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Abstract

Recommender systems are ubiquitous in our digital life in recent years. They play a significant role

in numerous Internet services and applications such as electronic commerce (Amazon and eBay),

on-demand video streaming (Netflix and Hulu). A key task in recommender systems is to model

user preferences and to suggest, for each user, a personalized list of items that the user has not

experienced, but are deemed highly relevant to her. Many of these recommendation algorithms are

based on the principle of collaborative filtering, suggesting items that similar users have consumed.

With the advent of online social networks, social recommendation has become one of the most pop-

ular research topics in recommender systems, exploiting the effects of social influence and selection

in social networks, where user relationships are explicit, i.e., there will be an edge connecting two

users if they are friends. In addition, more information about the relationships between users in so-

cial media becomes available with the rapid development of various Internet services. For example,

more and more online web services are providing mechanisms by which users can self-organize

into groups with other users having similar opinions or interests, enabling us to analyze the interac-

tions between users with others insides/outsides groups, as well as the engagement between users

and groups. User relationships in these applications are usually implicit and can only be utilized

indirectly for recommendation tasks.

In this thesis, we focus on utilizing user relationships (either explicit or implicit) to enhance per-

sonalized recommendation in social media. We study three problems of recommendation in social

media, i.e., recommendation with strong and weak ties, social group recommendation and interac-

tive social recommendation in an online setting. We propose to improve social recommendation

by incorporating the concept of strong and weak ties which are two well documented terms in

the social sciences, boost the performance of social group recommendation through modeling the

temporal dynamics of engagement of users with groups, and tackle the interactive social recom-

mendation problem via employing the exploitation-exploration strategy in an online setting. Our

proposed models are all compared with state-of-the-art baselines on several real-world datasets.

Keywords: Recommendation; Personalization; Collaborative Filtering; User Behavior Modeling
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Chapter 1

Introduction

As more and more information becomes available on the Internet, people turn out to be more and

more picky about the results that web services can provide with them. They want to have personal-

ized results, but are not willing to spend a lot of time to specify their personal information needs. The

advent of recommender systems enables an automatic identification of the information relevant for

a given user through learning from available data. After a boosting development in the past decade,

recommender systems have saturated into our daily life–we experience recommendations when we

see “More Items to Consider” or “Inspired by Your Shopping Trends” on Amazon and “People You

May Know” on Facebook–other popular online web services such as eBay, Netflix and LinkedIn

etc. also provide users with the recommendation features. Thus algorithmic recommendation has

become a necessary mechanism for many online web services which recommend items such as mu-

sic, movies or books to users. These online web services normally make recommendations based on

collaborative filtering, suggesting items favored by similar users. Low rank matrix factorization, as

one of the most popular and representative collaborative filtering algorithms, has been widely used

in many real-world recommender systems. In this chapter, we will first define the problem of rec-

ommendation in a user-item matrix view, then briefly discuss explicit and implicit feedback which

are two common concepts in recommendation, followed by an overview about various applications

of recommendation in social media. In the end, we would like to state our contribution in this thesis

through presenting three recommendation problems in social media and how our proposed models

can enhance the recommendation via utilizing user relationships in general.

1.1 Problem Definition

In recommender systems, we are given a set of users U and a set of items I, as well as a |U| × |I|
rating matrixRwhose non-empty (observed) entriesRui represent the feedback (e.g., ratings, clicks

etc.) of user u ∈ U for item i ∈ I. The task is to predict (or rank) the missing values in R, i.e.,

given a user v ∈ U and an item j ∈ I for which Rvj is unknown, we predict (or rank) the rating of

v for j using observed values in R.

1
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Departed Star Wars Matrix Hurt Locker Titanic Terminator

Joe 2 5 4 2 ? ?

John 5 1 2 1

Susan 5 5 5 5

Pal 2 5 3

Jean 5 3 5 3

Ben 1 5

Nathan 2 4 1 4

Target User

U
se

rs

Similar User

Items

Rating Matrix

Target Item

Ratings

Figure 1.1: An example of rating matrix

Consider the example rating matrix in Figure 1.1 where lines are users (U) and columns are

items (I). Each entry with a number (i.e., observed) in the matrix indicates the corresponding

rating (Rui) of a user (u) for an item (i). The task of recommender systems in this example then

becomes, given the observed entries in the rating matrix, how can we predict the values for those

unobserved entries (e.g., Joe’s rating on Titanic and Terminator) or how can we produce a list of top-

3 movies that liked most by Ben? Furthermore, the above two task options elicit the two objectives

in recommendation:

• Rating prediction

Predict the rating of target user for target item (not rated by this user).

• Top-K item recommendation

Predict the top-K highest-rated items among the items not yet rated by target user.

Note that the values of ratings are all integers from 1 to 5, where 1 means a user dislikes an

item, 5 indicates that the user likes or even favors the item. This often happens when a web service

(e.g., IMDB) provides its users with the function of giving different numeric values (from a pre-

selected set of values by the system) as ratings for items and higher value for an item expresses more

preference for this item. We call these numeric ratings explicit ratings or explicit feedback. More

often than not, we may also come across other applications in which no such explicit ratings are

available. For instance, Delicious (https://del.icio.us/), which is a social bookmarking

web service for storing, sharing, and discovering web bookmarks, allows its users to bookmark a

url, resulting in a Boolean user-url bookmarking matrix whose entries are either 1 or 0 — 1 indicates

that a user has bookmarked a url and 0 otherwise. We call these binary ratings implicit ratings or

implicit feedback. Just as the name implies, explicit rating can express users’ relative preferences

2
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over different items while implicit rating can not. Existing literature in recommendation can also be

roughly divided into two categories according to which of the two it applies to. This being the case,

we remark that our proposed models in this thesis fit into either implicit data or explicit data.

1.2 Explicit and Implicit Ratings/Feedback

In the above example where people have explicit ratings from 1 to 5 for different items, we can

somehow infer their preferences over different items from their corresponding ratings, e.g., a user

prefers the item rated 5 to the one rated 1 by himself. In such scenarios, a “good” rating prediction

model will indirectly produce a good top-K raking list given the available information of explicit

ratings. In other scenarios where only implicit ratings are available, we may only have a boolean

value indicating whether a user has consumed an item (‘rate’ can be treated as a special case of

‘consume’ where the value of rating is 1), resulting in a boolean rating matrix whose entries are

either 1 or 0. Top-K recommendation which gives a list of ranked items that each target user may

like most will be more meaningful in practice and thus be more attractive for researchers when no

explicit ratings are available. Actually we are surrounded by far more implicit feedback than explicit

feedback in our daily lives and given the fact that inferring user preference from implicit feedback

is more challenging, there is more existing work on implicit feedback than on explicit feedback.

1.2.1 Recommendation with explicit ratings

When it comes to recommender systems, collaborative filtering is one of the most popular algo-

rithmic solutions so far, which makes recommendations based on users’ past behaviors such as

ratings, clicks, purchases and favorites etc. Further, low rank matrix factorization is among the

most effective methods for collaborative filtering, and there is a large body of work on using matrix

factorization for collaborative filtering [58, 59, 82, 98]. As a general treatment, Koren [60] gives a

systematic introduction to the application of matrix factorization to recommender systems. Among

the literature of matrix factorization, Salakhutdinov and Mnih [82] propose a probabilistic version

of matrix factorization (PMF) which assumes a Gaussian distribution on the initialization of la-

tent feature vectors, making the model more robust towards the problem of overfitting and linearly

scalable with the number of observations at the same time.

Probabilistic Matrix Factorization in Recommendation

In recommender systems, we are given a set of users U and a set of items I, as well as a |U|×|I| rating

matrixR whose non-empty (observed) entriesRui represent the feedbacks (e.g., ratings, clicks etc.)

of user u ∈ U for item i ∈ I. When it comes to social recommendation, another |U| × |U| social

tie matrix T whose non-empty entries Tuv denote u ∈ U and v ∈ U are ties, may also be necessary.

The task is to predict the missing values in R, i.e., given a user v ∈ U and an item j ∈ I for which

Rvj is unknown, we predict the rating of v for j using observed values in R and T (if available).

3
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Figure 1.2: Graphical Model for Probabilistic Matrix Factorization

A matrix factorization model assumes the rating matrix R can be approximated by a multiplica-

tion of d-rank factors,

R ≈ UTV, (1.1)

where U ∈ Rd×|U| and V ∈ Rd×|I|. Normally d is far less than both |U| and |I|. Thus given a user u

and an item i, the rating Rui of u for i can be approximated by the dot product of user latent feature

vector Uu and item latent feature Vi,

Rui ≈ UTu Vi, (1.2)

where Uu ∈ Rd×1 is the uth column of U and Vi ∈ Rd×1 is the ith column of V . For ease of

notation, we let |U| = N and |I| = M in the remaining of this chapter.

Later, the probabilistic version of matrix factorization, i.e., Probabilistic Matrix Factorization

(PMF), is introduced in [82], based on the assumption that the rating Rui follows a normal distri-

bution whose mean is some function of UTu Vi. The conditional probability of the observed ratings

is:

p(R|U, V, σ2
R) =

N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IR
ui
, (1.3)
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where N (x|µ, σ2) is the normal distribution with mean µ and variance σ2. If u has rated i, then

the indicator function IRui equals to 1, otherwise equals to 0. g(·) is the sigmoid function, i.e.,

g(x) = 1
1+e−x , which bounds the range of UTu Vi within [0, 1]. Moreover, Uu and Vi are both subject

to a zero mean normal distribution. Thus the conditional probabilities of user and item latent feature

vectors are:

p(U |σ2
U ) =

N∏
u=1
N
(
Uu|0, σ2

UI
)

p(V |σ2
V ) =

M∏
i=1
N
(
Vi|0, σ2

V I
)
, (1.4)

where I is the identity matrix. Therefore, the posterior probability of the latent variables U and V

can be calculated through a Bayesian inference,

p(U, V |R, σ2
R, σ

2
U , σ

2
V )

∝ p(R|U, V, σ2
R)p(U |σ2

U )p(V |σ2
V )

=
N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IR
ui

×
N∏
u=1
N (Uu|0, σ2

UI)×
M∏
i=1
N (Vi|0, σ2

V I). (1.5)

Figure 1.2 dipicts the graphical model of PMF and we refer readers to [82] for more details.

Our proposed model in Chapter 4 can be regarded as an extension of PMF and the proposed

method in Chapter 6 makes use of matrix factorization technique within the Multi-armed Bandit

(MAB) framework. Thus our focus will be on explicit feedback in Chapter 4 and Chapter 6.

1.2.2 Recommendation with implicit ratings

Considerable work has been done to address the problem of how to use just implicit feedback

to generate high quality recommendations. Oard and Kim [83] identified several data sources to

gather implicit feedback and suggested two types of recommendation strategies. The first strategy

is to infer explicit (ratings) feedback that users are likely to produce and adopt available methods

for explicit feedback. The second one is directly infer user preferences without converting implicit

feedback to explicit ratings (feedback). Das et al. [28] presented an online recommendation algo-

rithm for Google News where only click history of each user is available (hence implicit). They

describe a linear model that combines three recommendation algorithms: collaborative filtering us-

ing MinHash clustering, probabilistic Latent Semantic Indexing (pLSI), and co-visitation counts.

Hu et al. [48] proposed to transform implicit feedback into two paired quantities: preferences and

confidence levels and use both of them to learn a latent factor model. Unlike matrix factorization

for explicit feedback, their model takes all user-item pairs, including non-observed items, as an
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input and is later extended for other recommendation tasks by others [108]. Scalable learning algo-

rithms are proposed to address the (potentially) huge amount of input. Pan et al. [87] uses weighted

low-rank approximation and sampling techniques. First, different weights are assigned to the error

terms of observed items and non-observed items in the objective function. Second, they sample

non-observed items as negative feedback, instead of using all of them.

Hu’s Model (WRMF)

Hu et al. [48] predict users’ preferences for TV programs through an implicit scoring model whose

factors are computed by the matrix factorization:

minimize
Xu,Yi

1
2
∑
u,i

(1 + γrui)
(
pui −XT

uYi
)2

+ λ
(∑

u

‖Xu‖22 +
∑
i

‖Yi‖22
)
. (1.6)

Vectors Xu, Yi ∈ Rk are latent factors for user u and item i. In Hu’s application, rui records

the number of times user u watches TV program i. Different from ratings in the range between 1
and 5, rui can range from 0 to any positive integers (theoretically) such as 100, 1000 etc, bringing

unstable fluctuations to vanila (probabilistic) matrix factorization. Therefore in WRMF, user u’s

preference for item (TV program) i is determined by binarizing rating rui ≥ 0 into 0 or 1 (i.e.,

implicit feedback):

pui =

1, rui > 0,

0, rui = 0.
(1.7)

In this model, the lowest rating assigned to an item a user has observed is 1, so rui = 0 and pui = 0
if u has never observed item i. This model, therefore, accounts for all user-item pairs. Parameters

γ, which scales the strength of user-item ratings, λ, which regularizes matrix factors, and k, the

dimension of the latent space, are chosen by experiment.

All the aforementioned methods are often referred to as point-wise, since they learn absolute

preferences and then produce top-K recommendations by simply sorting items by their scores in

descending order. Rendle et al. [95] proposed a novel pairwise learning method called Bayesian

Personalized Ranking (BPR). Here the focus is shifted to the learning of relative preferences. BPR

trains on pairs of items and the objective is to maximize the posterior likelihood of optimal per-

sonalized ranking, in which the assumption is that for each user, observed items are preferred over

non-observed ones. Empirical results in [95] demonstrate that BPR coupled with matrix factoriza-

tion or kNN indeed outperform point-wise methods proposed in [48, 87]. Recently, Rendle and

Freudenthaler [94] introduced a more sophisticated sampling technique to improve the convergence

rate of BPR learning.

6



Bayesian Personalized Ranking (BPR)

BPR [95] categorizes items into two groups:

1. Consumed Items. For all u ∈ U , let Cself
u ⊆ I denote the set of items consumed by u itself.

2. Non-Consumed Items. This category contains the rest of the items (not consumed by u ):

Cnone
u = {i : i ∈ I \ Cself

u }.

Clearly, for all u ∈ U , Cself
u ∪ Cnone

u = I.

Intuitively, each user u should prefer the consumed items to non-consumed items, i.e., the con-

sumed items should be ranked ahead of the non-consumed ones. Mathematically,

i <u j, if i ∈ Cself
u ∧ j ∈ Cnone

u . (1.8)

The likelihood function can be expressed as:

L(Θ) =
∏
u∈U

( ∏
i∈Cself

u

∏
j∈Cnone

u

Pr[i <u j]
)
, (1.9)

where the probability that consumed items are preferred over non-consumed items is as follows:

Pr[i <u j]

=δ(x̂ui − x̂uj)

= 1
1 + exp(−(x̂ui − x̂uj))

= 1
1 + exp(−〈Pu,Qi〉+ 〈Pu,Qj〉)

. (1.10)

For the introductory purpose of this section, we only describe the basic model idea and refer

readers to the corresponding original paper for more detailed model inference.

It is fair to say that we study problems related to implicit feedback in Chapter 3 and Chapter 5

as the proposed approaches in these two chapters extend BPR and WRMF respectively.

1.3 Recommendation in Social Media

The rising of social network and rapid development of web services actuate the emergence of rec-

ommendation in social media. People not only rate movies or TV series on IMDB, but also interact

with each other on Facebook and see the latest updates of their favorite idols on Twitter. This brings

the idea of social recommendation which tries to utilize available information (e.g., ratings) from
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users’ friends to infer their preferences. Lots of existing work has proved that incorporating infor-

mation from social networks does help to improve the accuracy of conventional recommendation

methods.

At the same time, other applications such as Wordpress, LinkedIn, Flickr, DeviantArt etc. be-

come popular in our lives. We write blogs on Wordpress, find jobs on LinkedIn and share fantastic

pictures with our friends on Flickr. Artists also upload their paintings to DeviantArt, watch other

users who have submitted paintings that they are fond of and join different self-organized groups

to explore art pieces collected in groups’ galleries. What’s more, people can even organize offline

activities with their online group members on Meetup or Plancast.

Moreover, as more and more new applications appear in social media, people again are facing

a huge amount of information that may be interesting to them. Thus the web service providers will

have to face a similar circumstance faced by those offering traditional recommendation services in

the past, that is, users want to have personalized results in social media but are not willing to spend

a lot of time to specify their personal information needs. Different from traditional recommenda-

tions, items in social media can refer to almost anything. For instance, items will be groups in

group recommendation that recommends groups of people to users, be traveling routes in trip rec-

ommendation and even be users themselves in friends recommendation. This being the case, when

making recommendation of different kinds of items, simply applying traditional recommendation

methods to the new scenarios may result in suboptimal solutions because different kinds of items

may have different characteristics and different available information under different circumstances.

Furthermore, different from the simple and static items such as movies or musics in conventional

recommender systems, the concept of “items” in social media is extended to include more complex

and dynamic ones such as groups which will change as new users join in or old members leave.

The boundary between explicit and implicit feedback becomes vague in social media as well —

sometimes we can have a mixture of them in one recommendation task. Extra constraints such as

location and capacity should also be taken into consideration in applications such as social event

organization and restaurant recommendation. Take social event organization (SEO) as an example,

organizers in SEO try to recommend an event to each user (or assign sets of users to an event) in

a way that maximizes the affinity between users and events and the affinity among the users in the

same event, while satisfying the cardinality constraint (minimum and maximum capacity) of ev-

ery event. All of the above new features make recommendation in social media a challenging and

interesting topic.

A lot of research work has been done to find better recommendation strategies in social media,

among which exploration of user-user relationship information is one of the most efficient ways to

improve recommendation accuracy in social media, given the success of social recommendation in

recent years. Social recommendation works because of social selection and social influence: people

are willing to make friends with those sharing similar interets, and tend to become more and more

similar with their friends as time goes by. In social networks utilized by social recommendation,

user relationships are explicit, i.e, there will be an edge connecting two users if they are friends.
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Existing literature on social recommendation treats all social ties (friends) equally and models them

in a Boolean manner. It does not make full use of the knowledge or insights from social sciences.

Additionally, as more information about the relationships between users in social media becomes

available with the rapid development of various Internet services, some other social media appli-

cations gradually become popular. Take group feature as an example, more and more online web

services are providing mechanisms by which users can self-organize into groups with other users

having similar opinions or interests, enabling us to analyze the interactions between users with oth-

ers insides/outsides groups, as well as the engagement between users and groups. Existing work on

social group recommendation only utilizes Boolean user-group membership information and does

not take temporal dynamics of user-group engagement relationships into consideration.

A large number of social media applications provide various types of user networks, giving birth

to various kinds of user relationships. Motivated by the claim that user relationships are important

information sources to improve recommendation accuracy, our aim in this thesis is to utilize various

relationships among users to enhance personalized recommendation.

1.4 Our Contribution

This thesis focuses on utilizing user relationships (either explicit or implicit) to improve recom-

mender systems. Recommendation models practically can also be categorized into offline recom-

mendation model and online recommendation model, which can potentially leads to four research

topics through combination with explicit or implicit user relationships:

• Utilizing explicit user relationships to improve recommendation in an offline setting.

• Utilizing implicit user relationships to improve recommendation in an offline setting.

• Utilizing explicit user relationships to improve recommendation in an online setting.

• Utilizing implicit user relationships to improve recommendation in an online setting.

In this thesis, we investigate the first three of the above research topics through three real-world

recommendation applications in social media. Due to the lack of appropriate real-world applications

and available datasets, we leave the fourth topic as future work.

The remainder of this thesis is organized as follows:

First of all, Chapter 2 discusses related work on conventional recommendation methods, social

recommendation approaches, temporal recommendation strategies, group recommendation models

and interactive recommendation based on online learning.

Chapter 3 and Chapter 4 tackle the problem of utilizing explicit user relationships to improve

recommender systems in an offline setting (all datasets contain explicit user relationships) through

incorporating the distinctions of strong and weak ties into different recommendation frameworks.

Concretely, in Chapter 3 we bring the concept of strong and weak ties into Bayesian personalized
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ranking (BPR) through proposing the TBPR model which is capable of simultaneously classify

strong and weak ties in a social network w.r.t. optimal recommendation accuracy and learning latent

feature vectors for users as well as items. We again introduce the notion of strong and weak ties into

probabilistic matrix factorization in Chapter 4. Our proposed PTPMF model learns a personalized

tie type preference for each individual in addition to all the benefits of TBPR model introduced in

Chapter 3.

In Chapter 5, the problem of how to utilize implicit user relationships to improve recommender

systems in an offline setting is examined via personalized group recommendation. The groups in this

problem are self-organized associations of users who have the ability collectively curate art. This

collective curation provides value to artists, who benefit from the endorsement provided by well-

known groups, and to individual art collectors, who can use these curated collections to discover new

art. As such, artists often join groups with the intent of submitting their artwork for acceptance by

the group, and collectors often join groups with the intent of discovering art that they like from the

group’s accepted submissions. A user who is not a member of a group can only see some (not all) of

the group’s collections. Thus implicit user relationships can be obtained via users consuming (such

as commenting, favoring) other users’ submissions and then be consequentially used to construct

user-group engagement. The model proposed in this chapter tries to improve the accuracy of group

recommendation by capturing the temporal dynamic of engagement between users and groups.

We turn our focus to online recommendation in Chapter 6. We investigate the topic of utilizing

explicit user relationships to improve recommender systems in an online setting through solving

the problem of interactive social recommendation. We adopt the exploitation-exploration strategy

to study interactive social recommendation in an online setting and propose a multi-armed ban-

dit based algorithm which is capable of not only simultaneously exploring user preferences and

exploitsing the effectiveness of personalization in an interactive way, but also adaptively learning

different weights for different friends. More details will be presented in the corresponding chapter.

Last but not least, we conclude the whole thesis and point out some future work for further

investigation in Chapter 7.
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Chapter 2

Related Work

In this chapter, we first discuss some related work on traditional recommendation without consid-

ering social information, which is the foundation of recommendation in social media. We then

present some existing literature on three recommendation applications in social media mentioned

in Chapter 1, i.e., social recommendation, social group recommendation and interactive social rec-

ommendation. We discuss conventional recommendation from two aspects: explicit feedback and

implicit feedback. As the proposed methods in Chapter 3 and Chapter 4 tend to incorporate the

concept of strong and weak ties into existing social recommendation models, we discuss related

work on social ties in social media and social recommendation separately. Chapter 5 proposes to

combine temporal dynamics of user group engagement with personalized social group recommen-

dation, therefore it is necessary for the related work to contain both temporal recommendation and

group recommendation. Finally, we borrow the idea from exploitation-exploration strategy in or-

der to handle the interactive social recommendation problem. Thus we will also share some useful

literature on exploitation-exploration dilemma and multi-armed bandit (which is adopted by our

proposed algorithm in Chapter 6) in the end.

2.1 Conventional Recommendation

2.1.1 Recommender Systems and Collaborative Filtering

Substantial work has been done in recommender systems during the past two decades. When it

comes to recommender systems, collaborative filtering (CF) is one of the most popular algorith-

mic solutions so far, which makes recommendations based on users’ past behaviors such as ratings,

clicks, purchases and favorites etc. In general, there are two groups of CF methods: memory-based

and model-based. Representative memory-based methods include k-Nearest Neighbour (kNN)

user-user cosine similarity and item-item cosine similarity [3]. Representative model-based meth-

ods include the widely-adopted low-rank matrix factorization (also known as latent factor mod-

els) [37, 96]. Being among the most effective methods for collaborative filtering, there is a large

body of work on using matrix factorization for collaborative filtering [48, 58, 59, 82, 98, 108]. As an
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excellent monograph, Koren [60] gives a systematic introduction to the application of matrix factor-

ization to recommender systems. Among the literature of matrix factorization, Salakhutdinov and

Mnih [82] propose a probabilistic version of matrix factorization (PMF) which assumes a Gaussian

distribution on the initializations of latent feature vectors, making the model more robust towards

the problem of overfitting and linearly scalable with the number of observations at the same time.

We note that all of the above literature is designed for systems with explicit feedback (numerical

ratings).

2.1.2 Collaborative Filtering with Implicit Feedback

Gathering explicit feedback is often a challenging task. Thus, considerable work has been done to

address the problem of how to simply use implicit feedback to generate high quality recommenda-

tions.

In one of the earliest works, Oard and Kim [83] identified several data sources to gather implicit

feedback, and suggested two types of recommendation strategies. The first strategy is to infer

explicit ratings that users are likely to produce and adopt available methods for explicit feedback.

The second one is directly infer user preferences without converting implicit feedback to ratings.

Das et al. [28] presented an online recommendation algorithm for Google News where only

click history of each user is available (hence implicit). They describe a linear model that combines

three recommendation algorithms: collaborative filtering using MinHash clustering, probabilistic

Latent Semantic Indexing (pLSI), and co-visitation counts.

Hu et al. [48] proposed to transform implicit feedback into two paired quantities: preferences

and confidence levels and use both of them to learn a latent factor model. Unlike matrix factorization

for explicit feedback, their model takes all user-item pairs as an input, including non-observed items.

Scalable learning algorithms are proposed to address the (potentially) huge amount of input.

The method proposed in Pan et al. [87] uses weighted low-rank approximation and sampling

techniques. First, different weights are assigned to the error terms of observed items and non-

observed items in the objective function. Second, they sample non-observed items as negative

feedback, instead of using all of them.

All methods described so far in this subsection are often referred to as point-wise, since they

aim to learn absolute preferences and then produce top-K recommendations by simply sorting items

by their scores in descending order. Rendle et al. [95] proposed a novel pairwise learning method

called Bayesian Personalized Ranking (BPR). Here the focus is shifted to the learning of relative

preferences. BPR trains on pairs of items and the objective is to maximize the posterior likelihood

of optimal personalized ranking, in which the assumption is that for each user, observed items are

preferred over non-observed ones. Empirical results in [95] demonstrate that BPR coupled with

matrix factorization or kNN indeed outperform point-wise methods proposed in [48, 87]. Recently,

Rendle and Freudenthaler [94] introduced a more sophisticated sampling technique to improve the

convergence rate of BPR learning.
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However, these matrix factorization based models still suffer from the data sparsity and cold

start problems, which gives rise to social recommendation.

2.2 Social Recommendation and Social Ties

2.2.1 Social Recommendation

There has been no shortage of existing work on social recommendation whose appearance should

be attributed to the advent of social networks. As the rich information on social network becomes

available, social recommendation which makes use of social information from social networks to

enhance recommender systems has attracted lots of attention from researchers due to the encour-

aging improvement (particularly for cold-start users) obtained against its non-social counterpart.

The fact that cold start problem has always been an important factor to deteriorate the performance

of collaborative filtering motivates the advent of work on social recommendation, which utilizes

social information among users to improve the performances of recommender systems. Indeed, so-

cial influence tends to have strong effects in changing human behaviours [16, 56], such as adopting

new opinions, technologies, and products. This has stimulated the study of social recommendation,

which aims to leverage social network information to help mitigate the “cold-start” problem in col-

laborative filtering [50,51,77–80,110,117,118,120,128], in the hope that the resulting recommen-

dations will have better quality and higher relevance to users who have given little feedback to the

system. In particular, Ma et al. [79] propose a probabilistic matrix factorization model which factor-

izes user-item rating matrix and user-user linkage matrix simultaneously. They later present another

probabilistic matrix factorization model which aggregates a user’s own rating and her friends’ rat-

ings to predict the target user’s final rating on an item. In [51], Jamali and Ester introduce a novel

probabilistic matrix factorization model based on the assumption that users’ latent feature vectors

are dependent on their social ties’. The graphical models for these three popular social recommen-

dation models (i.e., SoRec [79], STE [77], SMF [51]) as well as the vanilla Probabilistic Matrix

Factorization (PMF) [82] are shown in Figure 2.1

2.2.2 Social Ties in Social Media

Different types of social ties have attracted lots of interests from researchers in social sciences [23,

43, 44, 54], followed by some recent work which pays attention to tie strength in demographic

data [93] and social media [8, 14, 40, 41, 52, 89, 90, 111, 114, 131]. In particular, Gilbert et al. [41]

bridge the gap between social theory and social practice through predicting interpersonal tie strength

with social media and conducting user-study based experiments over 2000 social media ties. Wu et al. [111]

propose a regression analysis to discover two different types of closeness (i.e., professional and per-

sonal) for employees in an IBM enterprise social network. Panovich et al. [89] later carry out an

investigation related to different roles of tie strength in question and answer online networks by

taking advantage of Wu’s approach.
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Figure 2.1: Graphical Models of Several Social Recommendation Models

However, none of the above work leverages the theory of social ties into recommender systems.

On the other hand, existing work in social recommendations do not take different types of social

ties into consideration. This is no surprise, since the combination is very specific.

2.3 Recommendation with Temporal Dynamics and Group Recom-
mendation

2.3.1 Temporal Recommendation

There has been some work on temporal recommendation of items to users. Koren [59] combines col-

laborative filtering and temporal dynamics together by proposing a model tracking the temporal evo-

lution of user behavior throughout the life span of the items. Other authors ( [25,57,66,86,113,115])
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have examined time-dependent methods such as tensor factorization, session-based temporal graph

model, dynamic matrix factorization and matrix factorization with online learning etc. This work

captures past temporal patterns, but does not extrapolate future temporal dynamics to estimate fu-

ture changes in users’ preferences. Zhang et al. [125] incorporate a transition matrix into conven-

tional [82] and Bayesian [98] probabilistic matrix factorization methods, modeling the evolution

of user preferences under the assumption that future preferences depend only on the immediately

preceding state.

2.3.2 Group Recommendation (Recommending Groups to Users)

The term group recommendation in this thesis refers to the problem of recommending groups of

people to users. On the other hand, in literature group recommendation also refers to the problem

of recommending items to a group of users and the PolyLens project [84], for example, is a small

study in recommending content items to groups of users. We refer readers to [6,13] for more detailed

information if interested.

The problem of recommending groups to users [21, 22, 104, 107, 124] has been studied through

exploring a variety of probabilistic and combinatorial recommendation methods applied to Boolean

user-group membership matrices, with increasing success as more side information is incorporated

into the model. Specifically, [22] proposes incorporating a probabilistic model which also considers

the group-word matrix derived from the textual description of the group, and [104] employ a matrix

factorization based model to take an additional user-user linkage matrix derived from social net-

work relationships into consideration. Zeng and Chen [124] incorporate both user-item ratings and

user-user social relationships (called “heterogeneous resources” in their paper) into the user-group

membership matrix. However, none of these authors model the temporal dynamics of user-group

engagement.

2.4 Interactive Recommendation

Interactive recommendation, as its name indicates, is a recommendation schema which interacts

with users. In other words, interactive recommendation can refine its model parameters upon re-

ceiving new feedback from user, which can be treated as one kind of online learning algorithm. We

remark that this recommendation mechanism may be more practical for real-world recommendation

scenarios where user feedback is received sequentially rather than simultaneously. At early stages

of running the algorithm when only a small amount of feedback from users is gathered, we have

two options to choose:

1. Make full use of the current available information to make new recommendations to users.

2. Pick some random new items which are not quite relevant to the target users for recommen-

dations.
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If collaborative filtering based algorithms are used in the first option, then with high probability

items similar to those consumed by the target users may be recommended to them. This is quite

a “conservative” strategy of recommendation as people will seldom be angry with an item similar

to those they have consumed. However, no one can guarantee that users will not feel bored after

being recommended with too many similar items, which gives significance to the second option that

recommend some randomly “new” items to users instead. The challenging part about the second

option is that it is possible that the recommended randomly new item may not make users happy

or even annoy them in the worst case, running the risk of users ceasing to use the recommendation

services. Thus the key challenge in interactive recommendation is that how can we stop users from

leaving the recommendation systems due to boredom while learning their preferences as much as

we can in the shortest time. Fortunately, the first option can be regarded as “exploitation” and

the second one can be treated as “exploration”, making the goal of interactive recommendation

become balancing the trade-off between exploitation and exploration, which has been well studied

in literature.

2.4.1 Exploitation-exploration (E-E) Trade-off

There always exists a trade-off between utilizing the information available so far (exploitation) and

acquiring new knowledge (exploration). This kind of problems has been widely studied extensively

in many fields such as Machine Learning, Theoretical Computer Science, Operations Research etc.

This mature, yet very active, research area is known as “multi-armed bandit” in literature [5, 64, 72,

81].

2.4.2 Multi-armed Bandit (MAB) in Recommender Systems

Being first introduced by Robbins [97], multi-armed bandit is able to provide us with a clean, simple

theoretical formulation for analyzing the trade-off between exploration and exploitation, and thus

has been widely utilized by researchers to solve the challenges in balancing the trade-off faced by

exploitation-exploration problems. We refer readers to [11, 15, 62] for a more general treatment.

Depart from the conventional stochastic multi-armed bandit [11,42,63], contextual bandit algo-

rithms [9, 10, 17, 24, 39, 65, 69–71, 101–103, 112, 122, 123, 130, 132] have attracted lots of attention

from researchers because they have achieved much more promising performance than their context-

free counterparts. Contextual bandit settings normally assume that the expectation of the reward

(also known as payoff) for an action of a user on an item is a linear function of the correspond-

ing context, e.g., the dot product of user feature vector and item feature vector [10], which gives

much flexibility for different choices of expected reward function. For instance, Chu et al. [24]

and Li et al. [69] use ridge regression to calculate the expectation and confidence interval of the

reward of an action. In particular, methodology for the unbiased evaluation of context bandit algo-

rithm is introduced in [70]. Besides the linear reward, Filippi et al. [33] propose a parametric bandit

algorithm for non-linear rewards. Later, a general approach to encoding prior knowledge for accel-
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erating contextual bandit learning is introduced in [122] through employing a coarse-to-fine feature

hierarchy which dramatically reduces the amount of exploration required. Bouneffouf et al. [17]

investigate exploitation and exploration dilemma in mobile context-aware recommender systems

and present an approach to the adaptive balance of exploitation/exploration trade-off regarding the

target user’s situation. By utilizing a Gaussian process kernel and taking context into consideration,

Vanchinathan et al. [103] introduce a novel algorithm that can efficiently re-rank lists to reflect user

preferences over the items displayed. Moreover, a contextual combinatorial bandit that plays a “su-

per arm” at each round is proposed by Qin et al. [92] to dynamically identify diverse items which

new users are very likely to be fond of. Tang et al. explore ensemble strategies of contextual bandit

algorithms to obtain robust predicted click-through rate of web objects [101], and later they propose

a parameter-free bandit strategy which uses online bootstrap to derive the distribution of predicting

models [102]. Recently, a combination of linear bandit with cascade model is introduced in [132] to

deal with the large-scale recommendation and the dynamical pattern of reward as well as the context

drift in the course of time is taken into account to formulate a time varying multi-armed bandit by

Zeng et al. [123].

Others have also explored another variant which is designed to model dependency in the bandit

setting [7, 19, 39, 71, 99, 112, 130]. In particular, authors in [19, 99] conduct investigations about

contextual bandit with the probabilistic dependencies of context and actions being taken into con-

sideration. Gentile and Li et al. [39, 71] investigate adaptive clustering algorithms based on the

learnt model parameters for contextual bandit under the assumption that content is recommended to

different groups (clusters) of users such that users within each group (cluster) tend to share similar

interest, followed by Zhou and Brunskill who propose a contextual bandit algorithm that explores

the latent structure of users through learning the distribution of users over different (fixed number)

latent classes to make personalized recommendations for new users [130].
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Chapter 3

Recommendation with Strong and Weak
Ties

With the explosive growth of online social networks, it is now well understood that social infor-

mation is highly helpful to recommender systems. Social recommendation methods are capable of

battling the critical cold-start issue, and thus can greatly improve prediction accuracy. The main

intuition is that through trust and influence, users are more likely to develop affinity toward items

consumed by their social ties. Despite considerable work in social recommendation, little attention

has been paid to the important distinctions between strong and weak ties, two well-documented

notions in social sciences. In this work, we study the effects of distinguishing strong and weak ties

in social recommendation. We use neighborhood overlap to approximate tie strength and extend the

popular Bayesian Personalized Ranking (BPR) model to incorporate the distinction of strong and

weak ties. We present an EM-based algorithm that simultaneously classifies strong and weak ties

in a social network w.r.t. optimal recommendation accuracy and learns latent feature vectors for

all users and all items. We conduct extensive empirical evaluation on four real-world datasets and

demonstrate that our proposed method significantly outperforms state-of-the-art pairwise ranking

methods in a variety of accuracy metrics.

3.1 Motivation

Recommender systems are ubiquitous in our digital life. They play a significant role in numerous

Internet services and applications such as electronic commerce (Amazon and eBay), on-demand

video streaming (Netflix and Hulu), as well as social networking (“People You May Know” feature

of LinkedIn and Facebook). A key task is to model user preferences and to suggest, for each user, a

personalized list of items that the user has not experienced, but are deemed highly relevant to her.

Lots of recommendation techniques have been proposed in the literature [3, 96]. When explicit

feedback (numerical ratings) is available, model-based collaborative filtering is among the most

effective methods, e.g., low-rank matrix factorization [60].
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However, when explicit feedback is not readily unavailable, we may only have access to im-

plicit feedback [48] derived from user actions such as viewing videos, clicking links, listening to

songs, etc. In fact, implicit feedback is more abundant than explicit [48, 95] in practice. Although

collaborative filtering approaches can be adapted [48], pairwise ranking methods have gained more

traction lately [61, 88, 94, 95, 128]. This approach focuses on learning the order of items (in user

preferences). The Bayesian Personalized Ranking (BPR) framework [95] is a fundamental pairwise

ranking method. In a nutshell, the core idea is to learn a personalized ranking for each user based on

the assumption that a user prefers an observed item over all non-observed items. Here, an observed

item refers to any item that has been consumed by the user. When the context is clear, we will

use “observed” or “consumed” items interchangeably. In [95], the authors further show that many

scoring methods can be integrated into BPR to learn the rankings, including matrix factorization.

A critical yet common issue faced by recommender systems is data sparsity, because the number

of items is typically huge (e.g., hundreds of thousands) but users normally only consume a very

small subset of items. An even more challenging problem related to data sparsity is that when new

users join in a system, they have no history records which can be utilized by the recommender

systems to learn their preferences. This leads to the cold-start problem and may result in suboptimal

recommendations. To mitigate this issue, many methods have been proposed to leverage social

network information in recommender systems [50, 51, 75, 78–80, 118, 120, 128], bringing about

the field of social recommendation. Specifically for BPR, Zhao et al. [128] propose the Social

BPR (SBPR) model which further assumes that among all non-observed items, a user prefers those

consumed by their social connections (or ties) to the rest.

Although there exists previous work that aims at predicting tie strength with social media [41]

and analyzing roles of tie strength in Q&A online networks [89], to the best of our knowledge, there

has been no systematic study on social tie strength and types in the context of recommender systems,

and more importantly, the extent to which different social ties affect the quality of recommendations.

In his influential paper [43], Granovetter introduces different types of social ties (strong, weak, and

absent), and concludes that weak ties are actually the most important reason for new information

or innovations to spread over social networks. In [44], through surveys and interviews, Granovetter

reports that many job seekers find out useful information about new jobs through personal contacts.

Perhaps surprisingly, many of those personal contacts are acquaintances (weak ties) as opposed to

close friends (strong ties) [32, 44].

These insights from social sciences motivate us to study whether distinguishing between strong

and weak ties would make a difference for social recommendations in terms of prediction accuracy

(e.g., metrics such as precision, recall, and AUC). However, two major challenges arise. First, how

to learn the label of each tie (strong or weak) in a given social network? The sociology literature

[43, 44] typically assumes the dyadic hypothesis: the strength of a tie is determined solely by the

interpersonal relationship between two individuals, irrespective of the rest of the network. For

instance, Granovetter uses the frequency of interactions to classify strong and weak ties [44]. This is

simple and intuitive, but it requires user activity data that is hardly available to the public in modern
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online social networks for security and privacy reasons1. Second, assuming a reliable classification

algorithm for learning strong and weak ties, how can we effectively incorporate such knowledge

into existing ranking methods to improve recommendation accuracy?

In this chapter, we tackle both challenges head on. We first adopt Jaccard’s coefficient, a feature

intrinsic to the network topology, to compute tie strength [73, 85]. Intuitively, Jaccard captures the

extent to which those users’ friendship circles overlap. Our choice is endorsed by the studies on a

large-scale mobile call graph by Onnela et al. [85] (more details in Section 3.3). We define ties as

strong if their Jaccard’s coefficient is above some threshold, and as weak otherwise. Note that the

optimal threshold w.r.t. recommendation accuracy will be learnt from the data.

Next, we extend the BPR model and propose a unified learning framework that simultaneously

(i) classifies strong and weak ties w.r.t. optimal recommendation accuracy and (ii) learns a ranking

model that effectively leverages the learned tie types. We employ the Expectation-Maximization

algorithm [29] to alternatively learn types of social ties and other model parameters including the

latent feature vector for each user and each item. Our experiments on four real-world datasets

clearly demonstrate the superiority of our method over state-of-the-art methods.

To summarize, we make the following contributions.

• We recognize the effects of strong and weak social ties that are evident in the sociology

literature, and propose to incorporate these notions into social recommendation (Section 3.3).

• We propose a more fine-grained categorization of user-item feedback for Bayesian Personal-

ized Ranking (BPR) by leveraging the knowledge of tie strength and tie types (Section 3.4).

• We present an EM-style algorithm to simultaneously learn the optimal threshold w.r.t. recom-

mendation accuracy for classifying strong and weak ties, as well as other parameters (Sec-

tion 3.5) in our extended BPR model.

• We will carry out extensive experiments on four real-world datasets and show that our solution

significantly outperforms existing methods in various accuracy metrics such as precision and

recall (Section 3.6).

To the best of our knowledge, this is the first work leveraging the important distinctions between

strong and weak ties in the context of social recommendation.

Before proceeding further, we now formalize the problem studied in this chapter. Consider a

recommender system, and let U and I denote the set of users and items, respectively. There is also

a social network connecting the users, represented by an undirected graph G = (U , E), where each

node u ∈ U represents an individual user and each edge (u, v) ∈ E indicates a tie between users u

and v. We know the set of items consumed by each user u, and our task is to produce a personalized

ranking (a total ordering of all items), denoted <u, for all u ∈ U .
1https://en.wikipedia.org/wiki/Privacy_concerns_with_social_networking_

services
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3.2 Comparison with Existing Work

In a nutshell, social recommendation aims to exploit the effects of trust and influence to address the

cold-start problem, which may cause traditional CF methods to fail due to lack of feedback data

from cold-start users. Jamali et al. [50] reported that in the Epinions dataset, about 50% of the

users are deemed cold-start (who rated less than five items). Considerable work has been done in

this domain [50, 51, 75, 78–80, 118, 120, 128]. However, the overwhelming majority of those social

recommendation methods are designed for explicit feedback systems, with few exceptions.

Lu et al. [75] modeled the evolution of user interest by considering social influence and users’

reactions to recommendations (attraction and aversion). They devise near-optimal recommenda-

tions using semi-definite programming techniques to maximize the total utility of all users in the

steady-state of the evolution model (which is a Markov chain). Their model does not assume ex-

plicit feedback. However, they do not explicitly distinguish between strong and weak ties in social

networks.

Bayesian Personalized Ranking (BPR). Rendle et al. [95] propose a novel pairwise learning

method called Bayesian Personalized Ranking (BPR). Here the focus is shifted to the learning of

relative preferences. BPR trains on pairs of items and the objective is to maximize the posterior

likelihood of optimal personalized ranking, in which the assumption is that for each user, observed

items are preferred over non-observed ones. Empirical results in [95] demonstrate that BPR cou-

pled with matrix factorization or kNN indeed outperform point-wise methods proposed in [48, 87].

Recently, Rendle and Freudenthaler [94] introduced a more sophisticated sampling technique to

improve the convergence rate of BPR learning.

Social BPR Model (SBPR). Zhao et al. [128] extended the BPR framework by further assuming

that amongst all non-observed items, a user would prefer items consumed by her social ties over

the rest (which we call “social items” hereafter for simplicity). In their SBPR model, for each user

u, the relative preference between any self-consumed item i and any social item j is discounted by

the number of u’s ties who consumed j. That is, the more ties consumed j, the smaller the gap is

between i and j in the eyes of u. They also discussed an alternative, opposite assumption, i.e., the

social items are perceived even more negatively than “non-social” items. Their experiments showed

that this alternative SBPR model is not as good as the first one.

Major Differences vs. SBPR. We depart from SBPR by making orthogonal social-aware exten-

sions to BPR. In particular, we recognize the importance of distinguishing between strong and weak

ties and extend the BPR model by incorporating such distinctions. The key difference lies in the

ranking of social items. In SBPR, social items are ranked based on the number of friends who con-

sumed the item, while in our model, the ranking is based on tie types. Our empirical results demon-

strate that our new model significantly outperforms SBPR and the vanilla BPR in terms of prediction

accuracy, as measured by six different metrics including precision, recall, etc (Section 3.6).
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Figure 3.1: A sample social network

3.3 Strong and Weak Ties

The theory of strong and weak ties has first been formulated by Granovetter [43]. In terms of

interpersonal relationship, strong ties correspond to close friends that have high frequency of inter-

actions, while weak ties correspond to acquaintances. In terms of network structures, strong ties

tend to be clustered in a dense subgraph (e.g., the triangles (u, v, w) and (x, y, z) in Figure 3.1),

while weak ties tend to be “bridges” connecting two different connected components, e.g., (u, x) in

Figure 3.1.

There is an elegant connection between the above two perspectives (interpersonal relationship

and network structure) [32, 43]. First, we say that a node u satisfies the Strong Triadic Closure

property if it does not violate the following condition: u has two strong ties v and w but there exists

no edge between v and w. Furthermore, if a node u satisfies this property and is involved in at least

two strong ties, then any local bridges2 in which it is involved must be a weak tie.

It is well understood that since weak ties typically do not belong to the same social circle,

they have access to different information sources, and thus the information exchange have more

novelty [32, 43, 44]. Applying this insight to the context of social recommendation, our intuition

is that the items previously consumed by weak-tie friends might be of more interest to the user.

For example, a researcher may not be able to discover many interesting new papers from her close

collaborators, as they tend to focus on the same topic and read the same set of papers. Instead, she

may find papers cited by other less frequent collaborators more appealing.

To incorporate the distinction between strong and weak ties into social recommendation, we

first need to be able to define and compute tie strength, and then classify ties. Several possibilities

exist. First, as mentioned in Section 3.1, sociologists use dyadic measures such as frequency of

interactions [44]. However, this method is not generally applicable due to lack of necessary data.

An alternative approach relies on community detection. Specifically, it first runs a community

detection algorithm to partition the network G = (U , E) into several subgraphs. Then, for each

edge (u, v) ∈ E , if u and v belong to the same subgraph, then it is classified as a strong tie; other-

wise a weak tie. However, a key issue is that although numerous community detection algorithms

exist [34], there is no consensual gold standard so it is unclear which one to use. Furthermore, if

a “bad” partitioning (w.r.t. prediction accuracy) is produced and given to the recommender system
2(u, v) is a local bridge if the deletion of this edge results in u and v to have a shortest path distance of 3 or longer.
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as input, it would be very difficult for the recommender system to recover. In other words, the

quality of recommendation would depend on an exogenous community detection algorithm that the

recommender system has no control over. Hence, this approach is undesirable.

In light of the above, we resort to node-similarity metrics that measure neighbourhood overlap

of two nodes in the network. The study of Onnela et al. [85] provides empirical confirmation of this

intuition: they find that (i) tie strength is in part determined by the local network structure and (ii)
the stronger the tie between two users, the more their friends overlap. In addition, unlike frequency

of interactions, node-similarity metrics are intrinsic to the network, requiring no additional data

to compute. Also, unlike the community detection based approach, we still get to choose a tie

classification method that best serves the interest of the recommender system.

More specifically, we use Jaccard’s coefficient, a simple measure that effectively captures neigh-

bourhood overlap. Let strength(u, v) denote the tie strength for any (u, v) ∈ E . We have:

strength(u, v) =def
|Nu ∩Nv|
|Nu ∪Nv|

(Jaccard), (3.1)

where Nu ⊆ U (resp. Nv ⊆ U) denotes the set of ties of u (resp. v). If Nu = Nv = ∅ (i.e., both

u and v are singleton nodes), then simply define strength(u, v) = 0. By definition, all strengths as

defined in Equation (3.1) fall into the interval [0, 1]. This definition has natural probabilistic inter-

pretations: Given two arbitrary users u and v, their Jaccard’s coefficient is equal to the probability

that a randomly chosen tie of u (resp. v) is also a tie of v (resp. u) [73].

Thresholding. To distinguish between strong and weak ties, we adopt a simple thresholding

method. For a given social network graph G, let θG ∈ [0, 1) denote the threshold of tie strength

such that

(u, v) is

strong, if strength(u, v) > θG ;

weak, if strength(u, v) ≤ θG .
(3.2)

LetWu =def {v ∈ U : (u, v) ∈ E ∧ strength(u, v) ≤ θG} denote the set of all weak ties of u.

Similarly, Su =def {v ∈ U : (u, v) ∈ E ∧ strength(u, v) > θG} denotes the set of all strong ties of

u. Clearly,Wu ∩ Su = ∅ andWu ∪ Su = Nu.

In our framework, the value of θG is not hardwired, but rather is left for our model to learn

(Section 3.5), such that the resulting classification of strong and weak ties in G, together with other

learned parameters of the model, leads to the best accuracy of recommendations.

Finally, we remark that other node-similarity metrics can also be used to define tie strength,

e.g., Adamic-Adar [2] and Katz score [53]. However, we note that the exact choice amongst these

node-similarly metrics is not the primary focus of this chapter and is orthogonal to our proposed

learning framework.
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3.4 The TBPR Model: BPR with Stong and Weak Ties

In this section, we present our TBPR (BPR with Strong and Weak Ties) model which incorporates

the distinction of strong and weak ties into BPR and ranks social items based on types of ties.

3.4.1 Categorizing Items

Having defined strong and weak ties, we are now ready to present a key element in our TBPR model:

For every user we categorize all items into five types using the knowledge of strong and weak ties,

which we then exploit in our TBPR model. Here, we provide a fine-grained categorization of non-

observed items, especially the social items, by leveraging strong and weak tie information derived

from the social network graph G. The proposed categorization is as follows.

1. Consumed Items. For all u ∈ U , let Cself
u ⊆ I denote the set of items consumed by u itself.

2. Joint-Tie-Consumed (JTC) Items. Any item i ∈ I \ Cself
u that has been consumed by at

least one strong tie of u and one weak tie of u belongs to this category. We denote this set by

Cjoint
u = {i ∈ I \ Cself

u : ∃v ∈ Su s.t. i ∈ Cself
v ∧ ∃w ∈ Wu s.t. i ∈ Cself

w }

3. Strong-Tie-Consumed (STC) Items. If an item i ∈ I \ Cself
u is consumed by at least one

strong tie of u, but not by u itself or weak ties, then it belongs to this category. We denote this

set by Cstrong
u = {i ∈ I \ Cself

u : ∃v ∈ Su s.t. i ∈ Cself
v ∧ @w ∈ Wu s.t. i ∈ Cself

w }.

4. Weak-Tie-Consumed (WTC) Items. This category can be similarly defined: Cweak
u = {i ∈

I \ Cself
u : @v ∈ Su s.t. i ∈ Cself

v ∧ ∃w ∈ Wu s.t. i ∈ Cself
w }.

5. Non-Consumed Items. This category contains the rest of the items (not consumed by u or

any of u’s ties): Cnone
u = {(u, i) : @x ∈ Su ∪Wu s.t. i ∈ Cself

x }.

Clearly, for all u ∈ U , Cself
u ∪ Cjoint

u ∪ Cstrong
u ∪ Cweak

u ∪ Cnone
u = I. In addition, those five sets

are pairwise disjoint. Note that the union of JTC, STC, and WTC items is the set of all social items

for user u.

3.4.2 Ordering Item Types

We now describe our TBPR model which distinguishes between the aforementioned five types of

items for every user. Same as the original BPR, we assume no particular item scoring method [95].

However, for ease of exposition and its effectiveness, we use low-rank matrix factorization [60],

which is considered as a state-of-the-art collaborative filtering method in the literature.

Assume that every user and every item in the system are represented by a d-dimensional latent

feature vector: let Pu ∈ Rd and Qi ∈ Rd denote the feature vector for an arbitrary user u and an

arbitrary item i, respectively. Here d is the number of latent features. The inner product between a

user feature vector and an item feature vector measures the estimated affinity this user has toward
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(b) New citations

Figure 3.2: Histograms of tie strength and new citations for the DBLP
dataset
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the item (a.k.a. predicted personalized score), denoted by r̂ui =def 〈Pu,Qi〉. Since we deal with

binary feedback in this work, we have r̂ui ∈ [0, 1] for all u ∈ U and all i ∈ I.

In this chapter, the proposed TBPR model imposes a total ordering of the five item types that

specifies user preference. Indicated by the good performance of BPR and its variants [88, 128], we

also assume that users prefer consumed items over others. Hence, consumed items rank at the top

of the ordering. Next, it is an open question that whether users prefer WTC items to STC items, or

vice versa. Although we mentioned in Section 3.1 that the sociology literature has suggested that

weak ties are responsible for more novel information to spread over the social network, it does not

automatically mean that WTC items are preferred.

To investigate the above question, we conduct a case study using co-authorship and citation data

extracted from the DBLP Computer Science Bibliography (http://dblp.uni-trier.de/

db/). The DBLP dataset together with three other public datasets (Epinions, Douban and Ciao) will

be used to evaluate the performances of different methods later in the experiment section. Recently

some work has been done on recommending papers to read or cite using the DBLP dataset [126],

making it another appropriate experimental dataset for us to test the performances of different rec-

ommendation algorithms. Furthermore, the DBLP website provides researchers with an API so that

they can crawl their own datum from the database for the purpose of scientific research, which en-

ables the possibility for us to obtain the information about the evolution of co-authorship network

and conduct this case study based on the assumption that co-authorship network and citations follow

a similar pattern to social network and other user-item consumption behaviors.

The network graph G = (U , E) is constructed as follows. First, each node v ∈ U corresponds to

an author satisfying both (i) she co-authored at least ten papers and (ii) at least one of her papers

was published in or after 2009. If two authors u and v have co-authored at least one paper before

2009, then there is an undirected edge (u, v) ∈ E . As a result, the graph contains 13.6K nodes and

107K edges.

Figure 3.2(a) shows the distribution of tie strength as computed by Equation (3.1). By defini-

tion, if two authors u and v have a strong tie, then a relatively large overlap exists amongst their

collaborators. As we can see, the distribution is skewed toward weak tie strength.

Next, we analyze the citation data to see whether researchers are more likely to cite papers that

were previously cited by their weak ties as opposed to strong ties, or vice versa. We are interested in

the case of follow-up citations. For example, for any (u, v) ∈ E , if there exists a paper cited by v but

not by u before 2009, and u cited this paper in or after 2009, then we say that u made one follow-up

citation to v. Note that, this definition eliminates all citations occurred in papers co-authored by u

and v, which are not interesting to us. Figure 3.2(b) plots the number of follow-up citations against

tie strength. We can see that this distribution is also heavily skewed toward weak tie strength. This

suggests that from the perspective of absolute number, researchers indeed tend to cite papers that

are previously cited by their weak ties.

Our two plots above are very consistent with those plots (with Y axis showing the probability

of job help instead of the number of citations) presented in [38], a recent work by Gee et al. on how
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strong ties and weak ties relate to job finding on Facebook’s social network. Gee et al. use both

mutual interactions and node similarity (similar to Jaccard’s coefficient) to measure tie strength

and find results to be similar for both kinds of measures, which provides further support for using

Jaccard’s coefficient as our tie strength measure. Readers may refer to [38] for more details. A

conclusion in their work is that weak ties are important collectively because of their quantity, and

strong ties are important individually because of their quality. Reflected in our TBPR model, we

can say that the sets of WTC items are more helpful than the sets of STC items and an individual

STC item may be more helpful than an individual WTC item. Thus giving the WTC items a higher

probability to be exposed (recommended) to users (i.e., ranking WTC items ahead of STC items)

should help to discover potentially more interesting items. On the other hand, we also explore the

opposite case of users ranking STC items ahead of WTC items. As such, we test both ranking

strategies for completeness, in what follows, we present two variants of our TBPR model.

3.4.3 Two Variants of TBPR

We are now ready to define two variants of TBPR, which differ in the preference between WTC and

STC items.

TBPR-W (Preferring Weak Ties). Mathematically, under the hypothesis that WTC items are

preferred to STC items, the complete ordering is thus:

i <u j, if



i ∈ Cself
u ∧ j ∈ Cjoint

u or

i ∈ Cjoint
u ∧ j ∈ Cweak

u or

i ∈ Cweak
u ∧ j ∈ Cstrong

u or

i ∈ Cstrong
u ∧ j ∈ Cnone

u .

(3.3)

Note that Equation (3.3) gives a total ordering of the five types due to transitivity, e.g., it also

holds that i <u j if i ∈ Cself
u and j ∈ Cnone

u .

TBPR-S (Preferring Strong Ties). Alternatively, we may also assume that users prefer STC items

to WTC items, in which case the ordering can be expressed as:

i <u j, if



i ∈ Cself
u ∧ j ∈ Cjoint

u or

i ∈ Cjoint
u ∧ j ∈ Cstrong

u or

i ∈ Cstrong
u ∧ j ∈ Cweak

u or

i ∈ Cweak
u ∧ j ∈ Cnone

u .

(3.4)

When it is clear from the context, we use the generic name TBPR to refer to both variants. The

specific names TBPR-W and TBPR-S will be used when it is necessary to distinguish between them

(e.g., comparisons in experimental results).
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3.5 Parameter Learning

In this section, we present the optimization objective and an EM-style learning algorithm for our

TBPR model. Without loss of generality, our presentation focuses on TBPR-W in which WTC

items are preferred over STC items. The case of TBPR-S is symmetric and hence is omitted.

3.5.1 Optimization Objective

Let Θ denote the set of all parameters that consists of (i) the tie strength threshold θG and (ii) the

latent feature vectors: Pu for each user u ∈ U and Qi for each item i ∈ I. The likelihood function

can thus be expressed as:

L(Θ) =
∏
u∈U

( ∏
i∈Cself

u

∏
j∈Cjoint

u

Pr[i <u j]

∏
j∈Cjoint

u

∏
w∈Cweak

u

Pr[j <u w]

∏
w∈Cweak

u

∏
s∈Cstrong

u

Pr[w <u s]

∏
s∈Cstrong

u

∏
k∈Cnone

u

Pr[s <u k]
)
, (3.5)

where the probabilities are defined using the sigmoid function following common practice [95]:

δ(x) = 1
1+exp(−x) .

For instance, the probability that consumed items are preferred over JTC items can be written

as follows.

Pr[i <u j]

= δ(x̂ui − x̂uj)

= 1
1 + exp(−(x̂ui − x̂uj))

= 1
1 + exp(−〈Pu,Qi〉+ 〈Pu,Qj〉)

. (3.6)

All other probabilities except for the probability that WTC items are preferred over STC items,

namely Pr[w <u s], can be defined similarly. We omit the formulas as they resemble Eq. (3.6)

closely. One thing that needs to be pointed out here is that we only rank items belonging to two

different categories, not those falling in the same category.
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Incorporating the Tie Strength Threshold

Given a threshold θG , the degree of separation between strong ties and weak ties imposed by this

threshold can be quantitatively measured using the following formula:

g(θG) = (t̄s − θG)(θG − t̄w), (3.7)

where t̄s is the average strength of all strong ties classified according to θG and likewise t̄w is the

average strength of all weak ties.

A threshold θG that gives a large degree of separation g(θG) is desirable. To incorporate the

threshold into the objective function so that our TBPR model is able to learn it in a principled

manner, we add a coefficient 1/g(θG) into the probability that WTC items are preferred over STC

items. More specifically, we define:

Pr[w <u s] = δ

(
x̂uw − x̂us

1 + 1/g(θG)

)
= 1

1 + exp
(
− x̂uw−x̂us

1+1/g(θG)

)
= 1

1 + exp
(
−〈Pu,Qw〉+〈Pu,Qs〉

1+1/g(θG)

) , (3.8)

where we use 1 + 1/g(θG) to discount (x̂uw − x̂us), the difference between u’s predicted score

for w and s. The intuition is that, if the current threshold θG does not separate the strong and weak

ties well enough, the likelihood that user prefers w (an WTC item given the current threshold) to s

(an STC items given the current threshold) should be discounted. We use the reciprocal mainly for

smoothness.

Putting It All Together

Our goal is to learn the best set of parameters that maximizes the likelihood function L(·). This

amounts to maximizing the logarithm of L(·). Regularization terms are added to avoid overfitting:

r(Θ) = λp
∑
u∈U
||Pu||22 + λq

∑
i∈I
||Qu||22 + λθθ

2
G .

Putting it all together, our final maximization objective is

J (Θ) = lnL(Θ)− r(Θ)

=
∑
u∈U

( ∑
i∈Cself

u

∑
j∈Cjoint

u

ln δ(x̂ui − x̂uj)
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Algorithm 1: Learning Algorithm for TBPR-W

Input: users U , items I, consumed items Cself
u for each u ∈ U , social network graph

G = (V, E)
Output: Θ = {P ∈ R|U|×d,Q ∈ R|I|×d, θG}

1 P ∼ U(0, 1),Q ∼ U(0, 1)
2 t← 0 // iteration number

3 θ
(t)
G ← median tie strength in G

4 repeat
5 for u← 1 to |U| do
6 Compute Cself

u , Cjoint
u , Cstrong

u , Cweak
u , Cnone

u using the current tie strength threshold

θ
(t)
G // cf. Equation (3.2) and categorization rules in
Section 3.4.1

7 end
8 for r ← 1 to 100|U| do
9 u← a random user from U

10 i← a random consumed item from Cself
u

11 j ← a random JTC item from Cjoint
u

12 w ← a random WTC item from Cweak
u

13 s← a random STC item from Cstrong
u

14 k ← a random non-consumed item from Cnone
u

15 Compute the gradients of Pu, Qi, Qj , Qw, Qs, and Qk // Equation (3.9) -
Equation (3.14)

16 Update the above feature vectors // Equation (3.16)
17 end
18 Compute ∂J

∂θG
// Equation (3.15)

19 θ
(t+1)
G ← compute according to Equation (3.16)

20 t← t+ 1
21 until convergence

+
∑

j∈Cjoint
u

∑
w∈Cweak

u

ln δ(x̂uj − x̂uw)

+
∑

w∈Cweak
u

∑
s∈Cstrong

u

ln δ
(
x̂uw − x̂us

1 + 1/g(θG)

)

+
∑

s∈Cstrong
u

∑
k∈Cnone

u

ln δ(x̂us − x̂uk)
)

− λp
∑
u∈U
||Pu||22 − λq

∑
i∈I
||Qu||22 − λθθ2

G .
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3.5.2 Learning Algorithm

We employ the Expectation-Maximization (EM) algorithm as well as stochastic gradient descent to

learn the parameters Θ that maximize J (·). In the EM algorithm, the tie strength threshold θG is

treated as a hidden parameter to be learnt from the data.

The pseudocode of the learning algorithm is presented in Algorithm 1. In the beginning, we

randomly initialize the latent feature vectors for all users and all items by sampling from the uniform

distribution over the interval [0, 1]. We initialize the tie strength threshold to be the median strength

of all edges in the graph (Lines 1–3).

E-step. In each iteration t, given the current tie strength threshold θ(t)
G , we first compute, for each

user, their five categories of items (Line 6). Then, we take a total number of 100 · |U| samples as

the training dataset to perform stochastic gradient descent. For each sample r, we first draw a user

u uniformly at random from U , and then draw one item from each category for this user: consumed

(Cself
u ), JTC (Cjoint

u ), WTC (Cweak
u ), STC (Cstrong

u ), and non-consumed (Cnone
u ) (Lines 9–14). All

samples are drawn independently.

Notice that the pseudocode assumes all five item categories for all users are non-empty. If any

of the sets Cself
u , Cjoint

u , Cweak
u , and Cstrong

u is empty, we simply skip all relevant terms. The case of

Cnone
u = ∅ is uninteresting as that would mean the user has consumed all items, and thus there is

nothing left to rank for her.

Lastly, we compute the gradient of all corresponding feature vectors and perform updates (Lines 15–

16). Gradients are computed using the following partial derivative formulas.

• The gradient of vector Pu, for any user u:

∂J
∂Pu

= δ(x̂uj − x̂ui)(Qi −Qj) + δ(x̂uw − x̂uj)(Qj −Qw)+

δ(x̂us − x̂uw)
1 + 1/g(θG) (Qw −Qs) + δ(x̂uk − x̂us)(Qs −Qk)− λpPu . (3.9)

• The gradient of vector Qi, where i ∈ Cself
u :

∂J
∂Qi

= δ(xuj − xui)Pu − λqQi . (3.10)

• The gradient of vector Qj , where j ∈ Cjoint
u :

∂J
∂Qj

= (δ(xuw − xuj)− δ(xuj − xui)) Pu − λqQj . (3.11)
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• The gradient of vector Qw, where w ∈ Cweak
u :

∂J
∂Qw

=
(
δ(xus − xuw)
1 + 1/g(θG) − δ(xuw − xuj)

)
Pu − λqQw . (3.12)

• The gradient of vector Qs, where s ∈ Cstrong
u :

∂J
∂Qs

=
(
δ(xuk − xus)−

δ(xus − xuw)
1 + 1/g(θG)

)
Pu − λqQs . (3.13)

• The gradient of vector Qj , where j ∈ Cnone
u :

∂J
∂Qk

= −δ(xuk − xus)Pu − λqQk . (3.14)

M-step. After updating the feature vectors associated with all 100|U| samples, we update the tie

strength threshold θG . The derivative can be computed as follows:

∂J
∂θG

= 1
100|U|

∑
(u,w,s)

[
− λθθG+

δ(xus − xuw)(〈Pu,Qw〉 − 〈Pu,Qs〉)[(t̄w + t̄s)− 2θG ]
[(θG − t̄w)(t̄s − θG) + 1]2

]
, (3.15)

where (u,w, s) denotes the user, WTC item, STC item tuple sampled in one of the 100|U| samples.

In both the E-step and M-step, the update is done using standard gradient descent:

x(t+1) = x(t) + η(t) · ∂J
∂x

(x(t)), (3.16)

where x ∈ Θ denotes any model parameter. Finally, the algorithm terminates when the absolute

difference between the losses in two consecutive iterations is less than 10−5.

3.6 Empirical Evaluation

In this section, we conduct extensive experiments on four real-world datasets and compare the

performance of our TBPR-W and TBPR-S models with different baseline methods based on various

evaluation metrics.

3.6.1 Experimental Settings

Datasets.

We use the following four real-world datasets, whose basic statistics are summarized in Ta-

ble 3.1.
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Table 3.1: Overview of datasets (#non-zeros means the number of user-item pairs that have feed-
back)

DBLP Ciao Douban Epinions
#users 13554 1141 13492 10306
#items 51877 11640 45282 109534

#non-zeros 488368 26507 2669675 375241
#ties (edges) 106730 15059 443753 230684

• DBLP. This dataset contains information of author citation and co-author network between

1960 and 2010, which is extracted by us from the DBLP Computer Science Bibliography.

• Ciao. This dataset contains trust relationships between users and ratings on DVDs. It was

crawled from the entire category of DVDs of a UK DVD community website http://

dvd.ciao.co.uk in December, 2013, and first introduced in [45].

• Douban. This dataset is extracted from the famous Chinese forum social networking site

http://movie.douban.com/. It contains user-user friendships and user-movie ratings,

which is publicly available3.

• Epinions. This dataset4 is extracted from the consumer review website Epinions http://

www.epinions.com/. The data also contains user-user trust relationships and numerical

ratings.

Since ratings in Ciao, Douban and Epinions are all integers ranging from 1 to 5, we “binarize”

them into boolean datasets: we consider items rated higher than 2 as consumed items. For DBLP,

we use all citations occurring before year 2009 as the training set and leave all citations in or after

2009 for testing. For other datasets, we randomly choose 80% of each user’s consumed items for

training and leave the remainder for testing.

Methods Compared.

The following eight recommendation methods, including six baselines, are tested.

• TBPR-W. Our TBPR model with weak ties ranked above strong ties (Equation 3.3).

• TBPR-S. Our TBPR model with strong ties ranked above weak ties (Equation 3.4).

• BPR. The classic method proposed in [95], coupled with matrix factorization for item scoring.

• SBPR. The Social BPR method proposed in [128], using the assumption that social items are

ranked higher than non-social items.
3https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban
4http://www.trustlet.org/wiki/Epinions_dataset
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• SBPR-N. A naive version of SBPR which ranks social items without considering the number

of ties that consumed the items. Comparisons between SBPR-N and TBPR is to show that

TBPR’s improvement over SBPR is irrespective of whether the number of ties is considered

or not.

• Implicit MF (WRMF). Weighted matrix factorization using a point-wise optimization strat-

egy for implicit user-item feedback [48].

• Random. Randomly sample the non-consumed items to form a ranked list for each user.

• Most Popular. This is a non-personalized baseline which ranks all items based on their global

popularity, i.e., the number of users that consumed an item.

All experiments are conducted on a platform with 2.3 GHz Intel Core i7 CPU and 16 GB 1600

MHz DDR3 memory. Grid search and 5-fold cross validation are used to find the best regularizer

and we set λu = λq = 0.01 and λθ = 0.1. The learning rate η of stochastic gradient descent is set

to 0.1 for θG and 0.01 for other parameters.

Evaluation Metrics.

The following metrics are used to measure the prediction accuracy.

• Recall@K (Rec@K). This metric quantifies the fraction of consumed items that are in the

top-K ranking list sorted by their estimated rankings. For each user u we define S(K;u) as

the set of already-consumed items in the test set that appear in the top-K list and S(u) as the

set of all items consumed by this user in the test set. Then, we have

Recall@K(u) = |S(K;u)|
|S(u)| .

• Precision@K (Pre@K). This measures the fraction of the top-K items that are indeed con-

sumed by the user (test set):

Precision@K(u) = |S(K;u)|
K

.

• Area Under the Curve (AUC).

AUC = 1
|U|

∑
u∈U

1
|Eu|

∑
(i,j)∈Eu

δ((xui − xuj) > 0),

where Eu = {(i, j)|i ∈ S(u) ∧ j ∈ I \ Cself
u } and (xui − xuj) > 0 indicates that for user u,

item i is ranked ahead of item j.
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• Mean Average Precision (MAP). Let C(u) be the set of user u’s candidate items for ranking

in the test set. The average precision for u is:

AP(u) = 1
|S(u)|

|C(u)|∑
K=1

Precision@K(u),

and the mean average precision will be:

MAP = 1
|U|

∑
u∈U

AP (u).

• Mean Reciprocal Rank (MRR). LetR(u) be the ranking of items in C(u) in descending order,

then for any item i in S(u), we denote its position inR(u) as rankui . Thus the mean reciprocal

rank is computed as follows:

MRR = 1
|U|

∑
u∈U

|S(u)|∑
i=1

1
rankui

.

• Normalized Discounted Cumulative Gain (NDCG). This is widely used in information re-

trieval and it measures the quality of ranking through discounted importance based on posi-

tions. In recommender systems, NDCG is computed as following:

NDCG = 1
|U|

∑
u∈U

DCGu

IDCGu
,

where DCG and IDCG (Ideal Discounted Cumulative Gain) are in turn defined as:

DCGu =
∑

i∈S(u)

1
log2(rankui + 1) ,

IDCGu =
|S(u)|∑
i=1

1
log2(i+ 1) .

3.6.2 Results and Analysis

Table 3.2 demonstrates the performance of all eight recommendation methods on all four datasets,

measured by six different accuracy metrics. We also conduct a paired difference test (dependent

t-test for paired samples) between TBPR (whichever version is better) and the best baseline over

all six metrics on each dataset. In Table 3.2, † indicates that the result of a paired difference test

is significant at p < 0.05 with degree of freedom as #users − 1 on each dataset and ‡ indicates
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the result is not significant. Generally speaking, TBPR outperforms all six baselines in all but one

cases and moreover, all the results in which TBPR outperforms the best baseline are statistically

significant at p < 0.05.

TBPR Models vs. Baselines.

For the sake of clarity, in the last column of Table 3.2 we provide the relative improvement

achieved by TBPR-W or TBPR-S (whichever is better) over the best baseline, determined on a

row-by-row basis: E.g., for Pre@5 on Epinions, the best baseline is SBPR.

We observe that TBPR, with very few exceptions, outperforms the best baseline on all datasets

and for all metrics. Considering the different metrics, the gap between TBPR and the baselines is

typically larger for Rec@5, Pre@5, MAP, and MRR, while the smallest gaps are observed for AUC.

BPR and SBPR are also quite strong in terms of AUC. This is due to a clear connection between

optimizing AUC and the objective of BPR (and its extensions such as SBPR and our TBPR). We

omit the details and refer the readers to [95].

In terms of datasets, the gap between TBPR and the baselines is generally larger on DBLP

and Douban. For DBLP, there are four metrics (Pre@5, Rec@5, MAP, MRR) w.r.t. which TBPR’s

improvement is above 10%; For Douban, the advantage is more apparent: there are three metrics

(Pre@5, MAP and MRR) w.r.t. which TBPR’s improvement compared to the best baseline is 24.0%,

27.9% and 22.3%, respectively.

Note that although the two variants of TBPR assume reverse ordering between STC (Strong-Tie-

Consumed) items and WTC (Weak-Tie-Consumed) items, they both outperform BPR. This may

appear unintuitive, as one may imagine that if one particular ordering performs well, the reverse

ordering should give inferior performance. To interpret these results, first recall that BPR only

orders consumed items ahead of all non-consumed ones (including social and non-social), whereas

both variants of TBPR order social items ahead of non-social items. The fact that both TBPR

variants beat BPR actually further attests to the core intuition held by the large body of work on

social recommendation: users tend to prefer social items to non-social items.

As to at least one variant of TBPR outperforming SBPR, recall that the key difference between

TBPR and SBPR is the internal ordering amongst all social items of a user. SBPR “ranks” social

items based on the number of ties that consumed the items, while the TBPR ordering is based on

tie type. In fact, for any particular category of social items, e.g., WTC items, we do not impose any

further internal ordering. This being the case, one may argue that the improvement of TBPR over

SBPR might seem to lie in the fact that SBPR takes into account the number of ties and TBPR does

not. Therefore we also implement a naive version of SBPR, which ranks social items without taking

the number of ties that consumed the items into consideration. The comparisons demonstrate that

both variants of TBPR outperform SBPR-N, suggesting that our idea of using tie type to categorize

and rank social items is better.

TBPR-S vs. TBPR-W.

We observe from Table 3.2 that TBPR-W beats TBPR-S on DBLP, Ciao, Epinions, while TBPR-

S performs better on Douban. This indicates that on average users in different datasets may have
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different preferences over strong and weak ties, which further raises a question that do different

users actually have distinct inherent biases toward STC items and WTC items? In fact, this leads to

an interesting direction for future work, which is to personalize the ordering of STC and WTC items

and learn it for each individual user. In other words, how can we learn personalized preference of

strong and weak ties for each individual user?

Recall and Precision.

Figure 3.2 depicts Recall (X-axis) vs. Precision (Y -axis) achieved by six recommendation

methods. We exclude Random since it is much worse than Most Popular. Data points from left

to right on each line were calculated at different values of K, ranging from 5 to 50. Clearly, the

closer the line is to the top right corner (of the plot area), the better the algorithm is: which indicates

that both recall and precision are high. We can see that either TBPR-W or TBPR-S dominates all

baselines, consistent with the findings in Table 3.2. In addition, the trade-off between recall and

precision can be clearly observed from Figure 3.2.

Table 3.3: Percentage improvement of TBPR (the better of TBRP-W and TBPR-S) over the best
baseline on cold-start users

Pre@5 Rec@5 AUC MAP NDCG MRR
DBLP 8.53% 10.8% 4.27% 0.14% 2.26% 0.88%

Ciao 28.0% 16.7% 0.73% 8.19% 7.69% 26.3%
Douban 49.6% 20.0% 0.80% 33.9% 17.6% 52.3%

Epinions 6.39% 16.8% 0.30% 8.61% 2.77% 11.6%

Comparisons on Cold-Start Users.

We further investigate the performance of various recommendation methods on cold-start users.

As is common practice, we define users that consumed less than five items as cold-start. Table 3.3

demonstrates the percentage improvement of TBPR (the better of TBPR-S and TBPR-W) over the

best baseline. By comparing Tables 3.2 and 3.3, we can see that more often than not, the improve-

ment by TBPR is larger for cold-start users. For instance, on Ciao and Douban, the improvement is

larger w.r.t. five out of all six metrics.

We further compare BPR, SBPR, and TBPR on all six metrics in Figures 3.2 and 3.3. SBPR

outperforms BPR in all cases, which again confirms the benefit of taking social network information

into consideration for recommender systems. Note that in most cases, TBPR-S is slightly better

than TBPR-W. This is reasonable as cold-start users may first rely on strong ties who are more

trust-worthy to them.

Finally, from our comprehensive experiments, it is fair to conclude that both TBPR-W and

TBPR-S are effective social recommendation methods based on their convincing performance on

not only all users, but also cold-start users.
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3.7 Summary

In this chapter, we present a new social recommendation method for implicit feedback data. Moti-

vated by the seminal work in sociology by Granovetter [43, 44], we recognize the effects of strong

and weak ties, in particular, the role played by weak ties in spreading novel information over social

networks. Our model is a non-trivial extension to the Bayesian Personalized Ranking (BPR) model

that is aware of the important distinction between strong and weak ties in social networks. We cat-

egorize “social items” (i.e., those not consumed by a user herself, but were consumed by the user’s

social ties) into three groups, depending on whether an item was consumed by the user’s strong

ties, weak ties, or both. We propose to use Jaccard’s coefficient to compute tie strengths in a given

social network, and then devise an EM-style algorithm that is capable of simultaneously learning

the tie strength threshold and the latent feature vectors of all users and items. Our comprehensive

experimental results on four real-world datasets clearly demonstrate the efficacy of our proposed

methods and their superiority over existing pairwise recommendation models such as BPR [95] and

SBPR [128], as well as point-wise ones such as WRMF [48].

This work opens up plenty of opportunities for future research. First, as pointed out in Sec-

tion 3.6.2, we conjecture that an even more personalized TBPR model warrants careful considera-

tions, since it is plausible that while some users prefer items consumed by weak ties over those by

strong ties, other users may behave in the opposite way. We will discuss this possibility in Chap-

ter 4. Also, it is interesting to learn personalized tie strength thresholds. Namely, the model may

assume each user is associated with a different threshold for classifying strong and weak ties. Last

but not the least, one may couple the TBPR model with other item scorers like kNN, instead of

matrix factorization.
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Figure 3.2: Precision@K vs Recall@K on all users, where K ranges from
5 to 50
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Figure 3.2: Performance evaluations on cold-start users (Recall, Precision,
MAP, MRR)
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Chapter 4

Learning Personalized Preference of
Strong and Weak Ties

Recent years have seen a surge of research on social recommendation techniques for improving rec-

ommender systems due to the growing influence of social networks to our daily life. The intuition of

social recommendation is that users tend to show affinities with items favored by their social ties due

to social influence. Despite the extensive studies, little work has been done to distinguish between

strong and weak ties in recommender systems. Although Chapter 3 in this thesis incoporates the

concept of strong and weak ties, two important terms widely used in social sciences, into social rec-

ommendation, it has not attempted to learn the personalized preferences between strong and weak

ties for each individual. In this chapter, we first highlight the importance of different types of ties

in social relations originated from social sciences, and then propose a novel social recommendation

method based on a new Probabilistic Matrix Factorization model that incorporates the distinction

of strong and weak ties for improving recommendation performance. The proposed method is ca-

pable of simultaneously classifying different types of social ties in a social network w.r.t. optimal

recommendation accuracy, and learning a personalized tie type preference for each user in addition

to other parameters. We conduct extensive experiments on four real-world datasets by comparing

our method with state-of-the-art approaches, and find encouraging results that validate the efficacy

of the proposed method in exploiting the personalized preferences of strong and weak ties for social

recommendation.

4.1 Motivation

Recommender systems have saturated into our daily life — we experience recommendations when

we see “More Items to Consider” or “Inspired by Your Shopping Trends” on Amazon and “People

You May Know” on Facebook (i.e., friend recommendation [121]) — other popular online web ser-

vices such as eBay, Netflix and LinkedIn etc. also provide users with the recommendation features.

Thus algorithmic recommendation [74, 106] has become a necessary mechanism for many online
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web services which recommend items such as music, movies or books to users. These online web

services normally make recommendations based on collaborative filtering which suggests items fa-

vored by similar users. Representative collaborative filtering algorithms include low-rank matrix

factorization. However, most recommender systems suffer from the data sparsity problem, where

the number of items consumed by a user (e.g., giving a rating) is often very small compared to

the total number of items (usually hundreds of thousands to millions or even billions in web-scale

applications).

The data sparsity issue can significantly affect the performance of model-based collaborative

filtering methods such as low-rank matrix factorization mainly because of two reasons: the “overfit-

ting” problem where insufficient data is available for training models, and the “cold start” problem

in which recommender systems fail to make recommendations for new users when there is no his-

torical behavior data to be collected. To resolve the data sparsity challenge, one promising direction

is resorting to social recommendation where the data sparsity is tackled by utilizing the rapidly

growing social network information in recommender systems [50,51,77,79,80,110,118,120,128].

On the other hand, despite quite a lot of literature studies attempting to explore tie strength

prediction in demographic data [93] and social media [8, 14, 40, 41, 52, 68, 89, 90, 111, 114], all but

one of the existing social recommendation methods fail to distinguish different types of social ties

for pairs of connected users. In social sciences, Granovetter [43] introduces different types of so-

cial ties (strong, weak, and absent), and concludes that weak ties are actually the most important

reason for new information or innovations to spread over social networks. Based on Granovetter’s

statement, the model proposed by Wang et al. [110] is the only one among those existing social

recommendation approaches that pays attention to the important distinctions between strong and

weak ties (Chapter3in this thesis). Nevertheless, Wang et al. simply assume every individual has

the same preference for strong and weak ties — either everyone prefers strong ties to weak ties or

everyone prefers weak ties to strong ties. In practice, different users may have different preferences

for strong and weak ties, e.g., one may trust strong ties more than weak ties and others may behave

opposite. Thus Wang’s model suffers from the limitation that no personalized preferences of strong

and weak ties can be learned. As such, although Wang’s model addresses the concern that lacking

the distinctions for different social ties may significantly limit the potential of social recommenda-

tion, we argue that ignoring the personalized tie type preference for each individual tends to result

in sub-optimal solutions as well.

Therefore, inspired by the claims in social sciences and the promising results in Wang’s work [110],

we investigate whether distinguishing and learning the personalized tie type preference for each in-

dividual would improve the prediction accuracy of social recommendation. However, there exist

several challenges for the combination of personalized tie type preferences and social recommen-

dation. First, how to effectively identify each type of social tie (“strong” or “weak”) in a given

social network? Sociologists [43,44] typically assume the dyadic hypothesis: the strength of a tie is

determined solely by the interpersonal relationship between two individuals, irrespective of the rest

of the network. For example, Granovetter uses the frequency of interactions to classify strong and
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weak ties [44], that is, if two persons meet each other at least once a week, then their tie is deemed

strong; if the frequency is more than once a year but less than twice a week, then the tie is weak.

This is simple and intuitive, but requires user activity data which is not publicly available in modern

online social networks because of security and privacy concerns1. Second, assuming there is a reli-

able method for differentiating between strong and weak ties, how can we efficaciously combine it

with existing social recommendation approaches such as Social Matrix Factorization (SMF) [51] to

improve the accuracy? Third, different people may have different preferences for strong and weak

ties, and thus how do we learn a personalized tie type preference for each of them?

To handle these challenges, we first adopt Jaccard’s coefficient [49] to compute the social tie

strength [73,85]. Naturally, Jaccard’s coefficient captures the extent to which those users’ friendship

circles overlap, making itself a feature intrinsic to the network topology, and requiring no additional

data to compute. Our choice is supported by the studies on a large-scale mobile call graph by

Onnela et al. [85], which show that (i) tie strength is partially determined by the network structure

relatively local to the tie and (ii) the stronger the tie between two users, the more their friends

overlap. We define ties as strong if their Jaccard’s coefficient is above some threshold, and weak

otherwise. We would like to point out that the optimal threshold (w.r.t. recommendation accuracy)

will be learnt from the data. Furthermore, we exclude absent ties in our model because they do not

play an important role as indicated in Granovetter’s work. We distinguish strong and weak ties by

thresholding Jaccard’s coefficient between two users, while Granovetter thresholds the number of

interactions between two users.

We then propose the Personalized Social Tie Preference Matrix Factorization (PTPMF) method,

a novel probabilistic matrix factorization based model that simultaneously (i) classifies strong and

weak ties w.r.t. optimal recommendation accuracy and (ii) learns a personalized preference between

strong and weak ties for each user in addition to other parameters. More precisely, we employ

gradient descent to learn the best (w.r.t. recommendation accuracy) threshold of tie strength (above

which a tie is strong; otherwise weak) and the personalized tie type preference for each user as well

as other parameters such as the latent feature vectors for users and items.

This work makes the following three contributions:

• We recognize the importance of strong and weak ties in social relations as motivated by the

sociology literature, and incorporate the notion of strong and weak ties into probabilistic

matrix factorization for social recommendation.

• We present a novel algorithm to simultaneously learn user-specific preferences for strong and

weak ties, the optimal (w.r.t. recommendation accuracy) threshold for classifying strong and

weak ties, as well as other model parameters.
1https://en.wikipedia.org/wiki/Privacy_concerns_with_social_networking_

services
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• We conduct extensive experiments on four real-world public datasets and show that our pro-

posed method significantly outperforms the existing methods in various evaluation metrics

such as RMSE, MAE etc.

The remainder of this chapter is organized as follows: Section 4.2 discusses the effects of strong

and weak social ties that are evident in the sociology literature, and proposes to incorporate these

notions into social recommendation. Section 4.3 gives a detailed formation of our proposed Per-

sonalized Social Tie Preference Matrix Factorization (PTPMF) model, followed by a description of

model inferences for PTPMF in Section 4.4. Section 4.5 presents our experiments, compares our

approach with baseline recommendation methods and comments on their performances for both all

users and cold-start users in terms of various evaluation metrics. Finally, we summary our work in

Section 4.6.

4.2 Social Ties from Offline to Online

Speaking of interpersonal ties, Granovetter may probably be the first one who comes into our mind.

Granovetter, in his book Getting a job: A study of contacts and careers [44], conducts a survey

among 282 professional, technical, and managerial workers in Newton, Massachusetts and reports

that personal contact is the predominant method of finding out about jobs. The result of his survey

shows that nearly 56% of his respondents used personal contacts to find a job while 18.8% used

formal means and 18.8% used direct applications instead. Besides, Granovetter’s research also

demonstrates that most respondents prefer the use of personal contacts to other means and that

using personal contacts can lead to a higher level of job satisfaction and income. Thus it will be

interesting to explore the important role social influence plays in people’s decision making process

which does not necessarily need to be limited to an employee’s decision about changing a job.

Social influence takes effect through a social network which consists of people and interpersonal

ties connecting these people in the network. Granovetter, in his other work [43], introduces different

types of interpersonal ties (e.g., strong tie, weak tie and absent tie) and concludes that weak ties are

the most important source for new information or innovations to reach distant parts of the network.

Again, different ties between the job changer and the contact person who provided the necessary

information are analyzed and the strength and importance of weak ties in occupational mobility are

shown in [44]. In the late 1960’s and early 1970’s when the Internet had not come into existence,

tie strength was measured in terms of how often they saw the contact person during the period of

the job transition, using the following measurement:

• Often: at least once a week

• Occasionally: more than once a year but less than twice a week

• Rarely: once a year or less
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In the age of information, social media and online social networks are playing crucial roles in the

establishment of social networks. We are able to know new friends and form new relationships/ties

through the Internet without necessarily meeting them face to face. Just as Kavanaugh et al. [54]

state, the appearance of the Internet has helped to strengthen weak ties and increase their numbers

across social groups. Though the importance of weak ties has been exposed to us by sociologists,

it is not wise to ignore the roles strong ties play in our lives because strong ties should intuitively

be more trustworthy than weak ties. On the other side, different individuals may have different

relative degree of trust for their strong and weak ties — one may trust his/her strong ties (or weak

ties) more than one another. Thus an interesting and challenging question is that how to learn these

user-specific (and perhaps different) preferences for different types of ties. This being the case,

considering both strong and weak ties in social recommendation, then optimally distinguishing them

w.r.t recommendation accuracy and finally learning a user-specific personalized tie type preference

become three key parts of an appropriate solution to improve social recommendation.

In this section we will present how the notion of strong/weak ties and the thresholding strategy

are incorporated into social recommendation. We leave the remaining two parts to section 4.3

for more concrete descriptions. In order that the distinction between strong and weak ties can be

incorporated into social recommendation, we will need to be able to define and compute tie strength,

and then classify ties. Several potential options seem to serve as adequate candidates. First, as

mentioned in Section 4.1, sociologists use dyadic measures such as frequency of interactions [44].

However, this method is not generally applicable due to lack of necessary data. An alternative

approach relies on community detection. Specifically, it first runs a community detection algorithm

to partition the network G = (U,E) into several subgraphs. Then, for each edge (u, v) ∈ E , if u and

v belong to the same subgraph, then it is classified as a strong tie; otherwise a weak tie. However, a

key issue is that although numerous community detection algorithms exist [34], they tend to produce

(very) different clusterings, and it is unclear how to decide which one to use. Furthermore, if a

“bad” partitioning (w.r.t. prediction accuracy) is produced and given to the recommender system

as input, it would be very difficult for the recommender system to recover. In other words, the

quality of recommendation would depend on an exogenous community detection algorithm that the

recommender system has no control over. Hence, this approach is undesirable.

In light of the above, we resort to node-similarly metrics that measure neighborhood overlap of

two nodes in the network. The study of Onnela et al. [85] provides empirical confirmation of this

intuition: they find that (i) tie strength is in part determined by the local network structure and (ii)
the stronger the tie between two users, the more their friends overlap. In addition, unlike frequency

of interactions, node-similarity metrics are intrinsic to the network, requiring no additional data

to compute. Also, unlike the community detection based approach, we still get to choose a tie

classification method that best serves the interest of the recommender system.
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More specifically, we use Jaccard’s coefficient [49], a simple measure that effectively captures

neighborhood overlap. Let strength(u, v) denote the tie strength for any (u, v) ∈ E . We have:

strength(u, v) =def
|Nu ∩Nv|
|Nu ∪Nv|

(Jaccard), (4.1)

where Nu ⊆ U (resp. Nv ⊆ U) denotes the set of ties of u (resp. v). If Nu = Nv = ∅ (i.e., both

u and v are singleton nodes), then simply define strength(u, v) = 0. By definition, all strengths as

defined in Equation (4.1) fall into the interval [0, 1]. This definition has natural probabilistic inter-

pretations: Given two arbitrary users u and v, their Jaccard’s coefficient is equal to the probability

that a randomly chosen tie of u (resp. v) is also a tie of v (resp. u) [73].

Thresholding. To distinguish between strong and weak ties, we adopt a simple thresholding

method. For a given social network graph G, let θG ∈ [0, 1) denote the threshold of tie strength

such that

(u, v) is

strong, if strength(u, v) > θG ;

weak, if strength(u, v) ≤ θG .
(4.2)

LetWu =def {v ∈ U : (u, v) ∈ E ∧ strength(u, v) ≤ θG} denote the set of all weak ties of u.

Similarly, Su =def {v ∈ U : (u, v) ∈ E ∧ strength(u, v) > θG} denotes the set of all strong ties of

u. Clearly,Wu ∩ Su = ∅ andWu ∪ Su = Nu.

The value of θG in our proposed approach is not hardwired, but rather is left for our model

to learn (Section 4.3), such that the resulting classification of strong and weak ties in G, together

with other learned parameters of the model, leads to the best accuracy of recommendations. We

conclude this section by pointing out that Granovetter and we both threshold strong and weak ties,

we utilize Jaccard’s coefficient (degree of connectivity between users) to do the thresholding while

Granovetter resorts to the number of interactions between users instead.

4.3 Personalized Tie Preference Matrix Factorization for Social Rec-
ommendation

In this section, we present the proposed new model of Personalized Tie Preference Matrix Factoriza-

tion (PTPMF) for social recommendation in detail. Before introducing PTPMF, we will first briefly

explain some background knowledge of the classical Probabilistic Matrix Factorization (PMF) and

of another popular social recommendation model known as Social Matrix Factorization (SMF).

4.3.1 Probabilistic Matrix Factorization

In recommender systems, we are given a set of users U and a set of items I, as well as a |U|×|I| rating

matrixR whose non-empty (observed) entriesRui represent the feedbacks (e.g., ratings, clicks etc.)
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of user u ∈ U for item i ∈ I. When it comes to social recommendation, another |U| × |U| social

tie matrix T whose non-empty entries Tuv denote u ∈ U and v ∈ U are ties, may also be necessary.

The task is to predict the missing values in R, i.e., given a user v ∈ U and an item j ∈ I for which

Rvj is unknown, we predict the rating of v for j using observed values in R and T (if available).

A matrix factorization model assumes the rating matrix R can be approximated by a multiplica-

tion of d-rank factors,

R ≈ UTV, (4.3)

where U ∈ Rd×|U| and V ∈ Rd×|I|. Normally d is far less than both |U| and |I|. Thus given a user u

and an item i, the rating Rui of u for i can be approximated by the dot product of user latent feature

vector Uu and item latent feature Vi,

Rui ≈ UTu Vi, (4.4)

where Uu ∈ Rd×1 is the uth column of U and Vi ∈ Rd×1 is the ith column of V . For ease of

notation, we let |U| = N and |I| = M in the remaining of this chapter.

Later, the probabilistic version of matrix factorization, i.e., Probabilistic Matrix Factorization

(PMF), is introduced in [82], based on the assumption that the rating Rui follows a normal distri-

bution whose mean is some function of UTu Vi. The conditional probability of the observed ratings

is:

p(R|U, V, σ2
R) =

N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IR
ui
, (4.5)

where N (x|µ, σ2) is the normal distribution with mean µ and variance σ2. If u has rated i, then

the indicator function IRui equals to 1, otherwise equals to 0. g(·) is the sigmoid function, i.e.,

g(x) = 1
1+e−x , which bounds the range of UTu Vi within [0, 1]. Moreover, Uu and Vi are both subject

to a zero mean normal distribution. Thus the conditional probabilities of user and item latent feature

vectors are:

p(U |σ2
U ) =

N∏
u=1
N
(
Uu|0, σ2

UI
)

p(V |σ2
V ) =

M∏
i=1
N
(
Vi|0, σ2

V I
)
, (4.6)

where I is the identity matrix. Therefore, the posterior probability of the latent variables U and V

can be calculated through a Bayesian inference,

p(U, V |R, σ2
R, σ

2
U , σ

2
V )

∝ p(R|U, V, σ2
R)p(U |σ2

U )p(V |σ2
V )
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Figure 4.1: Graphical models of PMF and SMF

=
N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IR
ui

×
N∏
u=1
N (Uu|0, σ2

UI)×
M∏
i=1
N (Vi|0, σ2

V I). (4.7)

The graphical model of PMF is demonstrated in Figure 4.1a and readers may refer to [82] for more

details.

4.3.2 Social Matrix Factorization

There has been some work on social recommendation, among which Jamali and Ester [51] present

a well-known social recommendation model called Social Matrix Factorization (SMF) that incor-

porates trust propagation into probabilistic matrix factorization, assuming that the rating behavior

of a user u will be affected by his social ties Nu through social influence. In SMF, the latent feature

vector of user u depends on the latent feature vectors of u’s social ties n, i.e., n ∈ Nu. As is shown

by the graphical model of SMF in Figure 4.1b,

Uu =
∑
n∈Nu

TunUn

|Nu|
,

where Uu is u’s latent feature vector and Nu is the set of social ties of user u. Tun is either 1 or 0,

indicating u and n are “ties” or “not ties”.
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The posterior probability of user and item latent feature vectors in SMF, given the observed

ratings and social ties as well as the hyperparameters, is shown in (4.8).

p(U, V |R, T, σ2
R, σ

2
T , σ

2
U , σ

2
V )

∝ p(R|U, V, σ2
R)p(U |T, σ2

T , σ
2
U )p(V |σ2

V )

=
N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IR
ui

×
N∏
u=1
N
(
Uu|

∑
k∈Nu

TukUk, σ
2
T I
)

×
N∏
u=1
N (Uu|0, σ2

UI)×
M∏
i=1
N (Vi|0, σ2

V I). (4.8)

The main idea in (4.8) and Figure 4.1b is that the latent feature vectors of users should be similar

to the latent feature vectors of their social ties. We refer readers to [51] for more details.

4.3.3 The PTPMF Model

We divide social ties into two groups: strong ties and weak ties. People usually tend to share more

common intrinsic properties with their strong ties while they are more likely to be exposed to new

information through their weak ties. Both strong ties and weak ties are important in terms of so-

cial influence while they play different roles in affecting people. For an individual user, strong ties

tend to be more similar to her, on the other hand, weak ties may provide her with more valuable

information which can not be obtained from strong ties. Based on this assumption, we propose

our approach, PTPMF, to utilize the different roles of strong and weak ties when making recom-

mendations. Besides, by introducing two additional parameters, θG and Bu, PTPMF is capable of

learning the optimal (w.r.t. recommendation accuracy) threshold for classifying strong and weak

ties, user-specific preferences between strong and weak ties as well as other parameters at the same

time.

Figure 4.2 presents the graphical model of PTPMF. Same as in Chapter3, we introduce a random

variable θG for the threshold classifying strong and weak ties. Su and Wu are the sets of strong and

weak ties of user u respectively, classified according to (4.2). Due to different roles of strong and

weak ties in affecting users’ rating behaviors, we introduce two new random variables, U su and Uwu ,

as strong-tie and weak-tie latent feature vectors for each user u. The strong-tie (resp. weak-tie) latent

feature vector of u is dependent on the latent feature vectors of all u’s strong ties (resp. weak-ties).

This influence is modeled as follows:

U su =
∑
v∈Su

TuvUv∑
v∈Su

Tuv
and Uwu =

∑
v∈Wu

TuvUv∑
v∈Wu

Tuv
,
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Figure 4.2: Graphical model of the proposed PTPMF

where Tuv = strength(u, v) is the tie strength between u and v defined in (4.1), different from SMF

in which T is a Boolean variable. We normalize the tie strength of u and her social ties so that∑
v∈Su

Tuv = 1 and
∑
v∈Wu

Tuv = 1. Now the conditional probability of weak-tie and strong-tie

latent feature vectors, Uwu and U su, becomes:

p(Uw, U s|T,U, σ2
T )

=
N∏
u=1
N
(
Uwu |

∑
k∈Wu

TukUk, σ
2
T I
)

×
N∏
u=1
N
(
U su|

∑
k∈Su

TukUk, σ
2
T I
)
. (4.9)

The dot product of Uwu (resp. U su) and item latent feature vector Vi then determines u’s weak-

tie generated rating on item i (resp. u’s strong-tie generated rating on item i), denoted by Rwui
(resp. Rsui). Different from SMF, PTPMF further enables the learning of a personalized preference

between strong and weak ties for each user through introducing another new variable, Bu, as the

probability that u prefers weak ties to strong ties. Hence, 1 − Bu is the probability that u prefers

strong ties instead. To generate u’s final rating for item i, PTPMF puts more emphasis on her

weak-tie generated rating Rwui with probability Bu, and on her strong-tie generated rating Rsui with

probability 1 − Bu (more details to be discussed below). Thus the conditional probability of the

observed ratings can be expressed as:

p(R|Uw, U s, V, B, θG , T, σ2
R)
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=
N∏
u=1

M∏
i=1

[
N
(
Rui|g

(
Bu
[
f(θG)Uwu TVi +

(
1− f(θG)

)
U su

TVi
]

+
(
1−Bu

)[(
1− f(θG)

)
Uwu

TVi + f(θG)U suTVi
])
, σ2

R

)]IR
ui

, (4.10)

where g(·) is the sigmoid function, i.e., g(x) = 1
1+e−x , and f(θG) = g

(
(ts − θG)(θG − tw)

)
≥

0.5, given ts, tw as the average tie strength of strong ties and weak ties respectively. The underlying

intuition is that when a threshold θG gives a small degree of separation, ts and tw will be close

to θG , f(θG) will then be close to 0.5, indicating very few distinctions between strong and weak

ties. Similarly, a larger degree of separation results in more distinctions between strong and weak

ties in our model. When u prefers weak ties, more weight (i.e., f(θG) ≥ 0.5) will be given to

her weak-tie generated rating (i.e., Uwu
TVi), less weight (i.e., 1 − f(θG) ≤ 0.5) will be given to

her strong-tie generated rating (i.e., U su
TVi) and vice versa. Moreover, how much weight to give is

dependent upon how well the current threshold, θG , classifies strong and weak ties – a larger degree

of separation given by θG will result in more weight being given to the preferred tie type.

We assume θG and B follow a Beta distribution so that both of them lie in [0, 1]. Also, U

and V follow the same zero mean normal distribution in (4.6). Through a Bayesian inference, the

posterior probability of all model parameters, given the observed ratings and social ties as well as

the hyperparameters, is shown in (4.11).

p(Uw, U s, U, V,B, θG |R, T, σ2
R, σ

2
T , σ

2
U , σ

2
V )

∝ p(R|Uw, U s, V, B, θG , T, σ2
R)p(Uw, U s|T,U, σ2

T )

p(U |σ2
U )p(V |σ2

V )p(θG |αθG , βθG )p(B|αB, βB)

=
N∏
u=1

M∏
i=1[

N
(
Rui|g

(
Bu
[
f(θG)Uwu TVi +

(
1− f(θG)

)
U su

TVi
]

+
(
1−Bu

)[(
1− f(θG)

)
Uwu

TVi + f(θG)U suTVi
])
, σ2

R

)]IR
ui

×
N∏
u=1
N
(
Uwu |

∑
k∈Wu

TukUk, σ
2
T I
)

×
N∏
u=1
N
(
U su|

∑
k∈Su

TukUk, σ
2
T I
)

×
N∏
u=1
N (Uu|0, σ2

UI)×
M∏
i=1
N (Vi|0, σ2

V I)

×Beta(θG |αθG , βθG )×
N∏
u=1

Beta(Bu|αB, βB). (4.11)
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Compared to SMF, our PTPMF model shown in (4.11) and Figure 4.2 treats strong and weak ties

separately, learns the optimal (w.r.t. recommendation accuracy) threshold for distinguishing strong

and weak ties. In addition, our PTPMF is able to learn a personalized tie preference (denoted asBu)

for each user u. Our goal is to learn U,Uw, U s, V, B, θG which maximize the posterior probability

shown in (4.11).

4.4 Parameter Learning

We learn the parameters of PTPMF using maximum a posteriori (MAP) inference. Taking the ln on

both sides of (4.11), we are maximizing the following objective function:

ln p(Uw, U s, U, V,B, θG |R, T, σ2
R, σ

2
T , σ

2
U , σ

2
V )

= − 1
2σ2

R

N∑
u=1

M∑
i=1

IRui

(
Rui − g(µRui)

)2

− 1
2σ2

U

N∑
u=1

UTu Uu −
1
σ2
V

M∑
i=1

V T
i Vi

− 1
σ2
T

N∑
u=1

(
(Uwu −

∑
k∈Wu

TukUk)T (Uwu −
∑
k∈Wu

TukUk)
)

− 1
σ2
T

N∑
u=1

(
(U su −

∑
k∈Su

TukUk)T (U su −
∑
k∈Su

TukUk)
)

+
N∑
u=1

(
(αB − 1) lnBu + (βB − 1) ln(1−Bu)

)
+ (αθG − 1) ln θG + (βθG − 1) ln(1− θG)

− 1
2
(
(N ·K) ln σ2

U + (M ·K) ln σ2
V + (2N ·K) ln σ2

T

)
− 1

2(
N∑
u=1

M∑
i=1

IRui) ln σ2
R −N lnB(αB, βB)− lnB(αθG , βθG )

+ Constant, (4.12)

where

µRui = Bu
(
f(θG)Uwu T +

(
1− f(θG)

)
U su

T
)
Vi

+ (1−Bu)
((

1− f(θG)
)
Uwu

T + f(θG)U suT
)
Vi, (4.13)

and B(·, ·) is the beta function:

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt. (4.14)

56



Fixing the Gaussian noise variance and beta shape parameters, maximizing the log-posterior in (4.12)

over Uw, U s, U, V,B, θG is equivalent to minimizing the following objective function:

L(R, T, Uw, U s, U, V,B, θG)

= 1
2

N∑
u=1

M∑
i=1

IRui

(
Rui − g(µRui)

)2

+ λU
2

N∑
u=1

UTu Uu + λV
2

M∑
i=1

V T
i Vi

+ λT
2

N∑
u=1

(
(Uwu −

∑
k∈Wu

TukUk)T (Uwu −
∑
k∈Wu

TukUk)
)

+ λT
2

N∑
u=1

(
(U su −

∑
k∈Su

TukUk)T (U su −
∑
k∈Su

TukUk)
)

− λB
N∑
u=1

(
(αB − 1) lnBu + (βB − 1) ln(1−Bu)

)
− λθG

(
(αθG − 1) ln θG + (βθG − 1) ln(1− θG)

)
, (4.15)

where λU = σ2
R

σ2
U

, λV = σ2
R

σ2
V

, λT = σ2
R

σ2
T

and λB = λθG = σ2
R.

A local minimum of (4.15) can be found by taking the derivative and performing gradient de-

scent on Uw, U s, U, V,B, θG separately. The corresponding partial derivative with respect to each

model parameter is shown as follows:

∂L
∂U su

=
M∑
i=1

IRui

(
g(µRui)−Rui

)
g
′(µRui)(

Bu + f(θG)− 2Buf(θG)
)
Vi

+ λT
(
U su −

∑
k∈Su

TukUk
)
, (4.16)

∂L
∂Uwu

=
M∑
i=1

IRui

(
g(µRui)−Rui

)
g
′(µRui)(

1− f(θG)−Bu + 2Buf(θG)
)
Vi

+ λT
(
Uwu −

∑
k∈Wu

TukUk
)
, (4.17)

∂L
∂Uu

= λUUu − λT
∑

v|u∈Wv

Tvu(Uwv −
∑
k∈Wv

TvkUk)

− λT
∑

v|u∈Sv

Tvu(U sv −
∑
k∈Sv

TvkUk), (4.18)
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∂L
∂Vi

=
N∑
u=1

IRui

(
g(µRui)−Rui

)
g
′(µRui)((

Bu + f(θG)− 2Buf(θG)
)
U su

+
(
1− f(θG)−Bu + 2Buf(θG)

)
Uwu

)
+ λV Vi, (4.19)

∂L
∂Bu

=
M∑
i=1

IRui

(
g(µRui)−Rui

)
g
′(µRui)((

2f(θG)− 1
)
Uwu

T +
(
1− 2f(θG)

)
U su

T
)
Vi

− λB
(αB − 1

Bu
− βB − 1

1−Bu

)
, (4.20)

∂L
∂θG

= (ts + tw − 2)g′
(
(ts − θG)(θG − tw)

)
N∑
u=1

M∑
i=1

IRui

(
g(µRui)−Rui

)
g
′(µRui)(

(2Bu − 1)Uwu T + (1− 2Bu)U suT
)
Vi

− λθG
(αθG − 1

θG
−
βθG − 1
1− θG

)
. (4.21)

The update is done using standard gradient descent:

x(t+1) = x(t) + η(t) · ∂L
∂x

(x(t)), (4.22)

where η is the learning rate and x ∈ {Uw, U s, U, V,B, θG} denotes any model parameter. Fi-

nally, the algorithm terminates when the absolute difference between the losses in two consecutive

iterations is less than 10−5.

We note that in order to avoid overfitting, our proposed model has the standard regularization

terms (L2 norm) for user latent feature vectors (
∑
UTu Uu) and item latent feature vectors (

∑
V T
i Vi)

in the third line of (4.15). Since the weak tie and strong tie latent feature vectors depend on the user

latent feature vectors, these additional parameters in our model are also indirectly regularized.

4.5 Empirical Evaluation

In this section, we report the results of our experiments on four real-world public datasets and com-

pare the performance of our PTPMF model with different baseline methods in terms of various eval-

uation metrics. Our experiments aim to examine if incorporating the new concepts of distinguishing

strong and weak ties as well as learning a personalized tie type preference for each user is able

to improve the recommendation accuracy as measured by MAE / RMSE (how close the predicted
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ratings are to the real ones) and Precision@K / Recall@K (accuracy for top-K recommendations),

and how significant are the improvements achieved if any.

4.5.1 Experimental Settings

Datasets.

We use the following four real-world datasets.

• Flixster. The Flixster dataset 2 containing information of user-movie ratings and user-user

friendships from Flixster, an American social movie site for discovering new movies (http:

//www.flixster.com/).

• CiaoDVD. This public dataset contains trust relationships among users as well as their ratings

on DVDs and was crawled from the entire category of DVDs of a UK DVD community

website (http://dvd.ciao.co.uk) in December, 2013 [45].

• Douban. This public dataset3 is extracted from the Chinese Douban movie forum (http:

//movie.douban.com/), which contains user-user friendships and user-movie ratings.

• Epinions. This is the Epinions dataset4 which consists of user-user trust relationships and

user-item ratings from Epinions (http://www.epinions.com/).

The statistics of these data sets are summarized in Table 4.1.

Table 4.1: Overview of datasets (#non-zeros means the number of user-item pairs that have feed-
back)

Flixster CiaoDVD Douban Epinions
#users 76013 1881 64642 31117
#items 48516 12900 56005 139057

#non-zeros 7350235 33510 9133529 654103
#ties (edges) 1209962 15155 1390960 410570

For all the datasets, we randomly choose 80% of each user’s ratings for training, leaving the

remainder for testing. We split the portion of the 80% of the dataset (i.e., the training set) into

five equal sub-datasets for 5-fold cross validation. During the training and validation phase, each

time we use one of the five sub-datasets for validation and the remaining for training. We repeat

this procedure five times so that all five sub-datasets can be used for validation. And we pick the

parameter values having the best average performance. Then we evaluate different models on the

20% of the dataset left for testing (i.e., the test set).

Methods Compared.
2http://www.cs.ubc.ca/~jamalim/datasets/
3https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban
4http://www.trustlet.org/wiki/Epinions_dataset
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In order to show the performance improvement of our PTPMF method, we will compare our

method with some state-of-art approaches which consist of non-personalized non-social methods,

personalized non-social methods and personalized social methods. Thus, the following nine recom-

mendation methods, including eight baselines, are tested.

• PTPMF. Our proposed PTPMF model, which is a personalized social recommendation ap-

proach by exploiting social ties.

• TrustMF. A personalized social method originally proposed by Yang et al. [117], which is

capable of handling trust propagation among users.

• SMF. This is a personalized social approach [51] which assumes that users’ latent feature

vectors are dependent on those of their ties.

• SoReg.The individual-based regularization model with Pearson Correlation Coefficient (PCC)

which outperforms its other variants, as indicated in [80]. This is a personalized social

method.

• STE. Another personalized social method proposed by Ma et al. [77] which aggregates a

user’s own rating and her friends’ ratings to predict the target user’s final rating on an item.

• SoRec. The probabilistic matrix factorization model proposed by Ma et al. [79] which fac-

torizes user-item rating matrix and user-user linkage matrix simultaneously. This is also a

personalized social method.

• PMF. The classic personalized non-social probabilistic matrix factorization model first intro-

duced in [82].

• UserMean. A non-personalized non-social baseline, which makes use of the average ratings

of users to predict missing values.

• ItemMean. Another non-personalized non-social baseline, utilizing the average ratings of

each items to make predictions.

All experiments are conducted on a platform with 2.3 GHz Intel Core i7 CPU and 16 GB 1600
MHz DDR3 memory. We use grid search and 5-fold cross validation to find the best parameters. For
example, we set λ U = λ V = 0.001 after exploring each value in (0.001, 0.0025, 0.005, 0.0075, 0.01, 
0.025, 0.05, 0.075, 0.1) with cross validation and set λ B = λ θ  = 0.00001 in a similar way. The 
latent factor dimension is set to 10 for all models (if applicable). The learning rate of gradient des-
cent (i.e., η  ) is set to 0.05 for θ G and 0.001 for other parameters. For baselines, we adopt either 
the optimal parameters reported in the original paper or the best we can obtain in our experiments.

Evaluation Metrics.

We use four metrics, i.e., Mean Absolute Error (MAE), Root Mean Square Error (RMSE),

Recall and Precision, to measure the recommendation accuracy of our PTPMF model in comparison

with other recommendation approaches.
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• Mean Absolute Error.

MAE =
∑
i,j |Rij − R̂ij |

N
.

• Root Mean Square Error.

RMSE =

√∑
i,j(Rij − R̂ij)2

N
.

where Rij is the rating that user i gives to item j (original rating) and R̂ij is the predicted

rating of user i for item j. N is the number of ratings in test set.

• Recall@K.

This metric quantifies the fraction of consumed items that are in the top-K ranking list sorted

by their estimated rankings. For each user uwe define S(K;u) as the set of already-consumed

items in the test set that appear in the top-K list and S(u) as the set of all items consumed by

this user in the test set. Then, we have

Recall@K(u) = |S(K;u)|
|S(u)| .

• Precision@K.

This measures the fraction of the top-K items that are indeed consumed by the user in the test

set:

Precision@K(u) = |S(K;u)|
K

.

4.5.2 Experimental Results

Table 4.2 presents the performances of all nine recommendation methods on all four datasets, in

terms of MAE and RMSE. We also present the percentage increase of PTPMF over each baseline

right under its corresponding MAE and RMSE values and boldface font denotes the winner in each

row. We would like to point out that, due to the randomness in data splitting and model initializa-

tion as well as differences in data preprocessing, our results for some baselines are slightly different

from the results reported in the original papers. Among the eight baselines, UserMean and Item-

Mean are non-personalized methods which do not take social information into account; PMF is a

personalized non-social model; the remainder are personalized approaches which also take social

information into consideration. We observe from Table 4.2 that the personalized non-social method

(PMF) outperforms the non-personalized non-social methods (UserMean and ItemMean), which

shows the advantage of a personalized strategy. Moreover, through taking extra social network in-

formation into consideration, personalized social methods (SoRec, STE, SMF, SoReg and TrustMF)

achieve a performance boost over the personalized non-social method (PMF), consistent with the

assumption in the social recommendation literature that social information can help improve recom-

mender systems. Finally, we observe that PTPMF consistently outperforms all eight baselines on all

datasets for both metrics, demonstrating the benefit of the distinction and thresholding of different
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tie types, as well as learning a personalized tie preference for each user. Due to the randomness in

data splitting, model initialization and even data preprocessing, our results for some baselines may

not be exactly the same as reported in the original work, though given our best efforts to diminish

the variances.

Recall and Precision.

Figure 4.2 depicts Recall (X-axis) vs. Precision (Y -axis) of the seven recommendation meth-

ods. We exclude the two naive methods (UserMean and ItemMean) for the sake of clarity of the

figures. Data points from left to right on each line were calculated at different values of K, ranging

from 5 to 50. Clearly, the closer the line is to the top right corner, the better the algorithm is, indi-

cating that both recall and precision are high. We observe that PTPMF again clearly outperforms

all baselines. Besides, Figure 4.2 also demonstrates the trade-off between recall and precision, i.e.,

as K increases, recall will go up while precision will go down.

Comparisons on Cold-Start Users.

We further drill down to the cold-start users. As is common practice, we define users that

rated less than five items as cold-start. Figure 4.2 shows the performances of various methods on

cold start users. It is well known that the social recommendation methods are superior to their

non-social competitors particularly for cold-start users. The results in Figure 4.2 verify this – all

social recommendation methods significantly outperform PMF in terms of both MAE and RMSE.

Furthermore, our PTPMF model again beats other social recommendation baselines.

Learned threshold vs. Fixed threshold.

Last but not least, we compare the results from our learned thresholds with those from several

pre-fixed thresholds in Figure 4.2 in order to prove that the threshold learning does contribute to

the accuracy of the recommendations. For each dataset, we set θG to be four fixed values, i.e.,

0.2, 0.4, 0.6, 0.8. We then compare the results obtained through fixing θG with that obtained from

dynamically learning the threshold. Figure 4.2 demonstrates that the best results are achieved by the

dynamically learned thresholds in terms of both MAE and RMSE. We remark that the thresholds

learned from different datasets vary greatly, which is another supporting argument for learning the

thresholds from the data.

In summary, we compare PTPMF with various kinds of baselines including non-personalized

non-social methods, personalized non-social methods and personalized social methods in terms of

both rating prediction and top-K ranking evaluation metrics. We conclude from the above extensive

experiments that our proposed model, PTPMF, is an effective social recommendation method given

its better performance over other baselines on both all users and cold-start users.

4.6 Summary

In this chapter, inspired by the seminal work in social science [43,44], we start from recognizing the

important roles of different tie types in social relations and present a novel social recommendation
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model, a non-trivial extension to probabilistic matrix factorization, to incorporate the personalized

preference of strong and weak ties into social recommendation. Our proposed method, PTPMF,

is capable of simultaneously classifying strong and weak ties w.r.t. recommendation accuracy in a

social network, and learning a personalized tie type preference for each individual as well as other

model parameters.

We carry out thorough experiments on four real-world datasets to demonstrate the gains of our

proposed method. The experimental results show that PTPMF provides the best accuracy in various

metrics, demonstrating that learning user-specific preferences for different types of ties in social

recommendation does help to improve the performance.
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Figure 4.2: Precision@K vs Recall@K on all users, where K ranges from
5 to 50
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Figure 4.2: MAE and RMSE on cold-start users
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Chapter 5

Recommending Groups to Users Using
User-Group Engagement and
Time-Dependent Matrix Factorization

Social networks often provide group features to help users with similar interests associate and con-

sume content together. Recommending groups to users poses challenges due to their complex rela-

tionship: user-group affinity is typically measured implicitly and varies with time; similarly, group

characteristics change as users join and leave. To tackle these challenges, we adapt existing ma-

trix factorization techniques to learn user-group affinity based on two different implicit engagement

metrics: (i) which group-provided content users consume; and (ii) which content users provide to

groups. To capture the temporally extended nature of group engagement we implement a time-

varying factorization. We test the assertion that latent preferences for groups and users are sparse

in investigating elastic-net regularization. Our experiments indicate that the time-varying implicit

engagement-based model provides the best top-K group recommendations, illustrating the benefit

of the added model complexity.

5.1 Motivation

Online web services recommend content items such as music, movies, or books etc. to users via al-

gorithmic recommendations. Many of these recommenders are based on the principle of collabora-

tive filtering, suggesting items that similar users have consumed. On the other hand, more and more

social media and consumer websites are providing mechanisms by which users can self-organize

into groups with other users having similar opinions or interests.

The problem of recommending groups to users has been investigated in the literature. In particu-

lar, methods for factorizing the user-group membership matrix have been proposed, using group fea-

tures, user-item ratings and user-user networks to improve the performance [21, 22, 104, 107, 124].
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However, the existing methods fail to capture the dynamics of user group relationships: while

the properties of content items typically do not change in the course of time, groups tend to evolve

as users join or leave. Moreover, the preferences of users themselves tend to change over time.

Thus, the existing methods are not completely adequate for recommending groups to users.

In this chapter we focus on the problem of recommending groups to users using implicit mea-

sures of user-group affinity, and model the time-varying nature of such measures.

To quantify user-group affinity, we define a user-group engagement matrix that is constructed

from more data than simple Boolean user-group membership information. Rather than relying on

explicit surveys of user ratings of groups which are not always available, a user’s affinity for a group

is measured implicitly through observing how often and in what manner the user engages with that

group. Following [48], our confidence in a user’s affinity for a group increases with the number of

interactions between the user and the group.

Unlike many types of content where user-item engagement occurs within a relatively brief con-

sumption period, user-group interaction occurs over extended time scales. For example, a user may

engage with a particular group 10 times in one month, 20 times the next, but only 2 times in the third

month, and not at all in the fourth. This kind of extended interaction offers an opportunity to explic-

itly model changes in both user preferences and group dynamics when producing recommendations.

Our intuition is that doing so will lead to improved recommendations.

We capture the time-varying nature of the group recommendation problem in two ways. First,

we propose a time-varying matrix factorization in order to capture preference changes. Second, we

introduce two time-varying user biases and one time-varying group bias in order to capture changes

in activity levels. We incorporate time series analysis to model the temporal evolution of these

factors and biases.

Thus, this chapter makes three main contributions:

• When recommending groups to users, we consider not only group membership, but also dif-

ferent kinds of engagement between users and groups.

• We model evolution of the preferences and activity levels of both users and groups in order to

better predict future preferences.

• We evaluate our methods using three real-world datasets from DeviantArt [30], a large social

network for artists and art enthusiasts. Our experiments show that using implicit engagement

measures instead of Boolean membership improves recommendation performance. Taking

the temporal nature of the engagement into account produces further improvements. In addi-

tion, we adopt a sparse non-negative matrix factorization using elastic-net regression, rather

than the standard unconstrained factorization using ridge regularizationand. We also see a

moderate improvement from the use of non-negative factorization with elastic-net regulariza-

tion.

The remainder of this chapter is organized as follows: We compare our proposed approach with

some existing work in Section 5.2. Section 5.3 describes the user-group recommendation problem

72



and defines our measures of user-group engagement. Section 5.5 presents a detailed formation of

our activity level-biased model and optimization method, and our temporal model for predicting

future user-group affinity. Section 5.6 presents our experiments, comparing our methods to base-

line recommendations, and comments on the computational feasibility of the various approaches

presented in production systems. Finally, we give a summary of our work in Section 5.7.

5.2 Comparison with Existing Literature

There is a large body of work on using matrix factorization for collaborative filtering. Our work

in this chapter follows that of Hu et al. [48] (WRMF) which proposes a weighted factorization rec-

ommendation method robust enough for implicit user-item ratings. We apply Koren’s method [58],

which adds biases to both users and items in order to indicate their average ratings, though we em-

ploy user and group activity levels as biases in our method and do so in a time-varying manner, with

different regularization, and with a non-negative factorization.

Hu’s Model (WRMF).
Hu et al. [48] predict users’ preferences for TV programs through an implicit scoring model

whose factors are computed by the matrix factorization

minimize
Xu,Yi

1
2
∑
u,i

(1 + γrui)
(
pui −XT

uYi
)2

+ λ
(∑

u

‖Xu‖22 +
∑
i

‖Yi‖22
)
. (5.1)

Vectors Xu, Yi ∈ Rk are latent factors for user u and item i. User u’s preference for i is determined

by binarizing rating rui ≥ 0:

pui =

1, rui > 0,

0, rui = 0.
(5.2)

In this model, the lowest rating assigned to an item a user has observed is 1, so rui = 0 and pui = 0
if u has never observed item i. This model, therefore, accounts for all user-item pairs. Parameters

γ, which scales the strength of user-item ratings, λ, which regularizes matrix factors, and k, the

dimension of the latent space, are chosen by experiment.

By extending Hu et al.’s model (also denoted as WRMF for short) [48], Zeng and Chen [124]

incorporate both user-item ratings and user-user social relationships (called “heterogeneous re-

sources” in their paper) into the user-group membership matrix. We will briefly introduce the pro-

posed model in [124] which is so far the latest method utilizing social relationships among users to

recommend groups.

Zeng’s Model.
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Zeng et al. extend WRMF to fit user-group membership, user-item consumption (rating) and

user-user friendship, solving

αminimize
Xu,Zg

∑
u,g

cmug
(
pmug −XT

uZg
)2 + λ

(∑
u

‖Xu‖22 +
∑
g

‖Zg‖22
)

+λf
(
‖Xu −

1
|F (u)|

∑
f∈F (u)

ŝim(u, f)Xf‖22
)

+(1− α) minimize
Xu,Yi

∑
u,i

crui
(
prui −XT

uYi
)

+ λ
(∑

u

‖Xu‖22 +
∑
i

‖Yi‖22
)
, (5.3)

where cmug and crui are confidence levels for user-group memberships and user-item ratings similar

to (1 + γrui) in WRMF. pmug and prui indicate whether user u is a member of group g and if user u

has consumed item i, both of which are boolean values. F (u) denotes the set of friends of user u

and Xu,Zg,Yi are latent feature vectors for user u, group g, item i respectively. λ and λf are used

as the regularization coefficients.

The whole objective function in Eqn 5.3 tries to minimize two parts separately. The first part

approximates the user-group membership matrix through the same matrix factorization as WRMF

and then restricts the user u’s latent feature vector (Xu) to be as close as the sum (weighted by

the similarities between u and her friends f ∈ F (U) and normalized by number of her friends

|F (u)|) of her friends’ latent feature vectors Xf . The second part which approximates the user-item

consumption matrix and shares the same user latent feature vector (X) with the first part is exactly

in the same form as WRMF, with crui replacing (1 + γrui) in Eqn 5.1. The relative importance of

these two parts is controlled by α ∈ [0, 1], larger α indicates that the model puts more emphasis

on the user-group memberships and user social relationships, smaller α means more emphasis is

placed on user-item consumption relationships.

The general idea of Zeng’s model is to consider user-group memberships (and visiting fre-

quencies controlled by cmug if available), user-item consumption information and user-user social

relationships simultaneously when recommending groups to users. We skip other details such as

model inferences and readers may check the original paper for more references.

We make a modification to the standard factorization technique in using the non-negative sparse

matrix factorization provided by elastic net regularization, rather than the usual ridge regression.

Elastic net regularization was first introduced by Zou and Hastie in [133] as a new regularization

and an algorithm called LARS-EN was also proposed to solve the elastic net regularization prob-

lem. Then Friedman et al. [35] explore the “one-at-a-time" coordinate-wise descent algorithms

which can solve convex problems such as elastic net more efficiently. Later Friedman et al. also

develop a cyclical coordinate descent algorithm which runs very fast for estimation of generalized

linear models with convex penalties such as L1 norm (the LASSO), L2 norm (ridge regression) and

mixtures of the two (the elastic net) [36]. Recently, Yang et al. propose a cocktail algorithm which

contains a good mixture of coordinate decent for solving the elastic net problem in high dimen-

sions [119]. To our knowledge, the theory [133] and coordinate-wise descent algorithm [35] for this
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approach have not appeared previously in the collaborative filtering literature, although the theory

of non-negative sparse matrix factorizations is well developed elsewhere (see, e.g., [47]).

5.3 User-Group Engagement

To produce effective group recommendations, we believe that it is important to make measurements

of user-group engagement more nuanced than Boolean user-group membership. In this section, we

introduce the user-group data from DeviantArt [30] whose group features will be used in our pro-

posed model and experiments, as well as our proposed user-group engagement measures. Although

we take datasets from DeviantArt as an example, our proposed measurements of user-group engage-

ment is general to all other social media capable of providing interactions between groups and their

members.

Groups on DeviantArt

DeviantArt [30] is the world’s largest online arts community, with more than 60 million unique

monthly visitors and 30 million registered users. Approximately 10,000 new users register daily.

DeviantArt users submit over 150,000 new artworks every day, and the site has received over 300

million submissions in total. Art appreciators can engage with art by favoriting artwork (2 million

events/day), or by commenting on artwork (also 2 million events/day).

Groups on DeviantArt are self-organized associations of users who have the ability collectively

curate art. This collective curation provides value to artists, who benefit from the endorsement pro-

vided by well-known groups, and to individual art collectors, who can use these curated collections

to discover new art. As such, artists often join groups with the intent of submitting their artwork for

acceptance by the group, and collectors often join groups with the intent of discovering art that they

like from the group’s accepted submissions.

Measuring user-group engagement

We consider two variants of the user-group recommendation problem: recommending groups to

artists, and recommending groups to collectors. Since DeviantArt users do not explicitly identify

themselves as either artists or collectors, and since DeviantArt provides no mechanism for explicit

rating of groups, we instead measure artist-group and collector-group affinity implicitly, via user-

group engagement. On DeviantArt, artists provide new artwork to their groups, and collectors

consume artwork provided by their groups. Therefore, we define two types of user-group engage-

ment:

• production engagement: the number of art submissions by user u that were accepted by

group g

• consumption engagement: the number of art submissions accepted by group g that user u

subsequently favorited
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We might use production engagement when recommending groups to artists, and consumption en-

gagement when recommending groups to collectors.

Although the details of the definitions of production and consumption engagement above are

specific to DeviantArt, we argue that the high level concepts of these definitions transfer to other

scenarios of user groups. For example, Douban [31], a Chinese online social network, allows its

users to create content related to films, books, music, and recent events and activities in their self-

organized groups (called Douban Group). Users engage with their groups through creating new

content such as articles or polls (production engagement) and through reading articles or partic-

ipating in a poll (consumption engagement). As another example, scientific conferences can be

considered as self-organized groups of researchers. Researchers engage with conferences through

submitting papers (production engagement) and through reading and reviewing papers (consump-

tion engagement). Generally, the production engagement measures which content users provide to

groups and the consumption engagement measures which group-provided content users consume.

Compared to Boolean membership or explicit item ratings data, the user-group engagement

exhibits three interesting properties:

1. User-group engagement is nonnegative but otherwise unbounded; explicit ratings are usually

restricted to a closed interval (e.g., integers from 1 to 5).

2. Users engage with groups gradually over extended time periods; user-item ratings are typi-

cally collected at a single time point.

3. Group characteristics change over time (for example, as users join and leave and activity

levels increase or decrease); item characteristics typically do not.

The proposed recommendation method is designed to exploit each of these three properties.

5.4 Empirical Data Analysis

In this section, we give empirical statistics of the user-group production engagement data from

DeviantArt, together with the temporal features of a random user’s production engagement with one

of the groups he/she has been in and this user’s total production engagement with all the groups that

he/she belongs to. Although being slightly different from production engagement, the consumption

engagement follows a similar pattern in terms of the statistical properties and temporal features.

Both measures of production and consumption engagement follow the definition in Section 5.3.

Our data consists of DeviantArt users and groups from 5 May 2011 to 31 August 2014, i.e., a

40-month time span. In general, Figure 5.1a and Figure 5.1b show the power law distribution of the

user-group production engagement, which is a common property shared by most of the real-world

data.

Given the empirical statistics that the majority of active DeviantArt users are young people un-

der 25, we assume that the school days should probably have a significant impact on their activities
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(a) Number of users and groups for a given
amount of total production engagement

(b) The complementary cumulative dis-
tribution function (CCDF) with respect
to production engagement for users and
groups

Figure 5.1: Some statistics about the user-group production engagement
data from DeviantArt, blue (dark) line represents users and green (light)
line represents groups
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on DeviantArt. Therefore, we then divide this 40-month time span into 10 equal 4-month inter-

vals beginning with summer 2011 (from May 2011 to August 2011) and ending in summer 2014

(from May 2014 to August 2014), each of which is roughly one school/college semester. Figure 5.2

demonstrates the patterns of a random user’s production engagement with one randomly selected

group he/she has been in and this user’s total production engagement with all the groups that he/she

belongs to in each 4-month interval from May 2011 to August 2014. We observe that the user

always has a smaller amount of engagement in fall than in spring and summer in both cases (all

groups and single random group), and there is an increase in the amount of engagement from spring

to summer. Further, both curves in Figure 5.2 verify the existence of consecutive correlations be-

tween the amount of engagement in one interval and that in its previous intervals. For instance,

the user’s production engagement in summer 2013 (2013-05∼2013-08) depends mostly on summer

2012 (2012-05∼2012-08), which is three intervals before, and at the same time it is less than this

user’s engagement in summer 2012, which may be due to the reason that the user’s engagement in

spring 2013 (2013-01∼2013-04) and fall 2012 (2012-09∼2012-12) is less than that in spring 2012

(2012-01∼2012-04) and fall 2011 (2011-09∼2011-12) respectively. It is these consecutive corre-

lations between the users’ engagement with groups in different time intervals that motivate us to

develop a novel approach capable of capturing the long time evolution of user-group engagement

for group recommendation.

As such, our analysis verifies the time-varying properties of user-group engagement mentioned

in Section 5.1, demonstrating the temporal patterns and challenges not covered in prior work.

5.5 Recommending Groups to Users

To the best of our knowledge, all the existing online social websites offering group features provide

no formal mechanism for users to rate groups, which motivates our use of the matrix factoriza-

tion based on an implicit feedback scheme as our starting point. Our implicit scheme incorporates

the strength of user-group interactions, which we measure as production and consumption engage-

ment. As group members’ tastes change, user preferences and group properties tend to subsequently

change over time. Hence, after introducing a static model, we propose a temporal model intended

to capture this time-dependence.

5.5.1 Static model

Hu et al. [48] predict users’ preferences for TV programs through an implicit scoring model whose

factors are computed by the matrix factorization

minimize
Xu,Yi

1
2
∑
u,i

(1 + γrui)
(
pui −XT

uYi
)2

+ λ
(∑

u

‖Xu‖22 +
∑
i

‖Yi‖22
)
. (5.4)
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Vectors Xu, Yi ∈ Rk are latent factors for user u and item i. User u’s preference for i is determined

by binarizing rating rui ≥ 0:

pui =

1, rui > 0,

0, rui = 0.
(5.5)

In this model, the lowest rating assigned to an item a user has observed is 1, so rui = 0 and pui = 0
if u has never observed item i. This model, therefore, accounts for all user-item pairs. Parameters

γ, which scales the strength of user-item ratings, λ, which regularizes matrix factors, and k, the

dimension of the latent space, are chosen by experiment.

We extend this factorization to fit user-group engagement, solving

minimize
w,Xu,Yg

1
2
∑
u,g

(1 + γrug)
(
pug − qTugw−XT

uYg
)2

+ αu
∑
u

‖Xu‖1 + 1
2βu

∑
u

‖Xu‖22

+ αg
∑
g

‖Yg‖1 + 1
2βg

∑
g

‖Yg‖22

+ αw‖w‖1 + 1
2βw‖w‖

2
2

subject to Xu,Yg ≥ 0. (5.6)

Consistent with (5.4), Xu,Yg ∈ Rk are user and group latent factors. We use either producing

engagement or consuming engagement defined in Section 5.3 as the implicit user-group rating rug,

binarizing rug to user-group affinity pug. Parameters γ and k are rating sensitivity and latent factor

dimension, and α{u,g,w}, β{u,g,w} are regularization parameters, all chosen by experimentation.

Variables w ∈ R3 provide an optional bias for qug = [f̄u, c̄u, m̄g]T , measuring

• user properties:

fu: number of favorites user u has made

cu: number of comments user u has made

• group property:

mg: number of members in group g

These properties reflect overall levels of user and group activity. Note that we use normalized

quantities

f̄u = fu∑
u fu

, c̄u = cu∑
u cu

, m̄g = mg∑
gmg

, (5.7)

to ensure that qug will be bounded in (0, 1), reflecting the relative levels of user/group activity, and

that elements of w are on the same scale.

Our use of biases is inspired by [58] and [4], where biases represent unpersonalized item ratings

and users’ personal item baselines in explicit rating systems. In contrast, our biases reflect the
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activity levels of users and groups, based on the assumption that users and groups with higher

activity levels tend to have more engagement.

We refer to the special case where we fix w = 0 as the unbiased model. Note that when we

solve the unbiased model, we apply the optimizations reported in [48], as well as the use of a tall

and skinny QR-factorization [26], to compute the matrix products of the form Y TY which appear

in the optimization procedure.

As our affinities pug ≥ 0, we are motivated by previous work on non-negative matrix factoriza-

tion (NMF) to compute Xu,Yg that are non-negative and sparse. As noted in the NMF literature

– see [67], for example – avoiding cancellation of factors of different signs, particularly if those

factors are sparse, tends to produce a factorization that is more easily interpreted. Regarding each

dimension of the user and group vectors as a topic, the suggestion that Xu,Yg should be non-zero

in only a few coordinates reflects the notion that each user and group description is dominated by

a few topical preferences. Empirical experiments on real-world datasets in Section 5.6 show a bet-

ter performance for non-negative constrained model over the one without non-negative constrained

(i.e., Hu’s model in (5.4)).

As noted elsewhere [47], the ratio between the l1 and l2 norms provides a measurement for

vector sparsity. Rather than specify the sparsity explicitly, we manage sparsity by regularizing

against both the l1 and l2 norms, employing elastic-net regularization [133]. This strategy reduces

the model’s sensitivity to the dimension of the latent factor dimension.

Having solved (5.6), we compute

p̂ug = [f̄u, c̄u, m̄g]Tw + XT
uYg, (5.8)

as our prediction of user-group affinity. The largest predictions over user-group pairs for which

rug = 0 are our recommendations.

Optimization procedure

Problem (5.6) is convex in each of Xu,Yg and w separately, and so we use pathwise coordinate

descent [35] to optimize for each of these collections of variables iteratively. Recognizing that (5.6)

is not jointly convex in all variables, we apply relaxation at each iteration, combining updated values

with previous ones. This common strategy can increase the number of iterations, but prevents the

algorithm from stalling at local minima.

Our algorithm follows a standard pattern for coordinatewise optimization:

1. Initialize Yg, w.

2. With Yg and w fixed, solve (5.6) for Xu.

3. With Xu and w fixed, solve (5.6) for Yg.

4. With Xu and Yg fixed, solve (5.6) for w.
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5. If not converged, go to step 2; otherwise, stop.

While it appears that the order of optimizations, namely Xu, then Yg, and finally for w, is theo-

retically arbitrary, our observations suggest that we achieve faster convergence by optimizing with

respect to the bias parameters w last.

Initialization

Set Yg = (1/k)[1, 1, . . . , 1]T and w = [0.1, 0.1, 0.1]T .

Minimization with respect to Xu

Let E(u) be the set of groups for which rug > 0. With Yg,w fixed, for each u, minimization (5.6)

becomes

minimize
Xu

1
2XT

u

(∑
g

YgYT
g +

∑
g∈E(u)

γrugYgYT
g

)
Xu

−
(∑

g

(1 + γrug)(pug − qTugw)Yg

)T
Xu

+ αu‖Xu‖1 + 1
2βu‖Xu‖22

subject to Xu ≥ 0. (5.9)

The Xu can be computed in parallel, observing that (pug − qTugw) and
∑
g YgYT

g can be precom-

puted and re-used by each Xu calculation. Here is where a tall and skinny QR-factorization speeds

up the
∑
g YgYT

g calculation significantly.

The calculations for the Xu are sign-constrained elastic-net problems of the form

minimize
x

1
2xTAx− bTx + α‖x‖1 + 1

2β‖x‖
2
2

subject to x ≥ 0, (5.10)

which can be solved by pathwise coordinate descent [35].

Writing X(k)
u as user latent factors at iteration k, and X̃(k+1)

u latent factors computed by (5.9),

we relax the update, setting our new latent factors as

X(k+1)
u = X(k)

u + θ
(
X̃(k+1)
u −X(k)

u

)
. (5.11)

Where θ is the learning rate which controls the step-size in the parameter space. Choosing parameter

θ = 0.9 appears to be a good compromise between fast convergence and local minima avoidance in

relaxing updates for all of Xu,Yg and w.
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Minimization with respect to Yg

With the symmetry between Xu and Yg, minimization with respect to Yg is the same as that of Xu.

Minimization with respect to w

With Xu,Yg fixed, optimization with respect to w becomes

minimize
w

1
2wT

(∑
ug

(1 + γrug)qugqTug
)

w

−
(∑

ug

(1 + γrug)(pug −XT
uYg)qug

)T
w

+ αw‖w‖1 + 1
2βw‖w‖

2
2

subject to w ≥ 0. (5.12)

This is also an elastic-net problem. Although the use of the bias term improves predicted user-group

affinities, this expression shows that it comes at the cost of summing over all users and groups.

5.5.2 Temporal model

Time series analysis [18, 46] is widely used in many fields such as econometrics/finance, meteorol-

ogy and bioinformatics etc. where time-dependent data analysis is very popular. Recent research

tasks in data mining such as epidemic tendency prediction [116] and daily-aware personalized rec-

ommendation [127] have also utilized time series analysis to solve time-dependent problems. This

inspires us to adopt auto-regression (AR) and vector auto-regression (VAR) from time series anal-

ysis [18, 46] to capture the time-varying nature of user preferences, group properties, and global

biases. We collect group interaction data in discrete time intervals, forming time-dependent user-

group engagement matrices. To estimate user-group affinity at time T , we solve problem (5.6) at

times T − 1, T − 2, . . . , T − p. We model the trajectories of user, group, and bias vectors using

auto-regression (AR) and vector auto-regression (VAR), extrapolating parameters and solutions to

time T . Prediction (5.8) combines extrapolations to compute p̂ug(T ) and hence provide recommen-

dations.

In our application of AR and VAR to our temporal model, we extend the user and group prop-

erties and factors to a time-varying equivalents:

• time-varying user properties:

fu(t) is the number of favourites user u made in time interval t

cu(t) is the number of comments user u made in time interval t

• time-varying group property:

mg(t) is the number of new members in group g in time interval t
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• time-varying factors:

Xu(t) is user u’s latent factors in time interval t

Yg(t) is group g’s latent factors in time interval t

Our assumption is that both user preferences and group characteristics change gradually as time

goes by, and there are trends for the changes in user-group engagement that we can use to predict

future user-group affinity.

We divide the whole time span of data into T discrete time intervals (such as weeks, months

or quarters). Users and groups will have their own qualities and latent factors in different time

intervals. Note that the static model treats the whole time span as one single time interval, and can

be regarded as a special case of the temporal model.

In particular, we adopt p-order auto-regression (AR(p)) to extrapolate the future qualities and

p-order vector auto-regression (VAR(p)) to extrapolate the future latent factors. For time-varying

functions x(t), auto-regression assumes

x(T ) =
p∑

k=1
φ(k)x(T − k) + ε(T ), (5.13)

where φ(k), k = 1 . . . p are parameters we fit, and ε is the error in our time T estimate. Where

x(t) are scalar-valued, that is, where we fit fu(t), cu(t) and mg(t) by AR(p), the φ(k) are scalar-

valued; where x(t) are vector-valued, that is, where we fit Xu,Yg, and w by VAR(p), the φ(k) are

matrix-valued.

We solve for parameters φ(k) by a least-squares minimization,

minimize
φ(k)

T∑
t=p+1

[
x(t)−

p∑
s=1

φ(s)x(t− s)
]2
. (5.14)

This cost function represents a window of length p that passes forward over the time-varying data.

We choose parameters φ(k) to best fit data at each time step t ∈ p . . . T − 1 based on the previous

p time steps. Where (5.14) represents VAR(p), the squared term in square brackets is understood to

represent the l2 vector norm.

Using data from T − 1 trial intervals, we predict the user-group affinity at time T as

p̂ug(T ) = [fu(T ), cu(T ),mg(T )]Tw(T ) + Xu(T )TYg(T ). (5.15)

In assuming that our parameter trajectories are smooth, such that user, group and global proper-

ties do not change abruptly, our future predictions directly leverage a long history of behavior. This

is in contrast to the Markovian assumption employed elsewhere [125].
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Table 5.1: Summary of production and consumption engagement matrices

production consumption
number of users 8423 20328
number of groups 4579 8772
number of non-zeros 161767 670662
matrix density 0.0042 0.0038

5.6 Experiments

Our experiments consider DeviantArt users and groups from 5 May 2011 to 31 August 2014. We

divide this 40-month time span into 10 equal 4-month intervals. The first 9 intervals serve as train-

ing/validation data; we withhold the last 4 months for testing. The static model aggregates the first 9

intervals into a single training-validation set, on which a 10-fold cross validation is used to select the

optimal parameters, while the temporal model performs the matrix factorization on each of the first

9 intervals separately, making recommendations on the 10th interval using our temporal scheme.

5.6.1 User-group matrices

We examine two sets of engagement matrices, those for consumption engagement, geared towards

art curators and viewers, and those for production engagement, geared towards artists. Production

and consumption engagements are computed according to their definitions in Section 5.3.

Production engagement matrix: We filter the user-group matrix such that each user has joined

at least one group and each group has at least one member by 1 May 2011, and every user has at

least one production engagement with some group in each 4-month time interval. We omit groups

that do not receive at least two production engagements in every time interval. After performing

this filtering, the production engagement matrix contains 8423 users and 4579 groups.

Consumption engagement matrix: Just as in production engagement, we filter the matrix to

ensure that each user has joined at least one group and each group has at least one member by 1

May 2011. We omit users having fewer than five consumption engagements in every time interval,

and we omit groups having fewer than ten consumption engagements in every time interval. After

this filtering, the consumption engagement data contains 20328 users and 8772 groups.

Boolean membership matrix: For comparison, we also produce Boolean matrices correspond-

ing to each of the filtered production and consumption matrices, setting

pug =

1 rug > 0,

0 otherwise.
(5.16)

We set the confidence scaling parameter γ = 0 for experiments with Boolean membership matrices.

Table 5.1 summarizes the statistics of our data.
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5.6.2 Recommendation methods

To examine the contribution of each aspect of our model to the overall performance, we run several

variants of our method:

• Static

– Unbiased: Our static model of Section 5.5.1 with fixed w = 0 in (5.6).

– Biased: Our static model of Section 5.5.1 with variable bias w

– Biased (L2 Norm): Our static model with only l2-regularization but with variable bias

w

• Temporal

– Unbiased: Our temporal model of Section 5.5.2 with fixed w = 0 in (5.6)

– Biased: Our temporal model of Section 5.5.2 with variable bias w

We include four comparison methods as baselines for our approaches.

• Popular: A baseline to indicate the problem’s difficulty, recommending the K most popular

groups; every user gets the same recommendations.

• Boolean Membership: The same matrix factorization method as Static Unbiased but applied

to the Boolean membership matrices derived from the production and consumption engage-

ment data.

• Hu: Uses implicit data according to [48], but in a static manner and without any of our

improvements. Compared to Static Unbiased, this method omits the l1-regularization and the

non-negativity constraint.

• TMF: As a comparable temporal method, we evaluate a version of Temporal Probabilistic

Matrix Factorization [125].

We should notice that the TMF in our comparison experiment is not exactly the same as the one

in the original paper by Zhang et al. [125]. Our method is employed to solve group recommendation

problem where users can have different engagements with groups in different time intervals while

Zhang’s method is employed to solve user-item rating recommendation problem where each user

can only rate each item once in the course of time. Furthermore, our method is derived from Koren’s

method on implicit data while Zhang’s method is derived from the standard probabilistic matrix

factorization on explicit rating data. To our knowledge, directly applying models designed for

explicit ratings ranging from 1 to 5 to implicit ratings without Hu’s [48] modification will result in

a fairly bad performance followed by an unfair comparison. Our empirical experiments also proved

this to be true.

On the other hand, we observed that conceptually Zhang’s method is a special case of our

method in the following aspects:
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1. In our method, both user factors and item factors are dynamic and we learn the relations

of both user and item factors in different time intervals while in the external method only

user factor is dynamic and item factor is static, which means Zhang’s method only learns

the relations of user factors in different time intervals and they assume that item factors in

different time intervals are independent from each other. So Zhang’s method is a special case

of our method. (when we assume item factors in past time intervals have no influence on item

factors in future time intervals in our method)

2. We take longer term temporal evolution into consideration, i.e., we think user(and group)

factors in time t depends not only on factors in t − 1 but also on factors in t − 2, t − 3, · · · ,
t − p, while the Zhang’s method assumes the factors in t only depends on factors in t-1. So

Zhang’s method is also a special case of our method (when p = 1 in our temporal method).

3. Our method employs user and group activity levels as biases while Zhang’s method doesn’t

have any biases. So again, Zhang’s method is a special case of our method (when we remove

biases from our method or just assume all the biases equal to 0).

Thus, in order to make fair comparison with Zhang’s TMF, we implement Zhang’s idea within our

framework for implicit data and employ single time step vector autoregression rather than first order

Markov chains to model the relationship between user factors in adjacent time intervals, keeping

remaining settings the same as in Zhang’s original work.

Regularization and other numerical parameters used in static models (including Boolean Mem-
bership) together with the corresponding exploratory ranges in 10-fold cross validation are given

in Table 5.2. The temporal models (including TMF) use optimal values obtained from the static

model for common parameters. Although we did not perform an extensive study of the parameter

space, in exploratory trials we did observe our results to be robust to each parameter over different

static models and wide ranges, i.e., Static Unbiased, Static Biased, Static Biased(L2 Norm) and

Boolean Membership all have the same optimal numeric values for their common parameters. We

also conduct a same 10-fold cross validation to find the optimal parameters for baseline method Hu,

setting k = 70, γ = 2 and λ = 0.1 in (5.4).

All methods were implemented in Python; we rely heavily on Python packages, using sklearn

for elastic-net optimization, statsmodels for VAR calculations, and multiprocessing for

parallelization. Our experiments were conducted on a 24-core Intel(R) Xeon(R) CPU X5650 @

2.67GHz machine with 192GB RAM. The unbiased methods took between 10 minutes and 5 hours

to run. The biased methods, requiring calculation of matrix
∑
ug qugqTug, are significantly more

expensive, running for 2 hours to 3.5 days. While the temporal versions of methods come in at the

long end of these ranges, they scale linearly in the number of time slices used.
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Table 5.2: Numerical parameters used for model comparison, showing the values we use in our
reported experiments, and the ranges examined in our exploratory trials.

symbol description
optimal
value

cross validation
range

k latent dimension 100 10-200
γ confidence scaling 2 1-6
αu user l1-regularization 0.1 0.01 - 0.5
βu user l2-regularization 0.1 0.01 - 0.5
αi group l1-regularization 0.1 0.01 - 0.5
βi group l2-regularization 0.1 0.01 - 0.5
θ learning rate 0.9 0.5-1.0
p auto-regression history 3 1-5

5.6.3 Evaluation method

Recall and precision are two most widely used evaluation metrics in top-K recommender sys-

tems. [27] is a well known work by Cremonesi and Koren, which conducts empirical experiments

on an extensive evaluation of several state-of-the-art recommendation algorithms in top-K recom-

mendations. Therefore, we also use the Recall@K and Precision@K measures adopted in [27] to

compare the performance of our methods with the baseline techniques. For every user, we con-

sider the set of groups Tu with which that user has the greatest engagement in the test set, up to a

maximum of 20 groups. For each such target group g, we:

1. Randomly select 1000 groups with which the user has not yet engaged; our assumption is that

most of these groups will be of no interest to the user.

2. Add the target group g into these randomly selected groups to form our candidate set of size

1001.

3. Predict the affinity for every group in the candidate set using our trained model.

4. Rank all the 1001 groups in the candidate set in descending order according to their predicted

affinities.

5. Form a recommendation list by picking up the first K top ranked groups from the ranked list;

if the target group g is in this list, record a hit, otherwise record a miss.

For each user u, we compute

Recall@Ku = #hits
|Tu|

, (5.17)

Precision@Ku = #hits
K · |Tu|

= Recall@Ku
K

, (5.18)
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Table 5.3: Baselines, Recall@K

Production

Popular
Boolean

Membership
Hu

K=5 0.083 0.181 0.258
K=10 0.129 0.269 0.341
K=15 0.166 0.320 0.390
K=20 0.198 0.359 0.431

Consumption

Popular
Boolean

Membership
Hu

K=5 0.073 0.219 0.287
K=10 0.112 0.296 0.356
K=15 0.143 0.347 0.404
K=20 0.170 0.389 0.438

where |Tu| is the number of test groups for u. Our results report the average recall and precision

values over all users.

Though the two measures Recall@K and Precision@K used here are slightly different from the

conventional ones used elsewhere, it is not hard to notice that they are the same in essence.

5.6.4 Results

Table 5.3 gives the full recall results of the static baseline methods for four values of K. Similarly,

Tables 5.4 and 5.5 show recall results for the static and temporal methods, respectively, including

the temporal TMF baseline. These tables produce a solid evidence that our proposed time-varying

implicit engagement-based model provides the best top-K group recommendations, outperforming

the naive baseline by up to 354.8% (Recall@5 on consumption engagement data over Popular) and

the best state-of-art competitor by up to 13.7% (Recall@10 on production engagement data over

TMF) in both datasets.

Figure 5.3 highlights the general performance of our full Temporal Biased method relative to

some of the baseline comparison methods, demonstrating that the method drastically outperforms

a simple Boolean Membership encoding, and also improves substantially upon a standard static

implicit approach (Hu) run on our engagement data. The visible trend of the performance across

values of K largely holds across method results, so we concentrate on the K = 5 results in the

following.

Figure 5.4 and Figure 5.6a display the results of all static methods as a percentage increase

over the popular baseline. Clearly, using the more sophisticated implicit measurements of user

engagement with groups provides a substantial gain in recommendation performance. The minor

changes in the form of non-negative elastic net regularization between Hu and our Static Unbiased
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Table 5.4: Static methods, Recall@K

Production
Unbiased Biased (L2) Biased

K=5 0.266 0.272 0.286
K=10 0.348 0.358 0.380
K=15 0.401 0.411 0.435
K=20 0.440 0.453 0.474

Consumption
Unbiased Biased (L2) Biased

K=5 0.288 0.307 0.308
K=10 0.360 0.376 0.380
K=15 0.407 0.419 0.428
K=20 0.442 0.452 0.463

Table 5.5: Temporal methods, Recall@K

Production
TMF Unbiased Biased

K=5 0.277 0.286 0.308
K=10 0.358 0.368 0.407
K=15 0.408 0.420 0.454
K=20 0.448 0.457 0.491

Consumption
TMF Unbiased Biased

K=5 0.294 0.309 0.332
K=10 0.364 0.381 0.410
K=15 0.413 0.425 0.449
K=20 0.449 0.462 0.487
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Figure 5.4: Results for the non-temporal (static) methods expressed as a
percentage increase over the Popular baseline.
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method yield a slight improvement on the production data. Adding the biases leads to a substantial

gain in recall performance, especially together with l1-regularization in the production case. While

using a bias also improves performance on the consumption engagement data, there is almost no

gain compared to using only l2 regularization with biases in this case. This difference might be

explained by the tendency of artists to have focused areas of interest and ability, and hence be well-

modeled by sparse latent vectors. Conversely, art curators need not be so focused in their range of

tastes, and hence may be better modeled by a less sparse latent preference factorization.

Figure 5.5 and Figure 5.6b summarize the results of the temporal baselines and methods as

percentage improvements over the implicit engagement data based static Hu baseline. While TMF

shows an improvement from taking the last time slice into account for user factors, modeling all

the past time slices through smooth functions lets our temporal methods clearly outperform this

baseline.

Figure 5.7 presents the trade-off between recall and precision. Each line in Figure 5.7 reports

the precision of a method at a given recall. For instance, the precision of the Temporal Biased

method on consumption data is about 0.066 when its recall is about 0.33. Recall will usually go up

asK increases while precision tends to go down, which confirms that a trade-off between recall and

precision is unavoidable in top-K recommendations. Additionally, Figure 5.7 demonstrates that the

Temporal Biased method also obtains the best performance in terms of precision, followed by other

variants of our method. We observe that the relative performances of all methods in terms of recall

and precision are consistent on both datasets.

5.7 Summary

Many social media sites provide mechanisms by which users can form groups with others having

similar interests. By joining groups, users are exposed to relevant content with the added benefit that

this content has been curated for both topicality and quality. Recommending groups to users poses

new challenges due to the complex dynamic relationship between users and groups in the course of

time.

In this chapter, we propose production engagement and consumption engagement as measures

that are more fine-grained than Boolean user-group membership to quantify user-group affinity more

accurately. We present a time-dependent matrix factorization model to recommend groups of users,

and perform experiments on two real-world user-group datasets from DeviantArt to demonstrate the

improvement of our proposed method.

The experimental results show that for the complex problem of recommending social network

groups to users taking into account detailed implicit engagement data rather than simply Boolean

group memberships yields substantial improvements in recommendation performance. We achieve

another performance boost by modeling the evolving nature of the relationships between users and

groups smoothly over time rather than assuming they are static or can be predicted from the last

time slice alone.
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Figure 5.5: Results for the temporal methods, expressed as a percentage
increase over the Hu baseline.
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Figure 5.7: Results of precision versus recall for all methods, showing im-
proved performance as complexity is added to the model.
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Chapter 6

Interactive Social Recommendation with
Online Learning

Social recommendation has been an active research topic over the last decade, based on the assump-

tion that social information from friendship networks is beneficial for improving recommendation

accuracy, especially when dealing with cold-start users who lack sufficient past behavior informa-

tion for accurate recommendation. However, it is nontrivial to use such information, since some of a

person’s friends may share similar preferences in certain aspects, but others may be totally irrelevant

for recommendations. Thus one challenge is to explore and exploit the extend to which a user trusts

his/her friends when utilizing social information to improve recommendations. On the other hand,

most existing social recommendation models are non-interactive in that their algorithmic strategies

are based on batch learning methodology, which learns to train the model in an offline manner from

a collection of training data which are accumulated from users’ historical interactions with the rec-

ommender systems. In the real world, new users may leave the systems for the reason of being

recommended with boring items before enough data is collected for training a good off-line model,

which results in an inefficient customer retention. To tackle these challenges, we propose a novel

method for interactive social recommendation, which not only simultaneously explores user pref-

erences and exploits the effectiveness of personalization in an interactive way, but also adaptively

learns different weights for different friends. In addition, we also give a rigorous analysis on the

complexity and regret of the proposed model. Extensive experiments on three real-world datasets

illustrate the improvement of our proposed method against the state-of-the-art algorithms.

6.1 Motivation

Recommender systems have become a hot research topic in academia and been widely adopted in

industry as well. Moreover, the rising of social networks and rapid development of web services

actuate the emergence of recommendation in social media. People not only rate movies or TV series

on IMDB, but also interact with each other on Facebook and see the latest updates of their favorite
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idols on Twitter. This brings the idea of social recommendation which tries to utilize available

information (e.g., ratings) from users’ friends to infer their preferences. Lots of existing work [50,

51, 77–80, 91, 110, 117, 118, 120, 128] has proved that incorporating social information from social

networks does help to improve the accuracy of conventional recommendation methods [60,82,108].

At the same time, as more and more web service providers begin incorporating social elements into

their services, social recommendation has also become a well studied topic in which most of their

algorithmic strategies are to learn the model off-line via batch learning without any interactions from

users. The training data in batch learning is normally obtained through the accumulation of users’

historical interactions with the recommender systems, which may run the risk of users in real world

leaving the systems because of many boring items being recommended to them before enough data

is collected for training a good off-line model, resulting in inefficient customer retention. Besides,

although social information from friends has been proved to be very useful for the improvement of

recommendation accuracy, some of these friends may share similar preferences with the target user

while others may be totally irrelevant for recommendations because of domain differences. This

poses two challenges to us: first, how can we provide good-quality recommendations as soon as

possible even when the target user has little past behavior data in order to maximize user retention

in social recommendation; second, how to dynamically learn different weights for different friends

which can best serve the recommendation accuracy when receiving more and more feedback from

users.

To handle the first challenge, multi-armed bandit (MAB) serves as a competent candidate for

recommendation with user interactions given its capability of simultaneously exploiting existing

information that matches user interest and exploring new information that can improve global user

experience, which is known as the exploitation-exploration trade-off dilemma. Thus casting the

mechanism of multi-armed bandit into social recommendation can help mitigate the dilemma of

user retention. A significant amount of work has been done on stochastic multi-armed bandit al-

gorithm to provide principled solutions to the exploitation-exploration dilemma [11, 12, 42, 63]. In

addition to the vanilla stochastic linear bandit models, contextual bandit algorithms [10,19,33,112]

become promising solutions when side information like contextual content (e.g., texts, tags, etc.)

about users and items is available in scenarios such as mobile recommender systems [17], news

recommendation [69] and display advertising [20, 72]. In general, the multi-armed bandit based

algorithms try to get a good understanding of user preferences and thus achieve a high-quality rec-

ommendation as soon as possible through collecting a small amount of interactive feedback (e.g.,

behaviors such as ratings, clicks and favorites etc.) from users. We will give a detailed description

on how multi-armed bandit can be incorporated into social recommendation later.

As for the second challenge, it is also necessary to exploit and explore the extend to which the

current user trusts her friends when utilizing social information to improve recommendations. Since

our goal is to adaptively learn the weights of different friends as more and more user interactive

feedback becomes available, we employ a modified multi-arm bandit schema to dynamically update
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these weights upon receiving new feedback from users after they interact with the systems (e.g., give

feedback such as clicks or ratings).

On the other hand, all the contextual bandit models we mentioned utilize content data such as

tags and texts to construct an explicit feature vector (for each user and item) which will be used to

determine the expected reward of the bandit. In practice, it is not always the case that the content

data used to extract user and item feature vectors can be easily obtained, which makes the contex-

tual bandit algorithms ineligible for producing accurate recommendations. Inspired by Zhao et al.’s

work [129] and Qin et al.’s work [92], we borrow the idea from matrix factorization [82] which

factorizes the observed user feedback into latent feature vectors in order to address our social rec-

ommendation problem in the scenario where there is no content information to construct explicit

feature vectors and only user feedback (e.g., ratings, clicks, bookmarks etc.) can be observed. We

employ the factorized latent user and item feature vectors to represent content information, extend

the classical matrix factorization and combine it with the contextual multi-armed bandit in social

recommendation.

In summary, we make the following contributions.

• We propose a novel interactive social recommendation model (ISR) which differs from and

is superior to previous work in the following aspects.

1. Previous work on social recommendation [50, 51, 77–80, 91, 110, 117, 118, 120, 128]

does not consider interactive learning.

2. Given a user in social recommendation, some existing methods simply compute the

weights (i.e., degree of trust) for his/her friends uniformly (i.e., give equal weight to

every friend) [51, 77, 79], which is a suboptimal solution because of the domain differ-

ences. Some others obtain these weights by calculating the rating similarities between

the given user and his/her friends [77, 78], which is in a static way as well. This being

the case, our solution is novel in the sense of adaptively learning these weights.

• We give a rigorous regret analysis to show that part of our proposed interactive social recom-

mendation model has a regret bound of O(
√
T ).

• We conduct extensive experiments on three real-world datasets and demonstrate the improve-

ment of our proposed ISR model against the state-of-the-art methods in various accuracy

metrics.

The remainder of this chapter is organized as follows: we present comparisons between our

proposed model and existing methods in Section 6.2. Section 6.3 illustrates the general idea of

multi-armed bandit methodology together with several popular bandit models in the context of rec-

ommendation. Section 6.4 gives a detailed formation of our proposed Interactive Social Recom-

mendation (ISR) model, followed by complexity and regret analyses on the scalability and regret
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bound of ISR model. Section 6.5 presents our experiments, compares our approach to several state-

of-art recommendation methods and comments on their performances in terms of various evaluation

metrics. We finally summarize our work in Section 6.6.

6.2 Comparison with Existing Approaches

Cesa-Bianchi et al. [19], Wu et al. [112] and Wang et al. [105] study the bandit setting where infor-

mation from social networks is taken into account. Specifically, Cesa-Bianchi et al.’s model utilizes

a graph Laplacian to regularize the model so that users and their friends have similar bandit param-

eters and Wu et al.’s model, on the other hand, assumes the reward in bandit is generated through an

additive model, indicating that friends’ feedback (reward) on their recommendations can be passed

via the network to explain the target user’s feedback (reward). Wang et al. examine the bandit set-

ting from another view through combining it with matrix completion. However, all the proposed

models in [19, 105, 112] assume the weights for different friends to be fixed, without learning these

weights adaptively to best serve the recommendation accuracy. Besides, their focus is orthogonal to

ours in this work as they are based on explicit features whose model formulations and experimental

settings are different from those based on latent features.

There is also some work that incorporates matrix factorization into the bandit setting [55, 129],

among which Kawale et al. [55] employ Thompson sampling to perform online recommendation

and Zhao et al. [129] propose an interactive collaborative filtering method based on probabilistic

matrix factorization. We remark that neither of these models takes social information into consider-

ation.

6.3 Multi-armed Bandit Methodology in Recommendation

In practice, we often face many situations where it is necessary to find a balance between exploiting

our current knowledge and obtaining new knowledge through searching unknown space. Take rec-

ommender systems as an example, ultimately we would like to recommend “good” items to users

with the best knowledge we have so far as well as explore users’ other interests which we have no

idea about through exposing some “random” items to them and observing their corresponding reac-

tions to these random recommendations. As is discussed previously, multi-armed bandit is adequate

as an appropriate solution for this exploitation-exploration dilemma. In this section, we will give a

mathematical description of the general idea for multi-armed bandit (MAB) strategy in the context

of recommender systems, as well as several existing multi-armed bandit models which are to be

used as baselines for comparison with our proposed model in the experiments.

Formally, a K-armed bandit consists of K arms, representing K candidate items to be rec-

ommended to a user and pulling an arm means recommending an item to a user. In a general

stochastic formation, for each user u, these K arms can also be treated as K probability distribu-

tions [Du,1, Du,2, · · · , Du,K ] with associated expected values (i.e., means) [µu,1, µu,2, · · · , µu,K ]
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and variances [σu,1, σu,2, · · · , σu,K ] where the distribution Du,i is initially unknown. A bandit al-

gorithm proceeds in discrete trials (rounds) t = 1, 2, 3, · · · , and given a user u, it chooses one item

i out of the K candidates(through pulling one of the K arms) and recommends it to the user u in

each trial (round). After each recommendation, the algorithm receives a reward ru,i(t) ∼ Du,i(t)
for picking item i as the recommendation for user u. The total expected regret is used to measure

the performance of bandit algorithms. For a bandit algorithm running totally T trials (rounds), the

total expected regret RT is defined as follows:

RT =
∑
u∈U

[
E
[ T∑
t=1

µ∗

]
− E

[ T∑
t=1

µu,i(t)
]]
, (6.1)

where U is the set of users for evaluation and µ∗ = maxj=1,2,··· ,Kµj is the expected reward from

the best arm (i.e., best candidate item) in each round. Our objective is to find an optimal set of

items, minimizing the total expected regret RT , as the recommendation for each user, which equals

to maximizing the cumulative expected reward during T rounds for every user:

Iu(T ) =
T⋃
t=1

arg max
i

E[ru,i(t)] =
T⋃
t=1

iu(t) . (6.2)

Most bandit strategies maintain empirical average rewards which will be updated in every round

for each arm chosen. We denote r̂u,i(t) as the empirical average reward of arm (i.e., item) i after

t rounds for user u, and pu,i(t) as the probability of picking arm i for user u (i.e., recommending

item i to user u) in round t.

ε-greedy.

The ε-greedy algorithm is widely used because of its simplicity, and obvious generalizations

for sequential decision problems. In each round t = 1, 2, · · · the algorithm selects the item with

the highest empirical average reward from the K candidate items with probability 1 − ε, and se-

lects a random item with probability ε. In other words, given initial empirical average rewards

r̂u,1(0), r̂u,2(0), · · · , r̂u,K(0) for user u,

pu,i(t+ 1) =


1− ε+ ε/K, if i = arg max

j=1,··· ,K
r̂u,j(t)

ε/K, otherwise.
(6.3)

Boltzmann Exploration (Softmax).
Softmax methods are based on Luce’s axiom of choice [76] and pick each item for recommen-

dation with a probability that is proportional to its average reward. Therefore items with greater

empirical average rewards should be picked with higher probabilities. In the following we will de-

scribe Boltzmann Exploration [100], a Softmax method which selects an item using a Boltzmann

distribution. Given the initial empirical average rewards of the K candidate items for user u (de-
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noted as r̂u,1(0), r̂u,2(0), · · · , r̂u,K(0)), the probability of picking item i as recommendation for

user u in round t+ 1 is:

pu,i(t+ 1) = er̂u,i(t)/τ∑K
j=1 e

r̂u,j(t)/τ , (6.4)

where τ is a temperature parameter controlling the randomness of the choice. We would like to

point out that Boltzmann Exploration acts like pure greedy when τ tends to 0, and selects items for

recommendations uniformly at random as τ tends to∞.

Upper Confidence Bounds (UCB).
Lai and Robins are the first to introduce the technique of upper confidence bounds for the asymp-

totic analysis of regret in stochastic bandit models [63]. Later Auer employs the UCB based algo-

rithm to show how confidence bounds can be applied to elegantly deal with the trade-off between

exploitation and exploration in online learning [9]. Then the family of UCB algorithms are pro-

posed in [11] as a simple and elegant implementation of the idea for optimism under uncertainty.

In addition to the empirical average reward, UCB maintains the number of times that each item is

picked for recommendation up to round t as well. Initially all the items are assumed to be chosen

once and afterwards the algorithm greedily selects item i in round t as follows:

i(t) = arg max
j=1,··· ,K

(
r̂u,j(t) +

√
2 log t
nj(t)

)
, (6.5)

where nj(t) represents the number of times item j has been selected for recommendations so far.

We note that r̂u,j(t) is the empirical mean estimate of ru,j(t) in round t given previous observations

in the past t−1 rounds and
√

2 log t
nj(t) is an upper confidence bound. This can be interpreted as a good

trade-off between exploitation, i.e., r̂u,j(t), and exploration, i.e.,
√

2 log t
nj(t) .

Linear UCB (LinUCB).
Li et al. propose a linear model under the UCB framework (called LinUCB) through combining

linear bandit and contextual bandit together to focus on the problem of personalized news article

recommendation [69]. LinUCB assumes that the mean of ru,i(t) can be obtained through the dot

product of an item-dependent coefficient with the concatenation of user u’s and item i’s feature

vectors in round t, which is linear with respect to the item-dependent coefficient given that the user

and item feature vectors are known to us.

However, explicit feature vector may not be always available in practice. Take movie recom-

mendation as an example, most of the state-of-the-art methods are based on collaborative filtering

where user and item latent feature vectors are learnt through low rank matrix factorization. There-

fore, given the success of collaborative filtering in recommender systems, we formulate LinUCB

through employing the latent feature vectors learnt by low rank matrix factorization instead of

explicit feature vectors extracted directly from texts or labels in this chapter, which is similar to

algorithm 2 in [129].
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As such, a common strategy widely adopted by many matrix factorization based collaborative

filtering algorithms is to approximate the feedback (e.g., ratings, clicks etc.) through the inner

product of user and item latent feature vectors (pu and qi):

ru,i = pᵀ
uqi . (6.6)

To incorporate the low rank matrix factorization into LinUCB, we reformulate the bandit strategy

for item selection in the same way as [129]:

i(t) = arg max
j=1,··· ,K

E
[
ru,j(t)

]
= arg max

j=1,··· ,K
Epu

[
pᵀ
u|t
]
qj

= arg max
j=1,··· ,K

(
p̂ᵀ
u,tqj + c

√
qᵀ
jΣ
−1
u,tqj

)
. (6.7)

And we treat the user feedback for an item as the reward of picking this item for recommendation.

We conclude this section by pointing out that all of these existing models handle users’ prefer-

ences over items without considering the influences from their friends on social networks, nor do

they adaptively learn the different weights for different friends to best serve the recommendation

accuracy. This motivates us to develop a novel multi-armed bandit (MAB) model that is capable of

taking not only user-item interactions but also social information from social networks into consid-

eration and learning the weights between the target user and her social ties dynamically so that a

boost in terms of recommendation quality can be achieved.

6.4 Interactive Social Recommendation

In this section, we propose our interactive social recommendation model (ISR) which is capable of

refining itself to best serve the customers after each interaction with a user.

Let U be the set of users for evaluation and I be the set of candidate items, given a user u ∈ U ,

Nu denotes the set of her friends, i.e., her directly connected users, and wu,f is the weight for

the edges (connections) between user u and her friend f ∈ Nu. Recall that the vanilla matrix

factorization presented in (6.6) has been widely adopted by collaborative filtering in both academia

and industry [60]. Thus given the great success of matrix factorization in recommendation during

the past years, lots of social recommendation models [51, 77, 79, 80, 117] actually are extensions

based on the vanilla matrix factorization, among which Ma et al. propose the STE (Recommendation

with Social Trust Ensemble) model that uses a weighted aggregation of a user’s own preferences

and her friends’ preferences to predict the target user’s final feedback (e.g., rating) on an item:

ru,i = αpᵀ
uqi + (1− α)

∑
f∈Nu

wu,fpᵀ
fqi , (6.8)
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where α is a pre-set parameter controlling the relative importance of the target user’s own pref-

erences and her friends’ influences, which naturally simulates the real-world scenario in which

people’s final decisions depend on both own preferences and friends’ influences. Although this idea

is elegant and effective in reducing the inaccuracy of traditional matrix factorization, it has some

limitations:

1. It is an offline method depending on batch learning and not applicable for real-world recom-

mender systems which serve in an online and interactive manner.

2. It assumes a pre-calculated and fixed weight for each friend, which may not always hold as

the degree of trust between users and their friends tends to change when new user feedback

is observed. Our proposed ISR model, on the other hand, is capable of addressing these

limitations.

6.4.1 The ISR Model

A modified version of linUCB is proposed in [129] via replacing the dot product of contextual

feature vectors and coefficients with probabilistic matrix factorization, where the reward of recom-

mending an item i to a user u in round t is regarded as the feedback (such as ratings, clicks etc.) of

user u on item i:

ru,i(t) = pᵀ
u(t)qi . (6.9)

The ISR model extends this formula (6.9) by incorporating the social part:

ru,i(t) = αpᵀ
u(t)qi + (1− α)

∑
f∈Nu

w†u,f (t)pᵀ
fqi , (6.10)

where same as in (6.8), α is the importance controlling parameter in range [0, 1] and w†u,f =
wu,f∑

v∈Nu
wu,v

is the normalized edge weight between u and f . Then the item that has the largest

weighted sum of expected rewards from u and all her friends f ∈ Nu is selected in round t:

i(t) = arg max
j=1,··· ,K

E
[
αr̂u,j(t) + (1− α)

∑
f∈Nu

ŵ†u,frf,j(t)
]

= arg max
j=1,··· ,K

(
αp̂ᵀ

u(t)qj + (1− α)
∑
f∈Nu

ŵ†u,f (t)pᵀ
fqj

)
, (6.11)

where K is the number of candidate items for u in round t. For convenience, we construct

a social weight coefficient vector for each user u (denoted as wu) that consists of all the edge

weights for her friends : wu = [w†u,f1
, w†u,f2

, w†u,f3
, · · ·w†u,f|Nu|

]
ᵀ
, and by further denoting su,i =
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Algorithm 2: Interactive Social Recommendation

Input: c1, c2 ∈ R+, α ∈ [0, 1], λp, λw
Graph G(U,E), where U is the set of users, E is the set of edges indicating the

connected linkage graph.
MAP solutions for item latent feature vectors:
q1,q2,q3, · · ·q|I|

1 Initialization:
2 Σu,1 ← λpI , hu,1 ← 0
3 ∆u,1 ← λwI , zu,1 ← 0
4 for t← 1 to T do
5 pu,t ← Σ−1

u,thu,t
6 wu,t ←∆−1

u,tzu,t
7 where wu = [w†u,f1

, w†u,f2
, w†u,f3

, · · ·w†u,f|Nu|
]
ᵀ
,

8 and f1, f2, · · · , f3 ∈ Nu.
9 foreach i ∈ I do

10 foreach f ∈ Nu do
11 sf,i = pᵀ

fqi
12 end
13 su,i = [sf1,i, sf2,i, sf3,i, · · · , sf|Nu|,i

]ᵀ,
14 where f1, f2, · · · , f3 ∈ Nu.
15

gu,i(t)← α
(
pᵀ
u,tqi + c1

√
qᵀ
i Σ
−1
u,tqi

)
+ (1− α)

(
wᵀ
u,tsu,i + c2

√
sᵀu,i∆

−1
u,tsu,i

)
16 end
17 Choose the item i = arg max gu,j(t) where j = 1, · · · ,K, with ties broken arbitrarily.
18 Receive a real-value reward ru,i(t).
19

20 Update:
21

Σu,t+1 ← Σu,t + qiqᵀ
i

∆u,t+1 ←∆u,t + su,isᵀu,i

hu,t+1 ← hu,t +
(
ru,i(t)− (1− α)wᵀ

u,tsu,i
)
qi

α

zu,t+1 ← zu,t +
(
ru,i(t)− αpᵀ

u,tqi
)
su,i

1− α

22 end
Output: P = {pu: u ∈ U},W = {wu: u ∈ U}

[sf1,i, sf2,i, sf3,i, · · · , sf|Nu|,i
]ᵀ where sf,i = pᵀ

fqi , we can rewrite (6.11) as follows:

i(t) = arg max
j=1,··· ,K

(
αp̂ᵀ

u,tqj + (1− α)ŵᵀ
u,tsu,j

)
. (6.12)
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In plain English, our ISR model aims to find an optimal set of items as recommendations for

different users, such that the accumulated expected reward of the recommendations over all users

will be maximized.

Given the fact that user preferences tend to change in the course of time while item character-

istics normally remain static, it is natural for our ISR model to place more focus on the knowledge

obtained in the last round for the target user rather than for the item, especially when a sufficient

amount of feedback has been collected to infer the latent feature spaces for items. Therefore, we

will assume that the item latent feature vectors have already been pre-learnt through the maximum

a posterior (MAP) estimate under matrix factorization. We will talk more about this experimental

setting later in Section 6.5.

If the item latent feature vectors remain fixed, then the reward in (6.10) becomes linear with re-

spect to the user latent feature vectors with the social weight coefficient vectors treated as constants,

and also linear with respect to the social weight coefficient vectors with the user latent feature vec-

tors treated as constants. Our goal is to find the best user latent feature vectors and the optimal edge

weights for their friends.

The uncertainty of the reward comes from two parts: self-reward (pᵀ
uqj) and social-reward

(wᵀ
usu,j), whose uncertainty derives from the estimation for user latent feature vector pu and so-

cial weight coefficient vector wu respectively. According to ridge regression, the uncertainty of

estimation for pu is:

||qi||Σ−1
u,t

=
√

qᵀ
i Σ
−1
u,tqi , (6.13)

where Σ−1
u,t is the inverse covariance matrix for u’s self-reward in round t. And similarly, the

uncertainty in the estimation of wu can be formulated as follows:

||su,i||∆−1
u,t

=
√

sᵀi∆
−1
u,tsi , (6.14)

where ∆−1
u,t is the inverse covariance matrix for u’s social-reward in round t. ISR chooses the item

with the highest upper confidence bound in each round:

i(t) = arg max
j=1,··· ,K

[
α
(
pᵀ
u,tqj + c1

√
qᵀ
jΣ
−1
u,tqj

)

+ (1− α)
(
wᵀ
u,tsu,j + c2

√
sᵀu,j∆

−1
u,tsu,j

)]
, (6.15)

where c1 and c2 are two parameters used to determine the confidence. The details of our proposed

ISR model are given in Algorithm 2.
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6.4.2 Complexity Analysis

Exploitation-exploration is essentially all about the parameter space for exploration. Existing multi-

armed bandit (MAB) based recommendation methods normally treat each item as an arm, which

results in |I| (i.e., total number of candidate items) parameters for each user. LinUCB [69] reduces

the number of parameters for each user to O(d) (i.e., the sum of the length of user and item feature

vectors) by a linear model, so does the modified LinUCB under matrix factorization introduced

in [129] (whose number of parameters is exactly d, the length of item latent feature vector, for every

user). As for our ISR model, given a user u, there is one more parameterwuf for each friend f ∈ Nu

of user u, thus we will have |Nu| (number of u’s friends) parameters added to the social part of our

ISR model. Therefore, ISR requires d+ |Nu| parameters for each user u. If |Nu| is larger than the

number of latent factors, it would introduce more parameters to estimate. Then there is a potential

problem that we might need more data/rounds to give good recommendation. The only hope is that

friends’ latent factors are helpful enough to reduce the risk.

6.4.3 Regret Analysis

We remark that the self-reward part of our proposed ISR model has a regret bound ofO(
√
T ) under

certain assumptions and will provide the regret analysis in detail as follows.

Recall that for UCB based algorithm, take (6.5) and (6.7) for instance, the choice of item in each

round is:

i(t) = arg max
j=1,··· ,K

(
r̂j(t) + ĉj(t)

)
, (6.16)

where for each item j = 1, · · · ,K, the true mean reward rj(t) in round t lies in a confidence

interval:

Cj(t) :
[
r̂j(t)− ĉj(t) , r̂j(t) + ĉj(t)

]
. (6.17)

To be brief, the estimation of rj(t) is supposed to be as optimistic as possible and then the item

with the best optimistic estimate will be chosen.

As such, we formulate the regret in the vanilla stochastic multi-arm bandit setting as a simpler

version of that indicated in (6.1):

RT =
T∑
t=1

(
µ∗ − ri(t)

)
, (6.18)

where u∗ denotes the expected reward of the best item. Then [11] shows that after running the UCB

based algorithms, with high probability:

RT =
T∑
t=1

(
µ∗ − ri(t)

)
≤

T∑
t=1

(
r̂i(t) + ĉi(t)− ri(t)

)
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≤
T∑
t=1

(
r̂i(t) + ĉi(t)−

(
r̂i(t)− ĉi(t)

))
= 2

T∑
t=1

ĉi(t) . (6.19)

Confidence Intervals.

It is easy to show that through concatenating all feature vectors into a single “larger” one, the

self-reward part of ISR can be treated as a special case of general linear stochastic bandit [1], which

in each round chooses the item such that:

i(t) = arg max
j=1,··· ,K

(
p̂ᵀ
tqt,j + c

√
qᵀ
t,jΣ

−1
t qt,j

)
. (6.20)

And the ellipsoid confidence interval for p is:

Ct = {p
∣∣ ||p− p̂||Σ−1

t
≤ c} , (6.21)

where ||x||Σ =
√

xᵀΣx. Given that Σt is a symmetric positive definite matrix and:

||p− p̂t||Σ−1
t

=
√

(p− p̂t)ᵀΣ−1
t (p− p̂t) , (6.22)

if we set Σt to be identity matrix, resulting in a norm-2 regularization on p − p̂t, then p̂t can be

estimated through the standard ridge regression:

p̂t = argmin
p

t−1∑
t′=1

(
r̂i(t′)− pᵀqt′,i

)
+ λ||p||2 . (6.23)

The corresponding regret is then measured as follows:

RT =
T∑
t=1

(
pᵀ
tqt,j∗ − pᵀ

tqt,j
)
, (6.24)

where j∗ = arg max
j=1,··· ,K

pᵀ
tqt,j .

As a common setting, we follow the assumption that everything is Gaussian, e.g., the distribution

D described in Section 6.3 follows a Gaussian distribution with µ and σ as mean and variance

respectively. Thus from the solution of ridge regression, we have:

Σt = λpI +
t∑

t′=1
qt′,iqᵀ

t′,i , (6.25)

making Ct in (6.21) a valid ellipsoid confidence set containing the true p with a very high probabil-

ity controlled by c. Abbasi-Yadkori et al. [1] give a general condition on the use of valid confidence

ellipsoid, which says if the linearity of true model and the independence of the rewards with R-sub-
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Gaussian (with R ≥ 0) hold, and p as well as q are bounded by some constants, i.e., ||p|| ≤ S and

||q|| ≤ L, then for any 0 ≤ δ ≤ 1 and all t ≥ 0, with probability at least 1 − δ, the true optimal

value p∗ lies in the following ellipsoid confidence set Ct:

p ∈ Rd : ||p− p̂t||Σ−1
t
≤ R

√
d log

(1 + tL2/λ

δ

)
+ λ

1
2S . (6.26)

We refer readers to Theorem 2 in [1] for more details.

Therefore, applying (6.26) with R-sub-Gaussian tails on the noise, p and q upper bounded by

S and L, Ct in (6.21) will be at most:

O
(
R

√
d|I| log t

δ
+ λ

1
2S
)
, (6.27)

where d is the latent feature dimension and |I| is the number of candidate items.

Regret Bound.

Under the assumption that λ ≥ maxq||q||2 and based on the proof of Theorem 3 in [1], we can

further write (6.19) as follows:

RT ≤ 2
T∑
t=1

ci(t) = 2
T∑
t=1

ct||qt,i||Σ−1
t
≤ 2

√√√√ T∑
t=1

c2
t ||qt,i||

2
Σ−1

t
(6.28)

≤ 2

√√√√c2
T

T∑
t=1
||qt,i||2Σ−1

t
= 2cT

√√√√ T∑
t=1
||qt,i||2Σ−1

t
, (6.29)

where (6.28) is obtained by applying Cauchy-Schwarz inequality 1 and (6.29) is obtained based

on the fact that ct is monotonically increasing. Again, Abbasi-Yadkori et al. [1] prove that if λ ≥
maxq||q||2 holds, then:

T∑
t=1
||qt,i||2Σ−1

t
≤ 2 log det(ΣT ) ≤ O

(
d|I| log T

)
. (6.30)

Last, by putting (6.28) and (6.30) together, we have:

RT ≤ O
(
dRS|I|λ

1
2 log

(T
δ

)√
T
)
, (6.31)

and if we further ignore the logarithmic factors and regards the latent feature dimension parameter

d as a constant, then the regret of the self-reward part of ISR is at most O
(√
T
)
.

1https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
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6.5 Empirical Evaluation

In this section, we report the results of our experiments on three real-world public datasets and

compare the performance of the proposed Interactive Social Recommendation (ISR) model with

various baselines including bandit based interactive methods and non-bandit based offline methods

in terms of different evaluation metrics.

6.5.1 Experimental Setup

Although an online experimental setting with real time user-system interactions is most appropriate

for evaluations of different algorithms in this chapter, it is typically impossible to have such an en-

vironment in academic research [69]. Therefore, we follow the unbiased offline evaluation strategy

for bandit alorithms proposed in [70] under the assumption that the user-system interactions (rat-

ings) recorded in our experimental datasets are not biased by the recommender systems and these

records can be regarded as unbiased user feedback in our experimental setting.

Table 6.1: Overview of datasets

Flixster Douban Epinions
#users 76013 64642 10702
#items 48516 56005 39737

#ratings 7350235 9133529 482492
#ratings per user 96.70 141.29 45.08
#ratings per item 151.50 163.08 12.14

#social connections 1209962 1390960 219374

Datasets.

We use the following three real-world datasets, whose basic statistics are summarized in Ta-

ble 6.1.

• Flixster. The Flixster dataset2 containing information of user-movie ratings and user-user

friendships from Flixster, an American social movie site for discovering new movies (http:

//www.flixster.com/).

• Douban. This public dataset3 is extracted from the Chinese Douban movie forum (http:

//movie.douban.com/), which contains user-user friendships and user-movie ratings.

• Epinions. This is the popular consumer review dataset, Epinions4, which consists of user-user

trust relationships and user-item ratings from Epinions (http://www.epinions.com/).
2http://www.cs.ubc.ca/~jamalim/datasets/
3https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban
4http://www.trustlet.org/wiki/Epinions_dataset
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For all datasets, we split the data into two user-disjoint sets : training set and test set. The

test set is constructed by randomly choosing 200 users who have at least 120 ratings and 20 social

connections, leaving the remaining users and their ratings in the training set.

Methods for Comparisons.

We compare ISR with several state-of-the-art approaches including three exploitation-exploration

(i.e., MAB based) interactive methods (ε-greedy, Softmax, LinUCB), one non-interactive person-

alized social recommendation method (STE), one non-interactive personalized non-social recom-

mendation method (PMF) and one non-interactive non-personalized non-social recommendation

method (Random). Thus, the following seven recommendation methods, including six baselines,

are tested.

• ISR. Our proposed ISR model, which is an interactive personalized social recommendation

approach.

• ε-greedy. As is presented in (6.3), it is one of the most popular exploitation-exploration

strategies in literature. In our problem setting, the expected reward of item i for user u at

round t, r̂u,i(t), is assumed to be estimated by the dot product of user latent feature vector at

round t (pu,t) and item latent feature vector (qj). Thus the ε-greedy algorithm picks the item

with the largest estimated reward based on the current knowledge with probability 1 − ε at

round t:

i(t) = arg max
j=1,··· ,K

p̂ᵀ
u,tqj , (6.32)

and randomly picks an item with probability ε.

• Softmax. Another well-studied exploitation-exploration strategy described in (6.4), which is

fitted into our problem setting through substituting r̂u,i(t) with p̂ᵀ
u,tqj (i.e., r̂u,i(t) = p̂ᵀ

u,tqj),
in a similar way to ε-greedy.

• Linear UCB (LinUCB). Algorithm 2 in [129] where c is a tuning parameter, see equa-

tion (6.7) in section 6.3.

• STE. This is a personalized social recommendation method proposed by Ma et al. [77] which

aggregates a user’s own rating and her friends’ ratings to predict the target user’s final rating

on an item.

• PMF. The classic personalized non-social probabilistic matrix factorization model first intro-

duced in [82].

• Random. Randomly recommend unrated items to each user.

As is pointed out in section 6.2 that the three models proposed in [19, 105, 112] are designed

for explicit features rather than latent features, resulting in different model formulations and exper-
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imental settings from ours. This being the case, their work is orthogonal to ours and we are unable

to compare ISR with these three models.

Evaluation Metrics.

We evaluate different models in two aspects: 1) recommending one single item in each round

and 2) recommending multiple items in each round. If we only recommend a single item in each

round, one straightforward measure is to count the number of hit (i.e., recommendation in which

the recommended item has a rating that is no smaller than 4) after T rounds and average it by the

number of users. Thus based on this methodology, we adopt two metrics, cumulative Precision@T
and cumulative Recall@T , for the evaluation in the scenario of single item recommendation per

round.

• Cumulative Precision@T (Pre@T ).

Precision@T = 1
|Utest|

∑
u∈Utest

1
T

T∑
t=1

θhit ,

where θhit = 1 if the rating of the target user u on the recommended item i in round t is

equal to or higher than 4 and θhit = 0 otherwise. Utest denotes those users in the test set.

• Cumulative Recall@T (Rec@T ).

Recall@T = 1
|Utest|

∑
u∈Utest

T∑
t=1

θhit
|Ru|

,

whereRu is the set of items that have been rated no less than 4 by user u in the test set.

When recommending multiple items in each round, the relative rankings of these candidate

items become fairly important for the evaluation. Normalized Discounted Cumulative Gain (NDCG)

is such a top-n recommendation measure suitable for this purpose. Let S(u) be the set of all items

rated by user u in the test set and C(u) be the set of candidate items to be ranked in the test set for

user u. We denote R(u) as the ranking of items in C(u) in a descending order, then for any item i

in S(u), its position in R(u) is noted as rankui .

• NDCG. In the context of recommender systems, NDCG is defined as follows:

NDCG = 1
|U|

∑
u∈U

DCGu

IDCGu
,

where DCG and IDCG (Ideal Discounted Cumulative Gain) are in turn defined as:

DCGu =
∑

i∈S(u)

1
log2(rankui + 1) , and IDCGu =

|S(u)|∑
i=1

1
log2(i+ 1) .
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Thus the NDCG value for exploitation-exploration (MAB based) interactive methods will take the

summation over all T rounds and then average on the number of total rounds. In our experiments,

we test NDCG@n (where n = 3, 5), indicating that C(u) only contains items with top-n largest

rating values from u.

6.5.2 Experimental Results

For exploitation-exploration (MAB based) algorithms including ε-greedy, Softmax, LinUCB and

ISR, probabilistic matrix factorization is first used to train all the item latent feature vectors which

will remain unchanged thereafter and be utilized to learn the user latent feature vectors (and the

social weight coefficients for ISR) later. The winner in each column in Table 6.2 and Table 6.3 is

highlighted in bold font, with * indicating that the corresponding result is significant by Wilcoxon

signed-rank test at p < 0.05. We compare ISR with three interactive baselines in the scenario

of recommending a single item in each round, then include three non-interactive baselines (i.e.,

STE, PMF, Randoms) and their variants as comparative partners in the scenario of recommending

multiple items in each round.

Recommending a single item in each round.

In this evaluation scenario, up to 120 rounds of interactions are studied for each exploitation-

exploration algorithm, given that each user in the test sets has at least 120 ratings. We compare

the performance of our proposed ISR model with other three exploitation-exploration methods: ε-

greedy, Softmax and LinUCB, in term of cumulative precision and recall. Table 6.2 presents the per-

formances of all four approaches on all three datasets for T = 20, 40, 80 and 120, with the last row

showing the improvement of ISR over the best baseline. Clearly, the proposed ISR model outper-

forms all three exploitation-exploration baselines, with a trend towards a decreasing improvement

as T becomes larger. Take cumulative precision as an example, as T increases from 20 to 120, the

improvement of ISR over the best baseline decreases from 8.26% to 4.90% on Flixster, from 8.88%
to 5.37% on Douban and from 11.81% to 7.83% on Epinions. One possible reason is that during the

first several runs of the model when very little feedback is available, ISR model is capable of making

much better recommendations than the baselines due to the benefit of taking social influences into

consideration. On the other hand, these models will receive more and more feedback, which may in-

crease their recommendation accuracy (especially for non-social exploitation-exploration baselines)

as T increases, resulting in a less improvement for ISR against the baselines.

Recommending multiple items in each round.

In the scenario of recommending m (m > 1) items per round, we study up to T = 120
m rounds

of interactions when evaluating each algorithm. In our experiments, we test the performance of

different algorithms by setting m = 3 and m = 5 and study up to T = 40 and T = 24 rounds of

interactions. Moreover, each of the two non-MAB based baselines (i.e., PMF and STE) is designed

to have three variants: -os (short for out of sample), -half and -all. For variant -os, we train the

model on the training set and test its performance on the test set. Note that as the training set and
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test set are user-disjointed, users in the test set will never appear in the training set (i.e., out of

sample), which may result in very poor performance for non-MAB based models. As for the other

two variants, we randomly select η ratings to train the user latent feature vector for each user u in

the test set. We set η to be the number of observable ratings during the first T
2 rounds in the test

set for the -half variant and be the number of all available ratings in the test set for the -all variant.

In other words, the - all variant is trained on all available observations in the test set, indicating

the best solution we can obtain and the performance of -half should intuitively lie between -all and

-os. In Figure 6.1, Figure 6.2 and Figure 6.3, we can see seven straight horizontal lines (they are

straight because these non-MAB based off-line models do batch trainings and have nothing to do

with the rounds of interactions) in each of the six sub-figures, representing the Random baseline (the

lowest one) as well as the three variants for each of PMF and STE: PMF-all, PMF-half, PMF-os and

STE-all, STE-half, STE-os. It is easy to observe that PMF-half lies between PMF-all and PMF-os,

and similarly STE-half lies between STE-all and STE-os, which verifies our assumptions above.

On the other hand, LinUCB and ISR which can be regarded as the exploitation-exploration (MAB

based) versions of PMF and STE to some extent, start with very poor performance , gradually get

improved when receiving more and more feedback in rounds of interactions and closely approach

PMF-all and STE-all respectively in round 120. For both NDCG@3 and NDCG@5 on all three

datasets, the -half baselines outperform their MAB based algorithms (LinUCB and ISR) in early

rounds before being surpassed by their exploitation-exploration counterparts soon after. This is

reasonable since the -half variant can get access to a portion of the observations in the test set

to learn the user preferences, but when more user feedback is available the MAB based algorithm

gets improved through dynamically adapting to user feedback and finally reaches a comparable

performance with the -all variant. Besides, our proposed ISR outperforms LinUCB which does not

utilize social information, through the benefit of taking social influences from friends into account

and adaptively learning weights for these friends. In addition to LinUCB, we also compare ISR

with other exploitation-exploration baselines including ε-greedy and Softmax, whose results are list

in Table 6.3. With no surprise, we observe that ISR beats both of them in all cases .

Impact of controlling parameter α.

As a controlling parameter, α balances the target user’s own preferences and the tastes of her

friends. It controls the extent to which ISR should trust the target user’ own interests and how much

the model should emphasis on the tastes of her friends. In two extreme cases, ISR will only consider

the target user’s own preferences without any social influences when α is set to 1 and merely take

the preferences of the target user’s friends into account when α is set to 0. With α being set to

other real values between 1 and 0, ISR will take both the target user’s and her friends’ interests

into consideration when making recommendations. Figure 6.4, Figure 6.5 and Figure 6.6 show the

impact of α on both cumulative precision and recall for all three datasets. We observe that the

optimal α equals to 0.4 on Flixster and Epinions, and equals to 0.5 on Douban, which confirms the

efficacy of fusing favors of the target user and her friends together in improving the recommendation

accuracy. Moreover, each of the plots in Figure 6.4, Figure 6.5 and Figure 6.6 looks analogous to
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a parabolic shape for both cumulative precision and recall on all datasets, indicating that α with

either a larger or smaller value than the optimal one may cause a decline in the performance of

the algorithm. In other words, it is necessary to find a good balance between the tastes of the

target users and their friends — leaning too much against either of them may result in suboptimal

recommendations.

Learning the edge weights.

Last but not least, we also present some statistics on the learned edge weights by ISR. As

discussed in section 6.4, we adopt the normalized edge weights so that the initial edge weights

depend on the number of friends for each user (i.e., initial weights are equally set to 1
|Nu| for all

edges of user u). Thus we show the relative changes in edge weights with respect to their initial

values after 120 rounds of ISR in Figure 6.7, where positive bin values on X axis indicate relative

increases and negative ones indicate relative decreases. We observe that weights of 1829 edges

in Flixster, 2117 edges in Douban and 2075 edges in Epinions are updated during the 120 rounds

where most of them have a relative change (either increase or decrease) between −80% and 80% of

their initial values, demonstrating the necessity of learning the edge weights.

6.6 Summary

In this chapter, we propose a novel interactive social recommendation model (ISR) with online

learning, which can not only dynamically adapt itself based on user feedback but also adaptively

learn different weights for different friends in social networks. We employ the similar idea of multi-

armed bandit (MAB) strategy for the interactive learning procedure and analyze the regret bound

of our proposed ISR model. We evaluate the performance of the proposed ISR model and compare

with various baselines including MAB based algorithms and non-MAB based ones in terms of

cumulative precision, cumulative recall andNDCG@n on three real-world datasets, demonstrating

the advantages of ISR against these state-of-the-art approaches.
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Figure 6.1: NDCG@3 and NDCG@5 for Random, LinUCB, ISR, PMF
and STE as well as their variants on Flixster
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Figure 6.2: NDCG@3 and NDCG@5 for Random, LinUCB, ISR, PMF
and STE as well as their variants on Douban
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Figure 6.3: NDCG@3 and NDCG@5 for Random, LinUCB, ISR, PMF
and STE as well as their variants on Epinions
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Figure 6.4: Impact of different α values in ISR on cumulative precision and
recall for Flixster in round 120
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Figure 6.5: Impact of different α values in ISR on cumulative precision and
recall for Douban in round 120
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Figure 6.6: Impact of different α values in ISR on cumulative precision and
recall for Epinions in round 120
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Chapter 7

Conclusion

Data mining in recommender systems has many practical applications in our real lives, making it a

very attractive research topic in both industry and academia. With the advent of various web ser-

vices and applications on the Internet, a large amount of social media data becomes available. Due

to the data driven essence of recommendation, it is the boost in available social media data that leads

to the promising progress in a variety of recommendation research in social media. Different from

conventional recommendation without social media which suffers from data sparsity, recommenda-

tion in social media is able to benefit from utilizing extra information such as social connections

(friendships), user-group engagement and user-item interactions in social media to enhance the per-

formance of recommender systems.

In this thesis, we first give a general problem definition for recommender systems, then present

some background knowledge on explicit and implicit feedback in recommendation followed by an

overview of new challenges for applications of recommendation in social media brought by the

rapid development of online web services in Chapter 1. We point out that exploring various user

relationships can be one of the most convenient and effective ways to help improve recommenda-

tion accuracy for applications in social media, which is verified by the success of existing social

recommendation methods. We pick three representative applications of recommendation in social

media for investigation, i.e., strong and weak ties in recommendation, social group recommendation

and interactive social recommendation, We discuss the existing literature related to each of the three

topics in Chapter 2.

In Chapter 3, we propose to study the effects of distinguishing strong and weak ties in social

recommendation, given that little attention has been paid to the important distinctions between

strong and weak ties, two well-documented notions in social sciences [43, 44]. We incorporate

the notions of strong and weak ties into the Bayesian Personalized Ranking (BPR) framework and

learn the optimal threshold w.r.t. recommendation accuracy for distinctions of strong and weak

ties [110]. In Chapter 4, we further bring the concepts of strong and weak ties to Probabilistic Matrix

Factorization (PMF) framework through proposing the novel PTPMF model [109]. Besides learning

the optimal (w.r.t. recommendation accuracy) threshold and other model parameters simultaneously,
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our proposed PTPMF model is also capable of obtaining a personalized tie type preference for each

individual at the same time. In short, we introduce the distinctions of strong and weak ties to BPR

and PMF, two popular state-of-the-art recommendation framework, and demonstrate the efficacy of

our proposed methods against several baselines in Chapter 3 and Chapter 4.

In Chapter 5, we focus on the problem of recommending groups of people to users. Since groups

in social media consist of different users, the characteristics of groups will change as new users join

in or old users leave, making group properties dynamic in the course of time. On the other hand,

user preference also tends to change as time goes by, making discovering relevant groups for users

become time dependent, which poses new challenges to the problem of social group recommenda-

tion. Thus we present a time dependent matrix factorization approach [108] to model the temporal

dynamics between users and groups in the course time so that the recommendation of social groups

to users can become more accurate.

We switch our research attention from offline setting to online setting in Chapter 6. The moti-

vation is that most existing social recommendation models utilize a batch learning based strategy

which trains the model in an offline manner from a collection of historical user interaction data with

the recommender systems. We argue that this in practice may run the risk of making new users leave

the systems for being recommended with items they don not like before a sufficient amount of data

can be collected to train a good off-line model, which results in an inefficient customer retention.

Therefore, we borrow the ideas from the exploitation-exploration (E-E) methodology and employ

the multi-armed bandit (MAB) technique to handle social recommendation problem within online

setting. The proposed interactive social recommendation (ISR) model can not only simultaneously

explore user preferences and exploit the effectiveness of personalization in an interactive way, but

adaptively learn different weights for different friends as well.

Last but not least, we end up this thesis by pointing out several promising directions for future

investigations:

Future work directly related to topics in this thesis

• Strong and weak ties in recommendation with a personalized threshold for classifying
strong and weak ties
One interesting direction for future work is to find a personalized threshold for classify-

ing strong and weak ties for each user, though it can be challenging due to the sparsity of

data. Further, we did not examine other node similarity metrics such as Adamic-Adar [2]

or Katz [53] in this thesis and it is also quite interesting to explore different node similarity

metrics.

• Recommendation with complex long term relationships
In addition to the problem of social group recommendation in this thesis, it is worth try-

ing to investigate methods for other recommendation problems (e.g., job recommendation)
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which involve more complex long term relationships between users and the items being rec-

ommended.

• Incremental social information and popular users for interactive social recommendation
Despite the promising results obtained, some open issues remain unsolved in Chapter6. First

of all, some users might get new friends during the interactions, which will lead to the problem

of incremental social information. Second, there always exist popular users who have lots of

friends, making the exploration space considerably huge. As such, it will be quite interesting

and challenging to investigate these two problems.

Other open problems for future research

• Domain aware social recommendation
In spite of the huge success of social recommendation in alleviating the data sparsity in rec-

ommender systems, there still exist some open questions that deserve our serious ponders.

Current social recommendation methods tend to improve traditional recommender systems

via taking social influence and social selection among friends in to account when making rec-

ommendations. They treat all social ties (friends) of an individual equally in every knowledge

domain, which can not be true in reality because we may have different degrees of trust for

our friends in different knowledge domains. For instance, let us assume Alice has two friends,

Tom and David. Tom is an expert in computer programming while David is a classical music

enthusiast. It is obvious that Alice should trust Tom more when she wants to get some sugges-

tions in C++ programming and trust David more when picking some pieces of symphony for

listening. We believe that developing a domain aware social recommendation approach will

certainly boost the performance of existing state-of-the-art social recommendation methods.

• Reverse engineering for recommendation
Another interesting application is the reverse recommendation problem. Take Netflix as an

example, Netflix has planned to produce its own TV series (such as House of Cards) and

movies. Then a natural question is that what types of TV series and movies can become

popular and attract lots of attentions from its users. Moreover, if we regard each TV series

and movies as a combination of different features consisting of genres, actors, directors etc.,

the problem becomes that TV series or movies containing which combinations of features are

able to achieve high audience ratings. In the problem of reverse recommendation, we want to

create new items with a combination of known features such that these new items can become

popular among the potential consumers. This is a meaningful practical problem as solving it

can not only increase a company’s revenue but also present enjoyable products such as films

and television programs to the public.
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