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Abstract 

Machine vision camera is becoming more popular in the industry. USB 3.0 interface 

support 5Gbps transmission, and is a low-cost and fast way to transmit video signals 

from sensors to computers. However, most image sensors are incompatible with USB 

3.0 protocol, and cannot directly connect to USB 3.0. In this report, we present the 

development of the hardware design of a USB 3.0 multi-purpose camera using the 

Cypress microprocessor. Our camera also has a FPGA module as an adaptive part to 

provide protocol translation, voltage level conversion, serial to parallel conversion, multi-

channel data collection, and clock synthesis. We also discuss some important principles 

of system and schematic design, and emphasize a few critical PCB routing rules for 

assurance of PCB integrity. Some testing outcomes are provided to illustrate the 

hardware functionality and algorithm running results, which verify the success of the 

design and the performance of the camera. 

Keywords: USB 3.0; Machine Vision Camera; FPGA; Image Processing. 
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Chapter 1.  
 
USB 3.0 Multi-Purpose Camera Introduction 

 

1.1. Overview of machine vision camera 

Machine vision (MV) is the technology and methods used to provide imaging-

based automatic inspection and analysis for applications such as automatic inspection, 

process control, and robot guidance. Machine vision encompasses many technologies, 

software and hardware products, integrated systems, actions, methods and expertise.  

Currently the most popular machine vision cameras are USB 3.0 (or simply 

USB3) cameras and GigE cameras. The main difference between USB 3.0 camera and 

GigE camera is the interface between camera and computer. GigE camera uses Gigabit 

Ethernet interface to connect to computer, and the communication between them is 

based on TCP/IP protocol. USB 3.0 camera uses USB 3.0 interface to connect to 

computer, which follows the USB 3.0 protocol for communication.  

Comparing to GigE camera, USB 3.0 camera has a few advantages, as listed 

below: 

• USB 3.0 camera has much higher communication bandwidth than GigE camera.  

• USB 3.0 camera connects to computer through USB 3.0 interface which can provide 

up to 5Gbps bandwidth, while GigE camera uses Gigabit Ethernet to transmit video 

or images to computer with 1Gbps bandwidth limitation. 

• Since USB 3.0 camera can provide more bandwidth for communication, USB 3.0 

camera can provide higher resolution and higher frame rate than GigE camera. 

• USB 3.0 host interface can provide 5V, 0.9A power budget. Therefore, as a device to 

computer, USB 3.0 camera does not need external power supply, which simplifies 

design and assembly, making the entire system more compact. 
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On the other hand, the GigE camera also has some advantages: 

• A single USB 3.0 cable can only be up to 6 feet long，whereas GigE camera can be 

100m away from the computer through cat5e cable. 

• GigE camera can also be powered by POE (Power Over Ethernet) through cat5e 

twisted cable. 

In this project, we focus on the development of a USB 3.0 camera, and present 

the system structure, hardware design, FPGA programming for interface and protocol 

translation, and test results. 

1.2. USB3 camera hardware architecture 

Most image sensors are incompatible with USB 3.0 protocol, and cannot directly 

connect to USB 3.0. Therefore in this project, the Cypress EZ-USB FX3 SuperSpeed 

USB 3.0 peripheral controller is used as the bridge between the image sensor and the 

PC. Our USB3 camera system consists of five main parts plus power supply, as shown 

in Figure 1.1. 

 

Figure 1.1. USB 3.0 Camera system block diagram. 
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Parts 1: Video sensor; In this part, video sensor captures pictures when incident 

light illuminates on the video or image sensor, which has been reflected from objects. 

Sensor will then send out the picture data pixel by pixel in raster order, where the pixels 

are read row by row until the entire frame of pixel is transmitted. The procedure can be 

controlled by the FPGA component (part 2).  

Part2: FPGA; FPGA helps to generate the video clock signal, read data from 

sensor, convert it to proper parallel format, and then feed to the FX3 module (FX3). 

Part3: FX3; This is the Cypress EZ-USB FX3 SuperSpeed USB 3.0 peripheral 

controller, which serves as the bridge between the image sensor and the PC. It picks up 

parallel video data stream from FPGA, schedules the data stream to USB buffer 

(endpoint), and sends the data to PC when the host requests data through USB 

protocol. 

Part 4: PC software. This part is responsible for receiving video data from USB 

interface, reconstruct video or image according the control information, and perform 

other image and video processing. Another important function of this part is to convert 

the raw Bayer sampling format of the sensor to the full RGB format. 

The hardware made up of two boards, one is sensor board which contains part 1, 

and the second board is main board which consist of part 2, part 3 and power regulator. 

The sensor board and the main board are connected through a 60 pins connector. More 

details of each of part will be discussed later. 

1.3. USB 3.0 host/slave interface and corresponding 
firmware structure 

1.3.1. USB 3.0 physical layer 

In Figure 1.2, the USB 3.0 SuperSpeed cable employs a dual-simplex channel 

which makes bidirectional communication possible. SSTX+, SSTX- represent 

transmission differential pair; SSRX+, SSRX- represent receive differential pair. The 

SuperSpeed channel signal rate can reach 5Gbps, so in many aspects the SuperSpeed 
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channel is different from USB 2.0 high speed channel. The major difference is listed in 

Table 1.1. 

 
  
 

Table 1.1. USB 3.0 features compare to USB 2.0. 
 

Feature USB 3.0 supper speed USB 2.0 high speed 

Data transfer Dual simplex  Half duplex 

Data rate 5Gbps 480Mbps 

Device detection by 

host 

Receiver side 

termination 

Pull-up resistor on D+ or D- 

line 

 

Figure 1.2. Cross section of USB 3.0 cable [16]. 
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1.3.2. USB 3.0 communication layer 

Link layer 

The Link layer sets up link between host and slave and maintains link reliability. 

The Link layer establishes link through link training and status state machine (LTSSM). 

LTSSM consists of 12 states as listed below. 

• U0, fully powered 

• U1, standby with fast recovery 

• U2, standby with slow recovery 

• U3, suspended greatest power savings and longest recovery back to U0 

(milliseconds) 

• Four link initialization and training states (Rx-Detect, Polling, Recovery, Hot Reset) 

• Two link test states (Loopback and Compliance mode) 

• SS Inactive: (link error state where USB 3.0 is non-operable) 

• SS Disabled: (SuperSpeed bus is disabled and operates as USB 2.0 only) [16] 

Protocol layer 

The protocol layer performs the following tasks: 

1. Unicast: USB 3.0 can deliver packets to the target with the help of routing string. 

2. Token/Data/Handshake Sequences: In USB 3.0, the token is incorporated into the 

data packet for OUT transactions; it is replaced by the handshake for IN 

transactions. An ACK packet acknowledges the previous data packet sent and 

requests the next data packet. 

The differences IN and OUT transaction sequence between USB2.0 and USB 3.0 are 
shown in Fig. 1.3 and Fig. 1.4 [16]. 
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Figure 1.4. Difference OUT transaction sequence between USB2.0 and USB 3.0 [16]. 

 

Data bursting 

The SuperSpeed end-to-end protocol supports transmitting data in burst to 

improve performance. The maximum burst size is 16, and the actual number to be used 

Figure 1.3. Difference IN transaction sequence between USB2.0 and USB 3.0 [16]. 



7 

represents the number of data packets that can be sent without receiving an 

acknowledgement, as showed in Figure 1.5. 

 

Figure 1.5. Data bursting [16]. 

 

End-to-End Flow Control 

SuperSpeed flow control uses a poll-once approach coupled with an 

asynchronous ready notification, as shown in Fig. 1.6. 
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Figure 1.6. End-to-End Flow Cotrol  [16]. 

 

1.4. USB 3.0 Camera Applications 

As showed in Figure 1.7, FX3 sends command to Image Sensor and pick up 

video signal from Image sensor through video data interface. Video data interface 

consist of clock, Sync, and data. Sync consists of H-sync and V-sync. Data can be 8-

bit,16 bit or 32-bit interface structure. In this design, we use FPGA between Image 

sensor and FX3 for high speed LVDS translate to parallel data interface. 

 

Figure 1.7. USB 3.0 camera block diagram and main interface signals [9]. 
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Figure 1.8. Camera application system block diagram [9]. 

 

Figure 1.8 shows more details of the USB host and FX3 module, which include a 

UVC (USB Video Class) descriptor and driver respectively. However, in this design, we 

did not fully follow the standard UVC process, the reason is listed as following. 

1) UVC uses Y, U, V as color video format before transmit to PC USB host. With 

the limitation of USB 3.0 transmission speed (5Gbps), it only supports 1280x720 @30 

FPS. 

2) Our design uses Bayer format as color pixel before transmitting to PC USB 

host. The Bayer to R, G, B conversion is performed by the PC software. Therefore, the 

maximum video frame rate can reach to 40FPS with the resolution 4096x2160. 

Although we did not fully follow UVC standard, the process for data transmission 

is quite similar to UVC as described in the following. 

1.4.1.  USB 3.0 control path for features setting 

The USB 3.0 control path works as follows. The host will enumerate the device in 

the initial stage, and will be able to get and set features for specific applications. The 

process is showed in the diagram below. 



10 

 

Figure 1.9. Camera features reading and setting [16]. 

 

After successfully enumerating the device, the PC software will use USB control 

transfer PIPE to communicate with FX3 through GET_CUR and SET_CUR. FX3 

translates the command sent from PC software to FPGA, and FPGA re-translates the 

command and data to control the PLL and video sensor, or sends status information to 

the PC. 

1.4.2. EZ-USB FX3 payload data transfer architecture 

To successfully transfer data from the GPIF II interface at the sensor to the USB 

interface at the PC, four major steps are needed, as shown in Fig. 1.10. 
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1. Set up two GPIF threads, GPIF Thread0 and GPIF Thread1. The two GPIF threads 

are scheduled by GPIF II state machine, and connected to 2 GPIF Sockets 

respectively. 

2. Set up DMA channel for GPIF sockets and USB3 sockets. 

3. Set up DMA Descriptor: a DMA Descriptor is a set of registers allocated in the FX3 

RAM. It holds information about the address and size of a DMA buffer as well as 

pointers to the next DMA Descriptor. These pointers create DMA Descriptor chains.  

4. Set up DMA buffer: a DMA buffer is a section of RAM used for intermediate storage 

of data transferred through the FX3 device. DMA buffers are allocated from the RAM 

by the FX3 firmware, and their addresses are stored as part of DMA Descriptors. 

 

 

Figure 1.10. FX3 Data transfer architecture  [9]. 

1.5.  PC software  

The PC software is one of the main parts of machine vision camera, but it is not 

the focus in this report. Here we just give a brief description of its role in the integrated 

system. 

• Set up USB 3.0 driver and SDK for PC, the driver and SDK can be downloaded from 

Cypress website [17]. 

• USB data transfer: read raw data from USB driver and save it to USB data buffer. 
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• Image conversion: read raw data from the USB data buffer and call various image 

processing algorithms, include de-mosaicing, white balance, and Gamma color 

correction. 

• Image drawing: get the converted RGB data and call PC API to draw image on the 

screen. 

In the next few chapters, we discuss detailed design of the USB 3.0 camera. 
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Chapter 2.  
 
Image Sensor and Sensor Board Design 

2.1. Image Sensors 

In this report (or the related hardware design), two types of image sensor are 

involved, SONY IMX226 and IMX273.  

2.1.1. IMX226 Introduction 

Description 

The IMX226CQJ_C is a diagonal 9.33 mm CMOS color image sensor. There are 

2 main readout modes: one is 10-bit output with approximately 9.03M effective pixels at 

59.94 fps, and the static picture of the effective pixels can be 12.4M. Another main 

readout mode is 12-bit output with resolution 2048x1080 and maximum frame rate of 

60fps.  

 Key Features 

• Input clock frequency: The maximum input frequency can be 72MHz 

• Readout mode 

▪ All-pixel scan mode with 10-bit output 

▪ All-pixel scan mode with 12-bit output 

▪ Horizontal/vertical 2/2-line binning mode 

• Image quality and control: 

▪ High-sensitivity, low dark current, no smear, excellent anti-blooming 

characteristic 

▪ Electronic shutter function with variable storage time 

▪ CDS (correlated double sampler) on chip 

▪ PGA on chip. Gain +27dB （step <0.1 dB） 

▪ R, G, B primary color mosaic filter on chip 

• Control interface: 

▪ I2C or SPI serial communication circuit on chip 
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These features determine the clock tree, the control interface, and ISP (in system 

processing) design with implementation on sensor hardware board or FPGA code 

design. 

Recommended operation condition 

Supply voltage: VADD  2.9±0.1V.*1 
   VDDD1 1.2±0.1V.*2 
   VDDD2 1.8±0.1V.*3 
Input voltage: VI  -0.1 to VDDD2+0.1V 
Output voltage: Vo  -0.1 to VDDD2+0.1V 

 
*1 VADD: VDDSUB, VDDHCM, VDDHVS, VDDHPX, VDDHDA, VDDHCP (2.9V 
power supply) 
*2 VDDD1: VDDLCN1, VDDLCN2, VDDLSC1 and VDDLSC2, VDDLPL (1.2V 
power supply) 
*3 VDDD2: VDDMIO, VDDMLV1 and VDDMLV2(1.8V power supply) [1] 
 

2.1.2. IMX273 Introduction 

The IMX273LLR-C is a diagonal 6.3 mm CMOS sensor with 1.58M effective 

pixels, global shutter, variable charge-integration time. The power supply for this chip set 

are analog 3.3V, digital 1.2V and interface 1.8V respectively, and has low power 

consumption.  

Key Features 

• Built-in timing adjustment circuit which can be configured through I2C or SPI 

communication interface. 

• Master or slave mode 

IMX 273 can work on master mode or slave mode which can be configured through 
I2C or SPI interface. When working on master mode, H-sync and V-sync signals are 
generated by sensor (output from sensor).  When working on slave mode, H-sync and 
V-sync are input signals from external master such as FPGA. 
 

• Input frequency:  

Three options are available: 37.125 MHz, 74.25 MHz or 54MHz. In this design 

37.125 MHz is selected. Combined with PLL inside FPGA, variable clock rate is 

provided to adapt the different frame rate requirements. 

• Readout mode 
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▪ All-pixel scan mode with different frame rate 

▪ Vertical 2-pixel FD Binning mode 

▪ 2 X 2 Vertical FD binning mode 

▪ ROI mode 

▪ Vertical/Horizontal –Normal / Inverted readout mode 

 

• Frame rate  

In all-pixel scan mode, the maximum frame rate depends on data output 

structure. Different ADC sampling widths or pixel output widths will result in different 

frame rates. This speed reflects how fast the sensor disposes video pixels. Combined 

with FPGA PLL to adjust input clock, variable frame rate will be generated. The 

maximum frame rate is listed below: 

▪ 8-bit: 276.0 frame/s; 
▪ 10-bit: 226.5 frame/s;  
▪ 12-bit  165.9 frame/s 

 

• shutter function 
▪ Variable-speed shutter function (resolution 1 H units) 

 

• ADC sampling bit width 
 

▪ 8-bit ADC mode 
▪ 10-bit ADC mode 
▪ 12-bit A/D converter 

 

•  Output bit width 
 

▪  Also has three opyions: 8-bit / 10-bit /12-bit 
 

• I / O interface 
 
▪ Low voltage LVDS (150 m Vp-p)  

▪ serial (2 ch / 4 ch / 8 ch switching) DDR output 
 

Recommended operating conditions 

The recommended operating conditions are shown in Table 2.1. 

Table 2.1. Supply voltage for IMX273. 
 

Item Symbol Min. Typ. Max. Unit 

Supply voltage 
(Analog 3.3V) 

AVDD 3.15 3.30 3.45 V 
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Supply voltage 
(Interface 3.3V) 

OVDD 1.70 1.80 1.90 V 

Supply voltage 
(Digital 3.3V) 

DVDD 1.10 1.20 1.30 V 

  

 Chip Center and Optical Center 

 

Each sensor will provide the positions of chip center and optical center. The chip 

center is the center of external mechanical size of the sensor. It is determined by chip 

scale, footprint etc. The optical center is the effective optical area center, which will 

affect image region if it is improperly aligned with lens. Normal chip center is coincided 

with optical center, but there are some cases that the chip center is different from optical 

center. In these cases when we design PCB board and camera case, we need to make 

sure that the optical center is fully aligned with lens center. Figure 2.1 show the 

relationships in IMX273.  
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Pixel Arrangement 

Figure 2.2 list different areas to designate different number of pixels such as total 

number of pixels, effective pixels, active pixels and recommended recording pixels. 

Considering OB and effective margin for color processing, the real image pixel number 

will be 1440x1080. 

 

Figure 2.2. Pixel scan direction. 

2.2. Sensor hardware PCB design 

2.2.1. Power supply for sensor board 

Power supply contains three voltages, 1.2 V digital, 1.8 V interface, and 3.3V 

(2.9V) Analog. 

For IMX273, the Analog supply is 3.3V while IMX226 needs 2.9V. For 

compatibility consideration, to make sure the sensors have a uniform interface to the 

mainboard (U3 main board or GE main board), the power supply design block diagram is 

shown as in Figure 2.3, which includes converters to 2.9 V,1.8 V and 1.2 V.  
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Figure 2.3. Power regulation for sensor board. 

 

 
Figure 2.4. 3.3V to 1.8V converter. 

 

When connecting the power to sensor chipset, some critical factors must be 

considered: 

1. Analog power supply must use LDO to avoid large ripple.  

2. Add ferrite bead to each power supply branch before connecting to 

sensor.  

3. At each power pins, put a typical shunt capacitor, whose capacitance 

depends on the power and characteristic of the load. If the load is heavy, 

one capacitor with several uF capacitance must be used. Along with the 

large value capacitor, small values of capacitors will be used for coupling 

high frequencies to ground. The typical circuit is shown in Figure 2.4. 
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2.2.2. Sensor board connector 

The sensor board connects to the main board through a connector consisting of 

4 parts as described below: 

1. Data path:12 pairs LVDS (or MIPI format) data channels  

2. 3 pairs LVDS (sub LVDS) clock path along with 4 data channels each. 

3. CLOCK to sensor: which is normally provided by FPGA PLL, for clock selection 

flexibility 

4. Control signals: such as H-sync, V-sync SPI or I2C etc. 

Connector signals are defined as Figure 2.5. 

 

Figure 2.5. Connector on sensor board. 

2.2.3. Sensor board layout Requirement  

The sensor board uses 6-layer PCB layout. According to the requirement of the 

transmission speed, in order for the sub-LVDS to perform at 720Mbps, the wires of 

differential pairs need to have equal lengths. The tolerance should be within 10 mils. 
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The terminal resistor of differential pair should match the transmission 

impedance. Here we keep 100Ω for differential pair and 50 Ω for single-ended 

transmission line. 

All traces are calculated according to PCB stack up requirement, trace width. The 

separation distance of differential pair must be kept within the tolerance to satisfy the 

impedance specs. 
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Chapter 3.  
 
Main Board Design 

3.1. Block Diagram of Main Board 

 

Figure 3.1. Functionality block diagram of main board. 

 

The main board consists of 3 main parts, as showed in Figure 3.1: 

1. Power supply, 

2. FPGA, 

3. FX3.  

The following paragraphs will introduce the characteristics of the main 

components (FPGA and FX3), and discuss selection considerations of relevant 

components. 
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3.2. FPGA Hardware 

3.2.1. FPGA Model Selection 

The main functions of FPGA in U3 camera system are: (1) receive bit stream 

from LVDS channel. (2) read or write control information from/to sensor control registers 

to control sensor’s behavior. 

After a rough estimate on Altera evaluation board, Cyclone 4 EP4CE10U14I7 

FPGA has been chosen based on the resource, the number of differential I/O pins and 

the speed of LVDS interface. Cyclone 4 EP4CE10U14I7 FPFA has the following 

features: 

1. low power, 

2. high functionality, 

3. low cost. 

Logic Resource 

The logic resource of the EP4CE10U14I7 FPGA is shown in table 3.1. 

Table 3.1. FPGA Logic Resource. 

LEs Embedded 

memory 

18X18 

multiply 

General-

Purpose PLLs 

Global 

clock 

I/O banks 

10320 414k 23 2 10 8 

  

I/O resource of EP4CE10U14I7 

For the specific footprint package of F256, the I/O resource is listed in table 

below. 

Table 3.2. FPGA I/O Resource. 

User I/O LVDS CLK PINS 

179 66 15 
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Cyclone IV I/O Elements 

Cyclone IV I/O elements (IOEs) structure is showed in Figure 3.2.  

 
 

Figure 3.2. Cyclone IV IOEs in a Bidirectional I/O Configuration for SDR Mode [15]. 

The I/O element resources are listed as follows. 

1. bidirectional I/O buffer  

2. support various single-ended I/O standards. 

3. support various differential I/O standards.  
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4. The IOE contains one input register, two output registers, and two output-enable 

(OE) registers.  

5. The two output registers and two OE registers are used for DDR applications.  

6. The input registers can be used for fast setup times and output registers for fast 

clock-to-output times. Additionally, the OE registers can be used for fast clock-to-

output enable timing.  

7. Normally IOEs can be used for input, output, or bidirectional data paths, unless it is 

specified as dedicated input or clock pins [15]. 

Table 3.3 lists the I/O standards that Cyclone IV devices support. 

Table 3.3. I/O Standards Support for the Cyclone IV Device Family. 

Type I/O standard 

Single-ended I/O LVTTL, LVCMOS, SSTL, HSTL, PCI, and PCI-X 

Differential I/O SSTL, HSTL, LVPECL, BLVDS, LVDS, mini-LVDS, RSDS, and 

PPDS 

 
 

 

I/O Element Features  

The Cyclone IV IOE offers a range of programmable features for an I/O pin. 

These features increase the flexibility of I/O utilization and provide a way to reduce the 

usage of external discrete components, such as pull-up resistors and diodes [15]. 

Programmable Current Strength  

The output buffer can be programmable to drive different I/O standard, such as 

LVTTL, LVCMOS, SSTL-2 Class I and II etc. Different I/O standards have several levels 

of current strength with fully controlled within Quartus II. The current strength setting 

procedure is: 

(1) Determine each I/O load, and margin, 
(2) Calculate the total current load to ensure the total current load within the current 

budget within one I/O bank, 
(3) Assign current strength for each I/O. 
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The current strength control can help decrease the effects of simultaneously 

switching outputs (SSO) in conjunction with reducing system noise. When 

programmable current strength has been used, the on-chip series termination (RS OCT) 

is not available [15]. 

Slew Rate Control  

Slew rate control is available for single-ended I/O standards with current rating 

from 8 mA or higher. 

Fast transition is essential for high speed transceiver; however, these fast 

transitions may introduce transient noise. A slower slew rate reduces system noise, but 

adds delay to rising and falling edge. 

Because each I/O pin has an individual slew-rate control, we can specify the slew 

rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges. 

There are 2 exceptions listed below. 

1. The programmable slew rate feature cannot be used when using OCT with 
calibration.  

2. the programmable slew rate feature cannot be used when using the 3.0-V PCI, 3.0-V 
PCI-X, 3.3-V LVTTL, or 3.3-V LVCMOS I/O standards. Only the fast slew rate 
(default) setting is available. 

 
 

Open-Drain Output  

In some situation, we need Open-Drain output features for system level control, 

in this design I2C is a control interface from FPGA to sensor. Both SCL and SDA signals 

need open-Drain output design. Cyclone IV devices provide an optional open-drain 

(equivalent to an open-collector) output for each I/O pin.  

 
Programmable Pull-Up Resistor 

The pull-up resistor holds the output to the VCCIO level of the output pin’s bank. 

Each Cyclone I/O pins can enable and disable Pull-Up Resistor. Some exceptions are: 

1. Programmable pull-up resistor and bus-hold feature cannot be used simultaneously. 
2. Dedicated configuration, JTAG, and clock pins do not support Programmable Pull-Up 

Resistor feature.  
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3. DEV_OE signal drives low, all I/O pins remains tri-stated even with the 
programmable pull-up option is enabled. 

 
 

Programmable delay  

FPGA IOE programmable delay feature is much helpful on high speed 

transmission and receiving. Especially with the help of input or output delay, FPGA logic 

can compensate data and clock path when it goes a long journey from sensor to FPGA 

internal register. Three situations are listed below.  

(1) Input delay, use the programmable delays to ensure zero hold times, minimize setup 
times. 

(2) Output delay, use Programmable delays can increase the register-to-pin delays for 
output registers.   

(3) clock delay, use programmable delay to increase the delay to the global clock 
networks. 

 

Table3.4 shows the programmable delays for Cyclone IV devices. 

 
Table 3.4. Table 3.4 programmable delays for Cyclone IV device. 

Programmable delay Quartus II logic option 

Input pin-to-logic array 
delay 

Input delay from pin to internal cells 

Input pin-to-register delay Input delay from pin to input register 

Output pin delay Delay from output register to output pin 

Dual purpose clock input 
delay 

Input delay from dual purpose clock pin to fan-
out destinations 

 
 
 I/O Banks 

AS showed in Fig. 3.3, Cyclone IV consists of 8 I/O banks, each bank support 

single ended VCMOS 3.3-V LVTTL/LVCOMS,2.5-V LVTTL/LVCOMS,1.8-V 

LVTTL/LVCOMOS and differential mini-LVDS interface. 
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Figure 3.3. I/O banks  [15]. 

 

According to the description on I/O features and I/O banks partition, Bank 4 and 

5 are selected for mini-LVDS and bank voltage level is 1.8V, which satisfy mini-LVDS 

requirement. Since Cyclone IV does not have OCT support for mini-LVDS, so 100 Ω 

external terminal resistor is required for each LVDS pair. The corresponding circuitry 

design is showed in figure 3.4 below.  

Bank 3 power supply is also arranged to be 1.8V voltage level. We can use I/O 

pins and internal logic to implement a high-speed differential interface in Cyclone IV 

devices.  

Cyclone IV devices do not contain dedicated serialization or deserialization 

circuitry.  We use general element to construct the SERDES functionality. 

(1) shift registers, internal registers inside FPGA logic cell, 
(2) internal phase-locked loops (PLLs),  
(3) I/O cells, I/O register, DDR interface, programmable delay, differential buffers  
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The differential interface data serializers and deserializers (SERDES) are 

automatically constructed in the core logic elements (LEs) with the Quartus II software 

ALTLVDS megafunction. All I/Os in this bank are connected to sensor for sensor feature 

control. 

 
Figure 3.4. FPGA LVDS interface design. 

 

RX_LVDS initiation in Quartus II   

 
 

Figure 3.5. LVDS module initiation in Quartus II. 
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In Figure 3.5, parameters and control signal are selected as following. 

1. Each RX_LVDS support 2 RX channel. 
2. Each channel Deserialization factor is 10 (for sensor ADC bit width equal to or 

less than 10, if ADC is 12-bit width, each channel need deserialization factor 6, 
and combine two of them to one 12 bit). 

3. Use “rx-data-reset” in case of RX_LVDS state machine becomes disorder. 
4. Use “rx-channel-data-align” for parallel data synchronization. 
5. How to use these control signal please refer to FPGA coding part. 

 

Clock Management 

Cyclone IV devices include up to 30 global clock (GCLK) networks and up to 

eight PLLs with five outputs per PLL to provide robust clock management and synthesis. 

We can dynamically reconfigure Cyclone IV device PLLs in user mode to change the 

clock frequency or phase. General purpose PLLs are used for general-purpose 

applications in the fabric and periphery, such as external memory interfaces [15]. 

Cyclone IV devices use SRAM cells to store configuration data. Altera provides 

several ways to configure FPGA. 

(1) JTAG interface, the interface follow IEEE 1149.1 standard I/O interface, can directly 
download *.sof file to FPGA device. 
 

(2) Active serial configure mode. In this configuration mode, during power up, FPGA 
actively generates DCLK signal along with other control signal to drive the serial 
EPROM, and read configuration data from EPROM and configures by itself.   
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Figure 3.6. FPGA configuration interface. 

 

 

 

Figure 3.7. FPGA active serial configuration memory interface. 
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3.3. EZ-USB FX3 

3.3.1. Introduction  

Cypress’s EZ-USB® FX3™ is the USB 3.0 peripheral controller with a fully-

configurable, parallel, general programmable interface called GPIF II, which can connect 

to any processor, ASIC, or FPGA. FX3 has an embedded 32-bit ARM926EJ-S 

microprocessor for powerful data processing and for building custom applications. It 

implements an architecture that enables 375 MBps data transfer from GPIF II to the USB 

interface [8]. 

FX3 also provides interfaces to connect to serial peripherals such as UART, SPI, 

I2C, and I2S. FX3 comes with application development tools. The software development 

kit comes with application examples for accelerating time to market [8]. 

3.3.2. Schematic design for FX3  

FX3 in U3 camera system is a very critical part, as all video data must serially 

pass through USB 3.0 interface whose transmit speed can be up to 5Gbps. Several 

guidelines for trace width, stack up, and other layout must be followed to ensure the 

system will perform as expected, especially for USB 3.0 to work properly. 

Power supply network 
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Figure 3.8. EZ-USB FX3 Power domains diagram. 

 

EZ-USB FX3 Power Domains voltage setting is showed in Table 3.5. In this 

design, the typical voltage value is chosen as VIO1, 3.3V; VIO1, 3.3V; VIO2, 3.3V; VIO3, 

3.3V; VIO4, 3.3V; VIO5, 3.3V; CVDDQ,3.3 V; 

Table 3.5 . FX3 power supply voltage level setting. 

Name  Min (V) Typical(V) Max(V) Description 
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VDD 1.15 1.2 1.25 Core voltage  

AVDD 1.15 1.2 1.25 Analog voltage 

VIO1 1.7 1.8,2.5 and 3.3 3.6 GPIF II I/O 

VIO2  1.7 1.8,2.5 and 3.3 3.6 IO2 power domain 

VIO3 1.7 1.8,2.5 and 3.3 3.6 IO3 power domain 

VIO4 1.7 1.8,2.5 and 3.3 3.6 UART/SPI/I2S power 

domain 

VIO5 1.15 1.2,1.8,2.5 and 3.3 3.6 I2C and JTAG 

VBATT 3.2 3.7 6 USB voltage supply 

VBUS 4.0 5 6 USB voltage supply 

CVDDQ 1.7 1.8,3.3 3.6 Clock voltage 

U3TXVDDQ 1.15 1.2 1.25 USB 3.0 TX voltage 

U3RXVDDQ 1.15 1.2 1.25 USB 3.0 RX voltage 

 

Inrush Current and Power Supply Design 

An inrush current with magnitude as high as 800mA will appear on 1.2 V 

U3RXVDDQ and U3TXVDDQ supplies for around 10 μs, which will cause 1.2 V power 

supply drop. If VDD (1.2V core supply) happens to use the same 1.2 V source, care 

must be taken to make sure that the Inrush current will not cause dramatic drop on VDD, 

since the POR circuit of FX3 will start if VDD drop to below 0.83V with the duration last 

longer than 200 ns [9]. 

There several ways to solve this problem: 

(1) Separate VDD (core voltage) supply with other 1.2 V power supply,  
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(2) Use Choke (inductor) to separate the VDD with other 1.2V power supply and use 

capacitor to smooth the 1.2 V DC voltage.   This is the recommended way by 

reference design. As showed in figure 3.10, we followed the recommended way by 

reference design. 

 

Figure 3.9 to figure 3.11 give the details of analysis. 

 

Figure 3.9.Non-optimized 1.2V power supply design. [9] 

 

Figure 3.10. Inrush Current (80 mV / 0.1 Ω = 800 mA) [9]. 
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Figure 3.11. 1.2V Power Domain Voltage Drop (200 mV) [9]. 

 

In contrast, the modification as showed in Figure 3.12 below uses the same 

regulator (TPS76801QD), with the modification of using a 22-μF decoupling capacitor, 

and the inrush is showed in Figure 3.13. The power supply drop is showed in Figure 

3.14. The improvement can be observed clearly. 

 

Figure 3.12. Optimized power supply design [8]. 
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Figure 3.13. Inrush Current (320 mA). 

 

 

Figure 3.14. 1.2V Power Domain Voltage Drop (112 mV)  [9]. 
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It is always a good practice to isolate different power supplies from each other, 

as mentioned before. To short IO power supplies (VIO1-5) to CVDDQ, it is always 

recommended to isolate CVDDQ using a choke. This will help in reducing the PHY 

errors. Operating VIO1 at lower voltages (1.8 V) also helps in reducing the PHY errors, 

but considering the voltage level needs to be compatible to other parts on FPGA bank 2 

and bank 3, we choose 3.3 V voltage power supply for VIO1. 

3.3.3. Clocking 

The EZ-USB FX3 device can use any of 19.2 MHz, 26 MHz 38.4 MHz, or 52 

MHz clock as the clocking source, either crystal or active oscillator. In this design, crystal 

has been used for clock source. 

3.2.3.1. Crystal selection  

In this design, we use 19.2M crystal as recommended by Cypress. The 

requirement of crystal is listed in Table 3.6. 

Table 3.6. The requirement of crystal. 

Parameter specification Unit 

Tolerance ±100 Ppm 

Temp level -40--85 °C 

Drive level USE Equation 1 mW 

 

The power dissipation of the crystal depends on:  

1. The drive level of the XTALOUT pin (for FX3, this is 1.32 V),  
2. The desired frequency (19.2 MHz), and  
3. The equivalent resistance of the crystal  

 

The equation is given by 

𝑃=𝐼2𝑅=2[𝜋𝑓 (𝐶0+ 𝐶𝐿) 𝑉𝑥]2𝑅       (1) 

where f is the crystal frequency; C0 is the shunt capacitance of the crystal obtained from 

the crystal datasheet; CL is the load capacitance; R is the crystal ESR obtained from the 

data sheet of the crystal; Vx is the maximum voltage on XTALOUT pin. 
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3.2.3.2 Crystal Effective Load Capacitor Calculation  

 

Load capacitance CL plays a critical role in providing an accurate clock source to 

FX3. The capacitors C1 and C2 must be chosen carefully based on the load capacitance 

value of the crystal.  

The load capacitance is calculated using the following equation:  

CL=
𝑐1∗𝑐2

𝑐1+𝑐2
+Cs      (2) 

 

Cs is the stray capacitance of XTALOUT and XTALIN traces on the PCB. Usually 

the value of Cs is around 2-5 pF as long as good layout practice is followed and the 

trace from the crystal to the pins on the EZ-USB FX3 is kept as short as possible [9]. 

3.4. Considerations for main board layout and impedance 
matching 

3.4.1. Impedance requirement 

USB differential transmission line impedance 

There are 3 pairs of transmission lines on USB interface, D+, D- for high speed 

usb2.0 differential pair, SSTX+, SSTX- for super speed USB 3.0 transmitter differential 

pair, SSRX+ and SSRX- for super speed USB 3.0 receiver differential pair. Each 

impedance between differential pair is 90Ω. EZ-FX3 receiver is already integrated 90Ω 

terminal resistor for termination matching to prevent reflection from terminal. 

LVDS differential pair impedance 

LVDS has 100 Ω differential impedance requirement, so on the receiver side 

near the terminal a 100Ω resistor should be used for impedance matching. Since 

Cyclone IV FPGA I/O element does not integrate terminal resistance for impedance 

matching, 100Ω shunt resistors are needed for each differential pair. The tolerance is 

±10%.  
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Single-ended signal wire impedance 

All the other signal wires which are not mentioned here on board have 50Ω 

impedance requirement. 

3.4.2. PCB board stack up 

Impedance Information 

 

 
Figure 3.15. Layer Stack up. 

 
 

Figure 3.16. Model 1. 
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Model 1 in Fig/ 3.16 represents the top layer single-ended wire impedance 

calculation with one continuous ground or power plane as reference GND. C3 is the 

thickness solder mask.  

 

 
 

Figure 3.17. Model 2. 

 

Model 2 represents internal layer for single-ended impedance calculation with 

two continuous groundes (or power) as reference ground.  

 

 
 

Figure 3.18. Model 3. 
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Figure 3.19. Model 4. 

 

 

 
 

Figure 3.20. Model 5. 

 

 

 
 

Figure 3.21. Model 6. 

Model 6 represents internal layer differential pair impedance calculation with two 

continuous grounds (or power). 
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Figure 3.22. Model 7. 

 

 

 
 

Figure 3.23. Model 8. 

 

 
Figure 3.24. Model 9. 
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Figure 3.25. Model 10. 

As the models listed above, each parameter to be determined not only needs to 

consider the factor related to the layer itself, but also needs to consider the board 

thickness and as well as how much effect will be for split power and split ground. In most 

cases we need to balance all kinds of affected factors and try many times of calculations 

before it reaches our goals. Table 3.7 lists each layer’s calculation result according to 

the proper models above.  

 

Table 3.7. Calculation result for 8 layer models. 

Number  type Signal 
Layer 
number 

Ref. 
layer 
number 

Trace 
width(mils) 

Differential 
pair distance 

impedance 

Model-1 Top layer 
single-end 

L1 L2 5  49 

Model-2 Internal 
layer 

Single-end 

L3 L2/L5 5  52 

Model-3 Internal 
layer 

Single-end 

L4 L2/L5 5  52 

Model-4 Internal 
layer 

Single-end 

L6 L5/L7 5  51 

Model-5 Internal 
layer 

Single-end 

L8 L7 5  49 

Model-6 Internal 
layer 

differential 

L3 L2/L5 4.5 8.4 99 

Model-7 Internal 
layer 

L6 L5/L7 4.5 8.4 99 
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differential 

Model-8 Internal 
layer 

differential 

L8 L7 4.2 8.7 99 

Model-9 Internal 
layer 

differential 

L1 L2 5 7.6 90 

Model-10 Internal 
layer 

differential 

L3 L2/L5 5.3 7.3 90 
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Chapter 4.  
 
FPGA Video Data Stream Processing 
 

The video data processing block diagram is shown in Figure 4.1. 

1. LVDS module: the LVDS module deals with LVDS interface, utilizes SERDES MEGA 
function of Altera IP to convert serial data stream to parallel data. Here we combine 2 
channels together and realize 10-bit width parallel data. 
 

2. Video data process:  this module mainly synchronizes the received parallel data and 
writes to dual port memory in the specific format. 

 

3. Dual port memory:  since for video sensor IMX226, 10 channels are used for high 
speed data transmit, each memory is used as data buffer for 2 channels. 10 
channels totally need 5 memory. 

 
Figure 4.1 . Data processing block diagram. 

4.1. Clock generation 

Each video sensor needs input clock with specific frequency value. This clock is 

used to drive video data acquisition, video data processing and video data serialization 

as well. After clock is locked, the sensor also provides an output clock for video data 

synchronization, as shown in Figure 4.2.   
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Figure 4.2. Camera clock generation system. 

4.2. Serial to parallel conversion and SERDES 
synchronization 

4.2.1. Sensor serial data stream structure 

For different sensors and different resolutions, the data stream structures are 

different. Here we use IMX226 as an example to introduce how the serial data are 

organized together in different readout drive modes. 

Sensor readout drive mode 

For IMX226 there are totally 6 readout drive modes. Different readout drive 

modes need specific control register settings. Even when the readout mode is the same, 

MDVREV can control the readout sequence. For example, MDVREV bit0=0h/1h will 

control normal or inversed vertical reading operation. All readout modes are listed in 

Table 4.1. 
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Table 4.1. Readout drive mode [1]. 

Readout 

mode NO. 

Readout drive mode Mode description 

0 All pixel scan mode 

(12M, A/D 12-bit,10 ch output) 

ALL pixel with 12-bit out 

1 All pixel scan mode 

(12M, A/D 10-bit,10 ch output) 

ALL pixel with 10-bit out 

2 All pixel scan mode 

(4K2K, A/D 12-bit, 8 ch output) 

ALL pixel with 12-bit out 

3 All pixel scan mode 

(12M, A/D 12-bit,4 ch output) 

ALL pixel with 12-bit out 

4 All pixel scan mode 

(12M, A/D 10-bit,10 ch output) 

ALL pixel with 10-bit out 

5 Horizontal/vertical 2/2-line 

(4K2K, A/D 10-bit,4 ch output) 

Horizontal and vertical 

direction 2-line binning  

 

Fig. 4.3 shows the sync signal and data timing during 12-bit serial output for 

sensor IMX226. The horizontal and vertical timings of the output data are controlled by 

XVS and XHS sync signals. Timing control is performed at the falling edge of both the 

XVS and XHS signals. The data are output in order, from the start sync code (SAV) after 

the horizontal front blanking period after the falling edge.  

 

Figure 4.3. Sync signal and XVS, XHS timing (start sync) [1]. 
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Figure 4.4. Sync signal and XVS, XHS timing (end sync) [1]. 

 

 
Figure 4.5. Serial data timing. [1]. 

  

From Figure 4.4 we can see that serial data are aligned as 180 degree at each 

clock edge. This gives better margin for setup time and hold time, even when the clock 

edge is shifted because of jitter or delay caused by unequal length in layout [1]. 

Table 4.2 gives more detail on start sync code and end sync code. 
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Table 4.2. sync code format [1]. 

 

Table 4.3. sync code protection bit   [1]. 

 
 

 

Table 4.4. Table4.4 12-bit sync code detail [1]. 
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Table 4.5. 10-bit code detail [1] . 

 
 

4.2.2. Serial to parallel SERDES module  

The serial to parallel conversion module is described as follows in Verilog format. 

The module name is “lvds_rx”, and the instance name is” lvds_core_inst1”. 

lvds_rx lvds_core_inst1 ( 
. rx_data_reset  (rst), 
.rx_channel_data_align (rx_channel_data_align[1:0]), 
.rx_in    (MIPI_DP[1:0]), 
.rx_inclock   (MIPI_CLK), 
.rx_out   ({imx_out1,imx_out0}) 
); 
 

“MIPI_DP [1:0]”: 2-channel serial video data input which follows LVDS format. In 

Quartus II environment, for LVDS interface we only need to provide positive data path 

like MIPI_DP, and the negative path will be derived by Quartus. 

“rx_channel_data_align”: bit shifting control signal for alignment  

“MIPI_CLK” is the clock generated by PLL2, which is sourced from clock 

generated by sensor. 

“rx_out” is 20-bit video data. The lower 10 bits belong to channel 1, and the 

higher 10 bits belong to channel 2. 

4.2.3. SERDES data synchronization  

The data stream structure will be different when different sensors are connected, 

and even when the same sensor is used with different video resolutions.  
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According to table 4.3 to table 4.5, module “lvds_rx “of FPGA code first waits for 

“SAV” to follow the start of sync, then checks if “EAV” appears just before H-sync signal. 

If the sequence of “SAV” marker is followed by data then followed by “EAV” marker, the 

sync signal will be asserted. See Fig.4.6. 

 

4.3. FPGA code running results 

The figures below are the running results of each algorithm introduced above. 

The picture is captured from SignalTap II Logic Analyzer, which is fully integrated into 

Quartus II. 

4.3.1. line_start [0] set up under condition of XVS equal to high 

Line_start [0] is set up after 0_SENSOR_HD (representing XHS) changes from 

low to high, since in SignalTap II, we cannot show H and SAV together (limited by 

memory occupied), Figure 4.6 shows how line_start [0] changes based on SAV.  

 

Figure 4.6. line_start [0] with relationship of XHS signal(XVS=1). 

Figure 4.7 shows line_start [0] changes status after successfully detecting the 

correct SAV sequence. Sync [0] status is set up according to the correctly detected SAV 

sequence, then based on the Sync [0] signal and XHS jumping from low to high, 

line_start [0] signal will be correctly set. 
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Figure 4.7. line_start [0] flip after detecting first word of SAV(XVS=1). 

line_start [0] is set up under condition of XVS equaling to high. In Figure 4.8, 

o_SENSOR_VD, o_SENSOR_HD are the V and H signals provided by FPGA to sensor 

for horizontal and vertical sync. After low pulse of V-sync signal, the SAV (start sync 

code) is different from non-blanking horizontal line. Compared to Figure 4.7 and Figure 

4.8 we can see clearly that when the SAV is in non-blanking stage, the value is ”3FF 000 

000 200”, yet when in blanking stage, it becomes “3FF 000 000 2AC”. 

 

Figure 4.8. line_start set up in V_sync stage. 
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Figure 4.9. line_start [0] flip after detecting first word of SAV(XVS=0). 

 

Line stop detecting result is shown in Fig. 4.10 under the condition of non-

blanking(vertical). Here we use line_start [0] =0 instead of line_stop [0] =1, which will be 

more convenient in memory write control process. Figure 4.10 shows line_start [0] falls 

to 0, under the condition of non-blanking stage (vertical). 

 

Figure 4.10. line_start [0] falls to low after correctly detecting EAV (end of sync coding). 

 

Figure 4.11 shows line_start [0] falls to 0, under the condition of blanking 

stage(vertical). 
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Figure 4.11. line_start [0] falls to low after correctly detecting EAV (end of sync coding). 

 

4.4. Store dual channel data to FIFO memory 

4.4.1. FIFO buffer interface description 

The instant of module LVDS_to_buf is listed below. 

lvds_to_buf   lvds_to_buf0 ( 
.rst(rst),   
.rx_outclk(rx_outclk), 
.mem_rd_clk(mem_rd_clk), 
.rd_req(rd_req[0]), 
.H(H), 
.V(V), 
.line_data_start(line_start[0]), 
.sync_all(sync_all), 
.imx_out0(imx_out0x), 
.imx_out1(imx_out1x), 
.mem_ep(mem_ep[0]), 
.imx_buf_out(imx_buf_out0) 
); 

 

where  

1. rx_outclk: LVDS parallel clock signal, the frequency of rx_outclk depends on LVDS 
input frequency and deserialization factor. For example, if input LVDS frequency is 
100MHz DDR and the deserialization factor is 10, then the output frequency is 
20MHz. 

2. mem_rd_clk: FIFO read clock. This clock will be described later in “data collection” 
part. 
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3. Rd_req: memory read enable signal. 

4. Sync_all: multi-channel sync signal. combine all channel together. If every active 
channel is synchronized, sync_all signal will be high. 

5. imx_out0x, imx_out1x:  one latency from imx_out0 and imx_out1. For sync data and 
clock alignment. 

6. imx_buf_out: 32-bit memory output data, since memory structure is 16-bit in, 32-bit 
out FIFO. 

4.4.2. Memory write process 

The memory write process is as follows. 

1. initialization, set initial variable value 

2. waiting for Sync_all=1; 

3. start from V=0; 

4. Wait for rising edge of V; 

5. Waiting for line_start=1; 

6. Write data to memory, 

Write_req=1; 

imx_buf_in={{6'b0,imx_out1},{6'b0,imx_out0}};  // align two 10-bit to 32-bit 

//here the format is based on IMX226 10-bit structure, if ADC acquisition width is 12 
//bit then imx_buf_in will be 

 imx_buf_in= {{4'b0,imx_out1}, {4'b0,imx_out0}}; 

//If line_start=0, go to next step, otherwise keep in this step for continuing writing. 

7. Writing_end step, when line_start=0, then write 8-12 of 32-bit 0’s for line separation. 

8. If sync_all=1, go to step (3), otherwise go back to initialization step. 

 
The results are shown in fig 4.12 to 4.14. 
 

 

Figure 4.12 Memory write process. 
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Figure 4.13. Figure 4.12: Line data writing start. 

I f 

 

Figure 4.14. Line data write stop control signal. 

4.5. Multi channel data collection 

IMX226 has 10 channels. Each channel is 10-bit wide, and 2 channels together 

occupy a FIFO. In order to write all data to EZ-FX3 GPIF II interface, 10 channel data 

have to be collected together and well-arranged according to incoming data sequence. 

4.5.1. Data sequence received from sensor  

Different configurations will have different active channels, and the data output 

from sensor also will have different sequence. The figure below shows one of the 

configurations for IMX226. The 10 channel numbers are DOA to DOJ. Data scan 

sequence is column by column, and from left to right until the last column is completed. 

i.e., from DOA SAV1 to DOJ SAV1, then DOA SAV2 to DOJ SAV2…. etc. 
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Figure 4.15. 10 channel data Readout sequence start part [1]. 
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Figure 4.16. 10 channel data Readout sequence end part [1]. 

     

4.5.2. FPGA data collection block diagram 

The data collection block is to collecting multiple channels stream data 

sequentially to one side of dual port memory, and on the other side of dual port memory, 

the parallel data can be read out. For writing stage, there will be two processes need to 

deal with, the data start writing stage and the data stop writing stage. 

Data start writing 

1. Initialization, variable initialize as following,   

2. Wait for all active memory is filled with data. 

3. Scan each active memory until captured each SAV from each memory. 

4. Write one SAV to destination memory, then begin to write each data read from 
channel memory.  

 

The procedure is shown in fig. 4.17 and 4.18. 
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Figure 4.17. Schedule reading from channel memory to adaptive memory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initialization 

Scan SAV each active memory   

Sync_all=1? 

Mem_ep=0? 

Get SAV from All 
memory? 

Start writing 
(to Adp_memory) 

Start writing 
(to Adp_memory) 

Figure 4.18. Collection process data writing. 
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Stop data writing 

1. Detect each channels EAV(10h3ff,10’h000,10’h000,10’h274(or 10’h2AC). 

2. Write single EAV to memory (64’h03ff_0000_0000_03ff). 

3. Write several 64-bit 0 to separate different frame. 

 

The procedure is shown in Fig. 4.19. 

 

 

 

 

 

 

 

 

 

 

 

 

Running results  

The figures below are captured from Quartus II signal tap II. From first SAV 

writing to second word writing, it will last more than 10 clocks. In order to show data 

clearly, we use multiple pictures to show the results. 

 

initialization 

start_writing_lag 
=1? 

EAV_ALL=1? 

Write single EAV, 
Write separation 0 

Figure 4.19. Stop writing detect. 
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Figure 4.20. First SAV word, write to dp_memory. 

 

 

Figure 4.21. Second SAV word and the following data write to adp_memory. 

 

 

 

Figure 4.22. Stop writing sequence I: Write first EAV word. 
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Figure 4.23. Stop writing sequence II”: Last EAV writing, and write two 32-bit “0000_0000” for separation. 
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Chapter 5.  

 

Color Correction from FPGA to EZ-FX3 GPIFII Interface 

5.1. Introduction to GPIF II 

The FX3 GPIF II subsystem is a programmable state machine that allows us to 

implement an industry standard or a proprietary interface. It is quite easy to use with the 

help of GPIF II designer tools.   

5.2. Parallel video interface 

We can easily create a parallel video interface by using GPIF II designer. Figure 

5.1 gives the interconnection between FPGA and FX3 for parallel video data path. The 

brief description for signals between FPGA and FX3 are as follows:  

1. Data [31:0], 32-bit video data. This 32-bit data come from video sensor, and are 
collected and re-organized by the algorithm running inside FPGA. The 32-bit data 
structure for video will provide several ways of video data organization as showed 
below. 

2. 8-bit pixel data: Each pixel data width is 8-bit, so 32-bit can transmit 4 pixels each 
time. The Data structure is data [31:0] = {pixela [7:0], pixelb [7:0], pixelc [7:0], pixeld 
[7:0]}. 

3. 10-bit pixel structure: Each video pixel is 10-bit. For 32-bit structure, the easiest way 
to organize the data within 32-bit is to divide one 32-bit to two 16-bits, lower 16-bit 
data [15:0] hold one pixel, and the high 16-bit hold another pixel. The unused bit will 
be filled with 0’s. The data structure is data [31:0] = {6’h00, pixela [9:0], 6’h00, pixelb 
[9:0]}. 

4. 12-bit pixel structure: same as above. The data structure as data [31:0] = {4’h0, 
pixela [11:0], 4’h0, pixelb [11:0]}. 

5. Other structures: There are still other structures have not been discussed above, like 
32-bit hold the 10-bit width pixels, such as data [31:0] = {2’b00, pixela [9:0], pixelb 
[9:0], pixelc [9:0]}. 

6. Pclk: this is the clock signal generated by PLL inside FPGA, which is synchronized 
with video data and H, V. 

7. H: horizontal video data synchronization signal.  

8. V: vertical video data synchronization signal. The data sent through FPGA module 
will only be captured by FX3 under condition that both H, V signal are high.  
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 Pclk 

 V 
 H 
  
 Data [31:0] 
 

 

Ctrl [3:0] 

 

 

5.3. Data re-organization 

For the sensor IMX226, the channel output format is 10-bit or 12-bit wide. To 

adapt to 32-bit wide interface, we can choose two 12-bit wide pixels for 32-bit, or two 10-

bit structure, or scale down to 8-bit structure. In the latter case, the 32-bit FX3 interface 

is able to hold 4 pixels in a single period. From chapter 4, we already collect multi-

channel video data and write to a single FIFO. The structure is 32-bit in and 64-bit out. 

Besides, the read and write clocks are independent. 

5.4. Signal and register definition 

Here we use fu, ep, en, clk to represent full, empty, enable and clock for FIFO 

control and status signals, and define the corresponding register for each side.   

(1) 32-bit side, video data write in side. (please refer to chapter 4) 

adp_full  -----FIFO full  
adp_wr   -----FIFO write enable 
adp_usedw ------FIFO used words (how many 32-bit words store in FIFO) 
 

(2) 64-side, video data  

adp_emp  -----FIFO empty status 

adp_rd  -----FIFO read enable 
o_fx3_dq_tmp -----FIFO data output(data_out[63:0]) 
 

(3) FX3 side,  

FPGA FX3 

Figure 5.1. Video data interface between FPGA FX3. 
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o_fx3_v                -----video vertical sync signal 
o_fx3_h               ------video horizontal sync signal 
o_fx3_dq            -------video data from FPGA to FX3. 

 
 

 

 

 

 

 

 

 

  

 

 
 

5.4.1. Video data re-organization diagram 

 

Adp FIFO 

Adp FIFO 

Data_in[31:0] 

Data_out[63:0] 

                  ep    en            clk 

Figure 5.2. Adaptive FIFO structure. 
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Figure 5.3. Video data re-organize block diagram. 

5.4.2. FX3 video input data format 

To facilitate the software to deal with the received video data, the FPGA to FX3 

interface organizes data as the following. 

(1) Frame start, when both V and H sync change from low to high, this marks the first 

line of the whole frame video data. Before the real video data is sent to FX3, the 

formatted data frame start “c0,0c,55,55” and frame number are sent to FX3 first. 

(2) If it is not the frame start line, these two 32-bit words will be padding with 0’s. 
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(3) After frame start is sent, the real video data will follow, which is surrounded by SAV 

and EAV, as showed in Figure 5.4. 

 

 

   

 

 

 

Figure 5.4. FX3 video input data format. 

5.4.3. White balance algorithm 

White balance is very important for improving video quality, and there are 

different algorithms in different situations. The purpose to move the algorithm from 

software to FPGA is to speed up software calculation. Here we just introduce one of the 

 

Frame start Frame number SAV flag 

Padding with 0’s (if line is not the frame start line) 
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algorithms, which is used in normal circumstance. According to the white balance 

formula, we divide 3 steps to achieve the result. 

• Average color R, G, B within one frame, VR, VG, VB. 

• Calculate α, β, ϒ.  

• Multiply α, β, ϒ to corresponding pixels of next frame. 

 

 Since the sensor data readout is in Bayer mode (which is different from RGB 

separation mode), to deal with the color average, the critical things is to find out the 

correct color sequence for specific sensor. The table below is the IMX226 color coding 

sequence. In different sensor Bayer modes, color coding may be different. So when 

performing white balance, this needs to be paid attention to.                 

 
Table 5.1. Bayer pattern in sensor. 

Gb B Gb B 

R Gr R Gr 

Gb B Gb B 

R Gr R Gr 

 

In table 5.1, Gb represents color G (green) in B line, B is blue, R is red, Gr is 

green in R line. From the table above, we can see that in even line and even column, the 

corresponding color is Gb (green). In even line odd column the color is B. In odd line and 

odd column the color is Gr (green too). In odd line and even column the color is R (red). 

In order to calculate the average of each color, we define 2 variables p_num and l_num. 

p_num is the pixel number counter in one video line, and l_num is another counter for 

video line in one frame. For mode 4 (here we choose mode 4 for as example), I_num 

starts from pixel 124, and stops at 4220; p_num starts from line 18, and stops at line 

2178. See table 5.2 and table 5.3. 



69 

Table 5.2. Minimum horizontal operation period in each Readout drive mode [1]. 

 

Table 5.3. Minimum Vertical Operation Period in Each Readout Drive Mode [1] . 

 

To correctly calculate the color average for the whole frame, we need to know 

the recommended recording pixels in one horizontal line and recommended recording 

line in vertical direction within one frame.  For IMX226 mode 4 as showed in table 5.2 

and 5.3, the start point in horizontal line is 124, the end pixel point is 124+4096, and the 

number of recommended pixels is 4096 in one line. The vertical start line is 18, the line 

is 18+2160, and total recommended line is 2160. 

Variable definitions: 

• pixel_num, pixel counter within one line to position the start and end pixel for 

calculation. 

• line_num, video line counter within one frame to position the start and end line for 

white balance calculation.  
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• pixel_start, pixel end, start and end flag.  

• line_start, line_end. Line start and end flag 

• Sum_r, Sum_b, Sum_g.   Color R, G, B summation within one frame. 

• Ave_r, Ave_g, Ave_b. Result of color R, G, B average. 

• SumRGB, AveRGB, mean of Ave_r, Ave_g, Ave_b.   

o AveRGB= SumRGB/3 

o SumRGB = (Ave_r+ Ave_g+ Ave_b); 

• Kr= AveRGB/Ave_r; Kg=AveRGB/Ave_g; Kb=AveRGB/Ave_b; 

 

According to table 5.1, 5.2, 5.3, we can calculate the corresponding summation 

of R, G, B, respectively, as Sum_r, Sum_b, Sum_g. 

Ave_r= Sum_r/Num_r; Ave_g =Sum_b/Num_g; Ave_g=Sum_b/Num_b; 

SumRGB = (Ave_r+ Ave_g+ Ave_b); 

AveRGB=SumRGB/3. 

Kr= AveRGB/Ave_r=(Num_r*SumRGB)/(3*Sum_r); 

Kg= AveRGB/Ave_g=(Num_g*SumRGB)/(3*Sum_g); 

Kb= AveRGB/Ave_b=(Num_b*SumRGB)/(3*Sum_b); 

Kr, Kg, Kb multiply back the pixel in the next frame. 

Results 

Figure 5.5 and Figure 5.6 are the real pictures which captured by our USB 3.0 

machine vision camera through different sensors. One is captured by gray-scale sensor 

IMX273 and another one is captured by color sensor IMX226. From the pictures, we can 

see that the hardware quality is satisfactory, and there is no ripple and no noise. 
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Figure 5.5. Black/white picture captured through IMX273. 

 

 
 

Figure 5.6. Color picture captured from IMX226. 
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Chapter 6.  

 

Conclusion and Future Work  

 

In this project, the hardware and FPGA modules of a USB 3.0 machine vision 

camera were successfully designed, from which deep understandings of the USB 3.0 

protocol, Cypress FX3 processor, SONY image sensors, and image processing are 

obtained. I also got a chance to learn some mechanical design and gained valuable 

experience in how to design a robust camera product, for example, how to do the PCB 

layout, trace length, impedance matching, and power supply design etc.  

There are many ways that the camera can be improved, for example, supporting 

more ADC resolutions and more sensors, reducing the size of the camera, and 

improving the image quality. The experience I learned from this project has provided a 

solid foundation for my future works. 
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