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Abstract

One of the key challenges facing wider adoption of positron emission tomography (PET) as an 
imaging biomarker of disease is the development of reproducible quantitative image interpretation 
tools. Quantifying changes in tumor tissue, due to disease progression or treatment regimen, often 
requires accurate and reproducible delineation of lesions. Lesion segmentation is necessary for 
measuring tumor proliferation/shrinkage and radiotracer-uptake to quantify tumor metabolism. In 
this thesis, we develop an active surface model for segmenting lesions from PET images. We 
first i mplemented a  n on-convex l evel s et a ctive s urface m ethod w ith l ikelihood t erms t rained on 
manually-collected seeds points. We evaluated this approach on the following datasets: Images 
of phantoms collected by our collaborators at UBC; Quantitative Imaging Network (QIN) phantom 
images; and images of real patients from the QIN Head and Neck challenge. Secondly, to avoid user 
interaction, we developed an improved version of our method by training a machine learning system 
on anatomically and physiologically meaningful imaging cues to distinguish normal organ activity 
from tumorous lesion activity. Then, the inferred lesion likelihoods are used to guide a convex active 
surface segmentation model. The result is a lesion segmentation method that does not require user-

initialization, manual seeding, or parameter-tweaking and, thus, guaranteeing reproducible results. 
We tested this enhanced method on data from the Cancer Imaging Archive. Our method not only 
produces more accurate segmentation than state-of-the-art segmentation results, but also does not 
need any user interaction.
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Chapter 1

Background

1.1 Fundamentals

1.1.1 Position Emission Tomography (PET)

PET is an imaging modality that captures functional processes inside the body. It is commonly

used in cardiology and neurology for detection and treatment of inflammation and infections, as well

as in oncology for diagnosis, staging, and treatment of cancer. PET images show the distribution

and concentration of radiotracer uptake, with regions of high uptake typically visualized as brighter

pixels compared to normal tissue. One of the key challenges in PET image analysis is producing

quantitative measures of tumor characteristics, such as size, shape, and location of the tumor,

which are needed in order to precisely localize radiation doses administered in radiation therapy or

for evaluating treatment efficacy. A critical challenge towards quantitative imaging is the ability to

distinguish normal activity, e.g. in the heart, brain, bladder, and kidneys, from abnormal activity due

to the presence of lesions (see Fig. 1.1). The aim of this thesis is to outline a method for automatic

localization and segmentation of lesions from PET.

Radioactive tracing

Acquiring a PET scan is typically accompanied by the administration of a radioactive tracer with a

short half-life. Such tracer is produced in a cyclotron. The most common radiotracer used in current

clinical routine is a fluorine-18 (18F) isotope labeled glucose (18F-FDG –Fluorodeoxyglucose). The

radioactive tracer is applied to the patient by intravenous injection. Before the image acquisition,

an appropriate resting time for the patient is required. This can guarantee a sufficient distribution

of the radioactive tracer inside the body where the tracer 18F-FDG is taken up in the same way as

glucose without radioactive tracer. Since malignant tumor cells are fast growing cells, higher uptake

1



CHAPTER 1. BACKGROUND 2

Figure 1.1: A PET image showing normal activity in (from top to bottom, or superior to inferior) the
brain, heart, kidneys, and bladder (green) vs lesions located in the head and neck area (red).

of 18F-FDG would take place in lesions. Thus, the location of the lesions will exhibit stronger signal

(or brighter pixels) compared to normal cells in PET images [46].

Coincidence detection and imaging

Positron-emitting isotopes are used in PET. Positrons are positively charged anti-electrons pro-

duced by unstable radioisotopes. As positrons travel through the tissue, annihilation occurs when

positrons interact with electrons, lose kinetic energy, and result in gamma photons moving in op-

posite directions (anti-parallel). This emission of gamma rays plays a key role in PET imaging. A

ring detector surrounds the subject being imaged. This detector is called a coincidence detector

since it is designed to detected these anti-parallel gamma rays. If two detected rays are in coinci-

dence, the annihilation of the positron is taking place somewhere between the detectors [32]. All

registered coincidences from each detector pair are counted to form a sinogram. Finally, an image

reconstruction algorithm is used to transform the sinogram into a 3D PET image (see Fig. 1.2) [19].
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Figure 1.2: The PET scanner structure. Two different detectors get photons emitted during annihi-
lation. The sum of all coincidence events passes into the coincidence processing unit. Finally, a 3D
volume is reconstructed from this sinogram [40].

1.1.2 Quantification of PET images

Diagnosis and staging of lesions can be achieved by an oncologist through visual inspection. How-

ever, this qualitative analysis for identification of tumour brings limitations to the prediction and

assessment of treatment. Quantitative analysis is more suitable because it provides the objectivity

that is required for these applications.

Over the past two decades, several quantitative methods have been presented. The most ac-

cepted of these indices is the Standardized Uptake Value (SUV). SUV describes the ratio between

the concentration of the radiotracer in a region of interest (ROI) and the injected activity (from phys-

ical decay) which is normalized by the normalization factor:
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SUV =
radiotracer concentration(kBqml )

injected activity(MBq)
normalization factor

(1.1)

The normalization factor takes into account that the radioactive tracer distribution in the patient’s

body is affected by physique. Body weight (bw), body surface area (bsm), and lean body mass

(lbm) are a common normalization factor.

1.1.3 Validation of tumor segmentation

In order to validate a proposed segmentation method, ideally one needs access to ground truth

segmentations. However, the absolute truth is not available for real patient data. Generally, expert

segmentation is considered as ground truth in the validation of PET segmentation methods. The

Dice similarity coefficient is one well known metric for evaluating segmentation, which measures the

size of the overlap of the two different segmentations divided by the total size of the two contours or

objects. Usually, tumor segmentation results are validated against contours drawn on real images

by experienced oncologist.

Physical and digital phantoms are constructed to create a known truth to validate segmentation

methods. Therefore, by using these phantom or synthetic images, in which ground truth is known,

a segmentation method can be validated.

In order to simulate tumors inside the body, a physical phantom may contain different sized

compartments (e.g. spheres) with radiotracers injected into them. The ground truth in physical and

digital phantoms is calculated as that total radioactivity in these compartments.

1.2 PET image segmentation techniques

Among the methods proposed for PET segmentation, thresholding methods continue to be popular.

In [59, 49, 10, 15, 21] various fixed thresholding methods were proposed. A common approach

is to threshold the volume based on the SUV. In [49, 10] it was proposed to use 40-43% of the

maximum SUV value as a threshold, however no consensus exists concerning a fixed thresholding

level. Depending on the scanner type, reconstruction algorithm and noise, the level may need to be

adjusted significantly. Overestimation of lesion boundaries (a larger contour abound the object) is

also a problem associated with fixed thresholding methods [23]. Methods for adjusting the threshold

level based on the relationship between the true lesion volume and estimated volume with respect to

the quality characteristics of the scanner output have also been proposed, however these require an

initial estimate of the tumor which is not always available. The choice of parameters used to estimate

the threshold range from the estimated lesion volume [21] to more complex analytic expressions
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Figure 1.3: A sample of phantom with six spheres in a cylindrical container [44].

involving the source-to-background ratio and full width half maximum (FWHM) 1 of the scanner [48].

Adaptive thresholding methods suffer from some of same limitations as fixed threshold methods,

i.e. thresholds are specific to different scanners.

More sophisticated thresholding based approaches have been proposed based on stochastic

and learning-based methods. In [24] a thresholding based segmentation method was proposed

for PET segmentation based on Affinity Propagation (AP) clustering algorithm. First, to create a

region of interest for analysis, the lung region is segmented from CT images via region growing

algorithm, which is then used to mask the relevant portion of the PET volume. They next estimate

the probability density function of the pulmonary region using a kernel density estimation method

[13], which is then smoothed. An AP clustering algorithm is then used to approximate clusters and

thereby estimate optimal thresholds for segmenting uptake regions. They define the similarity metric

of the AP algorithm to be a function of the pairwise probability difference between voxels which is

obtained using the estimated pdf (probability density function) as well as the intensity difference.

When validated against expert delineations of PET images of rabbits infected with tuberculosis,

the method obtained a dice similarity coefficient of 91.25 ± 8.01%. Although initially proposed for

1FWHM is a function that gets two independent variables and returns the difference between the two values at which the
dependent variable is half of its maximum value
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the segmentation of pulmonary infections which often results in spatially diffuse uptake in PET

images, in [60] the method was combined with a denoising method and proposed for general PET

segmentation.

Extending an earlier work [30], in [29] an algorithm was proposed for PET volume estimation by

incorporating fuzzy measures into a Bayesian-based classification. Their approach is called fuzzy

locally adaptive Bayesian (FLAB). Previously using one fuzzy measure, in the extended work [29]

the proposed algorithm uses 3 ‘hard’ classes and 3 fuzzy levels to define the tumor region. The

fuzzy levels are used to describe the membership of a given voxel when its posterior distribution,

estimated from maximum posterior likelihood, belongs to a fuzzy domain. The method was not

proposed for automatic localization of lesions and requires initialization in the form of a bounding

box around the lesion. In [41], a fuzzy C-means (FCM) clustering based approach was proposed

for PET segmentation. The method proposes a generalization of the FCM where the Euclidean

norm is replaced by kernel-induced distance measure based on the L-p norm, with the value of

p automatically estimated based on the data. Validation was carried out on phantom images as

well as 9 non-small cell lung cancer (NSCLC) tumors. Higher accuracy compared to FLAB [29]

was reported for tumors with heterogeneous uptake, and geometrically complex shapes. Since the

method relies on gradient descent algorithm for optimization, the solution is only guaranteed to be

locally optimal. The method also requires a volume of interest (VOI) to be defined. In [43], a method

based on belief function theory was proposed. They model the segmentation problem as a binary

assignment of either low take region (lu) or high uptake region (hu), where the frame of discernment

is defined as Ω = {lu, hu}, and each voxel in a defined volume of interest represents the information

source. They use the FCM algorithm to determine belief masses for each voxel, where assignment

for a specific voxel is made based on regional statistics around that voxel. To refine assignments,

they use Dempster’s rule of the combination on regions of neighboring voxels. Finally, each voxel is

assigned to the class either {lu} or {hu} with the largest belief mass. The method was tested on

anthropomorphic phantoms and patient data.

In [20], a method for lesion segmentation in PET based on a combination of the maximum of

intensity projections (MIP) and possibility theory was proposed. The method of MIPs was used

to achieve better contrast, while the use of possibility theory provided a means to represent un-

certainty in the transition between healthy and lesion tissue. The authors report that the method

does not globally achieve superior results over some adaptive thresholding methods [49]. For ini-

tialization, the method requires the selection of a 3-D region of interest from the user. In another

probabilistic approach, Layer et al [42] used a combination of Gaussian mixture model (GMM) and

a Markov random field (MRF) model to estimate tumor volume. The approach consists of a coarse

estimation step in which an EM-based Gaussian mixture model is used to estimate voxel labels

and a refinement step using a Gaussian MRF model with a Gibbs distribution to take account of

neighbour dependencies. For initialization, the method requires a volume of interest to be defined
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as well as user defined seed points to distinguish foreground and background regions.

In [1], an active contour based solution was proposed for PET segmentation. To enforce data

fidelity, the authors used terms similar to the CV model, where instead of the original volume, the

similarity is measured against a smoothed version of the data computed using anisotropic diffusion

filter. A second regional term was also included using contourlet transform of the image. For length

regularization, they used curvature of the evolving curve. The method was solved by means of the

level set method. An important drawback of the level set method is that unless the resulting energy

is convex, the method is only guaranteed to find locally optimal solutions, in addition, compared

to global optimization methods, there is enhanced sensitivity to parameter choice with the active

contour method. The authors findings reflect this.

In [9], an approach to distinguish areas of normal and pathology-related uptake in PET-CT scans

was proposed. First the PET and CT outputs were filtered separately with PERCIST thresholding

[58] applied to the PET volumes and a filter to reveal skeletal regions applied to the CT data. For

the PERCIST step, initialization in the form of a sphere of fixed diameter was placed in the liver.

Using the output of the skeletal filter on the CT data, matching regions were removed from the

PET data. In the next step, regional statistics were computed from both the CT and PET data, and

density-based spatial clustering was applied to the PET data to cluster regions fragmented in the

earlier thresholding process. Finally, a feature vector was constructed using regional statistics of

the clusters, the scale invariant features transform, the histogram of oriented gradients. A radial

basis function kernel was used for training, while support vector machine (SVM) was then used to

classify the data.The method obtained over 90% prediction score on each of the classes: Brain,

Bladder, Heart, L/R Kidney, other. A potential limitation of the method is the implicit assumption

that a one-to-one correspondence exists between PET and CT data. Also, the method is not fully

automatic but requires a VOI to be defined for the PERCIST step.

In [65, 64], an automated segmentation method for PET-CT was proposed which is based on

a combination of decision-tree and K-nearest-neighbor (kNN) classification. The authors describe

their method as co-registered multimodality pattern analysis segmentation system (COMPASS). In

[65] the method was tested on PET-CT head and neck datasets. Textural features were extracted

from the PET and CT images independently, and then ranked using the sequential forward selection

method. kNN classification is then applied iteratively to subsets of voxels. In each iteration a

different subset of features are considered, with the classifier subdividing the voxels into ‘abnormal’

and ’normal’ subsets, abnormal subsets are classified as such, while normal subsets are subject

to further classification considering a further 3 features. A potential drawback of the method is the

assumption of a one-to-one correspondence between PET and CT, as well as a dependence on

scanner-specific parameters required for a preprocessing thresholding step. The method obtained

a mean sensitivity of 0.9±0.12 and mean specificity of 0.95±0.01. In addition to the reviewed works,

several supervised and unsupervised methods have been proposed for PET segmentation including
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those based on SVMs [36, 62], artificial neural networks (ANN) [55] and spectral clustering [61]. The

reader is referred to [23] for a full review of recent methods proposed for PET segmentation.

Graph based methods have also proven popular in the literature. In [5] a co-segmentation

method for PET-CT data is proposed using the random walker algorithm [26]. The method auto-

matically finds foreground by first setting a threshold based on the maximum SUV value and then

searches neighboring region for voxels with lower SUVs to set as background seeds. The method

was tested on 15 clinical PET-CT images and achieved a DSC of 91.44%. In another approach

for PET-CT segmentation also within a Random Walker framework, [18] proposed to include a prior

based on spatial-topological information extracted from PET images. First, a topology region is

generated based on the properties of iso-contours of the image. They then define a function to

define the inter-region similarity which is incorporated as a prior in the random walker algorithm.

For initialization, the method requires a region of interest to be defined.

In [57] a PET-CT segmentation approach is described in which the segmentation problem is

modeled as a MRF and solved in discrete space using the maximum flow algorithm. The method

involves the construction of two sub-graphs for the segmentation of the PET and CT data, and the

introduction of a consistency constraint modeled as weighted edges connecting the sub-graphs.

The consistency constraint introduces a penalty when there is disagreement between labels com-

puted by the PET and CT segmentations. For initialization, one seed point and 2 radii are provided

by the user for each target tumor. Parameters for energy terms in the final objective function are

determined empirically.

In another recent approach designed for PET-CT, the authors in [35] proposed an approach

which uses random walker algorithm to localize object seed points. For tumor delineation, they

use a graph-cut framework similar to [57]. The proposed energy function includes region terms

based on SUV distribution, the hessian matrix of the volume, and what they describe as a ’downhill’

energy, which is designed to quantify the transition between normal and lesion regions in order

to delineate these regions more accurately. The term is based on the decreasing rate of SUV

uptake as the distance is increased from the maximum intensity point within a tumor. Similar to [57],

they also include a penalty term to enforce consistency between segmentations produced from

both modalities. The algorithm was validated on 18 PET-CT images and obtained a mean DSC of

0.84 ± 0.058. For initialization the method requires foreground and background seed points to be

provided by the user. Compared to variational approaches, graph methods are guaranteed to find

global solutions; however, they are unable to compute isotropic energy minimizers and incur a large

memory overhead when segmenting fine features.

In recent work [8] a method based on graph-based optimization is used to solve the segmen-

tation problem. This method requires an approximate lesion center point provided by a user to

construct a graph structure around the center point, then local image statistics is used to derived

the cost function. All hyper-parameter is learnt using training images from QIN HeadNeck dataset,
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therefore the method is free from parameters tuning. Although this work provides accurate segmen-

tation, it requires a user interaction per lesion and is not reproducible.

While popular methods for PET segmentation continue to include variants of thresholding [49],

more recently sophisticated approaches based on Bayesian-based classification [29], belief function

theory [43] and possibility theory [20] have been proposed. Graph based methods based on the

random walker algorithm as well as the maximum-flow method have also been reported [18, 57, 35].

Table 1.1 summarizes recent methods for PET and PET-CT segmentation according to whether

they handle normal activity, are reproducible2, the level of user interaction required, as well as the

number of parameters which need to be set and whether they utilize CT. The reader is also referred

to [23] and [8] for a recent survey.

In this thesis, a fully automated method for PET tumor segmentation is proposed which uses

classification to infer a data term which is then included into a level set segmentation. In [1] the

level set method is used to minimize the resulting objective function, however the energy model is

not convex, which means in practice that the solution is dependent on a good initial placement of

the curve. In the proposed method the resulting energy formulation is convex which means that

globally optimal solutions are guaranteed and independence to initialization is achieved. Several

of the reviewed methods require either a VOI to be defined [41, 29, 20, 42, 43] or background and

foreground seed points to be identified [35, 57], in contrast, the proposed method is fully automatic

and therefore allows fully reproducible results.

1.3 Head and neck cancer

1.3.1 Anatomy

Typically, head and neck cancers are categorized based on the sites of specific tumors, such as

nasopharynx, oral cavity, oropharynx, hypopharynx, larynx, and sinonasal cavity (Fig. 1.4) [11].

Nasopharynx

The topmost part of the pharynx is the nasopharynx, extending from the base of the skull to the top

exterior of the soft palate. Usually beginning in the nasopharynx’s superior and laternal walls, Na-

sopharyngeal cancer often obstructs the Eustachian tube’s opening; through the pharyngeal walls

and tonsillar pillars, these cancers can spread to the nasal cavity and inferiorly to the oropharynx.

2A method is described as non-reproducible when its results are dependent on the image-specific parameter tun-
ing/initialization or other user interaction, since any user interaction is subjective and would produce different results.
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Table 1.1: Methods proposed for PET/PET-CT segmentation

Method Technique Handles
Normal
Activity

? Reprod-
ucible∓ User Interaction Param-

eters†
Modality

Song [57] (2013) Graph based 7 7 Seed points and radii
for each tumor

7 PET/CT

Ju [35] (2015) Graph based 7 7 Seed points 15 PET/CT
Foster [24] (2014) Affinity Propagation

clust.
7 � Manual correction

of registration

7 PET/CT

Lelandais [43] (2012) Belief-theory with FCM 7 ◦ User defined ROI 1 PET/CT
Hatt [29] (2010) Bayesian based class. 7 ◦ User defined ROI 1 PET
Dewalle-Vignion [20]
(2011) Maximum of Intensity

Propagations

7 ◦ ROI*N‡ 1 PET

Abdoli [1] (2013) Active contours ∗∗ 7 Initial curve 3 PET
Layer [42] (2015) EM-based GMM 7 7 ROI & Seed points 5 PET
Bagci [5] (2013) Graph based 7 7 - 5 PET/CT
Bi [9] (2014) SVM class. 3 7 - 5 PET/CT
Cui [18] (2015) Graph based 3 7 - 3 PET/CT
Lapuyade-Lahorgue
[41] (2015)

Fuzzy C-means clust. 3 7 - 5 PET

Zeng [66] (2013) Active surface modeling 3 7 - 8 PET
Yu [65] (2009) kNN class. 3 3 - 3 PET/CT
Beichel [8] (2016) Graph modeling 7 7 Seed points 0 PET
Yu [65] (2009) kNN class. 3 3 - 3 PET/CT
Our Method Machine Learning &

Convex seg.
3 3 - 0 PET

?Handles normal activity automatically i.e. without user seed points ∓Accuracy dependent on parameter choice, which includes size of
ROI. A method is described as non-reproducible when its results are dependent on the image-specific parameter tuning/initialization or
other user interaction, since any user interaction is subjective and would produce different results. †Parameters which were empirically
set rather than learnt. ◦Sensitivity to ROI selection not tested. ‡N is the number of projection directions which was set at 3 in [20].
∗∗Discussion of initial curve placement not included. �Method is reproducible on the condition that a registered CT is provided and that
the method is applied to lung data only.
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Figure 1.4: Head and Neck Anatomy. Nasopharynx, oral cavity, oropharynx, hypopharynx, larynx,
and sinonasal cavity are the most common sites in which tumorous lesions starts developing [11].

Oral cavity

Included in the oral cavity are the gingival, gingivobuccal and buccomasseteric regions, hard palate,

retromolar trigone, alveolar ridge, oral tongue, floor of the mouth, lip, and mandible. The oropharynx

and the oral cavity are separated by a plane formed by the soft palate, tonsilar pillars and circum-

vallate papilla. 90 percent of all malignant tumors involving the oral cavity can be accounted for by

Squamous Cell Carcinoma (SCC).

Oropharynx

The oropharynx includes the base of the tongue, the tonsillar region, the soft palate, and the pha-

ryngeal wall between the nasopharynx and the pharyngoepiglottic fold. More than 90 percent of

oropharyngeal malignancies can be accounted for by SCC and its variants.

Hypopharynx

The section of the upper aerodigestive tract that stretches from the hyoid bone and to the cricoid

cartilage is the hypopharynx. The oropharynx is above the hyoid; the hypopharynx becomes the

cervical esophagus under the cricoid cartilage. The hypopharynx is usually sectioned off into three

regions: the postcricoid region, the lateral and posterior hypopharyngeal walls, and the pyriform
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fossa. In excess of 95 percent of all hypopharyngeal tumors are SCCs. Hypopharyngeal tumors

can continue being asymptomatic for a substantial amount time. Up to 75 percent of patients have

cervical lymph node metastases by the time their cancers are diagnosed.

Larynx

The larynx may be divided into three regions: the supraglottic, glottic, and subglottic. The supra-

glottic larynx can be found above the true vocal cord (TVC), stretching from the tongue base and

valleculae to the laryngeal ventricle. The different parts of the supraglottic larynx are the arytenoid

processes of the arytenoid cartilages, the laryngeal ventricle, false vocal cords, the aryepiglottic

folds, and the epiglottis. The glottic larynx is made up of the TVC and commissure. The subglottic

larynx stretches from the cricoid cartilage to the TVC [63].

1.3.2 Diagnosis

Managing patients with head and neck cancer (HNC) begins from diagnosis and includes processes

of checking cancer’s clinical presentation, perform a biopsy, and then conducting diagnostic imag-

ing.

1.3.3 Staging

Cancer must be accurately classified, especially because it is such a key factor in influencing treat-

ment decisions. The tumor-node-metastasis (TNM) system is the standard staging system currently

being used. It comprises of three parts, each being represented by a letter in the acronym: T for

the primary or direct extension, N for secondary or lymphatic involvement, and M for vascular dis-

semination or distant metastasis [50]. Usually, T is divided into sub-categories, which range from

T1 to T4; a higher number indicates the increasing extent of the primary tumor. The advancement

of nodal involvement is classified starting from N0 (which indicates no evidence of nodal involve-

ment), and then goes on from N1 to N3, indicating the state of affected lymph nodes (such as the

location, size, and the number of lymph nodes involved). The metastasis is described by M0 or M+.

A combination of T, N, and M define various stages of HNC, based on the site of the tumor. The

head and neck have a complicated lymphatic system; this system has hundreds of lymph nodes, all

of which are categorized into 7 levels or 13 sublevels, supraclavicular nodes, and retropharyngeal

nodes [37]. Due to the complex lymphatic system and anatomy of the head and neck, HNC staging

is also complicated, which has resulted in the use of multiple TNM staging systems for HNC; the

staging system used is determined by the anatomical location of a tumor [11].
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1.3.4 Treatment

The methods of treatment for HNC are chosen based on the site and stage of cancer, as well as

the likelihood of remission and the physical condition of the patient. The aim of treatment is to cure

the patient, while inducing the least amount of structural and functional impairment. Surgery and

radiation therapy (RT) are the main modalities used for treating HNC. Historically, surgery has been

the main treatment for most HNCs in the larynx, oral cavity, and oropharynx. In these instances,

postoperative RT is often used in order to control microscope extent. Definitive RT is the main treat-

ment option for nasopharyngeal tumors, as well as certain locally advanced unresectable tumors

located in other areas. Surgery is considered a last resort if RT fails. Tumors in the hypopharynx

can be treated either by definitive RT, or by surgery. That being said, cosmesis and organ func-

tion are commonly compromised by surgery because partial or total resection procedures such as

glossectomy, mandibulectomy, and laryngectomy are frequently needed [37, 50]. Locally advanced

cancer management has shifted significantly within the last 20 years.

Some of the reasons for developing precision radiotherapy techniques such as intensity mod-

ulated radiation therapy (IMRT) and image guided RT (IGRT) include poor outcomes for treating

locally advanced HNC, wanting to preserve the patient’s organs, as well as wanting better local

therapy for unresectable cancers. The goals of the precision radiotherapy techniques that came

from this development were to achieve better control of both local and regional disease, to increase

survival rates, and to decrease normal tissue toxicity. As of today, precision radiation therapy is

usually offered as a means of treating locally advanced resectable tumors in the larynx and oral

cavity [12, 27, 37].

1.4 Thesis motivation

Cancer is a leading cause of death in most developed countries and it is responsible for nearly 30%

of all deaths in Canada and 25% all deaths in the United States [31]. Head and Neck cancer is the

fifth most common type of cancer that causes more than 11,000 deaths in North America and more

than 300,000 deaths worldwide annually [33].

Imaging techniques have developed rapidly over the past decades, and indeed it plays an impor-

tant role in staging and subsequent clinical management of cancer. For diagnoses and treatment,

information from different modalities such as computed tomography(CT), magnetic resonance imag-

ing (MRI), and positron emission tomography(PET) is used [51]. CT or MRI scans provide anatomic

information, while Single Photon Emission Computed Tomography (SPECT) and Positron Emission

Tomography (PET) are nuclear medicine imaging techniques which provide metabolic and functional

information. PET uses positron emitting radioisotope as a tracer which provides a better contrast

and spatial resolution, while SPECT uses gamma emitting radioisotope as a tracer. SPECT has
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less contrast and spatial resolution as compared to PET, but it is cheaper.

Although CT information can be used for quantification of lesions, the development of PET

quantification techniques which rely PET information remains relevant, as it simplifies the task of

automated contouring, and avoids the issue of misregistration between the CT and PET data sets.

Furthermore, CT scans can lead to inaccurate contours due to adjacent atelectasis, or fibrotic

tissues post treatment.

In this thesis, we focus on analyzing PET-18F-FDG images for Head and Neck Cancer (HNC)

given its importance in cancer care. PET 18F-FDG is the primary modality used to assist oncol-

ogists in the localization and segmentation of the target volume of HNC during radiation therapy

session. An important use of FDG-PET is a predictor of treatment outcome, for example, when

it is used to assess response to chemotherapy and radiation. Manual segmentation can be very

time consuming, especially if multiple target lesions need to be contoured. An automated approach

would greatly accelerate the workflow of physicians contouring these lesions.

18F-FDG is the dominant radiotracer used in oncological imaging studies, particularly for treat-

ment response assessment. This radiotracer also provides unique challenges due to physiological

uptake in structures such as bladder, brain, kidneys, and other normal organs. The bladder is not

always in the field of view. For example, in some head and neck protocols, and activity in the bladder

is variable. The brain consistently uses glucose, and therefore accumulates FDG. Kidney retention

is variable, and depends on the state of hydration of the patient. Cardiac uptake is variable, depend-

ing on fatty acid utilization. These are all normal variations which are expected in 18F-FDG studies,

which create additional challenges for automated segmentation. Although the proposed method

has focused on FDG, which by far is the most common tracer used in oncological PET imaging, the

principles and approach outlined in this thesis will be applicable and extended to other radiotracers

of interest in oncology (such as 68Ga-DOTATATE, 18F-FDOPA, PSMA imaging agents) as part of

future work. Currently, well over 95% of oncological PET/CT studies are performed with 18F-FDG.

1.5 Thesis contribution

In this thesis, we evaluate 3D level set segmentation method in different phantom images provided

by our collaborator team at The University of British Columbia. Then, the designed model com-

petes with six other methods in QIN PET segmentation challenge on real data. The result of the

QIN challenge reveals none of the proposed methods are reproducible, and all of them require user

interactions. As the main contribution of this thesis, we propose a new fully automatic approach to

lesion delineation in PET that, in contrast with previous works in Table 1.1 and challenge participants

in Table 4.3, is the only method that is (i) fully automatic (i.e. does not require user-initialization or

parameter-tweaking when segmenting novel images); (ii) does not require registered CT scans; and
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(iii) is able to distinguish between radiotracer activity levels in normal tissue vs. the target tumor-

ous lesions. We focus on 18F-FDG, which is by far the dominant radiotracer used in oncological

PET imaging studies. This radiotracer provides unique challenges due to physiological uptake in

structures such as the brain, kidneys, and other normal organs. Our method is a hybrid machine

learning - active surface formulation, which utilizes physiologically meaningful cues (metabolic activ-

ity, anatomical position, and regional appearance statistics) and a convex optimization guaranteeing

reproducible results. Beyond the specific application for PET images, our method using seed and

machine learning techniques, can provide accurate segmentation in the absence of precise manual

segmentation or when a few number of images with manual segmentation are available.

From a technical point of view, we used level set, convex formulation of active surface, random

forest, and image feature that were introduced by other works. Then, we (i) extend the convex

formulation of the active surface to 3D; (ii) combined machine learning with the active surface; and

(iii) designed anatomical position as a novel feature in PET images.
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Chapter 2

Methods

2.1 Level set

A large number of problems in computer vision reduce to the study of the evolution of curves by

which the boundaries between different objects are defined. These curves can evolve and move

according to their own geometries or other cues that the users are provided according to the prob-

lem. They are initialized near the object, and then they might disappear, break up, or merge during

the evolution time to match the cues (see Fig. 2.1).

Active contour methods have been used in medical image segmentation in the past decades,

and have been successful in solving segmentation problems for different modalities. We implement

a 2D stochastic active contour scheme (STACS) [52], which is originally introduced for 2D MRI.

Then, we extend it to a 3D version in order to segment lesions in 3D PET images.

2.1.1 Energy function

Given a PET image, we aim to develop a method that locates a contour that automatically sepa-

rates the voxel into two groups: lesion and background. This method encodes three types of prior

knowledge into a function with three terms J1, J2, and J3, each of which encodes a different prior.

Contour C is embedded as zero level of function φ, and the function minimizes:

J(φ) = λ1J1(φ) + λ2J2(φ) + λ3J3(φ) (2.1)

2.1.2 Priors (cues)

We utilized the following priors in our formulation.

17
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Figure 2.1: An overview of the segmentation system using level set. A zero level set surface is
initialized, and then the surface is deformed to match the object based on target cues.

Image intensity

The first term encodes data likelihood based on the intensities of foreground and background voxels.

J1(φ) =

∫
Ω

M1Hε(φ(x, y, z)) +M2[1−Hε(φ(x, y, z))]dxdydz (2.2)

Mk =
1

2
ln(2πσ2

k) +
(u(x, y)−mk)2

2σ2
k

for k = 1, 2 (2.3)

where M1 and M2 are the negative log-likelihoods of the probability density functions of foreground

and background, respectively, and

Hε(φ) =
1

2
[1 +

2

π
arctan(

φ

ε
)] (2.4)

is a Heaviside function representing the pixels inside the contour, and 1 − Hε(φ) is the function

which represents the pixels outside the contour.

The intensity priors from background and foreground are collected by seeds or boxes from a

region of interest.
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Figure 2.2: Collecting the intensity prior from background. In the left image, air and hot water inside
the phantom (section 3.1) is background, and the user is selecting a box that covers both. In the
right image, the bottle is considered as background.

Object edge

The points at which radioactivity changes sharply are of interest as they represent the borders of

lesions. A simple edge map is the magnitude of the gradient of the volume v(x, y, z), which is

commonly used in edge-based active contour models [52]. This may be encoded as follows:

Υ(x, y, z) = −|∇Gσ ∗ v(x, y, z)| (2.5)

where ∇ is the gradient operator, Gσ is a 3-D Gaussian kernel with variance σ2, and ∗ is the 3-D

convolution operator. The 3-D Gaussian kernel smoothes out the spurious edges that cause by

the gradient operator, also it removes random noise caused by gradient operator (Fig. 2.4). If C is

considered as the zero level set of φ, (2.5) becomes:

J2(φ) =

∫
Ω

Υ(x, y, z)|∇Hε(φ(x, y, z))]dxdydz (2.6)

Boundary smoothness

The contour around the segmented lesions should be smooth, not too noisy, or jagged. This can be

done by minimizing the entire Euclidean arc length of the contour C:

J3(C) =

∫
C

ds (2.7)
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Figure 2.3: Collecting the intensity prior from foreground. A user is drawing a box inside the sphere.

Figure 2.4: The 3-D Gaussian kernel or the regularization term is smoothing out the boundary,
removing small, unnecessary components.

where ds is the infinitesimal Euclidean arc length of the contour C. When we minimize J3(c) alone,

the contour C would evolve to become a circle, and finally it shrinks to be disappeared. This

smoothness term encodes the prior knowledge that lesion boundaries should be smooth. It also

discourages the generation of small noisy contours.

2.1.3 Overview of implementation

To segment a lesion, a zero level set surface is initialized using one or more points (seeds), and then

the surface is deformed to match the lesions in the 3D PET image. In particular, the deformation

updates are a result of the optimization process described earlier that ensures the resulting segmen-

tation surface: (i) forms a smooth lesion boundary (J3 in equation 2.1) (by penalizing large surface

areas); (ii) passes through voxels of high image intensity gradient magnitude (J2 in equation 2.1);

(iii) whose interior and exterior regions (inside and outside the surface) follow learnt intensity priors
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(J1 in equation 2.1). These three criteria are encoded as energy terms in an energy function.

2.1.4 Implementation details

The intensity priors are Gaussian distributions whose mean and variance are estimated from sample

pixels that are drawn inside and outside the lesions. For initialization of the lesion surface and for

collecting the intensity priors, the user selected a single seed in the interior of a lesion in a 2D

slice and selected one or more regions outside the lesion to collect intensity priors. Five scalar

parameters are needed to be set by the user to control the behavior of the level set: One parameter

controls the influence of the smoothness term and four parameters(two pairs of starting and ending

values) dictate how the influence of the gradient and intensity priors change over iterations. A

trial-and-error approach was utilized to adjust the parameters such that the method performs well

for the majority of dataset to be segmented. The parameters for the method were fixed across all

dataset with the exception for two out of 47 lesions. Also, for the cases where a specific lesion

in close proximity should not be included in the segmentation, contours for the touching lesions

were initialized separately. Two hundred (200) segmentation update iterations were enough for

convergence in all our experiments (see Fig. 2.5 and Fig. 2.6).

Figure 2.5: Segmenting two bottles: The left image shows the contour initialization. The middle
image represents segmentation update iterations. The right image illustrates final convergence.

2.2 Problems with level set

Although level set methodology is one of the most versatile methods in medical image segmenta-

tion, it suffers from four major limitations:

1. Manual seeding and initialization requirement: Classical level set requires three types of input

from a user for a binary segmentation problem:

(a) A contour needs to be initialized.
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Figure 2.6: Segmenting the sphere inside the bottles: The left image shows the contour initializa-
tion. The middle image represents segmentation update iterations. The right image illustrates final
convergence.

(b) Seeds from the background is acquired to estimate the probability density function of

background’s intensity.

(c) Seeds from the foreground is acquired to shape probability density function of the objects.

2. Dependence on intensity information only: The probability density function is usually defined

base on intensity or radioactivity in the application of PET images. However, other important

information (e.g texture, anatomical position) are ignored, while they very useful for more

accurate segmentation.

3. Sensitivity to seeding: Since the intensity prior used for the probability density function is

collected from the given image, segmentation is sensitive to the collected seeds. Thus, col-

lecting seeds is subjective to the user interaction, and this is an obstacle to a reproducible

segmentation.

4. Sensitivity to initialization (non-convexity): Methods based on the parametric active contour

tend to be sensitive on initialization, therefore different initialization can yield worse or better

segmentation results.

2.3 Level set with learnt likelihood

At a high level, this method consists of the following steps: Firstly, given our emphasis on head-

and-neck (H&N) cancer, the bladder is detected and cropped out by removing all transverse slices

inferior to the bladder. In a one-time training stage, seeds from lesions, background, and regions

of normal activity (selected manually), along with the associated class labels, are used to train a

random forest classifier. The random forest is trained on features extracted from these labeled

seed points. For each novel image, a probability map is then generated based on the output of the
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classifier, which predicts the label likelihood of each voxel. Finally, an active surface is initialized

automatically and is optimized to evolve a regularized volume segmentation delineating only the

boundaries of lesions.

2.3.1 Features

Automatic feature learning methods ignore expert domain knowledge and require a large number

of datasets in order to alleviate problems like overfitting. However, large datasets are difficult to ac-

quire in many medical imaging domains. We therefore resorted to designing specific features based

on the following problem-specific cues. We tried different possible features that are commonly being

used in medical image analysis to find the best combination, by which the best classification accu-

racy can be achieved. While the other features have been introduced by other works, anatomical

position as a feature is a new contribution in this thesis.

Radiotracer uptake (5 features)

The first group of features is based on the standardized uptake value (SUV), which plays an impor-

tant role in locating tumors [38]. SUV is computed as the ratio of the image-derived radioactivity

concentration to the whole body concentration of the injected radioactivity.

T-Test reveals activity concentration in different organs has a different distribution in each image

(Fig. 2.7). However, the p-value is very close to the cutoff (0.05) when seeds come from different

images.

The activity value of each voxel along with max, min, mean and standard deviation of SUV in a

window size 3×3×3 around each voxel is added to the features vector to encode activity information.

It should be noted SVU max value is frequently used for tumour response assessment and useful

to recover multiple target lesions [47].

Anatomical position (1 feature)

Using the approximate position of tumors as a feature is useful since in each type of nonmetastatic

cancer, lesions are located in a specific organ (e.g. H&N in our dataset). However, position coor-

dinates must first be described within a standardized frame-of-reference over all the images. The

field-of-view of PET images usually spans from the brain to the middle of the femur as the default

protocol; however, this is not always the case. To deal with this variability in scans and obtain a

common frame of reference across all images, it is necessary to first ensure anatomical correspon-

dence. The most superior point of the bladder, which is a high-uptake organ, is used as the first

anatomical landmark. The second landmark used is the most superior part of the image (i.e. top of

the brain). To find the bladder as a high-uptake organ, we plot all training images according to the
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transverse plane (Fig. 2.8). As can be seen from the plot, two images do not have bladder, and all

images with bladder, the bladder is the highest uptake, and a peak can be seen in slices containing

bladder (Fig. 2.9). Fig. 2.10 shows the standard deviation in slices containing bladder, has a sharp

peak. The highest value of standard deviation can clearly indicate the bladder. If the highest pick

is not in the first third of slices from inferior of the body, the image does not have bladder. In this

scenario, the second landmark would be the most inferior part of the image.

Each image is then spatially normalized along the axial direction based on these two landmarks

to obtain a new normalized axial position feature with values ranging between 0 (most inferior) to 1

(most superior) (Fig. 2.11). No normalization was needed within the transverse plane itself.

PET image texture (8 features)

First, four standard 3-D Haar-like features (edge, line, rectangle, and center-surround) are used to

capture the general texture pattern of a 10 × 10 × 10 region around each voxel in an image [28].

Fig. 2.12 show the four type of Haar-like features on a lesion and heart.

Second, the following four texture statistics are calculated for each transverse plane: cluster

prominence [56], homogeneity [56], difference variance [28], and inverse difference normalized

(INN) [17]. These were found to be particularly useful for distinguishing normal brain activity from

H&N lesion activity along the anteroposterior dimension. The four feature values for a given plane

were assigned to each voxel in that plane.

Homogeneity (2 features)

Tumor homogeneity is a measure of the uniformity of tumor pixel intensities [39]. The tumor homo-

geneity is calculated by

hmg(P ) =
1

n

n∑
i=1

1 +

√√√√ 1

n

n∑
k=1

(Pk − P )2

−1

(2.8)

where P is a vector of all activity values of 3D neighbors centered around a given voxel, and Pk

refers to k th voxel of vector P . We used two homogeneity features at two scales, using window

sizes 3× 3× 3 and 4× 4× 4, i.e. n=27 and 64, respectively.

2.3.2 Normalization

Normalization plays an important role in this problem as each PET images have a different distribu-

tion.
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Image normalization

To reduce inter-subject image variability, the intensity of all voxels each image is normalized to zero

mean and unit variance. The normalization is a technique to reduce noise in PET images, also has

the potential for improving the results of the classifier. Applying this normalization is particularly

useful for radiotracer uptake features according to T-Test.

Feature normalization

The values of each feature are normalized to zero mean and unit variance over the training samples.

Then the mean and variance of training feature vector are used to normalized test feature vector.

Cross validation reveals that normalization on feature vector improves the classification accuracy

by 3 percent.

2.3.3 Classification

In total, the feature vector assigned to each voxel was of length 16. For training, labeled samples (i.e.

feature vectors at seed pixels) were collected from the lesion, body, air background, kidneys, heart,

and brain regions. These can be considered as six distinguishable classes; however, we consider

the heart and kidneys as one class since they are close to each other in terms of anatomical location

and far from H&N lesions. Having the brain as a separate class is helpful to facilitate discrimination

between H&N lesions since the brain and lesions are in close proximity.

A random forest classifier is used to predict the label probability on a voxel-by-voxel basis. The

parameters of the classifier were trained and applied to new images using leave-one-image-out

cross-validation. Having more than 50 decision trees did not increase the classification accuracy,

and the value for the number of variables randomly sampled at each split was set to the square

root of the number of features, as it was automatically set and found to be robust. Fig. 2.13 shows

sample probability maps generated by our trained random forest.

2.3.4 Convex segmentation with learnt likelihoods

To produce a final segmentation of the lesion tissue, the posterior model produced by the random

forest classifier is included as a data (likelihood) term into the convex segmentation formulation of

Bresson et al. [14]:

E(u) =

∫
Ω

|∇u(x)| dx+

∫
Ω

u(x)(Pobj(x)− Pbg(x) + CA)dx (2.9)

where u(x) in [0,1] is the segmentation label field, Ω is the image domain, the first term is the

boundary regularization term, and the second is the data term. Pobj is the probability of a lesion
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and Pbg = 1 − Pobj (i.e. Pbg groups together the likelihood probabilities of all non-lesion classes),

and CA is a constant that penalizes the area of the segmentation surface and is used to constrain

the size of small unconnected components (e.g. small lymph nodes). The contour is automatically

initialized as a rectangular prism around the border of the 3D volume. Given the convex formulation,

the algorithm converges to the same global solution with any initialization. One hundred (100)

segmentation update iterations were enough for convergence in all our experiments 1.

2.3.5 Training stage

Seed selection

For training a model that can classify different region of a PET image, we need samples from

different regions in forms of voxel coordinate with corresponding labels. For this purpose, a small

tool is developed that automatically travels trough the slices, and meanwhile users can click on the

region of interest in the 2-D plane. Then, 3-D coordinate along with corresponding labels (e.g tumor,

bladder, background) is stored in a matrix. 1080 seeds have been selected from 10 3D PET training

images. Fig. 2.14 shows some seeds collected from the different part of a PET image (coronal

plane). Fig. 2.15 illustrates a 3D plot of collocated seeds from one training image. Most of the

seeds are collected from the superior part of the body (near head and neck). The ratio between the

size of the training set and the dimensionality of the feature vector is a problem studied extensively

in the machine learning literature. For a 16-D feature vector, 500-2000 samples set is suggested.

We started with 500 samples and increased the number of samples to 1080 in order to reach a

reasonable classification accuracy.

Feature selection and setting segmentation parameters

Leave-one-image-out cross-validation technique is used to tune the entire model:

Feature selection There are many possible features that can be used in medical images analy-

sis. However, firstly useful features should be leveraged to improve the accuracy of training model,

and speed up the process by removing useless features. Secondly, each feature has its own pa-

rameters and the optimal parameters is required to be found. In addition, leave-one-image-out

cross-validation confirms all selected features has potential to improve the classifier accuracy.

Segmentation parameters When the highest accuracy based on seeds is achieved, we need to

find the optimal value for a single constant of our active surface model. For learning this constant,

1A video demo can be found online at https://youtu.be/vuEwCGti JM

https://youtu.be/vuEwCGti_JM


CHAPTER 2. METHODS 27

we used some training image with complete and correct segmentation. The optimal value is found

by maximizing Dice between the manual segmentation and the automatic segmentation.

2.3.6 Testing stage

Similar to the training phase, each PET image is normalized to zero mean and unit variance. Also,

the mean and variance of training feature vector are used to normalized test feature vector. All

learnt parameters are fixed and the method ran on test images without any user interactions.

Implementation details

Although training on thousands of samples using random forests is fast (0.15 sec), predicting the

labels of millions of voxels using a MATLAB implementation was time-consuming (up to 20 hours per

volume). Instead, we used a fast C implementation of random forests [45], with parallel processing

distributed on 4 CPU cores (one slice per core). This resulted in a reduction of prediction time by a

factor of 50 to reach the average running time of ˜15 minutes per image.

2.4 Addressing the level set limitations

By leveraging machine learning and convex formulation of the active surface, we were able to handle

the limitations of level set discussed in section 2.2. We were able to replace the user interaction

with machine learning in the first proposed method (see Fig. 2.1).

1. Manual seeding and initialization requirement:

(a) The contour initialization is done automatically by fixing a rectangular prism at the border

of the image. Therefore, the user does not need to initialize the contour manually.

(b) The seeds are collected from training data once during the training phase, and given a

new test image, the user interaction for collecting seeds is not required anymore.

2. Dependence on intensity information only: By designing a 16 dimension feature vector, we

were able to add more useful and relevant cues such as texture, anatomical position, and

homogeneity.

3. Sensitivity to seeding: The seeds are collected during the training phase only, and the subjec-

tive manual seeding process does not exist anymore at test time.

4. Sensitivity to initialization (non-convexity): The convex formulation of active surface is not

sensitive to initialization, therefore different initializations yield the same segmentation results.
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Figure 2.7: The histograms of seeds from a PET images showing the distribution of active organs:
brain, heart, left kidney, right kidney, bladder, and lesion.
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Figure 2.8: Transverse plane view of five training images. All images with bladder, the bladder is
the highest uptake.



CHAPTER 2. METHODS 30

Figure 2.9: Variance plot from transverse plane of ten training images. The variance in slices
containing bladder, has a sharp peak.
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Figure 2.10: Standard deviation plot from transverse plane of ten training images. The standard
deviation in slices containing bladder, has a sharp peak.
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Figure 2.11: An image is normalized along the axial direction based on these two landmarks to
obtain a new normalized axial position feature with values ranging between 0 (most inferior) to 1
(most superior).

Figure 2.12: Four standard 3-D Haar-like features in transverse plane that shows lesions and heart.
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Figure 2.13: Example of class probabilities. Images on the left: Probability maps over different
classes in the transverse plane (different scales used for clarity). Right: Maximum probability pro-
jection.
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Figure 2.14: Selected seeds from a training image. The seeds are selected from lesion, body, air
background, kidneys, heart, and brain regions.
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Figure 2.15: 3D Plot of collected seeds from a training image. The seeds corresponds to different
regions: lesion, body, air background, kidneys, heart, and brain.



Chapter 3

Data

3.1 UBC phantom

Two independent phantom scans were carted by Medical Imaging Research Group, Department of

Radiology, University of British Columbia. The inserts in the phantom were filled with activity. The

sphere-to-background ratio (SBR) of the activity was aimed to be approximately 4 or 8, following

the NEMA recommendations for calibration standards. This ratio approximates the uptake ratio of

a typical patient. However, in order to simplify the complexity of the scans, air and water were

first used in the background. Next, hot water (water with radioactivity) with different concentration

is used as background to generate more challenging images. Following Poisson nature of photon

emissions, scans with shorter duration have increased noise due to fewer detected events.

3.1.1 NEMA-IEC phantom

A phantom from National Electrical Manufactures Association (NEMA) International Electrotech-

nical Commission (IEC) PET body was used for this scan. The images from these experiments

were reconstructed using two different types of algorithms: 1) the ordered subset expectation max-

imization (OSEM) [53] algorithm with a penalized likelihood reconstruction using relative difference

penalty (RPD); and 2) the block sequential regularized expectation maximization (BSREM) [4]. Both

algorithms were reconstructed with and without time-of-flight (TOF) information. In order to simulate

scans with increased noise levels, the raw data of the phantom experiments resorted into new data

sets with scan durations corresponding to 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes

and 8 minutes. Table 3.1 shows the volumes and activity levels of the six spheres used in the

NEMA-IEC phantom (see Fig. 3.1).

36



CHAPTER 3. DATA 37

Figure 3.1: NEMA-IEC Phantom with six spheres in different sizes. The left image is axial view, and
the right one is the 3D view.

3.1.2 Elliptical lung-spine body

Elliptical Lung-Spine Body Phantom is designed to create new phantom data that simulates a body

with long cancer (see Fig. 3.2). The raw data were reconstructed by block sequential regularized

expectation maximization (BSREM)[4] with scan durations corresponding to 30 seconds, 1 minute,

2 minutes, 3 minutes, and 5 minutes. F-18 PET/CT image of an anthropomorphic torso phantom

scanned with: six spheres (0.5 - 16 mL, SBR* = 8), two bottles (200mL, SBR = 4), and the second

smallest sphere placed inside bottle (1 mL, SBR = 2). Table 3.1 represents the volumes and activity

levels of the six spheres and two bottles used in the Elliptical Lung-Spine Body phantom.

3.2 The Cancer Imaging Archive (TCIA)

TCIA1 is a project funded by the Cancer Imaging Program of the National Cancer Institute that

identifies and provides a large archive of medical images from patients with cancer. The data

is accessible for downloading as a service and is organized as “Collections”, typically named by

a common disease (e.g. Head and Neck, Lung Cancer), image modality (PET, CT, MRI, etc) or

research focus. TCIA uses DICOM as the primary file format for image storage. More details

and supporting data related to the images such as patient outcomes, treatment details, genomics,

pathology, expert analyses, expert manual segmentation are also provided when available [16].

The Quantitative Imaging Network (QIN) grows from the National Cancer Institute (NCI) pro-

gram announcement “Quantitative Imaging for Evaluation of Responses to Cancer Therapies”. The

1http://www.cancerimagingarchive.net/
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Figure 3.2: Elliptical Lung-Spine Body Phantom with six spheres and two bottles. One of the sphere
is located inside a bottle to simulates a lesion inside a organ. The left image is axial view, and the
right one is the 3D view.

network is designed to promote research and development of quantitative imaging methods for

the measurement of tumor response to therapies in clinical trial settings, with the overall goal of

facilitating clinical decision making (Fig. 3.3). Quantitative Imaging Network, with the mission of

improving the role of quantitative imaging for clinical decision making in oncology by the developing

and validating data acquisition, analysis methods, and tools to tailor treatment for individual patients

and predict or monitor the response to drug or radiation therapy introduce, has introduced several

collections in TCIA.

3.2.1 QIN-HEADNECK

We used QIN-HEADNECK collection which is a set of head and neck cancer patients’ multiple

positron emission tomography/computed tomography (PET/CT), with 18F-FDG scans-before and

after therapy-with follow up scans where clinically indicated [16, 22, 54]. This collection consists of

156 patients with at least one PET/CT scan and related clinical data available for study (mean 3.05

studies/patient collected during a total of 472 visits) and 60 images have manual segmentation[22].

They are stored in forms of binary segmentations that are encoded in the PixelData attribute of

the SEG object, and are considered as an array of bits in which voxel at each frame has a bit.

Separate frames are considered for each slice of the volume, though all are encoded in a single

multi-frame object. When multiple segments (i.e., primary tumor and lymph nodes) are produced

by the operator during a single session using a single segmentation tool, they are stored in a single

SEG object, with each segment for each slice stored in a separate frame. Since all tumor and

lymph nodes are in head and neck area, the segmentation of volume would have many empty
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Figure 3.3: The Quantitative Imaging Network for Evaluation of Responses to Cancer Thera-
pies [25].

frames which do not contain any voxels of the segmentation. Therefore, those empty slices are

omitted in order to decrease the size of the encoded objects. SEG objects include references

to the SOP Instance UIDs of the images (slices) that were segmented [22]. The reconstruction

parameters were 2 iterations/ 8 subsets (iterative reconstruction algorithm: OSEM) with a 5 mm

smoothing Gaussian filter and voxel size 0.354×0.354×3.37 mm. For testing, data from the original

scanner as well as additional data from Siemens Biograph 40 scanner was used (also with OSEM

reconstruction algorithm, parameters 4 iterations, 8 subsets) with a 7 mm smoothing Gaussian filter

and voxel size 0.339× 0.339× 5 mm.

3.2.2 Subset of QIN-HEADNECK

QIN-HEADNECK manual segmentations are prepared for a semi-automatic method that required a

lot of user interaction [8]. Therefore, we defined the following five criteria for exclusion to select a

subset that is suitable for a fully automatic method:

1. Lesions that are closely connected but are segmented separately in manual segmentations,

while our method connects them as one lesion Fig. 3.4.
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2. There are obviously high uptake (abnormal) areas, but they have not been segmented manu-

ally as lesions. They are tow cases:

(a) Separate isolated lesions (or what appear to be lesions) which are not segmented Fig. 3.5.

(b) Portions/parts of lesions which are not segmented Fig. 3.6.

3. Misalignment: Good agreement between experts but the segmented region does not appear

to be a high-uptake region (low intensity region) Fig. 3.7.

4. Expert agreement:

(a) Low agreement between experts (we didn’t quantify this, but based on qualitative as-

sessment) Fig. 3.8.

(b) Some lesions have been segmented by one expert, but not by others Fig. 4.13.

5. Patient scanned in unconventional bed-positions e.g. arms overhead.

Note: There are two cases (QIN-HEADNECK-01-0184, QIN-HEADNECK-01-0046) where there

are lesions in the chest. The current training data does not have examples like this, therefore

the method is not expected to perform well on these images. Table 3.3 represents a list of QIN-

HEADNECK collection studies that have manual segmentation. The exclusion criteria and usage of

each image are presented in this table.

3.3 QIN challenge data

The QIN challenge organized by University of Iowa was based on the two groups of data:

3.3.1 Phantom data

The University of Iowa (UI) and University of Washington (UW) provided two series of phantom

based studies with different PET/CT scanner models. These Phantom are the modified version of

the NEMA IEC Body Phantom SetTM(PET/IECBODY/P) in which instead of the typical arrangement

of all spherical inserts, they utilized a mixture of elliptical and spherical inserts to create a clinically

more relevant segmentation challenge which is different from the standard NEMA spheres which

can be seen in Fig. 3.10. 18F-FDG object to background contrast ratios of 9.8:1 and 4.9:1 was used

in a single 30 min acquisition. University of Iowa reconstructed the images using a reconstruction

parameter with highly smoothed images with a 7mm Gaussian filter 145 kernel (UW used a narrow

3 mm Gaussian filter) to create a difficult challenge for segmentation methods. These phantom data

can be found in the Cancer Imaging Archive (TCIA) under the collection called QIN PET Phantom.

Fig. 3.11 shows the phantom images in different statistics and contrasts.
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3.3.2 Real data

In the second part of the challenge, clinically acquired PET scans from patients with head and neck

(HN) cancer was utilized. The real data was a subset of QIN-HEADNECK collection. All lesions that

need to be segmented were shown by means of indicator images to attendees. Fig. 3.12 shows a

sample of ground truth in which lesion with its corresponding labels are defined. 47 lesions were

asked to be segmented with the complexity of segmentation tasks ranges from low to complex, and

the number of lesions in each image varied.
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Table 3.1: Volumes and activity levels of the spheres S1 – S6 for the NEMA-IEC phantom

Sphere S1 S2 S3 S4 S5 S6
Volume (mL) 26 11.5 5.8 2.6 1.1 0.5

Activity (kBq/mL)(SBR-A) 999.7 441.6 223.0 100.0 42.3 19.2
Activity (kBq/mL)(SBR-W) 1190.4 525.9 265.5 119.0 50.4 22.9
Activity (kBq/mL)(SBR-8) 747.7 330.3 166.8 74.8 31.6 14.4

Table 3.2: Volumes and activity levels of of spheres Sp1 - Sp6 and B1 - B2 for the Elliptical Lung-
Spine Body Phantom

Sphere S1 S2 S3 S4 S5 S6 B1 B2
Volume (mL) 0.5 1.0 2.0 4.0 8.3 16 196 199

Activity (kBq/mL)(SBR-A) A 36.8 70.2 143.8 289.2 597.1 1162.2 5931.0 5811.3
Activity (kBq/mL)(SBR-W) 29.5 46.2 115.2 231.7 478.3 931.02 7403.9 7254.5
Activity (kBq/mL)(SBR-8) 22.5 42.9 87.8 176.7 364.8 710 4523.2 4432.0
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Table 3.3: List of QIN-HEADNECK collection studies that have manual segmentation. The exclusion
criteria column are divided into 5 criteria defined in the text (Section 3.2.2). C2 and C4 have two
conditions that are shown with two letters a and b.

Exclusion Criteria Usage
Images C1 C2 C3 C4 C5 Training Test

QIN-HEADNECK-01-0003 *
QIN-HEADNECK-01-0017 a
QIN-HEADNECK-01-0024 * a b b *
QIN-HEADNECK-01-0026 * a b b
QIN-HEADNECK-01-0028 * b *
QIN-HEADNECK-01-0034 a *
QIN-HEADNECK-01-0041 a b
QIN-HEADNECK-01-0046
QIN-HEADNECK-01-0047 * a b a b *
QIN-HEADNECK-01-0055 *
QIN-HEADNECK-01-0057 * a b * a b *
QIN-HEADNECK-01-0060 b * *
QIN-HEADNECK-01-0062 a
QIN-HEADNECK-01-0064 *
QIN-HEADNECK-01-0065 *
QIN-HEADNECK-01-0067 a b * *
QIN-HEADNECK-01-0071 * b b *
QIN-HEADNECK-01-0074 b b *
QIN-HEADNECK-01-0079 *
QIN-HEADNECK-01-0081 *
QIN-HEADNECK-01-0086 b * b
QIN-HEADNECK-01-0089 * a a *
QIN-HEADNECK-01-0091 b *
QIN-HEADNECK-01-0098 b *
QIN-HEADNECK-01-0100 * b
QIN-HEADNECK-01-0112 * *
QIN-HEADNECK-01-0115 a b
QIN-HEADNECK-01-0116 a
QIN-HEADNECK-01-0118 a b a b
QIN-HEADNECK-01-0120 *
QIN-HEADNECK-01-0127 *
QIN-HEADNECK-01-0129 a *
QIN-HEADNECK-01-0135 * a * b
QIN-HEADNECK-01-0137 *
QIN-HEADNECK-01-0139 a b * b
QIN-HEADNECK-01-0140 a b
QIN-HEADNECK-01-0157 a
QIN-HEADNECK-01-0164 * b a b
QIN-HEADNECK-01-0165 a *
QIN-HEADNECK-01-0172 b b
QIN-HEADNECK-01-0180 * b * a b
QIN-HEADNECK-01-0184
QIN-HEADNECK-01-0186 * a
QIN-HEADNECK-01-0190 b b
QIN-HEADNECK-01-0199 *
QIN-HEADNECK-01-0200 *
QIN-HEADNECK-01-0201 b * b
QIN-HEADNECK-01-0203 a b ab
QIN-HEADNECK-01-0212 *
QIN-HEADNECK-01-0214 *
QIN-HEADNECK-01-0220 * b
QIN-HEADNECK-01-0224 *
QIN-HEADNECK-01-0228 b
QIN-HEADNECK-01-0239 * b b
QIN-HEADNECK-01-0244 b *
QIN-HEADNECK-01-0275 a *
QIN-HEADNECK-01-0366 ab * b
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Figure 3.4: Closely connected lesions segmented separately in manual segmentations.
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Figure 3.5: Separate isolated lesions which are not segmented.
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Figure 3.6: Portions/parts of lesions which are not segmented.
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Figure 3.7: Misalignment: region segmented does not appear to be a high-uptake region.
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Figure 3.8: Low agreement among experts.
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Figure 3.9: Some lesions have been segmented by one expert, but not by others.
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Figure 3.10: Phantom used in the QIN PET challenge.

Figure 3.11: QIN challenge phantom data [7].
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Figure 3.12: Ground truth provided in QIN challenge. The location of lesions required to be segment
are shown.



Chapter 4

Results

4.1 Overview

In this chapter, the results of two proposed methods on three sets of data are discussed. In the

first section, we evaluate the level set approach on UBC phantom data. The second section is

concerned with the results of the QIN challenge in which we employ our method on phantom and

real data. Finally, the results of convex segmentation with learnt likelihoods on the QIN head and

neck data are presented. Our results are compared with state-of-the-art methods.

4.2 Level set method evaluated on UBC phantom

Level set method described in section 2.1 performed on UBC phantom data discussed in sec-

tion 3.1. Since the measured activity in a dose calibrator is provided in the phantom data, we are

able to quantify the accuracy by the percentage difference of segmentation to the ground truth. The

quantification result is presented in Table 4.1, and the final segmentation can be seen in Fig 4.1. As

can be inferred from Table 4.1 (LevelSet column), the difference between the activity estimated from

the obtained segmentation and ground truth is high. To improve our results, we learn a constant to

be added to the converged level set. By adding a positive or negative constant to the converged level

set the zero level set that represents the final segmentation would expand or shrink. The results are

reflected in the fixed-thresholding column in Table 4.1. Applying a fixed-thresholding step on level

set improved the final segmentation to reach a reasonable estimation of the measured activity in a

dose calibrator (Fig 4.2 shows the improvement of the segmentation using the fixed-thresholding).

We also tried to segment the bottle and the sphere inside of the bottle that simulated a lesion inside

of an organ. In the bottle case, the region of interest was segmented using the same experimental

setup shown in Fig.4.3. However, targeting the sphere inside the bottle was a bit challenging, since

52
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three different levels of activity (air, hot water inside the phantom, and bottle) were considered as the

background. As a solution, two background terms (one for air and hot water together, and one for

the) were defined in the objective functional. By using two separate background terms, our method

was able to segment the small sphere inside the bottle ( Fig 4.3).

Table 4.1: Quantification accuracy represented by the percent difference to the ground truth for level
set and fixed-thresholding methods

Interst LevelSet Fixed-thresholding
Region Volume (mL) Ground Truth Calculated Error Calculated Error
Sphere 1 0.5 22.49 14.26 36.6 25 11.1
Sphere 2 2 87.84 67.4 23.3 90 2.5
Sphere 3 4 176.71 135.83 23.1 177.89 0.7
Sphere 4 8 364.75 288.17 36.6 348.96 4.3
Sphere 5 16 709.99 582.47 18 683.71 3.7
Bottle 1 205 4523.24 3254.1 28.1 4323.8 4.4
Bottle 2 199 4431.96 3252.9 26.6 4265 3.8

Figure 4.1: The segmentation of a phantom image. Six inserts with different level of radio activity
were segmented.

4.3 Level set on QIN challenge

This section presents a reprint of: Beichel, R.R., Smith, B.J., Bauer, C., Ulrich, E.J., Ahmadvand,

P., Budzevich, M.M., Gillies, R.J., Goldgof, D., Grkovski, M., Hamarneh et al. ” Multisite Quality and

Variability Analysis of 3D FDG PET Segmentations based on Phantom and Clinical Image Data”,

Medical Physics journal, 2016 [7]. In this work, seven QIN sites (the method and site names
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Figure 4.2: The segmentation of a phantom image using fixed-thresholding. A learnt constant was
added to the converged level set (left image) to make more accurate segmentation (right image).

are listed in Table 4.3) attended the QIN challenge in which attendees were asked to segment the

phantom and real images described in 3.3. We applied level set method described in 2.1 (with the

implementation in section 2.1.3) on the QIN challenge data. The same hyperparameters settings

were used for all images except for a few real images that required parameter-tuning.

Accuracy of volume measurement

Phantom scan: As reflected in Fig. 4.7 and Table. 4.2 (adopted from [7]), our proposed level

set has the second lowest relative error in phantom data. The proposed method could segment all

inserts in phantom images even in images with the high level of noise. Fig. 4.5 compares the result

of our segmentation with the best method (proposed by Beichel et al. [8]) on three phantom images

that were corrupted with different levels of noise.

Real scan: According to Fig. 4.7 and Table. 4.2 (adapted from [7]), segmentation of real images

were more challenging. Particularly, our level set method performed worse in comparison with

other methods. Dice coefficient is reported in Table IX in [7] ranks level set as the fourth method

between seven QIN site’s methods. Fig. 4.6 shows examples in which competing methods gave

similar segmentation results in some cases. In other cases, there are varying degrees of variability

in performance.

Reproducibility

All QIN challenge attendees were asked to repeat their experiments one week after the challenge

event in order to evaluate the reproducibility of their segmentation methods. The errors of all QIN
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Figure 4.3: The segmentation of a phantom image. Two bottles with different levels of radio activity
were segmented.

sites’ segmentations for this second round can be seen in Fig. 4.7 and Table. 4.2, as reported in

[7]. In addition, the differences in the Dice coefficients are reported in Table IX in [7]. While some

methods have lower repeat error, none of the proposed methods are completely reproducible.

4.4 Level set with learnt likelihood on TCIA

4.4.1 Experimental Setup

We evaluated our approach on the H&N cancer collection provided by The Cancer Imaging Archive

(TCIA) described in 3.2.2. Ten images from this collection were selected by the Quantitative Imag-

ing Network (QIN) team for the QIN H&N challenge, in which all lesions and lymph nodes with

high activity were delineated by experts (details can be found in section 3.2.2). We chose these

10 images for training and tested on 15 new images with one or two lesions in each image from

the same collection. The training data came from Siemens Biograph Duo scanner. Six manual

segmentations (three users, two trials each) are provided by TCIA for all 25 images. Training seed

voxels were collected from the lesions, background, and regions of normal activity, for a total of 1108

seeds. The seed voxels and the manual segmentation of the training data (only) were used to tune

hyper-parameters and select features; these hyper-parameters were fixed across all test images.
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Table 4.2: Relative errors resulted by our approach for (a) phantom scans and (b) HNC scans.

Phantom
Relative Error (%) Repeat Difference (%)

Approach Mean SD RMS Mean SD lRMS
1 70.5 87.5 112 5.9 24.8 25.2
2 58.1 55.3 80 0.1 5.3 5.3
3 33.8 58.4 67.2 -36.4 54.6 65.2
4 87.8 179.2 198.7 -0.1 7.2 7.1
5 41.3 48.9 63.8 4.4 19.1 19.4
6 31 83.8 89.1 39.9 57.7 69.7

7(Our method) 29.9 58 65 -6.3 26 26.5
HNC scans

Relative Error (%) Repeat Difference (%)
Approach Mean SD RMS Mean SD RMS

1 82.1 169.6 187.6 -37.7 196.5 198
2 -5.6 35.7 36 -1.5 30.4 30.1
3 -21 44.4 48.9 31.5 56.2 63.8
4 701.5 1402.6 1560.8 -0.6 332.4 328.5
5 -25.4 48.6 54.6 21.8 56.3 59.8
6 -50.5 26 56.8 2.1 26.8 26.6

7(Our method) 48.6 119.4 128.3 6.5 37.7 37.8

Table 4.3: Methods proposed for PET segmentation by QIN sites

Method Technique Handles
Normal
Activity

? Reprod-
ucible∓

Automatic

Columbia University Medical Center In-house developed software
based on an active contour
segmentation approach

7 7 7

University of Iowa In-house developed software
utilizing a graph-based
optimization approach

7 7 7

University of South Florid Commercial software package
Mirada Medical RTx

7 7 7

Memorial Sloan Kettering Cancer Center Combination of commercial
software packages VCAR and
PMOD

7 7 7

University of Pittsburgh Commercial software package MIM 7 7 7

University of Washington Medical Center Commercial software package PMOD 7 7 7

Simon Fraser University Active surface 7 7 7

Our Method Machine Learning & Convex seg. 3 3 3
(level set with learnt likelihood)

?Handles normal activity automatically i.e. without user seed points ∓Accuracy dependent on parameter choice, which includes size of ROI.
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Figure 4.4: The segmentation of a phantom image. The sphere inside of the bottle were segmented
correctly.

4.4.2 Learning stage evaluation

During the learning stage, the accuracy of the classifier is evaluated. The average of classifier

accuracy over 20 times resampling reached to 86%± 3%, as evaluated using leave-one-image-out

cross-validation. The accuracy of the segmentation is calculated using three training images to fix

the parameter of convex active surface. Fig.4.8 shows a sample of the training result.

4.4.3 Quantitative segmentation results

Our segmentation method was validated against manual segmentations using the Dice similarity

coefficient (DSC), Jaccard index, false positive (FP), and false negative (FN) rates. These results

are presented in Table 4.4. Different combinations of classes for training the classifier prior to

segmentation were evaluated (Rows 1-5). Note that Row 6 of Table 4.4 reports the result of the

performance of our method without the final segmentation step (i.e. a voxel is assigned to the class

with highest random forest probability). Note also that DSC, Jaccard, FP, and FN are the aver-

age values obtained from comparing the automatic segmentation with the 6 manual delineations

(3 users, 2 delineations each). We compared our method with the state-of-the-art work of Foster

et al. [24] and Beichel et al. [8] using their publicly available segmentation software (Row 7 and

8). In Table 4.4, Row 8 is the average agreement computed over all scans between manual seg-

mentations produced by the three expert users where each combination of users was included i.e.
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(user1,user2), (user1,user3) etc.

Comparing with Foster’s method

We compared our method with the state-of-the-art work of Foster et al. (2014) [24] using their

publicly available PET-only segmentation software. Foster et al. method requires selecting a 3D

region of interest around the lesions and tweaking parameters until the best performing results are

obtained. This is an extra burden that took an expert with knowledgeable in PET imaging who

understands the meaning of parameters on average 5 minutes per image. As can be seen from

Table 4.4 row 7 and Table 1.1 row 3, our method performs statistically better with higher DICE and

Jaccard along with lower TP and FN in comparison to Foster’s method, while the proposed method

does not need user interaction and is reproducible as well.

Comparing with semi-automatic method

We also compared the proposed method with the state-of-the-art work of Beichel et al. (2016) [8]

in which graph-based optimization is used to solve the segmentation problem. This method needs

an approximate lesion center point provided by a user, then a graph is structured around the center

point and local image statistic information is used to derive the cost function. The semi-automated

algorithm is implemented as an extension for 3D Slicer [6], which is an open source software for

medical-image computing and visualization. An experienced user spent on average 3 minutes per

image to click on the center of each lesion. The semi-automated algorithm has some parameters,

but all parameters are fine tuned on the QIN-HEADNECK data which is exactly the same data used

for the proposed method. Semi-automated method statistically is doing better with higher DICE

and Jaccard. However, firstly, this method is not automatic and need a user interaction per lesion,

secondly, it is not reproducible. Although the Semi-automated method reduces considerably the

segmentation variation in compare with manual segmentation, it is not still a reproducible method

[8].

Segmentation agreement

We evaluated the inter- and intra-user agreement in lesion delineation and compared it to results

from our automated method and those obtained from expert users. We found that user2 has the

highest intra-user variability with an average DSC of 0.844, and that user3 agreed the least with

the two other users with an average DSC of 0.787. Our fully automated method had an average

DSC agreement of 0.741 with other users, i.e. our method falls short by only 4% from performing

as well as expert user3. Note Zijdenbos et al [67] suggested that a DSC higher 0.7 indicates good

agreement.
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4.4.4 Quantitative segmentation results

Fig. 2.13 shows examples of segmentation results from four cases. In the third case, our method

segmented a lesion that was missed in the manual segmentation. In the fourth case, a small

segmentation leaks into the inferior part of the brain is observed.

4.4.5 Comparing with QIN challenge methods

We were not able to provide a quantitative comparison with QIN site methods, because the images

provided by QIN challenge are used for training propose. However, in Table 4.3 we compare our

level set with learnt likelihood with seven other methods (including our level set method) proposed in

the QIN challenge. Our fully automated method is the only method that can handle normal activity,

is reproducible, and does not need any user interaction.

Table 4.4: Segmentation results. (Row 1-6) Variants of our proposed method evaluated on different
combinations of classes, with each class surrounded by parentheses (e.g. 2 classes in row 1); (Row
7 and 8) Competing method; (Row 8) Average segmentation agreement for 3 users. Items with the
same class label are shown with the same color.

Method DSC Jaccard FP FN

1 [Air + Body + Kidney + Heart + Brain] [Lesion] 0.71 0.57 0.66 0.03

2 [Air + Body] [Kidney + Heart + Brain] [Lesion] 0.71 0.56 0.60 0.04

3 [Air] [Body] [Kidney + Heart + Brain] [Lesion] 0.73 0.59 0.41 0.05

4 [Air + Body] [Kidney + Heart] [Brain] [Lesion] 0.72 0.57 0.57 0.04

5 [Air] [Body] [Kidney + Heart] [Brain] [Lesion] 0.74 0.60 0.46 0.04

6 [Air] [Body] [Kidney + Heart] [Brain] [Lesion] w/o seg 0.71 0.56 0.70 0.03

7 Foster et al. (2014) [24] 0.71 0.58 9.8 0.05

8 Beichel et al. (2016) [8] 0.79 0.67 0.30 0.17

9 Average pairwise agreement between 3 expert segmentations 0.80 0.67 0.27 0.17



CHAPTER 4. RESULTS 60

 

 

High noise

Low noise

Moderate
noise

Figure 4.5: Comparing the performance of our method (the green contour) with Beichel et al. [8]
(red contour). The three rows are three different phantom images with different levels of noise.
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Figure 4.6: Comparing the performance of our method (the green contour) with other QIN site’s
methods.
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Figure 4.7: Comparing the performance of seven QIN methods segmentation on (a) phantom and
(b) Head and Neck [7]. Number 7 is our method.

Figure 4.8: The segmentation result of a training image. Three lesions are segmented; the left
image shows the segmentation from axial plane, and right images is a 3D view of the segmentation.
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(a) (b) (c) (d)

Figure 4.9: Qualitative segmentation results. The PET image is rendered using maximum intensity
projection. Our proposed segmentation is shown as red contours, while an example manual seg-
mentation is shown in green. Note in (c) that our method captures a valid lesion missed by the user.
In (d), we see an example of segmentation leakage into the inferior part of the brain.
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Figure 4.10: Comparison of our method with the state-of-the-art work of Foster et al. [24], Beichel
et al. [8], and manual segmentation.
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Figure 4.11: Comparison of our method with the state-of-the-art work of Foster et al. [24], Beichel
et al. [8], and manual segmentation.
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Figure 4.12: Comparison of our method with the state-of-the-art work of Foster et al. [24], Beichel
et al. [8], and manual segmentation.
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Figure 4.13: Comparison of our method with the state-of-the-art work of Foster et al. [24], Beichel
et al. [8], and manual segmentation.



Chapter 5

Conclusions and Future Work

The primary problem that this thesis focuses on is the reproducible and automatic delineation of le-

sions for radiation treatment of head and neck cancer. Accuracy in target segmentation is essential

for the success of radiotherapy. Also, reproducible result improves radiation therapy. We present

the first work that fully automates the segmentation of lesions relying solely on PET.

The proposed method uses a random forest classifier to construct a prior model of the data. The

proposed method has been shown to successfully distinguish functional abnormalities from normal

uptake of PET radiotracers while also providing a segmentation of these regions. Our method

is able to isolate abnormal lesion activity from the background and from other tissue regions of

normal radiotracer uptake. Our method is a convex segmentation technique that is guided by learnt

likelihood terms. The learning is based on the classification model trained on anatomically and

physiologically meaningful cues. The use of convex formulation together with a trained classifier

to learn all parameters precludes the need for human interaction (i.e. initialization and parameter

tuning) and results in fully reproducible results on new test images (obtained from a different scanner

with different reconstruction parameters).

Our approach was compared with six other QIN sites who participated in the QIN challenge.

Contrary to other methods, our approach is fully automatic and reproducible. Our approach out-

performs the recently published state-of-the-art method for this application and differed in average

Dice similarity coefficient (DSC) by just 4% compared with an expert user.

In future work, the approach can be extended to other radiotracers of interest in oncology. It is

also interesting to incorporate anatomical information from CT, when available. The results may be

improved by employing a deep neural network to avoid designing features manually. However, this

needs more training data.
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[2] Payam Ahmadvand, Nóirı́n Duggan, François Bénard, and Ghassan Hamarneh. Tumor lesion
segmentation from 3D PET using a machine learning driven active surface. In International
Workshop on Machine Learning in Medical Imaging, pages 271–278. Springer, 2016. 16

[3] Payam Ahmadvand, Hillgan Ma, Jesse Tanguay, Anna Celler, Benard Francois, and Ghassan
Hamarneh. Level-set based segmentation of tumour lesions in PET images. In Quantitative
Imaging Network (QIN) Annual Meeting, 2016. 16

[4] Sangtae Ahn and Jeffrey A Fessler. Globally convergent image reconstruction for emission
tomography using relaxed ordered subsets algorithms. IEEE Transactions on Medical Imaging,
22(5):613–626, 2003. 36, 37

[5] Ulas Bagci, Jayaram K. Udupa, Neil Mendhiratta, Brent Foster, Ziyue Xu, Jianhua Yao, Xinjian
Chen, and Daniel J. Mollura. Joint segmentation of anatomical and functional images: Appli-
cations in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images.
Medical Image Analysis, 17(8):929–945, 2013. 8, 10

[6] Christian Bauer and Markus Van Tol. PET Tumor Segmentation [Online], Available:
https://www.slicer.org/wiki/Documentation/4.5/Extensions/PETTumorSegmentation. 58

[7] Reinhard R Beichel, Brian J Smith, Christian Bauer, Ethan J Ulrich, Payam Ahmadvand,
Mikalai M Budzevich, Robert J Gillies, Dmitry Goldgof, Milan Grkovski, Ghassan Hamarneh,
et al. Multi-site quality and variability analysis of 3D FDG PET segmentations based on phan-
tom and clinical image data. Medical Physics, 44(2):479–496, 2016. xiii, xiv, 16, 50, 53, 54,
55, 62

[8] Reinhard R Beichel, Markus Van Tol, Ethan J Ulrich, Christian Bauer, Tangel Chang, Kristin A
Plichta, Brian J Smith, John J Sunderland, Michael M Graham, Milan Sonka, et al. Semi-
automated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-
interaction approach. Medical Physics, 43(6):2948–2964, 2016. xiv, 8, 9, 10, 39, 54, 57, 58,
59, 60, 64, 65, 66, 67

[9] Lei Bi, Jinman Kim, Dagan Feng, and Michael Fulham. Multi-stage thresholded region clas-
sification for whole-body PET-CT lymphoma studies. In MICCAI, pages 569–576, 2014. 7,
10

69



BIBLIOGRAPHY 70

[10] Kenneth J Biehl, Feng-Ming Kong, Farrokh Dehdashti, Jian-Yue Jin, Sasa Mutic, Issam
El Naqa, Barry A Siegel, and Jeffrey D Bradley. 18f-FDG PET definition of gross tumor volume
for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold
approach appropriate? Journal of Nuclear Medicine, 47(11):2006, 1808-1812 2006. 4

[11] Michael A Blake and Mannudeep K Kalra. Imaging in Oncology, volume 143. Springer Science
& Business Media, 2008. xii, 9, 11, 12

[12] Thomas Bortfeld, Rupert Schmidt-Ullrich, Wilfried De Neve, and David E Wazer. Image-guided
IMRT, volume 18. Cambridge Univ Press, 2006. 13

[13] Zdravko I Botev, Joseph F Grotowski, and Dirk P Kroese. Kernel density estimation via diffu-
sion. The Annals of Statistics, 38(5):2916–2957, 2010. 5

[14] Xavier Bresson, Selim Esedoglu, Pierre Vandergheynst, Jean-Philippe Thiran, and Stanley
Osher. Fast global minimization of the active contour/snake model. Journal of Mathematical
Imaging and Vision, 28(2):151–167, 2007. 25

[15] Curtis B Caldwell, Katherine Mah, Matthew Skinner, and Cyril E Danjoux. Can PET provide
the 3d extent of tumor motion for individualized internal target volumes? a phantom study of
the limitations of CT and the promise of PET. International Journal of Radiation Oncology*
Biology* Physics, 55(5):1381–1393, 2003. 4

[16] Kenneth Clark, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen
Moore, Stanley Phillips, David Maffitt, Michael Pringle, et al. The cancer imaging archive
(TCIA): maintaining and operating a public information repository. Journal of Digital Imaging,
26(6):1045–1057, 2013. 37, 38

[17] David A Clausi. An analysis of co-occurrence texture statistics as a function of grey level
quantization. Canadian Journal of Remote Sensing, 28(1):45–62, 2002. 24

[18] Hui Cui, Xiuying Wang, Weiran Lin, Jianlong Zhou, Stefan Eberl, Dagan Feng, and Michael
Fulham. Primary lung tumor segmentation from PET–CT volumes with spatial–topological
constraint. International Journal of Computer Assisted Radiology and Surgery, 11(1):19–29,
2015. 8, 9, 10

[19] Michel Defrise, Paul E Kinahan, and Christian J Michel. Image reconstruction algorithms in
PET. In Positron Emission Tomography, pages 63–91. Springer, 2005. 2

[20] A. Dewalle-Vignion, N. Betrouni, R. Lopes, D. Huglo, S. Stute, and M. Vermandel. A new
method for volume segmentation of PET images, based on possibility theory. IEEE Transac-
tions on Medical Imaging, 30(2):409–423, Feb 2011. 6, 9, 10

[21] Yusuf E Erdi, Osama Mawlawi, Steven M Larson, Massimo Imbriaco, Henry Yeung, R Finn, and
John L Humm. Segmentation of lung lesion volume by adaptive positron emission tomography
image thresholding. Cancer, 80(12):2505–2509, 1997. 4

[22] Andriy Fedorov, David Clunie, Ethan Ulrich, Christian Bauer, Andreas Wahle, Bartley Brown,
Michael Onken, Jörg Riesmeier, Steve Pieper, Ron Kikinis, et al. DICOM for quantitative imag-
ing biomarker development: a standards based approach to sharing clinical data and struc-
tured PET/CT analysis results in head and neck cancer research. PeerJ, 4:e2057, 2016. 38,
39



BIBLIOGRAPHY 71

[23] Brent Foster, Ulas Bagci, Awais Mansoor, Ziyue Xu, and Daniel J. Mollura. A review on
segmentation of positron emission tomography images. Computers in Biology and Medicine,
50:76–96, 2014. 4, 8, 9

[24] Brent Foster, Ulas Bagci, Ziyue Xu, Bappaditya Dey, Brian Luna, William Bishai, Sanjay Jain,
and Daniel J Mollura. Segmentation of PET images for computer-aided functional quantifica-
tion of tuberculosis in small animal models. IEEE Transactions on Biomedical Engineering,
61(3):711–724, March 2014. xiv, 5, 10, 57, 58, 59, 64, 65, 66, 67

[25] Evan Godt. QIN network [online], available: http://trimed-cms-
prod.s3.amazonaws.com/styles/large/s3/assets/articles/qin.jpg, [accessed: 06-02- 2017].
xiii, 39

[26] Leo Grady. Random walks for image segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 28(11):1768–1783, Nov 2006. 8

[27] Pierre Graff, Michel Lapeyre, Emmanuel Desandes, Cécile Ortholan, René-Jean Bensadoun,
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Michel Oellers, Philippe Lambin, Olivier Pradier, and Dimitris Visvikis. Accurate automatic
delineation of heterogeneous functional volumes in positron emission tomography for oncology
applications. International Journal of Radiation Oncology Biology Physics, 77(1):301–308,
2010. 6, 9, 10

[30] Mathieu Hatt, Catherine Cheze Le Rest, Alexandre Turzo, Christian Roux, and Dimitris Visvikis.
A fuzzy locally adaptive bayesian segmentation approach for volume determination in PET.
IEEE Transactions on Medical Imaging, 28(6):881–893, June 2009. 6

[31] Thi H Ho, Lisa Barbera, Refik Saskin, Hong Lu, Bridget A Neville, and Craig C Earle. Trends
in the aggressiveness of end-of-life cancer care in the universal health care system of Ontario,
Canada. Journal of Clinical Oncology, 29(12):1587–1591, 2011. 13

[32] H Jadvar and JA Parker. Pet physics and instrumentation. Clinical PET and PET/CT, pages
1–43, 2005. 2

[33] Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Yongping Hao, Jiaquan Xu, Taylor Murray,
and Michael J Thun. Cancer statistics, 2008. CA: a Cancer Journal for Clinicians, 58(2):71–96,
2008. 13

[34] Walter Jentzen, Lutz Freudenberg, Ernst G Eising, Melanie Heinze, Wolfgang Brandau, and
Andreas Bockisch. Segmentation of PET volumes by iterative image thresholding. Journal of
Nuclear Medicine, 48(1):108–114, 2007.

[35] Wei Ju, Deihui Xiang, Bin Zhang, Lirong Wang, I. Kopriva, and Xinjian Chen. Random walk
and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Transactions on
Image Processing, 24(12):5854–5867, Dec 2015. 8, 9, 10



BIBLIOGRAPHY 72

[36] Aliaksei Kerhet, Cormac Small, Harvey Quon, Terence Riauka, Russell Greiner, Alexander
McEwan, and Wilson Roa. Artificial Intelligence in Medicine: 12th Conference on Artificial
Intelligence in Medicine, AIME 2009, Verona, Italy, July 18-22, 2009. Proceedings, chapter
Segmentation of Lung Tumours in Positron Emission Tomography Scans: A Machine Learning
Approach, pages 146–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. 8

[37] Faiz M Khan and Bruce John Gerbi. Treatment planning in radiation oncology. Wolters Kluwer
Health/Lippincott Williams & Wilkins, 2012. 12, 13

[38] PE Kinahan and JW Fletcher. PET/CT standardized uptake values (SUVs) in clinical practice
and assessing response to therapy. Seminars in Ultrasound, 31(6):496–505, 2010. 23

[39] Ashnil Kumar, Jinman Kim, Lingfeng Wen, Michael Fulham, and Dagan Feng. A graph-
based approach for the retrieval of multi-modality medical images. Medical Image Analysis,
18(2):330–342, 2014. 24

[40] Jens Langner. PET schema [online], available: http://upload.wikimedia.org/wikipedia/commons/c/c1/pet-
schema.png, [accessed: 05-05- 2017]. xii, 3
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