aspects of operating on numbers on 

TouchCounts are tangled up with the concepts of ordinality and cardinality.  

5.2.2. Second Study 

The second study explored “Advanced Mathematics Communication Beyond 

Modality of Sight”. Being one of the few studies at university level, in this research I 

explored how assistive technology and an innovative method of tactile graphing could 

enable a blind undergraduate student, named Anthony, to learn pre-calculus concepts. 

In this study, I discussed some of the problems that Anthony encountered during the 

lecture, while being tutored or while accessing the course’s written and pictorial 

materials (graphs). The study aimed to answer the following questions: 

A. How do mathematical tools and resources (such as tactile graphs, screen 

readers, etc.) make mathematical communication and learning possible 

for the blind learner in pre-calculus courses?  

Also, to find how tactile mathematics tools support the process of learning that 

coordinates the body in mathematical activity, I explored:  

a) How do the emergence of the blind student's bodily activities and 

gestures embody and express mathematical learning? 

To answer the first research question, I discussed how using Braille, as the 

tactile writing system was not the optimal choice for the pre-calculus written materials. 

Then, I introduced alternatives of JAWS and VoiceOver to read the written digital 

materials and computer screen as well as Nemeth Coding and LaTex to communicate 

mathematically, when needed. 

In this research, I uncovered some of the very challenging problems facing the 

visually impaired student in teaching and learning mathematics, as below:  
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• reading and comprehending printed/drawn mathematical graphs in 

absence of a sighted assistant;  

• strong reliance of mathematical communication on gestures, body 

language, pointing, etc. 

• enormous use of deixis by sighted mathematics community counterparts 

when referring to a mathematical graph or its parts. 

 Anthony faced these difficulties in various forms: in reading a textbook's pictorial 

information and graphs, on sketched figures on the board during the lecture time or 

tutoring sessions, when he was doing exercises at home, and tests or quizzes at school. 

To tackle this challenge, we invented two methods for graphing: Sketch graphing and 

Permanent graphing.  

The Sketch graphing enabled Anthony and his assistants/teachers to quickly and 

efficiently draw a tactile graph during the lecture, tutoring time, or test. Permanent 

graphing empowered Anthony to comprehend and read a drawn graph with all given 

details, presented just like the original resource (textbook, class notes, etc.) in absence 

of a sighted assistant.  

In the second part of this chapter, I explored how using the tactile graphs as a 

mathematical tool supported Anthony’s learning. I detailed and analysed Anthony’s lived 

experience when he was verbally and gesturally describing the given rational function 

graph’s behavior. The emergence of Anthony’s coordination of perceptual and motor 

activities was illustrated and his temporal flows of perceptuomotor activities – inhabited 

bodily and interpersonally in experiential time – were analysed (Husserl, 1991; 

Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2013; Nemirovsky et al. 2011).  

The results showed Anthony’s tool fluency as the enactment of his body 

orientation and appropriate use of the tactile mathematical instrument. I found changes 

in the scale and modality of mathematical activity as an historical disruption of relatively 

stable, culturally-understandable demonstrations of a rational function’s behaviour with 

great precision. That is to say, the tool fluency phenomenon was fulfilled through a fluent 
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demonstration of a function’s behaviour that was a “culturally recognized creation” by the 

members of “mathematical communities” (Nemirovsky’ et al. 2013 p. 373). 

My direct contribution on this study consisted in identifying some obstacles that a 

blind undergraduate student encountered in learning pre-calculus concepts and 

investigating possible aids to assist his mathematics learning at university level. I also 

invented tactile graphs (sketched and permanent graphs) and examined their 

functionality in different contexts to provide readable graphs for the blind learner.  

Theoretically, the study suggested the transition from active sensations to tactile 

perception as a sign of tool fluency. While active sensing refers to controlling the finger 

movements (Gibson, 1962) while contacting a stimulus, tactile perceptions were 

evidenced when Anthony’s acquired information formed the tactile graphs, and his 

learning guided his gestures and body coordination (in the environment) when 

demonstrating a rational function’s behaviour (Lapora, 2015). Also, Anthony’s tactile 

perception revealed his understanding of a rational function as a dynamic entity that 

comes from −∞ and moves toward +∞, despite the static nature of static tactile graphs, 

per se.  

5.2.3. Third Study 

The third study, entitled ”Touchscreen-Based Technology in Exploring Geometric 

Transformation: Use of Timeline as an Analytical Tool” addressed following questions: 

• What are the types of interactions in a touchscreen DGE geometrical 

context for BlackBox? 

• How do customized expansions on Arzarello's (2014) codes of 

touchscreen-based DGE interactions clarify emergence of tool fluency 

on a mathematical instrument?  

• How does a prospective teacher learn geometric transformation via 

interacting with the touchscreen-based GSP? 
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In this study, I discussed how a prospective teacher named Anna learned 

geometric transformation via direct interactions with a touchscreen-based dynamic 

geometry environment (The Sketchpad Explorer16). Anna, who had no experience 

playing with a touchscreen-based device, was asked to identify the type of geometric 

transformation in the given task, named BlackBox. I adapted Arzarello et al.’s (2015) 

theory of touchscreen interaction to identify different modes of actions: basic actions, 

and active actions. The basic actions were defined as the mode of interaction with the 

touch interface, while the combination of basic actions and performed finger interactions 

were categorized as active actions. I extended Arzarello’s modes of interactions and 

defined new codes in terms of perceptual and motor integration, rather than cognitive 

domain of mathematical thinking.  

The results showed touchscreen-based DGE maintains geometrical relationships 

between components of shapes by offering continuous and real-time transformations. It 

also allowed direct interactions with the geometric objects with the hand. Thus, it 

prompted an environment for conjecturing, reasoning, developing explicit descriptions of 

geometric relationships and shapes by drawing different sketches, and tracing their 

effects even with no explicit instruction (Battista, 2008; Leung, 2008; Nasim, 2008; Ng & 

Sinclair, 2015; Ng, 2016; Vrahimis, 2016). 

Also, the analysed data indicated Anna’s tool fluency, exhibited in the form of 

accelerated active actions (drag-touches and rotations) combined and co-joint with her 

verbal explanations. The result suggested Anna’s active actions transformation from 

discordance between perceptual and motor aspects of learning, to a holistic sense of 

unity and flow in terms of mathematical tool fluency (Nemirovsky, 2013).  

 My contribution in this study consisted in suggesting new methodology for 

analysing video data. Appealing to Nemirovsky et al.’s perceptuomotor integration theory 

allowed me to trace the emergence of tool fluency in terms of integration of temporal 

streams of perceptual and motor activities, using a detailed analysis of the video’s 

 
16 iPad application that enables users to manipulate sketches created using The Geometer's 

Sketchpad. 
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timeline as an analytical tool. I used the video timeline to trace the Arzarello’s adapted 

codes in video data, which enabled me to trace the paths of interactions and discuss the 

emergence of tool fluency in terms of developing active actions over the stretch of time. 

With the suggested methodology, I analysed a four-minute episode concentrated on the 

touchscreen-based communications for Anna, as she thought aloud to solve a geometric 

rotation task.  

Taking the three studies together, I found a high degree of embodied 

mathematics and temporal coordination of the capacities of sense organs (hands, ears 

and eyes) in response to the mathematical instrument. Bodily interactions with 

mathematical instruments navigate the edge of the actual and the potential: the 

potentiality of the body’s contribution vs. the actuality of the designed instrument. Thus, 

in different touchscreen-based DGEs, inventive instrumental gestures tap into the 

potentiality of the body’s engagement and reconfigure various relationships between 

different sensations, respectively (Sinclair & de Freitas, 2014). For example, 

TouchCounts leaves visual and aural traces on the fingers’ path on the screen. It also 

engages the potentiality of small physical gestures: the actuality of a pinch, for instance, 

is a metaphor for addition. The touch gestures make concrete quantities for young 

children, for whom those quantities are still “abstracts” (Sinclair & de Freitas, 2014).  

The BlackBox in the third study also left visual traces on the screen and involved 

gestures, touch and sight, however in this study, the learner engages primarily with the 

visual modes: to what changes or remains invariant. Also, touch gestures made rapports 

with unitary traces, sometimes blooming into artistic practice. More specifically, the 

traces manifested the geometric relationships that could be perceived “as invariance in 

the continuous moving of the draggable” point, which supported the learner’s noticing of 

invariance (Battista, 2008, p. 350), for example, in this case, the centre of rotation. 

However, for Anthony the absence of sight and active sensation of tactile graphs was 

morphed into an embodied tactile perception, providing an abstract image of the 

graphed function. Hand gestures and tactile diagrams were mutually implicated in 

showing a function’s behavior, which evidenced the integrated motor-sensorial and 

conceptual activities (Healy, 2011; 2014; 2015; Sinclair & de Freitas, 2014).  
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Evidently, Alex, Anna and Anthony’s thinking and learning with the mathematical 

tools started from a discordance between motor and perceptual activities. Like 

Zaporozhets (2002) in this early stage, I observed the privileging of Deleuze’s ‘tactile’ 

experience and ‘touch’ perceptions, over sight. For the participants (excepting Anthony), 

the eye performed an auxiliary role. The eye within this role were to coordinate 

perceptual and motor activities, to judge what is the next, and inform hand to adjust its 

movements. 

 Alex’s bodily orientations were brought from a finger-counting and showing to a 

finger-touch; for Anthony, they developed from an active sensation to a tactile 

perception; and for Anna from rotation and push actions to drag-touch-to-approach and 

drag-touch-free active actions. This is also where the participants harmonized words and 

involuntary bodily activities (motoric), providing evidence of their ability to anticipate the 

next step of the task (perceptual). Thus, their motor activities were involuntary and 

enacted as a part of perceiving. This is where the perceptuomotor integration met 

Husserl’s phenomenological attitude again. 

Also, direct manipulation via touchscreen-based device allowed back and forth 

interactions between hands, eyes, and ears for gathering meaning, forming undergoing 

retentions and anticipations. These shifts in thinking could be the result of attention to 

the relationships between hand, eye and ears in producing gestures in DGEs. They also 

could be, theoretically, the result of an “unmet protention,” the unanticipated result of a 

miscalculated “retention” in ongoing sequential time (i.e., learning from mistakes). 

Therefore, the continuous growth of embodied skills, and integration of perceptual and 

motor activities through emerging paths of lived experiences within the social and 

environmental contexts forms ideas and learning, without being or end (Ingold, 2016; 

Nemirovsky, 2017). 

Such interactions highlighted the roles of mathematical instruments in the 

evolution of our ways of sensing and reflecting, as well as the fundamental role of 

instruments in the ways we come to know and arrive at fluency of use. In the first and 

last studies, involving DGEs, I found DGE prompts to be an environment for reasoning, 

conjecturing, and explicit description of geometric or arithmetic relationships. The tactile 

graphs played the same role for Anthony. 
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I also discussed touchscreen-based/tactile interactions with the mathematical 

objects/graphs provide flexibility in the learning of mathematics. For example, the 

continuous and real-time interactions with TouchCounts enabled Alex to develop 

understanding of cardinality from counting numbers sequentially. Alex’s constant use of 

fingers in a cycle of finger-counting and finger-showings resulted in the successful 

finger-touching using TouchCounts. For the second study, the analogous continuous use 

of fingers in touching and creating tactile graphs were revealed in Anthony’s use of arms 

and hands in explaining the behaviour of a rational graph through his tactile perception.  

Evidently, touchscreen GSP well-treated invariants in the continuous moves of 

points through touch interactions. It supported Anna’s noticing of the visual modes of 

what changed or remained invariant. Anna’s “unmet protention” in examining  her 

conjecture discontinued her touchscreen-based interactions. Such interactions guided 

Anna to understand that there is no relation between the direction of her active actions 

and centre of rotation.   

 Challenges and Limitations 

I recognize some limitations of my studies in terms of video quality, selecting the 

setting, and participant recruitment. Also, I faced limitations in verifying the key-codes in 

the third study. 

One of the common challenges that wove through all three studies regarded the 

quality of recorded video data. In my studies, video recording was the method of data 

collection. Taking a perceptuomotor integration theory lens, I needed to consider high-

quality video data where the participants’ interactions with the mathematical tool (and 

other participants, if applicable) were well-recorded and where the mathematical tool and 

individual interactions were displayed clearly. For example, in the first study, which took 

place in a daycare, sometimes there were too many children crowded around the iPad, 

which made recording the interactions that were happening on the screen impossible. 

There are also specific limitations associated with each study that I will now elaborate: 
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With the first study, the daycare was not randomly chosen (although I am not 

generalizing the findings). In the selected setting, most of the children came from 

educated families with a stable economic background. In addition, the interviewer (Dr. 

Sinclair) is a university professor and not a daycare teacher. So, conducting the study in 

a random classroom with a kindergarten teacher could yield different results. 

For the second study, I had access to only one participant. The recruitment of 

visually impaired students who were willing to register for a mathematics course at the 

university was very challenging. So, I could not examine findings with other visually 

impaired students. That was because of the very limited number of undergraduate 

students interested in taking mathematics courses. Also, it was a very difficult task to 

inform prospective participants about the possible assistive materials and aids that we 

could offer to them if taking a mathematics course. Because of ethics restrictions, all the 

communications had to be made through the centre for students with disabilities (CSD). 

In addition, acquiring ethics permission was very time-consuming, which made us 

unable to start the study when the course started. Ethics restrictions also did not let me 

record Anthony’s involvement with the course materials in session or during an actual 

test or quiz.  

In the third study, only the students who received the lowest marks in a 

geometric transformation quiz were invited to participate in the study. I encountered the 

same limitations as in the second study, where Anthony was the only available 

participant. Also, the interviews did not take place in an actual classroom setting. 

Another limitation of the third study was adapting and identifying the key-codes to trace 

their development and occurrence in the video data. I identified and analysed video data 

for Anna’s interaction with the rotation task on the iPad (touchscreen DGE). However, 

these individual codes may not apply to the other participants and studies. Also, other 

codes may be revealed if the same task is used in the collaborative group work instead 

of individual exploration. 
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 Suggestions for Further Research  

The findings presented in this dissertation are far from providing a complete 

explanation about the contribution of the body – especially fingers, eyes, and ears – in 

learning mathematics. They rather contribute to a new path for the studies in the 

embodiment of mathematics with a focus on the coordination between finger, eyes, ears 

and touchscreen-based DGEs. While the case studies described here were meant to 

investigate mathematics learning in the form of tool fluency and body coordination, each 

alternative way focused on a different aspect. The chosen small sample size in my 

thesis helped me to focus on qualitative case study research exploring for possible 

phenomena of interest of emerging mathematical tool fluency in different context, not a 

quantitative consideration of the probability of occurrences of such phenomena. 

Considering larger groups of participants may result in complementary findings. So, 

future studies with larger sample sizes, in actual classroom settings, should further 

investigate the possible benefit of using touchscreen-based DGEs on teaching and 

learning mathematics.  

Also, the first study took place in a kindergarten, while the researcher who 

conducted the interview was not a kindergarten teacher. So, further studies where 

TouchCounts is utilized by an elementary or kindergarten teacher are suggested. In 

addition, using multiple iPads, or even iPad Pro instead of iPad (with a larger screen size 

than iPad) may bring a greater level of collaborative engagements among the students. 

Also, further investigations on two-digit number combinations and creation using 

TouchCounts are suggested. 

For the second study, I invited the participant by snowball sampling. I also was 

unable to find further participants to investigate the functionality of the suggested 

methods on their learning. It remains for further research to shed some light on the 

presented tactile inventions for blind students, and adopt and extend them in other 

undergraduate coursework.  

In the third study, I examined mathematics learning in terms of tracing adapted 

codes based on Arzarello’s active actions (2014) in a very small excerpt of videos, in 

which temporal flows of perceptual and motor activities were observed. I offer the 
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methodology and analysis as a starting point for further studies. Adapting my suggested 

methodology in a large data set, would enable a team of researchers to collaboratively 

analyse and draw evidenced-based conclusions.  

On a practical level – in light of the evidence collected and presented to date – I 

think that a compelling case can be made for integrating touch-based technologies into a 

broader curricular approach at different levels. For instance, TouchCounts appears to be 

a particularly powerful tool for teaching and learning counting and adding. Tactile graphs 

seem to be an effective tool in graphing or understanding complicated and advanced 

mathematical graphs and figures for visually impaired students. Using a video timeline 

as an analytical tool provides strong theoretical and practical components to be adopted 

for video analysis, not only in mathematics education but other fields such as medical, 

physical education, etc. 

Theoretically speaking, I have extended the perceptuomotor integration approach 

to trace mathematics learning in terms of tool fluency. The chosen theoretical lens was 

helpful in speaking about the potential and the active role of the multitouch screen 

technology (TouchCounts and GSP) as well as describing active and dynamic sensation 

transformation toward tactile perception in learning mathematics for blind learners. The 

rationale was rooted in the idea that learning entails an interpenetration of the perceptual 

and motor aspects of activity with a tool, and this interpenetration is part of developing 

fluency with this tool. Husserl’s phenomenological descriptive attitude provided a rich 

framework to analyse temporal flows of perceptual and motor activities. That is where I 

identified and adapted perceptuomotor integration in the form of unity, coordination, and 

harmony of bodily activities while using mathematical instruments by introducing 

different notations. For example, finger-touch and different modes of active actions for 

sighted learners are in line with Deleuze‘s (2003) notion of a ‘tactile’ relationship 

between eye and hand in the first and last studies, respectively. In addition, the 

expanded Arzerallo et al.’s (2014) modalities (modes of active actions)  and the 

systematic video coding, could be adapted in the first study to categorize types of finger-

showing, finger-counting, and finger-touching (see Sedaghatjou & Rodney (2018) for 

more details).    
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At the theoretical level, some explanations regarding what exactly learners’ 

“body” entails and how mathematics partakes the body would be helpful. Also more 

clarity in terms of the implications of the “tool fluency” is needed. For example, if this 

perspective tool fluency could mean that a master carpenter is by definition an expert 

geometer by nature of the fact that they can adeptly use tools that pertain to the 

geometric properties of objects. 

Finally, besides exploring the role of touchscreen-based DGEs on learning 

mathematics for different learners, from young children to prospective teachers, I 

expanded my knowledge about the role of human sense, especially touch and sight and 

their coordination in mathematics sense-making. What differentiates my exploration from 

many others is the minimal role of teacher and instructor as the mediator. In my studies 

the teacher or researcher-participant plays the role of facilitator instead of director. I 

hope to combine these findings in future research with my suggested video-analysis 

methodology to investigate relationships among mathematical tool use, human sense 

coordination, and identifying modes of interactions to trace mathematics learning.  

 Summary  

In this chapter, a summary and discussion of the findings of my three studies was 

presented. The purpose of the studies, guiding research questions, and findings were 

revisited. Themes that emerged from the studies were summarized and discussed, and 

the relationships of the findings to the theoretical framework were explored. Also, 

challenges and limitations as well as and recommendations for future research, were 

offered. 
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Appendix A.  
Different finger’s configurations (finger-showing)  

 

Different finger-showing gestures were used in the card play. Children were asked to 

create numbers shown on the card on TouchCounts.  
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Below is an example of different finger combinations of finger-showing for five.  
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Appendix B.  
Daycare’s floor plan and classroom arrangement  
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Appendix C.  
A detailed schedule for the first study at daycare 

 

Day Number  Date  Duration of 

intervention(min) 

First interview  Summer  2013   

Day One  Jan 29th    2013  57 

Day Two  Feb 14th   2013  56 

Day Three  Feb 26th   2013  39 

Day Four  Mar 14th   2013  36 

Day Five  April 17th 2013  62 

Day Six  May 2nd   2013  55 

Day Seven   Jan 24th    2014  48 

Day Eight  Feb 1st     2014  64 

Day Nine  Feb 26th   2014  58 

Day Ten  April 2nd  2014  65 

Day Eleven  April 9th  2014  63 

Day Twelve  April 23rd 2014  50 

Day Thirteen   May 21st  2014  49 

Day Fourteen  May 28th  2014  37 

Day Fifteen  Jun 11th    2014  40 

Day Sixteen  Jun 24th    2014  38 

Day Seventeen  Jul  2nd     2014  74 

 


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1.  Organization and Structure of the Thesis
	1.1.1. First Study: Exploring Cardinality in The Era of Touchscreen-Based Technology
	1.1.2. Second Study: Advanced Mathematics Communication Beyond the Modality of Sight
	1.1.3. Third Study: Touch-Based Technology in Exploring Geometric Transformation: Use of Timeline as an Analytical Tool

	1.2. Tracing the Common Themes
	1.2.1. Embodied Mathematics: Perceptuomotor Approach
	1.2.2. Multimodality of Mathematical Instruments
	1.2.3. Approach to Mathematical instruments
	Instrumental genesis
	Semiotic mediation rooted in Vygotsky’s mediational theory
	Mathematical instrument: Within an embodied perspective
	Sense-making in Perceptuomotor Integration
	Mathematical instruments in a perceptuomotor integration approach: A comparison

	1.2.4. Perceptuomotor Integration in Learning Mathematics Through Touch-Based Interactions
	First Study: “Exploring Cardinality in The Era of Touchscreen-Based Technology”
	Second study: “Advanced Mathematics Communication Beyond the Modality of Sight”
	Third Study: “Touch-based technology in exploring geometric transformation: use of timeline as an analytical tool”


	1.3. Summary

	Chapter 2. Exploring Cardinality in The Era of Touchscreen-Based Technology
	2.1. The Role of Fingers in Numerical Development
	2.2. Touchcounts: Connecting Touch-Based Technology with Finger-touching
	2.2.1. TouchCounts: Operating World.

	2.3. Theoretical Framework
	2.4. Method
	2.4.1. Procedure
	2.4.2. About Alex
	2.4.3. Selected Episodes

	2.5. Description and Analysis
	2.5.1. First Episode: Doing Six
	2.5.2. Second Episode: Expanding the Sense of Cardinality
	Missing addend
	Fine motor ability and eye-hand coordination
	Making six

	2.5.3. Third Episode: Playing ‘I wish – I have’ on TouchCounts
	2.5.4. Triangulation

	2.6. Discussion
	2.7. Conclusion

	Chapter 3. Advanced Mathematics Communication Beyond Modality of Sight
	3.1. Learning Mathematics in Absence of Sight
	3.2. Complexity of the Mathematical Graphs
	3.2.1. Complexity of Mathematics Communication

	3.3. Structure of the Chapter
	3.4. Research Questions
	3.5. Theoretical Framework: Perceptuomotor Integration
	3.5.1. Tool Fluency
	3.5.2. Lived Experience
	3.5.3. Tactile Perception Verses Active Sensation: Perceptuomotor Integration and Tool Fluency in Tactile Touch

	3.6. Methodology
	3.6.1. Who Is Anthony?
	3.6.2. Written/Printed Materials
	3.6.3.  LaTex
	3.6.4. JAWS
	3.6.5. Tactile Graphs: A Real Challenge
	Sketch graphing
	Permanent graphing


	3.7. Demonstrating the Behaviour of a Rational Functions
	3.8. Discussion
	3.9. Conclusion

	Chapter 4.  Touch-Based Technology in Exploring Geometric Transformation: Use of Timeline as an Analytical Tool
	4.1. Geometric Transformations and a Dynamic Geometry Environment (DGE)
	4.1.1. The Role of Dragging in DGEs

	4.2. Manipulating Geometrical Objects on Touchscreen Devices
	4.3. Structure of the Chapter
	4.4. Research Questions
	4.5. Methodology
	4.5.1. Design of the Task
	What is rotation?


	4.6. Theoretical Approach: Tracing the Paths of Interaction
	4.6.1. Theory of Interaction: Active actions vs Basic Actions
	4.6.2. Tracing Tool Fluency in Touchscreen DGE

	4.7. Tracking Paths of Interaction (TPI): A Methodology for Video-coding
	4.8. Video Coding Process
	4.8.1. Video Timeline: An Analytical Tool to Trace Paths Of Interactions

	4.9. Description and Analysis
	4.10. Timeline Analysis and Discussion
	4.10.1. The Features and Benefits of StudioCode in Video Timeline Analysis

	4.11. Conclusion and Remarks

	Chapter 5. Conclusion
	5.1. Mathematics Learning and Tool Fluency: The Role of Touch and Sight Interactions
	5.2. Summary of the results
	5.2.1. First Study
	5.2.2. Second Study
	5.2.3. Third Study

	5.3. Challenges and Limitations
	5.4. Suggestions for Further Research
	5.5. Summary

	References
	Appendix A.  Different finger’s configurations (finger-showing)
	Appendix B.  Daycare’s floor plan and classroom arrangement
	Appendix C.  A detailed schedule for the first study at daycare



